
EXAMINING EFFECTIVENESS OF WEB-BASED
INTERNET OF THINGS HONEYPOTS

THESIS

Lukas A. Stafira, 2d Lt, USAF

AFIT-ENG-MS-19-M-057

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-19-M-057

EXAMINING EFFECTIVENESS OF WEB-BASED

INTERNET OF THINGS HONEYPOTS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Lukas A. Stafira, B.S.C.S.

2d Lt, USAF

March 2019

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-19-M-057

EXAMINING EFFECTIVENESS OF WEB-BASED

INTERNET OF THINGS HONEYPOTS

THESIS

Lukas A. Stafira, B.S.C.S.
2d Lt, USAF

Committee Membership:

Barry E. Mullins, Ph.D., P.E.
(Chairman)

Timothy H. Lacey, Ph.D., CISSP
(Member)

Stephen Dunlap, M.S., CISSP
(Member)

AFIT-ENG-MS-19-M-057

Abstract

The Internet of Things (IoT) is growing at an alarming rate. It is estimated that

there will be over 25 billion IoT devices by 2020. The simplicity of their function

usually means that IoT devices have low processing power, which prevent them from

having intricate security features, leading to vulnerabilities. This makes IoT devices

the prime target of attackers in the coming years. Honeypots are intentionally vulner-

able machines that run programs which appear as a vulnerable device to a would-be

attacker. They are placed on a network to entice and trap an attacker and then

gather information on them, including place of origin and method of attack. Due to

their prevalence and propensity for having vulnerabilities, IoT devices are a perfect

candidate for honeypots placed on a network.

Honeyd is popular open-source software written by Niels Provos that creates low-

interaction virtual honeypots. It is able to simulate everything at the network level,

allow the user to create various Transmission Control Protocol (TCP) and User Data-

gram Protocol (UDP) services, and allow Operating System (OS) simulation for scan-

ning tools such as Nmap. This research seeks to determine if Honeyd is capable of

producing convincing IoT honeypots.

Three IoT devices: a TITAThink camera, a Proliphix thermostat, and an ezOut-

let2 power outlet, had their Hypertext-Transfer Protocol (HTTP) services simulated

through Python scripts and integrated with Honeyd to create three IoT honeypots.

These honeypots were then compared to the actual devices to determine how similar

they were. The devices and honeypots are both queried in the exact same manner

and have their response times, code, headers, and Nmap scan results compared to see

how they differ.

iv

Experimental results show there is a statistically-significant difference between the

means for query response times and Nmap scan times; however, the code and headers

were over 90% similar in 18/27 tests. The differences that were recorded were mostly

due to limitations in the physical IoT devices. The Nmap scan results were successful

at simulating the service and manufacturer scans, but Nmap was able to identify a

difference in fingerprinted operating systems.

This thesis showcases how Honeyd is a useful program for creating IoT honeypots.

The code in this research could be used to quickly deploy authentic IoT honeypots or

it could be adapted to create different types of IoT honeypots. In addition, it could

easily be adapted to create honeypots of other IoT devices that utilize HTTP. The

ability to easily create these IoT honeypots would be useful to the defense department

and members of the security industry interested in integrating IoT honeypots in their

networks.

v

AFIT-ENG-MS-19-M-057

To Mom and Dad,

Thanks for your love and support.

vi

Acknowledgements

It’s a job that’s never started that takes the longest to finish -J.R.R Tolkien

I want to thank Dr. Barry Mullins, my advisor, for his consistent advice and

support throughout my time at AFIT and during my thesis research.

I would also like to thank everyone in the lab, for making those hours spent there

entertaining, enjoyable, insightful, and at times thought-provoking.

Lukas A. Stafira

vii

Table of Contents

Page

Abstract . iv

Dedication . vi

Acknowledgements . vii

List of Figures . xi

List of Tables . xviii

I. Introduction . 1

1.1 Background . 1
1.2 Motivation . 2
1.3 Research Goals . 3
1.4 Approach . 3

1.4.1 IoT Network . 4
1.4.2 Honeyd Implementation . 4
1.4.3 Comparison . 5
1.4.4 Experimentation . 5

1.5 Assumptions and Limitations . 7
1.5.1 Assumptions . 7
1.5.2 Limitations . 7

1.6 Research Contributions . 8
1.7 Thesis Overview. 9

II. Background and Related Research . 10

2.1 Overview . 10
2.2 Background . 10

2.2.1 Internet of Things (IoT) . 10
2.2.2 Honeypots . 19
2.2.3 Nmap . 22
2.2.4 Honeyd . 23

2.3 Related Research . 27
2.3.1 IoT Honeypots . 27
2.3.2 Honeyd . 29
2.3.3 Uses for Honeypots . 30

2.4 Chapter Summary . 31

viii

Page

III. Framework Design . 32

3.1 Overview . 32
3.2 Motivation and Application . 32
3.3 IoT System Under Test . 34

3.3.1 TITAThink Camera . 34
3.3.2 Proliphix Thermostat . 39
3.3.3 ezOutlet2 Power Switch . 43

3.4 Honeyd IoT System Framework . 45
3.4.1 Honeyd Configuration . 46
3.4.2 Web Server . 48
3.4.3 Proliphix Thermostat Honeypot . 55
3.4.4 ezOutlet2 Honeypot . 59

IV. Research Methodology . 64

4.1 Goals . 64
4.2 Approach . 64

4.2.1 Packet Timing and Content . 64
4.2.2 Nmap Scans . 68

4.3 System Boundaries . 69
4.4 Parameters and Factors . 70

4.4.1 Assumptions . 70
4.4.2 System Parameters . 71
4.4.3 Factors . 72
4.4.4 Metrics . 73

4.5 Methodology. 74
4.6 Apparatus . 76
4.7 Results . 77
4.8 Chapter Summary . 83

V. Results and Analysis . 84

5.1 Overview . 84
5.2 Metric 1 - Query Completion Time . 84

5.2.1 TITAThink Camera . 84
5.2.2 Proliphix Thermostat . 86
5.2.3 ezOutlet2 Power Outlet . 90

5.3 Metric 2 - Data Difference . 93
5.3.1 TITAThink Camera . 93
5.3.2 Proliphix Thermostat . 95
5.3.3 ezOutlet Power Outlet . 97

5.4 Metric 3 - Number of Packets . 99
5.4.1 TITAThink Camera . 99
5.4.2 Proliphix Thermostat . 100

ix

Page

5.4.3 ezOutlet Power Outlet . 101
5.5 Metric 4 - Header Difference . 103

5.5.1 TITAThink Camera . 103
5.5.2 Proliphix Thermostat . 104
5.5.3 ezOutlet Power Outlet . 106

5.6 Metric 5 - Nmap Scan Time . 108
5.6.1 TITAThink Camera . 108
5.6.2 Proliphix Thermostat . 110
5.6.3 ezOutlet Power Outlet . 112

5.7 Metric 6 - Nmap Scan Difference . 115
5.7.1 TITAThink Camera . 115
5.7.2 Proliphix Thermostat . 116
5.7.3 ezOutlet Power Outlet . 116

5.8 Summary . 117

VI. Conclusions . 118

6.1 Introduction . 118
6.2 Research Conclusions . 118

6.2.1 Response Time . 118
6.2.2 Data Similarity . 119
6.2.3 Nmap Scans . 121

6.3 Research Significance . 122
6.4 Research Limitations . 122
6.5 Scalability . 124
6.6 Future Work . 124
6.7 Chapter Summary . 125

Appendix A. Honeyd Configuration Code . 126

Appendix B. TITAThink Camera Honeypot Code . 128

Appendix C. Proliphix Thermostat Honeypot Code . 137

Appendix D. ezOutlet2 Power Outlet Code . 144

Appendix E. Testing and Comparison Scripts . 150

Appendix F. Experimentation Data . 172

Appendix G. Statistical Tests . 179

Bibliography . 198

x

List of Figures

Figure Page

1. IoT architecture [1] . 11

2. MAC headers for IEEE 802.11 and IEEE 802.11ah [2] 13

3. Example ZigBee network topology adapted from [3] 15

4. Honeypot deployed as an IDS adapted from [4] . 22

5. Example Honeyd configuration file [5] . 25

6. Example of an Nmap signature database file. This
signature is for Windows XP SP3 or SP4 [6] . 26

7. test.sh script packaged with Honeyd [7] . 27

8. Model of experiment network configuration . 35

9. Network of the physical IoT devices being tested . 36

10. TITAThink TT520PW camera . 36

11. TITAThink camera login page . 37

12. TITAThink camera main page . 38

13. Proliphix NT130h thermostat . 40

14. Wiring of power and Ethernet for Proliphix thermostat 40

15. Wiring diagram of Proliphix thermostat . 41

16. Proliphix thermostat main page . 42

17. ezOutlet2 EZ-22b power outlet . 44

18. ezOutlet2 EZ-22b Ethernet port . 44

19. ezOutlet2 EZ-22b power outlet main page . 45

20. Code excerpt from iotHoneyd.conf (Appendix A)
showing how each device has a script run on TCP port 80 47

21. Example HTTP GET request [8] . 49

xi

Figure Page

22. The Python script has the capability to draw date and
time on the camera image . 50

23. Wireshark capture of the TITAThink camera showing
the redirects that happen when trying to access the
main page . 51

24. Conditional statements showing how headers and files
are sent based on the file requested . 52

25. Homepage of Honeyd camera honeypot when it is fully
configured . 53

26. Wireshark capture of the TITAThink Camera showing
access to the settings page is unauthorized . 54

27. Detected OS of a TCP SYN scan on the TITAThink
camera . 55

28. Wireshark capture of the Proliphix thermostat show
accessing the main page as well as an unauthorized page 57

29. Homepage of Honeyd thermostat honeypot when it is
fully configured . 58

30. Detected OS of a TCP SYN scan on the Proliphix
thermostat . 59

31. Homepage of Honeyd outlet honeypot when it is fully
configured . 60

32. Wireshark capture of the ezOutlet2 shown accessing the
main page as well a nonexistent page . 61

33. Script for flipping and resetting the switch on the
honeypot outlet . 62

34. ezOutlet2 Nmap OS Detection . 63

35. HTTP IoT Honeyd framework . 70

36. Example bar graph of average query response time 79

37. Example bar graph showing code percent similarity for
1 user . 79

xii

Figure Page

38. Example bar graph of TCP/IP and HTTP header
percent similarity for the trials with 1 user . 80

39. Example bar graph of number of TCP/IP packets 80

40. Example bar graph of average Nmap scan time . 81

41. Example scatter plot of average query response time
with trendline . 81

42. Camera average query response time for device and
honeypot . 85

43. IoT camera average query response versus number of
users . 86

44. Camera honeypot average query response versus
number of users . 86

45. Thermostat average query response time for device and
honeypot . 89

46. IoT thermostat average query response versus number
of users . 89

47. Thermostat honeypot average query response versus
number of users . 90

48. Outlet average query response time for device and
honeypot . 92

49. IoT outlet average query response versus number of users 92

50. Outlet honeypot average query response versus number
of users . 93

51. Code similarity for camera with 1 user . 94

52. Code similarity for camera with 10 simultaneous users 94

53. Code similarity for camera with 20 simultaneous users 95

54. Code similarity for thermostat with 1 user . 96

55. Code similarity for thermostat with 5 simultaneous users 96

xiii

Figure Page

56. Code similarity for thermostat with 10 simultaneous
users . 97

57. Code similarity for outlet with 1 user . 98

58. Code similarity for outlet with 10 simultaneous users 98

59. Code similarity for outlet with 20 simultaneous users 99

60. The number of TCP/IP packets sent by both the IoT
camera and honeypot camera . 100

61. The number of TCP/IP packets sent by both the IoT
thermostat and honeypot thermostat . 101

62. The number of TCP/IP packets sent by both the IoT
outlet and honeypot outlet . 102

63. Camera header similarity 1 user . 103

64. Camera header similarity 10 users . 104

65. Camera header similarity 20 users . 104

66. Thermostat header similarity 1 user . 105

67. Thermostat header similarity 5 users . 106

68. Thermostat header similarity 10 users . 106

69. Power outlet header similarity 1 user . 107

70. Power outlet header similarity 10 users . 108

71. Power outlet header similarity 20 users . 108

72. Average Nmap scan time for camera . 110

73. Average Nmap scan time for thermostat . 112

74. Average Nmap scan time for power outlet . 114

75. TITAThink camera query response time T-test 100
queries - 1 user . 179

76. TITAThink camera query response time T-test 100
queries - 10 users . 180

xiv

Figure Page

77. TITAThink camera query response time T-test 100
queries - 20 users . 180

78. TITAThink Camera query response time T-test 500
queries - 1 user . 181

79. TITAThink camera query response time T-test 500
queries - 10 users . 181

80. TITAThink camera query response time T-test 500
queries - 20 users . 182

81. TITAThink camera query response time T-test 1000
queries - 1 user . 182

82. TITAThink camera query response time T-test 1000
queries - 10 users . 183

83. TITAThink camera query response time T-test 1000
queries - 20 users . 183

84. Proliphix thermostat query response time T-test 100
queries - 1 user . 184

85. Proliphix thermostat query response time F-test and
T-test 100 queries - 5 users . 184

86. Proliphix thermostat query response time F-test and
T-test 100 queries - 10 users . 185

87. Proliphix thermostat query response time T-test 500
queries - 1 user . 185

88. Proliphix thermostat query response time F-test and
T-test 500 queries - 5 users . 186

89. Proliphix thermostat query response time F-test and
T-test 500 queries - 10 users . 186

90. Proliphix thermostat query response time T-test 1000
queries - 1 user . 187

91. Proliphix thermostat query response time F-test and
T-test 1000 queries - 5 users . 187

xv

Figure Page

92. Proliphix thermostat query response time F-test and
T-test 1000 queries - 10 users . 188

93. ezOutlet2 query response time T-test 100 queries - 1 user 188

94. ezOutlet2 query response time T-test 100 queries - 10
users . 189

95. ezOutlet2 query response time F-test and T-test 100
queries - 20 users . 189

96. ezOutlet2 query response time T-test 500 queries - 1 user 190

97. ezOutlet2 query response time T-test 500 queries - 10
users . 190

98. ezOutlet2 query response time T-test 500 queries - 20
users . 191

99. ezOutlet2 query response time T-test 1000 queries - 1 user 191

100. ezOutlet2 query response time T-test 1000 queries - 10
users . 192

101. ezOutlet2 query response time T-test 1000 queries - 20
users . 192

102. TITAThink camera Nmap SYN times Mann-Whitney U
test . 193

103. TITAThink camera Nmap UDP times Mann-Whitney U
test . 193

104. TITAThink camera Nmap FIN times Mann-Whitney U
test . 194

105. Proliphix thermostat Nmap SYN times Mann-Whitney
U test . 194

106. Proliphix thermostat Nmap UDP times Mann-Whitney
U test . 195

107. Proliphix thermostat Nmap FIN times Mann-Whitney
U test . 195

108. ezOutlet2 Nmap SYN times Mann-Whitney U test 196

xvi

Figure Page

109. ezOutlet2 Nmap UDP times Mann-Whitney U test 196

110. ezOutlet2 Nmap FIN times T-test . 197

xvii

List of Tables

Table Page

1. Summary of vulnerabilities and attacks found in
wearable devices [9] . 19

2. TITAThink camera and honeypot Nmap scan time
Anderson-Darling results and final p-value . 110

3. Proliphix thermostat and honeypot Nmap scan time
Anderson-Darling results and final p-value . 112

4. ezOutlet2 power outlet and honeypot Nmap scan time
Anderson-Darling results and final p-value . 115

5. TITAThink camera average query response time 172

6. Proliphix thermostat average query response time 172

7. ezOutlet2 average query response time . 173

8. TITAThink camera HTML percent similarity . 173

9. Proliphix thermostat HTML percent similarity . 174

10. ezOutlet2 HTML percent similarity . 174

11. TITAThink camera header information . 175

12. Proliphix thermostat header information . 175

13. ezOutlet2 header information . 176

14. Nmap scan times for TITAThink camera and camera
honeypot . 176

15. Nmap scan times for Proliphix thermostat and
thermostat honeypot . 177

16. Nmap scan times for ezOutlet2 and outlet honeypot 178

xviii

xix

EXAMINING EFFECTIVENESS OF WEB-BASED

INTERNET OF THINGS HONEYPOTS

I. Introduction

1.1 Background

The Internet of Things (IoT) is growing at an alarming rate. It is estimated

that there will be over 25 billion IoT devices by 2020 [10]. These devices are always

operating, gathering information taken from outside stimuli and transmitting it over

the Internet while waiting for commands from the user. The simplicity of their

function usually means that IoT devices have low processing power, which prevents

them from having intricate security features, leading to vulnerabilities. Also, many

times, vendors do not bother to install more intricate security measures or have good

processes in place to update a device after a vulnerability has been found and fixed

[10]. This makes IoT devices an ideal avenue for a would-be attacker to exploit.

Honeypots are intentionally vulnerable machines that run programs which appear

as a vulnerable device to a would-be attacker. They are placed on a network to

trap and entice an attacker and then gather information on them, including place

of origin and method of attack. They usually only offer certain services and are

by no means used by regular users on the network. Many honeypots run on their

own custom software, but there are also honeypot managers that can be used to

create multiple honeypots that run various services among other helpful features.

Honeypots are useful tools for security professionals to place on their networks as a

way to divert attackers from mission critical devices. Attackers can be slowed down

1

or locked out by interacting with a honeypot. Honeyd is a popular honeypot manager

that can create many low-interaction virtual honeypots [11]. Instead of emulating an

entire operating system, Honeyd simulates everything at the network level as well as

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) services.

1.2 Motivation

With 25 billion IoT devices entering networks across the world [10], there will be an

increasing number of malicious attackers who try to use them as a means of access into

a network. Creating honeypots that simulate these services would be a perfect way

to trap an attacker and possibly gather information about them. Moreover, devices

with vulnerabilities are a perfect pairing for intentionally vulnerable honeypots.

Many IoT devices, such as Nest and Ring, now have mobile apps which is the

main method for interacting with the user [12] [13]. However, some of these devices

still have a web interface as well. Some of the IoT devices used in this thesis have

mobile apps and web interfaces. If the web interfaces are ignored by the user, they

remain with blank or default passwords. These web-based IoT devices could be more

vulnerable than ever before. For this reason, it would be worthwhile to see how

effective honeypots could be that utilize the Hyptertext Transfer Protocol (HTTP).

While Honeyd is an older program, it is still one of the most widely used honeypot

managers today [4]. It provides several capabilities with its Operating System (OS)

and network emulation. The scripting capability it provides can be used to create

very convincing honeypots. Even web applications can be easily scripted by using the

requests made to Honeyd as a pseudo-webserver. The challenge comes from seeing if

the way IoT devices present their information on the web can be presented to a user

through Honeyd in the exact same manner.

2

1.3 Research Goals

The goal of this research is to see if Honeyd can be used to create convincing

honeypots that simulate IoT devices. The IoT devices interact with the user through

a web interface with HTTP. The convincibility of the honeypot is directly related to

how similar the honeypot is to the IoT device it is actually simulating. In theory, a

honeypot that looks and functions exactly as a real IoT device is indistinguishable to

an attacker. The hypothesis is that Honeyd is able to successfully create a near copy

of the real IoT devices. This is determined through a combination of code, header,

access time, and Nmap scan comparisons.

1.4 Approach

To determine how effective a honeypot is, it is modeled after a real IoT device

and compared. To accomplish this task, this research is broken into four parts:

1. Create a network of IoT devices and gather information about them

2. Construct the honeypots and services to simulate the devices in Honeyd

3. Compare the IoT devices and honeypots, and make changes to the honeypots

to increase their authenticity

4. Run tests on both the IoT devices and honeypots to obtain their response times,

data, headers, and Nmap scan results for comparison.

creating a network of IoT devices and gathering information about them, constructing

the honeypots and services to simulate the devices in Honeyd, comparing them to

make additional changes to increase their authenticity, and experimenting on them.

3

1.4.1 IoT Network.

While there are countless IoT devices on the market today, this research is focused

on ones with web interfaces. Selected devices include an IoT camera, thermostat, and

power outlet. The camera is a TITAThink TT520PW. The thermostat is a Proliphix

NT130h. The power switch is an ezOutlet2 EZ-22b. All these devices are place on

the same Local Area Network (LAN), not connected to the Internet, and observed

through a web browser. Their files are extracted by saving the page from the web

browser to make localized copies of their web page. Using these and a combination

of the actual Hypertext Markup Language (HTML) code on the web page, these files

can be transferred to Honeyd to create a honeypot.

1.4.2 Honeyd Implementation.

Honeyd provides the ability to run scripts on service ports to give an attacker

the illusion of a fully-functioning system. Using a bash script, Honeyd is able to

function as a pseudo-webserver, taking requests from a client and sending correct

HTTP response messages along with the corresponding data. However, this is only

half of the necessary function. Some IoT devices, such as the camera and thermostat,

have functions they perform and present to the user. A camera shows a camera feed,

and a thermostat shows the current temperature. For these services, Python scripts

are written to simulate a live camera feed as well as update the temperature. This

way, when a user tries to access one of these pages, the honeypot gives the appearance

of a dynamic IoT device as opposed to a static web page characteristic of some IoT

honeypots.

4

1.4.3 Comparison.

Once Honeyd is properly configured and the honeypots are running, some obser-

vations are made. Access time is an important attribute to consider, as some IoT

devices run on low-powered hardware and may take longer to access than the honey-

pot. In this case, delays may need to be built into the honeypot code to bring them

more in line with the IoT device they are trying to simulate. If it is the other way

around, more computing resources may be needed to speed up the honeypot. Also,

Nmap is a common tool used as an automated network scanner. Both the IoT device

and honeypot are scanned repeatedly to fine tune the detected operating systems

and open services. Finally, some of the devices have unique ways of presenting a page

to the user, such as redirect commands via HTTP. These can be discovered using

Wireshark. Using Wireshark to observe the transmission of data from the IoT device

to the user, the exact HTTP response codes sent can be observed and implemented

into the Honeyd web server.

1.4.4 Experimentation.

In this research, experimentation has four main components that are used to

compare the IoT device and honeypot: access time, HTML code, network headers,

and Nmap scan.

1. Access Time: The main area of interest is how fast the IoT device responds

when a user tries to access the main web page. While there are other pages

on each device, this research focuses on how fast the honeypot responds to a

request of the main page. In theory, timing should be similar for the other

pages. This provides a good baseline to compare the access time between the

IoT device and the honeypot. Requests are made from a differing number of

simultaneous users as well. This increased load should increase the response

5

time from the IoT device and honeypot in the same way.

2. HTML Code: Since Honeyd has the ability to act as a pseudo-webserver, there

should be no discrepancy between the files requested from the IoT device or

honeypot. Each IoT device has multiple pages that can be accessed. The

tests query different pages including a page that requires authorization, if the

IoT device has it, and a page that does not exist. These pages are compared

to determine the number of differences between the IoT device and honeypot.

Items that are expected to change, such as date, time, temperature, Internet

Protocol (IP) addresses, etc, are not factored into the differences.

3. Network Headers: When each page is accessed, the HTTP headers are stored

in a file, and there is another program listening for all of the incoming TCP

and IP headers. The tests compare the IoT device and honeypot to ensure they

contain the same fields and that those fields have the correct values. The TCP

and IP packet header fields are typically deterministic, but HTTP header fields

can be different depending on the device. Therefore, only the TCP/IP header

values need to be compared, but it is necessary to compare both the HTTP

header fields and values.

4. Nmap Scan: The Nmap scan provides various information about the operating

system and services. The tests are run, on the IoT device and the honeypot,

to determine that the services are the same and the similarity of the operating

systems.

6

1.5 Assumptions and Limitations

1.5.1 Assumptions.

In evaluating the devices and honeypots in this research, the following assumptions

are made:

• Each connection attempt ends with a success. If a connection fails, an entirely

empty web page is used for comparison purposes.

• The same commands are used on both devices.

• Date and time of access are different for each attempt.

• Non-standard commands are not attempted against any device.

• All interactions take place on the same network with the same network hard-

ware.

• All interactions begin from the same location with the same hardware. Each

interaction uses the same machine so processor specifications are not a factor.

• The same version of all software is used.

• There are no outside interaction with the devices other than the user in the

scenario.

1.5.2 Limitations.

1.5.2.1 Singular Task.

This research is only focused on the HTTP web application of these IoT devices.

Some of these devices have other services available, but they are not explored in this

research. These services are only enabled in the Honeyd configuration file, making

them observable by Nmap.

7

1.5.2.2 Nmap Version.

The version of Honeyd used in this research is 1.5c. This version uses an older

Nmap fingerprint database format. Because of this, the OS scanning on the honeypots

with the latest version of Nmap may not produce ideal results. The Honeyd honeypots

do not have the option to choose some of the operating systems that Nmap can detect

in its latest version. This research is mostly focused on how convincing IoT honeypots

are with the last version of Honeyd that Provos produced.

1.5.2.3 Computer Resources.

The honeypot is running on a glsvm running Ubuntu 12.04.5, and the resources

are constrained to allow running other virtual machines without slowing down the

function of the laptop on which everything is running. Therefore, if a honeypot is

responding slower than one of the physical devices, a more powerful machine hosting

the virtual machines would be required. In this research, honeypots are able to be

slowed down, but not sped up.

1.6 Research Contributions

The research in this thesis tries to recreate as close as possible the appearance

and function of actual IoT devices to determine whether or not Honeyd is a suitable

framework within which to simulate these devices. It assesses how well Honeyd is

capable of simulating web IoT devices that have static pages of information, such as

the Proliphix thermostat and ezOutlet2, and how it may not be optimal for simulating

web IoT devices that have a dynamically-updating page, such as the TITAThink

camera. This research could be used by defense agencies and companies who seek to

delay or examine attackers on their own networks by making convincing honeypots

of IoT devices, one of the most prevalent devices that make up the Internet today,

8

quickly and with limited resources.

1.7 Thesis Overview

Chapter II contains an overview of the Internet of Things, honeypots, and the

other pieces of software related to this research as well as some background research

on IoT honeypots. Chapter III provides a description of the Honeyd-based system to

simulate the three IoT devices as well as the physical system they are tested against.

Chapter IV details the design of the experiments with the corresponding results in

Chapter V. Chapter VI outlines the conclusions drawn from this research as well as

potential areas to explore in future research.

9

II. Background and Related Research

2.1 Overview

This chapter details relevant background information regarding Internet of Things

(IoT) and honeypots. Section 2.2.1 discusses the background, protocols, and security

of the IoT, and Section 2.2.2 discusses honeypots. Sections 2.2.3 and 2.2.4 discuss the

tools used for this research: Nmap and Honeyd. Finally, Section 2.3 covers current

research that has been done in combining the IoT and honeypots into security tools.

2.2 Background

2.2.1 Internet of Things (IoT).

The IoT is a blanket term used to describe the interconnection of various devices

and sensors through the Internet. IoT devices take in outside stimuli, react to it,

and communicate with one another through the Internet [14]. There are IoT sensors,

appliances, and cameras just to name a few. These devices are usually always running,

meaning they are constantly performing their functions and interacting with each

other through the Internet.

One example of a device is an IoT thermostat that has the ability to control

the temperature of a home dynamically. It can be changed by the user through the

Internet, or it can be programmed to change at certain times. It is always running,

waiting on a command to change the temperature. Overall, its function is quite

simple. The simplicity of the function usually means that IoT devices have low

processing power, which can lead to vulnerabilities.

Suo et al. have divided the IoT functionality into 4 layers (Figure 1): Applica-

tion, Support, Network, and Perceptual [1]. The Perceptual layer deals with data

gathering. Physical sensors such as temperature, GPS, and cameras collect data for

10

processing on the device. The Network layer is responsible for the reliable transfer of

this data. It mostly passes through the Internet but also through other transporta-

tion mediums such as Bluetooth. The Support layer deals with the computation of

the data on the IoT device. This can be performed on the device itself, but due to

the low processing power of many IoT devices, it is frequently done remotely through

cloud computing. Finally, the Application layer provides services to the user, such

as the graphical user interface that displays the data from the sensors, and allows

manipulation of the device by the user. This model is a useful way to highlight the

different portions of what makes up an IoT device.

The number of IoT devices is growing every day. It is estimated that there will be

over 25 billion IoT devices by 2020 [10]. Not only does the limited processing power

lend to their insecurity, but some of their protocols do as well. The main protocol

used by these devices is the Internet Protocol (IP); however, there are also other

protocols that add additional layers of functionality and insecurity.

Figure 1. IoT architecture [1]

11

2.2.1.1 IoT Protocols.

Most protocols in use by IoT devices are different than ones that have been the

standard for other Internet-connected devices. They add additional functionalities

and abilities for users to interact with their device. Sometimes the devices transfer

personal information that is collected or stored within the device. Some of these

protocols include Bluetooth, ZigBee, and WirelessHART. These protocols can add a

new dimension into fingerprinting IoT devices as well as introducing more security

vulnerabilities.

The majority of IoT devices are wireless and use exclusively wireless protocols.

They usually connect to the Internet through IEEE 802.11, also known as WiFi.

However, some IoT devices have such a small amount of processing power, that WiFi

is not feasible given the required overhead. Some devices utilize the protocol IEEE

802.11ah (hereafter referred to as 802.11ah), which is a lower-overhead version of the

standard IEEE 802.11 [14]. Figure 2 shows the headers of both protocols. 802.11ah

is ideal for IoT devices that sacrifice processing power to be compact and may need

to conserve battery life. Some features of 802.11ah that assist IoT devices include

the reduction of the Media Access Control (MAC) frame from 30 bytes to 12 bytes.

It also replaces the 14-byte ACK frame for a tiny signal called a preamble that is

used instead. There is a synchronization frame that only allows stations with valid

channel information to transmit after reserving the channel medium. Finally, there

is also efficient bidirectional packet exchange that reduces power consumption by

allowing IoT devices to go to sleep as soon as they finish their communication [14].

While IoT devices are often resource constrained, protocols such as these improve

their functionality and efficiency.

12

Figure 2. MAC headers for IEEE 802.11 and IEEE 802.11ah [2]

Bluetooth is another common protocol in IoT devices. It is a standard for short

range, low power, low cost wireless communication that uses radio technology [15].

One common feature of IoT devices is the lack of user interface on the physical device.

There is no mouse or keyboard to modify how the device functions or how it presents

information to the user. Some devices do have a small touchscreen interface, but

even these devices usually still have a Bluetooth connection to a user’s smart phone.

Bluetooth requires 100 mW of power, which is too large of a power draw for some

IoT devices [16]. They require low power due to their small size and 24/7 operation.

Bluetooth Low Energy (BLE) is often the solution. BLE is very similar to standard

Bluetooth; the only difference is that latency is fifteen times quicker and transmissions

only reach 10% as far due to low power with a minimum power output of 0.01 mW

and a maximum of 10 mW [14][17]. It uses a master/slave architecture where slaves

advertise on special channels and masters sense this and connect to the device. Nodes

stay awake only when communicating and sleep otherwise to conserve power, which

is beneficial for IoT devices [14].

13

While Bluetooth is a common protocol in mobile computing and IoT devices,

ZigBee is a protocol that is similar to BLE and is almost exclusively used in IoT

devices. ZigBee is a protocol based on IEEE 802.15.4, low-rate Wireless Personal Area

Network (WPAN), for communication between devices within 10 meters [18]. While

Bluetooth has a master that connects to a slave, ZigBee uses a central coordinator

and all the devices connect to the coordinator [14]. There are two types of devices

in a ZigBee network: a Full-Function Device (FFD) and a Reduced-Function Device

(RFD). A FFD can act as a coordinator or a device, while a RFD is reserved for

low-powered simple devices [18]. As shown in Figure 3, the central FFD acts as the

coordinator, and more FFDs acting as routers or devices connect to it, and some

RFDs connect to these FFD routers. This creates a star topology where devices

communicate to the coordinator and the coordinator passes the message along to

other devices on the network. It does not provide any security features unless the

ZigBee Pro protocol is used. ZigBee Pro has more features such as symmetric key

exchange, scalability with stochastic address assignment, and improved performance

with a more computationally efficient many-to-one routing mechanism [14]. This

security is provided through the more powerful central coordinator, taking some of

the burden off the low-powered IoT device.

14

Figure 3. Example ZigBee network topology adapted from [3]

The main takeaway from these IoT protocols is in the requirements of these de-

vices. All of these protocols are specifically designed to operate with the low pro-

cessing power and short range communication of IoT devices. This is the major

distinction of IoT devices compared to desktop computers. Another impact of the

design of these devices is the lack of security within this protocol. These protocols

make compromises on security to compensate for lower processing capabilities.

2.2.1.2 IoT Security.

Security managers point to the increasing number of IoT devices as a cause for

concern within network security. As previously stated, the lack of processing power

does not allow for security features such as encryption on the devices themselves or

within their protocols [1]. This is driven mainly by the vendors’ priorities which are

on ease of use and getting their products to market quickly. The IoT architecture

is not equipped to handle security updates, and manufacturers do not provide a

mechanism to provide security updates [10]. Another reason IoT devices have security

15

as an afterthought is that everyday consumers do not care as much about security

as the private sector or the military. Some argue that if the Department of Defense

(DoD) sought to implement IoT devices, the industry would be enticed to put more

research and development into the security of IoT devices to obtain military contracts

[19]. A study by Hewlett-Packard found that 70% of IoT devices were vulnerable to

attack [20]. Many of the IoT devices that are used today by consumers have these

documented vulnerabilities.

