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1.0 SUMMARY 
 
This final technical report summarizes the conducted research and completed software 
output by the University of Oxford in the course of the DARPA Data Driven Discovery 
(D3M) program. 
 
The main completed deliverables can be summarized as the contribution of proof of 
concept primitives to the D3M program and research progress made towards an initial 
version of Hasty. As of the completion of the Oxford contract we have not yet completed 
an initial version of Hasty, nor have we contributed to the D3M primitive library the 
types of primitives that Hasty will enable.   
 
We did, however, train a number of Highly Qualified Personnel (HQP) and have 
interacted with the AutoML, probabilistic programming languages, neural networking, 
and other communities which our work is expected to impact. This is summarized in 
section 2 of this document.   
 
Finally, we have produced several peer-reviewed research papers which were accepted to 
high-impact conferences such as NIPS, ICML, ICLR, UAI, and AISTATS. These papers 
and their research relation to the D3M program is summarized in section 3. In section 4, 
we summarize the software projects whose development has been supported in 
preparation for developing the Hasty compiler. 

 
2.0 INTRODUCTION 

 
We are building an extensive set of model primitives and contributing them to the D3M 
library of discoverable models. We are developing a software toolchain that makes it 
realistic to vastly extend the set of model primitives by making it possible for not only 
our team but all other teams to efficiently develop and deploy new model primitives. Our 
method of choice for extending the set of model primitives will be to use our own 
toolchain while it is in development. The toolchain we are developing is a compiler that 
makes bottom-up, discriminative models from top-down, generative models specified in 
the form of probabilistic programs. We call this compiler and runtime Hasty. 
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES  

 
3.1.1  Inference Trees: Adaptive Inference with Exploration 

T. Rainforth, Y. Zhou, X. Lu, Y. W. Teh, F. Wood, H. Yang, and J.-W.van de Meent. 
Inference trees: Adaptive inference with exploration. NIPS Workshop: Advances in 
Approximate Bayesian Inference, 2017. [8] 
 
We introduce inference trees (ITs), a new adaptive Monte Carlo inference method 
building on ideas from Monte Carlo tree search. Unlike most existing methods which are 
implicitly based on pure exploitation, ITs explicitly aim to balance exploration and 
exploitation in the inference process, alleviating common pathologies and ensuring 
consistency. More specifically, ITs use bandit strategies to adaptively sample from 
hierarchical partitions of the parameter space, while simultaneously learning these 
partitions in an online manner. This allows ITs to “hone-down" on regions of interest, but 
also maintain uncertainty estimates on whether regions of significant posterior mass have 
been missed. Though they can be used more generally, we show that ITs are particularly 
effective when combined with sequential Monte Carlo (SMC), allowing long-range 
dependencies to be captured and potentially improving beyond what can be achieved by 
proposal adaptation alone. 
 

3.1.2 Auto-Encoding Sequential Monte Carlo 
T.A. Le, M. Igl, T. Jin, T Rainforth, and F. Wood. Auto-encoding Sequential 
Monte Carlo. ICLR, 2018. [4] 
 
We build on auto-encoding sequential Monte Carlo (AESMC): a method for model and 
proposal learning based on maximizing the lower bound to the log marginal likelihood in 
a broad family of structured probabilistic models. Our approach relies on the efficiency of 
sequential Monte Carlo (SMC) for performing inference in structured probabilistic 
models and the flexibility of deep neural networks to model complex conditional 
probability distributions. We develop additional theoretical insights and introduce a new 
training procedure which improves both model and proposal learning. We demonstrate 
that our approach provides a fast, easy-to-implement and scalable means for simultaneous 
model learning and proposal adaptation in deep generative models. 
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3.1.3 Faithful Inversion of Generative Models for Effective Amortized Inference 
S. Webb, A. Golinski, R. Zinkov, S. Narayanaswamy, T. Rainforth, Y. W.Teh, and F. 
Wood. Faithful inversion of generative models for effective amortized inference. NIPS, 
2018. [10] 
 
