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Transferring knowledge of bacterial protein
interaction networks to predict pathogen
targeted human genes and immune
signaling pathways: a case study on M.
tuberculosis
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Abstract

Background: Bacterial invasive infection and host immune response is fundamental to the understanding of
pathogen pathogenesis and the discovery of effective therapeutic drugs. However, there are very few experimental
studies on the signaling cross-talks between bacteria and human host to date.

Methods: In this work, taking M. tuberculosis H37Rv (MTB) that is co-evolving with its human host as an example, we
propose a general computational framework that exploits the known bacterial pathogen protein interaction networks
in STRING database to predict pathogen-host protein interactions and their signaling cross-talks. In this framework,
significant interlogs are derived from the known pathogen protein interaction networks to train a predictive
l2-regularized logistic regression model.

Results: The computational results show that the proposed method achieves excellent performance of cross
validation as well as low predicted positive rates on the less significant interlogs and non-interlogs, indicating
a low risk of false discovery. We further conduct gene ontology (GO) and pathway enrichment analyses of
the predicted pathogen-host protein interaction networks, which potentially provides insights into the
machinery that M. tuberculosis H37Rv targets human genes and signaling pathways. In addition, we analyse
the pathogen-host protein interactions related to drug resistance, inhibition of which potentially provides an
alternative solution to M. tuberculosis H37Rv drug resistance.

Conclusions: The proposed machine learning framework has been verified effective for predicting bacteria-
host protein interactions via known bacterial protein interaction networks. For a vast majority of bacterial
pathogens that lacks experimental studies of bacteria-host protein interactions, this framework is supposed to
achieve a general-purpose applicability. The predicted protein interaction networks between M. tuberculosis
H37Rv and Homo sapiens, provided in the Additional files, promise to gain applications in the two fields: (1)
providing an alternative solution to drug resistance; (2) revealing the patterns that M. tuberculosis H37Rv genes
target human immune signaling pathways.
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Background
Bacterial invasive infection and host immune response is
fundamental to the understanding of pathogen pathogen-
esis and the discovery of effective therapeutic drugs. As an
example, Mycobacterium tuberculosis is the causative
agent of tuberculosis, an infectious disease that causes
millions of deaths each year [1]. In recent years, M. tuber-
culosis H37Rv has attracted much attention partly due to
its co-infection with HIV [2] and drug resistance [3–6].
From the point of view of interactome, bacterial-host pro-
tein interaction networks can be viewed as the interface/
cross-talks between pathogen protein-protein interaction
(PPI) networks and host PPI protein-protein networks.
Bacteria-host signaling cross-talks potentially help us
understand the underlying mechanism of M. tuberculosis
infection and human defence.
To date, most of the experimental work focuses on de-

tecting protein-protein interactions within bacterial cells.
The database STRING [7] (https://string-db.org/) has
curated massive PPI networks of 1678 bacterial patho-
gens such as M. tuberculosis, B. anthracis, F. tularensis,
Y. pestis, etc. However, there are very few experimental
studies on protein interactions between bacteria and
their host. From a computational view of point, M. tu-
berculosis H37Rv has been extensively studied in recent
years in terms of drug resistance analysis [4–6, 8] and
PPI networks reconstruction [9, 10]. In [9, 10], interlogs
are derived as M. tuberculosis H37Rv PPIs from the
known PPIs of other source species. In [9], the known
M. tuberculosis H37Rv PPIs are laid aside unused and
instead the E. coli PPIs are used as training data to pre-
dict M. tuberculosis H37Rv PPIs. In [10], the interlogs
derived from lostridium difficile are used to expand the
known M. tuberculosis H37Rv PPI networks, and the ex-
panded PPI networks are further used as training data to
train a random forest model for the discovery of novel
M. tuberculosis H37Rv PPIs.
Bacterial pathogen PPI networks are useful to study

the signaling mechanism and drug resistance machinery
within bacteria cell. However, we need further recon-
struct bacteria-host PPI networks to understand the
cross-talk mechanism of bacterial infection and host im-
munity. In recent years, pathogen-host PPI networks re-
construction and pathogen-host signaling cross-talk
modeling have attracted much attention from computa-
tional biologists [11–18], most of which focus on
virus-host protein interactions. Comparatively, t the ex-
perimental studies on bacteria-host protein interactions
are much less than that on virus-host protein interac-
tions, partly because of the complex bacterial cell wall,
which forms a strong permeability barrier to the mutual
access of the bacterial genome and the host genome
[19]. The two genomes could come across to physically
interact only if bacterial proteins are located at the
surface or membrane of bacterial cell, or bacterial pro-
teins could transport or secret into the host cell. To our
knowledge, experimental studies on bacteria-host pro-
tein interactions have been conducted for a very limited
number of species such as Salmonella [20], Bacillus
anthracis, Francisella tularensis, and Yersinia pestis
[21]. For these bacterial pathogens, the known
pathogen-host PPIs can be used as training data of
machine learning modeling or be treated as templates
to infer interlogs [22]. In [22], the known 62 Salmo-
nella-human PPIs are used to derive interlogs as
novel Salmonella-human PPIs.
Nevertheless, no experimental studies on pathogen-host

protein interactions have been conducted for the over-
whelming majority of bacteria, e.g. M. tuberculosis H37Rv.
To study the signaling cross-talks between bacteria and
host, two solutions to inferring bacteria-host protein inter-
actions have been proposed, one solution is ortholog
knowledge transfer that transfers ortholog knowledge
between two different hosts, e.g. knowledge transfer be-
tween human and plant to infer Salmonella-plant PPIs
from the known Salmonella-human PPIs [23]; and the
other solution is interlog knowledge transfer that infers
interlogs from known PPIs of different bacteria and differ-
ent hosts [24, 25]. These two solutions are effective for
cross-species knowledge transfer, especially when no
experimental data are available to the species to be stud-
ied. Nevertheless, these two methods both resort to
third-party species that may not physically co-exist with
parasitic relationships, e.g. Homo sapiens versus plant
[23]. Ortholog or interlog knowledge transfer across
widely-variant species are prone to yield a certain level of
noise and false interactions due to a large evolutionary
divergence.
Actually, the parasitic or co-evolution relationships be-

tween bacteria and host indicate that bacterial
protein-protein interaction alone is sufficient for us to
infer bacteria-host protein interaction without resorting
to third-party distant species. Knowledge transfer be-
tween two co-evolving species is more credible than that
between two evolutionarily distant species. The bacterial
pathogen protein interaction networks of 1678 bacteria
in STRING [7] provide rich information for us to study
bacteria-host protein interactions, because many evi-
dences have demonstrated that bacterial genome is
co-evolving with its host genome [19, 26, 27]. In [27], it
has been concluded that Mycobacterium tuberculosis
complex (MTBC) has been anatomically co-evolving
with modern humans for tens of thousands of years on
the basis of the evidences of its origin in Africa, the con-
gruence in phylogeography and the dating of major
branching events. Moreover, the drug resistance of
Mycobacterium tuberculosis (MTB) strains is also evolv-
ing with the host genome. In [19], it has been claimed

http://www.string-db.org/
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that human genetic factors may play important roles in
MTB drug resistance and different MTB lineages (e.g.
lineage 1: Indo-Oceanic; lineage 2: East Asian; lineage 3:
Central Asian; lineage 4: Euro American; lineage 7:
Ethiopia) acquire different levels of drug resistance. Mo-
lecular interactions are an effective way to unravel
bacteria-host co-evolution relationship and the progres-
sion of bacterial drug resistance, which is at present
hampered by the limited knowledge of bacteria-host in-
teractions. For instance, the molecular mechanism in-
volved in sensing of extracellular signals for inducing its
metabolic adaptation still remains unclear [4].
Furthermore, the interaction between bacteria and