Suo et al. highlight some of the most important aspects today within IoT security:

identification, confidentiality, integrity, and non-repudiation [1]. They also list the

four layers of the IoT (Figure 1) and why some of the aspects are challenging. In

the Application layer, sharing is one of the characteristic features which creates a

challenge for data privacy, access control, and disclosure of information. The Support

layer is the intelligent computing (sometimes cloud) platform for the Application

layer. Its challenge is preventing malicious information from making its way into

data processing. The next layer is the Network layer, which deals with reliable data

transfer between the Perceptual layer and the Support layer. The Network layer

is susceptible to man-in-the-middle and counterfeit attacks. The final layer is the

Perceptual layer which contains the sensors for capturing the physical world and

translating it into the computing system. The challenge here is that the lack of

computing power in sensors does not leave room for security features like encryption.

This is one of the main challenges found with IoT security, as many of the protocols

do not include security features.

Patton et al. use Shodan, a web search engine for IoT devices, and a database of

default passwords to see if they could find IoT devices for which they could log into

easily [21]. They scanned for Supervisory Control and Data Acquisition (SCADA)

devices, IoT cameras, and printers to see which ones were vulnerable. They found that

16

4% of the SCADA devices were vulnerable, 40% of traffic cameras were vulnerable,

and 41% of the printers were vulnerable. This was all using default login credentials.

In this case, the vulnerabilities are the fault of the user. This is due to the perception

that an insecure IoT device has no bearing on overall network security. While logging

into a printer may seem innocuous, updating it with custom firmware can give the

attacker full control over the printer and the ability to attack the network to which

it is attached.

The BLE protocol in use by many IoT devices can also be a vulnerability. Using a

tool called Ubertooth, Ryan was able to sniff BLE traffic as well as inject packets and

break the encryption of BLE [22]. Because the protocol is intended for low-powered

devices, the protocol is simplistic, which aids in the creation of an eavesdropping

tool. Ubertooth is a USB dongle that can monitor a single BLE channel at any given

moment. It has a partial sniffer for Bluetooth, but since BLE is a simpler protocol,

the packets can be processed entirely on the dongle, making sniffing even easier. Ryan

documents exactly how to sniff this protocol using this tool and provides a proof of

concept injection attack.

Some devices using the popular IoT protocol BLE are Nest Cameras [23], FitBit

[24], Tile Item Locators [25], and smart light bulbs [26]. The BLE protocol has

fewer security and privacy features and consumes less energy compared to regular

Bluetooth. For example, the pairing process of the FitBit and smartphone through

BLE is not encrypted. To combat this, developers implementing BLE make the

devices frequently change their private address with each pairing in order to avoid

tracking. FitBit however does not do this, and a malicious attacker could obtain

the MAC address and BLE credentials through simple Bluetooth sniffing [24]. Using

the process laid out by Ryan, much information could be gleaned from sniffing this

protocol on FitBit and other IoT devices [22].

17

The low processing power of smart wearable devices, primarily due to the small

form factor and the lower computational requirements, limits the complicated security

mechanisms that can be implemented by developers in these devices. Ching and

Singh examine some wearable computing devices including Google Glass, FitBit, and

Samsung smart watches as well as some security vulnerabilities discovered (Table 1)

[9]. Many of these vulnerabilities are present due to protocols like BLE, that can be

easily sniffed with certain tools. For example, they cite research from Bitdefender

that had a proof of concept hack where they could access the six-digit PIN code and

Bluetooth traffic between a Samsung smart watch and Google Nexus phone through

brute force by using any open source Bluetooth sniffing tool. Strong authentication

was not used [9]. These wearable devices are part of the IoT and the same protocols,

including their vulnerabilities, are found in other stationary IoT devices that are

finding their way into homes and the workplace.

18

Table 1. Summary of vulnerabilities and attacks found in wearable devices [9]

Wearable Devices Security Vulnerabilities Attacks
Google Glass Insecure PIN system or authenti-

cation in place
The gesture-based authentication
scheme easily to be recorded by
people nearby

Privacy: pictures and videos can
be recorded without user’s con-
sent and unauthorized eye move-
ment tracking.

Eavesdropping and spyware

It relies on QR codes for WiFi
setup

QR photobombing malware

Insecure network and hostile en-
vironment

WiFi hijacking, man-in-the-
middle attacks such as session
hijacking or sniffing.

Fitbit Devices Lack of authentication Data injection attack, Denial of
Service (DoS), and battery drain
hacks

Leaky BLE technology It can be easily tracked
Privacy: Users location or places
visited can be tracked

Phishing

Samsung Smartwatch Authentication mechanism not
secure enough

Brute force attack

2.2.2 Honeypots.

The number of IoT devices is growing drastically, and it is important to under-

stand exactly what types of devices are considered part of the IoT. The increase in the

number of these devices is becoming a security concern within computer networks.

Honeypots could be the perfect pairing for devices that lack security. When trying to

secure a network, a common course of action would be to remove all of the known vul-

nerabilities on the network. Honeypots are intentionally-vulnerable machines placed

on a network that have the appearance of a working computer system complete with

an operating system, services, and even a network [4]. In actuality, they are a sealed

compartment used to lure in and contain an attacker. A tremendous amount of in-

formation can be learned about the attacker because a log of their actions is recorded

by the honeypot including access attempts, keystrokes, files accessed, files modified,

19

and processes executed [27]. This information can be used to capture and later an-

alyze the type of malware an attacker was using. It also allows security experts to

determine methodologies of their attackers when trying to infiltrate a network. Hon-

eypots can even be used as an alternative to an Intrusion Detection System (IDS).

One advantage of Honeypot devices over other IDSs is that they are able to interact

directly with an attacker at the application level [5]. This means the attacker has a

convincing device that they assume to be the real thing.

There are two main types of honeypots: physical and virtual [5]. A physical

honeypot is a physical device on the network with software to handle the honeypot

logging capabilities. A virtual honeypot is a device that simulates one or many devices

through software such as virtualization. They are more economical because one device

can create many honeypots.

The value of a honeypot comes from the value of the information gathered [28].

This is why it is so important for a honeypot to be a convincing target for an attacker.

One of the ways they can be implemented is as a high-interaction honeypot. These

are actual computer systems such as a Commercial Off-the-Shelf (COTS) computer,

router, or switch [5]. High-interaction honeypots are usually implemented as a phys-

ical honeypot (i.e., actual computing systems), but they can be implemented as a

virtual honeypot as well. Regardless of implementation, high-interaction honeypots

should not produce additional network traffic other than the traffic of the COTS

device it is contained on. This makes it a extremely convincing honeypot, because

it is an actual computer system. Every interaction with a high-interaction honeypot

would be suspect, because no legitimate user would have a reason to interact with it.

Therefore, all network traffic is logged and analyzed [28]. Several honeypots can be

placed together to create a simulated network of devices, called a honeynet. This is

more difficult with high-interaction honeypots because as physical machines they take

20

up physical space. Fully virtualized machines take up computing resources instead of

space. This means high-interaction honeypots lack scalability.

Low-interaction honeypots are very scalable. Low-interaction honeypots simulate

services, the network stack, and other aspects of a real machine allowing for only

limited interaction with an attacker [5]. The interaction does not need to provide

complete functionality of a simulated service or protocol. For example, a Hyptertext

Transfer Protocol (HTTP) server may only serve requests for a certain URL and

only implement a portion of the HTTP protocol. It only needs to be convincing

enough to fool an attacker into believing that it is a real machine. Because of the low

functionality requirements, it is much easier to create many low-interaction honeypots

which can be tailored to a specific function. Low-interaction honeypots may seem

more limited, but they are useful for gathering information at a higher level, such as

network activity [5]. That along with their ease of implementation make them very

powerful tools.

Another difference between low-interaction and high-interaction is the risk that

they pose. Because low-interaction honeypots are not full production machines, an

attacker can only perform the functions allowed by the honeypot developer. A high-

interaction honeypot, that has the full capabilities of a production machine, could

provide a new avenue for attack on the network, if implemented improperly. For

example, if a honeypot runs a full operating system and is used as a jail to keep an

attacker in, they could potentially find a way out of the cage and use the honeypot

to launch attacks against the network [4]. Fortunately, low-interaction honeypots do

not have much risk associated with them because of the limited functions available

to a potential attacker.

One common use for a honeypot is as an IDS. A traditional IDS detects attacks

against the network based on the signature of the attack [29]. Certain exploits have

21

specific actions they take against a system to execute; an IDS alerts the network

administrator when any of these actions are taken. A honeypot used as an IDS sits

on the network as a regular machine as shown in Figure 4. However, no legitimate user

would have a reason to interact with it, or even know that it is there. If anyone does

interact with it, there is a high probability an intruder is on the network. Honeypots

also produce fewer false positives, since interacting with a honeypot would not be

normal activity [4]. A regular IDS might flag legitimate work, such as the network

administrator viewing the Unix password file, /etc/shadow. These false positives

create a wave of alerts that are eventually ignored by network administrators.

Figure 4. Honeypot deployed as an IDS adapted from [4]

2.2.3 Nmap.

Nmap is an open source tool that can generate packets to scan enterprise networks

to identify live hosts, their services available, and operating systems [30]. It is widely

22

used in cyber operations to gather information on targets and has a wide variety

of features. It can automatically scan just a single address or an entire subnet. It

identifies the services open on different ports and the operating system on the machine.

The operating system is determined using fingerprinting. Nmap sends a series of

TCP and UDP packets and performs tests on the responses including: TCP Initial

Sequence Number (ISN) sampling, TCP options support and ordering, IP Identifi-

cation (ID) sampling, and the initial window size check [31]. This information is

then compared to a database to see if it matches any other known fingerprints. It

provides the vendor name, underlying Operating System (OS), OS generation, and

device type [31]. This functionality can be utilized by Honeyd to create more realistic

virtual honeypots.

2.2.4 Honeyd.

Honeyd is open-source software written by Niels Provos that creates low-interaction

virtual honeypots [11]. Instead of simulating an entire operating system, Honeyd sim-

ulates everything at the network level and simulates TCP and UDP services [11]. IoT

devices usually only perform a single simple function, which makes Honeyd an ideal

program for creating honeypots based on these devices. A common theme among

IoT devices is a simple service that a user interacts with, which makes them a good

candidate for a low-interaction honeypot.

Honeyd uses a configuration file to store all of the defining information about a

honeypot. Figure 5 shows an example Honeyd configuration file. The route portion

of the code provides an example of how Honeyd allows the user to create a honeypot

router by providing routing information to the various honeypots. The configuration

file creates two honeypots: routerone and netbsd. The simulated operating system is

set with the set <honeypotName> personality command along with a fingerprint

23

from Honeyd’s nmap-os-db file. This fingerprint is then used to simulate the device’s

TCP and UDP behavior on the network stack [28]. Default TCP/UDP actions can be

set with set <honeypotName> default tcp/udp action command. Default TCP

and UDP actions that can be taken include: Reset, Open, Block, or Script [4]. Re-

set means that Honeyd will send a TCP Reset (RST) or Internet Control Message

Protocol (ICMP) unreachable signal for specified TCP and UDP ports. Open means

that Honeyd will send an Acknowledgement (ACK) for all TCP data received, but

no service will be simulated. Block means that Honeyd will ignore connections on

specified ports. Finally, using add <honeypotName tcp/udp port <port number>

<scriptName>, a specific script is bound to the specified port. Usually a user sets a

default action for all ports then creates specific scripts for individual ports. Common

languages for these scripts include shell scripting, C, Python, or Perl. These scripts

are how Honeyd simulates the application level and how an attacker will primarily

interact with the honeypot. Whenever a user tries to access this port, the script

is executed. This is how the honeypot interacts with a user. The user sets any IP

or MAC address to the virtual honeypot using the bind command or allow Honeyd

to assign them automatically using the dhcp command. One configuration file can

create many virtual honeypots all on the same machine.

24

Figure 5. Example Honeyd configuration file [5]

Figure 6 shows an example Nmap fingerprint, which comes from the database

of OS fingerprints used by Nmap. The code in this file is the same format as the

fingerprint used by Nmap. Nmap performs a series of tests on a device and an output

similar to Figure 6 is generated. Nmap tries to match this output to fingerprints in

the database. The closest match it finds is the OS it detects.

25

Figure 6. Example of an Nmap signature database file. This signature is for Windows

XP SP3 or SP4 [6]

One advantage of Honeyd is how quickly it can create new honeypots. In theory,

a network admin could easily fill an IP space with virtual honeypots. This would not

only add obscurity to a network, but any interaction with these machines from the

outside would surely be malicious since they do nothing on their own. IoT honeypots

could blend in with normal IoT devices already on a network.

The power of Honeyd is truly shown by the ability of the user to add scripts

on specific ports to simulate services. Users have the ability to use any scripting

language they desire to simulate many services. Honeyd comes with a sample shell

script (Figure 7) that supplies an Secure Socket Shell (SSH) banner then logs and

echos the entered text [4].

26

Figure 7. test.sh script packaged with Honeyd [7]

The challenge presented by Honeyd is making these scripts convincing. As with

all low-interaction honeypots, how convincing the honeypot is depends entirely on

how realistic it appears to an attacker. Honeyd does a good job of simulating the

network stack in a convincing way, but if the service is unconvincing, an attacker will

see through the facade.

2.3 Related Research

2.3.1 IoT Honeypots.

Some research has been done to try and create varying types of IoT honeypots that

perform different functionls. The following research involves custom honeypots. The

researchers created their own systems to simulate IoT services and log connections.

They did not use Honeyd, rather other honeypot programs.

Pa Pa et al. developed a system called IoTPOT and IoTBOX [32]. IoTPOT is a

honeypot system that simulates Telnet services that are used by various IoT devices.

They found various types of IoT devices using this protocol that had been com-

promised including Digital Video Recorders (DVR), IP Cameras, Wireless Routers,

TV Receivers, etc. They focused on presenting realistic experiences to an attacker

including accurate welcome messages and support for multiple Central Processing

27

Unit (CPU) architectures. They also developed an IoT malware analysis environ-

ment called IoTBOX, which allows the analysis of malware on eight different CPU

architectures. It works hand in hand with IoTPOT to interact with the attackers and

document their attack methodologies. They discovered different attack patterns used

by attackers against Telnet-based IoT devices. They also claimed that Honeyd would

not have been capable of replicating their system’s functionality. This research only

focused on Telnet-based attacks, but they hope to do more research on SSH attacks

and expand IoTBOX to handle different architectures used on IoT devices.

HoneyIo4 is a virtual honeypot that simulates four IoT devices: camera, printer,

video game console, and cash register machine [33]. It does not simulate their full

functionality but does simulate their protocols to trick network scanners like Nmap.

This was written with Python and Scapy, not a program like Honeyd. This work

could be expanded upon by trying to get more realistic network interaction through

a program like Honeyd. The OS fingerprinting of IoT devices is an important part of

that; however, an actual honeypot would be able to interact with a user that tries to

connect to it. Honeyd does not have downloadable profiles for many smart devices

because it is an older program, so this research could be very helpful in simulating the

protocols of smart devices within Honeyd and then implementing an actual service

to interact with an attacker.

Krishnaprasad created his own IoT honeypot that could simulate IoT services, in-

cluding Telnet, SSH, HTTP, and Customer-Premises Equipment Wide Area Network

Management Protocol (CWMP) [34]. The inspiration for his research came from the

creators of IoTPot with the goal of creating a lightweight honeypot to handle all pro-

tocols used by IoT devices. He did not use a honeypot manager like Honeyd, rather

a variety of packages and programs to handle the different functions of his honey-

pot. It was broken into two parts, the frontend and the backend. The frontend is a

28

low-interaction responder, and the backend is a high interaciton virtual environment.

The frontend deals with the interaction between an attacker and the IoT device. It

has various programs that handle Telnet, SSH, HTTP, and CWMP requests. The

program uses different Python libraries that are linked together with Docker. Krish-

naprasad claims that the frontend is flexible enough to support any kind of backend

as long as the frontend protocols are supported. When the honeypot was deployed,

it received many attacks, with Telnet being the most commonly attacked protocol.

Since Telnet is so widely used in IoT devices, an IoT honeypot would be useful to

capture the multitude of attacks targeting Telnet. Future research includes creating a

more robust backend or turning it into a network, so there would be multiple devices

for which an attacker can interact.

2.3.2 Honeyd.

Honeyd is an older program, but research has still been done to create IoT honey-

pots using it. Freeman and Woodward created a first generation smartphone honeypot

that simulates a Windows Mobile 5 device [35]. They used Honeyd to simulate the

OS in order to detect smartphone worms. The only problem is that Honeyd only

supports the first generation Nmap fingerprint for operating systems, and currently

there is no update to implement this feature. In the future, it would be important

to implement different phone operating systems like iOS or Android. When trying to

create honeypots for other smart devices this limitation in Honeyd may pose an issue

requiring additional research to rectify.

Kreibich and Crowcroft used honeypots to create a system that generates signa-

tures for malicious network traffic automatically [36]. The honeypots automatically

analyze traffic on the honeypot and then generate the signature that describes the

characteristic elements of the attack. The researchers discuss how honeypots usually

29

exist in a passive role, but they argue that their system, Honeycomb, is the first step

in making honeypots more active in network security. They use Honeyd to imple-

ment their system, which means that any system simulated using this software could

potentially make good use of their work, including Internet of Things devices.

2.3.3 Uses for Honeypots.

Others have hypothesized about ways that honeypots could be used within net-

work security. Honeypots are normally used to catch external hackers, but Spitzner

proposes that honeypots could be used to help catch insider threats [37]. He sug-

gests things like: Honeynets, which could store fake sensitive information in order

to observe who on the network is accessing it or Honeytokens, fake credentials that

would alert security if an insider tries to use them to access a system. The difference

between these types of honeypots and others is that they have to be placed on the

internal network, and work has to be done to try and trick the insider threat into

interacting with the honeypot. They likely will try to be sneaky and not simply scan

the entire network for open ports. One example is sending a fake email to an execu-

tive with Honeytokens in them. A Honeytoken is a login credential that provides a

notification whenever someone tries to use them to log into a system. If someone tries

to log into a system with the Honeytokens then someone else must have access to that

executive’s email account. The attacker can then be sought out in the organization.

The author provides an interesting use for honeypots that go beyond conventional

thinking. There may be ways that IoT honeypots could be implemented in a similar

manner.

Zhang et al. implemented a cyber security defensive system that distributed pas-

sive and active network sensors to capture suspicious information associated with

cyber threats [38]. It also included a dynamic firewall that allows hosts to update

30

their detection information to block attacks. They implement honeypots as passive

scanners on the network, while simulating regular services and provided information

when attackers tried to access those services. The firewalls were dynamically config-

ured based on the information of malicious traffic trying to connect to the honeypots.

They used Windows XP, Windows 2003, Avaya, and Solaris as the simulated services

on these boxes. The honeypots were only simulating regular operating systems and

standard computer services on a network. They did not look into smart devices on

the network or how they could also be leveraged to provide that information. In

theory, Windows XP is a very vulnerable service in the same way that IoT devices

are. IoT devices could be used as passive network scanners in a similar way.

2.4 Chapter Summary

This chapter examines the basics of IoT and its protocols. It also provides some

of the security challenges and innate vulnerabilities with IoT. These vulnerabilities

make them ideal targets for an attacker. Honeypots are intentionally vulnerable

machines on the network that can be used to track and log an attacker. Combining

IoT devices and honeypots create a perfect environment for luring attackers and

gathering information on them.

Much of the research that has been done focuses on aspects of creating an IoT

honeypot, such as simulating their protocols or simulating the network stack. Little

has been done to create a honeypot that completely replicates the services of a specific

IoT device. This replica device should be convincing to an attacker by showing a

legitimate looking service and having convincing network traffic. The addition of

vulnerable IoT devices to networks is continuing to grow. Adding IoT honeypots

as well would blend them in with the others, becoming a powerful tool for network

security.

31

III. Framework Design

3.1 Overview

This chapter details the system where IoT devices are simulated by honeypots and

how they are compared to the real device. The honeypots are created using Honeyd

and a simple web server that provides the web page of the IoT device when queried.

A series of Python scripts make web requests to the honeypot and real device and

then compare the results to determine how similar they are. Other Python scripts

perform various scans using Nmap and compare those results as well. The motivation

for these processes are provided in Section 3.2. The physical IoT devices under test

are outlined in Section 3.3. The design parameters for the IoT honeypots are detailed

in Section 3.4.

3.2 Motivation and Application

One of the most common protocols used by IoT devices is HTTP; however, much

of the research dealing with IoT honeypots has focused on the Telnet protocol [32]

or with simulating proper TCP responses that they receive [34]. A honeypot that

provides a full web service to interact with in the same way as a physical IoT device

would be very worthwhile.

If a honeypot has any chance of fooling an attacker, the service it provides needs

to be as identical as possible to a real device. This is even more true if the device

is something the attacker is very familiar with. The main item that an IoT device

provides to a user is data. Therefore, a honeypot simulating an IoT device should

produce nearly identical data in the same amount of time as the device it is replicating.

The system outlined in this thesis tries to provide nearly identical Hypertext Markup

Language (HTML) code as actual IoT devices. Time delays are also incorporated to

32

make them more similar to the actual IoT device. For this reason, the tests compare

the HTML code of the honeypot and the IoT device to determine similarity.

Along with the data, another attribute of HTTP, TCP, and UDP packets sent

on a network is that they all have headers that provide information on the packet

that contains the data. HTTP headers in particular are interesting because different

devices have different fields in their HTTP headers. Honeyd generates the TCP and

IP headers sent by the honeypots in this system, and the system also creates HTTP

headers that are identical to the IoT devices they are simulating. This function is

important because packet headers are one of the key items an attacker inspects to

see if the device they are interacting with is a honeypot. Therefore, it is important

to include this in the system outlined in this thesis.

The testing against the system is inspired by different levels of users. The most

basic user accessing a honeypot is an average computer user, a Level 1 user. They

might come upon the honeypot by happenstance or have malicious desires, but not

much technical knowledge. These users look primarily to the HTML code and access

time of the device. Therefore, tests are devised to compare actual devices to honeypots

in this way for fooling basic users. The next level of user is a motivated and educated

attacker, a Level 2 user. They might look a bit deeper into a honeypot and examine

the packets being sent to examine the network headers. Therefore, tests are devised

for comparing the headers of actual devices to honeypots to examine how effective

they might be at fooling this type of attacker. Finally, Level 3 users are automated

web crawlers that search for IoT devices on the internet. These tools, such as Shodan

[21], run different tests and scripts against public facing Internet devices in a manner

similar to Nmap. Therefore, Nmap scans are done against the actual device and the

honeypot and compared to test the ability of the honeypots to appear as an actual

IoT device placed on the public internet. The level of user does not even necessarily

33

indicate the skill level of that particular user. It is merely an indicator of exactly

what a user might be examining.

3.3 IoT System Under Test

This section describes the setup and function of the IoT devices that the honey-

pots are based upon in this system. While some of them have wireless capability,

they are all connected via wired Ethernet for the purposes of the experiments to keep

testing parameters as constant as possible for testing. The camera is a TITAThink

TT520PW. The thermostat is a Proliphix NT130h. The power switch is an ezOutlet2

EZ-22b. Figure 8 shows a diagram of how the devices in this experiment are con-

nected. The three IoT devices and the Laptop containing the VMs that host Honeyd

and the requesting client are all connected to the router. Figure 9 shows the IoT

devices connected to the router. The items in the photo from left to right are: the

camera, the router, the thermostat, and the power outlet.

3.3.1 TITAThink Camera.

TITAThink produces various types of cameras [39]. This particular model is a

pinhole camera, meant to be deployed in a concealed manner; however, the software

is the same for all of their cameras. TITAThink still produces this model camera in

2019 [39]. The actual camera unit is very small in size, attached via a cable to a black

box that contains the main computer, power, Ethernet, and wireless antenna. The

device has a capability of deploying in a wired or wireless configuration, but wired

Ethernet was chosen to try and keep the network connection variables as constant as

possible between this device and the honeypot. Figure 10 shows the camera connected

to the network. The camera module is connected to the power and Ethernet interface

that connects the device to a power outlet and the router.

34

Figure 8. Model of experiment network configuration

35

Figure 9. Network of the physical IoT devices being tested

Figure 10. TITAThink TT520PW camera

36

Once the device is powered on and connected to the network, it can be accessed

from a web browser by entering the IP address of the device. The user is first prompted

with a login page (Figure 11). From here they can view the camera by clicking Enter

or change the camera settings by clicking Setting. The camera can be configured

to have the camera feed locked out with a password, but many IoT devices on the

Internet are not configured this way. Many users do not include simple security

functions like this in the name of ease of use or negligence. This device is configured

without a password for the camera feed, but the settings page must be locked with a

password.

Figure 11. TITAThink camera login page

37

Figure 12. TITAThink camera main page

The main camera feed consists of a page with some navigation buttons at the top

(Figure 12). Home takes the user back to the login page. Setting takes the user to

the settings page, provided they have a password. Primary stream keeps the user on

the page they are currently on while secondary stream takes the user to the same

stream as on the current page, only smaller. This second stream may have to do with

the ability to have multiple camera feeds from other TITAThink cameras through the

same web interface. Upon examining the HTML code, most of the menu is comprised

of various images. There are also some files that contain formatting information such

as top.css. These photos and files are downloaded for the honeypot creation. The

camera feed is a live view of the subject with very little delay. This could prove to be

problematic for a honeypot that has no actual camera to pull a live feed from; this

38

is addressed in Section 3.4. If a non-authorized page or a page that does not exist is

requested, the user is asked for login credentials. If they fail to provide them, they

are sent to a page telling them the name of the file that they are unauthorized to see.

3.3.2 Proliphix Thermostat.

The Proliphix thermostat looks similar to many other standard non-IoT ther-

mostats (Figure 13). It is an older device that was manufactured in 2007 [40]. It

has a screen with 5 physical buttons allowing the user to interact with the device.

It does not appear to be Internet enabled except upon examining the inside wiring.

There are wire diagrams on how to wire the device for Ethernet. One end of an

Ethernet cable needs to be cut and the wires stripped so that each wire can be placed

into the six sockets as follows: (1) Blue-Blue/White, (2) Brown-Brown/White, (3)

Orange/White, (4) Orange, (5) Green/White, and (6) Green (Figures 14 and 15).

Once the device is wired and powered on, it gains an IP address through Dynamic

Host Configuration Protocol (DHCP) [40]. This can be viewed in the Network Status

Screen. One of the problems with implementing this device in a test environment is

that thermostats are usually wired on a wall with leads that provide it power as well

as the ability to turn the heating and HVAC systems on and off. This was remedied

with a 24V AC power adapter. It had two leads, one placed in socket RC and the

other in socket C on the thermostat (Figures 14 and 15). This made it possible to

provide the thermostat with power from an AC wall outlet for the test environment.

39

Figure 13. Proliphix NT130h thermostat

Figure 14. Wiring of power and Ethernet for Proliphix thermostat

40

Figure 15. Wiring diagram of Proliphix thermostat

Once the thermostat had an IP address, it could be viewed in the web browser with

no password. As shown in Figure 16, the main page provides all of the temperature

and time information about the thermostat. All of the data that is displayed on

the page is written directly in the HTML. There is not a references in the HTML

that calls a script to obtain the time, date, or temperature from the server. Only

two buttons are available to the user for navigation. Status just refreshes the page,

allowing the user to see the same information as on the homepage. Login allows the

user to view the device settings after entering the correct password. The settings page

has to be kept behind a password, which is fine for the purposes of this experiment.

Trying to navigate to any other page, even nonexistent ones, requires authentication

from the user.

41

Figure 16. Proliphix thermostat main page

As with many IoT devices, this thermostat has various sensors and displays in-

formation to the user through the web interface. As shown in Figure 16 the main

information shown is the name of the device, the current temperature in the room,

the status of the HVAC (Heat/Cool), and schedule settings. This data changes based

on the thermostat settings as well as the outside stimuli, such as temperature, that

42

the thermostat observes. All of the items are static on the page, but update upon

refreshing the page. This is perfect functionality for a honeypot.

3.3.3 ezOutlet2 Power Switch.

The ezOutlet2 is a small box with a single power outlet as well as a slot for a power

cable and Ethernet port (Figures 17 and 18). This device is still being produced by

Mega System Technologies in 2019 [41]. The power cable port provides pass through

for the main power outlet, and the main power outlet can be turned on and off via

software. The device is not wireless and must be wired into the network with an

Ethernet cable. The device is assigned an IP address by DHCP and then a user is

able to navigate to a web interface through the assigned IP address.

As shown in Figure 19, the web interface provides a split web page, the left page

consists of a navigation menu while the right side displays status information. The

pages include: Status, Network, Settings, Schedule, Ping Address, and Save/Restore.

The Status page provides the majority of the information on the device including:

device name, network information, date and time, firmware version, and the status of

the power outlet (On/Off). The Network page provides the same network information

as the Status page but allows the user to change the Domain Name System (DNS)

servers, hostname, and other information. The Settings page provides the user the

ability to change the username and password as well as the outlet power cycling set-

tings. The Schedule page allows the user to cycle power to the outlet at certain times

of the day and week. The Ping Address page allows the device to ping an IP address,

to confirm it is on the network or connected to the Internet. The Save/Restore page

allows the user to reset the device and save the settings.

43

Figure 17. ezOutlet2 EZ-22b power outlet

Figure 18. ezOutlet2 EZ-22b Ethernet port

44

Figure 19. ezOutlet2 EZ-22b power outlet main page

The main function of this device is the ability to turn the power outlet on and

off. Whenever the ‘Outlet Control’ button is clicked on the Status page, the button

changes color and the state of the outlet changes. Upon examining the HTML code,

this is done through a script, invert.cgi. For a honeypot, this is the main func-

tionality that should be simulated. Since the main function of an IoT power outlet is

the ability to turn the switch on and off, an attacker would likely be looking for this

function to be properly working when examining this device.

3.4 Honeyd IoT System Framework

This section describes the scripts and files required for the functioning of the IoT

honeypots in Honeyd. This system is made up of three honeypots. All of these

honeypots are modeled after the physical devices that are highlighted in Section 3.3.

45

Honeyd is run on a virtual machine running Ubuntu 12.04.5; this configuration runs

all the honeypots since Honeyd can control many virtual honeypots. The Ubuntu

12 VM is given 1 processor core and 4 GB of RAM. The host workstation for the

VMWare Workstation 14 Pro virtual machines is a Lenovo W541 laptop with 32GB or

RAM and an Intel i7 processor clocked at 2.9 GHz running Windows 10. The laptop

also has Wireshark 2.6.3 running on it for scanning the IoT devices to construct the

honeypots.

3.4.1 Honeyd Configuration.

As previously discussed in Chapter II, Honeyd has a singular configuration file con-

taining all parameters affecting the honeypots function. The system file,

iotHoneyd.conf (Appendix A), contains configuration information for the three hon-

eypots: camera, thermostat, and power switch. Honeyd is started with the command

in the file startHoney.sh (Appendix A). The similarity between all of these devices

is that they have TCP port 80 available, which is the main interface for interacting

with the device.

46

Figure 20. Code excerpt from iotHoneyd.conf (Appendix A) showing how each device

has a script run on TCP port 80

As shown in Figure 20, each device has TCP port 80 listening with its own shell

script governing its function. Whenever something tries to make a TCP connection,

the shell script begins executing and provides the HTTP header along with other

scripts that alter the data of the device and then send it out. These shell scripts are

highlighted again later in this section. Also in the configuration file is the assignment

of IP and MAC addresses. Honeyd is able to assign the IP address dynamically

through DHCP, but this is commented out to allow manual IP address assignment.

The MAC addresses are assigned to be exactly the same as the physical device that

the honeypot is simulating.

47

3.4.2 Web Server.

Traditionally, IoT devices that utilize HTTP have a file structure to provide dif-

ferent aspects of the web interface. This can be JavaScript code, images, or other

applications. Honeyd is extremely capable at simulating network traffic for any of the

honeypots it creates, regardless of the service. It is able to gather the incoming TCP

packets and parse through the files requested by the client. Then the shell script can

provide the various files to the client as requested. In this way, it acts as a pseudo

web server. The code for the bash scripts that act as a web server comes from one

of the built-in Honeyd scripts iis.sh written by Niels Provos. It has, however, been

edited extensively to serve different pages with varying HTTP response messages as

well as the ability to log additional data from an attacker.

Each honeypot shell script starts with a loop that is listening for requests from

Honeyd. Then, the grep command is used to isolate the important part of the

message, the HTTP GET request. Each HTTP GET request is stored in a file

requests.txt to see what kind of requests an attacker might be making. An attacker

may be trying to exploit the device with a certain request, and the honeypot captures

it.

The format of an HTTP GET request, highlighted in Figure 21, shows the file

requested by the client (/doc/test.html). This is extracted and then through a series

of conditional statements, the correct file is printed to standard output along with

the correct HTTP header. It begins with the correct HTTP code, usually code

200 OK. The web page is usually printed with the cat command or with one of

the htmlprint.py Python scripts used by each honeypot (Appendix B, C, & D). If

an individual line needs to be updated, such as the correct date or time, a Python

program can print the page line by line, inserting the updated line as necessary. These

methods are used for printing web pages because the IoT devices have Unix-based

48

operating systems where each line of code ends with a carriage return and line feed.

Making changes to the web page and saving it would remove the carriage returns.

If this was done, the honeypot data would not appear as authentic when compared

directly to the actual device. Honeyd takes this printed data and sends it as a TCP

response packet to the client. Pictures can also be sent using the cat command.

Figure 21. Example HTTP GET request [8]

3.4.2.1 TITAThink Camera Honeypot.

Examination of the TITAThink camera device showed a series of images that make

up the menu as well as a flash application that shows the camera feed. These files

were extracted by saving the web page of the original device. The flash application

in the original device has a live camera feed that is presented to the user. However,

there is no way to incorporate this system with Honeyd. Which is acceptable since

the honeypot does not have an actual camera from which to pull live footage.

