
AIR FORCE RESEARCH LABORATORY 
AEROSPACE SYSTEMS DIRECTORATE 

WRIGHT-PATTERSON AIR FORCE BASE, OH  45433-7542 
AIR FORCE MATERIEL COMMAND 

UNITED STATES AIR FORCE 

AFRL-RQ-WP-TR-2018-0196 
 

 
 

 

HyCIRCA: FORMAL SYNTHESIS AND VERIFICATION 
TECHNIQUES OF AUTONOMOUS CYBER-PHYSICAL 
SYSTEMS 
 
Robert P. Goldman, Daniel Bryce, David J. Musliner, and Michael J.S. Pelican 
Smart Information Flow Technologies 
 
Md. Ariful Islam, Frank Pfenning, and Edmund M Clarke 
Carnegie-Mellon University 
 
OCTOBER 2018 
Final Report  
 
THIS IS A SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PHASE II REPORT. 

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is 
unlimited. 

 



 
NOTICE PAGE 

 
 
Using Government drawings, specifications, or other data included in this document for any 
purpose other than Government procurement does not in any way obligate the U.S. Government. 
The fact that the Government formulated or supplied the drawings, specifications, or other data 
does not license the holder or any other person or corporation; or convey any rights or 
permission to manufacture, use, or sell any patented invention that may relate to them.  
 
This paper was cleared for public release by the USAF 88th Air Base Wing (88 ABW) Public 
Affairs Office (PAO) and is available to the general public, including foreign nationals.  
 
Copies may be obtained from the Defense Technical Information Center (DTIC) 
(http://www.dtic.mil).   
 
AFRL-RQ-WP-TP-2018-0196 has been reviewed and is approved for publication in accordance 
with assigned distribution statement. 
 
This paper is published in the interest of scientific and technical information exchange and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings. 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it 
does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE  (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)
October 2018 Final 18 April 2016 – 31 October 2018 

4. TITLE AND SUBTITLE
HyCIRCA: FORMAL SYNTHESIS AND VERIFICATION TECHNIQUES OF
AUTONOMOUS CYBER-PHYSICAL SYSTEMS 

5a.  CONTRACT NUMBER 
FA8650-16-C-2611 

5b.  GRANT NUMBER 

5c.  PROGRAM ELEMENT NUMBER 
65502F 

6. AUTHOR(S)
Robert P. Goldman, Daniel Bryce, David J. Musliner, and Michael J.S. Pelican (Smart
Information Flow Technologies) 
Ariful Islam, Frank Pfenning, and Edmund M Clarke (Carnegie-Mellon University) 

5d.  PROJECT NUMBER 
STTR 

5e.  TASK NUMBER 
5f.  WORK UNIT NUMBER 

Q1M0 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBERSmart Information Flow Technologies
319 1st Avenue North, Suite 400 
Minneapolis, MN 55401-1689 

Carnegie-Mellon University 
5000 Forbes Avenue 
Pittsburgh, PA 15213 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Air Force Research Laboratory
Aerospace Systems Directorate 
Wright-Patterson Air Force Base, OH 45433-7542 
Air Force Materiel Command 
United States Air Force 

AGENCY ACRONYM(S)
AFRL/RQQA

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER(S)

AFRL-RQ-WP-TR-2018-0196 

12. DISTRIBUTION/AVAILABILITY STATEMENT
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

13. SUPPLEMENTARY NOTES
This is a Small Business Technology Transfer (STTR) Phase II Report. Contractor has waiver STTR Data Rights.
PA Clearance Number: 88ABW-2019-1286, Clearance Date: 27 March 2019

14. ABSTRACT
This report was developed under a SBIR contract for topic AF14A-T06 (Formal Synthesis and Verification Techniques
for Autonomous Cyber-Physical Systems).
SIFT and CMU developed HyCIRCA, a novel method for correct-by-construction nonlinear hybrid (discrete/continuous)
planning and controller synthesis for autonomous systems. HyCIRCA was built by integrating mission planning and
controller synthesis from SIFT’s Cooperative Intelligent Real-time Control Architecture, its Playbook® Human-
Computer Interface, and CMU’s dReal and dReach systems for hybrid systems verification. The resulting system
provides a substantial advance in efficient controller synthesis for cyber-physical systems.

15. SUBJECT TERMS
SBIR Report, controller synthesis, cyber physical systems, hierarchical task network planning, linear systems, temporal
logic, unmanned systems, verification

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT:

SAR 

18. NUMBER OF
PAGES 
71

19a.  NAME OF RESPONSIBLE PERSON (Monitor) 
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

Laura R. Humphrey 
19b.  TELEPHONE NUMBER (Include Area Code) 

N/A
Standard Form 298 (Rev. 8-98)  
Prescribed by ANSI Std. Z39-18 



 Smart Information Flow Technologies 
 319 1st Ave North, Suite 400 

 Minneapolis, MN 55401-1689 
Phone: 612-339-7438 

Fax: 612-339-7437 
Email: rpgoldman@sift.net 

 

 
 
 
 
January 7, 2019 
 
 
Dr. Laura Humphrey 
AFRL RQQA 
Aerospace Systems Directorate 
Wright-Patterson AFB, OH 45433-7542 
 
Subject:  Contract Number FA8650-16-C-2611, Phase II STTR 
 
Dear Dr. Humphrey: 
 
Smart Information Flow Technologies (SIFT) and hereby waives its STTR Data Rights 
to all contents of the final report for subject contract. The Government is granted an 
unlimited nonexclusive license to use, modify, reproduce, release, perform, and display 
or disclose this report and the data contained herein. 
 
