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1. 

INTRODUCTION 

In this report we are concerned with three tasks funded under 

the increased effort phase of Contract No. N62399-73-C-0023 (proposal 

UCB-Eng-3853). The work under each task has been completed and 

is reported upon in Sections I to III. 

Section I deals with the solutions of several Hertzian contact/ 

impact problems obtained by the computer program FEAR. These problems 

demonstrate the veracity of the algorithm for Hertzian contact/impact 

and the importance of the impact/release conditions which are used 

in the program. 

In Section II, a methodology for incorporating the full 

kinematically nonlinear contact/impact problem into a finite element 

computer program is initiated. The scheme developed is a logical 

generalization of the one used for Hertzian contact/impact. 

Finally, in Section III we report upon the principal task 

undertaken in the increased effort phase of the contract; namely, 
I 

the implementation of substructuring concepts into FEAR to increase 

the efficiency of the Hertzian contact/impact algorithm. The result 

of this work is a dramatic decrease in expended computer time for the 

main computational steps in the Hertzian contact/impact algorithm. 



I. Numerical Results of Hertzian 
Contact/Impact Problems Solved by REAP 

1. Hertz Contact Problem 

The Hertz static contact problem was solved and we were able to 

accurately compute both the contact region and the pressures over a 

wide range of loading. These results were presented orally to the 

NHTSA and were described in a progress report. The mesh is depicted 

in Fig. 1-1 and contact pressure versus contact radius results are 

plotted in Fig. 1-2. Data consists of: 

E = 1000. (Young's modulus) 

u = .3 (Poisson's ratio) 

R = 8. (Radius of quarter sphere) 

The total applied force is distributed uniformly across the top 

surface. The results clearly indicate that the contact pressures are 

given more accurately by the nodal contact forces than by the element 

stresses, as one might surmise they would be. 

2. Impact of an Elastic Sphere Against a Rigid Wall 

We have been interested in the problem of the impact of an elast 

sphere against a frictionless rigid wall for several reasons. First 

of all it is an impact problem with a nontrivial contact area develop 

ment. Secondly, the sphere geometrically approximates the shape of 

a head. Thirdly, it is one of the few three-dimensional impact 
★ 

problems for which there exists any analytical information. 

For these reasons it seemed an appropriate initial test problem 

for our algorithm. We have solved the problem for various meshes 

*Hertz obtained a quasi-static approximate solution to this problem 
(see.e.g., [3]). 
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Figure 1-1 
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FIGURE 1-2 
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with different degrees of refinement in the contact area and over a 

range of impact velocities (some of these results have been previously 

forwarded to CEL). We note that greater impact velocities result in 

greater contact area. Thus one cannot normalize our computed results 

on the basis of initial velocity of the sphere. This is to be 

expected as this is a bona fide nonlinear problem (despite the fact 

that the body is governed by linear elasticity theory). 

We include here results of two recently studied meshes. Figs. 

1-3 and 1-4. Mesh 5 (Fig. 1-3) is a rather uniform mesh with a crude 

contact area description, i.e., only two candidate contact nodes. 

Mesh 4 (Fig. 1-4) is identical to Mesh 5 except in the neighborhood 

of the contact area which is refined to accomodate four candidate 

contact nodes. The computer plot of the mesh gets rather cramped 

in this vicinity so we have blown it up in Fig. 1-5. The data for 

this problem is: 

p = .01 (Density) 

E = 1000. (Young's modulus) 

v = .3 (Poisson's ratio) 

R = 5. (Radius of sphere) 

At = .01 (Time step) 

Some results for uniform initial velocities V =-.8 and -3.0, 

(i.e., pointing downward), are presented in Figs. 1-6 through 1-11. 