To counter this, a Python script, camera.py (Appendix B), was written to try

and mimic the appearance of a live camera feed through updating pictures. One part

of this script takes the current time and then compare that time to a folder of images

of the same location at different times of day called “cameraFeeds”. Each photo’s file

name indicates which time of day the photo was taken. The script looks at which

49

photo is closest to the current time of day and copies it to the image in the main

directory that is sent by Honeyd. Currently, the system has 24 photos, one for each

hour of the day; however, the system is capable of an unlimited number of photos. In

theory, someone who implements this system could have an image for every minute

of the day, or more frequent. The more images there are, the more convincing the

camera would appear to be.

The TITAThink camera has no date and time overlay on the actual camera feedas

found in many other IP cameras. This function is added in the camera.py script and

disabled by default. This code could, however, be adapted to another IoT Camera

honeypot that does require this functionality. In Figure 22, camera feed A is the

template photo and camera feed B contains the date, time, and the location name.

Figure 22. The Python script has the capability to draw date and time on the camera

image

The bash script associated with the camera honeypot, camera web.sh (Appendix

B) provides all the necessary files needed to run the honeypot. Wireshark is used to

view the packet responses when accessing the TITAThink camera. One interesting

issue is that when the root page of the camera is accessed, three redirections take

place before taking the user to the login page. Figure 23 shows the Wireshark scan

highlighting the redirects. The scan shows that upon accessing the camera, there

is an HTTP code 302 Redirect, then a regular HTML page with HTTP code 200

50

OK that redirects again, then another HTTP code 302 Redirect to the main login

page. A portion of how the bash script accounts for this interaction through a list

of conditionals is highlighted in Figure 24. The elif statements are looking for

requests to particular pages. If /default.asp is requested, it sends the HTTP 200

OK code and prints the redirect.html file using htmlprint.py (Appendix B). This

file redirects to /form/default. When the conditionals see a request for this file,

the second HTTP code 302 Redirect is sent to redirect to /en/login.asp. The

rest of the script consists of different conditionals for the various other pages and

images on the camera. Another item that is included in the HTTP headers is the

current date and time. To include this in the HTTP headers sent to the user through

camera web.sh, the script timedate.py (Appendix B) is run every time the bash

script sends a response to ensure the most current date and time is included in the

proper format. Figure 25 shows the home page of the camera honeypot when it is

fully configured and running.

Figure 23. Wireshark capture of the TITAThink camera showing the redirects that

happen when trying to access the main page

51

Figure 24. Conditional statements showing how headers and files are sent based on the

file requested

52

Figure 25. Homepage of Honeyd camera honeypot when it is fully configured

Whenever a page that does not exist is requested, the Python script error.py

(Appendix B) is used in conjunction with the bash script to create the error HTML

page.

Another aspect of the TITAThink camera is that the camera feed can be viewed

without a password, but the settings page requires a password to be viewed. From the

Wireshark capture in Figure 26, HTTP code 401 Unauthorized is sent to the client.

According to the HTTP status code registry, code 401 means the client’s web browser

asks the user for a username and password and then sends that information to the

requesting agent [42]. Since this device only uses HTTP and not HTTPS, the data

sent is not encrypted. The username and password are sent in plain text encoded

with base64. The camera web.sh script sends this HTTP code if the requested page

53

requires authorization; it also uses the grep command to search for ‘Authorization:’,

which is the HTTP header field where the username and password are stored, from

incoming packets. If it finds that field, it base64 decodes it, and stores it in the

file password.txt. This gives the honeypot the capability to store usernames and

passwords to see what kind of credentials attackers are using. All file requests made

by an attacker are stored in a similar file requests.txt.

Figure 26. Wireshark capture of the TITAThink Camera showing access to the settings

page is unauthorized

Honeyd also requires a personality to mimic the Nmap fingerprint of the device for

OS detection. Unfortunately, the version of Honeyd used in this research does not have

the updated Nmap fingerprint database used in the latest version of Nmap. Trying

to update the Nmap database within Honeyd leads to Honeyd breaking. Further

research and code edits may need to be done to Honeyd itself to accommodate this.

Using Nmap to scan the original device (Figure 27), the OS appears to be Linux

2.6.x or between Linux 2.6.9 and 2.6.33; however, the Nmap database used by this

version of Honeyd does not have a fingerprint for this version of Linux. To be as close

as possible, the OS personality chosen was Linux kernel 2.4.18 - 2.5.70. This does

not make the honeypot appear identical to the actual device, but the OS fingerprint

is similar and may not be noticed by a level 2 or 3 user. They may attribute the

difference to just a different firmware on the device.

54

Figure 27. Detected OS of a TCP SYN scan on the TITAThink camera

3.4.3 Proliphix Thermostat Honeypot.

Upon examination of the thermostat, there are fewer pages to navigate than the

camera. The main page has a listing of temperatures, heat and cold settings, as

well as the date and time. All of the information is listed in the HTML code and

can be easily passed to a client by Honeyd. There are no updating images as in the

TITAThink camera, so the honeypot should be able to look very authentic.

The Python script governing the function of this application is thermostat.py

(Appendix C). First, this script gets the current date and time and puts it in the

correct format to write to the file. It uses the Python weather-api to get the current

temperature in the area specified in the program. It then determines whether or not

this temperature is hot or cold, and turns the heat or cool setting on accordingly.

If the current temperature is greater than 70 degrees, the cool setting is turned on

and set to 73 and the heat setting is set to 65. If the current temperature is less 70

degrees, then the heat setting is turned on and set to 68 and the cool setting is set

to 75. All of these settings can be altered within thermostat.py.

Test queries were made against both the thermostat and completed honeypot

to compare query response times. The Proliphix thermostat was approximately 1.1

seconds slower, so the thermostat.py script sleeps for 1.1 seconds before sending out

55

the file. The script goes line by line printing the template file while keeping track of

the line number of the file. The line numbers of lines that contain the date, time, and

temperature are predetermined ahead of time. If the script finds one of these lines,

instead of writing the line from the template file, it writes an altered line with the

correct information. As stated previously, this is done instead of just creating a new

file with the correct information because the file sent by the IoT device has carriage

return and line feeds after the lines in the file. If a new file was created, the carriage

returns would disappear and decrease authenticity.

The bash script, thermostat web.sh (Appendix C), functions almost identically

to the script for the TITAThink camera. Wireshark was used to capture the packets

sent by the device when trying to navigate to the various pages (Figure 28). The

script stores all requests from a client to see what kind of files are requested. There

is not a series of redirects like in the TITAThink camera, so the conditionals can

be straightforward. If a file is requested by the client, the server gives it a file in

response, as seen in line 11 of the Wireshark capture. One noticeable similarity is

when the client tries to access the login page, they are prompted with HTTP code

401 Unauthorized, as shown in line 383 of the Wireshark capture. The web browser

prompts a user for a username and password in this case, and their response is stored

in a file, password.txt. Trying to access a file that does not exist always results in

a request for a username and password. All file requests made by the user are stored

in the file, requests.txt.

56

Figure 28. Wireshark capture of the Proliphix thermostat show accessing the main

page as well as an unauthorized page

Since the Python script, thermostat.py, requires the use of the Internet to

get accurate weather data, the deployed honeypot would require Internet connec-

tivity. Depending on the deployment conditions, this might not be possible. To rem-

edy this situation, the Python script thermostat nointernet.py and bash script

thermostat web nointernet.sh (Appendix C) were created. This Python script re-

moves the Python weather-api call that requires Internet access and instead has a

variable with the current temperature that can be altered by the user. The bash

script is identical to thermostat web.sh but replaces the calls to thermostat.py

with thermostat nointernet.py. Figure 29 shows the homepage of the Honeyd

thermostat honeypot when it is running and fully configured.

57

Figure 29. Homepage of Honeyd thermostat honeypot when it is fully configured

58

The Nmap scan on the Proliphix thermostat (Figure 30) shows that the detected

OS was not incredibly accurate since only one service is available, HTTP. The best

guess was some sort of D-Link print server, with various model names. On Honeyd’s

older version of the Nmap fingerprint database, only one generic D-Link Print Server

was available as a personality. This one was chosen because it was likely the closest

to what Nmap saw on the actual device.

Figure 30. Detected OS of a TCP SYN scan on the Proliphix thermostat

3.4.4 ezOutlet2 Honeypot.

The ezOutlet2 starts with a split page where one half always contains a list of

pages to navigate to and the other half shows the page that has been selected from

the menu (Figure 31). The HTML code from the actual device is a very short HTML

page that references two other HTML pages for each side. The page lists whether

or not the power switch is in the on/off position, scheduling, date/time, and the IP

address of the ezOutlet2 honeypot.

59

Figure 31. Homepage of Honeyd outlet honeypot when it is fully configured

The bash script, outlet web.sh (Appendix D), functions in the same way as the

camera and thermostat honeypot scripts. The Wireshark scan of the outlet (Figure

32) shows the main flow of packets upon accessing everything on the device. There

are no redirects so that when an existing page is requested, HTTP code 200 is sent

along with the page data as shown in line 2 of the Wireshark trace, as shown in

line 27 of the Wireshark capture. Disabling the username and password unlocks the

ability to see all pages on the ezOutlet2. If a file does not exist, HTTP code 404 Not

Found is sent to the client as shown in line 305 of the Wireshark capture. Since there

is no authorization, no passwords are stored, but every file request is still stored in

requests.txt.

60

Figure 32. Wireshark capture of the ezOutlet2 shown accessing the main page as well

a nonexistent page

On the ezOutlet2 device, the power switch turns on and off through a simple

script invert.cgi. The file, invert.cgi, can have two states, 0,0 and 1,0, on and

off. Every time invert.cgi is requested by the client, the state switches. One of

the conditionals in the outlet web.sh script on the honeypot mimics this behavior

(Figure 33). When the client requests invert.cgi, the HTTP code 200 OK is sent

with the proper headers. Then the current state of invert.cgi is read, if it is

0,0, then 1,0 is written to invert.cgi. If it is 1,0, then 0,0 is written. Then the

new updated version of invert.cgi is sent to the client. In the ezOutlet2 device,

reset.cgi returns the power outlet to its default state, 0,0. Another conditional in

the outlet web.sh script mimics this functionality. When reset.cgi is requested

by the client, HTTP code 200 OK is sent and invert.cgi is set to its default state

of 0,0. Then invert.cgi is sent to the client.

61

Figure 33. Script for flipping and resetting the switch on the honeypot outlet

As with the other honeypots, a Python script called outlet.py (Appendix D)

manages updates to the web pages of changing items such as the date and time and

the IP addresses for the device and gateway. This script has to make changes to two

pages, status.htm and network.htm. The status page has the IP address of the

device, subnet mask, gateway IP, and the date and time. The network page has an

IP address, subnet mask, and gateway IP that needs to be updated. The honeypot

deployer can assign all of these values by changing the global variables gatewayIP,

honeypotIP, and subnetMask within outlet.py. This script is run from the bash

script whenever either of those pages are requested by the client and updates with

the latest time when refreshing the page.

Similarly to the TITAThink camera, the ezOutlet2 has an error page which is

62

presented to the user through the use of a Python script, error.py (Appendix D).

It prints the HTML for the error page, which is a short one line page, but with only

a carriage-return at the end of the file, no line feed. For this reason, a Python script

is required.

An Nmap scan on the outlet did not provide an exact OS match. The closest

guess it could provide was IBM OS/2 Warp 2.0 with a certainty of 86% (Figure 34).

This exact fingerprint was not in the Honeyd database, but the closest match was

IBM OS/2 Warp 4.0, which is extremely close to the one on the actual device.

Figure 34. Nmap scan on the ezOutlet2 to determine the operating system

63

IV. Research Methodology

4.1 Goals

This research focuses on creating honeypots that simulate IoT services. Tests are

run to determine how similar these simulated devices are compared to the actual

devices and answer the following questions:

1. Do Honeyd IoT honeypots transmit faster or slower than the actual IoT device

they are simulating?

2. Are IP packets sent by Honeyd IoT honeypots identical to the ones sent by the

actual IoT device they are simulating?

3. Can Honeyd IoT honeypots produce identical Nmap scan results as the actual

IoT device it is simulating?

4.2 Approach

4.2.1 Packet Timing and Content.

This experiment determines the average difference in the IP packets between a

user accessing the real IoT device and the IoT honeypot of that device. Various

response and control variables are highlighted in Sections 4.3 and 4.4.

The simulation scenario consists of a user accessing the web pages of the associated

device through the use of a script. The web pages include: the main page, additional

pages that include data changes that a user sees (such as date/time, an IP address,

etc.), a page that requires user authentication, and a page that does not exist. In

the background, the page contents as well as the HTTP/TCP/IP packet headers are

captured so they can be compared to each other. A timer is also incorporated to see

64

how long it takes for the query to receive the main page of the device. There are

some aspects that should be different in the page contents and the headers, such as

date/time and IP addresses; these are ignored during the comparison. Another sce-

nario is to have more users querying the device to see how this changes response time

between the honeypot and IoT device, possibly causing connections to be dropped.

These tests are run with three different numbers of total queries and three different

numbers of simultaneous users, for a total of nine trials. These factors are discussed

in more detail in Section 4.4.

The IoT devices and honeypots are all queried by a Python script, gethttp.py

(Appendix E). This script takes an IP address, the number of iterations to query

the device, and which type of device is being queried (camera, thermostat, or power

outlet) as command line parameters. The reason the device type needs to be spec-

ified in the parameters is because each device has different pages with different web

addresses that need to be compared. For example, the main login page, main cam-

era page, settings page, and a page that does not exist are requested on the cam-

era. This script gathers the HTTP header and HTML page data for the requested

page. A timer is also used to determine how long it took the script to query the

main page of the device and receive the data. If a device needs to be queried

by multiple simultaneous connections, gethttp.py is run multiple times from the

command line simultaneously using the & symbol and a fourth command line pa-

rameter that indicates which number connection this is. An example command

for querying a device is: python gethttp.py http://192.168.0.150 100 1 1 &

python gethttp.py http://192.168.0.150 100 1 2 & python gethttp.py

http://192.168.0.150 100 1 3. This command runs three simultaneous connec-

tions on the IP address 192.168.0.150, parameter 3 being 1 means its querying a

TITAThink camera, and the 4th parameter indicates how the folders that contain

65

the data are numbered. The number from this parameter is used to name the folder

where this connection’s data is stored. For three simultaneous connections, the folders

are named Folder 1, Folder 2, and Folder 3.

Another Python script, getHeaders.py (Appendix E) is constantly listening on

port 80 while requests are being made by gethttp.py and grabbing all TCP/IP

packet headers and extracting the IP version, IP header length, IP Time To Live

(TTL), IP Protocol, TCP source port, and TCP header length. It does this through

the use of sockets. It also counts how many total packets are received. These are put

into a file for comparison. This code was adapted from the basic Python sniffer by

Silver Moon [43]. The HTTP headers from gethttp.py are stored in a separate file

for their own comparison.

A Python script for each device, cameraHTMLCompare.py,

thermostatHTMLCompare.py, and outletHTMLCompare.py (Appendix E), is used for

comparing the HTML data from the captured HTTP code. They take three com-

mand line parameters: the folder where the HTML from the IoT device is stored, the

folder where the HTML from the honeypot is stored, and a filename for the Comma-

Separated Values (CSV) file. These scripts iterate through every file and starts by

going line by line comparing each line of the HTML, getting the total number of lines,

and keeping track of each time a line is different. There are a predetermined set of

line numbers for each device that are expected to be different on specific pages. For

example, line 592 in the main page of the Proliphix thermostat contains the date and

time. If the main page is being compared and a difference is detected on one of those

lines, an expected line difference value is incremented. It then loops through the files

again, this time comparing each character on a line and getting a total number of

characters. It keeps track of the number of times a character is different. There is

set of predetermined ranges of characters that are expected to be different, and if a

66

different character falls in any of these ranges, then an expected character difference

value is incremented. These values are then used in calculating the percent similarity

between the two devices based on lines, characters, lines excluding expected differ-

ences, and characters excluding expected differences. A line is then written to a csv

file for each file in the specified folder.

The header comparisons are done by headerCompare.py (Appendix E). The pro-

gram takes five command line parameters: two filenames for the TCP/IP header

capture from the IoT device and honeypot, two filenames for the HTTP header cap-

ture from the IoT device and honeypot, and a filename for the csv that will save

the comparisons. The program starts by looping through both the IoT device and

honeypot TCP/IP header capture files. It goes line by line looking for the word ‘IP’,

because this denotes the beginning of an IP header. When it finds this, it increments

the packet counter by one, because it found a new packet. It then looks for the fields:

Version, IP Header Length, TTL, Protocol, Source Port, and TCP header length. The

line following one of these lines is the value for that header field for this particular

packet. These values are then stored in their own list, which contains all the values

for this particular field received from the IoT device or honeypot. More loops then

parse through each of the lists and compare the values in them to the corresponding

list for the other device. For example, the lists iotIPver and honeyIPver contain the

list of IP versions that were gathered from the IoT device and honeypot. These lists

are compared until the end of the shorter list is reached. The number of differences

are tallied in their own variable, in this example it is called diffipver. It denotes

the number of times the IP version was different. This is done for all the TCP/IP

header fields.

A similar process happens for the HTTP header file. Both the IoT device and

honeypot HTTP header files are parsed to find lines that indicate the start of a

67

header. Since HTTP header fields differ between the device, both the fields and

values are being compared. A dictionary is used to store the items, where the key

of the dictionary is the HTTP header field or value and the value of that key is

the number of times it occurred in the file. If the field or value does not exist in

the dictionary, it is added and the value is set to 1. If it does, then the value is

incremented by 1. If any of the lines include a day of the week (i.e., Mon, Tue, Wed,

etc.) it is ignored. To complete the comparison, both dictionaries are parsed by key.

A running total of the number of HTTP header items is obtained by taking the sum

of all the values in the IoT device dictionary file. If a key does not exist in the other

file, then that keys value is added to a variable that keeps track of the number of

differences. If the key does exist, then the values should be the same. If they are not,

then the difference between the two values is added to the difference variable. A line

is then written to the csv file containing the total number of TCP/IP packets for each

device, the number of differences for each TCP/IP field, the number of differences

found between the HTTP headers, and the total number of field and values obtained

from the HTTP headers.

4.2.2 Nmap Scans.

This experiment uses the Nmap network scanning tool to gather information about

IoT devices. It has the ability to determine running services and their ports on a

device as well as a guess on the operating system being used by the device. This is

based on special tests that Nmap runs and compares to a database of fingerprints.

Sections 4.3 and 4.4 highlight the different types of Nmap scans that are run.

A Python script, nmapScanner.py (Appendix E), is used to run the Nmap scans

on the IoT devices and Honeypots. The script takes 2 command line parameters, the

IP address to scan and the number of times to run the scan. The script loops the

68

specified number of times and run each of the three Nmap scans: SYN, UDP, and

FIN. The Nmap scan command used for each of the scans is nmap -<scan> -T4 -A

-v <IP Address>. The <scan> field is replaced with sS for SYN, sU for UDP, and sF

for FIN. The content compared includes: the running services, both TCP and UDP,

as well as the detected operating system, and the device manufacturer. The output of

the Nmap scans are put into text files so they can be observed. The desired content

that is compared is extracted from the outputs of the scans and inserted into an Excel

spreadsheet to take averages and make comparisons. There are three different types

of scans on each device and each scan is run five times for a total of 15 trials per

device. Nmap runs the same tests every time it executes. Therefore, five trials is

sufficient because it ensures that the Nmap data remained constant and allows for a

good scan time average to be taken. These factors are shown in more detail in Section

4.4.

4.3 System Boundaries

Figure 35 shows the System Under Test (SUT), the Honeyd framework of HTTP

IoT devices. The main portion of this system, the Component Under Test (CUT), is

the main configuration file, iotHoneyd.conf, that governs all the running services,

scripts, and OS emulation of the honeypots.

69

Figure 35. HTTP IoT Honeyd framework

4.4 Parameters and Factors

4.4.1 Assumptions.

When running these scenarios, various assumptions need to be made to ensure

that certain problems that may occur do not affect the tests run. The assumptions

include:

• Each connection attempt ends with a success. If a connection fails, an entirely

empty web page is used for comparison purposes.

• The same commands are used on both the IoT devices and honeypots.

70

• Date and time of access are different for each attempt.

• Non-standard commands are not attempted against any device.

• All interactions take place on the same network with the same network hard-

ware.

• All interactions begin from the same location with the same hardware. Each

interaction uses the same machine so processor specifications are not a factor.

• The same version of all software is used.

• There are no outside interaction with the devices other than the user in the

scenario.

4.4.2 System Parameters.

• Computing Parameters - The computer that contains the system is constant,

a Lenovo laptop with an Intel i7 processor clocked at 2.9 GHz running Windows

10 and 32 GB of RAM. The virtual machine running Honeyd is an Ubuntu

12.04.5 machine with 1 processor core and 4 GB of RAM. The service scripts

are written in bash version 4.2.25 and Python version 2.7.3.

• Query - The query always attempts to access the web page of the device. The

query uses the HTTP protocol on TCP port 80.

• Honeyd Configuration - The configuration file that governs the characteris-

tics of the three honeypots is constant. It has a list of the services available as

well as the OS personality, all of which are constant.

71

4.4.3 Factors.

• Number of Queries (nQ) - This is the number of times that the user tries to

access the device or honeypot. It is the same number between the device and

honeypot and it is the same number between different IoT devices for the sake of

consistency. The packets from each pair of queries is compared, and the average

differences and completion time is taken. A higher number of queries should

produce a better average for the differences between the device and honeypot.

The different number of queries for each trial are 100, 500, and 1000. These

number of queries are chosen because the increasing number of queries ensures

that a device can handle many repeated requests. Increasing the number of

queries past 1000 made the tests take too long.

• Number of Users (nU) - This is the number of users querying the device

or honeypot simultaneously. In theory, both devices should be able to handle

the same number of users before suffering performance losses. However, it is

possible that a device cannot handle a certain number of users. Varying the

number of users to see how query time changes could be an effective test. The

number of potential users is 1, 5, 10, and 20. Originally, 1, 10, and 20 users

were going to be used for all devices. The number is reduced for the Proliphix

thermostat because it could only handle 1 user and 20 users took a very long

time to complete. The TITAThink Camera and ezOutlet2 is tested by 1, 10,

and 20 simultaneous users. The Proliphix Thermostat is tested by 1, 5, and 10

simultaneous users. These numbers are chosen because they increase the load

on the devices to see a change in query response time, but not so much as to

immediately crash the device or take too long to complete.

• Nmap Scan Type (sT) - This is the type of Nmap scan that is executed

72

on the device or honeypot. Nmap has various scans to choose that use a dif-

ferent method to probe for information. The Nmap scan types are: the TCP

SYN, UDP, and TCP FIN scans [31]. These scans are chosen because they pro-

vide variation in how Nmap scans the device to see if different scans produced

different results. A UDP scan is necessary for the devices with UDP services.

4.4.4 Metrics.

• Query Completion Time (QT) - A numerical value, measured in millisec-

onds. This measures the amount of time it takes for the user to receive a

complete response from the IoT device or IoT honeypot. This is accomplished

by a multiple scripts making the requests at the same time and a built-in timer

calculates how long the query takes. In networking, time can be more variable

because of other network traffic at the time. The isolated testbed network as

seen in Figure 8 helps with this interference.

• Data Difference (DD) - A numerical value, measured in number of lines and

number of characters. This measures the number of different lines/characters

between the HTML data from the actual IoT device and the IoT honeypot.

The page size should be the same between both devices. Therefore, getting the

raw number of different lines/characters should be an accurate measure of how

different the packets are from one another. There are some lines/characters

that are expected to be different, and these are calculated separately to see how

the percentage improves when those are taken into account.

• Number of Packets (NP) - A numerical value, measured in number of pack-

ets. This measures the number of packets that are sent in a particular trial.

If both the device and honeypot send the same amount of data, they should

send a similar number of packets. Sometimes packets are lost in a transmission

73

and are resent. This may mean that the number of packets are not exactly the

same, but they should ideally be within a small margin of error.

• Header Difference (HD) - A numerical value, measured in number of dif-

ferences. This measures the number of differences in the TCP, IP, and HTTP

headers. The fields in the TCP and IP headers are the same, and the informa-

tion in those fields is compared to make sure they are the same. The HTTP

header fields and contents are custom to each device, and both of these are

compared between the IoT device and the honeypot to make sure they are

identical.

• Nmap Scan Time (ST) - A numerical value, measured in seconds. Nmap

scans run a series of tests on a device to gather information about its services

and operating system. The amount of time it takes for a scan to complete may

be an indication of the difference between the IoT device and honeypot.

• Nmap Scan Differences (SD) - A numerical value, measured in number of

differences. Nmap scans provide different information including open ports,

detected operating system, and more. The information to be compared is the

running services and detected operating system. Ideally, all this information

should be the same between a honeypot and the device it is simulating. This

information is recorded as the number of different services and whether or not

the OS is different.

4.5 Methodology

The evaluation technique for this experiment is direct measurement of time and

number of differences. Some of the scripts listed in this section are only for compiling

data into a single file/folder for easier processing. They have no other function related

74

to the program so their source code is not listed in this thesis. The process for the

experiments are:

Packet Content Test

1. Connect IoT device to network

2. Start the honeypots with the script startHoney.sh (Appendix A)

3. Start capturing TCP/IP packets by running getHeaders.py (Appendix E)

4. EITHER

(a) Run the gethttp.py (Appendix E) script to connect to the IoT device

for 100, 500, or 1000 iterations. Create multiple simultaneous connections

based on the experiment (1, 5, 10, or 20 connections)

(b) Run the gethttp.py (Appendix E) script to connect to the honeypot

device for 100, 500, or 1000 iterations. Create multiple simultaneous con-

nections based on the experiment (1, 5, 10, or 20 connections)

5. When gethttp.py (Appendix E) finishes, stop the getHeaders.py (Appendix

E) script

6. Stop the honeypots

7. Use the scripts changeheadfilename.py and concatHTML.py to put all the

query times and header information into the same files and the HTML data

into the same folder

8. Use the script cameraHTMLCompare.py, thermostatHTMLCompare.py, or

outletHTMLCompare.py (Appendix E) to compare files for a specific device and

store the data in a csv

9. Use the script headerCompare.py (Appendix E) to compare the TCP, IP, and

HTTP headers to each other and store the data in a csv

10. Transpose the query response times and other data into an Excel file for analysis

75

Nmap Scan Test

1. Connect IoT device to network

2. Start the honeypots with the script startHoney.sh (Appendix A)

3. Begin each of the 3 types of scan, 5 times each, on a device or honeypot using

the nmapScanner.py (Appendix E) script. Each type of scan is run individually,

waiting for 60 seconds after completion.

4. Repeat for all 6 devices/honeypots

5. Examine the service differences, OS differences, manufacturer differences, and

scan times and put them in an Excel file for analysis.

4.6 Apparatus

The workstation that contains all the virtual machines is a Lenovo W541 laptop

with an Intel i7 processor clocked at 2.9 GHz running Windows 10. It also has 32 GB

of RAM to accommodate for multiple virtual machines running on it. This laptop is

running Windows 10 and has Wireshark running on it for scanning the IoT devices

to construct the honeypots.

The systems used to run the honeypots includes Honeyd and virtual machines

run through VMWare Workstation Pro 14, a program for managing virtual machines.

Honeyd is run on a virtual machine running Ubuntu 12.04.5 and this configuration

runs all the honeypots since Honeyd can run many virtual machines. Three distinct

honeypots are running on their own IP addresses with the ports related to their

services open.

There is an Ubuntu 14.04.02 virtual machine using VMWare. This machine is on

the same LAN as the other devices and is the main host for querying the honeypots

and IoT devices, as well as running the Nmap scans. This singular machine creates

the simultaneous connections to each device. It is given 2 processor cores and 2 GB

76

of RAM.

The IoT devices, TITAThink TT520PW, Proliphix NT130h, and ezOutlet2 EZ-

22b are all contained on the same LAN as the honeypots. They are physically con-

nected via Ethernet to a TP-Link N300 Router. The laptop running the honeypots

and testing the honeypots is also connected to this network. No other devices are on

this network and the router is not connected to the Internet, which limits extraneous

network traffic.

4.7 Results

The data gathered from the experiments are processed in Excel. It is used to

perform the statistical analysis as well as to generate plots to show the differences

between the IoT devices and the honeypots. Bar graphs and scatter plots that show

data points very close together indicates that an IoT device is very similar to its

honeypot. Some of graphs used include:

• Bar Graphs

– Average Query Response Time Between IoT Device and Honeypot

– Percent Similarity of IoT and Honeypot Data

– Percent Similarity of IoT and Honeypot Headers

– Number of TCP/IP Packets on IoT Device and Honeypot

– Average Nmap Scan Time on IoT Device and Honeypot

• Scatter Plots w/ Trendline

– IoT Device Average Query Response Time Based on Number of Simulta-

neous Connections

77

– Honeypot Average Query Response Time Based on Number of Simultane-

ous Connections

The figures below highlight some of the potential graphs that are used to highlight

the data. Figure 36 is a bar graph that shows the average query response time for

all trials on both devices. This allows direct comparison between the device and

honeypot on each trial. Each bar provides the results of an individual test, and the

labels used in the x-axis signify which test is run based on the number of queries and

the number of simultaneous connections. For example, the label ‘100-1’ indicates the

trial with 100 queries by 1 user. This method for labeling trials is used throughout the

thesis. Figures 37 and 38 are bar graphs show the percent similarity of the HTML

code and TCP/IP/HTTP headers between the device and honeypot. Each graph

highlights the three trials of varying queries for the same number of simultaneous

connections. The result is three graphs, one for each set of simultaneous connections.

Figure 37 breaks each set of bars into the line and character similarity with and

without expected differences. Figure 38 breaks each set of bars into TCP/IP and

HTTP percent similarity. Figure 39 shows the number of TCP/IP packets that are

sent by the IoT device or honeypot depending on the trial. They are grouped together

to allow comparison of the number of packets sent for each trial. Figure 40 shows

the average completion time for the three Nmap scans on both the IoT device and

honeypot. Finally, Figure 41 is an example scatter plot of all average query response

times for every trial for an IoT device or honeypot. Some of the points on these

graphs overlap due to extremely similar response times between the trials. There

are three points to indicate the three trials, 100, 500, and 1000 queries, that take

place with the indicated number of users in the x-axis. The trendline included shows

how the average query response time increases as more simultaneous users query the

device. Putting the graph of the IoT device and honeypot next to each other with

78

the same scale allows comparison between the trendline. It shows which device is

affected more from the increasing number of users. These graphs provide a helpful

visual representation for comparison of the data obtained from the tests highlighted

in this chapter.

Figure 36. Example bar graph of average query response time

Figure 37. Example bar graph showing code percent similarity for 1 user

79

Figure 38. Example bar graph of TCP/IP and HTTP header percent similarity for the

trials with 1 user

Figure 39. Example bar graph of number of TCP/IP packets

80

Figure 40. Example bar graph of average Nmap scan time

Figure 41. Example scatter plot of average query response time with trendline

Since the experiment is comparing how similar an IoT device is to an IoT hon-

eypot, using a t-test is the ideal test for this research. A t-test is used to determine

81

if there is a statistically-significant difference between the means of two sets of data

[44]. The null hypothesis, µ0, is that there is no difference between the means of

two sets of data. If the p-value is less-than or equal to 0.05, the null can be rejected

and it can be concluded that there is a difference between the means with 95% con-

fidence. Otherwise, the null fails to be rejected; then it can be assumed that there is

no statisticallyu-significant difference between the mean values of the data. A t-test

assumes that both sets of data are normally distributed.

It is generally accepted that a set of data with at least 50 data points can assumed

to be normally distributed [45]. If there are not that many data points, an Anderson-

Darling test can be performed to determine with 95% confidence whether or not a

given set of data is evenly distributed [46]. The null hypothesis, µ0, is that the data

follows the normal distribution. If the p-value is less-than or equal to 0.05, the null

can be rejected and it can be concluded that the data does not follow the normal

distribution with 95% confidence.

If a data set does not have a normal distribution, an alternative to the t-test

is a Mann-Whitney U test (sometimes referred to as the Wilcoxon Rank-Sum Test)

[47], [48]. The null hypothesis, µ0, of the Mann-Whitney U test is that the two

sets of data came from the same population. If the p-value is less-than 0.05, the

null can be rejected and it can be concluded that the data does not come from the

same population with 95% confidence. While the null hypothesis of the t-test and

Mann-Whitney U test are technically different, in essence they are the same and the

Mann-Whitney U test is commonly used in place of a t-test when the data is not

normally distributed [48].

Another consideration is that t-tests come in two forms, equal and unequal vari-

ance t-tests. The test used is entirely dependent upon the variance of the sets of

data. If there are the same number of data points in both sets of data, an equal

82

variance t-test can be used [44]. If not, an F-test can be used to determine whether

or not the variances of two sets of data are equal [49]. The null hypothesis, µ0, is

that the variance of two sets of data is equal. If the p-value is less-than or equal

to 0.05, the null can be rejected and it can be concluded that the variance of both

sets of data are not equal. In this case, an unequal variance t-test can be used. If

the p-value is greater-than 0.05, the null fails to be rejected which means that it can

be assumed with 95% certainty that the variances are equal. A equal variance t-test

can be used in this case. The t-tests and F-tests are run in Excel using the Analysis

ToolPak add-in that comes packaged with Excel. The Anderson-Darling test is run

in an Excel document created by McNeese [46]. The Mann-Whitney test is run in

Excel using the Real Statistics Resource Pack [48].

