
Robust Logic Obfuscation for Trusted Design
Synthesis

Sanjana Sekar
Electrical Engineering and

Computer Science Department
University of Cincinnati

Cincinnati, Ohio 45221, USA
Email: sekarsa@mail.uc.edu

Ranga Vemuri
Electrical Engineering and

Computer Science Department
University of Cincinnati

Cincinnati, Ohio 45221, USA
Email: ranga.vemuri@uc.edu

Abstract—Logic obfuscation/encryption/locking refers to a
class of techniques to prevent IC counterfeiting, reverse engi-
neering, piracy, unauthorized over production or use. In these
methods, a logic design is encrypted during or after logic
synthesis and a key is generated. The encrypted logic design
may be fabricated at a foundry which is untrusted. The key
generated at the time of encryption is provided to a trusted
user and should be suppled during operation. Valid outputs are
produced by the IC if and only if a valid key is supplied. In
the past few years, several proposed logic obfuscation methods
were shown to be vulnerable to a variety of attacks including
the satisfiability attack, skew attack, logic removal attack etc.
Further, it is hard to integrate some of the proposed obfuscation
methods with standard synthesis tools and methodologies.

In this paper, we report our efforts to develop robust ob-
fuscation methods compatible with COTS logic synthesis tools.
We explore the use of sub-circuit obfuscation using look-up
tables and logic duplication to improve the quality of encryption.
Experimental results show negligible area overhead and robust
encryption for several benchmark circuits. In addition, we discuss
how these methods can be integrated with a COTS logic synthesis
tools.1

I. INTRODUCTION

Fabless design approach has become an integral part of
semiconductor industry due to increase in design complexity
and maintenance costs of fabrication facilities. Outsourcing
of IC fabrication to a potentially untrusted foundry allows
an attacker to exploit the layout information for nefarious
purposes. In addition, attackers can reverse engineer the de-
sign through depackaging, delayering, imaging the individual
fabrication layers, gathering all images through stitching and
extracting the netlist [1]. A design sent to an untrusted foundry
is vulnerable to the addition of malicious circuits (known
as Hardware Trojans) causing malfunctioning of circuits [2].
They are also vulnerable to piracy resulting in cheaper versions
of the same design in the black market [3]. A miscreant
from an untrusted foundry can also reverse engineer the
functionality of the IP and claim false ownership of it [4].
Some of the significant supply chain attacks are reverse engi-
neering, chip counterfeiting, Intellectual Property (IP) piracy,
physical attack, IC overbuilding and insertion of Hardware
Trojans [1], [2], [5]. This has prompted researchers to come

1STATEMENT A. Approved for public release: distribution is unlimited.

up with various Design-For-Trust (DfTr) [1] techniques as
countermeasures to such attacks. One such approach is Logic
Encryption.

Logic Encryption (sometimes referred to as “Logic Lock-
ing” or “Logic Obfuscation”) is a technique that inserts extra
gates in the original netlist, aiming to hide the original func-
tionality of the circuit [6]–[8]. These additional gates inserted
are known as key-gates. Therefore, the overall circuit structure
contains some primary inputs, pseudo primary inputs known as
key inputs and primary outputs. In order to observe the original
circuit functionality, one must provide the correct key values
to the encrypted design. Circuit malfunctions if incorrect keys
are applied to the encrypted circuit.

As an example, consider the c17 circuit from ISCAS85
benchmark encrypted as per [3] in Figure 1. Here, G1, G2,
G3, G6, G7 are primary inputs and G22 and G23 are primary
outputs. K1 and K2 are the key inputs for the corresponding
XOR key-gates. Only upon making K1 = 0 and K2 = 0, the
correct outputs can be observed. For other cases of K1 and
K2 values the output gets corrupted. In this way, the designer
has control on unlocking the IC.

Logic Encryption aims to (a) thwart IC piracy - the attacker
is unaware of the original functionality of the IC unless and
until he/she knows the way to unlock it with the correct
key scheme. (b) prevent insertion of malicious Hardware
Trojans as the design is hard to analyze. Only after the IC is
manufactured, a designer can unlock the circuit by applying
the correct key values. Hence, the objective of an attacker is
to figure out a way to deduce the correct (or equivalent) key
values of the circuit.

