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Accomplishments:  Executive summary



1) Used various forms of machine learning to ascertain an easily quantified but complex visual stimulus observable 
from a set of fMRI data. Created various schemes to optimize accuracy. Employed a novel form of sensitivity 
analysis to relate the ML results back to brain anatomy. Published results in Frontiers.



2) Used a similar virtual environment to evaluate an internal cognitive variable, task difficulty. Subjects now had to 
perform a task, weapon detection, while viewing a cluttered and complex visual scene. Task difficulty was varied 
randomly from scene-to-scene. Support vector methods were developed and optimized to predict task difficulty 
from fMRI data obtained during the task. We obtained excellent results using support-vector regression, which 
offered 80-90% accuracy. These results motivated additional subsequent funding from the Veterans Administration 
to use similar methods as a means to treat PTSD. A manuscript for this work is in preparation for submission to 
Neuroimage.



3) Developed a third virtual environment and task to evaluate the use of machine-learning models of state-space. 
The task featured three states: navigation, search, and evasion. Some fMRI data was obtained, but loss of ARO 
funding during the final year of the project greatly slowed deployment of this project and subsequent analysis of the 
data. Preliminary results were nevertheless encouraging.



For details, please see the attached PDF.

Training Opportunities:  Most training concerned of one graduate student, Andrew Floren, who is still working his 
dissertation. Its chapters will largely follow the three Accomplishments summarized above. The unexpected halt of 
ARO support in 2014 was one factor that caused Mr. Floren to take a job with private industry, deferring completion 
of his Ph.D. Fortunately, he is still participating in our subsequent follow-up project with the VA, and working to 
finish his dissertation at the same time.



We also trained several undergraduate students in our lab, who participated as research assistants. Training 
included fMRI methods, neuroanatomy and brain segmentation, and general scientific research methods.

Results Dissemination:  One journal publication was obtained, a second is under preparation. 



Six conference proceeding were presented during the time-frame of this award. See "Products" section.



Andrew Floren will eventually include all products in his dissertation at UT Austin.
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Neurometrics 
 
 
 
Executive Summary 
 
The goal of this research project was to push forward the known and 
demonstrated capacity for using Virtual Environments as the primary stimulus for 
neuroscience research that utilized functional MRI, with emphasis on its utility for 
training and support of our military. 
 
1) We created a virtual environment that simulated a town in the Middle East. 
Subjects viewed scenes within the town featuring various numbers of virtual 
combatants. We evaluated using various forms of machine learning to ascertain 
the number of combatants in each scene, which was a complex visual stimulus, 
from a set of fMRI data collected while a subject was watching of the stimulus. 
We developed and evaluated various schemes to optimize accuracy of the 
machine learning to identify how many combatants. 1-6, were being shown 
based solely on the fMRI data. We invented a novel form of sensitivity analysis to 
relate the machine learning results back to brain anatomy. This work was 
published in Frontiers of Neuroscience. 
 
2) We used a similar virtual environment to evaluate task difficulty by measuring 
an internal cognitive variable. In this experiment, subjects had to perform a very 
simple task, ‘weapon detection”, while viewing a cluttered and complex visual 
scene. Task difficulty was varied randomly from scene-to-scene. Support vector 
methods were developed and optimized to predict task difficulty from fMRI data 
measured during the task. We obtained excellent results using support-vector 
regression, which offered 80-90% accuracy. These results motivated additional 
subsequent funding from the Veterans Administration to use similar methods as 
a means to treat PTSD. A manuscript for this work is in preparation for 
submission to Neuroimage. 
 
3) For a third experiment, we developed a third virtual environment and task to 
evaluate the use of machine-learning of models of “cognitive state-space”. The 
task featured three states taken from video games: navigation, search, and 
evasion. While some fMRI data was obtained, we ran out of funding before we 
were able to complete this phase of the project. Nonetheless, preliminary results 
were encouraging. 
 
Below is a summary of what was learned from the first experiment, followed by a 
draft manuscript prepared for the second experiment. The third experiment was 
executed, but has not yet been written up as part of graduate student’s Andrew 
Floren’s Ph.D. dissertation 



 
	

Experiment	1	Summary	
Methods	and	Results	
The	overarching	goal	of	this	project	was	to	push	the	frontier	in	the	use	of	3D	Virtual	
Environments	as	stimuli	for	functional	MRI	based	research.	There	were	two	related	
motivations	for	this.	Firstly,	we	wanted	to	enable	understanding	brain	functioning	
under	somewhat	more	realistic	circumstances.	Such	knowledge	would	compliment	
the	standard	approach	of	highly	controlled	and	more	artificial	stimuli	that	is	
commonly	used	in	fMRI	research.	For	example,	most	stimuli	are	often	static	images,	
whereas	we	maximized	motion,	both	of	the	virtual	camera	and	the	virtual	characters	
within	a	virtual	environment	to	better	mimic	natural	experiences.	Secondly,	we	
wanted	to	lay	the	groundwork	for	individualized	therapies	and	training,	and	so	we	
took	an	approach	more	characteristic	of	clinical	research.	In	particular,	we	
developed	computational	methods	targeting	individuals	separately,	as	opposed	to	
aggregating	data	from	groups	of	subjects	to	test	hypotheses	about	human	brains	in	
general,	as	is	most	often	the	case.	
	
A	central	component	of	the	methods	we	developed	for	this	entailed	utilizing	machine	
learning	for	the	analysis.	This	was	in	contrast	to	the	most	common	analysis	technique	at	the	
time,	viz.	the	General	Linear	Model	(GLM),	which	treats	every	voxel	independently	to	
establish	the	degree	to	which	each	voxel	responds	to	the	stimulus.	Instead,	machine	
learning	finds	patterns	of	response	within	collections	of	voxels	that	can	be	distributed	
throughout	the	brain	(often	called	Multi-Voxel	Pattern	Analysis).	Indeed,	the	progression	of	
fMRI	research	over	the	last	decade	has	made	increasingly	clear	that	the	brain’s	large	scale	
functional	organization	entails	many	distributed	voxels	activating	in	a	highly	coordinated	
manner.	Machine	learning	is	an	important	tool	for	discovering	this	synchronized	response.	
Our	applying	machine	learning	to	virtual	worlds	induced	brain	response	patterns	
constituted	another	pioneering	aspect	of	our	work.	
	