These statistical tests are run on the query response time and Nmap scan time

data. This is because it is quantitative data with many data points. They are not run

on the code, header, and Nmap similarity data because the numbers for these metrics

are gathered from qualitative comparisons. There are not two sets of quantitative

data to perform a t-test on. Two sets of qualitative data are compared to get a

singular number for percent similarity. These sets of data are qualitatively analyzed

in the following chapter.

4.8 Chapter Summary

This chapter discusses the research goals and questions that are attempting to be

answered in this research. It also shows a diagram of the SUT and the assumptions,

parameters, factors, and metrics of the experiment. The chapter also covers the

experimentation methodology, the apparatus for testing, and how the results are

presented and analyzed.

83

V. Results and Analysis

5.1 Overview

This chapter highlights the results of the experiments outlined in Chapter 4, show-

ing the resulting information for each metric from Section 4.4.4. These metrics are

used to determine if Honeyd is able to successfully produce convincing web-based IoT

honeypots.

5.2 Metric 1 - Query Completion Time

5.2.1 TITAThink Camera.

Between the IoT device and honeypot, one thing remains certain, as the number

of simultaneous users increases, the response times for each query increases as well

(Figures 42, 43, and 44). The honeypot’s query response time appears to grow at

a much faster rate compared to the TITAThink camera. It is expected that the

response time would grow, but it appears that the camera was able to accommodate

more users than the honeypot. Importantly, the response times stay relatively the

same regardless of the number of queries, either 100, 500, or 1000. Only the number

of users affects the time. The data for this experiment can be found in Table 5 in

Appendix F.

Both sets of data for the camera and the honeypot have the same number of

entries, meaning an equal variance t-test can be used. With the null hypothesis

set as µ0 = µ1, all of the t-Tests reject the null hypothesis by having p-values that

are less than 0.05. This means that with 95% confidence, none of the sets of query

response times could be considered identical, because there is a statistically-significant

difference between the means. These tests are shown in Figures 75, 76, 77, 78, 79,

80, 81, 82, and 83 in Appendix G.

84

The reason for this discrepancy could be due to the lack of computing power on

the VM running the honeypot. If more resources are allocated to Honeyd, it could

process requests faster and have response times more in line with the actual device.

However, since the IoT device is so small and low powered, it may not be the amount

of computing resources but how the resources are allocated. A lower resource intensive

operating system than Ubuntu may decrease response times. In addition, making the

code more efficient and using a programming language that is faster than Python

may also bring response times down. As far as increasing speeds when there are more

simultaneous users, this could prove to be quite the challenge because response times

increase much faster for the honeypot than for the IoT device.

Figure 42. Camera average query response time for device and honeypot

85

Figure 43. IoT camera average query response versus number of users

Figure 44. Camera honeypot average query response versus number of users

5.2.2 Proliphix Thermostat.

The test results on the thermostat follow the same general pattern as the camera;

as the number of users increases, the average query response time increases as well.

86

This increase is due more to the fact that there are outliers in some of the tests. One of

the trials with five users actually had a longer average time than any of the response

times on the trials with ten users. Tests with the same number of users against

the thermostat are not extremely similar, differing by 1 second in some trials. The

thermostat seems to be more non-deterministic in query response time, responding

faster or slower for no reason. The honeypot average query response time increases,

but not nearly as much as the camera honeypot does with increased users. Figures

45, 46, and 47 show the average response times for each trial as well as showing how

they change as users are added. The data for this experiment can be found in Table

6 in Appendix F.

The trials with only one user all have the same number of data points, so an equal

variance t-test can be used. The trials with five and ten users have dropped packets,

meaning an F-test is performed to determine which t-test to use. All of these trials

reject the null hypothesis that the variances between the data sets are the same.

This means that an unequal variance t-test is used. The null hypothesis for the t-

Tests is µ0 = µ1 to determine if the average query response times have no significant

difference in their means with a 95% confidence. The t-tests from the first trials,

with only one user, all reject the null meaning that there is a statistically-significant

difference between the means. However, for the trial with 100 queries, the p-value of

0.013 is very close and almost fails to reject the null. The means are nearly identical

and it is the larger variance of the thermostat that causes the test to reject the null.

The trials with five simultaneous users also reject the null hypothesis, but again the

trial with 100 queries had a p-value of 0.0104 which is also very close to failing to

reject the null. Finally, the trial with 10 users actually fails to reject the null on

the trial with 100 queries having a p-value of 0.115. This means that there is not a

statistically-significant difference between the means of the thermostat and honeypot

87

average query response times, with 95% confidence. The 500 query trial with ten

users rejects the null with a p-value of 0.037. This is the closest to almost failing to

reject the null of any trial, so it was very close to not having a statistically-significant

difference between the mean. The 1000 query trials rejects the null outright. The

results of the F and t-tests can be found in Figures 84, 85, 86, 87, 88, 89, 90, 91, and

92 in Appendix G.

The Proliphix thermostat is that it is not able to adequately handle more than one

simultaneous connection. Tests are reduced to 5 and 10 simultaneous users instead of

10 and 20 for this reason. This was the main reason why the average query response

times does not change very much when more users are added for specific trials. The

significantly higher outliers are due to the fact that the thermostat sometimes stalls on

a query that was happening simultaneously, taking upwards of a minute to fulfill that

request instead of rejecting it outright. This skews the average query response time

to be very high if this happens multiple times. It also causes some larger variances,

which affects the results of the t-tests, if the thermostat was more non-deterministic in

the time it took to respond to a query. This result and the ability to only handle one

user at a time was probably due to the older hardware on the device. The Proliphix

thermostat is by far the oldest device tested.

To make the honeypot respond as quickly as the thermostat, a delay is added

because the thermostat is about a full second slower than the honeypot. The only

problem being that due to the non-deterministic nature of how the thermostat re-

sponds, there are still some discrepancies. A solution in the future would be to add

a random delay instead of a fixed number to increase the variability of the honey-

pot’s response time as well. Honeyd has no problem handling multiple simultaneous

connections, so possible modifications might need to be made to the source code to

institute a function that would reject connections once a certain number of simulta-

88

neous users are reached.

Figure 45. Thermostat average query response time for device and honeypot

Figure 46. IoT thermostat average query response versus number of users

89

Figure 47. Thermostat honeypot average query response versus number of users

5.2.3 ezOutlet2 Power Outlet.

As seen in the other scenarios, when the number of users increased, the average

query response time increases as well. The ezOutlet2 seems to grow slightly faster

than the honeypot based off the trendline from Figures 49 and 50. Also worth noting

is that while the ezOutlet2 seems to be significantly faster than the honeypot in the

one and ten user scenarios, it actually responds slower than the honeypot in the

twenty users scenario. This is shown by the raw average query response time by

trial highlighted in Figure 48. This is a unique scenario in comparison to the other

devices in that sometimes the honeypot is slower than the IoT device and sometimes

faster, depending on how many users are trying to access the device. The data for

this experiment can be found in Table 7 in Appendix F.

Only the trials with twenty users have dropped packets, which means the other

trials have an equal number of data points. Therefore, the one and ten user trials

use an equal variance t-Test. The F-tests determine that unequal variance t-tests

90

are used for the twenty user trials. The null hypothesis for the t-Tests is µ0 = µ1 to

determine if the average query response times have no significant difference in their

means with a 95% confidence. Performing the t-tests shows that all trials, save one,

rejected the null hypothesis that there was no statistical difference between the mean

query response times. This means that it can be assumed that the average query

response times are not the same with 95% confidence. The one trial where the test

fails to reject the null was the trial with 100 queries and twenty users which has a p-

value of 0.186. This trial has no statistically-significant difference between the means

of the average query response time. Unlike the thermostat tests, there are no p-values

that are very close to failing to reject the null. The results of the F and t-tests can

be found in Figures 93, 94, 95, 96, 97, 98, 99, 100, and 101 in Appendix G.

In comparison to the other IoT devices, the ezOutlet2 responds the fastest when

only one user is accessing it. The limited amount of data being transmitted by the

ezOutlet2 contributes to its fast response time. As in the other two sections, bringing

the honeypot response times down would probably require optimizing the Honeyd

code, providing more resources to the VM, and optimizing the scripts being used by

Honeyd in this system. The discrepancy in query response time is too large to pass

any t-tests. The main reason why there is one success in failing to reject the null

is because the ezOutlet2 begins dropping packets and experiencing slowdowns when

20 users query the device at the same time. This provides a much larger variance

of 6.68 compared to the other trials. This caused the t-test to fail to reject the null

in comparison to the other tests because there was a larger range of values from the

slowdowns experienced. The other tests with 20 users also have larger variances, but

there are many more data points to get a more accurate reading on the data, and

it shows that statistically there was a significant difference between the means. This

is also the reason why the ezOutlet2 is slower than the honeypot at 20 users despite

91

being faster in the initial trials. Twenty users is around the ceiling for the number of

users the ezOutlet2 can handle.

Figure 48. Outlet average query response time for device and honeypot

Figure 49. IoT outlet average query response versus number of users

92

Figure 50. Outlet honeypot average query response versus number of users

5.3 Metric 2 - Data Difference

5.3.1 TITAThink Camera.

Comparing the HTML codes proves to be quite successful. The data sent from

both devices is identical in every scenario. The HTML code for this device has no

expected differences, unlike on the other devices. In addition, the number of users

does not introduce any loss of data. Both the IoT device and honeypot can handle

the queries of up to 20 users without losing data. Figures 51, 52, and 53 show the

percent similarity for each test completed. The data for this experiment can be found

in Table 8 in Appendix F.

Early on, one of the challenges seemed to be incorporating a static picture system

that appeared as a dynamic video feed. However, because the TITAThink Camera

uses an Motion Joint Photographic Experts Group (MJPEG) Live as the video feed,

it took in a Joint Photographic Experts Group (JPG) image as input in the HTML

code. The file extension for an MJPEG Live is the same as a regular JPG image, so

93

it was simple to send a static image instead of the live image without altering the

HTML code at all. This allows for 100% code similarity.

Figure 51. Code similarity for camera with 1 user

Figure 52. Code similarity for camera with 10 simultaneous users

94

Figure 53. Code similarity for camera with 20 simultaneous users

5.3.2 Proliphix Thermostat.

The tests run on the thermostat are not as successful as on the camera. The

results for one simultaneous user has approximately 99.5% code similarity. The code

similarity for five and ten simultaneous users, however, is approximately 20% and

10% respectively. Figures 54, 55, and 56 highlight the similarities of the code for each

trial. The data for this experiment can be found in Table 9 in Appendix F.

There are some expected differences in these files. Data such as the date, time,

and temperature are expected to be different, and the tests correctly show where the

files are different and ignores these expected differences. One of the reasons for the

small discrepancy in the one user trial has to do with one line in the main page, “var

adStat = parseInt(”0”);”, which would randomly alternate between 0 and 1. It is

usually 0, but sometimes it changes to 1 for no apparent reason. This discrepancy

is very infrequent because it still produces a very high percentage of similarity. The

only solution is to determine exactly why it is changing randomly and then alter the

script to match the other device. The percentages are low on the five and ten user

trials because the thermostat could not serve the requests of more than one user.

95

This produces many comparisons of a page from the honeypot with a blank HTML

page from the thermostat. Before the thermostat starts rejecting the other users, it

might send a response such as “Please try again”. This response is also analyzed as

0% similarity. As stated previously, a potential solution to this would be to change

the Honeyd source code to reject more than one simultaneous connections.

Figure 54. Code similarity for thermostat with 1 user

Figure 55. Code similarity for thermostat with 5 simultaneous users

96

Figure 56. Code similarity for thermostat with 10 simultaneous users

5.3.3 ezOutlet Power Outlet.

The ezOutlet2 honeypot has a much higher code similarity than the Proliphix

thermostat. This is mostly due to the fact that the outlet is able to handle more users

than the thermostat. The tests for one and ten users has 100% code similarity, but

the tests with twenty users only have averages between 86% and 95% code similarity.

The breakdown of code similarity based on the tests can be seen in Figures 57, 58,

and 59. The data for this experiment can be found in Table 10 in Appendix F.

Just like the thermostat, this device has some expected differences, mainly with

the date, time, and IP addresses. The tests are able to properly identify all the

differences and then ignore the ones that are supposed to be there. The reason

there was some discrepancy when twenty users are querying the device is because

the ezOutlet2 begins to drop some packets as too many users query the device. This

limitation is not found with the honeypot. To rectify this issue, changes would need

to be made to the Honeyd source code to disallow that many users from accessing the

device at the same time. Twenty users seems to be the upper limit for the ezOutlet2,

97

so the comparison is still very close. It is not nearly as limited as the thermostat

which can only handle one user.

Figure 57. Code similarity for outlet with 1 user

Figure 58. Code similarity for outlet with 10 simultaneous users

98

Figure 59. Code similarity for outlet with 20 simultaneous users

5.4 Metric 3 - Number of Packets

The number of packets is always going to be variable. Sometimes packets get

dropped or interference causes them to get resent. That is why differing tests of

various query numbers are run to try and normalize for this variability. However, it is

still possible that a device ends up sending more packets than another for one reason

or another, and these tests try to illustrate exactly how many packets each device

sends.

5.4.1 TITAThink Camera.

In all experimental trials, the TITAThink camera sends nearly double the number

of packets as the honeypot does. It is not affected by the number of queries or users,

and the number is always significantly more. Figure 60 shows how the number of

packets differs between both devices in each trial. The data for this experiment can

be found in Table 11 in Appendix F.

99

The reason that the number of packets is so different is likely due to the fact

that the TITAThink camera is sending a live video feed, while the honeypot is only

sending a static image. It takes much more data to send a live feed. To account for

this, an alternative strategy may be to continually send the picture repeatedly while

a user is on the page. This would require more back-end work and may even alter

query response time, but it may be an avenue worth exploring to bring this figure

more in line with the actual device.

Figure 60. The number of TCP/IP packets sent by both the IoT camera and honeypot

camera

5.4.2 Proliphix Thermostat.

In the trials with only one user, the thermostat produces more packets than the

honeypot. However, in the trials with more than one user, the honeypot produces

many more packets than the thermostat. These results are highlighted in Figure 61.

The data for this experiment can be found in Table 12 in Appendix F.

The reason the honeypot is shown as producing more packets when there is mul-

tiple users is due to the inability of the Proliphix thermostat to serve more than one

user. It originally follows suit with the TITAThink camera by sending more packets

100

than the honeypot. This pattern would have likely continued if it does not drop the

majority of the requests that are sent to it. Based on the tests with no dropped

packets, the thermostat is sending more data than the honeypot. To bring this value

more in line, in depth Wireshark scans would need to be done to observe exactly

what the thermostat is sending with these requests. That way, the scripts can be

altered to make these numbers more similar. Also, as stated in Section 5.3.2, changes

to Honeyd’s code to only allow a certain number of connections would increase the

similarity in the trials with more than one user.

Figure 61. The number of TCP/IP packets sent by both the IoT thermostat and

honeypot thermostat

5.4.3 ezOutlet Power Outlet.

Throughout all tests, the number of packets sent by the ezOutlet2 and the honey-

pot are very similar. Almost all tests have very similar packet numbers, though the

ezOutlet2 always produces a few more packets. The tests with discrepancies come

from the tests with 20 users. The 100 query and 500 query, 20 user tests have the

honeypot with slightly more packets, but the 1000 query 20 user test has 160,000

more packets received from the honeypot than the IoT device. This is due to the

101

dropped packets discussed in Section 5.3.3. The breakdown of the packet numbers

can be seen in Figure 62. The data for this experiment can be found in Table 10 in

Appendix F.

This device had a similar trend as the other IoT devices by sending more packets

than the honeypots during the experiments, excluding the trials where packets were

dropped. These numbers are more similar in comparison with the other devices. In

depth Wireshark scans should be done to determine exactly what the ezOutlet is

sending. The script could be altered to send more data and bring these values even

closer. Since this device is also dropping packets at a certain number of users, altering

the Honeyd code to drop packets once a certain number of users is reached would

not only help the code similarity, but would also make the number of packets more

similar.

Figure 62. The number of TCP/IP packets sent by both the IoT outlet and honeypot

outlet

102

5.5 Metric 4 - Header Difference

5.5.1 TITAThink Camera.

When comparing both the TCP, IP, and HTTP headers between the device and

honeypot every test results in 100% similarity. There is no difference in any of the

contents of the TCP/IP headers, and the HTTP headers have the same fields with

the correct information in them. Date and time are included in the HTTP packets,

but they are ignored because they are expected to be different. Figures 63, 64, and

65 show the breakdown of how similar the headers are for each run. The data for this

experiment can be found in Table 11 in Appendix F.

The reason the headers are so similar is because the TITACamera happens to share

the same TCP/IP header values that Honeyd sends. Honeyd handles the transport

layer protocol functions for its honeypots, and it is not possible to change them with-

out source code modification. It does work out for this scenario, but more extensive

code modifications may be required for other scenarios.

Figure 63. Camera header similarity 1 user

103

Figure 64. Camera header similarity 10 users

Figure 65. Camera header similarity 20 users

5.5.2 Proliphix Thermostat.

Despite the difference in packet numbers, all of the fields in the TCP/IP packets

are the same between the thermostat and the honeypot. Regardless of the trial, the

same information appears, and the HTTP headers are nearly as similar. In all nine

trials, the HTTP header similarity ranged from 99.5%-100%. Figures 66, 67, and 68

show the breakdown of how similar the headers are for each run. The data for this

experiment can be found in Table 12 in Appendix F.

104

The discrepancies come from when the thermostat would very rarely have the

content-header length set to 16 instead of 26. Upon investigation, this has to do with

the “Please Try Again” page that the thermostat sends if it does not drop the connec-

tion of an additional user, but is still unable to process the request. If a user makes a

request for any page and the thermostat is already occupied with another connection,

it sends a “Please Try Again” page with the different content-header length, or it

drops the connection entirely and stops serving it. As stated previously, rectifying

this issue would require altering Honeyd code to limit the number of connections and

sending this alternate header.

Figure 66. Thermostat header similarity 1 user

105

Figure 67. Thermostat header similarity 5 users

Figure 68. Thermostat header similarity 10 users

5.5.3 ezOutlet Power Outlet.

Even though the packet numbers are the same for the power outlet, the packet

headers do not meet this same level of success. The HTTP headers have perfect

similarity across all packets, but the TTL in the IP header is different on every

packet from the honeypot. With that exception, all other TCP/IP headers are the

106

same for all tests. The TTL difference makes the headers approximately 20% less

similar. Figures 69, 70, and 71 show the breakdown of the similarity of headers

between the device and honeypot. The data for this experiment can be found in

Table 13 in Appendix F.

The TTL sent by Honeyd in the IP header is preset. Honeyd handles all the

TCP/IP traffic in the background, and there does not seem to be a way to change

the contents of these headers easily. A potential workaround to this would be to alter

the source code of Honeyd to allow the user to choose the contents of the TCP/IP

headers. The ability to do this would allow 100% similarity in all headers for any

type of honeypot.

Figure 69. Power outlet header similarity 1 user

107

Figure 70. Power outlet header similarity 10 users

Figure 71. Power outlet header similarity 20 users

5.6 Metric 5 - Nmap Scan Time

5.6.1 TITAThink Camera.

For two of the scans, SYN and FIN, the honeypot is a bit slower than the TITA-

Think camera. The honeypot is slower than the camera during normal queries so it is

expected that the Nmap scan would also be slower as a result. However, the camera

is 5-times slower than the honeypot in the UDP scan. These discrepancies in time

108

can be viewed in Figure 72. The data for this experiment can be found in Table 14

in Appendix F.

As stated in Section 4.7, normal distribution is assumed for data with at least 50

data points, but this test does not have that many data points [45]. The Anderson-

Darling test for normality is used to see if the data is normally distributed for a t-test.

The results of the Anderson-Darling tests are highlighted in Table 2. If both p-values

from the Anderson-Darling test are greater than 0.05, the final p-value is calculated

from a t-test. Otherwise, a Mann-Whitney U test calculates the final p-value.

None of the data sets have a two-sided p-value greater than 0.05 from the Anderson-

Darling test, so a Mann-Whitney U test is used. After performing the Mann-Whitney

U tests on the data, none of the scans have a two-sided p-value greater than 0.05,

which means they all reject the null. These are included in the ’Final p-value’ column

in Table 2. Therefore it can be concluded that none of the trials of response times

between the two devices could be from the same population with 95% confidence.

The full test results can be found in Figures 102, 103, and 104 in Appendix G.

Based on the previous experiments, it makes sense for the honeypot to be slower

in the SYN and FIN scans. This could be due to lack of resources in the VM, more

overhead from the OS, sub-optimal code, or a sub-optimal programming language.

The large UDP discrepancy, however, is attributed to the camera rejecting UDP

packets that are sent too quickly. Observing the output of the Nmap scans, Nmap

keeps increasing the sending delay because it is sending packets too quickly, which

the honeypot can handle but the camera cannot. A solution to bring these numbers

closer together would be to determine what exactly Nmap sends for the UDP scan

and write a script to increase the delay when the honeypot receives these packets.

109

Figure 72. Average Nmap scan time for camera

Table 2. TITAThink camera and honeypot Nmap scan time Anderson-Darling results

and final p-value

Scan Type Camera p-value Honeypot p-value Both > 0.05? Final p-value

SYN 0.0831 0.0071 No 0.01219

UDP 0.0724 0.0264 No 0.01219

FIN 0.0111 0.1226 No 0.01219

5.6.2 Proliphix Thermostat.

In all three Nmap scans, the scans on the honeypot take longer to complete than

those on the thermostat. The SYN and FIN scans on the honeypot take almost 3

times longer than the thermostat scan. The UDP scan also takes significantly longer,

similar to those associated with the camera. An overview of all the average time

differences between scans can be seen in Figure 73. The data for this experiment can

be found in Table 15 in Appendix F.

110

The results of the Anderson-Darling tests for normality are highlighted in Table

3. If both p-values from the Anderson-Darling test are greater than 0.05, the final

p-value is calculated from a t-test. Otherwise, a Mann-Whitney U test calculates the

final p-value.

None of the data sets have a two-sided p-value greater than 0.05 from the Anderson-

Darling test, so a Mann-Whitney U test is used. After performing the Mann-Whitney

U tests on the data, none of the scans have a two-sided p-value greater than 0.05,

which means they all reject the null. These are included in the ’Final p-value’ column

in Table 3. Therefore it can be concluded that none of the trials of response times

between the two devices can be from the same population with 95% confidence. The

full test results can be found in Figures 105, 106, and 107 in Appendix G.

The honeypot is slowed down to be more in line with the thermostat device query

response time, but this makes the Nmap scans significantly slower. Unlike the camera,

speeding up the device by providing more resources to VM or optimizing the code is

not ideal because the honeypot is already intentionally slowed down to better simulate

the thermostat query response time. The speed of the Nmap scans may just be how

fast Honeyd reacts, and there may not be a way to make the honeypot perform more

like the thermostat. Despite all the UDP ports being closed on the honeypot, the

UDP scan still takes an extremely long time. Examining the output of the Nmap

scans, the sending delay is not increased by too many dropped probes like in the

camera scenario, it just took a long time. The only possible explanation is that

Honeyd must be reacting to Nmap’s scans in a way that slows everything down when

the UDP ports are all closed. They have to be closed in this scenario because there

are no UDP services on this device.

111

Figure 73. Average Nmap scan time for thermostat

Table 3. Proliphix thermostat and honeypot Nmap scan time Anderson-Darling results

and final p-value

Scan Type Thermostat p-value Honeypot p-value Both > 0.05? Final p-value

SYN 0.4426 0.0036 No 0.0122

UDP 0.0144 0.2427 No 0.0122

FIN 0.0434 0.2431 No 0.0122

5.6.3 ezOutlet Power Outlet.

The UDP and FIN scans are significantly slower on the ezOutlet2. However,

the SYN scans are quite similar on both the device and honeypot, only differing by

around 45 seconds. This is close in comparison to the other devices. The UDP and

FIN scans on the honeypot are very fast, considering how slow the UDP scan is on the

thermostat honeypot. The breakdown of average scan times can be seen on Figure

112

74. The data for this experiment can be found in Table 16 in Appendix F.

The results of the Anderson-Darling tests for normality are highlighted in Table

4. If both p-values from the Anderson-Darling test are greater than 0.05, the final

p-value is calculated from a t-test. Otherwise, a Mann-Whitney U test calculates the

final p-value.

The FIN test has a p-value greater than 0.05 for the Anderson-Darling test, so a

t-test is run for those trials. The others have a two-sided p-value less than 0.05, so a

Mann-Whitney U test is used. After performing that t-test and the Mann-Whitney

U tests on the data, none of the scans have a two-sided p-value greater than 0.05,

and they all reject the null. These are included in the ’Final p-value’ column in Table

4. Therefore it can be concluded that none of the trials of response times between

the two devices could be from the same population or have the same mean with 95%

confidence. The full results of the tests can be found in Figures 108, 109, and 110 in

Appendix G.

It seems illogical that the UDP scan would be so fast on the outlet honeypot

compared to the thermostat honeypot, despite the fact that they are configured nearly

identically in the Honeyd configuration file. Neither device has any UDP services so

the ports are not configured in the configuration file. There are two possibilities as to

why it was so much faster. First, the thermostat honeypot has a 1 second delay added

to bring it more in line with the Proliphix thermostat. This additional delay could

have been enough to necessitate Nmap increasing the transmission delay between

each of its queries. Another potential reason might also be the amount of data sent.

The thermostat sends an HTML page with many more lines of code than the outlet.

In comparison, the outlet sends only two lines of HTML code for querying the root

page, while the thermostat sends 800 lines of HTML code. This equates to more

packets, increasing the amount of time for each query by Nmap.

113

The long times for the FIN and UDP scans on the ezOutlet2 are associated with

how the device responds to Nmap’s test scripts. They either come too quickly or in

such a way that the device reacts much slower than the other IoT devices. To bring

the honeypot more in line, artificial delays would need to be instituted to react to the

unique type of queries that Nmap sends for these types of scans. This would prove

to be challenging, because these delays could not affect normal operation since the

power outlet honeypot already responds slower than the ezOutlet2.

Figure 74. Average Nmap scan time for power outlet

114

Table 4. ezOutlet2 power outlet and honeypot Nmap scan time Anderson-Darling

results and final p-value

Scan Type Outlet p-value Honeypot p-value Both > 0.05? Final p-value

SYN 0.1938 0.0037 No 0.0303

UDP 0.5177 0.0008 No 1.2855E-09

FIN 0.2151 0.1384 Yes 0.0122

5.7 Metric 6 - Nmap Scan Difference

5.7.1 TITAThink Camera.

The main component of the camera and the honeypot, the services, are all iden-

tical. All TCP and UDP services are properly shown for both devices in the Nmap

scan. The services displayed are TCP ports 80, 554, and 49152 and UDP ports 443,

990, 1900, 1901, 3702, 16896, 18676, 19956, 22986, 30697, 32772, and 32777. The

manufacturer, Shenzhen Ogemray Technology Co., is tied to the MAC Address and

is properly shown in all five trials of the three scans. The OS does not show up

properly for any of the scans. Nmap lists the camera as Linux 2.6.9-2.6.33 in the

SYN and FIN scans, but it has no OS for the UDP scans. The honeypot has no OS

for the SYN and FIN scans and appears as a D-Link DES-1210 for the UDP scan.

The services and manufacturer show up properly because this is one of the main

selling points of Honeyd, its ability to simulate specific services with its own IP and

MAC address. The difference in OS is to be expected since the older version of

Honeyd uses old Nmap fingerprints, not the ones used by the latest version. To

rectify this issue, Honeyd’s source code would need to be changed to accommodate

the new format for Nmap scan fingerprints. It is also possible that using an older

version of Nmap might produce results that are more similar to each other. However,

115

current level 2 and 3 users are likely to be using the latest version of the software.

Another possibility is editing Honeyd’s own fingerprint database to add a fingerprint

that is identical to the one scanned from the actual device. Prior to this thesis,

different methods of attempting to change the fingerprint database in Honeyd were

unsuccessful, as a result, this would also require some changes to Honeyd’s source

code.

5.7.2 Proliphix Thermostat.

The thermostat only has one TCP service, HTTP on TCP port 80. This service

properly shows up for both the SYN and FIN scans, and no service correctly shows

on the UDP scan on the honeypot. The OS is not exactly correct, but closer than

the camera. The thermostat shows up as “D-Link DPR-1260 print server”, and the

aggressive guess for the honeypot is “D-Link DP-300U”, but its second guess is “D-

Link DPR-1260 print server”. This shows up for both the SYN and FIN scans, and

no OS is detected in the UDP scan for both the thermostat and honeypot. This is

considered a success, since Nmap sees the OS scan as a ‘guess’, and it does guess

the same OS for both systems, albeit in a different order. Finally, the manufacturer

“Proliphix” is tied to the MAC address and is properly identified in all scans.

Fortunately, the personality chosen for the honeypot had a similar fingerprint to

the thermostat despite being based off the old Nmap fingerprint format. As stated

in the previous section, the best way to potentially improve the OS scanning is to

update Honeyd with the latest Nmap fingerprint format.

5.7.3 ezOutlet Power Outlet.

Like the thermostat, the ezOutlet2 only has one service, HTTP on TCP port 80.

This service is properly displayed in both the Nmap SYN and FIN scans. In addition,

116

no services are properly detected on the UDP scan. The OS is not detected correctly

in any test. For the ezOutlet2, the OS “IBM OS/2” is detected on the SYN and FIN

scans, and no OS is detected on the UDP scans. For the honeypot, no OS is detected

on the SYN and FIN scans, and the OS “Brother HL-2700CN printer” is detect on

the UDP scan. Finally, the manufacturer “Mega System Technologies” is tied to the

MAC address and is properly identified in all scans.

As with the other tests, the OS discrepancy is mostly due to Honeyd using the old

Nmap fingerprint format as well as an outdated OS fingerprint database. The way to

rectify this would be to modify Honeyd’s source code updating the OS personality to

Nmap’s new format, as well as updating the OS fingerprint database.

5.8 Summary

In this chapter, each metric that is a product of the experiments highlighted in

Chapter IV has their results analyzed and discussed. Each section tries to highlight

the results of the experiments as well as rationalize the outcome of the tests.

117

VI. Conclusions

6.1 Introduction

This chapter summarizes the findings of this research, highlights its significance,

and discusses future areas of research. Section 6.2 provides concluding thoughts on

the research findings. Section 6.3 discusses the significance of this research. Section

6.4 discusses some of the limitations of this research. Section 6.5 discusses the im-

plementation and scalability of this research. Section 6.6 discusses potential future

avenues for this research.

6.2 Research Conclusions

In broad terms, this research was successful in creating functioning honeypots

that have scripts which provide the appearance of various working IoT devices. The

hypothesis laid out in Chapter I is confirmed. Honeyd can create a near copy of real

IoT devices. Many of the tests performed provide results that may be contrary to

the idea that Honeyd can create perfect copies of IoT devices. The following sections

review the questions that this research tried to answer and whether this necessarily

means that Honeyd cannot be used to create viable IoT honeypots.

6.2.1 Response Time.

The initial question posed in Chapter IV was: Do Honeyd IoT honeypots transmit

faster or slower than the actual IoT device they are simulating? Based on the results

in Chapter V, the data partially supports this. The TITAThink camera and ezOutlet2

are both faster than the honeypots, and the honeypot is faster than the Proliphix

thermostat. The easy answer would be to slow down honeypots that were faster

with delays, but the delay is not always deterministic and there is some variances.

118

Chapter V provides potential solutions to speed up honeypots, but those solutions

are not necessarily easy to implement.

When creating a honeypot, it should be as similar to the device as possible. So

ideally, the honeypot should not be faster or slower than the device it is simulating.

Even though the honeypots commonly had a statistically-significant deviance from

having the same response time as the real device, the observed times are still very

small. For a single user, the response times in one trial were:

IoT Device Honeypot

TITAThink Camera 0.018 s 0.092 s

Proliphix Thermostat 1.22 s 1.20 s

ezOutlet2 0.004 s 0.027 s

The devices with the largest difference in time differ on the order of fractions of a

second. To an attacker interacting with these devices, it would be unnoticeable. This

does not even take into account the fact that an IoT device is not always accessed via

Ethernet on the same LAN. It can be accessed from thousands of miles away or even

through WiFi. The distance an attack comes from or the medium through which an

attack travels also affects response time and could increase it considerably. In that

case, it would obscure the true speed of a device even more to an attacker, making

the minute differences in time negligible. So even though statistically they may seem

different, in a real world scenario of trying to fool an attacker, the time differences

are more than adequate.

6.2.2 Data Similarity.

The initial question posed in Chapter IV is: Are IP packets sent by Honeyd IoT

honeypots identical to the ones sent by the actual IoT device they are simulating?

Based on the results in Chapter V, the data partially supports this. The ability for

119

Honeyd to act as its own web server goes a long way in being authentic without having

to alter HTML code. If this were not the case, and it could only print raw HTML code,

then no pictures could ever be sent unless a secondary web server was initiated and

the HTML code changed to reflect that. In these experiments, the main differences

displayed were when packets were dropped by the actual IoT devices because of too

many connections. If an attacker were trying to interact with a honeypot they would

be trying to interact with it in two ways:

1. Personally interacting with the device to gather information, run an exploit,

etc.

2. Trying to deny service to a device through a Denial of Service (DoS) Attack.

In the first case, a user would probably only have one connection with the device

and would not even notice that it does not drop packets like the physical version. In

the second case, the user would be flooding a honeypot with requests to try and deny

service. If the honeypot could handle more traffic, this might actually be beneficial.

An attacker would be wasting even more time and resources trying to shut down a

device that is not only more resilient than the original IoT device, but one that is not

even real. So in a way, the difference in data from dropped packets, while showing

that a honeypot is not exactly the same as its IoT device, may actually be a benefit

in a real world scenario.