Inference amortization methods share information across multiple posterior inference 
problems, allowing each to be carried out more efficiently. Generally, they require the 
inversion of the dependency structure in the generative model, as the modeler must learn 
a mapping from observations to distributions approximating the posterior. Previous 
approaches have involved inverting the dependency structure in a heuristic way that fails 
to capture these dependencies correctly, thereby limiting the achievable accuracy of the 
resulting approximations.  We introduce an algorithm for faithfully, and minimally, 
inverting the graphical model structure of any generative model. Such inverses have two 
crucial properties: (a) they do not encode any independence assertions that are absent 
from the model and; (b) they are local maxima for the number of true independencies 
encoded. We prove the correctness of our approach and empirically show that the 
resulting minimally faithful inverses lead to better inference amortization than existing 
heuristic approaches. 
 

3.2 AutoML 
3.2.1 Training of Differentiable Pipelines Across Machine Learning Frameworks 

Mitar Milutinovic, At_l_m G�une_s Baydin, Robert Zinkov, William Harvey, Dawn 
Song, Frank Wood, Wade Shen. End-to-end Training of Di_erentiable Pipelines Across 
Machine Learning Frameworks. NIPS, 2017. [5] 
 
In this work we present a unifed interface and methodology for performing end-to-end 
gradient-based refinement of pipelines of differentiable machine-learning primitives. This 
is distinguished from recent interoperability efforts such as the Open Neural Network 
Exchange (ONNX) format and other language centric cross-compilation approaches in 
that the final pipeline does not need to be implemented nor trained in the same language 
nor cross-compiled into any single language; in other words, primitives may be written 
and pre-trained in PyTorch, TensorFlow, Ca_e, scikit-learn or any of the other popular 
machine learning frameworks and _ne-tuned end-to-end while being executed directly in 
their host frameworks. Provided primitives expose our proposed interface, it is possible to 
automatically compose all such primitives and refine them based on an end-to-end loss. 
 

3.2.2 Online learning rate adaptation with hypergradient descent 
A. G. Baydin, R. Cornish, D. M. Rubio, M. Schmidt, and F. Wood. On-line learning rate 
adaptation with hypergradient descent. ICLR, 2018. [1] 
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We introduce a general method for improving the convergence rate of gradient based 
optimizers that is easy to implement and works well in practice. We demonstrate the 
effectiveness of the method in a range of optimization problems by applying it to 
stochastic gradient descent, stochastic gradient descent with Nesterov momentum, and 
Adam, showing that it significantly reduces the need for the manual tuning of the initial 
learning rate for these commonly used algorithms. Our method works by dynamically 
updating the learning rate during optimization using the gradient with respect to the 
learning rate of the update rule itself. Computing this "hypergradient" needs little 
additional computation, requires only one extra copy of the original gradient to be stored 
in memory, and relies upon nothing more than what is provided by reverse-mode 
automatic differentiation. 

 
3.3 Probabilistic Programming Languages 
3.3.1 LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-
Differentiable Models 

Y. Zhou, B. J. Gram-Hansen, T. Kohn, T. Rainforth, H. Yang, and F. Wood. Lf-ppl: A 
Low-level First Order Probabilistic Programming Language For Non differentiable 
Models. AISTATS, 2019. [11] 
 
We develop a new Low-level, First-order Probabilistic Programming Language (LF-PPL) 
suited for models containing a mix of continuous, discrete, and/or piecewise-continuous 
variables. The key success of this language and its compilation scheme is in its ability to 
automatically distinguish parameters the density function is discontinuous with respect 
to, while further providing runtime checks for boundary crossings. This enables the 
introduction of new inference engines that are able to exploit gradient information, while 
remaining efficient for models which are not everywhere differentiable. We demonstrate 
this ability by incorporating a discontinuous Hamiltonian Monte Carlo (DHMC) 
inference engine that is able to deliver automated and efficient inference for non-
differentiable models. Our system is backed up by a mathematical formalism that ensures 
that any model expressed in this language has a density with measure zero discontinuities 
to maintain the validity of the inference engine. 
 