Machine	learning	algorithms	require	“training”	in	order	for	them	to	“learn”	what	it	is	we	
want	them	to	“know”.	This	often	is	used	to	create	what	are	called	“classifiers”	that	identify	
which	one	of	a	small	set	of	classes	(e.g.	houses,	faces,	etc.)	the	current	input	most	likely	
belongs	to.	We	used	both	Support	Vector	Machines	and	Artificial	Neural	Networks	for	this.	
The	test	for	success	is	the	accuracy	with	which	the	machine	learning	can	classify	a	new	
brain	pattern	that	is	a	response	to	stimuli	from	the	same	set	of	classes	used	for	training	but	
has	not	actually	been	used	in	the	training.	We	tested	our	methods	with	two	similar	but	
distinct	experiments	in	which	an	overriding	concern	was	achieving	as	high	an	accuracy	as	
possible	in	recognizing	the	right	class.		
	
The	first	experiment	used	passive	viewing.	It	had	as	it’s	setting	a	virtual	version	of	a	small	
Middle	Eastern	village.	We	wanted	to	see	how	well	the	classifiers	could	determine	how	
many	characters	were	present	in	the	stimulus	at	any	given	time;	i.e.	could	the	machine	
learning	alone	identify	the	number	of	characters	in	the	stimulus	that	caused	the	measured	
brain	activation	pattern.	We	used	virtual	models	of	both	U.S.	soldiers	as	well	as	insurgents.	
Their	number	varied	from	1-6,	and	we	trained	the	classifiers	to	distinguish	between	only	
the	number	of	characters.	The	camera	would	travel	throughout	the	town	until	a	group	of	



combatants	was	encountered.	The	camera	would	remain	there,	while	still	moving	slightly,	
for	12	seconds,	and	then	move	on	to	another	location	over	a	4	sec.	interval.	At	each	location,	
the	composition	of		the	set	of	characters	varied.		
	
This	may	seem	like	a	simple	enough	objective,	but	given	the	poor	signal	to	noise	ratio	of	
fMRI,	it	was	actually	quite	challenging.	We	spent	well	over	a	year	trying	to	understand	what	
techniques	could	be	utilized	to	get	the	highest	classification	accuracy	(also	called	prediction	
accuracy).	What	we	arrived	at	was	a	multi-stage	processing	pipeline.	The	key	components	
of	this	pipeline	were	1)	dimensionality	reduction	using	ANOVA,	a	single	voxel	statistical	
correlation	test	2)	multi-voxel	pattern	analysis	using	machine	learning	3)	an	output	
averaging	technique	that	we	showed	was	superior	to	standard	input	averaging.	In	the	end,	
the	prediction	accuracy	varied	quite	a	bit	between	different	subjects,	of	which	there	were	8,	
and	between	sessions,	of	which	there	were	two	per	subject.	The	highest	accuracy	was	>	
90%	where	are	the	lowest	was	>60%,	after	dropping	two	sessions	that	a	quantitative	
measure	of	the	quality	of	the	data,	based	on	cross-validation,	indicated	were	of	poor	quality.		
	
As	a	final	step	in	the	processing,	we	introduced	a	novel	approach	to	using	artificial	neural	
networks	(NN)	to	create	“spots	on	the	brain”	pictures.	Such	pictures	have	been	the	standard	
approach	to	interpreting	the	analysis	provided	by	GLM.	But	nothing	analogous	had	been	
developed	when	using	NN’s.	For	this	we	used	“sensitivity	analysis”,	which	is	a	general	
technique	that	can	be	applied	to	many	modeling	problems,	include	NN’s.	In	our	case,	we	in	
effect	inverted	the	NN	(which	cannot	be	done	analytically)	to	numerically	determine	for	
each	voxel	the	degree	to	which	that	voxel	contributed	to	discrimination	between	the	set	of	
classes	(how	many	combatants	were	being	seen).	This	provided	a	new	and	different	way	to	
analyze	brain	activity	using	brain	maps:	one	that	reflected	how	the	voxels	collectively	
participated	in	“solving”	the	classification	problem.	
	
	
The	second	experiment	was	designed	to	move	beyond	classification	based	on	obvious	
sensory	properties	of	the	stimulus,	such	as	the	number	of	combatants.	Instead,	the	objective	
was	to	measure	a	more	complex	internal	state.	For	this,	we	devised	a	stimulus	based	on	task	
difficulty;	a	classic	type	of	experiment,	and	unlike	the	first	experiment,	one	that	relied	on	
user	input.	Once	again,	we	used	a	virtual	town,	although	one	considerably	more	complex	
than	that	of	the	first	stimulus.	We	used	the	same	set	of	virtual	combatants,	but	now	they	
were	controlled	by	a	simple	type	of	Artificial	Intelligence	often	used	for	simulating	simple	
group	behaviors	in	video	games.	In	our	case,	we	had	20	combatants	milling	around	an	
intersection	of	the	town.		At	unpredictable	moments,	one	would	pull	out	a	weapon,	and	hold	
it	at	chest	height	for	3	seconds.	The	task	for	the	subject	was	to	press	a	button	when	they	
saw	a	weapon.	The	difficulty	was	determined	by	where	in	the	crowd	the	combatant	with	the	
weapon	was	located.	The	closer	the	weapon	was	to	the	virtual	location	of	the	subject,	the	
easier	the	task,	and	the	further	away,	the	more	difficult	the	task.	The	reason	for	this	was	
simple:	the	greater	the	distance	from	the	subject,	1)	the	smaller	the	size	of	the	image	of	the	
character	due	to	perspective	projection	2)	the	greater	the	occlusion	of	the	weapon	and	the	
character	pulling	out	the	weapon	due	to	closer	characters	3)	the	more	the	motion	of	other	
closer	characters	distracted	the	subject	from	noticing	the	weapon	being	pulled	out.	
	
For	purposes	of	training	the	machine	learning,	we	divided	the	distance	into	three	classes:	
near,	medium	and	far.	
	