Various logic encryption methods have been proposed over
the years [7]–[10]. Each technique proposes a specific method
of traversing the existing netlist and find possible ways of
inserting key gates/programmable barriers. Though they aim
to thwart various types of attacks proposed over the years, they
have all been proven to be weak logic encryption methodolo-
gies after [11] proposed a logic decryption algorithm using
Boolean satisfiability (SAT) solvers.

This paper focuses on a defensive technique against the
SAT attack [11].The core contributions of this paper are the
following:

379



G3

G1

G6

G11

G2

G7

G19

G10

G16

G22

G23

(a) Original Circuit

G3

G1

G6
G11

G7
G19

G16

G22

G23

KEY GATE 1

G10

keyinput
K1

G10_encrypted

KEY GATE 2
keyinput

K2

G19_encrypted

G2

(b) Encrypted with 2 keys K1 & K2

Fig. 1. Logic Encryption Illustration using the EPIC method [3]

1) We analyze the SAT attack against programmable logic.
Based on the discriminating ability of individual input
patterns in deciphering the programming sequence, we
present a scenario that is hard for the SAT attack when
programmable logic is used for obfuscation.

2) We propose a novel logic encryption method employing
the logic duplication technique and using the intuition
obtained about programmable logic against the SAT
attack.

3) We demonstrate the effectiveness of the proposed en-
cryption technique against the SAT attack.

4) We discuss the performance of this approach and its
compatibility with COTS synthesis tools.

II. PRIOR WORK

The SAT attack aims to reveal the correct key scheme of
the encrypted circuit by carefully selecting input patterns to
eliminate a set of wrong key candidates in every iteration.
These input patterns are known as Distinguishing Input Pat-
terns (DIP). In other words, it is only the correct key for
which the output is said to be consistently matching with the
output of the unlocked IC. Therefore each iteration through
the algorithm tries to determine one DIP for which incorrect
keys are uniquely determined and eliminated. Since it uses
the formal method of Boolean satisfiability, the final key
determined by the attack is guaranteed to be correct.

As the SAT Attack was unable to decrypt a few benchmarks,
the authors of [11] found that circuits containing AND-Tree
structures become hard instances for the SAT attack to decrypt.
AND-Trees with N inputs being encrypted would require to
evaluate 2N equivalence classes to deduce the correct key.

The very first SAT attack countermeasure was proposed by
[10] where insertion of the Advanced Encryption Standard
(AES) based circuits to the encrypted netlist was contemplated.

The netlist is encrypted by their proposed clique based inser-
tion such that the key values do not propagate to the outputs
of the circuit. But, the bottleneck of this method is the area
overhead of the AES module is very high. The AND tree
property which makes the SAT attacks exponential in time has
become the key concept for the evolution of SAT Resistant
Logic Encryption and Camouflaging techniques. This was
exploited by the authors of [12] by introducing an Anti-SAT
block design [12]. Rajendran et al. [13] proposed the SAT
Attack Resistant Logic Locking (SARLock) based method that
tries to invert the output for all incorrect keys and ensures
proper behavior for the correct key. This way, SARLock
becomes a single point function thereby ensuring that SAT
Attack eliminate no more than one key in every iteration. The
authors from [14] proposed a security metric for evaluating the
SAT attack complexity called De-camouflaging or Decryption
Complexity using the motivation from active learning concepts.
They also came up with an algorithmic approach for detecting
isolated AND tree structures within the existing netlist. Based
on the gate type and the fan-out conditions their method finds
the least non decomposable AND tree in an existing circuit.
Shamsi et al. showed that the given circuit netlist can be
obfuscated with combinational loops such that it is difficult for
the SAT attack to be launched [15]. The authors of SARLock
had come up with a better countermeasures to SAT attacks by
proposing a new sub-circuit named Tenacious and Traceless
Logic Locking (TTLock) [16].