host also somewhat contributes to bacterial drug resist-
ance. As suggested in [19], the interaction of MTB with
its macrophage microenvironment may play an import-
ant role in the risk of progression to drug-resistant TB.
Meanwhile from the host side, polymorphisms within
genes involved in macrophage activity (SLC11A1, VDR
and HLA genes) have been reported to be associated
with susceptibility to MTB drug resistance. As reviewed
in [28], the amino acid residues from the PPI interfaces
are more conserved than those from other parts of the
protein surface, and PPI inhibitors can perhaps be more
resistant to spontaneous mutations at their binding site
versus inhibitors of the active site, thus bacteria-host PPI
inhibitors may be of particular interest as antimicrobial
drugs that induce less risk of drug resistance. Therefore,
the exploration of protein interaction networks between
co-evolving bacterial pathogens and host could poten-
tially achieve two goals: (1) deriving more reliable inter-
logs to study pathogen-host signaling cross-talks; (2)
choosing pathogen-host PPI inhibitors to provide an al-
ternative solution to bacterial drug resistance.
In this work, taking M. tuberculosis H37Rv as an ex-

ample, we propose a general computational framework
that transfers the knowledge of bacterial pathogen pro-
tein interaction networks to predict pathogen targeted
human genes and immune signaling pathways. Due to
lack of experimental studies, we take advantage of the
co-evolution relationship between M. tuberculosis
H37Rv and Homo sapiens [19, 26, 27] to derive interlogs
as the training data from M. tuberculosis H37Rv protein
interactions alone. We confine the search of M. tubercu-
losis H37Rv ortholog genes within its human host with-
out resorting to a third-party species. The interlogs
derived in this way are presumably more reliable than
those derived from remote species. Given two interact-
ing M. tuberculosis H37Rv genes (m1, m2) and their cor-
responding Homo sapiens ortholog genes (h1, h2), we
deem (m1, h2) and (m2, h1) as two interlogs, since the
human ortholog gene products are functionally or struc-
turally similar to M. tuberculosis H37Rv gene products.
To ensure the quality of data, only the significant
interlogs are used as training data, and the less signifi-
cant interlogs need to be further validated by the trained
model. Ortholog and interlog knowledge transfer are
prone to introduce a certain level of noise as well as in-
crease the computational complexity. To solve this prob-
lem, we adopt theoretically well-established
l2-regularized logistic regression as the base machine
learning model. Finally, we further conduct gene ontol-
ogy (GO) and pathway enrichment analyses on the pre-
dicted interactions to provide insights into the
machinery of M. tuberculosis H37Rv infection and host
response. As a major concern in recent years, bacterial
drug resistance is also discussed in terms of
bacteria-host PPI inhibition to provide a potential alter-
native solution to M. tuberculosis H37Rv drug
resistance.

Methods
Overview flowchart of the proposed framework
As shown in Fig. 1, this work is divided into three
phases: (I) data construction; (II) model training and
prediction; (III) analyses. The critical phase is to derive
interlogs as training data from the known M. tubercu-
losis H37Rv PPI networks in STRING [9]. This phase
takes advantage of the co-evolution relationship between
M. tuberculosis H37Rv and human host to construct
training data that are experimentally not available. The
second phase is to construct feature representation, train
an l2-regularized logistic regression model, and then pre-
dict interactions from less significant interlogs and
non-interlogs. The final phase is to comprehensively
analyse the reconstructed MTB-human PPI networks for
further understanding of the machinery of bacterial in-
fection and host response. Especially, we analyse the
MTB-human PPIs related to M. tuberculosis H37Rv drug
resistance. Proper selection or design of PPI inhibitors
could potentially provide an alternative solution to bac-
terial drug resistance.

Data construction via interlog knowledge transfer from
M. tuberculosis H37Rv PPI networks
The M. tuberculosis H37Rv protein interaction networks
in STRING [9] contain 309,715 interactions. Unfortu-
nately, the PPI networks have been estimated to be of
low quality [24, 25, 29]. To choose quality M. tubercu-
losis H37Rv protein interactions, we take the following
three measures. Firstly, we only choose the PPIs with ex-
perimental evidences. Secondly, we remove the proteins
that have no gene names. Lastly, we only choose the
well-studied genes that have been annotated with at least
one specific gene ontology (GO) term of molecular func-
tion or biological process, except the generic root GO
terms (GO:0005575, GO:0008150, GO:0003674) in the
GO directed acyclic graph (DAG). As results, we obtain



Fig. 1 Overview flowchart of the proposed framework
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5224 well-studied M. tuberculosis H37Rv genes that cor-
respond to 7835 gene products/proteins and 28,347 M.
tuberculosis H37Rv protein-protein interactions. In the
same way, we obtain 20,081 well-studied human genes
that correspond to 60,126 gene products/proteins.
Now we exploit the knowledge of M. tuberculosis

H37Rv PPI networks via orthologous relationships to
construct the training data for MTB-human PPI predic-
tions. To formally formulate the method of data con-
struction, we denote the obtained M. tuberculosis H37Rv
PPI networks as G, which contains 28,347 interactions
and 1469 well-studied M. tuberculosis H37Rv proteins.
After removing the M. tuberculosis H37Rv proteins that
have no human orthologs, we obtain 1359 well-studied
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M. tuberculosis H37Rv proteins in total. We search the
human ortholog genes in SwissProt [30] simply using
PSI-BLAST [31] with default E-value (E-value = 10).
Orthologs are defined as homologous genes diverging
after a speciation event [32]. Actually, there are some
advanced methods to search or predict orthologs, e.g.
Reciprocal Best Hits (RBH) [32, 33], which relies on
BLAST [34] to identify pairwise orthologs between two
species [33], that’s, two genes residing in two different
genomes are deemed orthologs if their protein products
find each other as the best hit in the opposite genome
[32]. For each ortholog pair (A, A’), RBH algorithm
needs to run BLAST twice in two directions, one direc-
tion is against A query genome, and the opposite direc-
tion is against A’ query genome. RBH algorithm yields
quality orthologs at the cost of high computational in-
tensity. In this work, we adopt simple homolog-search
method instead of RBH algorithm for the two reasons:
(1) we need more orthologs including the distant ortho-
logs to derive interlogs as training data, because no ex-
perimental data are available to computational modeling;
(2) the RBH algorithm would computationally worsen
the efficiency of the sophisticated framework as illus-
trated in Fig. 1. If we choose lower BLAST E-value cut-
off, e.g. 1e-50 versus 1e-6 [32], we still could obtain
quality orthologs. The noise from distant orthologs or
non-orthologs could be counteracted using the
regularization technique that is discussed in the next
subsection.
From G, we derive the interlogs as follows. Given two

interacting M. tuberculosis H37Rv genes (mi,mj), we use
Hi, Hj to denote the sets of ortholog genes mi and mj, re-
spectively. In particular, if an ortholog gene yields more
than one ortholog protein, only one ortholog protein is
randomly chosen as the interacting partner. Given the
cutoff of ortholog significance δ, e.g. E-value of
PSI-BLAST, we further split Hi, Hj into two subsets f
H ≤ δ

i ;H>δ
i g; fH ≤ δ

j ;H>δ
j g , respectively. Here we define

H ≤ δ
i ;H ≤δ

j as the sets of significant ortholog genes and

H>δ
i ;H>δ

j as the set of less significant ortholog genes.

For any two interacting M. tuberculosis H37Rv genes
(mi,mj), we create the positive training instances from
the set of significant ortholog genes H ≤δ

i ;H ≤δ
j as

follows.

Pos mi;mj
� � ¼ mi; gð Þjg∈H ≤δ

j

n o
∪ mj; g

� �jg∈H ≤ δ
i

� �
ð1Þ

where (mi, g) or (mj, g) denotes significant interlog. For-
mula (1) is based on the assumption that the M. tuber-
culosis H37Rv gene mi(mj) functionally or structurally
co-evolves with its human host ortholog genes fgjg∈
H ≤ δ
i g (fgjg∈H ≤δ

j g ). The interaction of mi with mj to a

great extent indicates the interaction of mi with mj ‘s
ortholog gene fgjg∈H ≤δ

j g, and the interaction of mj with

mi ‘s ortholog genes fgjg∈H ≤δ
i g vice versa. All the posi-

tive training instances are then merged to generate the
whole positive training set.

Upos ¼ ∪
mi;mjð Þ∈G

Pos mi;mj
� � ð2Þ

From the evolutionary point of view, the less signifi-
cant interlogs are not so reliable as the significant inter-
logs, so that they need to be further validated by the
predictive model, which is trained on the significant
interlogs. The set of less significant interlogs is defined
as follows.