3.3.2 Inference Compilation and Universal Probabilistic Programming 
T. Le, A. Baydin, and F. Wood. Inference Compilation and Universal Probabilistic 
Programming. AISTATS, 2017. [3] 
 
We introduce a method for using deep neural networks to amortize the cost of inference 
in models from the family induced by universal probabilistic programming languages, 
establishing a framework that combines the strengths of probabilistic programming and 
deep learning methods. We call what we do "compilation of inference" because our 
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method transforms a denotational specification of an inference problem in the form of a 
probabilistic program written in a universal programming language into a trained neural 
network denoted in a neural network specification language. When at test time this neural 
network is fed observational data and executed, it performs approximate inference in the 
original model specified by the probabilistic program. Our training objective and learning 
procedure are designed to allow the trained neural network to be used as a proposal 
distribution in a sequential importance sampling inference engine. We illustrate our 
method on mixture models and Captcha solving and show significant speedups in the 
efficiency of inference. 
 

3.4 Deep Generative Models 
3.4.1 Bayesian Distributed Stochastic Gradient Descent 

M. Teng and F. Wood. Bayesian Distributed Stochastic Gradient Descent. NeurIPS, 
2018. [9] 
 
We introduce Bayesian distributed stochastic gradient descent (BDSGD), a high-
throughput algorithm for training deep neural networks on parallel clusters.  This 
algorithm uses amortized inference in a deep generative model to perform joint posterior 
predictive inference of mini-batch gradient computation times in a compute cluster 
specific manner. Specifically, our algorithm mitigates the straggler effect in synchronous, 
gradient-based optimization by choosing an optimal cutoff beyond which mini-batch 
gradient messages from slow workers are ignored. In our experiments, we show that 
eagerly discarding the mini-batch gradient computations of stragglers not only increases 
throughput but actually increases the overall rate of convergence as a function of wall-
clock time by virtue of eliminating idleness. The principal novel contribution and finding 
of this work goes beyond this by demonstrating that using the  predicted run-times from a 
generative model of cluster worker performance improves substantially over  the static-
cutoff prior art, leading to reduced deep neural net training times on large computer 
clusters. 
 

3.4.2 Tighter variational bounds are not necessarily better.  
T. Rainforth, A. R. Kosiorek, T. A. Le, C. J. Maddison, M. Igl, F. Wood,and Y. W. Teh. Tighter 
variational bounds are not necessarily better. ICML, 2018. [7] 

 
We provide theoretical and empirical evidence that using tighter evidence lower bounds 
(ELBOs) can be detrimental to the process of learning an inference network by reducing 
the signal-to-noise ratio of the gradient estimator. Our results call into question common 
implicit assumptions that tighter ELBOs are better variational objectives for simultaneous 
model learning and inference amortization schemes. Based on our insights, we introduce 
three new algorithms: the partially importance weighted auto-encoder (PIWAE), the 
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multiply importance weighted auto-encoder (MIWAE), and the combination importance 
weighted auto-encoder (CIWAE), each of which includes the standard importance 
weighted auto-encoder (IWAE) as a special case. We show that each can deliver 
improvements over IWAE, even when performance is measured by the IWAE target 
itself. Furthermore, our results suggest that PIWAE may be able to deliver simultaneous 
improvements in the training of both the inference and generative networks. 
 

3.4.3 Learning Disentangled Representations with Semi-Supervised Deep Generative 
Models  
N. Siddarth, B. Paige, A. Desmaison, J.W. van de Meent, F. Wood, N. Goodman, P. Kohli, and 
P.H.S Torr.  