In the figure captions, Z refers to the vertical direction, thus 

SIGMA Z means the normal stress in the vertical direction, and TAD 

indicates the contact force per radian at the indicated candidate 

contact node (referred to as ELM 45, etc.). 
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Figure 1-3 
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* IMPACT OF SPHERE - MESH 1 * 
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Figure 1-4 
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Figure 1-6 
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EVOLUTION OF SOLUTIONS WITH TIME 
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Figure 1-8 
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Figure 1-9 
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EVOLUTION OF SOLUTIONS WITH TIME 
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Figure 1-10 
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The refined Mesh 4, provides smoother results than Mesh 5, as 

is to be expected. However, the bulk response is in good agreement. 

This indicates that if one is only interested in bulk properties, 

(e.g,, total forces, release time, etc.), a rather crude description 

of the contact surface will suffice. One can evidently exploit this 

fact to economic advantage under the appropriate circumstances. 

We have noted that our results, for different meshes and time 

steps, are quite consistent. This indicates that the results may 

be considered, for practical purposes, converged. Comparison with 

bulk properties of the approximate solution obtained by Hertz lends 

additional credence to this conclusion, e.g., total force and 

release times are within 11% (see Table 1-1). 

A nonlinear problem of this size (i.e., Ill degrees of freedom, 

25 time steps, postprocessing for 7 plots, etc.) is currently costing 

us in the neighborhood of 13 dollars on the University of California's 

CDC 6400 computer and utilizes about 114 CPU seconds. 

3. Impact of Two Elastic Bars 

One of the earliest impact problems we attempted to solve was 

that for an elastic bar impacting a rigid wall. Our initiatory results 

for this problem were qualitatively correct but not very accurate, 

(see [1] Fig. 12). Improvements in our understanding of the numerical 

algorithm as well as our continued sharpening of the impact and 

release conditions programned in FEAR has enabled us to dramatically 

improve the accuracy obtainable in impact problems. We shall 

illustrate this by the example of two bars impacting and then 

releasing,Fig. 1-12. The tremendous improvement in accuracy can be 

seen by compairing the present results, Figs. 1-13 to 1-15,with those 



TABLE 1-1 

COMPARISON OF NUMERICAL RESULTS FOR SPHERE 

IMPACT PROBLEM WITH QUASISTATIC HERTZ SOLUTION 

V = -3. a t P 

Hertz 

Mesh 4 

Mesh 5 

1.00 

1.00 

1.00 

.197 

.18 

.19 

294. 

330. 

352. 

V = -.8 a t P 

Hertz 

Mesh 4 

.59 

.6 

.256 

.24 

60.2 

65. 

a - maximum contact radius 

t = duration of contact 

p = maximum contact force 
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INITIAL CONDITION V = O.I BAR 2 INITIALLY AT REST 
FOR BAR 1 

1 2 - w 20 21 22 41 
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CONTACT ELEMENT 

DATA: 

L = 10 

E =100 

/> =0.01 

A = I 

At = 0.005 
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(TIME STEP) 

FIGURE I-I2 
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EVOLUTION OF SOLUTIONS WITH TIME 

Figure 1-13 
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EVOLUTION OF SOLUTIONS WITH TIME 

0 - ELM. 21 DISPLACEMT'Jl COORDS 10.00 
0 - 21 0ISPLACEMTU3 10.00 

0- ELM. 21 VELOCITY UD1 COORDS 10.00 
0 - 21 VELOCITY UD3 10.00 

Figure 1-14 
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20. 

Figure 1-15 
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for one bar impacting a rigid wall (a simpler problem!) contained in 

[1]. We have not bothered to plot the exact solution in comparison 

with our results since the differences are so small. Note how 

effectively the impact conditions ([1], §7) bring the contact force 

from zero to the exact value in one time step without any overshoot 

(Fig. 1-13). The release (at t=.2) is also very crisp. This is 

due to the release conditions which work analogously to the impact 

conditions. The slight perturbation from the exact solution, which 

is due to the Newmark algorithm, could be made to go away completely 

with mesh refinement. This problem, although trivial analytically, 

clearly demonstrates the necessity of imposing impact conditions 

(as discussed in [1], Sections 7 and 12) when contact is 

being made. In fact, our initial numerical experiments for the one 

bar impacting a rigid wall problem, run without impact conditions, 

yielded results which were completely inaccurate. 