Valpos ¼ ∪
mi;mjð Þ∈G

mi; gð Þjg∈H>δ
j

n o
∪ mj; g

� �jg∈H>δ
i

� �
ð3Þ

where (mi, g) or (mj, g) denotes insignificant interlog.
For each M. tuberculosis H37Rv gene mi, let Pi
= {g| {mi, g} ∈Upos} denote the set of its human partner
genes, Mi = {g| {mi, g} ∈G} denote the set of its M. tu-
berculosis H37Rv partner genes, and Allorthi ¼ ∪

mj∈MiH j denote the set of human ortholog genes of all the
genes in Mi. Then we randomly sample the human
genes that potentially do not interact with genemi

from the set non-ortholog genes Ni = {g| g ∉ All_orthi ^
g ∈Homowell} to construct the negative training data,
where Homowell denotes the well-studied human
genes. To obtain well-balanced training data, we im-
pose the constraint ∣Ni ∣ = ∣ Pi∣ on the sampling of
negative training data. Then the whole negative train-
ing set is defined as follows.

Uneg ¼ ∪
mi∈M

mi; gð Þjg∈Nif g ð4Þ

where M denotes the set of M. tuberculosis H37Rv genes
in the M. tuberculosis H37Rv PPI networks G.
Model evaluation is a hard problem in the case of lack

of experimental data. Nevertheless, random sampling of
a tiny fraction of data in the huge space of non-interlogs
is convincingly to capture non-interactions with a large
probability. Hence we obtain the negative data to esti-

mate the model as follows. Let N
0
i ¼ fgjg∉Allorthi^g∉Ni

^g∈Homowellg denote the set of human genes, from
which the negative data to be validated are defined as
follows.
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Valneg ¼ ∪
mi∈M

mi; gð Þjg∈N 0
i

n o
; s:t: j Valpos j¼j Valneg j

ð5Þ
For each M. tuberculosis H37Rv gene mi, we sample

the human genes from the set N
00
i ¼ fgjg∉Allorthi^g∉Ni

^g∉N
0
i^g∈Homowellg to obtain the prediction set as

follows.

Pred ¼ ∪
mi∈M

mi; gð Þjg∈N 00
i

n o
ð6Þ

The prediction set is further reduced for the sake of
computational complexity by imposing a constraint on
the space as follows.

Pred ¼ ∪
mi∈M

mi; gð Þjg∈N 00
i

n o
; s:t: j N 00

i j ≤300 ð7Þ

Formula (7) means that no more than 300 human pro-
teins are randomly sampled for each M. tuberculosis
H37Rv protein. The data and analyses are referred to the
section Results.

Multi-instance GO feature construction via homolog
knowledge transfer
State-of-art feature construction is a critical step of ma-
chine learning modeling in solving specific problems.
Gene ontology (GO) has been widely used as features to
predict protein-protein interactions [14–18, 35–40]. In
[35], GO has been claimed to be the most discriminative
feature for PPI prediction [35]. Gene ontology is a hier-
archically organized and controlled vocabulary that char-
acterizes gene products [41], and the annotations of
genes or gene products are provided in terms of GO
terms in GOA [42]. Despite its powerful predictive cap-
ability, GO feature representation could encounter a ser-
ious problem for those less-studied or novel genes,
because the sparsity of GO terms potentially yields null
feature vectors. In this work, homolog knowledge trans-
fer is conducted via independent homolog instances to
solve this problem, that is, each gene/protein is depicted
with two instances, namely target instance and homolog
instance. The target instance depicts the GO knowledge
of the gene/protein itself, and the homolog instance de-
picts the GO knowledge of the homologs. The homologs
are extracted from SwissProt [30] using PSI-BLAST [31]
(E-value = 10) against all species. We treat all types of
evidence codes equally including ISS (Inferred from Se-
quence or structural Similarity), IEA (Inferred from
Electronic Annotation), etc. The reason that we choose
the default E-value is that we need to capture distant ho-
mologs. Similarly, the reason that we do not filter out
those indirectly-derived or uncurated annotations is to
overcome the sparsity and enlarge the coverage of GO
terms. Undoubtedly, a certain level of noise would be
introduced into the computational framework, which
will be discussed in the next subsection. The GO terms
are extracted from GOA [42]. For each protein i in the
training set U, we obtain two sets of GO terms, one set
denoted as SiH contains the GO terms of the homologs,
and the other set denoted as SiT contains the GO terms
of the protein itself. Then the whole set of GO terms of
the training set is defined as follows:

S ¼ ∪
i∈U

SiT∪S
i
H

� � ð8Þ

For each protein pair (i1, i2), the target instance and
the homolog instance are formally defined as follows:

V i1;i2ð Þ
T g½ � ¼

0; g∉Si1T∧g∉S
i2
T

2; g∈Si1T∧g∈S
i2
T ;

1; otherwise

8<
:

V i1;i2ð Þ
H g½ � ¼

0; g∉Si1H∧g∉S
i2
H

2; g∈Si1H∧g∈S
i2
H

1; otherwise

8<
:

ð9Þ

For each GO term g ∈ S, V ði1;i2Þ
T ½g� denotes the compo-

nent g of the target instance V ði1;i2Þ
T and V ði1;i2Þ

H ½g� denotes
the component g of the homolog instance V ði1;i2Þ

H . Those
GO terms g ∉ S are discarded. Formula (9) means that if
the protein pair (i1, i2) shares the same GO term g, then
the corresponding component in the feature vector

V ði1;i2Þ
T or V ði1;i2Þ

H is set 2; if neither protein in the protein
pair possesses the GO term g, then the value is set 0;
otherwise the value is set 1. The GO terms of the pro-
tein pair (i1, i2) that do not belong to the whole set of
GO terms of the training set, formally defined as fgjg∈
SiT∨g∈S

i
H∧g∉Sg, are ignored in the feature construction.

L2-regularized logistic regression for large data training
and noise tolerance
The existing interlog modeling methods [22–25] have
demonstrated two major disadvantages. First, they do
not discriminate less significant interlogs from signifi-
cant interlogs, less significant interlogs need to be fur-
ther validated; second, they cannot detect those
interactions that exist inexplicitly in the form of inter-
logs. To solve the two problems, we combine machine
learning approach with interlog modeling via two-level
knowledge transfer, namely interaction-level interlog
knowledge transfer and protein−/gene-level homolog
knowledge transfer. The former level of knowledge
transfer is to derive the significant interlogs as the train-
ing data, and the second level of knowledge transfer is
to make up for the sparsity of GO terms. The two-level
knowledge transfer demands that the machine learning
methods we choose should be resistant to noise. SVM
support vector machine (SVM) [43] is a theoretically
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established machine learning method known for its
regularization technique resistant to noise/outliers. Un-
fortunately, SVM is not applicable to large training data
due to its time complexity O(n2). Here we adopt the
l2-regularized logistic regression method [44], imple-
mented in the toolbox LIBLINEAR [45], to counteract
the ortholog/homolog noise and fit the large training
data in linear time.
Given a set of instance-label pairs (xi, yi), i = 1, 2, …, l;

xi ∈ R
n; yi ∈ {−1, +1}, linear regression attempts to derive

a decision function f(xi) = ωTxi + b, which is further con-
verted to probability via the logistic function p(y = ±
1| ω, xi) = 1/1 + exp(−yi(ω

Txi + b)). The weight vector and
bias (ω, b) could be estimated by minimizing the nega-

tive log-likelihood min
ω;b

Xl

i¼1

logð1þ e−yiðω
T xiþbÞÞ . L2-reg-

ularized logistic regression imposes a constraint on the
l
2
-norm of the weight vector ω to solve the following un-

constrained optimization problem [44].

min
ω

1
2
ωTωþ C

Xl

i¼1

log 1þ e−yi ωT xiþbð Þ� �
ð10Þ

where C denotes the penalty parameter/regularizer that
balances the two terms in Formula (10) to achieve good
generalization ability. The second term could penalize
potential noise/outlier fitting. The optimization of ob-
jective function (10) is solved via its dual form.

min
α

1
2
αTQαþ

Xl

i:αi>0

αi logαi þ
X
i:αi<C

C−αið Þ log C−αið Þ

−
Xl

i

C logCsubjectto0≤αi≤C; i ¼ 1;…; l

ð11Þ
where αi denotes Lagrangian operator and Qij ¼ yiy jx

T
i x j.