Compared	to	the	first	experiment,	we	expected	decoding	task	difficulty	to	be	significantly	
more	complex	and	would	therefore	require	an	improved	processing	pipeline	to	maximize	
classification	accuracy.	We	had	already	found	that	reducing	the	dimensionality	of	the	data	
was	a	key	processing	step	for	maximizing	classification	accuracy,	but	the	ANOVA	correlation	
test	we	used	in	the	first	experiment	requires	an	independent	measure	of	task	activation	
which	in	turn	requires	the	acquisition	of	a	large	amount	of	control	data.	This	control	data	
cannot	easily	be	acquired	for	all	experimental	designs	and	is	unsuitable	for	training	the	
classifier.	We	therefore	developed	a	general	technique	that	exploits	the	structure	of	the	
brain	to	reduce	the	dimensionality	of	the	data	while	at	the	same	time	improving	the	signal	
to	noise	ratio.	First,	cortical	surface	meshes	are	constructed	using	high	resolution	
anatomical	scans,	and	the	meshes	for	each	hemisphere	are	aligned	to	a	spherical	template.	
Then,	functional	data	from	each	session	is	projected	onto	this	surface	after	alignment	with	
the	subject’s	anatomical	scan.	This	results	in	an	immediate	reduction	in	dimension	as	only	
data	on	the	cortical	surface	is	retained.	The	data	is	then	smoothed	along	the	surface	and	
resampled	at	a	lower	resolution.	Smoothing	along	the	surface	improves	signal	to	noise	with	
minimal	introduction	of	error	compared	to	smoothing	within	the	volume;	in	which	data	is	
smoothed	across	both	gyral	and	sulcal	boundaries,	while	resampling	is	at	a	lower	resolution	
further	and	reduces	the	dimensionality	of	the	data	even	further	with	minimal	loss	of	
information.	We	explored	a	wide	parameter	space	of	smoothing	parameters,	sampling	rates,	
and	ANOVA	dimensionality	reduction	to	determine	the	optimal	settings	for	maximizing	
classification	accuracy.		
	
We	were	successfully	able	to	decode	the	subjects	performance	at	a	task	between	the	three	
states	poor,	average,	and	good	with	accuracy	varying	from	70%	to	91%	(chance	decoding	
accuracy	was	33%)	depending	on	the	particular	session.	We	were	only	able	to	achieve	this	
high	decoding	accuracy	by	combining	the	cognitive	state-space	filtering	techniques	
developed	in	our	first	experiment	with	the	improved	preprocessing	techniques	developed	
in	this	experiment.	While	the	ANOVA	dimensionality	reduction	was	still	useful,	we	found	
that	the	structural	dimensionality	reduction	technique	was	more	than	sufficient	to	achieve	
strong	classification	accuracy.	In	future	experiments,	this	means	more	of	each	scanning	
session	can	be	devoted	to	collecting	data	useful	for	training	the	classifier	instead	of	control	
data.	Furthermore,	the	spherical	template	alignment	simplified	aggregating	training	data	
across	both	sessions	and	subjects	which	yielded	yet	further	improved	classification	
accuracy.		
	 	



1Decoding behavioral performance accurately from 
fMRI data obtained in a realistic virtual environment 

Abstract 

Abstract	text	

Introduction 

Decoding	cognitive-state	variables	(Akama,	Murphy,	Na,	Shimizu,	&	Poesio,	2012;	
Floren,	Naylor,	Miikkulainen,	&	Ress,	2015;	Spiers	&	Maguire,	2007)	from	fMRI	
opens	up	exciting	new	applications	in	training	and	therapy.	However,	many	hurdles	
remain	to	be	cleared	before	real-world	applications	are	possible:	training	or	therapy	
must	be	performed	within	the	scanner,	decoding	techniques	must	be	able	to	handle	
less	structured	and	controlled	stimuli	to	accommodate	training	and	therapy	
programs,	we	must	be	able	to	decode	across	different	sessions	to	reduce	total	time	
in	the	scanner,	and	we	must	be	able	to	decode	variables	that	are	inherent	to	the	
subject	rather	than	the	stimuli.	
The	requirement	that	the	subject	must	remain	almost	completely	motionless	over	
the	course	of	the	session	severely	limits	the	types	of	programs	where	fMRI	decoding	
is	realistically	applicable.	A	potential	solution	to	this	limitation	is	to	use	virtual	
reality	environments	for	the	stimuli.	While	motion	and	other	somatosensory	inputs	
are	still	restricted,	virtual	environments	provide	a	more	immersive	experience	that	
should	cause	the	subject's	neural	response	to	be	closer	to	that	evoked	by	the	real	
world.	Subjects	can	still	attain	the	experience	of	controlling	motion	using	various	
input	devices	as	is	done	in	video	games.	Encouragingly,	some	therapies	already	
utilize	virtual	reality	such	as	PTSD	extinction	therapy	(Gonçalves,	Pedrozo,	
Coutinho,	Figueira,	&	Ventura,	2012).			
Most	cognitive	neuroscience	experiments	that	have	used	machine	learning	focused	
on	explanatory	power	at	the	expense	of	classification	accuracy	and	stimuli	
complexity.	For	example,	in	the	work	of	(Goesaert	&	Op	de	Beeck,	2013)	faces	are	
presented	to	the	viewer	and	an	SVM	classifier	is	trained	to	determine	small	
differences	in	the	presented	faces.	The	faces	are	highly	controlled	for	contrast	and	
small	variations	in	the	structure	of	the	face.	This	is	ideal	for	interrogating	the	neural	
representation	of	the	perception	of	faces,	but	not	a	strong	indicator	of	achievable	
classification	accuracy	in	a	more	realistic	setting.	Conversely,	in	(Kauppi	et	al.,	2011)	
faces	are	presented	in	a	realistic	stimulus,	but	classification	is	performed	using	
ordinary	least	squares	regression.	The	statistical	properties	of	the	regression	make	
hypothesis	testing	easier,	but	decoding	accuracy	suffers.	These	applications	of	
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machine	learning	make	sense	when	the	objective	is	to	answer	a	basic	research	
question.	However,	our	goal	is	to	apply	fMRI	cognitive	state	decoding	during	
training	and	therapy,	where	classification	accuracy	is	extremely	important,	and	
realistic	stimuli	are	essential.	For	such	applications,	we	have	investigated	the	use	of	
more	complex	multivariate	decoding	techniques	including	feed-forward	neural-
networks	and	time-dependent	filtering	techniques.	While	these	are	more	difficult	to	
interpret	using	the	usual	linear	correlations	between	stimuli	and	response,	they	
provide	significantly	improved	decoding	accuracy.	
Unfortunately,	fMRI	data	is	relatively	ill-posed	for	advanced	machine	learning	
methods.	The	dimensionality	of	whole	brain	data	is	large	compared	to	the	number	
of	samples	that	can	be	collected	during	a	typical	hour-long	scanning	session	(e.g.,	
256,000	voxels	vs.	~	1000	time	slices).	Furthermore,	because	of	the	hemodynamic	
character	of	fMRI,	the	samples	are	correlated	in	both	space	and	time	(Buxton,	
Uludağ,	Dubowitz,	&	Liu,	2004;	Glover,	1999).	Many	data-agnostic	approaches	have	
been	used	to	attempt	to	solve	this	problem	such	as	principal	component	analysis	
(PCA;	Hotelling,	1933)	and	independent	component	analysis	(ICA;	Comon,	1994).	
However,	we	want	to	use	the	structure	of	fMRI	data	and	more	specifically	the	
cortical	structure	of	the	brain	to	reduce	the	dimensionality	of	the	data	intelligently.		
For	training	and	therapy	applications,	it	will	be	helpful	to	be	able	to	train	the	
classifier	in	one	session,	and	then	use	that	trained	classifier	in	subsequent	sessions.	
This	will	reduce	the	necessary	scanning	time	per	subject	because	the	classifier	will	
only	need	to	be	trained	once	rather	than	every	session.	It	also	opens	up	the	
possibility	of	a	decoding	algorithm	that	gets	better	with	each	successive	scanning	
session.	Ideally,	we	would	also	like	to	be	able	to	user	decoders	trained	on	a	large	
number	of	different	subjects.	The	main	difficulty	to	solving	both	of	these	problems	is	
accurately	registering	the	volumes	between	different	sessions	and	subjects.	We	
have	found	that	spherical	registration	(Yeo	et	al.,	2008)	yields	the	best	results	for	
both	cross-session	and	cross-subject	registration	in	terms	of	decoding	accuracy.	
For	the	desired	applications,	it	is	important	to	decode	cognitive	variables	that	are	
inherent	to	the	subject	rather	than	a	reflection	of	the	stimuli.	We	already	know	what	
stimuli	we	are	presenting;	we	want	to	learn	more	about	the	subject.	In	this	paper,	
we	decode	the	subject’s	performance	at	a	difficult	task.	While	we	control	the	
difficulty	of	the	task	which	is	correlated	with	their	performance,	we	are	really	
interested	in	how	their	attention	and	strategy	for	completing	the	task	influence	
performance.	Furthermore,	predicting	a	subject’s	performance	has	obvious	
applications	for	training	and	therapy	such	as	modulating	difficulty	to	keep	predicted	
performance	on	a	specific	trajectory.		
In	this	manuscript,	we	present	a	unified	framework	for	training	and	evaluating	
machine	learning	models	across	sessions	and	subjects	while	leveraging	the	
underlying	structure	of	the	brain	and	vasculature	to	minimize	the	dimensionality	of	
the	data.	We	show	that	within	this	framework	it	is	possible	to	predict,	with	
significant	accuracy,	subject	performance	at	a	complex	task	within	a	virtual	
environment	(similar	to	that	of	existing	PTSD	extinction	therapy	treatments).	And	
we	present	sensitivity	maps	of	the	trained	models	which	show	that	the	drivers	of	
these	predictions,	while	correlated	with	functional	regions,	utilize	diverse	networks	
across	the	brain	and	vary	significantly	between	individuals.		



