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Abstract—This paper will show developing a system-on-chip 

(SoC) synthesis tool which is able to automatically generate a set 

of analog blocks. Our approach leverages a differentiating 

technology to automatically synthesize “correct-by-construction” 

Verilog descriptions for both analog and digital circuits and 

enable a portable, single pass implementation flow. The SoC 

synthesis tool realizes analog circuits, including phase locked loops 

(PLL), power management, analog to digital converters (ADC), 

and sensor interfaces by recasting them as structures composed 

largely of digital components while maintaining analog 

performance. They are then expressed as synthesizable Verilog 

blocks composed of digital standard cells augmented with a few 

auxiliary cells generated with an automatic cell generation tool. By 

expanding the IPXACT format and the Socrates tool from ARM, 

we then enable composition of vast numbers of digital and analog 

components into a single correct-by-construction design. 

Keywords— Automatic synthesis tool; SoC; Synthesizable 

analog block; IPXACT; Differentiating technology 

I. INTRODUCTION 

Wide usage of system-on-chips (SoC) in different 
applications such as smartphones, the Internet of Things (IoT), 
etc. leads to design huge number of such SoCs. As a result, 
circuit designers spend abundant amount of time on designing 
SoCs while most of this time is wasting because of being human 
in the design loop. Integration, debugging, and tuning are just 
few examples of time consuming tasks in circuit designing 
which can be performed in notable less amount of time if is 
implemented by a tool without interference of any human. 
Furthermore, although it is most likely that another circuit 
designer has designed exactly or very similar chip that one wants 
to design, but just because of various numbers of academic 
papers or datasheets it is impossible for a designer to read and 
find such similar work and hence remarkable time should be 
spent on redundant work. 

Traditionally one of the most important reasons that analog 
circuit designing has not been automated yet is impossibility of 

describing an analog circuit as a human understandable code. As 
a consequence, in analog circuit design significant amount of 
designers’ time is just being spent on analog chip layout since is 
not automated as it is on digital part. 

Our approach to SoC synthesis is unique in that we leverage 
a differentiating technology to automatically synthesize Verilog 
descriptions of analog circuits while maintaining analog 
performance that are customizable based on user inputs. Here, 
the analog and digital design blocks are replaced with a single 
SoC synthesis tool that produces Verilog descriptions for both 
analog and digital designs. This register-transfer level (RTL) is 
passed only to the digital chip layout tool for automatic 
placement and routing (APR) and, therefore no analog chip 
layout tool is required. On the other hand, with extending the 
IPXACT format we are able to save and summarize circuit 
functionality (circuit specs) in extensible markup language 
(XML) format, which is suitable for searching process and eases 
finding similar work for circuit designers. 

Fig .1 shows a block diagram of the overall program, and 
how the tasks interact with each other. The SoC synthesis tool 
takes in user specifications and generates an SoC from models, 
Commercial Off-The-Shelf (COTS) libraries, and generated 
analog blocks. When one of the generated analog blocks is 
required in an SoC, including clock generation, skew correction, 
data converters, temperature sensors, and memories, the specs 
for that block will be passed to the analog generation tool that 
will produce the synthesizable analog design. These analog 
generation tools function as sub-routines to the SoC synthesis 
tool, and therefore will be used as a part of the optimization 
process. Finally, if one of the analog generation functions cannot 
meet specifications using standard cells, an auxiliary cell is 
synthesized and added to the cell library. In summary, users will 
provide their desired functionality and our computer program 
proposes a finely optimized SoC that meets their specifications 
and constraints. Such an advantageous tool is highly sought after 
as it eliminates the need for the cumbersome and tedious process 
of designing and tuning an SoC. 
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The rest of this paper is organized as follows. In Section II, 
we describe SoC synthesis tool. In Section III, we present our 
analog circuit generation methodology. Finally, we conclude in 
Section IV. 