In the test and prediction phase, the decision function

f(x) yields two outputs f ðV ði1;i2Þ
T Þ; f ðV ði1;i2Þ

H Þ for each
protein-protein pair (i1, i2), which are further combined
into one final decision as follows.

F V i1;i2ð Þ
T ;V i1;i2ð Þ

H

� �
¼

f V i1;i2ð Þ
T

� �
; if j f V i1;i2ð Þ

T

� �
j>j f

V i1;i2ð Þ
H

� �
j f V i1;i2ð Þ

H

� �
; otherwise

8><
>:

ð12Þ
where ∣Δ∣ denotes the absolute value of Δ. The final
label for protein pair (i1, i2) is defined as below.

L i1; i2ð Þ ¼ 1; if F V i1;i2ð Þ
T ;V i1;i2ð Þ

H

� �
> ζ

0; otherwise

(
ð13Þ
The threshold ζ is used to filter out those weak posi-
tive predictions.

Experimental setting and model evaluation
As described above, each protein pair (i1, i2) is repre-

sented with two instances, the target instance V ði1;i2Þ
T and

the homolog instance V ði1;i2Þ
H , so that the proposed

framework yields three outputs for decision, i.e. f ðV ði1;i2Þ
T Þ

, f ðV ði1;i2Þ
H Þ , FðV ði1;i2Þ

T ;V ði1;i2Þ
H Þ , respectively. Accordingly,

we design three experimental settings, namely

combined-instance ( FðV ði1;i2Þ
T ;V ði1;i2Þ

H Þ ), homolog-

instance ( f ðV ði1;i2Þ
H Þ ) and target-instance ( f ðV ði1;i2Þ

T Þ ), to
validate the effectiveness of homolog knowledge transfer.
The combined-instance setting combines the outputs of
the target instance and the homolog instance, the
homolog-instance setting uses the homolog instance
alone to evaluate the model robustness to GO term
sparsity, and the target-instance setting uses the target
instance alone to yield the baseline performance, equiva-
lence to or excellence over which indicates that homolog
knowledge transfer is effective.
Five performance metrics, i.e. ROC-AUC (Receiver

Operating Characteristic AUC), SE (sensitivity), SP (spe-
cificity), MCC (Matthews correlation coefficient) and F1
score, are used to evaluate the proposed model via
5-fold cross validation. The dataset is randomly split into
five disjoint parts. For five folds, each fold treats one
part as test set and the other four parts are merged as
training set. For each test example, the true label and
the predicted label are recorded into the confusion
matrix M. When the five folds complete, we use M to
calculate the performance metrics. Except ROC-AUC, all
the other metrics are derived from the confusion matrix
M. From M, we define several intermediate variables as
formula (14). Based on these intermediate variables, we
further define SPl, SEl and MCCl for each label as for-
mula (15) and the overall MCC as formula (16).

pl ¼ Ml;l; ql ¼
XL
i¼1;i≠l

XL
j¼1; j≠l

Mi; j; rl ¼
XL
i¼1;i≠l

Mi;l; sl

¼
XL
j¼1; j≠l

Ml; jp ¼
XL
l¼1

pl; q ¼
XL
l¼1

ql; r ¼
XL
l¼1

rl; s ¼
XL
l¼1

sl

ð14Þ

SPl ¼ pl
�
pl þ rl ; l ¼ 1; 2…; LSEl ¼ pl

�
pl

þsl; l ¼ 1; 2…; LMCCl ¼ plql−rlslð Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pl þ rlð Þ pl þ slð Þ ql þ rlð Þ ql þ slð Þ

q
; l ¼ 1; 2…; L

ð15Þ
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Acc ¼
XL

l¼1
Ml;l=

XL

i¼1

XL

j¼1
Mi; j

MCC ¼ pq−rsð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ rð Þ pþ sð Þ q þ rð Þ q þ sð Þ

p
ð16Þ

where the element of confusion matrix Mi, j records the
counts that class i are classified to class j, and L denotes
the number of labels. AUC is calculated based on the de-
cision values defined in formula (12). F1 score is defined
as follows:

F1score ¼ 2� SPl � SEl
.
SPl þ SEl

; l

¼ 1denotesthepositiveclass ð17Þ

Results
Quality validation on the constructed data via GO
enrichment analysis
The E-value cut-off for significant interlogs is set δ =
1e ‐ 50. To date, there is no commonly-accepted stand-
ard to choose PSI-Blast E-value cut-off. We are inclined
to choose a small E-value cut-off to obtain quality inter-
logs. As results, we obtain 15,287 significant interlogs as
the positive examples (see Additional file 1), 15,287 ran-
domly sampled non-interlogs as the negative examples
(see Additional file 2), a set containing 98,187 less sig-
nificant interlogs, a set containing 98,187 non-interlogs
that are potentially negative examples, and a prediction
set containing 1359,00 protein pairs. The sampling ratio
of negative examples to positive examples is set 1:1 for
the two reasons: (1) skewed distributions between the
positive class and the negative class (e.g. ratio 1:10,
1:100, etc.) could increase the risk of model bias; (2)
there is actually no direct mapping from the biological
problem space to the computational space, so it is im-
proper to simulate the huge negative space by sampling
a much larger negative data set to train a predictive
model from a computational point of view.
The significant interlogs are directly viewed as

MTB-human protein interactions, so we need to assess
the quality of the derived interlogs and their potential
applications. As there is no independent benchmark
measure, we analyse the quality of interlogs only from
the aspects of similar GO terms. Of course, it is the fea-
ture vector of GO terms as Formula (9) defines that de-
termines the predictive output. In addition, we analyse
the drug resistance related interlogs to reveal the role of
the host factors in the progression of bacterial antibiotic
resistance. The less significant interlogs need to be fur-
ther validated by the proposed framework and will be
analysed in the following subsection. Antimicrobial pep-
tides (AMPs) represent a potential alternative to avail-
able antibiotics. Raman et al. [46] exploit the M.
tuberculosis H37R PPI networks to find so-called
co-target genes whose co-inhibition with the resistance
genes could effectively blockade M. tuberculosis H37RV
signaling pathways. Nevertheless, inhibitors of
pathogen-host PPI interface could be more therapeutic-
ally specific to bacterial infection with less risk of drug
resistance and drug side-effects. Figure 2a illustrates the
significant interlogs related to M. tuberculosis H37Rv
drug-resistant genes that get involved in cytochromes
and other target-modifying enzymes [46], which could
cause potential chemical modification of drug molecules
(see Additional file 3 for detailed GO enrichment ana-
lysis). Figure 2b illustrates the significant interlogs re-
lated to M. tuberculosis H37Rv drug-resistant genes that
get involved in SOS-response and DNA replication [46],
which could lead to mutations in the gene or its regula-
tory region (see Additional file 4 for detailed GO enrich-
ment analysis).
Interlog {Rv2193, MT-CO1}
The drug-resistant gene Rv2193 is involved in cytochromes
and other target-modifying enzymes that could cause po-
tential chemical modification of drug molecules [46]. The
interlog {Rv2193|I6Y8N5, MT-CO1|P003951} is inferred
from the known M. tuberculosis H37Rv protein interaction
{Rv2193|I6Y8N5, Rv3043c|I6YAZ7} [7], where the human
protein P003951 (MT-CO1) is orthologous to the M. tuber-
culosis H37Rv protein I6YAZ7 (Rv3043c) with E-value
equal to 4e-094. From GO enrichment analysis as partially
provided in Table 1, the two genes {Rv2193, MT-CO1} both
get involved in the common biological processes of
oxidation-reduction process (GO:0055114) and hydro-
gen ion transmembrane transport (GO:1902600). In
addition, the two genes are also both involved in aer-
obic cellular respiration, e.g. Rv2193 respiratory elec-
tron transport chain (GO:0022904) and MT-CO1
aerobic respiration (GO:0009060). Besides, the two
orthologous proteins {Rv3043c|I6YAZ7, MT-CO1|P0
03951} are also involved in other highly similar bio-
logical processes (see Additional file 3).
Interlog {Rv2737c, ERCC6}
The drug-resistant gene Rv2737c is involved in
SOS-response and DNA replication that lead to muta-
tions in the gene or its regulatory region. The interlog
{Rv2737c|I6YE90, ERCC6|Q03468} is inferred from the
known M. tuberculosis H37Rv protein interaction
{Rv2737c|I6YE90, helZ|Rv2101|I6YCF3} [7], where the
human protein Q03468 (ERCC6) is orthologous to the
M. tuberculosis H37Rv protein I6YCF3 (Rv2101, gene
name helZ) with E-value equal to 5e-058. The GO en-
richment analysis of the two genes {Rv2737c, ERCC6} is
partially provided in Table 2. We can see that these two