 
Learning disentangled representations with semi-supervised deep generative models. In 
NIPS, 2017. [6]  
 
Variational auto encoders (VAEs) learn representations of data by jointly training a 
probabilistic encoder and decoder network. Typically these models encode all features of 
the data into a 4 single variable. Here we are interested in learning disentangled 
representations that encode distinct aspects of the data into separate variables. We 
propose to learn such representations using model architectures that generalize from 
standard VAEs, employing a general graphical model structure in the encoder and 
decoder. This allows us to train partially-specified models that make relatively strong 
assumptions about a subset of interpretable variables and rely on the exit of neural 
networks to learn representations for the remaining variables. We further define a general 
objective for semi-supervised learning in this model class, which can be approximated 
using an importance sampling procedure. We evaluate our framework's ability to learn 
disentangled representations, both by qualitative exploration of its generative capacity, 
and quantitative evaluation of its discriminative ability on a variety of models and 
datasets. 
 

3.4.4 Deep Variational Reinforcement Learning for POMDPs  
M. Igl, L. Zintgraf, T. A. Le, F. Wood, and S. Whiteson. Deep variational reinforcement learning 
for pomdps. ICML, 2018. [2] 

 
Many real-world sequential decision making problems are partially observable by nature, 
and the environment model is typically unknown. Consequently, there is great need for 
reinforcement learning methods that can tackle such problems given only a stream of 
incomplete and noisy observations. In this paper, we propose deep variational 
reinforcement learning (DVRL), which introduces an inductive bias that allows an agent 
to learn a generative model of the environment and perform inference in that model to 
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effectively aggregate the available information. We develop an n-step approximation to 
the evidence lower bound (ELBO), allowing the model to be trained jointly with the 
policy.  This ensures that the latent state representation is suitable for the control task. 
 
 

4.0 RESULTS AND DISCUSSION  
 
The majority of Oxford's D3M effort supported the training of and research production of 
a number of graduate students and postdoctoral fellows. In addition to research activities, 
all those listed below have contributed to the D3M framework software project by way of 
primitives for automated machine learning and/or development of the D3M runtime. 
Their main contributions to the project are listed below. 
 

4.1 PyFOPPL 
https://github.com/Tobias-Kohn/PyFOPPL-2 
PyFOPPL is a first-order probabilistic programming library for Python. 
 
This library focuses on the set of probabilistic models which are amendable to be being 
solved with Hamiltonian Monte Carlo algorithm as well as graphical model methods. 
Models are compiled into a graphical representation which is portable and for which 
specialized solvers have been written. 
 

4.2 Pyprob 
https://github.com/probprog/pyprob 
 
pyprob is a PyTorch-based library for probabilistic programming and inference 
compilation. The main focus of this library is on coupling existing simulation codebases 
with probabilistic inference with minimal intervention.  Support for multiple languages.  
We support front ends in multiple languages through the PPX interface that allows 
execution of models and inference engines in separate programming languages, 
processes, and machines connected over a network. The currently supported languages 
are Python and C++. 
 

• Python: pyprob is implemented and directly usable from Python 
 

• C++: A lightweight C++ front end is available through the pyprob cpp Library 
 
Inference engines pyprob currently provides the following inference engines: 
 

• Markov chain Monte Carlo 
 Lightweight Metropolis Hastings (LMH) 
 Random-walk Metropolis Hastings (RMH) 

 
• Importance sampling 

https://github.com/Tobias-Kohn/PyFOPPL-2
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 Regular sequential importance sampling (proposals from prior) 
 Inference compilation 

 
 

Inference compilation is an amortized inference technique for performing fast repeated 
inference using deep neural networks to parameterize proposal distributions in the 
importance sampling family of inference engines. We are planning to add other inference 
engines, e.g., from the variational inference family. 
 

4.3 Pyprob cpp 
https://github.com/probprog/pyprob_cpp 
 
pyprob cpp is a C++ library providing a lightweight interface to the pyprob probabilistic 
programming library implemented in Python. The two components communicate through 
the PPX interface that allows execution of models and inference engines in separate 
programming languages, processes, and machines connected over a network. 
 

4.4 PPX 
https://github.com/probprog/ppx 
 
PPX is a cross-platform Probabilistic Programming eXecution protocol and API based on 
at- buffers. It is intended as an open interoperability protocol between models and 
inference engines implemented in different probabilistic programming languages. 
Probabilistic programming is about the execution probabilistic models under the control 
of inference engines, and PPX allows the model and the inference engine to be: 
 

• Implemented in different programming languages and 
 

• Executed in separate processes and on separate machines across networks. 
 