Methods 

Subjects 

Six	adult	males,	ages	24-57,	with	normal	or	corrected-to-normal	vision,	participated	
in	the	experiments.	All	subjects	participated	in	two	fMRI	sessions	and	a	third	session	
to	acquire	a	high-resolution	structural	anatomy.	Informed	consent	was	obtained	
from	all	subjects	under	a	protocol	approved	by	the	University	of	Texas	at	Austin	
Institutional	Review	Board.		

Stimulus 

Given	our	long-term	interest	in	PTSD,	we	created	a	virtual	environment	very	similar	
to	those	used	in	current	PTSD	extinction	therapy	programs	(Figure	1.	Virtual	reality	
environment	and	search	task.).	Subjects	perform	a	weapon-detection	task	at	six	
different	locations	in	this	virtual	town.	Between	detection	tasks,	the	screen	
smoothly	fades	from	the	current	location	to	a	new	location	over	five	seconds.	Next,	a	
cue	is	presented	to	the	subject	that	indicates	the	difficulty	of	the	upcoming	block	for	
five	seconds.	Then	the	subject	performs	the	task	at	that	location	for	45	seconds.	
During	the	task,	20	characters	move	about	within	the	subject’s	view.	A	randomly	
chosen	character	will	pull	out	a	weapon	every	two	to	four	seconds.	Subjects	press	a	
button	to	indicate	their	detection	of	the	weapon	which	was	previously	not	visible.	In	
response	to	their	button	press,	the	character	puts	the	weapon	away,	and	the	trial	is	
flagged	as	successful.	If	after	a	certain	amount	of	time	the	subject	fails	to	detect	the	
weapon,	the	character	puts	the	weapon	away,	and	the	task	is	flagged	as	
unsuccessful.	After	the	task,	we	have	a	control	period	in	which	weapons	are	
replaced	by	non-weapon	objects.	The	control	period	begins	with	another	5-second	
cue	followed	by	a	15-second	period	during	which	the	characters	move	in	the	same	
fashion,	but	pull	out	flashlights	rather	than	weapons.	The	subject	is	instructed	to	
gaze	at	the	horizon	during	this	period,	and	to	not	respond	with	button	presses.	This	
process	is	repeated	at	six	different	locations	within	the	virtual	town,	and	the	entire	
stimuli	is	repeated	six	times	during	each	fMRI	scan	session.	

	 	



	 	

Figure	1.	Virtual	reality	environment	and	search	task.	A)	An	example	 frame	 from	an	

intersection	in	the	virtual	reality	environment.	B)	A	frame	in	which	a	weapon	is	visible	

circled	in	red.	C)	A	frame	during	the	cue	presentation.	D)	A	frame	during	the	control	

period	when	a	flashlight	is	visible	circled	in	red.	

