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Abstract
The recent advances in creating nearly degenerate quantumdipolar gases in optical lattices are
opening the doors for the exploration of equilibriumphysics of quantum systemswith anisotropic
and long-range dipolar interactions. In this paper we study the zero- andfinite-temperature phase
diagrams of a systemof hard-core dipolar bosons at half-filling, trapped in a two-dimensional square
optical lattice. The dipoles are aligned parallel to one another and tilted out of the optical lattice plane
bymeans of an external electric field. At zero-temperature, the system is a superfluid (SF) at all tilt
angles θ provided that the strength of dipolar interaction is below a critical valueVc ( )q . Upon
increasing the interaction strengthwhile keeping θfixed, the SF phase is destabilized in favor of a
checkerboard or a stripe solid (SS) depending on the tilt angle.We explore the nature of the phase
transition between the two solid phases, identifying a region ofmetastable emulsion states intervening
between the two solid lobes. Additionally, we study the stability of these quantumphases against
thermal fluctuations andfind that the SS is themost robust,making it the best candidate for
experimental observation.

1. Introduction

Experimental progress in trapping and controlling ultra cold atoms andmolecules has led to the observation of
magnetic and electric dipolar interactions in a variety of systems [1–13]. These systems can be used as quantum
simulators to study quantum transport and dynamical and equilibriumproperties ofmodels featuring long-
range and anisotropic dipolar interactions. Long-range dipolar interactions have been predicted to stabilize a
plethora of exotic quantumphases such as p-wave superfluids (SFs), SFs ofmultimers, charge density waves,
stripe solids (SSs), and supersolids.Moreover, dipolar interactions play an important role inmanymodels of
strongly correlated systems, excitonswith spatially separated electrons and holes [14–16], and frustrated
quantummagnets [17–19].

The recent success in creating a gas of polarmolecules in an optical lattice is the first step towards the
realization of a low-entropy initial state which is a key ingredient for creating a quantum simulator [7, 20, 21]
built using electric dipoles. Similarly the recent progress in loading Er atoms in an optical lattice, accompanied
by the observation ofmodifications of the SF toMI transition [22] is a groundbreaking step toward simulating
quantummagnetism usingmagnetic dipoles. The ability to change the alignment of the dipolemoment by
applying an externalfield has sparked numerous studies on themany-body phases of dipolar gases.Many-body
bosonic and fermionic dipoles with dipoles aligned perpendicular to the lattice or parallel to the lattice have been
studied extensively [23–31]. However, the theoretical and numerical effort to study dipolar gases with dipoles
aligned at arbitrary tilt angles has either focused on continuous systems [32–41] or has employed non-exact
methods such as functional renormalization group [42], meanfield theory and variational approaches [43–45].
In particular, soft-core dipolar bosons trapped in optical lattices have been found to stabilize a variety of phases
which include SF, checkerboard solid (CB), supersolid, SS, depending on the geometry of the system and the
filling factor.
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In the followingwe present a systematic study of a systemof hard-core, dipolar bosons trapped in a two-
dimensional square lattice.We treat the alignment of the dipoles as a parameter which can be adjusted via the
application of an externalfield.We use theworm algorithm (WA) [46], a type of path integral quantumMonte
Carl (QMC)method, and study the zero- and finite-temperature phase diagrams of the system at half-filling as a
function of the tilt angle and the strength of dipolar interaction.Wefind that at low interaction strength the
system is in the SF state for any value of the tilt angle. Upon increasing the interaction strength the SF phase is
destabilized in favor of either aCB or a SS depending on the tilt angle. In the transition region between the two
solid phases we observemetastable phases consisting of coexisting domains of the two solids. Additionally, we
study the robustness of these quantumphases against thermalfluctuations and show that the solid phases
survive at temperatures higher than the critical temperature for the disappearance of the SF phase. In particular,
due to the anisotropy of the dipolar interaction, the SS turns out to be themost robust phase,making it the best
candidate for experimental observation.We give predictions for actual experimental setups and temperatures
required to observe solid phases.