The only other case of differing data was the one line that would randomly change

its value in the Proliphix Thermostat as stated in Chapter V. While this is a difference,

it is negligible and would likely be virtually unnoticed by an attacker. Even if they

were combing through the HTML code, the value itself is not incorrect. Sometimes

it is the value reported by the honeypot, but rarely it is not. Again, in a real world

scenario this would not be problem.

120

The packet headers, on the other hand, can pose a significant risk to the authen-

ticity of a honeypot. TTL is one of the primary ways an attacker might be tipped off

that a device is actually a honeypot. A device of the same product line has the same

TTL across the board. If an attacker knows this value and it differs from the honey-

pot they are interacting with, this can be a red flag. It is not ideal that the TTL was

different between the ezOutlet2 and its honeypot. Even so, an attacker would need

to know the TTL of the exact device they are interacting with to be 100% certain

they are interacting with a honeypot, making this less of an issue.

6.2.3 Nmap Scans.

The initial question posed in Chapter IV was: Can Honeyd IoT honeypots produce

identical Nmap scan results to the actual IoT device they are simulating? Based on the

results in Chapter V, the data does not support this. Honeyd is good at replicating the

services and manufacturer, but struggled with the OS emulation. While important,

the OS emulation is very hard to replicate in Honeyd’s current state. Due to the

limitations that come from using Nmap’s old fingerprint format, the OS is rarely

identified correctly. It is not even possible to choose the same OS detected on the

real device because they usually did not exist in Honeyd’s database. Furthermore,

the large variability that appeared in scan times has no easy fix. This was especially

evident in cases like the ezOutlet2, where the honeypot is slower than the IoT device in

regular queries but the Nmap scans on the honeypot are faster than the IoT device.

Adding an artificial delay in the code to make the Nmap scan times more similar

makes the difference in query response time larger.

These differences may go unnoticed by a level 1 or 2 user. Unless they have the

Nmap scan results of the exact device with which they believe to be interacting, they

would have no comparison to determine whether the scan results are correct or too

121

slow. However, a level 3 user would probably have a large database of scan results

whereby to compare. In this regard, IoT honeypots made by Honeyd may not be

adequate for fooling Nmap unless Honeyd is updated to work with the latest version

of Nmap.

6.3 Research Significance

Previous IoT honeypot research highlighted in Chapter II dealt with the simula-

tion of specific services and the network traffic of IoT devices [32] [33] or non-specific

IoT devices [34]. The research in this thesis tries to recreate as close as possible the

appearance and function of actual IoT devices to determine whether or not Honeyd

is a suitable framework within which to simulate these devices. It provides the ability

to see how Honeyd is capable of simulating web IoT devices that have static pages

of information, such as the Proliphix thermostat and ezOutlet2, and how it may not

be optimal for simulating web IoT devices that have a dynamically updating page,

such as the TITAThink camera. In addition, this thesis looks at the various parts

of an IoT device (data, headers, etc.) to determine how closely it can resemble the

real device. It also explores common tools used for reconnaissance to see if they have

the capability of fooling users who utilize those tools as well. This research could be

used by defense agencies and companies who seek to delay or examine attackers on

their own networks by making convincing honeypots of IoT devices, one of the most

prevalent devices that make up the internet today.

6.4 Research Limitations

One of the main limitations of this research is the age and prevalence of the devices

used. The Proliphix thermostat is over 10 years old [40] and while it can still be found

on IoT search engines like Shodan, its age means that its use only decreases over time.

122

The company TITAThink is certainly not the most popular IoT camera maker and

could probably be classified as obscure. While the ezOutlet2 is the most purchased

IoT power switch on Amazon, it is still a very niche item that is not commonplace

in most homes. When people think of popular IoT devices they think of the Nest

thermostat and camera [50] or the Ring video doorbell [51]. While these devices

are more popular in the US, older electronic devices that have no use in the US are

shipped to developing countries. In 2005, 400,000 pieces of old computer hardware

were offloaded to Nigeria every month. It is estimated that 75% of it was non-

functioning, but devices that are functioning are used within developing nations such

as Nigeria [52]. This includes IoT devices as they become more prevalent. Despite

this, these devices provide a proof of concept of the ability of Honeyd to simulate any

IoT device that uses TCP port 80.

Another limitation is the age of Honeyd used in this research. The version of

Honeyd used in this research, 1.5c, was last updated by its author, Niels Provos, in

2007 [53]. The latest release version, 1.6d, was updated in 2013 [54], and this version

had stability problems when it was initially tried for this research. This limits its

ability to properly simulate modern day web features, because it was written in a day

when web pages were very simple. It also lacks the ability to have correct responses

for modern versions of programs like Nmap.

Despite these limitations, this research still provides a good framework that could

be translated onto different types of devices. Simple convincing web-based IoT hon-

eypots can be created with relative ease, and this research shows that they can be

made to look convincing to an attacker.

123

6.5 Scalability

This research can be implemented using any machine running Ubuntu 12 or with

the capabilities to create a VM that does. More processing power and RAM increases

scalability. The VM containing the honeypots in this research is given 1 processor

core and 4GB of RAM. It is able to simultaneously run three IoT honeypots with

ease. Honeyd is capable of completely filling an IP space by simply configuring more

honeypots in the configuration file. The honeypots in this research do not drop any

packets with an increased number of queries or users. It is likely that this hardware

is also capable of completely filling an IP space with honeypots and would only

notice performance drops when multiple users are simultaneously interacting with

the honeypots. Twenty simultaneous users do not cause any dropped packets and

that is an unlikely real life scenario. If that scenario did occur and packets were

dropped, that would be acceptable as stated in Section 6.2.2. The attacker is wasting

time trying to deny service on a fake device.

6.6 Future Work

In Chapter IV there is a recurring theme about how the current version of Honeyd

is limited in how it can simulate an operating system. It also has limitations in its

ability to lock out a certain number of users. One area of research could explore the

possibility of updating Honeyd to incorporate the latest Nmap fingerprint format and

updating its fingerprint database to the latest nmap-os-db [6]. Additional research

could also examine if there is a way to get Honeyd itself, or a script run by Honeyd,

to limit the number of users accessing a honeypot. This would enable the honeypots

to more closely resemble the actual device.

Honeycomb is a new piece of software published by Cymmetria that is able to

create honeypots using Docker as a container to run specific services for those honey-

124

pots [55]. This is not the same Honeycomb from Kreibich and Crowcroft discussed in

Chapter II [36]. Their aim is to be a one stop shop for various honeypots that can be

quickly and easily deployed. It is a very powerful piece of software, but it is so new

that there are few services for it. It would be interesting to see how well it is able

to create IoT honeypots based on the metrics in this thesis. It would be especially

interesting to see how it reacts to network scanners like Nmap, as it has no claims to

have OS personalities and network stack simulation like Honeyd.

Finally, another avenue of research would be to examine how well Honeyd can

create honeypots of IoT devices that use a different service other than HTTP. With so

many IoT devices interacting with the user through the cloud and mobile applications

[12] [13], is it possible to simulate these services using an old but powerful piece of

software like Honeyd?

6.7 Chapter Summary

This chapter highlights the concluding thoughts on the results of the research in

this thesis. Even though the research highlights differences in data between the actual

devices and the honeypot, it shows that the honeypots could still be a potentially

powerful tool in a real scenario. The significance and limitations of the research are

discussed and then future areas of research are suggested.

125

Appendix A. Honeyd Configuration Code

iotHoneyd.conf

#set default actions

create default

set default default tcp action block

set default default udp action block

set default default icmp action block

#TITAThink Camera

create titacamera

set titacamera personality "Linux 2.3.28 -33"

set titacamera default tcp action reset

add titacamera tcp port 80 "TitaCamera/camera_web.sh"

add titacamera tcp port 554 open

add titacamera tcp port 49152 open

add titacamera udp port 443 filtered

add titacamera udp port 990 filtered

add titacamera udp port 1900 filtered

add titacamera udp port 1901 filtered

add titacamera udp port 3702 open

add titacamera udp port 16896 filtered

add titacamera udp port 18676 filtered

add titacamera udp port 19956 filtered

add titacamera udp port 22986 filtered

add titacamera udp port 30697 filtered

add titacamera udp port 32772 filtered

add titacamera udp port 32777 filtered

#Proliphix Thermostat

create proliphixthermostat

set proliphixthermostat personality "D-Link Print Server"

set proliphixthermostat default tcp action reset

#Regular Thermostat Interface when Internet is available

#add proliphixthermostat tcp port 80 "ProliphixThermostat/

thermostat_web.sh"

#Thermostat Interface when no internet is available

add proliphixthermostat tcp port 80 "ProliphixThermostat/

thermostat_web_nointernet.sh"

#ezOutlet2 Power Outlet

create ezoutlet

126

set ezoutlet personality "IBM OS/2 Warp 4.0"

set ezoutlet default tcp action reset

add ezoutlet tcp port 80 "ezOutlet/outlet_web.sh"

#Assign MAC and IP addresses

set titacamera ethernet "7C:DD:90:B0 :22:82"

bind 192.168.0.150 titacamera

#dhcp titacamera on eth0

set proliphixthermostat ethernet "00:11:49:00:62:46"

bind 192.168.0.151 proliphixthermostat

#dhcp proliphixthermostat on eth0

set ezoutlet ethernet "00:03: EA:0E:11:67"

bind 192.168.0.152 ezoutlet

#dhcp ezoutlet on eth0

startHoney.sh

#!/bin/bash

#Bash script to begin running Honeyd

sudo honeyd -d -u 0 -g 0 -f iotHoneyd.conf

127

Appendix B. TITAThink Camera Honeypot Code

camera.py
1 #! / usr / bin /python
2

3 from PIL import Image
4 from PIL import ImageFont
5 from PIL import ImageDraw
6 from datet ime import datetime , t imede l ta
7 import subproces s
8 import os
9 import time

10 import s h u t i l
11

12 #IP ADDRESSES
13 #Change t h i s to match the IP address o f the t i tacamera honeypot in

iotHoneyd . conf
14 honeypotIP = ’ 1 9 2 . 1 6 8 . 0 . 1 5 0 ’
15

16 #Get the cur rent date time and put i t in the r i g h t format f o r the photo
in drawImage

17 de f getTimeDate () :
18 now = datet ime . now ()
19 #Uncomment t h i s l i n e to have the time only update every 6 seconds .

This was an old p i e c e o f code because some cameras only have
20 #now = now . r e p l a c e (second=(now . second − now . second % 6))
21 re turn now . s t r f t i m e (”%a %b %d %H:%M:%S %Y”)
22

23 #Draw a date and time over l ay on top o f a camera f e ed photo
24 de f drawImage () :
25 img = Image . open (” p laye r . png”)
26 draw = ImageDraw . Draw(img)
27 f ont = ImageFont . t ruetype (” images / Courier−Bold . t t f ” , 36)
28

29 draw . t ext ((0 , 0) , getTimeDate () , (255 ,255 ,255) , f ont=font)
30 draw . t ext ((0 , 30) , ”East F l i g h t l i n e ” , (255 ,255 ,255) , f ont=font)
31 img . save (’ p laye r . png ’)
32 #subproces s . c a l l ([’ chmod ’ , ’ 666 ’ , ’ f l i g h t l i n e . jpg ’])
33

34 #Will get the f i l ename o f image to use and w i l l wr i t e that image to
p laye r . png

35 de f getImage () :
36 #Get the cur rent date time and then complete ly s t r i p out the date

f o r comparison
37 dt = datet ime . now ()
38 dtSt r ing = dt . s t r f t i m e (”%H−%M−%S”)
39 time = datet ime . s t rpt ime (dtStr ing , ”%H−%M−%S”)
40 #pr in t time
41 #Defau l t image i s midnight
42 image = ”00−00−00. jpg ”
43 #loop through each f i l e in the camerafeeds f o l d e r

128

44 #Filename format i s HH:MM: SS
45 f o r f i l ename in so r t ed (os . l i s t d i r (’ cameraFeeds ’)) :
46 #St r ip o f f f i l e ex t ens i on
47 f i l e T i m e S t r = f i l ename [: −4]
48 f i l eT ime = datet ime . s t rpt ime (f i l eT imeSt r , ”%H−%M−%S”)
49 #pr in t f i l eT ime
50 #I f the cur rent time i s l a r g e r than the time o f the f i l e , then

make that the new image .
51 #Eventual ly i t w i l l get to a time i t i s not g r e a t e r than , i t

w i l l check which i t i s c l o s e r to and then break
52 i f time > f i l eT ime :
53 image = f i l ename
54 e l s e :
55 td1 = dt − datet ime . s t rpt ime (image [: −4] , ”%H−%M−%S”)
56 #pr in t td1
57 #Create datet ime o f 30 minutes . I f the d i f f e r e n c e in time

between the image s e l e c t e d in the prev ious i t e r a t i o n i s g r e a t e r than
30 minutes , choose the image in t h i s i t e r a t i o n

58 #Half t f o r each time the number o f photos i s doubled
59 t = ”00−30−00”
60 cmpTime = datet ime . s t rpt ime (t , ”%H−%M−%S”)
61 i f td1 < t imede l ta (minutes =30) :
62 image = f i l ename
63 break
64

65 re turn image
66 #Change the p laye r . jpg image to the c o r r e c t image based on the time o f

day
67 s h u t i l . c o p y f i l e (s t r (’ cameraFeeds/ ’ + getImage ()) , ’ p l aye r . png ’)
68 #Uncomment t h i s i f you want the image to be over layed with the cur rent

date and time
69 #drawImage ()
70 #Open html f i l e s to wr i t e to the c l i e n t
71 f = open (’home . html ’ , ’ rb ’)
72 #pr in t each l i n e in the home f i l e to be output to the c l i e n t
73 f o r l i n e in f :
74 pr in t l i n e . r s t r i p (”\n”)

camera web.sh
1 #! / bin / sh
2 REQUEST=””
3 DIRPATH=’/home/ l s t a f i r a /Desktop/python−web−s e r v e r /TitaCamera ’
4 #Navigate to co r r en t d i r e c t o r y
5 cd $DIRPATH
6 #Read in a l l the incoming packets
7 whi le read name
8 #I f the re i s a password in the packet , p u l l i t out , decode i t from

base64 and save i t to password . txt
9 password=‘echo ”$name” | grep ” Author i zat ion : ” ‘

10 p=‘echo $password | cut −d ” ” −f 3 ‘
11 i f [! −z ”$p”] ; then
12 echo ‘ echo ”$p” | base64 −−decode ‘ >> captured /password . txt

129

13 chmod 666 captured /password . txt
14 f i
15 #I f the packet has no words , break , but i f i t does , get the GET l i n e and

e x t r a c t the second parameter , which i s the reques ted f i l e
16 do
17 LINE=‘echo ”$name” | egrep − i ” [a−z :] ” ‘
18 i f [−z ”$LINE”]
19 then
20 break
21 f i
22 NEWREQUEST=‘echo ”$name” | grep ”GET” ‘
23 y=‘echo $NEWREQUEST | cut −d ” ” −f 2 ‘
24 echo ”$NEWREQUEST” >> captured / r e q u e s t s . txt
25 chmod 666 captured / r e q u e s t s . txt
26 #For each reques ted f i l e , send the appropr ia t e re sponse header and then

pr in t the c o r r e c t html f i l e
27 i f [’ / ’ = ”$y”] ; then
28 REQUEST=$NEWREQUEST
29 DATE=$ (python timedate . py)
30 cat << e o f
31 HTTP/1.1 302 Red i rec t
32 Date : $DATE
33 Server : Webs
34 Content−Type : t ex t /html
35 Pragma : no−cache
36 Cache−Control : no−cache
37 Locat ion : http : / / 1 9 2 . 1 6 8 . 0 . 1 5 0 / d e f a u l t . asp
38

39 <html><head></head><body>
40 This document has moved to a new <a h r e f=” http : / / 1 9 2 . 1 6 8 . 0 . 1 5 0 /

d e f a u l t . asp”>l o ca t i on .
41 Please update your documents to r e f l e c t the new l o c a t i o n .
42 </body></html>
43

44 e o f
45 #d e f a u l t . asp
46 e l i f [’/ d e f a u l t . asp ’ = ”$y”] ; then
47 REQUEST=$NEWREQUEST
48 DATE=$ (python timedate . py)
49 cat << e o f
50 HTTP/1.0 200 OK
51 Date : $DATE
52 Server : Webs
53 Content−Type : t ex t /html
54 Pragma : no−cache
55 Cache−Control : no−cache
56

57 e o f
58 python htmlpr int . py r e d i r e c t . html
59 #/form/ d e f a u l t
60 e l i f [’/ form/ de fau l t ’ = ”$y”] ; then
61 REQUEST=$NEWREQUEST

130

62 DATE=$ (python timedate . py)
63 cat << e o f
64 HTTP/1.0 302 Red i rec t
65 Date : $DATE
66 Server : Webs
67 Content−Type : t ex t /html
68 Pragma : no−cache
69 Cache−Control : no−cache
70 Locat ion : http : / / 1 9 2 . 1 6 8 . 0 . 1 5 0 / en/ l o g i n . asp
71

72 <html><head></head><body>
73 This document has moved to a new <a h r e f=” http : / / 1 9 2 . 1 6 8 . 0 . 1 5 0 / en/

l o g i n . asp”>l o ca t i on .
74 Please update your documents to r e f l e c t the new l o c a t i o n .
75 </body></html>
76

77 e o f
78 #/en/ l o g i n . asp
79 e l i f [’/ en/ l o g i n . asp ’ = ”$y”] ; then
80 REQUEST=$NEWREQUEST
81 DATE=$ (python timedate . py)
82 cat << e o f
83 HTTP/1.0 200 OK
84 Date : $DATE
85 Server : Webs
86 Content−Type : t ex t /html
87 Pragma : no−cache
88 Cache−Control : no−cache
89

90 e o f
91 python htmlpr int . py l o g i n . html
92 #/en/ images / l o g i n . png
93 e l i f [’/ en/ images / l o g i n . png ’ = ”$y”] ; then
94 REQUEST=$NEWREQUEST
95 DATE=$ (python timedate . py)
96 cat << e o f
97 HTTP/1.0 200 OK
98 Date : $DATE
99 Server : Webs

100 Content−Type : t ex t /html
101 Pragma : no−cache
102 Cache−Control : no−cache
103

104 e o f
105 cat images / l o g i n . png
106 #/ fav i con . i c o
107 e l i f [’/ f av i c on . ico ’ = ”$y”] ; then
108 REQUEST=$NEWREQUEST
109 DATE=$ (python timedate . py)
110 cat << e o f
111 HTTP/1.1 401 Unauthorized
112 Date : $DATE

131

113 WWW−Authent icate : Bas ic realm=”TT520PW”
114 Server : Webs
115 Content−Type : t ex t /html
116 Pragma : no−cache
117 Cache−Control : no−cache
118

119 <html><head><t i t l e >Document Error : Unauthorized</ t i t l e ></head>
120 <body><h2>Access Error : Unauthorized</h2>
121 when t ry ing to obta in /f av i con . ico
<p>Access to t h i s document

r e q u i r e s a User ID!</p></body></html>
122

123 e o f
124 #/form/ l i v e R e d i r e c t ? lang=en
125 e l i f [’/ form/ l i v e R e d i r e c t ? lang=en ’ = ”$y”] ; then
126 REQUEST=$NEWREQUEST
127 DATE=$ (python timedate . py)
128 cat << e o f
129 HTTP/1.0 302 Red i rec t
130 Date : $DATE
131 Server : Webs
132 Content−Type : t ex t /html
133 Pragma : no−cache
134 Cache−Control : no−cache
135 Locat ion : http : / / 1 9 2 . 1 6 8 . 0 . 1 5 0 / en/ p laye r / f l a s h h d . asp
136

137 <html><head></head><body>
138 This document has moved to a new <a h r e f=” http : / / 1 9 2 . 1 6 8 . 0 . 1 5 0 / en/

f l a s h h d . asp”>l o ca t i on .
139 Please update your documents to r e f l e c t the new l o c a t i o n .
140 </body></html>
141

142 e o f
143 #/en/ p laye r / f l a h s h d . asp
144 e l i f [’/ en/ p laye r / f l a s h h d . asp ’ = ”$y”] ; then
145 REQUEST=$NEWREQUEST
146 DATE=$ (python timedate . py)
147 cat << e o f
148 HTTP/1.0 200 OK
149 Date : $DATE
150 Server : Webs
151 Content−Type : t ex t /html
152 Pragma : no−cache
153 Cache−Control : no−cache
154

155 e o f
156 python camera . py
157 #/ l i v e /0/mjpeg . jpg
158 e l i f [’/ l i v e /0/mjpeg . jpg ’ = ”$y”] ; then
159 REQUEST=$NEWREQUEST
160 DATE=$ (python timedate . py)
161 cat << e o f
162 HTTP/1.0 200 OK

132

163 Date : $DATE
164 Server : Webs
165 Content−Type : t ex t /html
166 Pragma : no−cache
167 Cache−Control : no−cache
168

169 e o f
170 cat p laye r . png
171 #/en/ images / f r a m e l e f t t o p . png
172 e l i f [’/ en/ images / f r a m e l e f t t o p . png ’ = ”$y”] ; then
173 REQUEST=$NEWREQUEST
174 DATE=$ (python timedate . py)
175 cat << e o f
176 HTTP/1.0 200 OK
177 Date : $DATE
178 Server : Webs
179 Content−Type : t ex t /html
180 Pragma : no−cache
181 Cache−Control : no−cache
182

183 e o f
184 cat images / f r a m e l e f t t o p . png
185 #/ images / f l a s h h d r i g h t t o p . png
186 e l i f [’/ images / f l a s h h d r i g h t t o p . png ’ = ”$y”] ; then
187 REQUEST=$NEWREQUEST
188 DATE=$ (python timedate . py)
189 cat << e o f
190 HTTP/1.0 200 OK
191 Date : $DATE
192 Server : Webs
193 Content−Type : t ex t /html
194 Pragma : no−cache
195 Cache−Control : no−cache
196

197 e o f
198 cat images / f l a s h h d r i g h t t o p . png
199 #/ images / f la sh hd bottom . png
200 e l i f [’/ images / f la sh hd bottom . png ’ = ”$y”] ; then
201 REQUEST=$NEWREQUEST
202 DATE=$ (python timedate . py)
203 cat << e o f
204 HTTP/1.0 200 OK
205 Date : $DATE
206 Server : Webs
207 Content−Type : t ex t /html
208 Pragma : no−cache
209 Cache−Control : no−cache
210

211 e o f
212 cat images / f la sh hd bottom . png
213 #/en/ c s s / top . c s s
214 e l i f [’/ en/ c s s / top . css ’ = ”$y”] ; then

133

215 REQUEST=$NEWREQUEST
216 DATE=$ (python timedate . py)
217 cat << e o f
218 HTTP/1.0 200 OK
219 Date : $DATE
220 Server : Webs
221 Content−Type : t ex t /html
222 Pragma : no−cache
223 Cache−Control : no−cache
224

225 e o f
226 cat top . c s s
227 #/en/main . asp
228 e l i f [’/ en/main . asp ’ = ”$y”] ; then
229 REQUEST=$NEWREQUEST
230 DATE=$ (python timedate . py)
231 cat << e o f
232 HTTP/1.0 401 Unauthorized
233 Date : $DATE
234 Server : Webs
235 Content−Type : t ex t /html
236 Pragma : no−cache
237 Cache−Control : no−cache
238 WWW−Authent icate : Bas ic realm=”TT520PW”
239

240 e o f
241 python e r r o r . py ”$y”
242 #/en/ p laye r /mjpeg hd . asp ? stream=0
243 e l i f [’/ en/ p laye r /mjpeg hd . asp ? stream =0’ = ”$y”] ; then
244 REQUEST=$NEWREQUEST
245 DATE=$ (python timedate . py)
246 cat << e o f
247 HTTP/1.0 200 OK
248 Date : $DATE
249 Server : Webs
250 Content−Type : t ex t /html
251 Pragma : no−cache
252 Cache−Control : no−cache
253

254 e o f
255 python camera . py
256 #/en/ p laye r /mjpeg hd . asp ? stream=1
257 e l i f [’/ en/ p laye r /mjpeg hd . asp ? stream =1’ = ”$y”] ; then
258 REQUEST=$NEWREQUEST
259 DATE=$ (python timedate . py)
260 cat << e o f
261 HTTP/1.0 200 OK
262 Date : $DATE
263 Server : Webs
264 Content−Type : t ex t /html
265 Pragma : no−cache
266 Cache−Control : no−cache

134

267

268 e o f
269 cat home small . html
270 e l i f [−z ”$y”] ; then
271 REQUEST=$NEWREQUEST
272 #Otherwise , The page does not e x i s t
273 e l s e
274 REQUEST=$NEWREQUEST
275 DATE=$ (python timedate . py)
276 cat << e o f
277 HTTP/1.0 401 Unauthorized
278 Date : $DATE
279 Server : Webs
280 Content−Type : t ex t /html
281 Pragma : no−cache
282 Cache−Control : no−cache
283 WWW−Authent icate : Bas ic realm=”TT520PW”
284

285 e o f
286 python e r r o r . py ”$y”
287 f i
288 done

htmlprint.py
1 import sys
2

3

4 #Open the f i l e and pr in t out the bytes l i n e by l i n e
5 f=open (sys . argv [1] , ’ rb ’)
6

7 f o r l i n e in f :
8 pr in t (l i n e . r s t r i p (”\n”))
9 #c l o s e the f i l e

10 f . c l o s e ()

timedate.py
1 #! / usr / bin /python
2 from datet ime import datet ime
3

4 #Get the cur rent date and time and p r in t i t out . This i s used by the
camera web . sh s c r i p t to get the cur rent date and time f o r headers .

5 de f getTimeDate () :
6 now = datet ime . now ()
7 re turn now . s t r f t i m e (”%a %b %d %H:%M:%S %Y”)
8

9 pr in t getTimeDate ()

135

error.py
1 import sys
2

3

4 #Print the e r r o r page f o r the camera , the 1 s t command l i n e parameter i s
the f i l e that could not be opened

5 pr in t s t r (”<html><head><t i t l e >Document Error : Unauthorized</ t i t l e ></head
>\r ”)

6 pr in t s t r (”\ t \ t<body><h2>Access Error : Unauthorized</h2>\r ”)
7 pr in t s t r (”\ t \twhen t ry ing to obta in ” + sys . argv [1] + ”
<p>

Access to t h i s document r e q u i r e s a User ID!</p></body></html>\r ”)
8 pr in t ”\ r ”

136

Appendix C. Proliphix Thermostat Honeypot Code

thermostat.py
1 import sys
2 import ca l endar
3 import time
4 import datet ime
5 #F i l e used f o r g e t t i n g the c o r r e c t temperature and p r i n t i n g out the

Pro l i ph ix Thermostat home page . This i s the i n t e r n e t vers ion , so
only use t h i s i f the machine running your honeypots has i n t e r n e t
a c c e s s .

6

7 #USE PORT 8081
8 #Globals
9 c i t y = ’ dayton ’

10 heatTemp = 68 .0
11 coolTemp = 73 .0
12

13 #using weather−api f o r weather p u l l i n g
14 from weather import Weather , Unit
15

16 #Time needs to be in mi l i s e conds f o r the method used by the Pro l i ph ix
thermostat

17 de f TodayDateToMs () :
18 t s = ca l endar . timegm (time . l o c a l t i m e ())
19 re turn t s
20

21 i f sys . argv [1] == ’ / ’ or sys . argv [1] == ’ / s t a t u s . shtml ’ :
22 f = open (’ thermostat . html ’ , ’ rb ’)
23 date = datet ime . date . today ()
24

25 #get weather i n f o
26 weather = Weather (un i t=Unit .FAHRENHEIT)
27 l o c a t i o n = weather . l o o k up b y l o c a t i o n (c i t y)
28 cond i t i on = l o c a t i o n . cond i t i on
29 temp = cond i t i on . temp
30

31 #current l i n e number
32 x = 1
33

34 #Wait f o r 1 .1 seconds , t h i s i s about the de lay o f the ac tua l thermostat
35 time . s l e e p (1 . 1)
36

37 f o r l i n e in f :
38 #Line 625 in Template
39 i f x == 625 :
40 date = TodayDateToMs ()
41 pr in t s t r (”v = par s e In t (\” ” + s t r (date) + ” \”) ; ”)
42 #Line 631 in Template
43 e l i f x == 631 :
44 i f temp > 70 :

137

45 pr in t s t r (”avgtemp = \”73.0\” ”)
46 e l s e :
47 pr in t s t r (”avgtemp = \”68.0\” ”)
48 #Line 632 in Template
49 e l i f x == 632 :
50 i f temp > 70 :
51 pr in t s t r (” loca l temp = \”73.0\” ”)
52 e l s e :
53 pr in t s t r (” loca l temp = \”68.0\” ”)
54 #Line 683 in Template
55 e l i f x == 683 :
56 i f temp > 70 :
57 pr in t s t r (”printFSC (\” Cool Se t t i ng \” , \”73.0\” + \”° ;\” +

ts ,\”\”) ; ”)
58 e l s e :
59 pr in t s t r (”printFSC (\” Cool Se t t i ng \” , \”75.0\” + \”° ;\” +

ts ,\”\”) ; ”)
60 #Line 688 in Template
61 e l i f x == 688 :
62 i f temp > 70 :
63 pr in t s t r (”printFSC (\” Heat Se t t i ng \” , \”65.0\” + \”° ;\”+

ts ,\”\”) ; ”)
64 e l s e :
65 pr in t s t r (”printFSC (\” Heat Se t t i ng \” , \”68.0\” + \”° ;\”+

ts ,\”\”) ; ”)
66 e l s e :
67 #f2 . wr i t e (l i n e)
68 pr in t l i n e . r s t r i p (”\n”)
69 #Increment
70 x = x + 1

thermostat nointernet.py
1 import sys
2 import ca l endar
3 import time
4 import datet ime
5

6 #Program takes the cur rent temperature and c r e a t e s the main page o f the
thermostat . This v e r s i o n i s f o r honeypots with no i n t e r n e t a c c e s s .
Set the d e s i r e d temperature in the ’ temp ’ va lue

7

8 #USE PORT 8081
9 #Globals

10 c i t y = ’ dayton ’
11 #Temperature heate r and c o o l e r k i ck in
12 heatTemp = 68 .0
13 coolTemp = 73 .0
14

15 #Current weather temperature hardcoded in because o f no i n t e r n e t .
16 temp = 70
17

18 #using weather−api f o r weather p u l l i n g

138

19 from weather import Weather , Unit
20

21 #Time needs to be in mi l i s e conds f o r the method used by the Pro l i ph ix
thermostat

22 de f TodayDateToMs () :
23 t s = ca l endar . timegm (time . l o c a l t i m e ())
24 re turn t s
25

26 i f sys . argv [1] == ’ / ’ or sys . argv [1] == ’ / s t a t u s . shtml ’ :
27 f = open (’ thermostat . html ’ , ’ rb ’)
28 date = datet ime . date . today ()
29

30 #current l i n e number
31 x = 1
32

33 #Wait f o r 1 .1 seconds , t h i s i s about the de lay o f the ac tua l thermostat
34 time . s l e e p (1 . 1)
35

36 f o r l i n e in f :
37 #Line 625 in Template
38 i f x == 625 :
39 date = TodayDateToMs ()
40 pr in t s t r (”v = par s e In t (\” ” + s t r (date) + ” \”) ; ”)
41 #Line 631 in Template
42 e l i f x == 631 :
43 i f temp > 70 :
44 pr in t s t r (”avgtemp = \”73.0\” ”)
45 e l s e :
46 pr in t s t r (”avgtemp = \”68.0\” ”)
47 #Line 632 in Template
48 e l i f x == 632 :
49 i f temp > 70 :
50 pr in t s t r (” loca l temp = \”73.0\” ”)
51 e l s e :
52 pr in t s t r (” loca l temp = \”68.0\” ”)
53 #Line 683 in Template
54 e l i f x == 683 :
55 i f temp > 70 :
56 pr in t s t r (”printFSC (\” Cool Se t t i ng \” , \”73.0\” + \”° ;\” +

ts ,\”\”) ; ”)
57 e l s e :
58 pr in t s t r (”printFSC (\” Cool Se t t i ng \” , \”75.0\” + \”° ;\” +

ts ,\”\”) ; ”)
59 #Line 688 in Template
60 e l i f x == 688 :
61 i f temp > 70 :
62 pr in t s t r (”printFSC (\” Heat Se t t i ng \” , \”65.0\” + \”° ;\”+

ts ,\”\”) ; ”)
63 e l s e :
64 pr in t s t r (”printFSC (\” Heat Se t t i ng \” , \”68.0\” + \”° ;\”+

ts ,\”\”) ; ”)
65 e l s e :

139

66 #f2 . wr i t e (l i n e)
67 pr in t l i n e . r s t r i p (”\n”)
68 x = x + 1

thermostat web.sh
1 #! / bin / sh
2 REQUEST=””
3 DIRPATH=’/home/ l s t a f i r a /Desktop/python−web−s e r v e r / Prol iphixThermostat ’
4 #Navigate to co r r en t d i r e c t o r y
5 cd $DIRPATH
6 #Read in a l l the incoming packets
7 whi le read name
8 #I f the re i s a password in the packet , p u l l i t out , decode i t from

base64 and save i t to password . txt
9 password=‘echo ”$name” | grep ” Author i zat ion : ” ‘