Fig. 2 The derived interlogs between M. tuberculosis H37Rv drug-resistant genes and human genes. a illustrates the interactions of M. tuberculosis
H37Rv drug-resistant genes involved in cytochromes and other target-modifying enzymes that could cause potential chemical modification of
drug molecules [46]. b illustrates the interactions of M. tuberculosis H37Rv drug-resistant genes involved in SOS-response and DNA replication that
lead to mutations in the gene or its regulatory region. The light blue circles denote M. tuberculosis H37Rv genes and the red diamonds denote
human genes [46]
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genes get involved in the common biological processes
of DNA repair (GO:0006281) and response to DNA
damage stimulus (GO:0006974). Besides, the gene
Rv2737c protects microbial DNA from antibiotics
(GO:0046677, response to antibiotic), DNA damage
(GO:0009432, SOS response), ultraviolet radiation (GO:0
009650, UV protection), ionizing radiation (GO:0010212,
response to ionizing radiation), etc. Accordingly, the
Table 1 GO enrichment analysis of the significant interlog {Rv2193,
resistance type of cytochromes and other target-modifying enzymes
molecules [46]

GO term ID G

Common GO terms GO:0016020 C

GO:0016021 C

GO:0016491 F

GO:0055114 P

GO:1902600 P

H57_11955|Rv2193 only GO:0022904 P

GO:0019646 P

GO:0015002 F

MT-CO1 only GO:0070469 C

GO:0045277 C

GO:0005751 C

GO:0006979 P

GO:0009060 P

GO:0046688 P

GO:0051602 P

GO:0020037 F

C denotes cellular component, F denotes molecular function, and P denotes biolog
human gene ERCC6 gets involved in response to gamma
radiation (GO:0010332), response to UV (GO:000
9411), response to oxidative stress (GO:0006979),
DNA damage response, signal transduction resulting
in induction of apoptosis (GO:0008630), base-
excision repair (GO:0006284), etc. The similar bio-
logical processes suggest that the two genes
{Rv2737c, ERCC6} potentially interact.
MT-CO1} LH57_11955 (Rv2193) is classified into the drug
that could cause potential chemical modification of drug

O aspect GO term name

membrane

integral to membrane

oxidoreductase activity

oxidation-reduction process

hydrogen ion transmembrane transport

respiratory electron transport chain

aerobic electron transport chain

heme-copper terminal oxidase activity

respiratory chain

respiratory chain complex IV

mitochondrial respiratory chain complex IV

response to oxidative stress

aerobic respiration

response to copper ion

response to electrical stimulus

heme binding

ical process



Table 2 GO enrichment analysis of the derived interlog {Rv2737c, ERCC6}. recA (Rv2737c) is classified into the drug resistance type of
SOS-response and DNA replication that leads to mutations in the gene or its regulatory region [46]

GO term ID GO aspect GO term name

Common GO terms GO:0005515 F protein binding

GO:0006281 P DNA repair

GO:0006974 P response to DNA damage stimulus

GO:0016787 F hydrolase activity

GO:0008094 F DNA-dependent ATPase activity

GO:0003677 F DNA binding

recA|Rv2737c only GO:0046677 P response to antibiotic

GO:0009432 P SOS response

GO:0009650 P UV protection

GO:0010212 P response to ionizing radiation

GO:0006310 P DNA recombination

GO:0006259 P DNA metabolic process

GO:0000725 P recombinational repair

ERCC6 only GO:0000303 P response to superoxide

GO:0006283 P transcription-coupled nucleotide-excision repair

GO:0006284 P base-excision repair

GO:0006979 P response to oxidative stress

GO:0007256 P activation of JNKK activity

GO:0008630 P DNA damage response, signal transduction resulting in induction of apoptosis

GO:0010332 P response to gamma radiation

GO:0009411 P response to UV

C denotes cellular component, F denotes molecular function, and P denotes biological process
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Performance of 5-fold cross validation
The ROC curves of 5-fold cross validation are illustrated
in Fig. 3 and the detailed performance metrics are pro-
vided in Table 3. The proposed method achieves fairly
good performance in terms of all the performance mea-
sures, and the performance varies very little between the
three experimental settings, which indicate that the
homolog instances are effective to substitute the target
instances when the GO knowledge of the genes con-
cerned is not available.
Furthermore, the proposed method achieves quite

well-balanced performance on the two classes, indicating
that the positive class of significant interlogs and the
negative class of non-interlogs are well separated. In the
section Analysis of the constructed data, we have ana-
lysed the quality of the derived significant interlogs via
GO enrichment analysis. To well interpret the good
two-class separability, we conduct further GO enrich-
ment analysis on the positive and the negative training
data.
As illustrated in Fig. 4a, the protein pairs in the posi-

tive training data (i.e. significant interlogs) show more
significant common patterns of subcellular localization,
molecular functionality and biological processes than
those in the negative training data (i.e. non-interlogs).
Such a wide difference of common patterns between the
positive data and the negative data presumably con-
tribute much to the two-class separability, which then
results in the good performance of 5-fold cross valid-
ation. The results as illustrated in Fig. 4a are consist-
ent with the observations that two proteins that
interact are more likely to reside in the same cellular
compartments, fulfil similar molecular functions and
participate in similar biological processes. As men-
tioned in the section Background, the complex bac-
terial cell wall that forms a strong permeability
barrier to the mutual access of the bacterial genome
and the host genome [19], the two partners of signifi-
cant interlogs may merely functionally interact if no
transport or secretion helps the two partners physic-
ally contact.

Quality validation on the predicted interactions from less
significant interlogs and non-interlogs
At present there is no experimental data available as val-
idation set to evaluate the proposed model. Nevertheless,
the less significant interlogs would be more likely to be
interacting partners than non-interlogs. For the reasons,



Fig. 3 ROC curves for 5-fold cross validation performance evaluation on the artificially created significant interlogs between M. tuberculosis H37Rv
and H. sapiens
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we explicitly study the potential interactions from the
less significant interlogs and the non-interlogs, partly to
evaluate the proposed model as well. The predicted in-
teractions from the less significant interlogs and the
non-interlogs are provided in Additional files 5 and 6,
respectively. As shown in Table 4, the predicted positive
rates on the less significant interlogs and non-interlogs
are 18.78 and 1.41%, respectively. We can see that the
less significant interlogs are more likely to interact
than the non-interlogs. The result can be well inter-
preted by the wide difference of patterns of common
GO terms between the less significant interlogs and
the non-interlogs as illustrated in Fig. 4b. Comparing
Fig. 4a with Fig. 4b, we see that the interlogs show
much are similar distributions of GO terms than
non-interlogs. The low positive rate 18.78% indicates
Table 3 Performance estimation of 5-fold cross validation and perfo

Size Combined-instance Ho

SP SE MCC SP

Positive 15,287 0.9823 0.9966 0.9790 0.9

Negative 15,287 0.9965 0.9821 0.9790 0.9

[Acc; MCC] [98.93%; 0.9789] [97

[ROC-AUC] [0.9933] [0.