III. ANALYSIS OF SAT ATTACK RESILIENCE OF
PROGRAMMABLE LOGIC

Look-up tables are extensively used as a programmable
block in ASICs. Though the previous countermeasure tech-
niques tried to add additional circuitry to the existing netlist,
there has not been much exploration on finding sub-circuits
within the netlist that may be making SAT attack exponential.
Although, the authors from [14] proposed finding AND-Tree
structures within the existing netlist, this tree search process
has been purely based on the type of gates present in the
netlist. However, not all circuits are guaranteed to contain
such AND-Tree structures. We propose to find sub-circuits
within the netlist which, upon hiding, could possibly make it
SAT attack tolerant. Hiding the sub-circuit can be correlated
to making this portion to be programmable. In order to make
the sub-circuit programmable, Look-up Tables (LUTs) can be
used. Though CMOS SRAM LUTs pose much area overhead,
emerging devices could possibly improve the area. This will be
discussed in a later section. Upon hiding a portion of the circuit
with LUTs, the attacker cannot decipher the circuit unless and
until they know the exact programming sequence.

When a sub-circuit is hidden using a traditional LUT, the
configuration bits of the LUT serve as the key bits and the
inputs of original sub-circuit serve as the select lines of the
LUT. In general, if a k-input LUT is used to replace a k-
input function, the SAT attack in the worst case requires 2k

iterations. 2K becomes large enough only if K is large enough
to make it difficult for SAT to decipher the functionality of

380



X

(a) Original Graph

X

(b) Logic Duplication of X circuit block

Fig. 2. Logic Duplication [18]

the LUT. But we cannot afford such huge LUTs as it leads
large area overheads. Therefore, breaking them into m-input
LUTs such that m is small enough to make it SAT-hard is a
reasonable way of approaching this problem. Hence, we select
a sub-circuit within the existing netlist such that the sub-circuit
contains a given number of inputs and replace the gates in the
sub-circuit with programmable logic. For our evaluation we
use traditional LUTs.

IV. LOGIC DUPLICATION FOR SUB-CIRCUIT SELECTION

A. Motivation

Some sub-circuit gates may have fan-out nets to other gates
which are outside the sub-circuit. These nets provide sneak
paths to help the SAT attack to decipher the key. This can
happen when the design has a large number of fan-out regions.
Industrial circuits do have multiple fan-out regions which can
cause the sub-circuit selection methodology to be ineffective.
Hence, in order to combat these sneak paths, we use the
concept of “logic duplication” which will be explained in
detail in the next section.

B. Background on Logic Duplication

Logic Duplication [17] was proposed by Steven J. Perry in
order to improve the circuit timing and size. Logic duplication
is a process of duplicating selected logic gates in order to
avoid sharing of hardware [18]. Also, according to [19] this
technique does not increase area overhead all the time because
the duplicated design would have lower routing overhead
though the total gate count increases due to the duplication
procedure.

To understand the concept of logic duplication, consider a
portion of a circuit represented as a graph shown in Figure
2a. Here, X is a circuit block that has a fan-in from IN1
and IN2 nets. The output of X block has 2 paths, namely,
Path1 and Path2. In other words, Path1 and Path2 are
driven by sharing the same computing block namely X . Now,
if the block X is duplicated to become X ′, Path1 and Path2
would have independent driving circuit blocks. This is the
basic procedure used for logic duplication [18].

This technique is exploited in order to isolate the sub-circuit
selected for LUT replacement from the portion of circuit that
is getting exposed to the SAT attack. This way, sneak paths are
eliminated from the sub-circuits and can improve the overall
tolerance of the encryption from SAT attack.

C. Logic Duplication Method for Sub-Circuit Identification

Algorithm 1: Duplication for Cone of Influence at Highest
Topology Net
Input: C and Kconstraint

Output: Cencypt(X,Kachieved, Y )
1 NOrdered ← TopologicalSort(C)
2 NHighestOrder ← PickHighestOrder(NOrdered)
3 Kachieved ← UpdateK(pow(2,FanIn(NHighestOrder)))
4 InfluenceNet ← NHighestOrder

5 i← 0
6 if Kachieved ≤ Kconstraint then
7 SubC(Xi, Yi) ←

AddToSubCircuit(Gate(InfluenceNet))
8 i← i+ 1
9 while Kachieved ≤ Kconstraint do

10 ConeNet ← TraceConeOfInfluence(InfluenceNet)
11 Kachieved ← UpdateK(pow(2,FanIn(ConeNet)))
12 if FanOut(ConeNet) ≥ 2 then
13 ConeNetDuplicated ←