10 p=‘echo $password | cut −d ” ” −f 3 ‘
11 i f [! −z ”$p”] ; then
12 echo ‘ echo ”$p” | base64 −−decode ‘ >> captured /password . txt
13 chmod 666 captured /password . txt
14 f i
15 #I f the packet has no words , break , but i f i t does , get the GET l i n e and

e x t r a c t the second parameter , which i s the reques ted f i l e
16 do
17 LINE=‘echo ”$name” | egrep − i ” [a−z :] ” ‘
18 i f [−z ”$LINE”]
19 then
20 break
21 f i
22 NEWREQUEST=‘echo ”$name” | grep ”GET” ‘
23 y=‘echo $NEWREQUEST | cut −d ” ” −f 2 ‘
24 echo ”$NEWREQUEST” >> captured / r e q u e s t s . txt
25 chmod 666 captured / r e q u e s t s . txt
26 #For each reques ted f i l e , send the appropr ia t e re sponse header and then

pr in t the c o r r e c t html f i l e
27 i f [’ / ’ = ”$y”] ; then
28 REQUEST=$NEWREQUEST
29 cat << e o f
30 HTTP/1.1 200 OK
31 Server : Ubicom /1 .1
32 Connection : c l o s e
33 Cache−Control : no−cache
34

35 e o f
36 python thermostat . py ”$y”
37 #/ index . shtml
38 e l i f [’/ index . shtml ’ = ”$y”] ; then
39 REQUEST=$NEWREQUEST
40 cat << e o f
41 HTTP/1.1 401 Unauthorized
42 content−l ength : 26
43 Server : Ubicom /1 .1
44 www−authent i ca t e : Bas ic realm=” t s t a t ”

140

45 Cache−Control : no−cache
46

47 401 Author i zat ion Required
48 e o f
49 #/ s t a t u s . shtml
50 e l i f [’/ s t a t u s . shtml ’ = ”$y”] ; then
51 REQUEST=$NEWREQUEST
52 cat << e o f
53 HTTP/1.1 200 OK
54 Server : Ubicom /1 .1
55 Connection : c l o s e
56 Cache−Control : no−cache
57

58 e o f
59 python thermostat . py ”$y”
60 #e l s e , the page i s unauthor ized
61 e l i f [−z ”$y”] ; then
62 REQUEST=$NEWREQUEST
63 e l s e
64 cat << e o f
65 HTTP/1.1 401 Unauthorized
66 content−l ength : 26
67 Server : Ubicom /1 .1
68 www−authent i ca t e : Bas ic realm=” t s t a t ”
69 Cache−Control : no−cache
70

71 401 Author i zat ion Required
72 e o f
73 f i
74 done

thermostat web nointernet.sh
1 #! / bin / sh
2 REQUEST=””
3 DIRPATH=’/home/ l s t a f i r a /Desktop/python−web−s e r v e r / Prol iphixThermostat ’
4 #Navigate to co r r en t d i r e c t o r y
5 cd $DIRPATH
6 #Read in a l l the incoming packets
7 whi le read name
8 #I f the re i s a password in the packet , p u l l i t out , decode i t from

base64 and save i t to password . txt
9 password=‘echo ”$name” | grep ” Author i zat ion : ” ‘

10 p=‘echo $password | cut −d ” ” −f 3 ‘
11 i f [! −z ”$p”] ; then
12 echo ‘ echo ”$p” | base64 −−decode ‘ >> captured /password . txt
13 chmod 666 captured /password . txt
14 f i
15 #I f the packet has no words , break , but i f i t does , get the GET l i n e and

e x t r a c t the second parameter , which i s the reques ted f i l e
16 do
17 LINE=‘echo ”$name” | egrep − i ” [a−z :] ” ‘
18 i f [−z ”$LINE”]

141

19 then
20 break
21 f i
22 NEWREQUEST=‘echo ”$name” | grep ”GET” ‘
23 y=‘echo $NEWREQUEST | cut −d ” ” −f 2 ‘
24 echo ”$NEWREQUEST” >> captured / r e q u e s t s . txt
25 chmod 666 captured / r e q u e s t s . txt
26 #For each reques ted f i l e , send the appropr ia t e re sponse header and then

pr in t the c o r r e c t html f i l e
27 i f [’ / ’ = ”$y”] ; then
28 REQUEST=$NEWREQUEST
29 cat << e o f
30 HTTP/1.1 200 OK
31 Server : Ubicom /1 .1
32 Connection : c l o s e
33 Cache−Control : no−cache
34

35 e o f
36 python the rmos ta t no in t e rne t . py ”$y”
37 #/ index . shtml
38 e l i f [’/ index . shtml ’ = ”$y”] ; then
39 REQUEST=$NEWREQUEST
40 cat << e o f
41 HTTP/1.1 401 Unauthorized
42 content−l ength : 26
43 Server : Ubicom /1 .1
44 www−authent i ca t e : Bas ic realm=” t s t a t ”
45 Cache−Control : no−cache
46

47 401 Author i zat ion Required
48 e o f
49 #/ s t a t u s . shtml
50 e l i f [’/ s t a t u s . shtml ’ = ”$y”] ; then
51 REQUEST=$NEWREQUEST
52 cat << e o f
53 HTTP/1.1 200 OK
54 Server : Ubicom /1 .1
55 Connection : c l o s e
56 Cache−Control : no−cache
57

58 e o f
59 python the rmos ta t no in t e rne t . py ”$y”
60 #e l s e p r i n t the unauthor ized page
61 e l i f [−z ”$y”] ; then
62 REQUEST=$NEWREQUEST
63 e l s e
64 cat << e o f
65 HTTP/1.1 401 Unauthorized
66 content−l ength : 26
67 Server : Ubicom /1 .1
68 www−authent i ca t e : Bas ic realm=” t s t a t ”
69 Cache−Control : no−cache

142

70

71 401 Author i zat ion Required
72 e o f
73 f i
74 done

htmlprint.py
1 import sys
2

3 #Open f i l e and pr i n t out the bytes f o r output to the c l i e n t
4 f=open (sys . argv [1] , ’ rb ’)
5

6 f o r l i n e in f :
7 pr in t (l i n e)
8 #c l o s e the f i l e
9 f . c l o s e ()

error.py
1 #pr in t the 404 page
2 pr in t s t r (” 404 : F i l e not found\ r ”)

143

Appendix D. ezOutlet2 Power Outlet Code

outlet.py
1 from f u t u r e import p r i n t f u n c t i o n
2 import sys
3 import ca l endar
4 import time
5 from datet ime import datet ime
6

7 #GLOBALS
8 #Change these IP addre s s e s to match the gateway and subnet mask o f the

network the honeypot i s on and the honypot ’ s IP from the Honeyd
c o n f i g u r a t i o n f i l e

9 gatewayIP = ’ 1 9 2 . 1 6 8 . 0 . 1 ’
10 honeypotIP = ’ 1 9 2 . 1 6 8 . 0 . 1 5 2 ’
11 subnetMask = ’ 2 5 5 . 2 5 5 . 2 5 5 . 0 ’
12 #datet ime
13 dt = datet ime . now ()
14

15 #Only argument i s which f i l e to f i l e , 1 i s the s t a t u s page 2 i s the
network page

16 cho i c e = i n t (sys . argv [1])
17

18 i f cho i c e == 1 :
19 #Open s t a t u s f i l e
20 f = open (’ s t a t u s . htm ’ , ’ rb ’)
21 x = 1
22 #Write the whole f i l e , changing the date and time
23 f o r l i n e in f :
24 i f x == 31 :
25 pr in t (”<tr><td>IP Address :</td><td id=z>” + honeypotIP + ”</td><

td>DNS Mode:</td><td id=z>\r ”)
26 e l i f x == 36 :
27 pr in t (”d . w r i t e l n (\”</td></tr><tr><td>Mask:</td><td id=z>” +

subnetMask + ”</td><td>\”+(a?\”DHCP Assign :</td><td id=z>” +
gatewayIP + ” \” :\”DNS 1:</td><td id=z >8 . 8 . 8 . 8\”)+\”</td></tr >\”) ;\ r ”
)

28 e l i f x == 37 :
29 pr in t (”d . w r i t e l n (\”< tr><td>Gateway:</td><td id=z>” + gatewayIP + ”

</td><td>\”+(a?\”DNS 1:</td><td id=z >8 . 8 . 8 . 8\” :\”DNS 2:</td><td id=z
>208 .67 .222 .222\”)+\”</td></tr >\”) ;\ r ”)

30 #Line 42 in Template
31 e l i f x == 42 :
32 pr in t (”<tr><td>Time / Zone:</td><td id=z>” + dt . s t r f t i m e (”%H

:%M”) + ” / GMT−5:00</td><td>Connected :</td><td id=z>No</td></tr>\r ”
)

33 #Line 43 in Template
34 e l i f x == 43 :
35 pr in t (”<tr><td>Date:</td><td id=z>” + dt . s t r f t i m e (”%Y/%m/%d

(%a”) [: −1] + ”)</td><td>Finder :</td><td id=z>Yes</td></tr>\r ”)
36 e l s e :

144

37 pr in t (l i n e , end=’ ’)
38 x = x + 1
39 f . c l o s e ()
40

41

42 i f cho i c e == 2 :
43 #open network f i l e
44 f = open (’ network . htm ’ , ’ rb ’)
45 x = 1
46 #Write the whole f i l e , changing the IP addre s s e s
47 f o r l i n e in f :
48 #Line 59
49 i f x == 59 :
50 pr in t (”<tr><td>IP Address :</td><td><input type=\” text \” name=\”

ipaddr \” value=\”” + honeypotIP + ”\” onblur=\”CheckIP (\ ’ ipaddr \ ’)
\”></td></tr>\r ”)

51 e l i f x == 60 :
52 pr in t (”<tr><td>Mask:</td><td><input type=\” text \” name=\”mask\”

value=\”” + subnetMask + ”\” onblur=\”CheckIP (\ ’ mask \ ’)\”></td></tr
>\r ”)

53 e l i f x == 61 :
54 pr in t (”<tr><td>Gateway:</td><td><input type=\” text \” name=\”gate \”

value=\”” + gatewayIP + ”\” onblur=\”CheckIP (\ ’ gate \ ’)\”></td></tr
>\r ”)

55 e l i f x == 63 :
56 pr in t (”<tr><td>DNS Assigned by DHCP:</td><td>” + gatewayIP + ”</td

></tr>\r ”)
57 e l s e :
58 pr in t (l i n e , end=’ ’)
59 x = x + 1
60 f . c l o s e ()

outlet web.sh
1 #! / bin / sh
2 REQUEST=””
3 DIRPATH=’/home/ l s t a f i r a /Desktop/python−web−s e r v e r / ezOutlet ’
4 #Navigate to co r r en t d i r e c t o r y
5 cd $DIRPATH
6 #Read in a l l the incoming packets
7 whi le read name
8 #I f the re i s a password in the packet , p u l l i t out , decode i t from

base64 and save i t to password . txt
9 password=‘echo ”$name” | grep ” Author i zat ion : ” ‘

10 p=‘echo $password | cut −d ” ” −f 3 ‘
11 i f [! −z ”$p”] ; then
12 echo ‘ echo ”$p” | base64 −−decode ‘ >> captured /password . txt
13 chmod 666 captured /password . txt
14 f i
15 #I f the packet has no words , break , but i f i t does , get the GET l i n e and

e x t r a c t the second parameter , which i s the reques ted f i l e
16 do
17 LINE=‘echo ”$name” | egrep − i ” [a−z :] ” ‘

145

18 i f [−z ”$LINE”]
19 then
20 break
21 f i
22 NEWREQUEST=‘echo ”$name” | grep ”GET” ‘
23 y=‘echo $NEWREQUEST | cut −d ” ” −f 2 ‘
24 echo ”$NEWREQUEST” >> captured / r e q u e s t s . txt
25 chmod 666 captured / r e q u e s t s . txt
26 #For each reques ted f i l e , send the appropr ia t e re sponse header and then

pr in t the c o r r e c t html f i l e
27 i f [’ / ’ = ”$y”] ; then
28 REQUEST=$NEWREQUEST
29 cat << e o f
30 HTTP/1.1 200 OK
31 Connection : c l o s e
32 Content−Type : t ex t /html
33 Cache−Control : no−cache
34

35 e o f
36 cat ezOut let2 . html
37 #/menu . htm
38 e l i f [’/menu . htm ’ = ”$y”] ; then
39 REQUEST=$NEWREQUEST
40 cat << e o f
41 HTTP/1.1 200 OK
42 Connection : c l o s e
43 Content−Type : t ex t /html
44 Cache−Control : no−cache
45

46 e o f
47 cat menu . htm
48 #/ s t a t u s . htm
49 e l i f [’/ s t a t u s . htm ’ = ”$y”] ; then
50 REQUEST=$NEWREQUEST
51 cat << e o f
52 HTTP/1.1 200 OK
53 Connection : c l o s e
54 Content−Type : t ex t /html
55 Cache−Control : no−cache
56

57 e o f
58 python o u t l e t . py 1
59 #/network . htm
60 e l i f [’/ network . htm ’ = ”$y”] ; then
61 REQUEST=$NEWREQUEST
62 cat << e o f
63 HTTP/1.1 200 OK
64 Connection : c l o s e
65 Content−Type : t ex t /html
66 Cache−Control : no−cache
67

68 e o f

146

69 python o u t l e t . py 2
70 #s e t t i n g s . htm
71 e l i f [’/ s e t t i n g s . htm ’ = ”$y”] ; then
72 REQUEST=$NEWREQUEST
73 cat << e o f
74 HTTP/1.1 200 OK
75 Connection : c l o s e
76 Content−Type : t ex t /html
77 Cache−Control : no−cache
78

79 e o f
80 cat s e t t i n g s . htm
81 #schedu le . htm
82 e l i f [’/ s chedu le . htm ’ = ”$y”] ; then
83 REQUEST=$NEWREQUEST
84 cat << e o f
85 HTTP/1.1 200 OK
86 Connection : c l o s e
87 Content−Type : t ex t /html
88 Cache−Control : no−cache
89

90 e o f
91 cat schedu le . htm
92 #l i s t . htm
93 e l i f [’/ l i s t . htm ’ = ”$y”] ; then
94 REQUEST=$NEWREQUEST
95 cat << e o f
96 HTTP/1.1 200 OK
97 Connection : c l o s e
98 Content−Type : t ex t /html
99 Cache−Control : no−cache

100

101 e o f
102 cat l i s t . htm
103 #about . htm
104 e l i f [’/ about . htm ’ = ”$y”] ; then
105 REQUEST=$NEWREQUEST
106 cat << e o f
107 HTTP/1.1 200 OK
108 Connection : c l o s e
109 Content−Type : t ex t /html
110 Cache−Control : no−cache
111

112 e o f
113 cat about . htm
114 #mchp . j s
115 e l i f [’/mchp . j s ’ = ”$y”] ; then
116 REQUEST=$NEWREQUEST
117 cat << e o f
118 HTTP/1.1 200 OK
119 Connection : c l o s e
120 Cache−Control : no−cache

147

121

122 e o f
123 cat mchp . j s . download
124 #i n v e r t . c g i
125 e l i f [’/ i n v e r t . cg i ’ = ”$y”] ; then
126 REQUEST=$NEWREQUEST
127 cat << e o f
128 HTTP/1.1 200 OK
129 Connection : c l o s e
130 Content−Type : t ex t /html
131 Cache−Control : no−cache
132

133 e o f
134 #change the s t a t e o f the i n v e r t . c g i f i l e
135 s t a t e =‘ cat i n v e r t . cg i ‘
136 i f [’ 0 , 0 ’ = ” $ s t a t e ”] ; then
137 echo ” 1 ,0 ” > i n v e r t . c g i
138 e l s e
139 echo ” 0 ,0 ” > i n v e r t . c g i
140 f i
141 cat i n v e r t . c g i
142 #r e s e t . c g i
143 e l i f [’/ r e s e t . cg i ’ = ”$y”] ; then
144 REQUEST=$NEWREQUEST
145 cat << e o f
146 HTTP/1.1 200 OK
147 Connection : c l o s e
148 Content−Type : t ex t /html
149 Cache−Control : no−cache
150

151 e o f
152 #put 0 ,0 in to i n v e r t . c g i and cat 0 ,0 in to the page
153 echo ” 0 ,0 ” > i n v e r t . c g i
154 cat r e s e t . c g i
155 #e l s e , say the page i s not found
156 e l i f [−z ”$y”] ; then
157 REQUEST=$NEWREQUEST
158 e l s e
159 cat << e o f
160 HTTP/1.1 404 Not Found
161 Connection : c l o s e
162

163 e o f
164 python e r r o r . py
165 f i
166 done

148

htmlprint.py
1 import sys
2

3 #get the f i l e and pr in t out the bytes to the c l i e n t
4 f=open (sys . argv [1] , ’ rb ’)
5

6 f o r l i n e in f :
7 pr in t (l i n e)
8 f . c l o s e ()

error.py
1 #pr in t the 404 page
2 pr in t s t r (” 404 : F i l e not found\ r ”)

149

Appendix E. Testing and Comparison Scripts

gethttp.py
1 #! / usr / bin /python
2

3 #This page w i l l query a s p e c i f i e d dev i ce a s p e c i f i e d number o f t imes and
save the HTML f i l e s and HTTP headers to a s p e c i f i c f i l e

4 import r e q u e s t s
5 import sys
6 import time
7 from datet ime import datet ime
8 import os
9 import s h u t i l

10 import socke t
11 from s t r u c t import ∗
12 import subproces s
13

14 #Command l i n e parameters
15 #sys . argv [1] IP Address
16 #sys . argv [2] Number o f i t e r a t i o n s
17 #sys . argv [3] Which dev i ce to scan
18 #sys . argv [4] Used f o r running mul t ip l e s imultaneous connect i ons . I t

i n d i c a t e s how to l a b e l the f o l d e r f o r t h i s scan . Usual ly i t w i l l be
a number . User 1 i s 1 , user 2 i s 2 , e t c . For s i n g u l a r scans , the
date w i l l be used in s t ead o f t h i s v a r i a b l e .

19 # 1 − TitaCamera
20 # 2 − Prol iphixThermostat
21 # 3 − ezOut let
22

23 #Scanning w i l l c o n s i s t o f a l l the main pages , however many that i s , as
we l l as an unauthor ized page (I f a p p l i c a b l e) , and a c c e s s i n g a page
that does not e x i s t .

24

25 #IP Address o f web s i t e acce s s ed
26 u r l = sys . argv [1]
27 #Choice o f dev i c e to scan
28 cho i c e = i n t (sys . argv [3])
29 i f cho i c e != 1 and cho i c e != 2 and cho i c e != 3 :
30 pr in t ” I n v a l i d dev i c e cho ice , p l e a s e ente r : 1 , 2 , or 3”
31 sys . e x i t ()
32 #Get cur rent date and time and format i t f o r f i l e naming
33 dt = datet ime . now () . s t r f t i m e (’%Y−%m−%d−−%H:%M:%S ’)
34 #Direc tory Name where f i l e s w i l l be saved
35 #f o l d e r = s t r (sys . argv [1] [7 : 2 0] + ” : : ” + dt)
36 f o l d e r = s t r (sys . argv [1] [7 : 2 0] + ” : : ” + sys . argv [4])
37 os . makedirs (f o l d e r)
38 os . makedirs (s t r (f o l d e r+’ /html ’))
39 #F i l e where the a c c e s s t imes f o r each f i l e w i l l be s to r ed
40 l o g F i l e = open (s t r (f o l d e r + ’ / accessTimeLog . txt ’) , ’wb ’)
41 headFi l e = open (s t r (f o l d e r + ’ /HTTP Header : ’ + sys . argv [1] [7 : 2 0] + ”

: : ” + dt + ’ . txt ’) , ’wb ’)

150

42

43 #Request as many times as s p e c i f i e d by the second argument
44 f o r x in range (0 , i n t (sys . argv [2])) :
45 time . s l e e p (0 . 5)
46 #begin t imer
47 s t a r t = time . time ()
48 #make the reque s t
49 r = r e q u e s t s . get (ur l , a l l o w r e d i r e c t s=True)
50 #stop the t imer
51 end = time . time ()
52 #Access time i s end time − s t a r t time
53 accessTime = end − s t a r t
54 #open a f i l e to wr i t e what was r e c e i v e d from the reque s t
55 f i l e = open (s t r (f o l d e r + ’ /html/ r o o t ’ + s t r (x+1) + ’ . html ’) , ’wb ’)
56 f i l e . wr i t e (r . content)
57 #pr in t r . content
58 f i l e . c l o s e
59 #wri t e a c c e s s time to log f i l e and HTTP header to header f i l e
60 l o g F i l e . wr i t e (s t r (s t r (accessTime) + ’ \n ’))
61 #Loop through each item in the HTTP header
62 headFi l e . wr i t e (’ Root HTTP Header :\n ’)
63 f o r item in r . headers :
64 headFi l e . wr i t e (s t r (item + ’ \n ’ + r . headers [item] + ’ \n ’))
65

66 #Extra f i l e s to scan f o r on TitaCamera
67 i f cho i c e == 1 :
68 #Request f o r main l o g i n page
69 r = r e q u e s t s . get (s t r (u r l+’ / form/ d e f a u l t ’) , a l l o w r e d i r e c t s=True)
70 f i l e = open (s t r (f o l d e r + ’ /html/ l o g i n ’ + s t r (x+1) + ’ . html ’) , ’wb ’)
71 f i l e . wr i t e (r . content)
72 f i l e . c l o s e
73 headFi l e . wr i t e (’ Login HTTP Header :\n ’)
74 f o r item in r . headers :
75 headFi l e . wr i t e (s t r (item + ’ \n ’ + r . headers [item] + ’ \n ’))
76 #Request f o r main camera page
77 r = r e q u e s t s . get (s t r (u r l+’ / form/ l i v e R e d i r e c t ? lang=en ’) ,

a l l o w r e d i r e c t s=True)
78 f i l e = open (s t r (f o l d e r + ’ /html/main ’ + s t r (x+1) + ’ . html ’) , ’wb ’)
79 f i l e . wr i t e (r . content)
80 f i l e . c l o s e
81 headFi l e . wr i t e (’Main HTTP Header :\n ’)
82 f o r item in r . headers :
83 headFi l e . wr i t e (s t r (item + ’ \n ’ + r . headers [item] + ’ \n ’))
84 #Request f o r s e t t i n g s page that r e q u i r e s au then t i c a t i on
85 r = r e q u e s t s . get (s t r (u r l+’ /en/main . asp ’) , a l l o w r e d i r e c t s=True)
86 f i l e = open (s t r (f o l d e r + ’ /html/ s e t t i n g s ’ + s t r (x+1) + ’ . html ’) , ’wb ’

)
87 f i l e . wr i t e (r . content)
88 f i l e . c l o s e
89 headFi l e . wr i t e (’ S e t t i n g s HTTP Header :\n ’)
90 f o r item in r . headers :
91 headFi l e . wr i t e (s t r (item + ’ \n ’ + r . headers [item] + ’ \n ’))

151

92 #Request f o r page that does not ex i s t , should r e q u i r e au then t i c a t i on
93 r = r e q u e s t s . get (s t r (u r l+’ /passwd ’) , a l l o w r e d i r e c t s=True)
94 f i l e = open (s t r (f o l d e r + ’ /html/dnePage ’ + s t r (x+1) + ’ . html ’) , ’wb ’)
95 f i l e . wr i t e (r . content)
96 f i l e . c l o s e
97 headFi l e . wr i t e (’DNE HTTP Header :\n ’)
98 f o r item in r . headers :
99 headFi l e . wr i t e (s t r (item + ’ \n ’ + r . headers [item] + ’ \n ’))

100 #Extra f i l e s to scan f o r on Pro l i ph ix Thermostat
101 e l i f cho i c e == 2 :
102 time . s l e e p (0 . 5)
103 #Request f o r s t a t u s page , should re turn same as root with button

depressed
104 r = r e q u e s t s . get (s t r (u r l+’ /en/ s t a t u s . shtml ’) , a l l o w r e d i r e c t s=True)
105 f i l e = open (s t r (f o l d e r + ’ /html/ s t a t u s ’ + s t r (x+1) + ’ . html ’) , ’wb ’)
106 f i l e . wr i t e (r . content)
107 f i l e . c l o s e
108 headFi l e . wr i t e (’ Status HTTP Header :\n ’)
109 f o r item in r . headers :
110 headFi l e . wr i t e (s t r (item + ’ \n ’ + r . headers [item] + ’ \n ’))
111 #Request f o r s e t t i n g s page , r e q u i r e s au then t i c a t i on
112 time . s l e e p (0 . 5)
113 r = r e q u e s t s . get (s t r (u r l+’ / index . shtml ’) , a l l o w r e d i r e c t s=True)
114 f i l e = open (s t r (f o l d e r + ’ /html/ s e t t i n g s ’ + s t r (x+1) + ’ . html ’) , ’wb ’

)
115 f i l e . wr i t e (r . content)
116 f i l e . c l o s e
117 headFi l e . wr i t e (’ S e t t i n g s HTTP Header :\n ’)
118 f o r item in r . headers :
119 headFi l e . wr i t e (s t r (item + ’ \n ’ + r . headers [item] + ’ \n ’))
120 #Request f o r page that does not ex i s t , should r e q u i r e au then t i c a t i on
121 time . s l e e p (0 . 5)
122 r = r e q u e s t s . get (s t r (u r l+’ /passwd ’) , a l l o w r e d i r e c t s=True)
123 f i l e = open (s t r (f o l d e r + ’ /html/dnePage ’ + s t r (x+1) + ’ . html ’) , ’wb ’)
124 f i l e . wr i t e (r . content)
125 f i l e . c l o s e
126 headFi l e . wr i t e (’DNE HTTP Header :\n ’)
127 f o r item in r . headers :
128 headFi l e . wr i t e (s t r (item + ’ \n ’ + r . headers [item] + ’ \n ’))
129 #Extra f i l e s to scan f o r on ezOut let
130 e l i f cho i c e == 3 :
131 #Request f o r menu which i s always pre sent from the main page
132 r = r e q u e s t s . get (s t r (u r l+’ /menu . htm ’) , a l l o w r e d i r e c t s=True)
133 f i l e = open (s t r (f o l d e r + ’ /html/menu ’ + s t r (x+1) + ’ . html ’) , ’wb ’)
134 f i l e . wr i t e (r . content)
135 f i l e . c l o s e
136 headFi l e . wr i t e (’Menu HTTP Header :\n ’)
137 f o r item in r . headers :
138 headFi l e . wr i t e (s t r (item + ’ \n ’ + r . headers [item] + ’ \n ’))
139 #Request f o r s t a t u s page , which i s pre sent from the s t a r t and can be

renav igated to
140 r = r e q u e s t s . get (s t r (u r l+’ / s t a t u s . htm ’) , a l l o w r e d i r e c t s=True)

152

141 f i l e = open (s t r (f o l d e r + ’ /html/ s t a t u s ’ + s t r (x+1) + ’ . html ’) , ’wb ’)
142 f i l e . wr i t e (r . content)
143 f i l e . c l o s e
144 headFi l e . wr i t e (’ Status HTTP Header :\n ’)
145 f o r item in r . headers :
146 headFi l e . wr i t e (s t r (item + ’ \n ’ + r . headers [item] + ’ \n ’))
147 #Request f o r network page
148 r = r e q u e s t s . get (s t r (u r l+’ /network . htm ’) , a l l o w r e d i r e c t s=True)
149 f i l e = open (s t r (f o l d e r + ’ /html/ network ’ + s t r (x+1) + ’ . html ’) , ’wb ’)
150 f i l e . wr i t e (r . content)
151 f i l e . c l o s e
152 headFi l e . wr i t e (’ Network HTTP Header :\n ’)
153 f o r item in r . headers :
154 headFi l e . wr i t e (s t r (item + ’ \n ’ + r . headers [item] + ’ \n ’))
155 #Request f o r s e t t i n g s page
156 r = r e q u e s t s . get (s t r (u r l+’ / s e t t i n g s . htm ’) , a l l o w r e d i r e c t s=True)
157 f i l e = open (s t r (f o l d e r + ’ /html/ s e t t i n g s ’ + s t r (x+1) + ’ . html ’) , ’wb ’

)
158 f i l e . wr i t e (r . content)
159 f i l e . c l o s e
160 headFi l e . wr i t e (’ S e t t i n g s HTTP Header :\n ’)
161 f o r item in r . headers :
162 headFi l e . wr i t e (s t r (item + ’ \n ’ + r . headers [item] + ’ \n ’))
163 #Request f o r schedu le page
164 r = r e q u e s t s . get (s t r (u r l+’ / schedu le . htm ’) , a l l o w r e d i r e c t s=True)
165 f i l e = open (s t r (f o l d e r + ’ /html/ s chedu l e ’ + s t r (x+1) + ’ . html ’) , ’wb ’

)
166 f i l e . wr i t e (r . content)
167 f i l e . c l o s e
168 headFi l e . wr i t e (’ Schedule HTTP Header :\n ’)
169 f o r item in r . headers :
170 headFi l e . wr i t e (s t r (item + ’ \n ’ + r . headers [item] + ’ \n ’))
171 #Request f o r l i s t page
172 r = r e q u e s t s . get (s t r (u r l+’ / l i s t . htm ’) , a l l o w r e d i r e c t s=True)
173 f i l e = open (s t r (f o l d e r + ’ /html/ l i s t ’ + s t r (x+1) + ’ . html ’) , ’wb ’)
174 f i l e . wr i t e (r . content)
175 f i l e . c l o s e
176 headFi l e . wr i t e (’ L i s t HTTP Header :\n ’)
177 f o r item in r . headers :
178 headFi l e . wr i t e (s t r (item + ’ \n ’ + r . headers [item] + ’ \n ’))
179 #Request f o r about page
180 r = r e q u e s t s . get (s t r (u r l+’ /about . htm ’) , a l l o w r e d i r e c t s=True)
181 f i l e = open (s t r (f o l d e r + ’ /html/ about ’ + s t r (x+1) + ’ . html ’) , ’wb ’)
182 f i l e . wr i t e (r . content)
183 f i l e . c l o s e
184 headFi l e . wr i t e (’ About HTTP Header :\n ’)
185 f o r item in r . headers :
186 headFi l e . wr i t e (s t r (item + ’ \n ’ + r . headers [item] + ’ \n ’))
187 #Request f o r page that does not e x i s t
188 r = r e q u e s t s . get (s t r (u r l+’ /passwd ’) , a l l o w r e d i r e c t s=True)
189 f i l e = open (s t r (f o l d e r + ’ /html/dnePage ’ + s t r (x+1) + ’ . html ’) , ’wb ’)
190 f i l e . wr i t e (r . content)

153

191 f i l e . c l o s e
192 headFi l e . wr i t e (’DNE HTTP Header :\n ’)
193 f o r item in r . headers :
194 headFi l e . wr i t e (s t r (item + ’ \n ’ + r . headers [item] + ’ \n ’))
195

196 l o g F i l e . c l o s e ()
197 headFi l e . c l o s e ()
198 #Make the f i l e s w r i t e a b l e by anyone , r i g h t now only root can
199 subproces s . c a l l ([’ chmod ’ , ’−R ’ , ’ 777 ’ , f o l d e r])

getHeaders.py
1 #Source : http ://www. b i n a r y t i d e s . com/python−packet−s n i f f e r −code−l i nux
2 #This code e x t r a c t s incoming TCP and IP packet headers and saves the

important ones to a f i l e
3 import socke t
4 import sys
5 import time
6 from datet ime import datet ime
7 import os
8 from s t r u c t import ∗
9 import subproces s

10

11 #Create a socket that ge t s the RAW TCP packets
12 t ry :
13 s = socket . socke t (socket . AF INET , socket .SOCK RAW, socket .