We have also found, in the course of our work, that one must 

impose release conditions, analogous to the impact conditions, to 

accomplish a clean separation free of spurious "release waves". This 

fact is illustrated in Figs. 1-16 to 1-18 which are the results of a 

problem in which we have looped around the release conditions 

programmed in FEAP. Spurious spikes are visible in the latter part 

of the solution which is a direct result of not imposing the 

release conditions (cf. Figs. 1-13 - 15). 

As we have remarked before, this problem is quite simple to solve 

analytically, but nevertheless is a source of considerable insight 

as regards impact-release phenomena. Since the definition of the 

contact surface (a point) is trivial we are able to focus in 
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EVOLUTION OF SOLUTIONS WITH TIME 

ELM. 21 CONT.FORCE TAU COORDS 10.00 

Figure 1-16 
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Figure 1-17 
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EVOLUTION OF SOLUTIONS WITH TIME 

0 - ELM. 1 STRESS COORDS ,25 
6 - 11 STRESS 5.25 
® - 19 STRESS 9■25 

Figure 1-18 
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completely on the importance of achieving a theoretically correct 

impact and release. We have felt for some time (cf. our arguments 

in Section 7 of [1]) that being able to accurately solve the wave 

propagation problem for impacting bars was a key step towards 

solving highly detailed wave propagation problems in general 

three-dimensional bodies. Our results, which demonstrate the veracity 

and necessity of the imposed impact/release conditions as well as 

the potential accuracy of the overall algorithm, indicate that we 

are well on the way to developing the capabilities for solving 

physical problems of interest. 

A nonlinear problem of this size (i.e., 41 degrees of freedom, 

100 time steps, postprocessing for 9 plots, etc.) is currently 

costing us in the neighborhood of $9.00 on the University of California's 

CDC 6400 and utilizes about 60 CPU seconds. 
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II. Numerical Scheme for the 
Kinematically Nonlinear Contact/Impact Problem 

1. Introduction 

In this aspect of our work we have endeavored to design a scheme 

which is a logical generalization of the one developed for the class 

of Hertzian problems. That is, we have set for ourselves the design 

requirement that the full kinematically nonlinear scheme reduce to the 

Hertzian formulation under the appropriate circumstances. We view 

this as a reasonable approach since the Hertzian scheme is working 

out extremely well computationally and, based upon what we have learned 

in the course of its implementation, we believe many of its features 

can be instilled into a nonlinear formulation. Before describing 

our proposed nonlinear scheme we will briefly describe the Hertzian 

formulation so as to exhibit how the nonlinear scheme satisfies the 

aforementioned design requirement. 

2. Hertzian Scheme 

For background regarding this section the reader is referred to 

our initiatory work [1]. 

Recall that we term Hertzian problems ones for which the contact 

surface is approximately planar and the bodies have undergone small 

straining in the neighborhood of the contact surface. Specifically, 

we make the following assumptions: 

(i) The unit normal vector with respect to the contact surface 

c is n def ru e^ « e^* where the indicate components with respect 

3 3 
to the standard basis {eifor fR , (see Fig. II-l). 

(ii) The ratio of area elements on the contact surface between 

the deformed and undeformed bodies differs negligibly from unity. 
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FIGURE H-l 



28. 

Thus the Cauchy and Piola-Kirchhoff traction vectors for body number 

a (ta and Ta, respectively) are approximately equal, i.e., ta « Ta. 

Assumptions (i) and (ii) together imply that 

t^ « t-n T“n 
rCX 

(t“. q, 0) ~ ta - (t*n)n «T 
rCt 

- (T-n) n « (T“, TJ, 0) 
a 

(iii) Material points which eventually contact have, to the first 

order, the same initial coordinates z^, z^- This is depicted in 

Fig. II-2. 

We emphasize that the realm of applicability of our formulation 

involving the above assumptions is considerably greater than that 

to which Hertz' classical theory applies. 