Task	difficulty	was	carefully	adjusted	for	each	of	these	periods	to	vary	between	easy,	
medium,	and	hard.	Task	difficulty	was	primarily	controlled	by	varying	the	distance	
between	the	character	selected	to	hold	the	weapon	and	the	camera.	Characters	far	
away	from	the	camera	where	both	visually	smaller	and	more	likely	to	be	partially	or	
fully	occluded	by	other	characters.	However,	the	actual	projected	size	of	the	weapon	
and	level	of	occlusion	could	vary	significantly	for	the	same	target	depth	due	the	
random	nature	of	the	characters'	movement.	To	account	for	this	variability	in	
difficulty,	the	duration	that	the	weapon	is	held	by	the	character	is	modeled	in	real-
time	to	achieve	a	roughly	constant	quantity	of	visibility.	We	calculate	the	total	area	
of	visible	weapon	in	pixels	and	multiply	this	by	the	frame	rate	of	the	stimuli	to	
arrive	at	the	weapon’s	total	visibility	in	pixel-seconds.	The	character	holds	the	
weapon	until	the	accumulated	pixel-seconds	exceed	the	threshold	for	the	current	
difficulty	setting.	To	keep	the	expected	duration	of	presentation	constant	across	
different	distances	equal,	the	pixel-second	threshold	was	divided	by	the	square	of	
the	distance	between	the	viewer	and	the	character.	
During	training	periods	outside	of	the	scanner,	the	subject	received	audio	feedback	
for	successfully	finding	the	weapon,	missing	a	weapon,	and	indicating	that	they	have	
seen	a	weapon	while	one	is	not	present.	However,	during	the	scanning	sessions	
there	was	no	performance	feedback.		
The	expected	difficulty	of	the	stimuli	is	adjusted	each	time	the	subject	moves	to	a	
new	location.	However,	the	difficulty	settings	and	locations	were	balanced	so	that	
there	would	be	no	correlation	between	location	and	task	difficulty.	Furthermore,	
low-level	contrast	was	held	constant	in	real-time	using	a	custom	GPU	shader.	

Psychophysics  

Performance	data	was	collected	for	each	subject	outside	of	the	scanner	to	collect	
performance	data	and	to	ensure	that	the	subjects	understood	and	correctly	
responded	to	the	stimuli	cues.	Task	performance	was	estimated	as	the	average	



performance	of	the	subject	during	a	30-second	block	while	the	distance	of	the	
weapon	from	the	viewer	and	its	total	visibility	were	used	to	estimate	difficulty.	
However,	due	to	the	semi-random	movements	of	the	characters,	effective	distance	
and	visibility	could	vary	considerably.	Therefore,	we	collected	extensive	logging	
information	during	the	stimuli	that	included	the	exact	timing,	positions,	and	
visibility	of	all	characters	and	weapons	as	well	as	the	responses	of	the	subject.		
In	an	early	prototype	of	the	game,	weapons	were	presented	for	fixed	durations	at	
specified	distances	to	control	task	difficulty	(Fig.	#a).	However,	we	found	that	the	
correlation	between	distance	and	performance	was	much	better	when	the	total	
visibility	(the	number	of	pixels	containing	the	weapon	in	each	frame	multiplied	by	
the	duration	of	the	frame	summed	over	all	frames	that	the	weapon	was	presented)	
was	held	constant	rather	than	the	duration	(Fig.	#b).	This	helped	control	the	
difficulty	of	the	task	when	the	weapon	was	occluded	due	to	the	random	motion	of	
the	characters.	For	a	particular	expected	duration,	the	total	visibility	is	tightly	
correlated	with	distance,	that	is,	the	closer	the	weapon	is	to	the	screen	the	more	
pixel-seconds	it	accrues	every	frame.	To	limit	this	interaction,	the	total	visibility	for	
a	particular	presentation	was	linearly	related	to	the	distance	rather	than	being	a	
constant	value.	We	found	that	a	slope	of	1000	and	an	intercept	of	-65	gave	a	
reasonable	duration	for	the	presentation	while	still	creating	a	strong	performance	
curve	with	distance	for	all	subjects.	Note	that	this	relationship	is	dependent	on	the	
resolution	of	the	screen	displaying	the	stimuli.	Expected	performance	versus	
weapon	distance	curves	show	similar	shapes	for	each	subject,	but	there	is	clear	
variability	in	task	performance	between	subjects.	

	 	
	

Figure	2.	Psychophysics	results	

We	fit	a	logistic	regression	to	the	subject’s	performance	given	the	in-game	distance	of	

the	presented	character	with	fixed	duration	(a)	and	fixed	total	visibility	(b).	The	R2	

value	of	the	logistic	regression	predictions	and	the	actual	subject	performance	for	each	

difficulty	setting	are	presented	in	the	figures.	

MRI Protocols 

Imaging	was	performed	on	a	Siemens	Skyra	3T	scanner	using	the	product	32-
channel	head	coil.	Structural	reference	volumes	were	T1-weighted	with	good	gray-



white	contrast	and	acquired	using	a	MP-RAGE	sequence	(minimum	TE,	TR	=	2600	
ms,	TI	=	900	ms,	9°	flip	angle,	isometric	voxel	size	of	0.7	mm,	2	excitations,	~28-min	
duration).	fMRI	scans	were	collected	using	a	whole-brain	GRAPPA	EPI	sequence	
with	g-factor	=	4,	TE	=	25	ms,	TR	=	2	s,	and	2-mm	cubic	voxels	across	a	200-mm	
field-of-view.	The	slice	prescription	included	60	slices	oriented	along	the	AC-PC	axis.	
A	high-order	shim	was	performed	before	the	start	of	the	functional	imaging	to	
improve	field	homogeneity.	A	set	of	T1-weighted	structural	images	was	obtained	on	
the	same	prescription	as	the	functional	acquisition	runs	in	the	same	session	directly	
before	the	functional	scans	were	collected	using	a	three-dimensional	(3D)	FLASH	
sequence	(minimum	TE	and	TR,	~1-mm	pixel	size,	15°	flip	angle).	These	anatomical	
images	had	good	gray-white	contrast	and	were	used	to	align	the	functional	data	to	
the	structural	reference	volume.	