PPX is inspired by ONNX, the Open Neural Network Exchange project allowing 
interoperability between major deep learning frameworks. 
 

4.5 Hypergradient Descent 
https://github.com/gbaydin/hypergradient-descent 
 
In gradient-based optimization, one optimizes an objective function by using its 
derivatives (gradient) with respect to model parameters. In addition to this basic gradient, 
a hypergradient is the derivative of the same objective function with respect to the 
optimization procedure's hyperparameters (such as the learning rate, momentum, or 
regularization parameters). There can be many types of hypergradients, and in this work 
we're interested in the hypergradient with respect to a scalar learning rate. We are 
providing ready-to-use implementations of the hypergradient versions of SGD (with or 
without momentum) and Adam optimizers for PyTorch. These comply with the 
torch.optim API and can be used as drop-in replacements in your code. 
 

https://github.com/probprog/ppx
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4.6 Common Primitives 
https://gitlab.com/datadrivendiscovery/common-primitives 
 
When performing an AutoML task there are a set of tasks that always come up. We 
developed a set of primitives to be used in the creation of nearly all AutoML problems. 
Among these primitives includes: 
 

• Logistic regression, a probabilistic classification model 

• Data loaders for images, csv _les, and text documents 

• Feedforward neural networks for regression or classification 

• Convolutional neural networks for working with image data 

• Kmeans clustering for unsupervised learning 

• Probabilistic PCA for unsupervised learning 

• Random Forests for classification 

• Linear Regression with regularization for regression 

 

5.0 CONCLUSIONS 
 
This work described our contribution of proof of concept primitives to the D3M program 
and research progress made towards an initial version of Hasty.  Although we were 
unable to complete the initial version of Hasty, or contribute to the D3M primitive library 
the types of primitives that Hasty will enable we did train a number of Highly Qualified 
Personnel (HQP) and have interacted with the AutoML, probabilistic programming 
languages, neural networking, and other communities which our work is expected to 
impact. 
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6.0 Postdocs 
 
Gunes Baydin Wrote inference compilation based PPL, PyProb and trace interpolation protocol, 
PPX. Currently a postdoc at Oxford. Attended D3M integration events. 
 
Tobias Kohn Wrote _rst-order Python-based probabilistic programming compiler, PyLFPPL. 
Currently a postdoc at Cambridge. 
 
Adam Scibior Currently a post-doc at UBC. Attended D3M integration events. 
 
 
6.1 Graduate Students 
 
William Harvey Wrote and contributed primitives to the D3M primitives library. 
Currently a graduate student at UBC. Attended D3M integration events. 
 
Michael Teng Wrote and contributed primitives to the D3M primitives library.  Currently a 
graduate student at Oxford. Currently a graduate student at Oxford and visiting UBC. Attended 
D3M integration events. 
  
Robert Zinkov Wrote and contributed primitives to the D3M primitives library.  Currently a 
graduate student at Oxford and visiting UBC. Attended D3M integration events.  
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8.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 
 
AutoML Auto Machine Learning 
BDSGD Bayesian Distributed Stochastic Gradient Descent  
CIWAE Combination Importance Weighted Auto-Encoder 
cpp  Certified Professional Programmer 
DHMC Discontinuous Hamiltonian Monte Carlo  
ELBO  Evidence Lower Bounds 
IT  Inference Trees 
IWAE  Importance Weighted Auto-Encoder 
LF-PPL First-order Probabilistic Programming Language  
MIWAE Multiply Importance Weighted Auto-Encoder 
PIWAE Partially Importance Weighted Auto-Encoder 
PPX   Probabilistic Programming eXecution 
PyFOPPL Python First Order Probabilistic Programming Language 
SMC  Sequential Monte Carlo  
VAE   Variational Auto Encoder   
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