The methods we use to discretize problems into finite element 

models are standard (see, e.g., [2]) except for our simulation of the 

contact surface which we shall now describe. 

Let us assume for the moment that two bodies are in contact 

along the surface c. If we add to a standard variational formula¬ 

tion for two independent bodies, (see, e.g., [1]) a term of the form 

/ t * (x^ - x^) dc, (II-l) 
C ~ ~ 

where xa are the deformed coordinates of material points in body 

number a, the enforcement of compatibility along the surface c will 

be achieved by way of taking independent variations of x. x is 

interpreted as the traction vector across the contact surface. We 

note that, by assumption (i) above, c may be replaced in (II-l) by c, 

its projection upon the z^, z^ - plane. 

Our finite element discretization of (II-l) is achieved by 

availing ourselves of the particularly simple nature of (II-l), i.e., 
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FIGURE H-2 
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there are no derivatives of t or xa. Thus we may assume that t 

consists of Dirac delta functions located at nodal points, as long 

as the finite element displacement functions are continuous at the 

nodes, which is assured. Thus (II-l) becomes in this case 

3 N 

l l 
1=1 j=l 

rij {xij 
- x. 

ij 
(H-2) 

where i = 1, 2, 3 refers to the spatial direction of components 

and N is the total number of pairs of nodes designated as candidates 

for contact (see Fig. II-3}. The x., are interpreted as nodal 

contact forces. 

(II-l) and (II-2) apply when there are tangential as well as 

normal contact forces. To achieve a frictionless condition on the 

contact surface we simply delete the i = 1, 2 terms in (II-l) and 

(II-2); namely 

N 
(M-3) 

where for simplicity we have omitted the subscript 3 on x and xa. 

Here x. is interpreted as the nodal contact force in the normal 

direction. To simplify our presentation we will henceforth only 

discuss the frictionless case (II-3). 

In assembling our global matrix equations we include the x.'s 
\J 

in our vector of unknowns along with the nodal displacement 

components. Thus we like to think of (II-3) as giving rise to a 

contact element stiffness matrix, which for the jin contact point is 
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J 

► Z1 »z2 

FIGURE n-3 SCHEMATIC OF INITIAL CONFIGURATION 
OF BODIES AND ALIGNMENT OF CANDIDATE 
CONTACT NODES FOR THE HERTZIAN CASE. 
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0 1 

1 0 

0 -1 

0 

-1 

0 

1 
x . 

J 

i. 
3 

x2 
J 

(I1-4) 

When the nodes corresponding to the contact point are in contact 

we add (II-4) to the global stiffness matrix. Otherwise we replace 

(11-4) by 

0 

0 

0 

0 

1 

0 

0 

0 

0 

X1 
xj 

T. 
0 

(n-5) 

which uncouples the two nodes corresponding to the jth contact point 

and results in x. = 0. 

The preceding description gives a rough idea of how the basic 

structure of the matrix equations is changed to account for Hertzian 

contact. 

The static aspects of the Hertzian algorithm (above) are 

relatively simple. However, the dynamic aspects, especially the 

impact/release conditions, are quite delicate. Since these appear 

in an incomplete form in [1] we summarize this aspect of our work 

here. 

For simplicity, we shall consider the frictionless case and 

isolate one pair of candidate contact nodes. The equations of 

motion for these nodes will be denoted 

M1 ii1 + ^(u1) + x = 0, 

M2 ii2 + K2(u2) - x = 0, 

where the superscripts indicate the body number, H01 is the lumped 

mass coefficient, ^(u01) is the elastic force and x is the contact 

force. If the bodies are not in contact x = 0; otherwise t > 0. 

(II~6) 

% 
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Let us suppose that at the end of the previous time step these 

candidate nodes were not in contact. Furthermore, let us assume that 

in the process of computing the present state contact has been made. 

This occurs during an iteration whenever 

(i) d d=£f- x1 - x2 < -TOL 

(II-7) or 

(ii) d < TOL and t > 0 

where TOL* is a small positive number which acts as a safeguard 

against round-off. This logic is displayed graphically in Fig. II-4. 