This paper is structured as follows: in section 2we discuss theHamiltonian describing the system. In
section 3we present the zero andfinite-temperature phase diagrams. In section 4we discuss howharmonic
confinement affects our results. In section 5we explore possible experimental realizations and provide
temperature estimates. Finally, section 6 concludes the paper.

2.Hamiltonian

We study a systemof hardcore, dipolar bosonswith induced dipolemoment d, confined by a two-dimensional
square optical lattice with lattice constant a and by an external harmonic trap. A schematic representation of this
setup, in the absence of the external confinement, is shown infigure 1.Dipoles are aligned parallel to each other
along the direction of polarization, determined by an electromagnetic fieldwhichwe assume points along the z–
y plane, with polar angle θ and azimutal angle 2f p= . The system is described by theHamiltonian

H J a a V
n n

r
n1 3 cos , 1

i j
i j

i j

i j

ij
ij

i
i i3

2( ) ( )†å å åa m= - + - -
á ñ <

where thefirst termdescribes the kinetic energy of the systemwith hopping energy J and the second term is the
dipole-dipole interactionwith strengthV d a2 3µ and r r rij i j∣ ∣=  -  . ija characterizes the angle between the
direction of the polarization and the relative position of the two particles given by rij


. Here, ai

† (ai) are the bosonic
creation (annihilation) operators with the usual commutation relations and n a ai i i

†= .The hard-core condition
a 0i

2† = implies that sites withmore than one atom are energetically suppressed due to a large onsite interaction

Figure 1. Schematic representation of the system.Dipoles are trapped in a two-dimensional optical lattice and are aligned parallel to
each other along the direction of polarization, determined by an electromagnetic field.We assume that the external electric field points
along the z–y plane, with polar angle θ and azimutal angle 2f p= . The anisotropic dipolar interaction depends on the angle ija
between the direction of polarization and the relative position of particles.
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energy penalty. In this limit the usual onsite interaction termof the Bose–Hubbardmodel does not play any role.
Weuse ...á ñ to denote nearest neighboring sites. Finally, wi x y i,

2åm m x= - x x=
, wherewξ and ix are the strength

of harmonic confinement and the coordinate of site i along axis ξ, respectively, andμ is the chemical potential
which sets the total number of particles.

3. Zero- andfinite-temperature phase diagrams

In this section, we present the zero- and finite-temperature phase diagrams of the systemdescribed by
equation (1) at half-filling and in the absence of an external harmonic confinement. The chemical potential is set
to ensure the half filling condition, n N N 0.5sites= = . The effect of the harmonic confinement is discussed in
section 4. Our results are based on path integral QMC simulations using theWA.Unless otherwise noted, we
simulate systemswith spacial dimensions L×L, where L=24, 30, 36, and 42, with N L Lsites = ´ and use
periodic boundary conditions. To extract the ground state phase diagram,wework at inverse temperature

L Jb = which ensures that the system is effectively at zero temperature.
Themain panel infigure 2 shows the zero-temperature phase diagram in theV J q- planewhich features

three phases: a SF phase, a CB solid phase, and a SS phase. The SF phase possesses off-diagonal long-range order
and is characterized by finite SF stiffness sr , which can be extracted from simulations bymeasuring thewinding
number in space m LW ds

d2 2r b= á ñ - [47]. The diagonal order in the solid phases is characterized by afinite
value of structure factor S n n Nk k r rexp i

r r r r,
( ) [ ( )]å= - ¢ á ñ¢ ¢ , where k is the reciprocal lattice vector.We

use k ,( )p p= and k 0,( )p= to identify the CB and SS phases, respectively.
At low interaction strength, the system is in a SF phase for any value of the tilt angle θ. The SF phase is

destabilized towards a solid phase as the interaction is increased above a critical valueV Jc ( )q . Filled squares
mark the onset of the CB solid, which forms at lower θ, whilefilled trianglesmark the onset of the stripe phase
which appears at larger θ.