Preprocessing 

Automatic	cortical	segmentation	and	surface	extraction	was	performed	on	the	
structural	reference	volume	using	FreeSurfer	(ref).	The	cortical	surfaces	for	each	
hemisphere	were	inflated	into	a	sphere	while	minimizing	metric	distortion.	These	
spherical	surfaces	are	then	registered	to	FreeSurfer's	spherical	atlas	first	by	
coarsely	aligning	on	large-scale	folding	patterns	and	then	fine-tuned	using	small-
scale	curvature	patterns	(freesurfer	sphere	ref).		
The	inplane	anatomical	volumes	were	skull-stripped	and	normalized	in	the	same	
fashion	as	the	first	stage	of	the	automatic	cortical	segmentation	and	surface	
extraction.	The	processed	inplane	volumes	were	then	affinely	registered	to	the	
structural	reference	volumes	using	a	method	based	on	robust	statistics	to	detect	
outliers	and	remove	them	from	the	registration	(ref:	Highly	Accurate	Inverse	
Consistent	Registration:	A	Robust	Approach).		
Simultaneous	slice-timing	and	motion	correction	was	performed	on	the	functional	
scans	(ref	nipy.SpaceTimeRealign).	Then,	a	rigid-body	registration	was	performed	
between	scans	to	align	each	frame	to	the	first	volume,	i.e.,	the	frame	closest	in	time	
to	the	structural	inplane	(ref	Improved	Optimisation	for	the	Robust	and	Accurate	
Linear	Registration	and	Motion	Correction	of	Brain	Images).		
The	functional	data	was	then	approximately	aligned	to	the	structural	reference	
volume	using	the	previously	calculated	registration	with	the	inplane	anatomical	
data.	A	boundary	based	registration	technique	was	then	used	to	fine-tune	the	
registration	of	the	functional	data	to	the	structural	reference	volume	(freesurfer	
bbregister).	
In	the	next	step,	the	functional	data	was	projected	onto	the	extracted	cortical	
surfaces	of	the	left	and	right	hemispheres	by	averaging	between	white	and	pial	
surfaces	along	the	surface	normal	(mri_vol2surf).	To	minimize	partial	volume	
effects,	values	were	only	averaged	between	20%	and	80%	of	the	distance	between	
the	white	and	pial	surfaces	along	the	normal.		
The	functional	data	was	smoothed	along	the	surface	with	a	Gaussian	filter	and	then	
projected	on	to	an	icosahedron	with	uniform	spacing	of	vertices	in	the	spherical	
template	space	(freesurfer	mri_surf2surf).	We	experimented	with	several	different	
smoothing	values	and	icosahedron	order	numbers	(which	determines	the	density	of	



vertices	on	the	sphere,	i.e.,	the	resolution	of	the	data)	to	determine	parameters	that	
sufficiently	reduce	the	dimensionality	of	the	data	while	still	retaining	as	much	
information	as	possible.	The	number	of	vertices	on	the	template	sphere	is:	

𝑣 = 10 ⋅ (2()* + 2	
These	vertices	are	approximately	evenly	spaced	along	the	entire	surface	of	the	
sphere	(Yeo	et	al.,	2008).	Note	that	it	is	impossible	subdivide	a	sphere	with	perfectly	
even	spacing	for	more	than	20	vertices	(Tegmark,	1996).	
Finally,	linear	detrending	was	applied	independently	to	the	time	series	at	each	
vertex	for	all	scans	to	mitigate	the	effects	of	scanner	drift	(Tanabe, Miller, Tregellas, 
Freedman, & Meyer, 2002).	That	is,	a	line	was	fit	to	the	functional	data	at	each	vertex	
for	each	scan.	This	line	is	then	subtracted	from	the	data	used	for	the	fit.	The	
resulting	residuals	are	then	used	as	the	detrended	functional	data	in	subsequent	
classification	and	regression	stages.		

Feature Selection 

The	number	of	remaining	dimensions	–	i.e.,	vertices	on	the	template	sphere	–	is	
dependent	on	the	icosahedron	order	number.	For	order	numbers	greater	than	four,	
the	dimensionality	of	the	data	is	still	too	high	to	get	reasonable	decoding	accuracy.	
Based	on	our	previous	work	[ref],	we	used	an	ANOVA	univariate	feature-selection	
(ANOVA	ref	and	sk-learn	ref)	method	to	reduce	the	dimensionality	down	to	3000.	
These	voxels	are	selected	by	comparing	the	distribution	of	the	data	during	task	
periods	and	control	periods.	The	3000	voxels	whose	distributions	show	the	most	
significant	mean	difference	between	these	periods	are	selected.	For	smaller	
icosahedron	order	numbers,	this	feature-selection	step	is	not	necessary	as	the	
number	of	input	dimensions	is	already	on	the	order	of	3000	or	smaller.	Note	that	
feature-selection	is	not	based	on	the	subject	performance	labels,	but	rather	an	
independent	label	that	indicates	whether	the	subject	is	performing	the	task	or	not.		

Classification and Regression 

Classification	of	subject	performance	was	performed	using	a	linear	support-vector	
machine	(SVM)	(SVM	ref)	with	𝐶 = 1.	Continuous	performance	values	were	binned	
into	three	equal	categories:	poor,	average,	and	good.	Thresholds	for	labeling	were	
chosen	such	that	the	number	of	samples	in	each	category	were	equal.	Specifically,	
the	worst	third	of	blocks	were	labeled	poor,	the	middle	third	were	labeled	average,	
and	the	top	third	were	labeled	good.	Block	filtering	(neurometrics1	ref)	was	
performed	on	the	output	of	the	SVM.		
Regression	of	block	averaged	subject	performance	was	performed	using	a	support-
vector	regression	(SVR)	(SVR	ref)	with	𝐶 = 1	and	the	rotational	basis	function	as	the	
kernel.		No	smoothing	was	applied	to	the	regression.	Classifier	and	regression	
performance	metrics	were	both	estimated	using	a	six-fold	cross-validation	
procedure	(cv	ref).	The	folds	were	selected	based	on	the	six	scanning	runs	during	
the	fMRI	sessions.	This	minimizes	the	confounding	effects	of	temporal	correlation	
between	training	and	test	examples	that	can	result	in	overly	optimistic	accuracy	
estimates	[ref].	



Performance Analysis 

To	confirm	the	efficacy	of	our	preprocessing	methods	as	well	as	determine	the	
cumulative	impact	of	each	step,	we	estimated	decoding	accuracy	within	each	session	
after	projecting	onto	the	surface,	smoothing	along	the	surface,	and	finally	down-
sampling	and	projecting	onto	the	template	sphere.	We	also	estimated	decoding	
accuracy	on	the	full	voxel	data	with	only	motion	and	slice-timing	correction	as	well	
as	with	simple	volumetric	smoothing	for	comparison	purposes.		
We	also	estimated	decoding	accuracy	for	different	smoothing	kernel	parameters	
and	icosahedron	order	numbers.	Larger	icosahedron	order	numbers	correspond	to	
higher	effective	sampling	rates.	We	calculate	the	effective	sampling	density	as	the	
surface	area	of	the	brain	divided	by	the	total	number	of	vertices	on	the	icosahedron.	
We	performed	a	gridded	search	for	these	parameters	on	the	range	of	2—8-mm	
FWHM	smoothing,	and	icosahedron	order	numbers	2—8.	Unfortunately,	one	cannot	
select	arbitrary	sampling	densities	but	are	constrained	to	integer	icosahedron	order	
numbers.	
We	know	that	the	problem	is	severely	under-determined	even	for	low	sampling	
densities,	that	is,	we	still	have	many	more	dimensions	than	input	examples.	To	
better	understand	how	this	affects	our	decoding	accuracy	we	performed	a	learning	
curve	analysis	[ref],	where	we	artificially	reduced	our	training	examples	and	
estimated	decoding	performance	on	the	reduced	set,	plotting	decoding	performance	
versus	the	number	of	training	examples.	Samples	were	reduced	based	on	scanning	
runs,	that	is,	performance	was	estimated	using	the	first	run,	then	the	first	and	
second	runs	combined,	and	so	on.		This	limits	potential	issues	with	temporal	
correlations	in	the	training	and	test	sets.	We	then	combined	data	across	sessions	for	
each	subject	to	determine	if	this	could	improve	decoding	accuracy	and	repeated	the	
learning	curve	analysis.		

