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1. Introduction 

When dealing with anisotropic polarizable substances, it is convenient to use the 
mixed Eulerian–Lagrangian description of continuum media.  

Consider the immobile spatial coordinate system referred to the coordinates iz  (the 
reference indexes from the middle of the Latin alphabet i, j, k run the values 1, 2, 
3) and assume that our space is Euclidean. In this space, we consider a material 
body B, referred to the material coordinates ax  (the material indexes from the 
beginning of the Latin alphabet a, b, c run the values 1, 2, 3 as well). We accept the 
standard concepts of the covariant and contravariant indexes, and accept the 
standard agreement of summation over the repeat covariant and contravariant 
indexes of the same type (i.e., of the reference or material type).   

As always in mechanics of deformable solids, we distinguish between the initial 
and the current configurations of the body. Let ( )i i az z x=  be the Eulerian 

coordinates in the current configuration of the material point ax  (we use the 
notation ( )a a ix x z=  for the inverse of ( )i az x . Let us use the notation ijZ for 

deformation-independent metrics and the notation abX  for the deformation-
sensitive metrics of the actual material configuration. These two metrics are 
connected by the relationships 

 . .
. .
i j

ab ij a bX Z z z= , . .
. .
a a

ij ab i iZ X x x=  , (1) 

where the mixed shift-tensors .
.
i
az  and .

.
a
ix  are defined as 

 ( ).
.

i
i
a a

z x
z

x
∂

≡
∂

, ( ).
.

a
a
i i

x z
x

z
∂

≡
∂

 . (2) 

The reference and the coordinate systems are characterized by the current covariant 
bases iΖ  and aX  and contravariant bases iΖ  and aX , respectively 

We use the standard notation i∇  and a∇   for the reference and material 
contravariant differentiation in the metrics of the actual configuration. 

2. Polarizable Elastic Substance 

As long as we deal with the statics in the absence of electric current, the formal 
technics of electrostatics and magnetostatics are almost indistinguishable. For the 
sake of brevity and definiteness, let us consider electrostatics. Polarization is a 
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vector quantity. A distributed polarization field is characterized by the density per 
unit mass Π  or per unit volume ρP = Π , where ρ  is the mass density. Vectors Π  
and P can be decomposed with respect to the material basis aX : 

 ,a a
a aP= = ΠP X XΠ .  (3) 

The bulk energy density per unit mass Ψ  is given as a function of the actual 
material metrics abX , the Lagrangian components aΠ  of the polarization vector 
per unit mass, and permanent constant material tensors and constants, which we do 
not mention explicitly in the following: 

 ( ),ab aXΨ= Ψ Π  . (4) 

There are several other reasonable substitutes for ( ),ab aXΨ Π ; for instance, the 
bulk energy density per unit mass ψ  as a function of the Lagrangian components 

aP  of the polarization vector per unit volume. 

 ( ),ab aX Pψ ψ=  . (5) 

It was demonstrated in Grinfeld and Grinfeld1–3 how to derive the cardinal tensors 
for the polarizable elastic substance based on the minimum energy or the Gibbs 
principles. The analysis of Grinfeld and Grinfeld1–3 is applicable to isotropic 
substances. For anisotropic substances we have to use the bulk energy densities of 
the form Eq. 4 or 5.  

Using the relationship in Eq. 4 we arrive at the following formula of the Aleph 
tensor ijℵ : 

 
( )

. .
. .

1 12
4 8

ij i j i j ij k
c d k

cd

z z E E z E E
X

ρ
π π

∂Ψ
ℵ ≡ + −

∂
 , (6) 

where iE  is the electric field. 

Using the relationship in Eq. 5 we arrive at the following formula of the Aleph 
tensor ijℵ : 

       ( ) ( )
( )

. . 1 1 1
. . 4 4 82

ab

ij i j i j j j i j k k ij
a b k kX z z D E D E E E E D E E zψ

π π πρ ∂
∂ℵ = + + − − −  . (7) 

In vacuum, both formulae of the Aleph tensor reduce to the Maxwell tensor:  
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1 1

4 8
ij i j ij k
vac kE E z E E

π π
ℵ ≡ − . (8) 

In the absence of the electrostatic field, the Aleph tensor reduces to the ordinary 
stress tensor: 

 
( )

. .
. .2ij i j

mech c d
cd

z z
X

ρ ∂Ψ
ℵ ≡

∂
 . (9) 

Within the bulk we postulate the following equilibrium equations: 

 
( )

. .
. .

1 12 0
4 8

i j i j ij k
i c d k

cd

z z E E z E E
X

ρ
π π

 ∂Ψ ∇ + − =
 ∂ 

 . (10) 

At the voids-free interface between polarizable solids, we postulate the equilibrium 
equations 

 
( )

. .
. .

1 12 0
4 8

i j i j ij k
c d k i

cd

z z E E z E E N
X

ρ
π π

+

−

 ∂Ψ
+ − = 

∂  
 . (11) 

Of course,  Eqs. 10 and 11 should be amended with the standard equation of 
electrostatics, 

 ( )4 0i i
i E Pπ∇ + = ,  (12) 

and the standard boundary conditions and conditions at infinity. 

3. Conclusion 

The Aleph cardinal tensor ijℵ  appears in a natural way when applying the 
minimum energy variational approach to electrostatics or magnetostatics. The 
Aleph tensor combines the key features of the stress tensors of simple elastic solids 
and the Maxwell stress tensor of electromagnetic field. In this technical note we 
generalized our earlier results for the case of piezoelectric elastic media of arbitrary 
symmetry. The specific form of the Aleph tensor depends essentially on the choice 
of the internal energy of the substance and varies quite significantly when passing 
from the choice of Eq. 4 to the choice of Eq. 5. However, regardless of this choice, 
the Aleph tensor appears to be symmetric for the solids of arbitrary physical 
symmetry, and it allows us to formulate the closed system of piezoelectric or 
piezomagnetic equilibrium.  
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