Using energy considerations, it is easy to see that the anisotropic nature of the dipolar interaction leads to the
stabilization of theCB solid at 0q = and the SS phase at 2q p= .Moreover we observe that at larger values of
the tilt angle the SF phase is less stable against increasing the dipolar interaction strength. Indeed, at a tilt angle

2q p= , the dipolar interaction strength needed to destroy superfluidity in favor of a solid is about a factor of
two smaller thanwhat needed at a tilt angle 0q = . At intermediate tilt angles, 6q p~ , the competition
between the two solid orders renders both unstable. This adds to the robustness of the SF phase, where a dipolar
interactionV J 6~ is required in order to destroy the off-diagonal long range order.

Wefind the solid-SF transition points by studying finite size effects on sr and S k( ).We determine the error
bars for the solid to SF transition bymonitoring the order parameters characterizing the two phases, namely sr
and S k( ).We assure that the order parameter characterizing the solid phase vanishes with increasing system size
aswe cross the phase boundary to the SF phase and vice versa.

Figure 2.Zero-temperature phase diagramof the systemdescribed by equation (1) as a function of tilt angle θ andV/J, and in the
absence of harmonic confinement. The system features a checkerboard solid (CB), a stripe solid (SS), and a superfluid phase (SF). The
CB-SS transition features a region in parameter spacewheremetastable emulsions intervening between the two phases are present
(shaded area). Thismay be a signature of a first-order phase transition, or an emulsion phase separating the two solids. If error bars are
not visible they arewithin symbol size.
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Given the nature of the interaction and the dimensionality of the system, as a function of density, a phase
transition between two ordered states is not allowed [25, 48–50]. Instead, amicro-emulsion phasewhere a
mesoscalemixture of phases is present intervenes between the two ordered states. However, in the followingwe
study the phase transitions atfixed density, while varying the interaction strength. First we investigate the phase
transition between theCB and SS phases atV J 8= . To this endwe perform scans along the cutmarked I on the
main panel of figure 2.We provide examples of the densitymap of the system in this region infigure 3(a). Here,
each small dot shows an empty lattice site, while the larger circles indicate sites with unit or nearly unit filling. In
this region, the system features variousmetastable emulsion phases of the SS andCB solid. The densitymaps
shown infigure 3(a) show regions of SS andCBphase separated by domainwalls. Thismetastability persists for
system sizes up to L=100 studied in this work, with the shape of the emulsion domains varying depending on
the initial conditions of the simulation. The presence ofmetastability indicates that the transition is not a
second-order phase transition.However,metastability can be attributed to two different scenarios: first-order
transition between the two solids, or an emulsion region separating the two phases. At present we are not able to
distinguish between the two.

We have also investigated the nature of the CB-SF phase transition by performing a similar scan along
V J 4= line labeled as II, for a systemwith L=100. Infigure 3(b)we plot the structure factor S ,( )p p as a
function of θusing filled circles. The SF density sr is shownusing filled triangles.We observe hysteresis in both
S ,( )p p and sr with awidth of the hysteresis loop of only 0.015qD ~ . This observation suggests that the system
undergoes aweak first-order phase transition. It should be noted thatwe have not observed an emulsion phase
intervening between the SF and theCBphase for system sizes up to L=100.Hence if the emulsion phase exists,
the size of emulsionwould be larger than this lattice size, and correspondingly large systems should be used in
order to observe it experimentally. It should be noted that we have not found a region in the parameter space
where diagonal and off-diagonal order coexist. This indicates that there is no supersolid phase intervening
between the SF and either of the solid phases.