Sensitivity Analysis 

We	performed	sensitivity	mapping	[ref]	of	the	trained	SVR	models	for	each	subject.	
Sensitivity	analysis	is	a	technique	to	determine	the	impact	a	perturbation	on	an	
input	variable	would	have	on	the	output	of	a	classifier	or	regressor.	It	is	calculated	
very	directly	as	the	average	matrix	of	all	first-order	partial	derivatives	of	the	trained	
classifier	or	regressor	with	respect	to	the	input	variables	for	all	training	examples.	
For	a	regressor	with	a	single	output,	this	reduces	to	a	vector	rather	than	a	matrix.	
We	then	project	these	partial	derivatives	onto	slightly	inflated	cortical	surfaces	for	
display	and	analysis.	It	is	interesting	to	note	that	for	a	simple	linear	regression,	this	
technique	corresponds	to	traditional	beta	maps,	but	it	is	applicable	to	all	
differentiable	models	regardless	of	linearity.		
We	only	present	the	SVR	maps	as	they	are	significantly	easier	to	interpret.	The	
problem	with	sensitivity	mapping	with	classifiers	is	that	the	result	is	a	vector	field.	
In	our	previous	work	[ref],	we	reported	the	magnitude	of	this	vector	which	indicates	
how	strongly	a	region	of	the	brain	contributes	to	classification	but	does	not	indicate	
how	it	contributes	to	that	classification.	For	a	regression,	the	calculation	results	in	a	



single	value	for	each	vertex/voxel	which	can	be	directly	mapped	onto	the	cortical	
surface.	
For	a	trained	SVR	model	with	𝐿	support	vectors,	dual	coefficients	𝑤/ ,	and	a	kernel	
function	𝑘(⋅,⋅),	the	derivative	with	respect	to	an	example	vector	𝒙	can	be	derived	as	
follows.	

𝑓(𝒙) =4𝑤/ ⋅ 𝑘(𝒙/, 𝒙)
5
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+ 𝑏, 𝑤/ = 𝛼/ − 𝛼/∗ 	

δ𝑓(𝒙)
𝛿𝒙 = 	4𝑤/ ⋅

𝛿𝑘(𝒙/, 𝒙)
𝛿𝒙

5
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For	the	rotational	basis	function	kernel:	
𝑘(𝒙/, 𝒙) = exp(−𝛾‖𝒙/ − 𝒙‖*)	

𝛿𝑘(𝒙/, 𝒙)
𝛿𝒙 = exp(−𝛾‖𝒙/ − 𝒙‖*) ⋅ 2𝛾‖𝒙/ − 𝒙‖	

δ𝑓(𝒙)
𝛿𝒙 = 	4𝑤/ ⋅ exp(−𝛾‖𝒙/ − 𝒙‖*) ⋅ 2𝛾(𝒙/ − 𝒙)

5
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This	result	can	be	interpreted	as	a	weighted	sum	of	differences	between	the	support	
vectors	and	the	example	vector	𝒙.		

Results 

We	evaluated	the	average	accuracy	improvement	across	sessions	after	each	stage	in	
our	preprocessing	pipeline.	There	is	significant	variability	in	performance	between	
subjects	and	sessions,	but	the	relative	improvement	was	much	more	consistent.	
Volumetric	smoothing	is	not	normally	used	in	our	pipeline,	but	was	tested	for	
comparison	purposes	because	it	is	the	most	common	approach	to	improving	signal	
to	noise	in	fMRI	data.	Here	we	can	see	that	it	does	in	fact	improve	decoding	accuracy	
but	much	less	than	surface-based	approaches.	The	surface	projection,	surface	
smoothing,	and	spherical	down-sampling	steps	are	all	cumulative,	that	is,	surface	
smoothing	included	surface	projection,	and	spherical	down-sampling	includes	both	
surface	projection	and	smoothing.	



 

Figure	3.	Accuracy	improvement	at	each	stage	of	preprocessing	averaged	across	all	

sessions.	

We	plotted	average	decoding	accuracy	across	all	sessions	for	different	surface	
smoothing	and	spherical	down-sampling	parameters	(Fig.	#).	Best	accuracy	occurs	
at	a	FWHM	of	2mm	for	the	surface	smoothing	kernel	and	an	icosahedron	order	of	4,	
which	corresponds	to	a	sampling	density	of	~5.1	samples/mm.	Additionally,	as	the	
size	of	the	smoothing	kernel	increases	the	optimal	corresponding	sampling	density	
decreases.	

 

Figure	4.	Decoding	accuracy	averaged	across	all	sessions	for	different	surface	

smoothing	and	down-sampling	parameters.	

Learning	curve	analysis	allows	us	to	plot	decoding	accuracy	against	varying	
numbers	of	training	examples	by	artificially	reducing	the	total	number	of	examples.	
From	the	single	session	learning	curves	(Fig.	?)	we	can	see	a	strong	correlation	
between	number	of	training	examples	and	decoding	accuracy.	For	the	sessions	with	
the	highest	decoding	accuracy,	the	performance	does	appear	to	approach	a	
asymptote,	but	for	the	less	accurate	sessions	we	expect	that	more	training	examples	
would	continue	to	improve	decoding	accuracy.	
By	combining	data	across	sessions	for	individual	subjects	we	have	more	effective	
training	examples	available.	Learning	curve	analysis	on	this	data	shows	that	the	
conclusion	suggested	by	the	single	session	learning	curves	is	correct:	more	training	



examples	does	in	fact	lead	to	greater	decoding	accuracy	even	for	the	subject	whose	
individual	sessions	did	not	appear	to	be	approaching	an	asymptote.	