As a result of coming into contact, the algorithm makes the displace¬ 

ments compatible, i.e., u2 - u^ = d0 - X2, where x\ X2 are 

the coordinates of the particles in the initial configuration. 

computed by. the algorithm. It is at this point that we impose the 

impact conditions (see the discussion in Sections 7 and 12 of [1]). 

We denote by V+, t+ and ii+ the corrected values of velocity, 

contact force and acceleration assigned to the pair of nodes in 

contact. They are given as follows: 

T 

V 

(II-8) 

(mV + m2u2) 
u + 

Currently we are using TOL = 10 
-10 in FEAP. 
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FIGURE H-4 
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where pQa is the density of body a in the initial configuration, U 

is the material velocity of a shock wave in body a (see Section 7 of 

[1] for further details), the subscript (-1) refers to values taken 

at the end of the previous time step and the subscript (-) indicates 

values taken at the end of the last iteration of the present time 

step. Note that the right-hand side of (II-8)j, depends on data 

computed prior to impact (i.e., u_-j, u_^). This is consistent with 

the theory developed in Section 7 of [1] and is important in numerical 

computations. For example, using data from the last iteration of 

1 ? 
the present time step (i.e., u_, u_) leads to markedly inferior 

numerical results (e.g., spike overheats and oscillations about the 

correct values). On the other hand t+ and u+ are computed from data 

«* 1 ** 9 
obtained in the last iteration (i.e., t , u_, u_). The argument for 

this goes as follows: The impact theory tells us that in the post¬ 

impact state there is a unique value of t+ and u+ assigned to the 

contact point. Since the values of u_ and u_ are already compatible 

we employ (II-6) to solve for t+ and u+. That is we set 

M1 u + K1 (u1) + t, = 0 , 
T’ ^ — T 

M2 u + K2(u2) - t = 0 , 
T ^ — T 

(H-9) 

and subtract (II-9) from (II-6) evaluated at the previous iteration: 

u^ + (u^) + x_ = 0 , 

M2 u2 + K2(u2) - t = 0 . 
(11-10) 

This is how we arrive at (II-S)^ -j- Satisfaction of the equations of 

motion is automatically achieved for the post-impact state as a result 

of (11-9). 

Now we shall describe the release conditions. These stem from 

the same concepts as the impact conditions. Prior to studying them 
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and including them in FEAP we surmised that they might be necessary. 

Vivid numerical evidence was obtained in confirmation of this (cf. 

Section 1-3 of this report). 

One way to look at the release conditions is to view them as 

impact conditions with time running backwards. Thus we simply invert 

1 2 
(53)| 2 of [1] to obtain the post-release velocities V+ and V+ from 

the pre-release data t ^ and V: 

v| - v_, - T^/p^uV , 
? ? ? 2 

K = + T_1/po U A , 

(II-ll) 

,1 *2 where A , A are area weighting factors for the respective candidate 

nodes. Simultaneously we need t+ to be equal to zero. We set 

t+ = 0 and adjust the accelerations in (II-6) so that this change 

maintains satisfaction of the equations of motion. The computation 

is analogous to the one in which we calculated (II-S)^ y 

iij = + WM1 , 

"2 ;;2 /h2 u+ = u_ - x_/M ; 
(H-12) 

where here u| and ii£ are the corrected post-release accelerations and 

u , ii and x are the values computed from the last iteration of the 

present time step. 

We determine whether or not release has occurred in the following 

way: If x < 0 {tension across the contact surface in any iteration) 

we release; if x_ >0, but less than 2% of the previous time step 

value (x i), we also release. Otherwise we retain contact. The last 

release case above was arrived at from numerical experimentation. 

For example, problems were run for releasing bars in which the 
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theoretical drop-off of r was 100% in one time-step (shock waves). 

Our numerical computations predicted this drop-off quite accurately 

_3 
producing a positive t of less than 10 times the previous value. 