II. SOC SYNTHESIS TOOL 

A. Extending IPXACT  

Current version of IPXACT just includes information about 
interface types and parameters, which makes it appropriate for 
SoC integration tools to have an intelligent configuration, 
automatic integration, and easy problem debugger. Our goal was 
extending the IPXACT format to encapsulate all information 
needed for system generator, and port known parts to the 
database. This mean IPXACT++, our updated version of 
IPXACT, was defined for facilitating finding the optimum 
circuit. For this purpose, this new IPXACT version would 
include an optional meta-information portion that will contain 
details about previous implementations of the block 
(functionality of the circuit) which has not been mentioned in 
the current version of IPXCAT. This resulted in IPXACT++ 
having two kinds of information: 1. The information which 
summarizes circuit functionality, e.g. circuit power 
consumption. 2. The information which is crucial for 
appropriate functionality of the circuit, e.g. circuit input voltage 
range. Saving this information alongside the circuit netlist or 
Verilog file facilitates the search processing among an 
extremely large number of circuits to find the most desired one.  

In order to ease searching among circuits with the same 
scope to find the most appropriate one, we make IPXACT++ to 
contain two parts: general and specific. General would be 
common in all circuits like area and power consumption values. 
Specific would be the circuit type in addition to specs values of 
the circuit, which is different based on the circuit type. 
Therefore, meta information in the specific part of analog to 
digital conversion (ADC) circuit differs from phase locked loop 
(PLL). As an instance, for a circuit that categorized as ADC, 
“ADC” (as a circuit type) and integral nonlinearity (INL) value 
are two samples of specific information while for a PLL circuit, 
“PLL” and jitter value are stored as specific information.  

 

 

 

B. Automatically scrubbing datasheets for individual pieces 

of intellectual property (IP) component information  

Extracting circuit information requires reading relevant 
datasheets or academic papers. It is too time consuming to 
manually do this as the dataset scales to 10M+ parts. So, we need 
to perform automatic text processing. For this aim we first 
realize the datasheet title (circuit type class) and then extract 
relevant data (specs). In both of these approaches, first Portable 
Document Format (PDF) file is converted to text file which is 
more suitable for text processing while may causes to lost text 
connectivity during this conversion. 

For the circuit type class realization we use two approaches: 
machine learning (ML) and Key word searching 

 There is a well-known model which is called bag of words 
and is a subset of classification ML approach. In this method, 
first the text file is segmented into words. Then, occurrence 
numbers of each word is counted and is assigned as an ID to 
words. Using a naïve Bayes classifier, with calculated 
probability coefficients based on training set and using these 
equations, we can estimate the most probable title of each 
document using a maximum a posteriori (MAP) approach for 
testing set. 

Since the most important part of supervised ML is having 
appropriate labeled data, we tried to limit our analyzing region 
from whole text to a small part of the document that is more 
likely to mention more important and unique information. This 
issue become more important when we deal with datasheets as 
most part of them are tables, numbers, and figures that do not 
help us because such information do not convey unique 
information regarding the circuit category. Usually, such unique 
and important information, which describes the main circuit 
functionality are written in a section titled such as introduction, 
circuit description, etc. in both academic papers and datasheets. 
So, we search for these titles inside the document and if we are 
successful in finding them on the 𝑖′𝑡ℎ page, we crop the PDF file 
to just include 𝑖′𝑡ℎ and (𝑖 + 1)′𝑡ℎ pages, otherwise we crop the 
first two pages as it is more likely to cover more important 
information. Moreover, we divide our training set to two parts: 
pure-training and test-training sets. There are several options in 
bag of words and naïve Bayes classifier to use in order to 

Fig. 1.  Block diagram of the interactions among tasks 

Fig. 2.  Example of IPXACT++  
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conclude to the best results. N-gram model which improves 
inherent orderlessness of bag of words with segmenting text to 
n subsequent words, Gaussian, Multinomial, and Bernoulli 
distribution as event model used in Naïve Bayes classifier, and  
using term frequency–inverse document frequency (TF-IDF) 
which leads to care more to unique words instead just common, 
more occurrence words such as “the”, “this”, etc. and take into 
account that occurrence number of words is related to the text 
length (total words) that they are part of it are some examples of 
these options. So, we train our pure-training set with different 
combinations of above options and observe results on test-
training set using confusion matrix and at the end pick the 
combination that leads to higher average of percentages in 
confusion matrix. These approaches improve the accuracy of 
category realization by 20%. 