LogicDuplicationOf(ConeNet)
14 SubC(Xi, Yi) ←

AddToSubCircuit(Gate(ConeNetDuplicated))
15 i← i+ 1
16 InfluenceNet ← ConeNetDuplicated
17 else
18 SubC(Xi, Yi) ←

AddToSubCircuit(Gate(ConeNet))
19 i← i+ 1
20 InfluenceNet ← ConeNet
21 end
22 end
23 end
24 Cencypt(X,Kachieved, Y )←

ReplaceSubCircuitGatesWithLUT(SubC(Xi, Yi))

In the proposed method, gates are replaced by LUTs on a
gate by gate basis. Hence, the size of the LUT would be based
on the fan in of the gate being replaced. The user would be
giving two inputs to the algorithm as follows:

1) Original Netlist of the circuit C with X primary inputs
(PIs), G gates and Y primary outputs (POs). Let N
be the total number of nets present in the circuit. This
includes the primary inputs, primary outputs and the
intermediate nets.

2) Total Configuration bits or key bits is a user’s constraint
denoted by Kconstraint. Since every design requires
unique performance targets, this is made to be a con-
straint so that the designer can trade off between the
security and performance based on the requirements.
These configuration bits of the LUTs can be viewed as
the key bits of the encrypted circuit.

The sub-circuit selection algorithm has the following steps:

381



G3

G1

G6
G11

G2

G7

G19

G10

G16

G22

G23

G16_DUP

G11_DUP

Fig. 3. Logic Duplication on COI illustration for c17 benchmark

1) The given circuit is topologically sorted using
TopologicalSort routine and the overall ordered nets
correspond to NOrdered.

2) The highest topological net is selected using
PickHighestOrder routine.

3) This net is made as the Influence Net and added to the
sub-circuit. Kachieved is updated based on the fan-in of
the influence net using UpdateK routine.

4) The Cone of Influence (COI) of this net is determined
using the TraceConeOfInfluence routine. During the
cone traversal, if any net has fanout that goes outside
the cone, logic duplication is applied and the duplicated
version of the net is added to the sub-circuit. This is done
using the LogicDuplicationOf routine. This way, the
sub-circuit gets isolated from the original circuit.

5) The cone traversal stops when the condition
Kachieved ≤ Kconstraint is satisfied. In case the
cone traversal is completed and the condition still does
not get satisfied, the algorithm terminates with the
complete cone of the highest topology net made as the
sub-circuit.

6) The selected sub-circuit is replaced with LUTs and the
overall circuit becomes encrypted.

For example, consider the smallest benchmark c17 in IS-
CAS85 [20] which is illustrated in Figure 1a. Here nets G22
and G23 have the highest topological order. Say, the algorithm
selects G23 for cone traversal. As the cone gets traversed for
G23, there are fanout nets G16 and G11 that sneak to the
other side of the c17’s logic. Hence, the nets G16 and G11
get duplicated till the primary inputs G2, G3 and G6. The
duplicated nets are denoted with the “ DUP ” footnote in the
net name. Now, the cone of G23 gets isolated from c17’s other
logic region. The gates that drive G23 are now replaced with
LUTs. This is indicated by the maroon color coding on the
corresponding gates in Figure 3.

V. EVALUATION

The sub-circuit selection algorithm was implemented in
C++ and the SAT attack tool was obtained from the authors
of [11]. All the experiments were carried out in the Linux

Workstations operating at 3.3GHz and 16GB RAM. The SAT
attack timeout was set to be 24 hours.

We have used the some of the ISCAS85 and MCNC sets of
benchmarks [20], [21] similar to [12], [13], [16]. Apart from
these, we also added several unrolled sequential circuits from
ITC99 [22] into our benchmark list as this list contained larger
circuits compared to the former two. The ITC99 benchmarks
are reordered as per topology and unrolled hence we renamed
the benchmarks with a footnote “ new”.

A. Methodology

The LUT replacement was done using traditional MUX
based LUT design and in order to make it compatible with the
tool, a gate level representation of each MUX was required.
The overall area overhead is reported as the % of gates being
replaced with LUT.