F1 Score 0.9894 0.9

KMM-SVM [23] SP SE

① human- >mouse 0.517 0.9

② E.coli- > human 0.257 0.1

① denotes the work [23] that transfers the knowledge of Salmonella-human PPI ne
[23] that transfers the knowledge of Salmonella-Ecoli PPI networks to predict Salmo
that the less significant interlogs should not be
equally treated as the significant interlogs as the
existing work does [22–25], and need to be further
validated by a machine learning framework. The low
positive rate 1.41% shows that the sampling method
of negative data as described in Formula (4) is
rational.
As reviewed in [19], host factors play important roles in

the progression of bacterial drug resistance. Hence the in-
teractions between M. tuberculosis H37Rv drug-resistant
genes and human host genes are of special interest to us.
Moreover, inhibitors of pathogen-host PPI interface would
be more therapeutically with less side-effect on other
human genes and pathways. The predicted interactions
from less significant interlogs related to drug resistance
are illustrated in Fig. 5. Figure 5a illustrates the interlogs
rmance comparison with the existing methods

molog-instance Target-instance

SE MCC SP SE MCC

684 0.9915 0.9601 0.9820 0.9976 0.9796

912 0.9676 0.9601 0.9975 0.9817 0.9796

.95%; 0.9599] [97.95%; 0.9599]

9912] [0.9978]

798 0.9897

F1 score

37 0.667

61 0.199

tworks to predict Salmonella-mouse protein interactions;② denotes the work
nella-human protein interactions



Fig. 4 Percentage of pathogen-host protein pairs in the training data whose partners share common GO terms
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that get involved in antibiotic efflux pumps [46] (see
Additional file 7 for detailed GO enrichment analysis),
and Fig. 5b illustrates the interlogs that get involved in
target-modifying enzymes [46] (see Additional file 8 for
detailed GO enrichment analysis).

Interlog {Rv0849, ABCB1}
The interlog {Rv0849|I6X9Y5, ABCB1|P08183} is derived
from the known interaction {Rv0849|I6X9Y5, Rv1348
|I6YAB3} [7], wherein the human protein P08183is
orthologous to the M. tuberculosis H37Rv protein
I6X9Y5 with E-value equal to 6e-043. The interlog
{Rv0849|I6X9Y5, ABCB1|P08183} is predicted to be a
pathogen-host protein interaction with probability
0.9987 (see Additional file 7). GO enrichment analysis
shows that the two genes {Rv0849, ABCB1} both are lo-
cated at membrane (GO:0005886, plasma membrane;
GO:0016021, integral to membrane) and participate the
biological process of transport (GO:0055085, transmem-
brane transport; GO:0006810, transport) (see Table 5). In
addition, the human gene ABCB1 also gets involved in the
biological processes of drug transmembrane transport
Table 4 Predicted positive rates on less significant interlogs, non-int

Less significant interlogs

Size 98,187

Predicted positive rate 18.78%
(GO:0006855) and xenobiotic transport (GO:0042908).
The GO terms (GO:0009986, cell surface; GO:0070062,
extracellular vesicular exosome) indicate that the human
protein P08183 could have physical contact with the M.
tuberculosis H37Rv membrane protein I6X9Y5 to induce
immune response (GO:0002485, antigen processing and
presentation of endogenous peptide antigen via MHC
class I via ER pathway, TAP-dependent).

Interlog {Rv1988, PNP}
The interlog {Rv1988|Q10838, PNP|P00491} is derived
from the known interaction {Rv1988|Q10838, Rv053
5|I6Y409} [7]. The human protein P00491 is orthologous
to the M. tuberculosis H37Rv protein I6Y409 with
E-value equal to 6e-034. The M. tuberculosis H37Rv
gene Rv1988 is classified into the drug resistance type of
target-modifying enzymes [46]. As shown in Table 5, the
M. tuberculosis H37Rv Rv1988 gets involved in the bio-
logical processes of rRNA modification (GO:0000154),
rRNA methylation (GO:0031167) and response to anti-
biotic (GO:0046677), while the human gene PNP also
gets involved in the biological processes of protein
erlogs and the prediction set

Non-interlogs Prediction set

98,187 407,700

1.41% 1.96%



Fig. 5 Validated less significant interlogs. a illustrates the interactions of M. tuberculosis H37Rv drug-resistant genes that are involved in antibiotic
efflux pumps [46]. b illustrates the interactions of M. tuberculosis H37Rv drug-resistant genes that are involved in target-modifying enzymes [46]
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modifications, e.g. the catabolic processes of nucleobase-
containing compound (GO:0006139), inosine (GO:0006
148), purine nucleotide (GO:0006195), etc. In addition,
PNP is involved in the biological processes of immune
response (GO:0006955, GO:0070970) and response to
drug (GO:0042493).
Predicted interactions on the prediction set
The prediction set that contains 407,700 MTB-human
protein pairs is derived from the huge space of
non-interlogs according to Formula (7). As shown in
Tables 1, 4.96% of protein pairs are predicted to be
pathogen-host PPIs. Such a low positive rate is presum-
ably rational with a low risk of false positive predictions.
The predicted interactions on the prediction set are pro-
vided in Additional file 9. For the convenience of ana-
lysis, we merge the significant interlogs together with
the predicted interactions from the less significant inter-
logs, non-interlogs and the prediction set into Add-
itional file 10. We totally obtain 43,116 predicted protein
interactions between M. tuberculosis H37Rv and Homo
sapiens, which is still incomplete since the prediction set
is only a small part of the prediction space.
Taking advantage of the predicted MTB-human PPI

networks, we need to address two concerns (1) how
many human genes a M. tuberculosis H37Rv gene is
likely to target; (2) what roles the targeted human genes
play in the human PPI networks. The two concerns are
actually about two kinds of degree distributions (1) the
degree distribution of the M. tuberculosis H37Rv genes
in the MTB-human PPI networks (see Fig. 6 (left)); (2)
the degree distribution of the human genes in human
PPI networks (see Fig. 6 (right)). We can see that the
two degrees show a tendency of power-law distribution.
As shown in Fig. 6 (left), only a small portion of M. tu-
berculosis H37Rv genes are densely connected by human
genes, indicating that only a small number of M. tuber-
culosis H37Rv genes intensively target dozens to several
hundred of human genes. For instance, M. tuberculosis
H37Rv gene Rv0440 (groEL) and Rv1436 (LH57_07850)
interact with 209 and 206 human genes, respectively. As
shown in Fig. 6 (right), only a small of targeted human
genes are highly-connected hub genes and the long tail
indicate that many targeted human genes are orphan
genes in human PPI networks. It could be concluded
that only a small number of M. tuberculosis H37Rv
genes target a small number of human hub genes. The
human PPI networks are constructed from HPRD [47]
and BioGRID [48]. To further reveal the signaling
cross-talks between M. tuberculosis H37Rv and Homo
sapiens, we will discuss the patterns of M. tuberculosis



Table 5 Gene ontology analysis of the predicted interactions {Rv0849, ABCB1} and {Rv1988, PNP}. Rv0849 is classified into the drug
resistance type of antibiotic efflux pumps [46]. Rv1988 is classified into the drug resistance type of target-modifying enzymes [46]

{Rv0849, ABCB1} GO term ID GO aspect GO term name

Common GO terms GO:0055085 P transmembrane transport

GO:0006810 P transport

GO:0005886 C plasma membrane

GO:0016021 C integral to membrane

ABCB1 only GO:0005215 F transporter activity

GO:0006855 P drug transmembrane transport

GO:0042908 P xenobiotic transport

GO:0009986 C cell surface

GO:0070062 C extracellular vesicular exosome

GO:0002485 P antigen processing and presentation of endogenous peptide antigen via MHC class I via
ER pathway, TAP-dependent