Alongside of many applications of bag of words model, it 
has not enough accuracy because of its inherent ML inaccuracy 
that we want since all of our subsequent tasks are dependent to 
this circuit category realization. Therefore, we improve this with 
key word searching method. In the key word searching method, 
we count the number of each circuit class type name occurrence 
in each document, pick the maximum, and check whether the 
relevant specs are mentioned in the document. If the result of 
these two approaches is not the same, we use an arbitration. Key 
word searching improves the category realization correctness 
rate by 15%. Table. I shows confusion matrix of circuit category 
realization over more than 3000 different PDF datasheets and 
academic papers. 

TABLE I.  CIRCUIT CATEGORY REALIZATION CONFUSION MATRIX 

Category 
ADC CDC DCDC 

PLL Temp 

Sense 

SRAM LDO 

ADC 97% 2% 0% 0% 0% 1% 0% 

CDC 3% 95% 0% 0% 2% 0% 0% 

DCDC 0% 0% 98% 0% 0% 0% 2% 

PLL 1% 0% 0% 99% 0% 0% 0% 

Temp 

Sense 
0% 2% 0% 

0% 97% 1% 0% 

SRAM 0% 0% 0% 0% 0% 100% 0% 

LDO 0% 0% 4% 0% 0% 0% 96% 

 

After determining the document circuit class type, we can 
start extracting specs from those documents as we should look 
for specific specs based on circuit category. Information may be 
reported in either text or tables. We use regular expression to 
fulfill this goal if the information is as a text. Because of inherent 
drawback of conversion a PDF to a text file, we first do a text 
cleaning which includes making all letters to lower case letters 
to be case insensitive and retrieving paragraphs in the text file as 
it is in the PDF file. Since there are various ways for reporting 
different specs, we tried to define our expression such that not 
be too much tight to include nothing and not be too much general 
to include everything. 

In the table extraction section, it first converts PDF to 
Comma Separated Values (CSV) file which is more suitable for 
table processing while there exist lots of imperfection during this 
conversion. We should find the appropriate row and column that 

intersection of these two results in target cell. The cell contains 
“Parameter”, “Specification”, etc. demonstrates the origin of 
table which usually locates at top-left corner. Using this cell we 
can define the territory of each table if there exists more than 
one table in a page. There exists two mail types of tables as 
shown in Fig. 3, XY and XX. In XY, desired value, Vi, is located 
at the intersection of target row, Ai, and target column. Target 
columns usually have titles such as “this work”, “Max”, “Min”, 
etc. In XX, “Max”, “Min”, “Typ” are located at the same row 
with target values. After recognition table type, we can extract 
the desired values. 

 

 

As it was mentioned earlier, there are many defects when a 
table in PDF file converts to a CSV file. Merging multiple 
columns/rows, inserting blank column/row at the middle of 
table, splitting a column/row to multiple columns/rows, etc. are 
few examples of this imperfection. The most challenging part of 
table extraction is how to recognize and solve these errors. 

As we test our algorithms for data extraction over more than 
3000 different PDF datasheets and academic papers, we can 
successfully extract at least two specs automatically from each 
document in either text or table extraction. 