	 	
Figure	5.	A)	Within-session	learning	curve	analysis.	Each	plot	represents	the	learning	
curve	for	a	different	session.	B)	Across-session	learning	curve	analysis.	Each	plot	
represents	the	learning	curve	for	a	different	subject.	
Regression	analysis	was	performed	at	the	same	optimal	smoothing	value	of	2mm	
full-width	half-max	and	icosahedron	order	of	4	on	the	combined	data	for	all	
subjects.	The	average	R2	value	was	{average	r2	value}	and	the	average	RMSE	was	
{average	rmse	value}	across	subjects.	An	example	time	series	is	depicted	in	Figure	6.	



	
Figure	6	

Sensitivity	mapping	in	individual	subjects	does	show	some	variability	between	
subjects,	but	broadly	speaking	they	cover	similar	brain	regions.	We	see	areas	of	
sensitivity	corresponding	to	[fill	in].		

	 	

	 	



	 	

	 	
	

	
Figure	7.	Individual	sensitivity	maps	for	decoding	subject	performance	

We	see	this	same	pattern	repeated	again	in	the	sensitivity	map	constructed	on	the	
combined	cross-subject	data.	

	
Figure	8.	Combined	sensitivity	map	for	decoding	subject	performance	



Discussion 

We	created	our	experiment	with	the	goal	of	decoding	subject	performance	from	
fMRI	data	in	a	realistic	environment	and	developing	methods	to	decode	as	
accurately	as	possible.	The	stimulus	was	designed	to	be	visually	complex	and	
realistic	while	at	the	same	time	minimize	low-level	visual	correlations	with	task	
difficulty.	The	careful	control	of	low-level	visual	correlations	makes	the	task	of	
decoding	more	difficult,	but	at	the	same	time	more	meaningful.	Our	results	show	
that	not	only	is	it	possible	to	decode	subject	performance	over	time,	but	that	it	can	
be	decoded	with	very	high	accuracy	with	the	right	preprocessing	stages	(put	specific	
numbers	here).	
Decoding	internal	or	non-sensory	variables	is	significantly	more	difficult	than	
external	or	sensory	variables.	First,	the	ground	truth	is	easy	to	measure	for	sensory	
variables,	since	we	are	in	control	of	the	stimuli	as	presented	to	the	subject.	On	the	
other	hand,	for	an	internal	variable	we	must	have	some	other	means	of	measuring	
the	response	to	determine	ground	truth.	In	our	case,	we	measure	subject	responses	
over	time	in	order	to	estimate	their	performance.	Second,	sensory	information	is	
easier	to	decode	because	it	has	a	spatially	large	and	over-complete	representation	in	
early	processing	areas	which	makes	it	easier	to	measure	with	the	resolutions	
available	to	fMRI.	The	neural	representation	is	large	and	over-complete	because	the	
brain	has	not	yet	decorrelated	the	sensory	information	in	order	to	more	efficiently	
encode	it	in	the	brain.		
Decoding	external	variables	helps	us	understand	how	the	brain	encodes	sensory	
information,	but	decoding	internal	variables	can	give	us	a	window	into	how	a	
subject	is	behaving	or	feeling.	This	window	can	have	many	applications	from	new	
cognitive	experimental	designs	to	training	and	therapy	programs.	For	example,	
decoding	subject	performance	could	be	used	to	adjust	the	difficulty	of	a	task	in	real-
time	to	maintain	a	specific	performance	level.	In	our	experiment,	we	had	to	keep	
task	difficulty	constant	over	long	blocks	to	estimate	performance	and	establish	
ground	truth,	but	with	a	trained	and	accurate	decoder	this	restriction	could	be	
lifted.	
	 Why	realism	is	important	
The	results	show	that	a	preprocessing	pipeline	that	uses	the	structure	of	the	brain	
to	reduce	noise	and	dimensionality	of	the	data	significantly	improves	decoding	
accuracy	over	standard	volumetric	smoothing.		Projecting	the	data	onto	the	cortical	
surface	reduces	the	dimensionality	by	ignoring	spurious	information	not	located	in	
the	cortex.	The	surface	is	also	a	more	natural	representation	of	cortical	function	
where	distance	along	the	surface	is	more	likely	to	reflect	functional	organization	
than	distance	in	the	volume.	Smoothing	on	the	surface	avoids	introducing	noise	by	
not	blurring	surface	vasculature	and	CSF	signals	into	the	data,	as	well	as	avoiding	
blurring	data	across	sulci	and	gyri.	Down-sampling	is	a	natural	next	step	after	
smoothing	to	reduce	the	dimensionality	of	the	data	with	minimal	information	loss	if	
the	smoothing	and	down-sampling	parameters	are	chosen	appropriately.	The	
various	elements	of	the	pipeline	are	not	new	to	the	neuroimaging	community	but	
they	are	not	yet	standard	practice.	The	pipeline	is	largely	automatic	and	robust	and	
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the	only	parameters	to	be	selected	are	the	smoothing	kernel	size	and	sampling	
density.	We	hope	that	by	making	our	automated	pipeline	freely	available	(link)	
more	researchers	will	consider	using	these	excellent	tools	developed	by	the	
neuroimaging	community.	Our	experiments	indicate	good	values	to	select	for	these	
parameters,	though	we	expect	the	optimal	parameters	are	dependent	on	the	
scanning	protocol.	For	example,	if	the	scanning	resolution	is	reduced	then	the	
optimal	smoothing	kernel	is	likely	larger.		
Another	advantage	of	the	pipeline	is	that	resulting	data	is	embedded	in	FreeSurfer’s	
spherical	template	space	(ref).		This	surface	based	representation	is	not	only	a	more	
natural	fit	to	the	functional	organization	of	the	cortex,	but	it	is	also	a	convenient	way	
to	accurately	and	automatically	co-register	data	across	both	sessions	and	subjects.	
Although	cross-subject	decoding	accuracy	was	still	below	within-subject	decoding	
accuracy,	the	cross-subject	decoding	accuracy	when	using	spherical	registration	was	
significantly	better	than	when	using	non-linear	volumetric	registration	to	Talairach	
coordinates	–	the	most	common	template	space	for	combining	data	from	multiple	
subjects.	At	the	same	time,	the	data	takes	up	significantly	less	hard	drive	space	in	
the	spherical	coordinates	without	losing	any	information	relevant	for	decoding	
which	makes	it	a	better	choice	for	large	databases	of	fMRI	data.		
Learning	curves	imply	that	more	data	is	better	
	 Can	be	used	to	determine	appropriate	number	of	samples	
	 Indicates	that	registering	across	sessions	is	very	important	
Sensitivity	maps	indicate	…	That	is	consistent	with	…	
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