Interpreting this as contact, the algorithm did not release the bars 

until the next time step at which time the update indicated in 

(11-11) and (11-12) had negligible effect due to the very small value 

of t . We deduced from cases like this the criterion above. 

The only pitfall of using this criterion can be seen as follows: 

Suppose the actual drop-off during a time step in a problem is 

greater than 98% of the previous value, but the exact solution from 

this point on is constant at some small positive t. The algorithm 

would release and not join the nodes until the next time step. From 

here on everything, would run as it should. 

With this as background we are in a position to describe the 

essential ideas behind our proposed kinematically nonlinear contact 

scheme. 

3. Kinematically Nonlinear Scheme 

The starting point for the nonlinear scheme is again with 

Equation (II-l). We note that there are no assumptions involved 

in the statement of (II-l) and that it applies to the fully nonlinear 

case. However, the condition that c and its projection c may be 

identified in (II-l) is no longer applicable, for in the kinematically 

nonlinear case c will in general not be planar. 

To explicate as quickly as possible the nature of our proposed 

scheme we shall deal with a simple case. Namely we shall assume the 

problem to be two-dimensional (e.g., the axisymmetric contact-impact 

of three-dimensional bodies) and we shall assume that the element 
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displacement functions are linear between nodes. The ideas which 

we are about to present are by no means restricted to these assump¬ 

tions. However, these assumptions will allow a concise and clear 

exposition of the main concepts being employed. 

Our first step is to associate to each body a set of candidate 

contact nodes. Of course these nodes will not, in general, meet 

to the first-order as they do in the class of Hertzian problems. 

In the present case no restriction will be made as to the number of 

candidate nodes, i.e., the number for body 1, say, N , will not be 

2 
equal, in general, to that for body 2, say, N . Without loss of 

1 2 
generality we shall assume N 5 N (see Fig. II-5). To each of the 

candidate nodes of body 1, we shall assign a contact force vector 

T 1 
t ■, j = 1, ... N . This may be interpreted in the same way as the 

Hertzian case, i.e., the t vector field is assumed to consist of 

Dirac delta functions located at the nodal points. 

When contact does occur in the nonlinear case it will not be 

"at the nodes" as in the Hertzian case. Thus (II-2) has no meaning 

in the present situation. Rather in its place one derives 

2 N1 N2 

l l l 
i=l j=l k=1 

Tij(xij ajk xik > 
(H-13) 

the Dirac delta functions times the displacement interpolation 

functions of body 2 over the contact surface c. Rather than actually 

perform these integrations, one can construct A directly from the 

physical situation. 

In constructing the global equations we again include the x-.'s 
* w 

among the nodal unknowns. To see the difference between the present 



FIGURE H-5 CANDIDATE CONTACT NODES OF BODIES IN 
THEIR INITIAL CONFIGURATION FOR THE 
NONLINEAR CASE. 
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setup and the previous (see, e.g., (II-5)) we shall consider a simple 

example. 

Suppose candidate contact node 1 of body 1 has contacted body 2 

somewhere between candidate contact nodes 1 and 2 of body 2 (see 

Fig. II-6). The analog of (II-4) is for the present case (we are 

here allowing for frictional forces): 

1 

(11-14) 

i 

0 ~ 

a 
1 » * 

0 

0 

j = 1, 2 , 

a is defined in Fig. 11-6 and 0 is the 4x4 zero matrix. The 

fictionless case can be accomodated by transforming to local normal- 

tangential coordinates and imposing conditions analogous to the 

above only in the normal direction, viz., let the subscript n and s 

represent the normal and tangential directions, respectively and 

replace (11-14) by 

where 

a = 

a , 0 

0 i a 
- |. - 

0 1 0 

1 0 -(1-a) 