C. Extending Socrates Infrastructure 

The objective of this task is to capture the changes to the 
IPXACT format into the Socrates SoC design tool. Socrates is a 
tool that guides a user through the selection and configuration of 
IP and its assembly into subsystems. Socrates will be extended 
to be more aware of physical floorplanning and timing and 
bandwidth constraints. Socrates will also be adapted to provide 
the necessary details (RTL plus metadata) for the Correct-by-
construction wrapper to design systems. The interaction 
between data recorded in the database, the Socrates 
configuration file, and the tool itself is important. Initially, the 
requirements of the design need to be analyzed, including 
physical data (power, performance and area expectations for the 
block), technology (process node and variants), floorplan 
information, and target system definition and configuration 
options.  

D. Correct-by-Construction Design  

The objective of this part is to intelligently design systems 
from high-level user input. The work will be a wrapper around 
Socrates, that takes as input user block level-designs and 
approximate throughputs for the system. The tool has two main 
ways that users can start designing, customized, and 
recommended. In the customized mode, users will determine 
exactly the blocks and their specs by their own and connect them 
together. In this way, the tool is going to find the best candidate 
for each block. In the recommended mode, users can benefit 
from existed SoC samples of the tool such as SoC for measuring 
temperature, pressure or both. Each of these samples contains all 
blocks, which are needed for appropriate function of the SoC 

Fig. 3 Different table types: a:XY b:XX 
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and their connection. In this mode, user will specify the sensor 
specs and high level specs for whole SoC. In other words, even 
though users can determine each block specs separately they 
can, at the same time, just specify the overall SoC specs such as 
total power or area. 

In general, our COTS database is divided into four regions: 
fixed components e.g. board regulators that needs to be mined 
from existing sources as described in the section B, analog 
generators e.g. parameterized ADC, instances i.e. an instance 
circuit that is output of analog generator that we used once 
before, and database of synthesis and placement and routing 
(P&R) directives i.e. a circuit that has been generated by the 
whole system once. Fig. 4 shows this COTS database and their 
interactions. 

COTS Database

Fixed Components

e.g. Board Regulator

Generators 

e.g. Parameterized ADC

Instances 

e.g. ADC with 8 bit 

resolution, 0.5 INL

Database of Synthesis 

and P&R Directives

 

 

The searching process begins with fixed components. As 
shown in Fig. 2, using max and min we can cover intervals 
during our searching process. Therefore, even with tons of 
circuits, it takes short time to categorize them regarding to their 
circuit functionality and inside each category they can be sorted 
from smallest to largest respectively the first to the last spec 
value which dramatically eases the searching process. If we are 
not able to find the desired circuit in the target technology node, 
the tool will call analog generator if the circuit category is 
included in its domain. Otherwise, it tries to estimate the 
throughputs using technology model estimator. In both 
conditions, it will populate the database with the generated 
circuit or estimated values in IPXACT format since calling, 
generating or estimating are time consuming tasks in 
comparison to just searching among existed files. Once 
everything including whole SoC schematic, and P&R is done we 
will add this SoC to our COTS database to use it in the future if 
it is needed and not repeating this entire process again. 

The inputs will then be used to generate several candidate 
architectures that will be fed through Socrates for analysis. Fig. 
5 shows how these candidates are found. The user will be asked 
to select optimization priorities from the constraints. This maybe 
area or power. The tool first tries to find the blocks with 
minimum area/power. If the summation of power/area for all 
blocks is larger than our budget which defined as a constraint by 
the user, it means this SoC with such constraints is infeasible. 
Otherwise, it checks the other constraints. If the suggested SoC 
satisfied them it means the tool is done. If not the tool needs to 

do compromising i.e. degrading the first priority spec of each 
block in order to improve the other constraints. A final design 
RTL will be generated along with associated timing constraints 
and relative/structured placement scripts to be used in 
synthesis/APR. The design will also identify potential timing 
critical paths and insert latency insensitive interfaces that allow 
register slices to be added if timing cannot be met. This 
information can be fed to automated synthesis and APR scripts 
to insert register slices when appropriate. In addition, the 
wrapper will also output the configuration parameters for the 
analog blocks in the system. The analog tools will be run and 
candidate designs fed back to the wrapper. The final analog 
design will be output as a structured netlist for the block. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. ANALOG GENERATION 