{Rv1988, PNP} GO term ID GO aspect GO term name

Common GO terms GO:0005737 C cytoplasm

GO:0016740 F transferase activity

Rv1988 only GO:0000154 P rRNA modification

GO:0008649 F rRNA methyltransferase activity

GO:0031167 P rRNA methylation

GO:0046677 P response to antibiotic

PNP only GO:0006139 P nucleobase-containing compound metabolic process

GO:0006148 P inosine catabolic process

GO:0006195 P purine nucleotide catabolic process

O:0006738 P nicotinamide riboside catabolic process

GO:0006955 P immune response

GO:0042493 P response to drug

GO:0070970 P interleukin-2 secretion

GO:0034356 P NAD biosynthesis via nicotinamide riboside salvage pathway

C denotes cellular component, F denotes molecular function, and P denotes biological process
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H37Rv genes manipulating the human immune signaling
pathways in the section Discussions.
Discussions
To date, there are very few experimental studies on
protein interactions between bacterial pathogens and
their hosts. The latest database STRING has curated
1678 bacterial pathogen protein-protein interaction
networks, but no work has been reported to exploit
these networks to predict pathogen-host protein
interactions thus far. Pathogen-host protein interac-
tions play a critical role of signaling cross-talks
between pathogen PPI networks and host PPI net-
works, which is of significance to understand the
underlying mechanism of bacterial invasive infection
and host immune response.
Mycobacterium tuberculosis is an obligate pathogenic

bacterial species in the family of Mycobacteriaceae
and the causative agent of tuberculosis. The physi-
ology of M. tuberculosis is highly aerobic and re-
quires high levels of oxygen. As primarily a
pathogen of the mammalian respiratory system, M.
tuberculosis mainly infects the lungs as well as other
tissues. M. tuberculosis H37Rv has received much at-
tention in recent years partly due to its co-infection
with HIV and increasingly serious drug resistance.
To date, the cross-talks or interactions between M.
tuberculosis and H. sapiens proteins are much less
understood than the individual genome of M. tuber-
culosis. To the best of our knowledge, there is no
experimental study on protein interactions between
M. tuberculosis H37Rv and Homo sapiens.

Methodology comparison with the related computational
methods
The related computational methods generally infer inter-
logs via one or more third-party species. For instances,



Fig. 6 The degree distribution of the M. tuberculosis H37Rv genes in the derived MTB-human PPI networks (left); the degree distribution of M.
tuberculosis H37Rv targeted human genes in human physical PPI networks (right)
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Kshirsagar et al. [23] use the known Salmonella-human
PPIs as templates to infer Salmonella-plant PPIs via
plant-human ortholog mapping (see Fig. 7a). Zhou et al.
[24, 25] use the known prokaryote-eukaryote PPIs as
templates to infer M. tuberculosis-H. sapiens PPIs via
the ortholog mappings of prokaryote-M. tuberculosis
and eukaryote-H. sapiens (see Fig. 7b). However, the
large gap between the source species (e.g. plant) and the
target species (e.g. human) is to a large extent prone to
yield false pathogen-host protein interactions. In
addition, the interlog-only methods [24, 25] neither val-
idate the less significant interlogs nor train a predictive
model to predict the non-interlogs that also potentially
interact. Similar to the methods that combine interlog
with machine learning approach [9, 23], we also use the
derived interlogs as training data since there are no ex-
perimental data available, but differently we confine the
search of M. tuberculosis H37Rv ortholog genes within
the human host without resorting to a third-party spe-
cies, meanwhile we do not need prior pathogen-host
PPIs of other species as templates (see Fig. 7c). As illus-
trated in Fig. 7c, the ortholog genes of the two interact-
ing M. tuberculosis H37Rv genes (A, B) are searched
within the human genome space, presumably A’ and B′,
respectively, then it is assumed that A interacts with B′
and B interacts with A’. The assumption is based on the
accumulated evidences that the different strains of the
obligate human pathogen M. tuberculosis have
co-evolved, migrated, and expanded with their human
hosts [27]. Knowledge transfer between co-evolving spe-
cies is more credible than that between evolutionarily
distant species.
It is noted that the quality of M. tuberculosis H37Rv

protein interaction networks in STRING [9] directly af-
fects the quality of inferred interlogs between M. tubercu-
losis H37Rv and Homo sapiens. Among the experimental
data in STRING [9], only 32 MTB PPIs are actually de-
rived by experiments. Obviously, such a small data size
cannot satisfy our needs, so we resort to the other experi-
mental data in STRING [9] that are actually interlogs in-
ferred from other experimentally-verified PPIs. Yu et al.
[49] have testified the feasibility of interolog mapping, i.e.
the transfer of interaction annotation from one organism
to another using comparative genomics.

Performance comparison with the related computational
methods
The interlog-only methods [24, 25] do not provide base-
line performance for comparison. The method that com-
bines interlog with machine learning approach [23]
derives Salmonella-plant interlogs from the known
plant-human PPIs as the training data to train a
KMM-SVM model for novel Salmonella-plant PPI pre-
dictions. As shown in Table 3, the knowledge of Salmo-
nella-human PPI networks is transferred in the first
experiment to predict Salmonella-mouse protein



Fig. 7 Illustration of the way of deriving interlogs. The ellipses in red and blue denote the target species and the ellipses in other colors denote
the source species. The circles denote genes. The red full line denotes the experimental protein-protein interactions. The red dotted line denotes
ortholog mapping. The blue full line with arrows at two ends denotes the derived interlogs. The methods illustrated in (a) and (b) exploited the
pathogen-host PPIs of other species to derive the interlogs of the target species, while the method illustrated in (c) transferred the knowledge of
intra-species M. tuberculosis H37Rv PPI networks to predict protein interactions between M. tuberculosis H37Rv and H. sapiens
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interactions, achieving SE 0.937 and SP 0.517; and the
knowledge of Salmonella-Ecoli PPI networks is trans-
ferred in the second experiment to predict Salmonella--
human protein interactions, achieving SE 0.257 and SP
0.161. The results in the second experiment are obvi-
ously much poorer in that the gap of species between
E.coli and human is much larger than that between mice
and human. Even in the first experiment, the method
[23] neither achieves satisfactory performance partly due
to the other two reasons: (1) the less significant interlogs
are not explicitly excluded out of the positive training
data; (2) the two-class skew distribution also contributes
to the low performance (SP = 0.517). In this work, the
knowledge is only transferred across co-evolving patho-
gen and host, so that the proposed method achieves
much better performance (see Table 3). Nevertheless,
the proposed method also yields a certain level of bias
and performance overestimation for the two reasons (1)
similar interlogs in the training data could overestimate
the performance of 5-fold cross validation performance,
though they do not affect the final trained model and
predictions; (2) the positive training data do not contain
non-interlogs that also potentially interact because there
are no such experimental data, so that the two classes of
training data are easily separated. How to choose the
representative interlogs to more objectively evaluate the
proposed model is worth further consideration in the
future work.

GO enrichment analysis of the targeted human genes
Figure 8 illustrates the top 20 GO terms of human genes
that are predicted to be targeted by M. tuberculosis
H37Rv genes. As shown in Fig. 8 (left), M. tuberculosis
H37Rv genes are inclined to target those human genes
located in the cellular compartments of membrane
(GO:0016020), integral to membrane (GO:0016021),
cytoplasm (GO:0005737), nucleus (GO:0005634), mito-
chondrion (GO:0005739), etc. As shown in Fig. 8 (mid-
dle), the targeted human genes fulfil the molecular
functions of protein binding (GO:0005515), hydrolase



Fig. 8 GO enrichment analysis of the human genes that are predicted to be targeted by M. tuberculosis H37Rv drug-resistant genes
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activity (GO:0016787), ATP binding (GO:0005524), metal
ion binding (GO:0046872), oxidoreductase activity (GO:00
16491), etc. As shown in Fig. 8 (right), the targeted human
genes get involved in the biological processes of transport
(GO:0006810), oxidation-reduction process (GO:0055114),
metabolic process (GO:0008152), ion transport (GO:00
06811), proteolysis (GO:0006508), regulation of transcrip-
tion, DNA-dependent (GO:0006355), etc.

Pathway enrichment analysis of the targeted human
genes
Bacterial invasion could induce host inflammatory
response, for instances, TNF-α is thought to play a role
in the activation of resting macrophages and inhibition
of bacterial dissemination, and IL-10 might play a role
in controlling the trade-off between the anti-microbial
activity and host-derived tissue caseation [50, 51]. We
map the targeted human genes onto the known human
immune signaling pathways curated in NetPath [52] to
study how M. tuberculosis genes interact with human
defence system. For simplicity, the pathways IL1~IL11 in
NetPath are merged into one IL signaling pathway, thus
we totally obtain 27 human immune signaling pathways.
The predicted MTB-human PPIs related to human
immune signaling pathways are provided in
Additional file 11. As shown in Fig. 9, M. tuberculosis
H37Rv genes are inclined to target the human immune
signaling pathways of AR (Androgen receptor),
TNF-alpha (Tumor necrosis factor alpha), TGF-beta
(Transforming growth factor beta receptor), IL (Interleu-
kin), BCR (B cell receptor), TSH (Thymic stromal lym-
phopoietin),, etc. In most cases, many M. tuberculosis
H37Rv genes are predicted to target more than one hu-
man immune signaling pathways (see Additional file 12),
for instances, M. tuberculosis H37Rv gene recA
(Rv2737c) is predicted to target five signaling pathways
(TNF-alpha;IL2;BCR;AR;TSH). Partial GO enrichment
analysis of the targeted human genes on TNF-alpha and
IL signaling pathways are given in Table 6.