Next we present an investigation of the robustness of the quantumphases described above against thermal
fluctuations. As expected, wefind the solid phases to be themost robust against thermalfluctuations.We have
performed scans overV/J at two tilt angles 0.271q = and 0.84q = corresponding to SF-CB and SF-SS

Figure 3.The behavior of the system along cuts I and II. (a)The density distribution of the system along cut I through the shaded
region in figure 2 at two values of θ shows evidence ofmicro emulsion phase.Here, each circle corresponds to a different site, and its
radius is proportional to the local average density. (b)TheCB structure factor S ,( )p p and superfluid density sr as a function of θ
along cut II.Wefind evidence of hysteresis which indicates that this transition behaves as a weakfirst-order phase transition for finite
systems.
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transitions at zero temperature. Our results for 0.271q = are summarized in figure 4. The phase boundaries are
extracted fromfinite size scaling analysis of sr and S ,( )p p .Wewere not able to resolve the phase boundaries
within the shaded regionwith the system sizes considered in this paper.Within this regionwe expect the system
to undergo either aweak first order phase transition or feature amicro-emulsion phase at zero temperature.
Upon increasing the temperature, thermalfluctuations destroy the SF phase in favor of a normal fluid via a
Kosterlitz–Thouless (KT) transition [51]. Infigure 4(b)we show sr as a function ofT/J for L=24, 36, 42, 48,
and 66 atV J 2= , indicated as cut I infigure 4(a). In the thermodynamic limit, a universal jump is observed at
the critical temperature given by T mk T2s c B c

2( ) r p= . In afinite size system this jump is smeared out as seen
infigure 4(b). To extract the critical temperature in the thermodynamic limit, we apply finite-size scaling to

Tc(L). From renormalization-group analysis one findsT L T
c

Lln
c c 2
( ) ( )

( )
= ¥ + , where c is a constant andTc(L)

is determined from T L mk T, 2s c B c
2( ) r p= [52–54].We therefore extract the critical temperature as shown in

figures 4(b) and (c). The dashed line infigure 4(b) corresponds to Tsr p= and its intersection points with each

sr versusT/J curve are used tofindTc as shown infigure 4(c).WefindT J 0.66c » atV J 2= . TheCB solid
melts in favor of a normal fluid via a two-dimensional Ising transition.We use standardfinite size scaling as
shown in the inset offigure 4wherewe plot the scaled structure factor S L, 2( )p p b n , with 2 0.25b n = as a
function ofT/J for L=18, 24, 36, 42, 48 along cut II, atV J 4= . The crossing indicates a critical
temperatureT J 0.812 0.002c =  .

We have performed a similar analysis at fixed tilt angle 0.84q = where the zero-temperature phase diagram
features the SF and SS phases. The results are shown infigure 5(a). Critical temperatures are found using the
samemethods as described for the SF andCBphases. It is worth noting thatwhile both the SS andCBphases are
more robust against thermalfluctuations compared to the SF phase, at any givenV/J the SS phase has critical
temperature roughly twice that of theCBphase.

Finally, we look at the finite temperature properties of themetastable CB-SS region atV J 8= . In
figure 5(b)we show S k( ) for theCB and SS phases as a function ofT/J at 0.48q » and L=100.We use squares
and circles to show S ,( )p p and S , 0( )p , respectively. Thefilled and open symbols correspond to two different
initial conditions chosen for the simulations at eachT/J. Since the equilibriumdensity distribution of these
metastable phases is affected by the choice of initial conditions, we observe large fluctuations in S k( ).Wefind
that atT J 1.2 the system is in the normal fluid phase, with both SS andCBphases disappearing. IfT J 1.2<
themetastable phase can be dominated by either solid order, depending on the initial conditions.

Figure 4. (a) Finite temperature phase diagram at tilt angle 0.271q = . Upon increasing the temperature, thermal fluctuations destroy
the CB and SF order in favor of a normalfluid. TheCBphasemelts via a two-dimensional Ising transition. The inset shows the scaled
structure factorwith 2 0.25b n = for L=18, 24, 36, 42, 48 along cut II, at V J 4= . The crossing determines the critical
temperature T J 0.812 0.002c =  . The SF-normalfluid transition is aKosterlitz–Thouless phase transition. In (b)we show sr as a
function ofT/J for L=24, 36, 42, 48, and 66 along cut I at V J 2= . The dashed line is given by T p. In (c)we use the intersection
points between the T p line and the sr versusT/J curves at each L to extract T J 0.66c » .
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4.Harmonic confinement

In a typical experimental systemparticles are subject to the optical lattice potential as well as an external
harmonic confinement. The effect of the harmonic confinement can be taken into account in theQMC
simulations through a site-dependent chemical potential as shown inHamiltonian(1).