Analog circuit design using authentic analog architecture 
requires delicate layout and sizing of transistors, which are yet 
ready to be realized with automation flow. The cell-based 
architectures, on the other hand, are promising for portability 
and scalability in terms of analog performance and layout 
generation since the circuit aspects are controlled by the number 
of cells being used and are capable to utilize existing digital APR 
tools. This makes cell-based analog block a credible candidate 
for automated analog circuit generation, which we use in our 
flow. The cell-based analog blocks are proven in its performance 
by various groups [1-6]. Synthesizable all digital phase locked 
loop (ADPLL), for particular, have been made by full digital 
flow with APR tool [1][6]. Since these blocks are described in 
Verilog description and layout constraints, the objective of our 
Analog Generation tool is to provide RTLs and APR 
descriptions of each block that support user given specifications. 
The design flow is identical for all supported analog blocks, and 
is divided in to two steps: 1. Modeling, 2. Deliverables 

Fig. 4 COTS database 

Fig. 5 Constraint satisfaction algorithm 

1st optimization 

priority and constraints 

Finding optimized blocks 
individually regarding 1st priority  

 

Infeasible 

1st priority 

satisfied? 

No 

Yes 

Other constraint 

satisfied? 

Finish 

Compromising 
Yes 

No 
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Generation and Verification. The flow is depicted on Fig 6. 
Modeling is a procedure of capturing characteristics of specific 
Aux-cell and process design kit (PDK), building a relationship 
between design and specifications. This procedure takes 
comparably long time due to numerous simulations and is done 
once per PDK. Deliverables generation & verification stage is 
repetitive for new user specifications. This will be conducted 
repeatedly for new specifications. New designs are stored in 
COTs library, and if an existing design supports a given spec, it 
will be immediately pulled out, reducing the time of the task. 
The details of each step are discussed below. 

 

 

 

 

 

 

A. Model Generation 

This part of the task is to capture the analog characteristics 
of aux-cell of certain PDK by gathering sufficient simulation 
results, and utilize it to predict optimum design for a given spec. 
For this, the tool automatically generates test environments, 
mainly netlists and testbenchs, run the simulation, read the 
results and use it to build a model. There are two methodologies 
to make a model from simulation data: 1. Mathematical equation 
2. Machine Learning. Mathematical equation based model is to 
use prior knowledge about circuit to link design and spec. For 
digitally controlled oscillator (DCO), used in ADPLL, for 
example, the average ratio of current and capacitance (I/C) of 
each stage determines the delay of one stage and the frequency 
is determined by this delay and the number of stages. With this 
knowledge, we can obtain the average ratio (I/C) by back-
calculating the frequency results. This equation-based model 
holds valid as long as the circuit operates within the property we 
defined, shows solid accuracy for the frequency of DCO (error 
< 0.8%, 850 results). Thus, the model is reliable on predicting 
the frequency of certain design. But to find the optimum design 
for a set of specs(frequency range, frequency resolution, phase 
noise, jitter, area etc.) using the mathematical model, the tool 
designer has to build an algorithm that narrows down the design 
space and pick one that satisfies all the spec constraints. This is 
limited since the algorithm relies on the equations and designer 
intelligence. The algorithm relates the equations for each spec 
and sequentially narrows down design parameters, using the 
inequalities to satisfy the specs. This human-built algorithm 
requires update for additional spec or design parameters. Thus, 
equation-based algorithm is limited in terms of both reliability 
and scalability.  