IPPROTO TCP)
14 except socke t . e r r o r , msg :
15 pr in t ’ Socket could not be c rea ted . Error Code : ’ + s t r (msg [0]) + ’

Message ’ + msg [1]
16 sys . e x i t ()
17

18 #current sequence number
19 c u r r s e q = 0
20 #F i l e where headers w i l l be s to r ed
21 h e a d f i l e = open (s t r (’ Headers /IP TCP Headers : ’ + datet ime . now () .

s t r f t i m e (’%Y−%m−%d−−%H:%M:%S ’) + ’ . txt ’) , ’wb ’)
22 #Receive the incoming TCP packets from the reque s t
23 t ry :
24 whi le True :
25 packet = s . recvfrom (65565)
26

27 #recvfrom makes a tuple , the f i r s t por t i on o f the tup l e i s the
packet s t r i n g

28 packet = packet [0]
29 #IP Header i s 20 bytes , so f i r s t 20 c h a r a c t e r s make up the

header
30 i p heade r = packet [0 : 2 0]
31

32 #Unpack the headers
33 #! − Byte Order : Big−endian f o r networks
34 #B − unsigned char
35 #H − unisgned shor t

154

36 #4 s − St r ing l en 4
37 iph = unpack (’ !BBHHHBBH4s4s ’ , i p heade r)
38

39 #Unsigned char i s 8 b i t s , which i s the Vers ion and IHL (IP header
Length)

40 v e r s i o n i h l = iph [0]
41 #S h i f t 4 b i t s to get the ve r s i on
42 v e r s i on = v e r s i o n i h l >> 4
43 #Get the IHL by ANDing by 00001111 which w i l l g ive the second h a l f

o f the o c t e t
44 i h l = v e r s i o n i h l & 0xF
45 #Mult ip ly by 4 to get number o f bytes o f data in the header (IHL

i s number o f 32−b i t words)
46 i p h l e n g t h = i h l ∗ 4
47 #Time to Live
48 t t l = iph [5]
49 #Protoco l
50 pro to co l = iph [6]
51 #Write IP header to the header f i l e
52 h e a d f i l e . wr i t e (’ IP\n ’)
53 h e a d f i l e . wr i t e (’ Vers ion :\n ’)
54 h e a d f i l e . wr i t e (s t r (v e r s i on))
55 h e a d f i l e . wr i t e (’ \n ’)
56 h e a d f i l e . wr i t e (’ IP Header Length :\n ’)
57 h e a d f i l e . wr i t e (s t r (i h l))
58 h e a d f i l e . wr i t e (’ \n ’)
59 h e a d f i l e . wr i t e (’TTL:\n ’)
60 h e a d f i l e . wr i t e (s t r (t t l))
61 h e a d f i l e . wr i t e (’ \n ’)
62 h e a d f i l e . wr i t e (’ Protoco l :\n ’)
63 h e a d f i l e . wr i t e (s t r (p ro to co l))
64 h e a d f i l e . wr i t e (’ \n ’)
65

66 #TCP header beg ins r i g h t a f t e r the IP header and i s 20 bytes long
67 tcp header = packet [i p h l e n g t h : i p h l e n g t h +20]
68 #Unpack the tcp header
69 tcph = unpack (’ !HHLLBBHHH’ , tcp header)
70 #Source port
71 s o u r c e p o r t = tcph [0]
72 #Data o f f s e t and re s e rved b i t
73 d o f f r e s e r v e d = tcph [4]
74 #Data o f f s e t i s the l ength o f the tcp header , b i t s h i f t by 4 to

get the header l ength
75 t cph l ength = d o f f r e s e r v e d >> 4
76

77 h e a d f i l e . wr i t e (’TCP\n ’)
78 h e a d f i l e . wr i t e (’ Source Port :\n ’)
79 h e a d f i l e . wr i t e (s t r (s o u r c e p o r t))
80 h e a d f i l e . wr i t e (’ \n ’)
81 h e a d f i l e . wr i t e (’TCP header l ength :\n ’)
82 h e a d f i l e . wr i t e (s t r (t cph l ength))
83 h e a d f i l e . wr i t e (’ \n ’)

155

84

85 #Total header s i z e in bytes i s l en o f IP header and (TCP header ∗
4)

86 #i p h l e n g t h and tcph l ength d e t a i l the number o f 4 byte words .
87 h s i z e = i p h l e n g t h + tcph l ength ∗ 4
88 #Length o f data i s l ength o f the packet − the l ength o f the

headers
89 d a t a s i z e = len (packet) − h s i z e
90

91 #Get a l l o f the data from the packet
92 data = packet [h s i z e :]
93

94 #pr in t ’ Data : ’ + data
95 #pr in t
96 except KeyboardInterrupt :
97 #Make the f i l e s w r i t e a b l e by anyone , r i g h t now only root can
98 subproces s . c a l l ([’ chmod ’ , ’−R ’ , ’ 777 ’ , ’ Headers / ’])
99 pass

nmapScanner.py
1 import sys
2 import os
3 from datet ime import datet ime
4 import subproces s
5 import time
6

7 #This program runs the SYN, UDP, and FIN Nmap scans a s p e c i f i e d number
o f t imes by the user

8

9 #argv [1] conta in s the IP address to scan
10 #argv [2] number o f t imes to scan
11 #The program w i l l do a l l 3 scans . SYN (−sS) , UDP (−sU) , and FIN (−sF)
12 #nmap scan command i s nmap <SCAN TYPE> −T4 −A −v <IP ADDR>
13

14 #Direc tory where f i l e s w i l l be saved
15 f o l d e r = datet ime . now () . s t r f t i m e (’%Y−%m−%d−−%H:%M:%S ’)
16 os . makedirs (s t r (’nmap/ ’ + f o l d e r))
17

18 #Run the 3 nmap scans a s p e c i f i e d number o f t imes
19 f o r x in range (0 , i n t (sys . argv [2])) :
20 #c a l l a l l nmap scans and open the f i l e s to wr i t e them to
21 pr in t s t r (’ Beginning SYN ’ + s t r (x))
22 with open (s t r (’nmap/ ’ + f o l d e r +’ /SYN ’ + s t r (x) + ’ . txt ’) , ”w”) as f :
23 subproces s . c a l l ([’nmap ’ , ’−sS ’ , ’−T4 ’ , ’−A ’ , ’−v ’ , sys . argv [1]] ,

s tdout=f)
24 time . s l e e p (60)
25 pr in t s t r (’ Beginning UDP ’ + s t r (x))
26 with open (s t r (’nmap/ ’ + f o l d e r +’ /UDP’ + s t r (x) + ’ . txt ’) , ”w”) as f :
27 subproces s . c a l l ([’nmap ’ , ’−sU ’ , ’−T4 ’ , ’−A ’ , ’−v ’ , sys . argv [1]] ,

s tdout=f)
28 time . s l e e p (60)
29 pr in t s t r (’ Beginning FIN ’ + s t r (x))

156

30 with open (s t r (’nmap/ ’ + f o l d e r +’ /FIN ’ + s t r (x) + ’ . txt ’) , ”w”) as f :
31 subproces s . c a l l ([’nmap ’ , ’−sF ’ , ’−T4 ’ , ’−A ’ , ’−v ’ , sys . argv [1]] ,

s tdout=f)
32 time . s l e e p (60)
33

34 subproces s . c a l l ([’ chmod ’ , ’−R ’ , ’ 777 ’ , ’nmap/ ’])

cameraHTMLCompare.py
1 #! / usr / bin /python
2

3 import sys
4 import i t e r t o o l s
5 import os
6 import csv
7

8 #This f i l e compares two f o l d e r s o f pages from the TITAThink camera and
camera honeypot

9

10 #f i l ename to save the r e s u l t s as
11 f i l ename = sys . argv [3]
12

13 #Open a csv from the f i l ename taken from command l i n e argument
14 with open (s t r (’ csv / ’ + f i l ename + ’ . csv ’) , ’w ’) as c s v f i l e :
15 f i e ldnames = [’ pageScanned ’ , ’ iotLen ’ , ’ honeyLen ’ , ’ iotCharLen ’ , ’

honeyCharLen ’ , ’ d i f f L i n e s ’ , ’ d i f f C h a r s ’ , ’ l inePercentS im ’ , ’
charPercentSim ’ , ’ expecD i f fL ine s ’ , ’ expecDi f fChars ’ , ’
d i f fL inePercentS im ’ , ’ d i f f charPercentS im ’]

16 #Set up csv and wr i t e the headers
17 w r i t e r = csv . DictWriter (c s v f i l e , f i e ldnames=f i e ldnames)
18 w r i t e r . wr i teheader ()
19 #Command l i n e parameters . The d i r e c t o r y o f the f o l d e r s that conta in

the HTML f o r the i o t and honeypot . 1 s t i s f o l d e r o f the ac tua l
dev i c e and 2nd i s the f o l d e r o f the honeypot .

20 i o t F o l d e r=sys . argv [1]
21 honeyFolder = sys . argv [2]
22 #i t e r a t e through the f i l e s o f both d i r e c t o r i e s .
23 f o r f 1 in os . l i s t d i r (i o t F o l d e r) :
24 #Filenames
25 i o tDeviceFi l ename = f1
26 honeyDeviceFilename = f1
27 #F i l e to be wr i t t en to csv
28 pageScanned = f1 . s p l i t (” ”) [0]
29 #Open the f i l e s
30 iotPage = open (s t r (i o t F o l d e r + ’ / ’ + iotDeviceFi l ename) , ’ r ’)
31 honeyPage = open (s t r (honeyFolder + ’ / ’ + honeyDeviceFilename) , ’ r ’)
32 #arrays conta in ing each l i n e from the html page . Used f o r conta in s ()

method
33 i o t L i s t = []
34 honeyList = []
35 #Total number o f c h a r a c t e r s
36 iotCharLen = 0
37 honeyCharLen = 0

157

38 #Loop through the f i l e s and add each l i n e to the l i s t
39 f o r l i n e in iotPage :
40 #pr in t l i n e
41 i o t L i s t . append (l i n e)
42 iotCharLen += len (l i n e)
43 f o r l i n e in honeyPage :
44 #pr in t l i n e
45 honeyList . append (l i n e)
46 honeyCharLen += len (l i n e)
47 #F i l e l ength in number o f l i n e s
48 iotLen = len (i o t L i s t)
49 honeyLen = len (honeyList)
50 #pr in t i o t L i s t
51 #pr in t honeyList
52 #Find g r e a t e r number o f l i n e s , t h i s i s the max number o f l i n e s f o r

c a l c u l a t i n g d i f f e r e n c e
53 i f iotLen > honeyLen :
54 maxLen = iotLen
55 e l s e :
56 maxLen = honeyLen
57 #Number o f s i m i l a r l i n e s
58 numSim = 0
59 #Expected D i f f e r e n c e s
60 expecDi f f = 0
61 #Pointer to cur rent l i n e number
62 lineNum = 0
63 #F i r s t f a s t pass to see i f the l i n e s are d i f f e r e n t
64 f o r l i n e in i o t L i s t :
65 lineNum = lineNum + 1
66

67 i f l i n e in honeyList :
68 numSim = numSim + 1
69 e l s e :
70 pr in t lineNum
71 pr in t l i n e
72

73 #c a l c u l a t e number o f d i f f e r e n c e l i n e s and percentage o f d i f f e r e n c e s
74 numDifferent = maxLen − numSim
75 pe r c en tS im i l a r = (f l o a t (numSim) / f l o a t (maxLen))
76

77 expecnumDif ferent = maxLen − numSim − expecDi f f
78 expecpe r centS imi l a r = (f l o a t (numSim + expecDi f f) / f l o a t (maxLen))
79

80 #Character Comparison
81 #Total Number o f c h a r a c t e r s in the IoT page and Honeypot page
82 i o tChars = 0
83 honeyChars = 0
84 #Count number o f c h a r a c t e r s in each f i l e
85 f o r l i n e in i o t L i s t :
86 f o r c in l i n e :
87 i o tChars = iotChars + 1
88 f o r l i n e in honeyList :

158

89 f o r c in l i n e :
90 honeyChars = honeyChars + 1
91 #Total number o f c h a r a c t e r s that are the same in the IoT page and

Honeypot page
92 sameChars = 0
93 #Expected D i f f e r e n c e s
94 expecDi f f = 0
95 #Pointer to cur rent cha rac t e r
96 charNum = 0
97 #Loop through each l i n e o f both HTML f i l e s . I t s e e s which l i s t i s

s h o r t e r and s tops at the end o f that l i s t .
98 f o r io tL ine , honeyLine in z ip (i o t L i s t , honeyList) :
99 #loop through each charac t e r in l i n e

100 f o r c1 , c2 in z ip (io tL ine , honeyLine) :
101 charNum = charNum + 1
102

103 i f c1 i s c2 :
104 sameChars = sameChars + 1
105

106 i f l en (i o t L i s t) > l en (honeyList) :
107 to ta lChars = honeyChars
108 e l s e :
109 to ta lChars = iotChars
110

111 #t o t a l number o f d i f f e r e n t c h a r a c t e r s in the sequence i n c l u d i n g the
expected d i f f e r e n c e s

112 d i f f C h a r s = tota lChars − sameChars
113 percentChars = (f l o a t (sameChars) / f l o a t (tota lChars))
114

115 expecd i f fChar s = tota lChars − sameChars − expecDi f f
116 expecpercentChars = (f l o a t (sameChars + expecDi f f) / f l o a t (tota lChars

))
117 #wri t e each item to the csv
118 w r i t e r . writerow ({ ’ pageScanned ’ : pageScanned , ’ iotLen ’ : iotLen , ’

honeyLen ’ : honeyLen , ’ iotCharLen ’ : iotChars , ’ honeyCharLen ’ :
honeyChars , ’ d i f f L i n e s ’ : numDifferent , ’ d i f f C h a r s ’ : d i f fChars , ’
l inePercentS im ’ : pe rcentS imi la r , ’ charPercentSim ’ : percentChars , ’
expecD i f fL ine s ’ : expecnumDifferent , ’ expecDi f fChars ’ : expecd i f fChars
, ’ d i f fL inePercentS im ’ : expecpercentS imi la r , ’ d i f f charPercentS im ’ :
expecpercentChars })

159

thermostatHTMLCompare.py
1 #! / usr / bin /python
2

3 import sys
4 import i t e r t o o l s
5 import os
6 import os . path
7 import csv
8 #This f i l e compares two f o l d e r s o f pages from the ezOut let2 and power

o u t l e t honeypot
9

10 #f i l ename to save the r e s u l t s as
11 f i l ename = sys . argv [3]
12

13 #Open a csv from the f i l ename taken from command l i n e argument
14 with open (’ csv / ’ + f i l ename + ’ . csv ’ , ’w ’) as c s v f i l e :
15 f i e ldnames = [’ pageScanned ’ , ’ iotLen ’ , ’ honeyLen ’ , ’ iotCharLen ’ , ’

honeyCharLen ’ , ’ d i f f L i n e s ’ , ’ d i f f C h a r s ’ , ’ l inePercentS im ’ , ’
charPercentSim ’ , ’ expecD i f fL ine s ’ , ’ expecDi f fChars ’ , ’
d i f fL inePercentS im ’ , ’ d i f f charPercentS im ’]

16 #Set up csv and wr i t e the headers
17 w r i t e r = csv . DictWriter (c s v f i l e , f i e ldnames=f i e ldnames)
18 w r i t e r . wr i teheader ()
19 #Command l i n e parameters . The d i r e c t o r y o f the f o l d e r s that conta in

the HTML f o r the i o t and honeypot . 1 s t i s f o l d e r o f the ac tua l
dev i c e and 2nd i s the f o l d e r o f the honeypot .

20 i o t F o l d e r=sys . argv [1]
21 honeyFolder = sys . argv [2]
22 #i t e r a t e through the f i l e s o f both d i r e c t o r i e s .
23 f o r f 1 in os . l i s t d i r (honeyFolder) :
24 #Filenames
25 i o tDeviceFi l ename = f1
26 honeyDeviceFilename = f1
27 #F i l e to be wr i t t en to csv
28 pageScanned = f1 . s p l i t (” ”) [0]
29 #arrays conta in ing each l i n e from the html page . Used f o r conta in s ()

method
30 i o t L i s t = []
31 honeyList = []
32 #Total number o f c h a r a c t e r s
33 iotCharLen = 0
34 honeyCharLen = 0
35 #The thermostat does not a l low more than one connect ion , so some

f o l d e r s are going to be empty . Check i f the f i l e e x i s t s , i f i t does
not , then the number o f d i f f e r e n c e s i s the same as the number o f
l i n e s in the f i l e on the honeypot .

36 #pr in t s t r (ioTFolder + ’/ ’ + iotDeviceFi l ename)
37 i f not os . path . i s f i l e (s t r (i o t F o l d e r + ’ / ’ + iotDeviceFi l ename)) :
38 #pr in t s t r (i o t F o l d e r + ’/ ’ + iotDeviceFi l ename + ’ Does not e x i s t

’)
39 #Open the f i l e s
40 honeyPage = open (s t r (honeyFolder + ’ / ’ + honeyDeviceFilename) , ’ r ’

160

)
41 f o r l i n e in honeyPage :
42 #pr in t l i n e
43 honeyList . append (l i n e)
44 honeyCharLen += len (l i n e)
45 #F i l e l ength in number o f l i n e s
46 iotLen = 0
47 honeyLen = len (honeyList)
48 #
49 w r i t e r . writerow ({ ’ pageScanned ’ : pageScanned , ’ iotLen ’ : 0 , ’

honeyLen ’ : honeyLen , ’ iotCharLen ’ : 0 , ’ honeyCharLen ’ : honeyCharLen ,
’ d i f f L i n e s ’ : honeyLen , ’ d i f f C h a r s ’ : honeyCharLen , ’ l inePercentS im ’ :
0 , ’ charPercentSim ’ : 0 , ’ expecD i f fL ine s ’ : 0 , ’ expecDi f fChars ’ : 0 , ’
d i f fL inePercentS im ’ : 0 , ’ d i f f charPercentS im ’ : 0})

50 cont inue
51 #Open the f i l e s
52 iotPage = open (s t r (i o t F o l d e r + ’ / ’ + iotDeviceFi l ename) , ’ r ’)
53 honeyPage = open (s t r (honeyFolder + ’ / ’ + honeyDeviceFilename) , ’ r ’)
54 #Loop through the f i l e s and add each l i n e to the l i s t
55 f o r l i n e in iotPage :
56 #pr in t l i n e
57 i o t L i s t . append (l i n e)
58 iotCharLen += len (l i n e)
59 f o r l i n e in honeyPage :
60 #pr in t l i n e
61 honeyList . append (l i n e)
62 honeyCharLen += len (l i n e)
63 #F i l e l ength in number o f l i n e s
64 iotLen = len (i o t L i s t)
65 honeyLen = len (honeyList)
66 #pr in t i o t L i s t
67 #pr in t honeyList
68 #Find g r e a t e r number o f l i n e s , t h i s i s the max number o f l i n e s f o r

c a l c u l a t i n g d i f f e r e n c e
69 i f iotLen > honeyLen :
70 maxLen = iotLen
71 e l s e :
72 maxLen = honeyLen
73 #Number o f s i m i l a r l i n e s
74 numSim = 0
75 #Expected D i f f e r e n c e s
76 expecDi f f = 0
77 #Pointer to cur rent l i n e number
78 lineNum = 0
79 #F i r s t f a s t pass to see i f the l i n e s are d i f f e r e n t
80 f o r l i n e in i o t L i s t :
81 lineNum = lineNum + 1
82 #I f the l i n e i s a l i n e that should be d i f f e r e n t , such as the

date / time or temperature s e t t i n g , t h i s i s an expected d i f f e r e n c e
83 i f lineNum == 592 or lineNum == 625 or lineNum == 631 or lineNum

== 632 or lineNum == 683 or lineNum == 688 :
84 expecDi f f = expecDi f f + 1

161

85 e l i f l i n e in honeyList :
86 numSim = numSim + 1
87 #e l s e :
88 #pr in t lineNum
89 #pr in t l i n e
90

91 #c a l c u l a t e number o f d i f f e r e n c e l i n e s and percentage o f d i f f e r e n c e s
92 numDifferent = maxLen − numSim
93 pe r c en tS im i l a r = (f l o a t (numSim) / f l o a t (maxLen))
94

95 expecnumDif ferent = expecDi f f
96 expecpe r centS imi l a r = (f l o a t (numSim + expecDi f f) / f l o a t (maxLen))
97

98 #Character Comparison
99 #Total Number o f c h a r a c t e r s in the IoT page and Honeypot page

100 i o tChars = 0
101 honeyChars = 0
102 #Count number o f c h a r a c t e r s in each f i l e
103 f o r l i n e in i o t L i s t :
104 f o r c in l i n e :
105 i o tChars = iotChars + 1
106 f o r l i n e in honeyList :
107 f o r c in l i n e :
108 honeyChars = honeyChars + 1
109 #Total number o f c h a r a c t e r s that are the same in the IoT page and

Honeypot page
110 sameChars = 0
111 #Expected D i f f e r e n c e s
112 expecDi f f = 0
113 #Pointer to cur rent cha rac t e r
114 charNum = 0
115 #Loop through each l i n e o f both HTML f i l e s . I t s e e s which l i s t i s

s h o r t e r and s tops at the end o f that l i s t .
116 f o r io tL ine , honeyLine in z ip (i o t L i s t , honeyList) :
117 #loop through each charac t e r in l i n e
118 f o r c1 , c2 in z ip (io tL ine , honeyLine) :
119 charNum = charNum + 1
120 #Check to see i f the c h a r a c t e r s r e s i d e with in areas that are

expected to be d i f f e r e n t on a s p e c i f i c page
121 i f charNum == 13232 or (charNum >= 13833 and charNum <= 13842) or

(charNum >= 13996 and charNum <= 13999) or (charNum >= 14015 and
charNum <= 14018) or (charNum >= 14955 and charNum <= 14958) or (
charNum >= 15024 and charNum <= 15027) :

122 expecDi f f = expecDi f f + 1
123 e l i f c1 i s c2 :
124 sameChars = sameChars + 1
125 #e l s e :
126 #pr in t charNum
127 #pr in t s t r (c1 + ’ −− ’ + c2)
128

129 i f l en (i o t L i s t) > l en (honeyList) :
130 to ta lChars = honeyChars

162

131 e l s e :
132 to ta lChars = iotChars
133

134 #t o t a l number o f d i f f e r e n t c h a r a c t e r s in the sequence i n c l u d i n g the
expected d i f f e r e n c e s

135 d i f f C h a r s = tota lChars − sameChars
136 percentChars = (f l o a t (sameChars) / f l o a t (tota lChars))
137

138 expecd i f fChar s = expecDi f f
139 expecpercentChars = (f l o a t (sameChars + expecDi f f) / f l o a t (tota lChars

))
140

141 #Write the data to the f i l e
142 w r i t e r . writerow ({ ’ pageScanned ’ : pageScanned , ’ iotLen ’ : iotLen , ’

honeyLen ’ : honeyLen , ’ iotCharLen ’ : iotChars , ’ honeyCharLen ’ :
honeyChars , ’ d i f f L i n e s ’ : numDifferent , ’ d i f f C h a r s ’ : d i f fChars , ’
l inePercentS im ’ : pe rcentS imi la r , ’ charPercentSim ’ : percentChars , ’
expecD i f fL ine s ’ : expecnumDifferent , ’ expecDi f fChars ’ : expecd i f fChars
, ’ d i f fL inePercentS im ’ : expecpercentS imi la r , ’ d i f f charPercentS im ’ :
expecpercentChars })

outletHTMLCompare.py
1 #! / usr / bin /python
2

3 import sys
4 import i t e r t o o l s
5 import os
6 import csv
7

8 #This f i l e compares two f o l d e r s o f pages from the ezOut let2 and power
o u t l e t honeypot

9

10 #f i l ename to save the r e s u l t s as
11 f i l ename = sys . argv [3]
12

13 #Open a csv from the f i l ename taken from command l i n e argument
14 with open (’ csv / ’ + f i l ename + ’ . csv ’ , ’w ’) as c s v f i l e :
15 f i e ldnames = [’ pageScanned ’ , ’ iotLen ’ , ’ honeyLen ’ , ’ iotCharLen ’ , ’

honeyCharLen ’ , ’ d i f f L i n e s ’ , ’ d i f f C h a r s ’ , ’ l inePercentS im ’ , ’
charPercentSim ’ , ’ expecD i f fL ine s ’ , ’ expecDi f fChars ’ , ’
d i f fL inePercentS im ’ , ’ d i f f charPercentS im ’]

16 #Set up csv and wr i t e the headers
17 w r i t e r = csv . DictWriter (c s v f i l e , f i e ldnames=f i e ldnames)
18 w r i t e r . wr i teheader ()
19 #Command l i n e parameters . The d i r e c t o r y o f the f o l d e r s that conta in

the HTML f o r the i o t and honeypot . 1 s t i s f o l d e r o f the ac tua l
dev i c e and 2nd i s the f o l d e r o f the honeypot .

20 i o t F o l d e r=sys . argv [1]
21 honeyFolder = sys . argv [2]
22 #i t e r a t e through the f i l e s o f both d i r e c t o r i e s .
23 f o r f 1 in os . l i s t d i r (honeyFolder) :
24 #Filenames

163

25 i o tDeviceFi l ename = f1
26 honeyDeviceFilename = f1
27 #F i l e to be wr i t t en to csv
28 pageScanned = f1 . s p l i t (” ”) [0]
29 #pr in t pageScanned
30 #arrays conta in ing each l i n e from the html page . Used f o r conta in s ()

method
31 i o t L i s t = []
32 honeyList = []
33 #Total number o f c h a r a c t e r s
34 iotCharLen = 0
35 honeyCharLen = 0
36 #The o u t l e t sometimes does not accept every s imultaneous connect ion ,

so some f o l d e r s are going to be empty . Check i f the f i l e e x i s t s , i f
i t does not , then the number o f d i f f e r e n c e s i s the same as the

number o f l i n e s in the f i l e on the honeypot .
37 #pr in t s t r (ioTFolder + ’/ ’ + iotDeviceFi l ename)
38 i f not os . path . i s f i l e (s t r (i o t F o l d e r + ’ / ’ + iotDeviceFi l ename)) :
39 #pr in t s t r (i o t F o l d e r + ’/ ’ + iotDeviceFi l ename + ’ Does not e x i s t

’)
40 #Open the f i l e s
41 honeyPage = open (s t r (honeyFolder + ’ / ’ + honeyDeviceFilename) , ’ r ’

)
42 f o r l i n e in honeyPage :
43 #pr in t l i n e
44 honeyList . append (l i n e)
45 honeyCharLen += len (l i n e)
46 #F i l e l ength in number o f l i n e s
47 iotLen = 0
48 honeyLen = len (honeyList)
49 #Write to f i l e with 0 percent s i m i l a r i t y , because i t s a comparison

to an empty page
50 w r i t e r . writerow ({ ’ pageScanned ’ : pageScanned , ’ iotLen ’ : 0 , ’

honeyLen ’ : honeyLen , ’ iotCharLen ’ : 0 , ’ honeyCharLen ’ : honeyCharLen ,
’ d i f f L i n e s ’ : honeyLen , ’ d i f f C h a r s ’ : honeyCharLen , ’ l inePercentS im ’ :
0 , ’ charPercentSim ’ : 0 , ’ expecD i f fL ine s ’ : 0 , ’ expecDi f fChars ’ : 0 , ’
d i f fL inePercentS im ’ : 0 , ’ d i f f charPercentS im ’ : 0})

51 cont inue
52 #Open the f i l e s
53 iotPage = open (s t r (i o t F o l d e r + ’ / ’ + iotDeviceFi l ename) , ’ r ’)
54 honeyPage = open (s t r (honeyFolder + ’ / ’ + honeyDeviceFilename) , ’ r ’)
55 #Loop through the f i l e s and add each l i n e to the l i s t
56 f o r l i n e in iotPage :
57 #pr in t l i n e
58 i o t L i s t . append (l i n e)
59 iotCharLen += len (l i n e)
60 f o r l i n e in honeyPage :
61 #pr in t l i n e
62 honeyList . append (l i n e)
63 honeyCharLen += len (l i n e)
64 #F i l e l ength in number o f l i n e s
65 iotLen = len (i o t L i s t)

164

66 honeyLen = len (honeyList)
67 #pr in t i o t L i s t
68 #pr in t honeyList
69 #Find g r e a t e r number o f l i n e s , t h i s i s the max number o f l i n e s f o r

c a l c u l a t i n g d i f f e r e n c e
70 i f iotLen > honeyLen :
71 maxLen = iotLen
72 e l s e :
73 maxLen = honeyLen
74 #Number o f s i m i l a r l i n e s
75 numSim = 0
76 #Expected D i f f e r e n c e s
77 expecDi f f = 0
78 #Pointer to cur rent l i n e number
79 lineNum = 0
80 #F i r s t f a s t pass to see i f the l i n e s are d i f f e r e n t
81 f o r l i n e in i o t L i s t :
82 lineNum = lineNum + 1
83 #I f the l i n e i s a l i n e that should be d i f f e r e n t , such as the

date / time or temperature s e t t i n g , t h i s i s an expected d i f f e r e n c e
84 i f l i n e in honeyList :
85 numSim = numSim + 1
86 e l s e :
87 #pr in t lineNum
88 #pr in t l i n e
89 #Check to see i f s p e c i f i c l i n e s l i e on a l i n e that i s expected to

be d i f f e r e n t on a s p e c i f i c page
90 i f pageScanned == ’ network ’ :
91 i f lineNum == 59 or lineNum == 60 or lineNum == 61 or lineNum

== 63 :
92 expecDi f f = expecDi f f + 1
93 e l i f pageScanned == ’ s t a t u s ’ :
94 i f lineNum == 31 or lineNum == 36 or lineNum == 37 or lineNum

== 38 or lineNum == 42 or lineNum == 43 :
95 expecDi f f = expecDi f f + 1
96

97 #c a l c u l a t e number o f d i f f e r e n c e l i n e s and percentage o f d i f f e r e n c e s
98 numDifferent = maxLen − numSim
99 pe r c en tS im i l a r = (f l o a t (numSim) / f l o a t (maxLen))

100 #pr in t expecDi f f
101 expecnumDif ferent = expecDi f f
102 expecpe r centS imi l a r = (f l o a t (numSim + expecDi f f) / f l o a t (maxLen))
103

104 #Character Comparison
105 #Total Number o f c h a r a c t e r s in the IoT page and Honeypot page
106 i o tChars = 0
107 honeyChars = 0
108 #Count number o f c h a r a c t e r s in each f i l e
109 f o r l i n e in i o t L i s t :
110 f o r c in l i n e :
111 i o tChars = iotChars + 1
112 f o r l i n e in honeyList :

165

113 f o r c in l i n e :
114 honeyChars = honeyChars + 1
115 #Total number o f c h a r a c t e r s that are the same in the IoT page and

Honeypot page
116 sameChars = 0
117 #Expected D i f f e r e n c e s
118 expecDi f f = 0
119 #Pointer to cur rent cha rac t e r
120 charNum = 0
121 #Loop through each l i n e o f both HTML f i l e s . I t s e e s which l i s t i s

s h o r t e r and s tops at the end o f that l i s t .
122 f o r io tL ine , honeyLine in z ip (i o t L i s t , honeyList) :
123 #loop through each charac t e r in l i n e
124 f o r c1 , c2 in z ip (io tL ine , honeyLine) :
125 charNum = charNum + 1
126 i f c1 i s c2 :
127 sameChars = sameChars + 1
128 e l s e :
129 #pr in t charNum
130 #pr in t s t r (c1 + ’ −− ’ + c2)
131 #Check to see i f the c h a r a c t e r s r e s i d e with in areas that are

expected to be d i f f e r e n t on a s p e c i f i c page
132 i f pageScanned == ’ network ’ :
133 i f (charNum >= 2362 and charNum <= 2374) or (charNum >=

2476 and charNum <= 2488) or (charNum >= 2591 and charNum <= 2601)
or (charNum >= 2834 and charNum <= 2844) :

134 expecDi f f = expecDi f f + 1
135 e l i f pageScanned == ’ s t a t u s ’ :
136 i f (charNum >= 1219 and charNum <= 1231) or (charNum >=

1417 and charNum <= 1429) or (charNum >= 1572 and charNum <= 1582)
or (charNum >= 1718 and charNum <= 1734) or (charNum >= 1903 and
charNum <= 1907) or (charNum >= 1914 and charNum <= 1915) or (
charNum >= 1993 and charNum <= 2006) or (charNum >= 2038 and charNum
<= 2051) :

137 expecDi f f = expecDi f f + 1
138 #Determine the min number o f chars
139 i f l en (i o t L i s t) > l en (honeyList) :
140 to ta lChars = honeyChars
141 e l s e :
142 to ta lChars = iotChars
143

144 #t o t a l number o f d i f f e r e n t c h a r a c t e r s in the sequence i n c l u d i n g the
expected d i f f e r e n c e s

145 d i f f C h a r s = tota lChars − sameChars
146 percentChars = (f l o a t (sameChars) / f l o a t (tota lChars))
147

148 expecd i f fChar s = expecDi f f
149 expecpercentChars = (f l o a t (sameChars + expecDi f f) / f l o a t (tota lChars

))
150

151 #Write the data to the f i l e
152 w r i t e r . writerow ({ ’ pageScanned ’ : pageScanned , ’ iotLen ’ : iotLen , ’

166

honeyLen ’ : honeyLen , ’ iotCharLen ’ : iotChars , ’ honeyCharLen ’ :
honeyChars , ’ d i f f L i n e s ’ : numDifferent , ’ d i f f C h a r s ’ : d i f fChars , ’
l inePercentS im ’ : pe rcentS imi la r , ’ charPercentSim ’ : percentChars , ’
expecD i f fL ine s ’ : expecnumDifferent , ’ expecDi f fChars ’ : expecd i f fChars
, ’ d i f fL inePercentS im ’ : expecpercentS imi la r , ’ d i f f charPercentS im ’ :
expecpercentChars })

headerCompare.py
1 #! / usr / bin /python
2

3 import sys
4 import csv
5

6 #This program w i l l take two TCP/IP header f i l e s and HTTP header f i l e s
and compare them and c a l c u l a t e the d i f f e r e n e s

7 #Because the TCP/IP header f i e l d s are always the same , we can get the
exact d i f f e r e n c e s f o r each header

8 #But the HTTP header i s not always the same , so we j u s t count the number
o f d i f f e r e n c e s

9 #Comand l i n e parameters . 1 s t i s the TCP/IP Headers o f the IoT dev i ce and
2nd i s the TCP/IP Headers o f the Honeypot dev i ce . 3 rd i s the HTTP

headers o f the IoT dev i ce and 4th i s the HTTP headres o f the
honeypot dev i c e .