The variation of the chemical potential provides a scan over density hence resulting in coexistence of phases
realized at half-filling (as described above)with phases stabilized at otherfillings. Herewe use a harmonic
confinement J 0.12w »x . The top and bottom left panels infigure 6 present the equilibriumdensity
distribution of the dipoles, where each circle corresponds to a different site, and its radius is proportional to the
local average density, with the largest radius indicating the presence of one particle on that site.

In the presence of the harmonic trapping potential we cannot use the usual winding number relations to
measure the SF density in the different regions of the trap.However we can use the off-diagonal correlator
a r a ri j( ) ( )†á ñ
 

, tomap the SF regionswithin the trap. In the panels on the right-hand side offigure 6we assign a
certain brightness to each lattice site. The brightness is inversely proportional to the distance over which the
correlator a r a ri j( ) ( )†á ñ

 
with ri


or rj

fixed at that lattice site decays. For example, if the correlator does not decay,

then that lattice site will bewhite. Conversely, if the correlator decays exponentially over distances of the order of
one lattice constant, that lattice site will be dark.

The top left and right panels correspond toV J 2= , tilt angle 1.34q = and N 511~ . The particles at the
center of the trap form aMIwith unit fillingwhile a SS is stabilized inmost of the outer shell. The dark regions in
the top right panel indicate an absence of off-diagonal long-range order, corresponding to the SS andMI phases.
Given the steepness of the harmonic potential, we do not observe a SF shell separating the two insulating phases,
however off-diagonal long-range order is present adjacent to theMI shell. This is due to themismatch between
the symmetry of the SS and the trap, which destabilizes the SS and allows for the build up of phase coherence in
this region.

The bottom left and right panels offigure 6 corresponds toV J 6= and tilt angle 0.27q = for which the
CBphase is stabilized at half filling. The total number of particles in the trap is N 1217~ .We observe the
presence of SF phase at the center of the trap, followed by a shell of CB solid which givesway to a SF outer shell
once the harmonic potential is strong enough destroy the solid order. The SF regions are characterized by local
density different than 1 and 0.5 as the left panel shows, while off-diagonal long-range order is present as seen in
the right panel. On the other hand, the left panel clearly shows aCB structure at density 0.5 in the inner shell with
corresponding absence of off-diagonal long-range order (dark color in right panel).We note that the solid
phases can be detected using Bragg spectroscopy techniques or single-site imaging [55, 56]. The results presented
are similar towhat reported for dipolar fermions in [42, 57, 58]where coexistence of phases is observed in the
presence of a harmonic confinement.

Figure 5. (a) Finite temperature phase diagram at tilt angle 0.84q = . Critical temperatures are found using the samemethods as
described for the data infigure 4. (b) Finite temperature properties of theCB-SSmetastable phases at V J 8= , 0.48q » , and
L=100. Squares and circles correspond to S ,( )p p and S , 0( )p , respectively. Filled and empty symbols refer to different initial
conditions. At T J 1.2 the system is in the normal fluid phase, while at T J 1.2< , themetastable phase is dominated by either
solid order, depending on the initial conditions.
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5. Experimental realization