B. Results and Discussion

Most of the benchmarks were tolerant with SAT attack
with key bits of 256 for the proposed encryption. The overall
percentage of gates being replaced with LUT decreases as the
size of the benchmark increases. This trend can be observed
in Figure 4.

Benchmarks c1908, c7552 and des are vulnerable to the
attack with key being 256 bits. This is because the sub-circuit
contains many 1-input gates utilizing the LUT configuration
bits. Since 1-input LUT is just a MUX, it is easier for SAT
attack to decrypt them in comparison to other gates which have
multiple inputs. In order to check their tolerance towards SAT
attack, the key constraint is increased to 650, 1024 and 2000. It
is observed that the benchmark c1908 becomes SAT tolerant
for the key size of around 2000. Similarly for benchmarks
c7552 and des it requires a key size of 648 to tolerate SAT
attack. These sub-circuits contained a large number of 1-input
gates hence require more gates to be replaced, hence require
more key bits to tolerate the attack.

The other insight in regards to large number of inverters in
the sub-circuit is to combine these inverter functions with the
previous gates. For instance, if there is a AND gate driving
an inverter this logic can be replaced with a single NAND
gate. This ensures single input LUTs are not a part of the
sub-circuit. But the downside here is some sub-circuits may
need both the inverted and non-inverted signals for the overall
logic computation. Hence, combining inverted signals with its
driving logic would lead to incorrect or missing logic within
the overall encrypted circuit.

C. Performance Analysis

A concern on this approach would be the power and area
overhead as SRAM LUTs are power hungry and consume
significant amount of area. As we notice from the results,
as the circuit size grows the overall percentage of sub-circuit
that gets replaced becomes insignificant. However, SRAM
LUTs consume significant power. But there are emerging
technologies in which LUTs can be designed in order to reduce
the power. This is discussed in the next section.

382



Fig. 4. Histogram illustrating SAT tolerance of various benchmarks for the proposed logic duplication based sub-circuit selection

D. Alternatives to LUTs

Traditional SRAM LUTs were used in this work in order to
check if the functionality of a LUT would help in thwarting
the SAT attack. For alternatives to these LUTs, camouflaging
approaches can be used. Camouflaging tries to include as many
functions as possible but does not cover all the functions as
LUTs do.

There has been extensive research on LUTs based on new
devices which are proven to be more area and power efficient.
One such advanced LUT design was proposed by [23] where
LUTs were designed using transfer-torque magnetic tunnel
junction (STT-MTJ) devices. This device has low delay and
power consumption in comparison to the traditional CMOS
LUT design. Such emerging devices could possibly be a
replacement to the traditional LUT in the above proposed
encryption strategy thereby making it SAT tolerant with lower
degradation in power and area metrics.

E. Incorporation with COTS Synthesis Tools

The proposed work selects sub-circuits from an existing
netlist file. Therefore, this approach can be easily incorporated
as a part of any COTS synthesis tool to encrypt subject to a

user defined security metric. The user can specify whether
he/she requires security for the design and also provide the
maximum threshold of security he/she can accommodate. The
maximum threshold of security thereby gets translated into
the number of keys that the user wants for his/her design. The
proposed tool flow is shown in Figure 5.

VI. CONCLUSION

Several countermeasures have been proposed to thwart the
SAT Attack against logic encryption that aim to prevent IP
piracy. We propose a novel method that identifies sub-circuits
within the existing netlist that are good candidates for logic
encryption. The idea of logic duplication is incorporated in
order to make the sub-circuit independent of the other portions
of the circuit that gets exposed to the attack thereby increasing
resistance to the SAT attack.

REFERENCES

[1] J. Rajendran, O. Sinanoglu, and R. Karri, “Regaining trust in vlsi design:
Design-for-trust techniques,” Proceedings of the IEEE, vol. 102, no. 8,
pp. 1266–1282, 2014.

[2] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware trojan
attacks: threat analysis and countermeasures,” Proceedings of the IEEE,
vol. 102, no. 8, pp. 1229–1247, 2014.

383



Fig. 5. Incorporation of Sub-Circuit LUT Encryption in Synthesis Flow

[3] J. A. Roy, F. Koushanfar, and I. L. Markov, “Ending piracy of integrated
circuits,” Computer, vol. 43, no. 10, pp. 30–38, 2010.