10 iotTCPHeaderFile = sys . argv [1]
11 honeyTCPHeaderFile = sys . argv [2]
12 iotHTTPHeader = sys . argv [3]
13 honeyHTTPHeader = sys . argv [4]
14 f i l ename = sys . argv [5]
15

16 #Create csv f i l e
17 #Open csv f i l e to s t o r e data
18 with open (’ csv / ’ + f i l ename + ’ . csv ’ , ’w ’) as c s v f i l e :
19 f i e ldnames = [’ iotNumTCPIP ’ , ’honeyNumTCPIP ’ , ’maxNumTCPIP ’ , ’

d i f f I P v e r ’ , ’ d i f f IPheadLen ’ , ’ d i f f i p t t l ’ , ’ d i f f i p p r o t o c o l ’ , ’
d i f f t c p s r c p o r t ’ , ’ d i f f t c p h e a d l e n ’ , ’ d i f f h t t p h e a d ’ , ’ t o t a l h t t p ’]

20 #s e t up csv and wr i t e the headers
21 w r i t e r = csv . DictWriter (c s v f i l e , f i e ldnames=f i e ldnames)
22 w r i t e r . wr i teheader ()
23

24 #Open the f i l e s
25 #iotPage = open (iotTCPHeaderFile , ’ r ’)
26 #honeyPage = open (honeyTCPHeaderFile , ’ r ’)
27 #Number o f TCP and IP packets f o r the i o t dev i ce and honeypot
28 iotNumTCPIP = 0
29 honeyNumTCPIP = 0
30 #L i s t s that hold the va lue s o f each o f the f i e l d s in the TCP header

that we are comparing f o r the i o t dev i c e and honeypot
31 i o t IPve r = []
32 iotIPheadLen = []
33 i o t I P t t l = []
34 i o t I P p r o t o c o l = []
35 iotTCPsrcPort = []

167

36 iotTCPheadLen = []
37 honeyIPver = []
38 honeyIPheadLen = []
39 honeyIPtt l = []
40 honeyIPprotoco l = []
41 honeyTCPsrcPort = []
42 honeyTCPheadLen = []
43

44 #Loop through the f i l e s and add each l i n e to the r e s p e c t i v e l i s t
accord ing to the header f i e l d i t i s part o f

45 with open (iotTCPHeaderFile) as f :
46 f o r l i n e in f :
47 #pr in t l i n e
48 #pr in t n e x t l i n e
49 #IP d e s i g n a t e s the beg inning o f a new Packet .
50 i f l i n e . s t r i p () == ”IP” :
51 iotNumTCPIP = iotNumTCPIP + 1
52 e l i f l i n e . s t r i p () == ’ Vers ion : ’ :
53 n e x t l i n e = next (f)
54 i o t IPve r . append (i n t (n e x t l i n e))
55 e l i f l i n e . s t r i p () == ’ IP Header Length : ’ :
56 n e x t l i n e = next (f)
57 iotIPheadLen . append (i n t (n e x t l i n e))
58 e l i f l i n e . s t r i p () == ’TTL: ’ :
59 n e x t l i n e = next (f)
60 i o t I P t t l . append (i n t (n e x t l i n e))
61 e l i f l i n e . s t r i p () == ’ Protoco l : ’ :
62 n e x t l i n e = next (f)
63 i o t I P p r o t o c o l . append (i n t (n e x t l i n e))
64 e l i f l i n e . s t r i p () == ’ Source Port : ’ :
65 n e x t l i n e = next (f)
66 iotTCPsrcPort . append (i n t (n e x t l i n e))
67 e l i f l i n e . s t r i p () == ’TCP header l ength : ’ :
68 n e x t l i n e = next (f)
69 iotTCPheadLen . append (i n t (n e x t l i n e))
70 #Do the same f o r the HTTP IP/TCP header f i l e
71 with open (honeyTCPHeaderFile) as f :
72 f o r l i n e in f :
73 #IP d e s i g n a t e s the beg inning o f a new Packet .
74 i f l i n e . s t r i p () == ”IP” :
75 honeyNumTCPIP = honeyNumTCPIP + 1
76 e l i f l i n e . s t r i p () == ’ Vers ion : ’ :
77 n e x t l i n e = next (f)
78 honeyIPver . append (i n t (n e x t l i n e))
79 e l i f l i n e . s t r i p () == ’ IP Header Length : ’ :
80 n e x t l i n e = next (f)
81 honeyIPheadLen . append (i n t (n e x t l i n e))
82 e l i f l i n e . s t r i p () == ’TTL: ’ :
83 n e x t l i n e = next (f)
84 honeyIPtt l . append (i n t (n e x t l i n e))
85 e l i f l i n e . s t r i p () == ’ Protoco l : ’ :
86 n e x t l i n e = next (f)

168

87 honeyIPprotoco l . append (i n t (n e x t l i n e))
88 e l i f l i n e . s t r i p () == ’ Source Port : ’ :
89 n e x t l i n e = next (f)
90 honeyTCPsrcPort . append (i n t (n e x t l i n e))
91 e l i f l i n e . s t r i p () == ’TCP header l ength : ’ :
92 n e x t l i n e = next (f)
93 honeyTCPheadLen . append (i n t (n e x t l i n e))
94

95 #counter s o f the number o f s i m i l a r i t i e s in each f i e l d
96 d i f f i p v e r = 0
97 d i f f i p h e a d l e n = 0
98 d i f f i p t t l = 0
99 d i f f i p p r o t o c o l = 0

100 d i f f t c p s r c p o r t = 0
101 d i f f t c p h e a d l e n = 0
102

103 f o r x , y in z ip (io t IPver , honeyIPver) :
104 i f x != y :
105 d i f f i p v e r = d i f f i p v e r + 1
106 f o r x , y in z ip (iotIPheadLen , honeyIPheadLen) :
107 i f x != y :
108 d i f f i p h e a d l e n = d i f f i p h e a d l e n + 1
109 f o r x , y in z ip (i o t I P t t l , honeyIPtt l) :
110 i f x != y :
111 d i f f i p t t l = d i f f i p t t l + 1
112 f o r x , y in z ip (i o t IPpro toco l , honeyIPprotocol) :
113 i f x != y :
114 d i f f i p p r o t o c o l = d i f f i p p r o t o c o l + 1
115 f o r x , y in z ip (iotTCPsrcPort , honeyTCPsrcPort) :
116 i f x != y :
117 d i f f t c p s r c p o r t = d i f f t c p s r c p o r t + 1
118 f o r x , y in z ip (iotTCPheadLen , honeyTCPheadLen) :
119 i f x != y :
120 d i f f t c p h e a d l e n = d i f f t c p h e a d l e n + 1
121

122 #Number o f headers f o r the i o t dev i c e and honeypot
123 iotNumHTTP = 0
124 honeyNumHTTP = 0
125 #L i s t s ho ld ing the number o f t imes that a c e r t a i n item appeared in a

l i s t o f HTTP headers
126 iotHTTPhead = {}
127 honeyHTTPhead = {}
128

129 #Go through the IoT HTTP header
130 with open (iotHTTPHeader) as f :
131 f o r l i n e in f :
132 #”HTTP Header” denotes the s t a r t o f a s e t o f headers
133 i f l i n e . s t r i p () == ’ Root HTTP Header : ’ or l i n e . s t r i p () == ’ Login

HTTP Header : ’ or l i n e . s t r i p () == ’Main HTTP Header : ’ or l i n e . s t r i p ()
== ’ S e t t i n g s HTTP Header : ’ or l i n e . s t r i p () == ’DNE HTTP Header : ’ or
l i n e . s t r i p () == ’ Status HTTP Header : ’ :

134 iotNumHTTP = iotNumHTTP + 1

169

135 e l s e :
136 #i f i t a l r eady i s in the l i s t , increment the number by 1
137 i f l i n e . s t r i p () in iotHTTPhead :
138 iotHTTPhead [l i n e . s t r i p ()] = iotHTTPhead [l i n e . s t r i p ()] + 1
139 #I f i t has not been recorded in the l i s t , s t a r t the item at 1
140 e l s e :
141 x = l i n e . s t r i p ()
142 #Ignore the date f i e l d . I t w i l l always be d i f f e r e n t
143 i f x [: 3] != ’Mon ’ and x [: 3] != ’Tue ’ and x [: 3] != ’Wed ’ and x

[: 3] != ’Thu ’ and x [: 3] != ’ Fr i ’ and x [: 3] != ’ Sat ’ and x [: 3] != ’
Sun ’ :

144 iotHTTPhead [l i n e . s t r i p ()] = 1
145 #Go through the honeypot HTTP header
146 with open (honeyHTTPHeader) as f :
147 f o r l i n e in f :
148 #”HTTP Header” denotes the s t a r t o f a s e t o f headers
149 i f l i n e . s t r i p () == ’ Root HTTP Header : ’ or l i n e . s t r i p () == ’ Login

HTTP Header : ’ or l i n e . s t r i p () == ’Main HTTP Header : ’ or l i n e . s t r i p ()
== ’ S e t t i n g s HTTP Header : ’ or l i n e . s t r i p () == ’DNE HTTP Header : ’ or
l i n e . s t r i p () == ’ Status HTTP Header : ’ :

150 honeyNumHTTP = honeyNumHTTP + 1
151 e l s e :
152 #i f i t a l r eady i s in the l i s t , increment the number by 1
153 i f l i n e . s t r i p () in honeyHTTPhead :
154 honeyHTTPhead [l i n e . s t r i p ()] = honeyHTTPhead [l i n e . s t r i p ()] + 1
155 #I f i t has not been recorded in the l i s t , s t a r t the item at 1
156 e l s e :
157 x = l i n e . s t r i p ()
158 #Ignore the date f i e l d . I t w i l l always be d i f f e r e n t
159 i f x [: 3] != ’Mon ’ and x [: 3] != ’Tue ’ and x [: 3] != ’Wed ’ and x

[: 3] != ’Thu ’ and x [: 3] != ’ Fr i ’ and x [: 3] != ’ Sat ’ and x [: 3] != ’
Sun ’ :

160 honeyHTTPhead [l i n e . s t r i p ()] = 1
161

162 #get number o f d i f f e r e n c e s in HTTP header o f each packet . Ignore the
date , that w i l l be d i f f e r e n t .

163 d i f f h t t p h e a d = 0
164 #Total number o f HTTP items
165 totalHTTP = 0
166 f o r x in iotHTTPhead :
167 totalHTTP = totalHTTP + iotHTTPhead [x]
168 i f not x in honeyHTTPhead :
169 d i f f h t t p h e a d = d i f f h t t p h e a d + iotHTTPhead [x]
170 #pr in t x
171 #pr in t iotHTTPhead [x]
172 e l s e :
173 i f iotHTTPhead [x] != honeyHTTPhead [x] :
174 d i f f h t t p h e a d = d i f f h t t p h e a d + abs (iotHTTPhead [x] − honeyHTTPhead

[x])
175 f o r y in honeyHTTPhead :
176 i f not y in iotHTTPhead :
177 d i f f h t t p h e a d = d i f f h t t p h e a d + honeyHTTPhead [x]

170

178 e l s e :
179 i f iotHTTPhead [x] != honeyHTTPhead [x] :
180 d i f f h t t p h e a d = d i f f h t t p h e a d + abs (iotHTTPhead [x] − honeyHTTPhead

[x])
181

182 #Write data to f i l e
183 w r i t e r . writerow ({ ’ iotNumTCPIP ’ : iotNumTCPIP , ’honeyNumTCPIP ’ :

honeyNumTCPIP , ’maxNumTCPIP ’ : max(iotNumTCPIP , honeyNumTCPIP) , ’
d i f f I P v e r ’ : d i f f i p v e r , ’ d i f f IPheadLen ’ : d i f f i p h e a d l e n , ’ d i f f i p t t l ’ :
d i f f i p t t l , ’ d i f f i p p r o t o c o l ’ : d i f f i p p r o t o c o l , ’ d i f f t c p s r c p o r t ’ :
d i f f t c p s r c p o r t , ’ d i f f t c p h e a d l e n ’ : d i f f t c p h e a d l e n , ’ d i f f h t t p h e a d ’ :
d i f fh t tphead , ’ t o t a l h t t p ’ : totalHTTP })

171

Appendix F. Experimentation Data

Table 5. TITAThink camera average query response time

Trial (#Queries - #Users) IoT Device Time (s) Honeypot Time (s)

100-1 0.01846 0.09193

500-1 0.0178 0.09504

1000-1 0.01829 0.09224

100-10 0.36583 0.95157

500-10 0.2124 0.83672

1000-10 0.37617 0.83545

100-20 0.51574 1.71654

500-20 0.51866 1.78142

1000-20 0.52411 1.78191

Table 6. Proliphix thermostat average query response time

Trial (#Queries - #Users) IoT Device Time (s) Honeypot Time (s)

100-1 1.22311 1.19968

500-1 1.59755 1.19986

1000-1 1.44012 1.19866

100-10 2.47040 1.32238

500-10 1.48113 1.22359

1000-10 1.55390 1.21607

100-20 2.21184 1.34421

500-20 1.30939 1.31993

1000-20 1.66879 1.32633

172

Table 7. ezOutlet2 average query response time

Trial (#Queries - #Users) IoT Device Time (s) Honeypot Time (s)

100-1 0.00376 0.02710

500-1 0.00359 0.02784

1000-1 0.00362 0.02891

100-10 0.07662 0.24773

500-10 0.162 0.26984

1000-10 0.14008 0.31739

100-20 0.7769 0.69839

500-20 0.82573 0.66962

1000-20 0.74922 0.65482

Table 8. TITAThink camera HTML percent similarity

Trial Line Sim Char Sim Line Sim w/o

Expected Difference

Char Sim w/o

Expected Difference

100-1 100 100 100 100

500-1 100 100 100 100

1000-1 100 100 100 100

100-10 100 100 100 100

500-10 100 100 100 100

1000-10 100 100 100 100

100-20 100 100 100 100

500-20 100 100 100 100

1000-20 100 100 100 100

173

Table 9. Proliphix thermostat HTML percent similarity

Trial Line Sim Char Sim Line Sim w/o

Expected Difference

Char Sim w/o

Expected Difference

100-1 99.59 99.92 99.78 99.96

500-1 99.59 99.92 99.78 99.96

1000-1 99.72 99.94 99.91 99.98

100-10 22.10 22.14 22.14 22.15

500-10 20.09 20.16 20.13 20.17

1000-10 19.93 20.00 19.97 20.01

100-20 11.37 11.40 11.39 11.40

500-20 9.97 9.99 9.99 9.99

1000-20 10.15 10.19 10.17 10.19

Table 10. ezOutlet2 HTML percent similarity

Trial Line Sim Char Sim Line Sim w/o

Expected Difference

Char Sim w/o

Expected Difference

100-1 99.26 99.87 100 100

500-1 99.26 99.88 100 100

1000-1 99.26 99.88 100 100

100-10 99.26 99.88 100 100

500-10 99.26 99.88 100 100

1000-10 99.26 99.88 100 100

100-20 94.25 94.83 94.95 94.95

500-20 92.30 92.88 92.99 92.99

1000-20 85.59 86.12 86.23 86.23

174

Table 11. TITAThink camera header information

Trial IoT # of

Packets

Honeypot # of

Packets

IP/TCP # of

Differences

HTTP # of

Differences

100-1 8865 4635 0 0

500-1 43170 23160 0 0

1000-1 87787 46029 0 0

100-10 82195 47216 0 0

500-10 401874 236502 0 0

1000-10 805346 469528 0 0

100-20 149843 94038 0 0

500-20 747944 469171 0 0

1000-20 1488642 938891 0 0

Table 12. Proliphix thermostat header information

Trial IoT #

Packets

Honeypot #

Packets

IP/TCP # Diffs HTTP # Diffs

100-1 8300 3739 0 0

500-1 41501 18553 0 0

1000-1 83011 37168 0 0

100-10 9336 19581 0 2

500-10 42010 96118 0 0

1000-10 83126 192175 0 1

100-20 9571 38611 0 4

500-20 41502 191792 0 1

1000-20 84874 388779 0 8

175

Table 13. ezOutlet2 header information

Trial IoT #

Packets

Honeypot #

Packets

IP/TCP # Diffs HTTP # Diffs

100-1 7500 7274 7274 0

500-1 37500 35571 35571 0

1000-1 74997 71482 71482 0

100-10 75476 72418 72418 0

500-10 378415 362198 362198 0

1000-10 756326 729212 729212 0

100-20 143527 145042 143527 0

500-20 702103 725897 702103 0

1000-20 1302931 1460350 1302931 0

Table 14. Nmap scan times for TITAThink camera and camera honeypot

Trial IoT SYN Time (s) IoT UDP Time (s) IoT FIN Time (s)

1 158.78 1187.76 156.36

2 128.94 1187.99 151.54

3 152.29 1193.92 129.05

4 152.45 1193.13 157.03

5 129.07 1192.85 156.57

Trial Honey SYN Time (s) Honey UDP Time (s) Honey FIN Time (s)

1 214.01 131.10 217.90

2 211.91 306.93 214.77

3 210.94 131.09 214.36

4 211.36 292.42 226.16

5 191.78 307.36 190.80

176

Table 15. Nmap scan times for Proliphix thermostat and thermostat honeypot

Trial IoT SYN Time (s) IoT UDP Time (s) IoT FIN Time (s)

1 50.24 323.12 68.33

2 37.15 323.11 71.29

3 44.71 319.66 68.46

4 17.85 323.43 59.27

5 89.1 323.82 69.48

Trial Honey SYN Time (s) Honey UDP Time (s) Honey FIN Time (s)

1 171.72 4325.40 181.75

2 147.96 4325.74 181.03

3 169.50 4325.82 173.00

4 169.44 4325.63 150.38

5 169.31 4325.80 169.31

177

Table 16. Nmap scan times for ezOutlet2 and outlet honeypot

Trial IoT SYN Time (s) IoT UDP Time (s) IoT FIN Time (s)

1 129.27 4326.17 2216.31

2 130.42 4325.4 2080.48

3 130.72 4325.85 2033.43

4 132.79 4325.9 2358.04

5 130.39 4325.24 2030.31

Trial Honey SYN Time (s) Honey UDP Time (s) Honey FIN Time (s)

1 181.00 188.62 185.05

2 178.51 188.72 179.54

3 178.49 188.69 186.30

4 156.98 208.57 178.35

5 178.49 188.67 179.74

178

Appendix G. Statistical Tests

Figure 75. TITAThink camera query response time T-test 100 queries - 1 user

179

Figure 76. TITAThink camera query response time T-test 100 queries - 10 users

Figure 77. TITAThink camera query response time T-test 100 queries - 20 users

180

Figure 78. TITAThink Camera query response time T-test 500 queries - 1 user

Figure 79. TITAThink camera query response time T-test 500 queries - 10 users

181

Figure 80. TITAThink camera query response time T-test 500 queries - 20 users

Figure 81. TITAThink camera query response time T-test 1000 queries - 1 user

182

Figure 82. TITAThink camera query response time T-test 1000 queries - 10 users

Figure 83. TITAThink camera query response time T-test 1000 queries - 20 users

183

Figure 84. Proliphix thermostat query response time T-test 100 queries - 1 user

Figure 85. Proliphix thermostat query response time F-test and T-test 100 queries - 5

users

184

Figure 86. Proliphix thermostat query response time F-test and T-test 100 queries -

10 users

Figure 87. Proliphix thermostat query response time T-test 500 queries - 1 user

185

Figure 88. Proliphix thermostat query response time F-test and T-test 500 queries - 5

users

Figure 89. Proliphix thermostat query response time F-test and T-test 500 queries -

10 users

186

Figure 90. Proliphix thermostat query response time T-test 1000 queries - 1 user

Figure 91. Proliphix thermostat query response time F-test and T-test 1000 queries -

5 users

187

Figure 92. Proliphix thermostat query response time F-test and T-test 1000 queries -

10 users

Figure 93. ezOutlet2 query response time T-test 100 queries - 1 user

188

Figure 94. ezOutlet2 query response time T-test 100 queries - 10 users

Figure 95. ezOutlet2 query response time F-test and T-test 100 queries - 20 users

189

Figure 96. ezOutlet2 query response time T-test 500 queries - 1 user

Figure 97. ezOutlet2 query response time T-test 500 queries - 10 users

190

Figure 98. ezOutlet2 query response time T-test 500 queries - 20 users

Figure 99. ezOutlet2 query response time T-test 1000 queries - 1 user

191

Figure 100. ezOutlet2 query response time T-test 1000 queries - 10 users

Figure 101. ezOutlet2 query response time T-test 1000 queries - 20 users

192

Figure 102. TITAThink camera Nmap SYN times Mann-Whitney U test

Figure 103. TITAThink camera Nmap UDP times Mann-Whitney U test

193

Figure 104. TITAThink camera Nmap FIN times Mann-Whitney U test

Figure 105. Proliphix thermostat Nmap SYN times Mann-Whitney U test

194

Figure 106. Proliphix thermostat Nmap UDP times Mann-Whitney U test

Figure 107. Proliphix thermostat Nmap FIN times Mann-Whitney U test

195

Figure 108. ezOutlet2 Nmap SYN times Mann-Whitney U test

Figure 109. ezOutlet2 Nmap UDP times Mann-Whitney U test

196

Figure 110. ezOutlet2 Nmap FIN times T-test

197

Bibliography

1. H. Suo, J. Wan, C. Zou, and J. Liu, “Security in the internet of things: A review,”
in International Conference on Computer Science and Electronics Engineering,
vol. 3, 2012, pp. 648–651.

2. W. Sun, M. Choi, and S. Choi, “IEEE 802.11ah: A Long Range 802.11 WLAN
at Sub 1 GHz,” Journal of ICT Standardization, vol. 2, no. 2, pp. 83–108, 2014.

3. A. Stachowicz, “ZigBee Wireless Networks,” 2010 [Online]. Available:
http://zigbee.pbworks.com/w/page/25465049/ZigBee [Accessed: 2019-11-01].

4. L. Spitzner, Honeypots: Tracking Hackers. Boston: Pearson Education, 2002.

5. N. Provos and T. Holz, Virtual Honeypots: From Botnet Tracking to Intrusion
Detection, 1st ed. Boston: Pearson Education, 2008.

6. Insecure.COM LLC, “Nmap OS Fingerprinting 2nd Generation DB,” 2017
[Online]. Available: https://svn.nmap.org/nmap/nmap-os-db [Accessed: 2019-
11-01].

7. N. Provos, “test.sh,” 2008 [Online]. Available: https://searchcode.com/
codesearch/view/19216596/ [Accessed: 2019-11-01].

8. C. Hock-Chuan, “HTTP (HyperText Transfer Protocol),” 2009 [Online]. Avail-
able: http://www.ntu.edu.sg/home/ehchua/programming/webprogramming/
http basics.html [Accessed: 2019-11-01].

9. K. W. Ching and M. M. Singh, “Wearable Technology Devices Security and
Privacy Vulnerability Analysis,” International Journal of Network Security & Its
Applications, vol. 8, no. 3, pp. 19–30, 2016.

10. T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a trillion (unfix-
able) flaws on a billion devices,” Proceedings of the 14th ACM Workshop on Hot
Topics in Networks - HotNets-XIV, pp. 1–7, 2015.

11. N. Provos, “Honeyd: A Virtual Honeypot Daemon,” in Proceedings of the 10th
DFNCERT Workshop, Hamburg, Germany, 2003, pp. 1–7.

12. Nest Support, “How to add your Nest thermostat to the Nest
app,” 2019 [Online]. Available: https://nest.com/support/article/
How-do-I-pair-my-Nest-Learning-Thermostat-with-my-Nest-Account#section-4
[Accessed: 2019-06-01].

13. Ring, “Ring Setup Guide,” 2018 [Online]. Available: https://images-na.
ssl-images-amazon.com/images/I/E1I-CD2BeQS.pdf [Accessed: 2019-06-01].

14. T. Salman and R. Jain, “A Survey of Protocols and Standards for Internet of
Things,” Advanced Computing and Communications, vol. 1, no. 1, 2017.

15. P. McDermott-Wells, “What is Bluetooth?” Potentials, IEEE, vol. 23, no. 5, pp.
33–35, 2005.

198

16. Bluetooth SIG, “Specification of the Bluetooth System: Core System Package
[BR/EDR Controller volume],” Bluetooth Specification Version 4.0, vol. 2, p. 36,
2010.

17. Bluetooth SIG, “Specification of the Bluetooth System: Core System Package
[Low Energy Controller volume],” Bluetooth Specification Version 4.0, vol. 6,
p. 17, 2010.

18. J. S. Lee, Y. W. Su, and C. C. Shen, “A comparative study of wireless pro-
tocols: Bluetooth, UWB, ZigBee, and Wi-Fi,” IECON Proceedings (Industrial
Electronics Conference), pp. 46–51, 2007.

19. D. E. Zheng and W. A. Carter, Leveraging the Internet of Things for a More
Efficient and Effective Military. Washington D.C.: Center for Strategic & In-
ternational Studies, 2015.

20. K. Rawlinson, “HP Study Reveals 70 Percent of Internet of Things Devices
Vulnerable to Attack,” 2014 [Online]. Available: http://www8.hp.com/us/en/
hp-news/press-release.html?id=1744676 [Accessed: 2018-04-06].

21. M. Patton, E. Gross, R. Chinn, S. Forbis, L. Walker, and H. Chen, “Uninvited
connections: A study of vulnerable devices on the internet of things (IoT),”
Proceedings - 2014 IEEE Joint Intelligence and Security Informatics Conference,
JISIC 2014, pp. 232–235, 2014.

22. M. Ryan, “Bluetooth: With Low Energy Comes Low Security,” in Proceedings
of the 7th USENIX Conference on Offensive Technologies, Washington D.C.,
2013, p. 7 [Online]. Available: https://www.usenix.org/system/files/conference/
woot13/woot13-ryan.pdf [Accessed: January 25, 2019].

23. Nest, “What is Bluetooth Low Energy (BLE), and do I need it to use
Nest Products?” 2018 [Online]. Available: https://nest.com/support/article/
What-is-Bluetooth-Low-Energy-BLE-and-do-I-need-it-to-use-Nest-Products
[Accessed: 2018-07-23].

24. B. Cyr, W. Horn, D. Miao, and M. Specter, “Secu-
rity Analysis of Wearable Fitness Devices (Fitbit),” pp. 1–14,
2014 [Online]. Available: https://courses.csail.mit.edu/6.857/2014/files/
17-cyrbritt-webbhorn-specter-dmiao-hacking-fitbit.pdf [Accessed: 2018-07-23].

25. Tile, “What’s Tile’s range?” 2018 [Online]. Available: https://
support.thetileapp.com/hc/en-us/articles/200991837-What-s-Tile-s-range- [Ac-
cessed: 2018-07-23].

26. T. DiCola, “Reverse Engineering a Bluetooth Low Energy
Light Bulb,” 2015 [Online]. Available: https://learn.adafruit.com/
reverse-engineering-a-bluetooth-low-energy-light-bulb/overview [Accessed: Jan-
uary 25, 2019].

27. B. Scottberg, W. Yurcik, and D. Doss, “Internet honeypots: protection or en-
trapment?” in IEEE 2002 International Symposium on Technology and Society
(ISTAS’02). Social Implications of Information and Communication Technology.
Proceedings, no. 2, Raleigh, NC, 2002, pp. 387–391.

199

28. N. Provos, “A Virtual Honeypot Framework,” in Proceedings of the 13th
USENIX Security Symposium, San Diego, CA, 2004, pp. 1–14 [Online].
Available: http://static.usenix.org/event/sec04/tech/full papers/provos/provos
html/ [Accessed: January 25, 2019].

29. M. Masters, “Understanding Intrusion Detection Systems,” 2001 [On-
line]. Available: https://www.sans.org/reading-room/whitepapers/detection/
understanding-intrusion-detection-systems-337 [Accessed: 2018-07-23].

30. A. Orebaugh and B. Pinkard, Nmap in the Enterprise: Your Guide to Network
Scanning. Burlington: Syngress, 2011.

31. G. F. Lyon, Nmap network scanning : official Nmap project guide
to network discovery and security scanning, 2008 [Online]. Available:
https://nmap.org/book/ [Accessed: January 25, 2019].

32. Y. M. Pa Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and C. Rossow,
“IoTPOT: Analysing the Rise of IoT Compromises,” in USENIX Workshop on
Offensive Technologies, 2015.

33. A. G. Manzanares, “HoneyIo4 The construction of a virtual , low- interaction
IoT Honeypot,” Ph.D. dissertation, Universitat Politècnica de Catalunya,
2017 [Online]. Available: https://upcommons.upc.edu/bitstream/handle/2117/
108166/Alejandro Guerra Manzanares.pdf [Accessed: January 25, 2019].

34. K. P, “Capturing attacks on IoT devices with a multi-purpose IoT honeypot,”
Ph.D. dissertation, Indian Institute of Technology Kanpur, 2017 [Online].
Available: https://security.cse.iitk.ac.in/node/155 [Accessed: February 20,
2018].

35. M. Freeman and A. Woodward, “SmartPot - Creating a 1 st Generation Smart-
phone Honeypot,” in Australian Digital Forensics Conference, Perth, Western
Australia, 2009, pp. 24–31.

36. C. Kreibich and J. Crowcroft, “Honeycomb Creating Intrusion Detection Signa-
tures Using Honeypots,” ACM SIGCOMM Computer Communications Review,
vol. 34, no. 1, pp. 51–56, 2004.

37. L. Spitzner, “Honeypots: Catching the insider threat,” in Proceedings - Annual
Computer Security Applications Conference, ACSAC, Las Vegas, NV, 2003, pp.
170–179.

38. H. Zhang, S. Wei, L. Ge, D. Shen, W. Yu, E. P. Blasch, K. D. Pham, and G. Chen,
“Towards An Integrated Defense System for Cyber Security Situation Awareness
Experiment,” Sensors and Systems for Space Applications, vol. 8, 2015.

39. TITAThink, “TITAThink Store,” 2018 [Online]. Available: https://titathink.
com/shop/ [Accessed: 2019-02-01].

40. Proliphix Inc, Professional Series Network Thermostat Configuration Guide
(NT100e/h, NT120e/h, NT130e/h, NT150e/h, and NT160), 2007 [On-
line]. Available: http://www.proliphix.com/Collateral/Documents/English-US/
ProSeriesConfigurationGuide.pdf [Accessed: January 25, 2019].

200

41. Mega System Technologies, “Product Introductions & Information,” 2017
[Online]. Available: http://www.megatec.com.tw/info.htm#ezOutlet [Accessed:
January 25, 2019].

42. IANA, “Hypertext Transfer Protocol (HTTP) Status Code Registry,”
2018 [Online]. Available: https://www.iana.org/assignments/http-status-codes/
http-status-codes.xhtml [Accessed: 2019-11-01].

43. S. Moon, “Basic Sniffer,” 2011 [Online]. Available: https://www.binarytides.
com/python-packet-sniffer-code-linux [Accessed: January 25, 2019].

44. D. Siegle, “T Test” [Online]. Available: https://researchbasics.education.uconn.
edu/t-test/ [Accessed: 2019-09-01].

45. T. Levine, “T-test for non normal when N>50?” 2011 [Online]. Available: https:
//stats.stackexchange.com/questions/9573/t-test-for-non-normal-when-n50 [Ac-
cessed: 2019-03-01].

46. B. McNeese, “Anderson Darling Test for Normality,” 2011 [On-
line]. Available: https://www.spcforexcel.com/knowledge/basic-statistics/
anderson-darling-test-for-normality [Accessed: 2019-09-01].

47. C. Zaiontz, “Wilcoson Rank Sum Test,” 2014 [Online]. Available: https:
//www.real-statistics.com/non-parametric-tests/wilcoxon-rank-sum-test/ [Ac-
cessed: 2019-11-01].

48. C. Zaiontz, “Mann-Whitney Test for Independent Samples,” 2014
[Online]. Available: https://www.real-statistics.com/non-parametric-tests/
mann-whitney-test/ [Accessed: 2019-11-01].

49. J. Jones, “Stats: F-Test,” 1996 [Online]. Available: https://people.richland.edu/
james/lecture/m170/ch13-f.html [Accessed: 2019-09-01].

50. Nest, “Nest Home Page,” 2019 [Online]. Available: https://nest.com/ [Accessed:
2019-06-01].

51. Ring, “Ring Home Page,” 2019 [Online]. Available: https://ring.com/ [Accessed:
2019-06-01].

52. L. J. Flynn, “Poor Nations Are Littered With Old PC’s, Report Says,”
2005 [Online]. Available: https://www.nytimes.com/2005/10/24/technology/
poor-nations-are-littered-with-old-pcs-report-says.html [Accessed: 2019-06-01].

53. N. Provos, “Honeyd Downloads and Releases,” 2009 [Online]. Available:
http://www.honeyd.org/release.php [Accessed: 2019-06-01].

54. DataSoft, “Honeyd 1.6d GitHub,” 2013 [Online]. Available: https://github.com/
DataSoft/Honeyd [Accessed: 2019-06-01].

55. Cymmetria, “Honeycomb GitHub,” 2018 [Online]. Available: https://github.
com/Cymmetria/honeycomb [Accessed: 2019-06-01].

201

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

21–03–2019 Master’s Thesis Sept 2017 — Mar 2019

Examining Effectiveness of Web Based
Internet of Things Honeypots

19G437

Stafira, Lukas A, 2d Lt

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-19-M-057

Joseph A. Misher
Department of Homeland Security
Advanced Technology Security Division, Federal Protective Service
800 North Capitol Street NW, Washington D.C. 20001
COMM 202-658-8806
Email: Joseph.misher@hq.dhs.gov

DHS

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The Internet of Things (IoT) is growing at an alarming rate. It is estimated that there will be over 25 billion IoT devices
by 2020. The simplicity of their function usually means that IoT devices have low processing power, which prevent them
from having intricate security features, leading to vulnerabilities for attackers. Honeyd is popular open-source software
written by Niels Provos that creates low-interaction virtual honeypots. It is able to simulate everything on the network
level, allow the user to create various Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) services,
and allow Operating System (OS) simulation for scanning tools such as Nmap. Three IoT devices are simulated in
Honeyd: a TITAThink camera, a Proliphix thermostat, and an ezOutlet2 power outlet. The common theme among all
the devices is that that they utilize the Hyptertext Transfer Protocol (HTTP) to display their information to the user.
This research seeks to determine if Honeyd is capable of producing convincing web based IoT honeypots.

Internet of Things, Honeypots, Honeyd, Smart Devices, IoT Honeypots

U U U UU 223

Dr. B. E. Mullins, AFIT/ENG

(937)-255-3636 x7979; Barry.Mullins@afit.edu