The systemdescribed in section 2 can be experimentally realized using bosonic polarmolecules trapped in a two-
dimensional square lattice, or systemswithmagnetic dipolarmoments, such asDy and Er.While the current
experiments withmagnetic dipoles operate in the soft-core regime [22], the existence of Feshbach resonances
allowone to tune the inter-species interactions to approach the hard-core limit [1, 9, 13, 59, 60]. External electric
andmagnetic fields are used to align electric andmagnetic dipolemoments, respectively, realizing an interaction
termof the formdescribed in equation (1). The equilibrium states in the hard-core regime, such as the ones
described above, have not been prepared yet. However, rapid experimental advances will allow for the
realization of these states in the future. Our calculations suggest that, unless dipoles are tilted at intermediate
angles 6q p~ , for which superfluidity survives even for suppressed hopping strength J V 0.17~ , solid
phaseswould be the best candidate for experimental observation since they aremore robust against thermal
fluctuations. For example, for a systemof Er2 Feshbachmolecules [13]withmagneticmoment d 14 Bm= ,
where Bm is the Bohrmagneton, trapped in an optical lattice with lattice constant a=532 nmanddepth
V E15 R0 ~ , one gets a hopping rate J/h∼4 Hz andV J 4.3~ . Hence, observation of the SSwould be possible
at temperaturesT 0.5~ nK. For a systemof 39K87Rb polarmolecules with permanent dipolemoment
d D0.57= , trapped in an optical lattice with lattice constant a=532 nmand depthV E10 R0 = , one gets a
tunneling rate J h 30 Hz~ and amaximumvalue (computed at the permanent dipolemoment) ofV J 10~
which results in a temperatureT 10~ nKneeded to observe the SS.

Alternatively, a sufficiently deep optical lattice can be used to suppress double occupancy. In this limit, the
hard-core condition is valid for all tilt angles. This is particularly relevant to the case of chemically reactive polar
molecules, where, for example, a lattice depth ofV E40 R0 = [7], pins the polarmolecules in place. In this system,
internal rotational states are used to engineer long-range hopping. In this case, both the hopping and the

Figure 6. Left panels: density distribution of dipoles in the presence of a harmonic potential (see text). Each circle corresponds to a
different site, and its radius is proportional to the local average density. Right panels: statistics of the off-diagonal correlator
a r a ri j( ) ( )†á ñ
 

(see text for detail). A brighter color corresponds to regions of the trapwhere off-diagonal long-range order is present.
Top left and right panels: V J 2= , 1.34q = , N 511~ . AMI phasewith filling factor one is observed at the center of the trap, while a
stripe solid is stabilized inmost of the outer shell. Bottom left and right panels: V J 6= , 0.27q = , N 1217~ . A superfluid phase is
observed at the center of the trap, followed by a shell of CB solidwhich gives way to a superfluid outer shell once the harmonic
potential is strong enough destroy the solid order.
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interaction terms are determined by the dipolemoment of themolecules and the lattice constant, and the
corresponding ratio is tunable by electromagnetic fields and choice of rotational levels [7, 19–21]. For instance,
for the two lowest rotational states,V/J can be tuned to take values between 0 and 6. The only relevant difference
in this implementation compared to the one described above is that the the resultingHamiltonian features long-
range and anisotropic hopping.While this will introduce new features in the phase diagram, for arrays close to
unitfilling the solid phases will remain robust at similar or larger spin temperatures. It should be noted that in
this implementation the two internal states correspond to the full and empty sites.

6. Conclusions

In summary, we presented the zero- and finite-temperature phase diagrams of a systemof hard-core, dipolar
lattice bosons at half-filling as a function of the alignment of the dipolemoments, characterized by the tilt-angle
θ, and the strength of the dipolar interaction. At zero-temperature, the system features three phases: SF, CB solid
and SS. The SF phase is present at all tilt angles, provided that the interaction strength is belowV Jc ( )q , and
upon increasing the interaction strength the system enters one of the two solid phases depending on the value of
θ.We observed signatures of amicro-emulsion phase transition, observing an emulsion phase of theCB and SS
in the region separating the two solid phases. Finally, we studied the robustness of these phases against thermal
fluctuations and showed that the solid phases can be observed experimentally at temperatures up to∼10nK. A
natural extension to the results presented above is the study of the phase diagrampresented infigure 2 at
different values of the azimuthal angle relative to the lattice basis vector.While we do not expect the appearance
of newphases, for angles θ stabilizing the SS infigure 2 and for intermediate values of the azimuthal angle relative
to the lattice basis vector we expect the SS to be oriented along the diagonal, i.e. a CB solid, rather than along the
axes. A SF region intervening between these two types of SSs is also likely to be present.
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