0 -(1-a) 0 

0 -a 0 

■\ 
1 

Xjl 

< 

Tjl 

2 
Xjl 

J2 
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2| 

FIGURE H-6 BODIES^' AND MAKING CONTACT IN 

THE CONFIGURATIONS V AND^* 
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a 

where 

B - 

L 

o 

0 

0 

0 

(H-15) 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

and and are obtained by replacing i by n and s, in the previous 

definition of y.. The matrix of (11-14) (or (11-15), in the friction- 
— 1 

less case) is added to the global stiffness as before. On the other 

hand, when candidate node:1 of body 1 is not in contact anywhere 

between candidate nodes 1 and 2 of body 2, then we replace (11-14) 

by 

B 

0 

0 

6 ~2 

(11-16) 

with B as defined above. The addition of (11-16) to the global 

equations achieves = =0 and no coupling is manifested 

between candidate node 1 of body 1 and the zone between candidate 

nodes 1 and 2 of body 2. 

To determine when and where contact has been made in the 

kinematically nonlinear case, one must proceed more systematically 

than for the Hertzian case. For example, we must check, at each 

time step, whether penetration of candidate node j of body 1, 

1 2 
1 £ j £ N , has occurred anywhere between candidate nodes 1 and N 

of body 2. An algorithm for carrying out such a general check can 

be programmed rather simply. However, for most realistic problems 
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a priori geometric knowledge will probably be available and a more 

computationally efficient algorithm can be constructed to take 

advantage of this information. For example, it may be reasonable 

to limit the contact zone for candidate node 1 of body 1 to the 

zone between, say, nodes 1 to 3 for body 2. If this is the case, 

many less computations are necessitated. Such concepts will be 

even more important for the three-dimensional case in which the contact 

surfaces are two-dimensional, thus involving more checks. 

Let us now see how the kinematically nonlinear case reduces to 

1 2 
the Hertzian case under the appropriate circumstances. Assume N = N 

= N and the initial z^, z^-coordinates of corresponding candidate 

contact nodes are aligned. Also assume that the corresponding 

candidate contact nodes will eventually meet to the first-order. 

Clearly A = [a..] must reduce to the identity matrix I = [<5.-1 under 

these assumptions. Thus (11-13) (for m space dimensions) becomes: 

m N 
V v , 1 v 2, l l T.-fx.. - X - ) 

i=1 j=l 1J 1J 1J 
(11-17) 

which, for m = 3, is identically (II-2). 

For high-frequency, or short time results, in which the impact 

conditions become important, we may employ the philosophy discussed 

in Section 7 of [1]. In essence, this can be carried out just as in 

the Hertzian case (see the previous section), except, under the 

present circumstances, we must work in local normal-tangential 

coordinate systems and take account of the weighting matrix A = [a..]. 
i j 
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III. Modifications to Increase the Efficiency 
of Contact/Impact Algorithms in FEAP 

Employing substructuring concepts, we have modified FEAP to 

increase the efficiency of the algorithm used to determine the contact 

region and forces. The principal modifications are to the total 

tangent stiffness formation scheme and to the Gauss elimination 

algorithm. 

In solving contact/impact problems with the theory developed in 

[1] we originally used the algorithm shown on pages 40 to 43 of [1]. 

In this algorithm all matrices are evaluated for each element at 

each time step and/or each iteration required to complete a solution 

to the problem. We have noted that it is usually not necessary to 

use this generality except in the vicinity of the contact region. 

Accordingly, we have modified the programmed Hertzian contact/impact 

algorithm. We use the definitions of the terms given in [1] to define 

and 

K* = M + a K 
BAt2 * u~ 

?* = 5 - -K V V !ln> 

-M u :i (i) 
n+1 • 

Thus our solution is determined at time tn+-| by successively solving 

* (i 1 * 
K A uUJ = R 

and 

,(i) until Auv ‘ satisfies equation (65) in [1]. 
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Using the above definitions of matrices, the modified algorithm 

developed is shown in Table III-l. In sample computations the revised 

algorithm has reduced the stiffness formation times by over 75%, 

the equation solving times by about 50% and the resulting total computer 

< times by 10-40%. The lower reductions were for bar problems where 

the equation solution times and the stiffness form times are a small 
* 

fraction of the total time. The larger savings was for a simple 

two-dimensional axisymmetric model (see Figure III-l for mesh layout) 

and thus is more representative of the savings which can be anticipated 

using the modified algorithm. The breakdown of a timing record is 

shown in Table III-2. 