[4] R. Torrance and D. James, “The state-of-the-art in semiconductor reverse
engineering,” in Proceedings of the 48th Design Automation Conference.
ACM, 2011, pp. 333–338.

[5] Q. Yu, J. Dofe, Y. Zhang, and J. Frey, Hardware Hardening Approaches
Using Camouflaging, Encryption, and Obfuscation, ser. Hardware IP
Security and Trust. Springer, 2017, pp. 135–163.

[6] J. J. Rajendran and S. Garg, Logic Encryption, ser. Hardware Protection
through Obfuscation. Springer, 2017, pp. 71–88.

[7] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of
logic obfuscation,” in Proceedings of the 49th Annual Design Automa-
tion Conference. ACM, 2012, pp. 83–89.

[8] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu,
and R. Karri, “Fault analysis-based logic encryption,” IEEE Transactions
on Computers, vol. 64, no. 2, pp. 410–424, 2015.

[9] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing ic piracy
using reconfigurable logic barriers,” IEEE Design & Test of Computers,
vol. 27, no. 1, 2010.

[10] M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri, “On improving
the security of logic locking,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 35, no. 9, pp. 1411–1424,
2016.

[11] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of
logic encryption algorithms,” in Hardware Oriented Security and Trust
(HOST), 2015 IEEE International Symposium on. IEEE, 2015, pp.
137–143.

[12] Y. Xie and A. Srivastava, “Mitigating sat attack on logic locking,” in
International Conference on Cryptographic Hardware and Embedded
Systems. Springer, 2016, pp. 127–146.

[13] M. Yasin, B. Mazumdar, J. J. Rajendran, and O. Sinanoglu, “Sarlock:
Sat attack resistant logic locking,” in Hardware Oriented Security and
Trust (HOST), 2016 IEEE International Symposium on. IEEE, 2016,
pp. 236–241.

[14] M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D. Z.
Pan, “Provably secure camouflaging strategy for ic protection,” in
Proceedings of the 35th International Conference on Computer-Aided
Design. ACM, 2016, p. 28.

[15] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “Cyclic
obfuscation for creating sat-unresolvable circuits,” in Proceedings of the
on Great Lakes Symposium on VLSI 2017. ACM, 2017, pp. 173–178.

[16] M. Yasin, A. Sengupta, B. C. Schafer, Y. Makris, O. Sinanoglu, and
J. J. Rajendran, “What to lock?: Functional and parametric locking,” in

Proceedings of the on Great Lakes Symposium on VLSI 2017. ACM,
2017, pp. 351–356.

[17] S. Perry, “Logic duplication method for reducing circuit size and
delay time,” Jun. 22 1994, eP Patent App. EP19,910,310,405. [Online].
Available: https://google.com/patents/EP0486248A3?cl=no

[18] A. Balakrishnan and S. T. Chakradhar, “Retiming with logic duplication
transformation: theory and an application to partial scan,” in VLSI
Design, 1996. Proceedings., Ninth International Conference on. IEEE,
1996, pp. 296–302.

[19] S. Devadas, H.-K. Ma, A. R. Newton, and A. Sangiovanni-Vincentelli,
“Synthesis and optimization procedures for fully and easily testable
sequential machines,” in Test Conference, 1988. Proceedings. New
Frontiers in Testing, International. IEEE, 1988, pp. 621–630.

[20] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortran,” in Proceedings
of IEEE Int’l Symposium Circuits and Systems (ISCAS 85). IEEE Press,
Piscataway, N.J., 1985, pp. 677–692.

[21] S. Yang, “Logic synthesis and optimization benchmarks user guide:
Version 3.0,” MCNC Technical Report, Tech. Rep., Jan. 1991.

[22] F. Corno, M. Reorda, and G. Squillero, “Rt-level itc’99 benchmarks and
first atpg results,” Design Test of Computers, IEEE, vol. 17, no. 3, pp.
44–53, Jul 2000.

[23] D. Suzuki, M. Natsui, and T. Hanyu, “Area-efficient lut circuit design
based on asymmetry of mtj’s current switching for a nonvolatile fpga,” in
Circuits and Systems (MWSCAS), 2012 IEEE 55th International Midwest
Symposium on. IEEE, 2012, pp. 334–337.

384