TNF-alpha signaling pathway
The tumor necrosis factor alpha (TNF-alpha) is a
pro-inflammatory cytokine that belongs to the TNF super-
family [48]. M. tuberculosis H37Rv is predicted to invade
human TNF-alpha signaling pathway through 443
MTB-human PPIs and the targeted human genes
{CASP10, BID, RUVBL2, DDX21, RPL4, BRINP1, PSMC2,
PSMD1, FANCD2, MTIF2, PSMD2, PSMB5, RPS11,
PSMC3, GLUL, PDCD2, KTN1} (see Additional file 11).
Taking the targeted human gene PSMC2 for example (see
Table 6), among the M. tuberculosis H37Rv genes that tar-
get the human gene PSMC2, 20.51% of proteins are lo-
cated at membrane (GO:0016020); 16.67% of genes are
involved in the biological process of oxidation-reduction



Fig. 9 Statistics of MTB-human PPIs and MTB genes that are predicted to target specific human immune signaling pathways
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process (GO:0055114); 2.14% of genes are involved in the
biological process of transmembrane transport
(GO:0055085). Besides the GO terms marked with
“shared” in Table 6, the human gene PSMC2 also gets in-
volved in translation (GO:0046933;hydrogen ion trans-
porting ATP synthase activity, rotational mechanism) and
post-translational protein modification (GO:0043687). Es-
pecially, the targeted human gene PSMC2 plays an im-
portant role in the host immune response (GO:0002479;
antigen processing and presentation of exogenous peptide
antigen via MHC class I, TAP-dependent).

IL1~IL11 signaling pathway
Interleukins are a group of cytokines (secreted pro-
teins and signal molecules) that were first seen to be
expressed by white blood cells (leukocytes). The func-
tion of immune system depends in a large part on in-
terleukins that promote the development and
differentiation of T and B lymphocytes, and
hematopoietic cells [53]. M. tuberculosis H37Rv is
predicted to interact with human IL-1~ 11 signaling
pathways through 157 MTB-human PPIs and the
targeted human genes {BCL2L11, UNC119, IRS1, IL2,
DOK2, PTPN6, BAD, IL11, VCP, IRS2} (see
Additional file 11). Taking the targeted human gene
VCP for example (see Table 6), among the M. tuber-
culosis H37Rv genes that target human gene VCP,
16.78% of genes are located at integral to membrane
(GO:0016021); 27.27% of genes fulfil the molecular
function of ATP binding (GO:0005524); 9.79% of
genes are involved in oxidation-reduction process
(GO:0055114); 3.50% of genes are involved in trans-
port (GO:0006810); 9.79% of genes are involved in
DNA repair (GO:0006281), etc. Besides ATP binding
(GO:0005524) and transport (GO:0006810), the tar-
geted human gene VCP gets involved in autophagy
(GO:0006914), macroautophagy (GO:0016236) and
cellular response to DNA damage stimulus (GO:00
06974), etc.
Conclusions
In this work, we provide a general computational frame-
work to exploit the knowledge of the pathogen protein
interaction networks in the database STRING for the
rapid reconstruction of pathogen-host protein inter-
action networks. We take full advantage of the
co-evolution relationship between M. tuberculosis
H37Rv and H. sapiens to derive significant interlogs,
which are used as the training data to build a predictive
model. The knowledge transfer model effectively solves
the problem that no experimental bacteria-host protein
interactions are available as training data. The predicted
protein interactions provided in the Additional files
promise to gain applications in the two fields (1) provid-
ing an alternative solution to drug resistance; (2)



Table 6 GO and pathway enrichment analysis of the M. tuberculosis H37Rv genes that are predicted to target human TNF-alpha and
IL-1~IL11 signaling pathways

TNF-Alpha GO term ID GO
aspect

GO term name % Shared

MTB genes that target human
gene PSMC2

GO:0005524 F ATP binding 26.92 Yes

GO:0016020 C membrane 20.51 Yes

GO:0055114 P oxidation-reduction process 16.67 No

GO:0016310 P phosphorylation 5.98 No

GO:0006412 P translation 5.13 No

GO:0055085 P transmembrane transport 2.14 Yes

GO:0046933 F hydrogen ion transporting ATP synthase activity, rotational mechanism 1.71 No

Human gene PSMC2 GO:0002479 P antigen processing and presentation of exogenous peptide antigen via
MHC class I, TAP-dependent

– –

GO:0043687 P post-translational protein modification – –

GO:0045899 P positive regulation of RNA polymerase II transcriptional preinitiation
complex assembly

– –

Targeted human genes CASP10,BID,RUVBL2,DDX21,RPL4,BRINP1,PSMC2,PSMD1,FANCD2,MTIF2,PSMD2,PSMB5,RPS11,PSMC3,GLUL,PDCD2,KTN1

IL-1 ~ IL-11 GO term ID GO
aspect

GO term name % Shared

M.TB genes that target the
human gene VCP

GO:0003824 F catalytic activity 32.17 No

GO:0016021 C integral to membrane 16.78 No

GO:0005524 F ATP binding 27.27 Yes

GO:0055114 P oxidation-reduction process 9.79 No

GO:0006810 P transport 3.50 Yes

GO:0006281 P DNA repair 2.10 No

Human gene VCP GO:0005515 F protein binding – –

GO:0006914 P autophagy – –

GO:0016236 P macroautophagy – –

GO:0010918 P positive regulation of mitochondrial membrane potential – –

GO:0006974 P cellular response to DNA damage stimulus – –

Targeted human genes BCL2L11,UNC119,IRS1,IL2,DOK2,PTPN6,BAD,IL11,VCP,IRS2
C denotes cellular component, F denotes molecular function, and P denotes biological process
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revealing the patterns that M. tuberculosis H37Rv genes
target human immune signaling pathways.

Additional files

Additional file 1: Text file contains the positive training data consisting
of the derived significant interlogs. (TXT 1201 kb)

Additional file 2: Text file contains the negative training data consisting
of randomly sampled non-interlogs. (TXT 769 kb)

Additional file 3: Text file contains the gene ontology analysis of the
derived interlogs that get involved in drug resistance of cytochromes
and other target-modifying enzymes. (TXT 1703 kb)

Additional file 4: Text file contains the gene ontology analysis of the
derived interlogs that get involved in drug resistance of SOS-response
and DNA replication. (TXT 1157 kb)

Additional file 5: Text file contains the predicted results on the positive
independent test set consisting of less significant interlogs. (TXT 1055 kb)

Additional file 6: Text file contains the predicted results on the
negative independent test set consisting of randomly sampled non-
interlogs. (TXT 80 kb)
Additional file 7: Text file contains the gene ontology analysis of the
validated less significant interlogs that get involved in drug resistance of
antibiotic efflux pumps. (TXT 234 kb)

Additional file 8: Text file contains the gene ontology analysis of the
validated less significant interlogs that get involved in drug resistance of
target-modifying enzymes. (TXT 21 kb)

Additional file 9: Text file contains the predicted results on the prediction
set consisting of randomly sampled non-interlogs. (TXT 552 kb)

Additional file 10: Text file contains the summary of the derived or
predicted M.TB-human PPIs. (TXT 2888 kb)

Additional file 11: Text file contains the human cancer/immune
signaling pathways that M. tuberculosis H37Rv genes are predicted to
target. (TXT 106 kb)

Additional file 12: Text file contains the M. tuberculosis H37Rv genes
that target human cancer/immune signaling pathways. (TXT 21 kb)
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