The modified algorithm is essentially a scheme in which the body 

is subdivided into two substructures. For the first substructure 

(continuum elements) we form and reduce the matrix to the level of 

the first equation in substructure two (contact elements). We then 

use the resulting matrix as input to initialize the second substructure. 

The solution process is then completed as described in Table III-l. 

As is demonstrated by the results in Table III-2, this scheme results 

in considerable savings in the formation of stiffness matrices and 

in the solution of the equations by Gauss elimination. 

Table III-2 also demonstrates the considerable costs involved 

. in reporting printed results. To eleviate this cost and, at the same 

time, to permit more visual and selective data reporting, we have 

developed a graphics package for use in FEAP. Some examples of this 

work are included in Section I. 
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TABLE. III-l 

MODIFIED SOLUTION ALGORITHM FOR CONTACT/IMPACT ANALYSES 

1. Initialize K to zero, input At for the sequence. 

2. For each time sequence in the analysis compute contributions to K* 

for each continuum finite element. 

3. Determine the first equation, NPF, in K* which will be modified by the 

remaining contact elements. 

4. Factor K* to equation NPF-1 using Gauss elimination and place the 

factored K* into backing storage. 

5. For each time step and/or iteration in the sequence read the partially 

factored K* into core. 

6. Initialize R* to the current load level R. 

★ 
7. For the continuum elements compute the contribution to R . 

8. For the contact elements determine the state of penetration and add 

the appropriate contributions to K and R . This completes formation 

of K*. 

9. Reduce R*. complete factoring of K*, and back substitute to determine 

10. Update solution un+^^ and check for convergence. If convergence test 

is satisfied continue, otherwise repeat steps 5 to 10. 

11. Output solution displacements and stresses, compute new time and com¬ 

plete update of displacements, velocities and accelerations. 

12. For each time step in the sequence repeat steps 5 to 11. 

13. For each sequence repeat steps 1 to 12. 



* HERTZ CONTACT I’ROPLEH - MESH NO. 2 

■ 111 j. i.. j.j i 111 i 111 11 > i > 11111 < i «< 111 < j-i-i 

0 1.0 2.0 3.0 1.0 S.0 6.0 7.0 B.O 9. 

Figure III-l 
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TABLE II1-2 

SOLUTION TIME LOG FOR 

IMPACT OF SPHERES PROBLEM 

Item 

1. Input of Data 

2. Check of Data 

3. Form Stiffness 

4. Solve Equations 

5. Output Stresses 

6. Implicit Algorithm 

Execution 
Time in Seconds 

Original Algorithm Modified Algorithm 

0.774 

0.404 

36.131 

13.434 

24.682 

10.602 

.783 

.408 

7.611 

7.165 

24.654 

10.084 

Total Time 86.027 50.705 
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CONCLUSIONS 

The three tasks funded under the increased effort phase of 

Contract No. N62399-73-C-0023 have been completed and are reported 

upon herein. 

The veracity of the Hertzian contact/impact algorithm programmed 

in FEAR has been demonstrated on several test problems and the 

importance of the impact/release conditions has been shown. Based 

upon our developments we are currently able to very accurately solve 

difficult problems involving wave propagation. 

The Hertzian contact/impact algorithm has been made much more 

efficient by instilling it with substructuring concepts. This has 

been demonstrated by numerical experiments involving typical meshes. 

We have initiated the development of a methodology for 

incorporating the full kinematically nonlinear contact/impact problem 

into a finite element program. The formulation is a direct generaliza¬ 

tion of the Hertzian contact/impact scheme which is now successfully 

implemented. Thus we feel the kinematically nonlinear scheme 

proposed is highly promising and, once implemented in FEAR, will 

prove to be a versatile, economical tool for the solution of 

nonlinear contact and impact problems. 
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