Machine learning can be used to find the design solution for 
a given spec, or the other way(spec of certain design), by 
training it with sets(design, spec) of data. Once large sample data 
is used for training, it can predict a design that is likely to have 
a specific spec. If the design was in the range of that was used 
for training, machine learning shows high accuracy. Table 2 
shows the accuracy comparison of equation based and ML based 
for predicting 4 DCO specs of 55 different designs. There are 
specs that follows the equation accurately, while some shows 
weak accuracy. ML shows reliable accuracy over all the specs. 
It is robust in terms of the number of inputs (specs) and outputs 
(design parameter), since it only needs new sample data to be 
trained, unlike equation-based algorithm has to be renewed 
relying on designer intelligence. It is also strong in predicting a 
solution of specs with high equation complexity, while equation-
based algorithm has limits due to the error of the equation itself. 
The difficulty of utilizing ML is to generate massive simulation 
results for the learning data, and to define the valid range of 
prediction.  

To summarize the equation-based model, relatively fewer 
simulation results are required since it has strength on 
extrapolation. However, the equation-based design searching 
algorithm has limitations because it relies on complex equations 
and designer intelligence to link those. The ML based model, on 
the other hand, requires huge simulation results to cover wide 
range with solid accuracy, but once the reliable model exists, it 
is easy to find a design solution accurately, and number of inputs 
and outputs are scalable. Thus to leverage the strength of both 
methods while covering each other’s weakness, we will use the 
equations to generate sample data for ML without simulation 
and use the trained ML to predict the design solution. This way, 
the tool requires few simulations to build a model, and has a 
strong design solution prediction. 

TABLE II.  MAXIMUM ERROR RATE COMPARISON OF DCO SPECS 

BETWEEN MACHINE LEARNING AND EQUATION BASED MODEL 

B. Deliverable generation and Verification 

 This step is to convert the design parameters decided in the 
modeling stage to a Verilog format and verify the performance 
with the layout parasitic included. To automate the procedure, 
the design parameters are written in parameterized form in RTL 
descriptions so that the tool can simply replace those parameters 
with the set the modeling stage provided. The synthesis and APR 
scripts are written in the same way to ease automation.  

 The key challenge of using APR for cell-based analog block 
layout is the induced systematic mismatch due to the random 
placement and interconnects. There has been prior research on 
calibrating and utilizing the mismatch to enhance control 
resolution [6]. Another way to deal with the issue is to constrain 
the geometry of cell placement in the way that minimizes the 
mismatch. This method has limited portability for different aux-
cells since the geometry should change according to the size of 
aux-cell. We are in the stage of deciding the method to address 

Max Error (%) 𝑓𝑚𝑎𝑥 𝑓𝑚𝑖𝑛 ∆𝑓𝑟𝑒𝑠 Area 

Machine Learning 1.11 2.39 1.66 1.37 

Equation model 0.35 0.64 8.83 0 

Model 
User 
Spec 

 

Design 

Parameters Deliverable 
Generation & 

Verification 

.v, .tcl 

Performance 

Failure 

Repeat for every input 

Model 

Generation 
Aux cell, 

PDK 

 

Once per PDK 

Fig. 6 Block diagram of analog generation 
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the issue, comparing strengths and weaknesses of various 
techniques. Until now, we have used different power domains to 
allocate limited area for placement of analog blocks. This can 
reduce the parasitic effects by reducing interconnect metal 
length. 

 Once the layout is done, the tool automatically runs a post 
extraction (PEX) simulation, which includes the layout parasitic 
effects, to verify the performance. If the performance meets the 
user specification, the tool will provide the RTL, APR 
descriptions to the next stage. If it fails to meet the specs, it will 
iterate the design process by tweaking the design variables that 
improve the bottleneck specs. It will also modify the model, to 
increase the margins of certain spec for layout parasitic.  

IV. CONCLUSION 

In this paper, we showed how to develop an autonomous 
SoC synthesis tool that intelligently generate an SoC based on 
user input. Using our COTS database the tool can find the most 
optimized circuit which fulfill user’s requirement. One of the 
unique features of this proposed program are that both analog 
and digital designs are described in Verilog and are able to be 
automatically placed and routed. Therefore, any synthesis tool 
created as a part of Verilog, cell libraries, and directives to guide 
the groupings of cells can be used to complete the physical 
design of our fully synthesized SoC. 
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