We affirm that we are aware that the report may be released to other contractors to the 
Government and approve potential release to other contractors.  
 
 
 
Sincerely,  

 
 
 
Robert P. Goldman 
Principal Investigator 
 
 



i 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

TABLE OF CONTENTS 
LIST OF FIGURES ........................................................................................................................ ii 
1.0 SUMMARY ........................................................................................................................ 3 
2.0 INTRODUCTION .............................................................................................................. 4 
3.0 METHODS, ASSUMPTIONS, AND PROCEDURES ...................................................... 6 

3.1 CIRCA Background .................................................................................................................... 6 
3.1.1 “Classic” CIRCA .................................................................................................................... 7 
3.1.2 Theoretical Foundations of CIRCA ........................................................................................ 7 
3.1.3 CIRCA’s World Model ........................................................................................................... 9 
3.1.4 CIRCA and Formal Verification ............................................................................................. 9 
3.1.5 Heuristic Search .................................................................................................................... 10 
3.1.6 TAP Scheduling .................................................................................................................... 11 
3.1.7 Meta Control ......................................................................................................................... 11 
3.1.8 Distributed CIRCA ................................................................................................................ 12 
3.1.9 Probabilistic CIRCA ............................................................................................................. 13 

3.2 Playbook Background................................................................................................................ 14 
3.3 dReal and dReach Background .................................................................................................. 17 
3.4 Mission Planning ....................................................................................................................... 21 

3.4.1 Representation ....................................................................................................................... 22 
3.4.2 FTN to SMT Translation ....................................................................................................... 23 
3.4.3 Monte Carlo Tree Search (MCTS) in dReal SMT ................................................................ 25 
3.4.4 Heuristic Improvements ........................................................................................................ 27 

3.5 Controller Synthesis and Verification ....................................................................................... 28 
3.5.1 Translating CIRCA CSM to dReach ..................................................................................... 28 
3.5.2 Extending Goal Verification in CIRCA CSM ....................................................................... 30 

3.6 Signal Temporal Logic Encoding .............................................................................................. 35 
4.0 RESULTS AND DISCUSSION ....................................................................................... 43 

4.1 Mission Planning Evaluation ..................................................................................................... 43 
4.2 CSM Improvements ................................................................................................................... 45 

4.2.1 Hybrid model-checking ......................................................................................................... 45 
4.2.2 Heuristic improvements ........................................................................................................ 46 
4.2.3 Backjumping ......................................................................................................................... 47 
4.2.4 Goal Verification ................................................................................................................... 49 

4.3 STL Verification ........................................................................................................................ 51 
5.0 CONCLUSIONS............................................................................................................... 53 
6.0 REFERENCES ................................................................................................................. 54 
LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS ............................................... 57 
Appendix A: Büchi Automata for CIRCA CSM goals ................................................................. 59 
Appendix B: SMT translation of CIRCA model .......................................................................... 66 
 



ii 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

LIST OF FIGURES 
Figure 1 HyCIRCA system architecture. ........................................................................................ 5 
Figure 2 CIRCA research timeline. ................................................................................................ 6 
Figure 3 The CIRCA architecture. .................................................................................................. 7 
Figure 4 A sample Test-Action Pair and TAP schedule loop. ........................................................ 8 
Figure 5 HyCIRCA architecture. .................................................................................................. 14 
Figure 6  1927 playbook for the University of Chicago Maroons. ............................................... 15 
Figure 7 HTN planners build plans top-down, by task decomposition. ....................................... 16 
Figure 8 dReal combines SAT and δ-complete numerical reasoning. .......................................... 19 
Figure 9 Mission goals and properties from Humphrey, et al. ..................................................... 31 
Figure 10 Büchi automaton for "eventually achieve groceries at home" property. ...................... 35 
Figure 11 Automaton for always eventually achieving groceries at home. .................................. 35 
Figure 12 Two-step translation process, STL to SMT. ................................................................. 37 
Figure 13 Verifying ϕSTL ∶=  F0, a1G0, a2ϕb. ........................................................................... 38 
Figure 14 Verifying ϕSTL ∶=  F0, a1G0, a2ϕb. ........................................................................... 39 
Figure 15 Verifying ϕSTL ∶=  G0, a2 → (ϕ1 → F0, a1ϕ2 ) (1). ................................................ 40 
Figure 16 Verifying ϕSTL ∶=  G0, a2 → (ϕ1 → F0, a1ϕ2 ) (2). ................................................ 40 
Figure 17  Verifying  ϕSTL ∶=  G0, a2 → (ϕ1 → F0, a1ϕ2 ) (3). .............................................. 41 
Figure 18 Comparison results. ...................................................................................................... 44 
Figure 19 Run time for "trap" domain with and without backjumping. ....................................... 47 
Figure 21 A safe controller that does achieve goal. ...................................................................... 48 
Figure 20 Safe controller that fails to achieve goal. ..................................................................... 48 
Figure 22 State model. .................................................................................................................. 50 
Figure 23 Controller model. .......................................................................................................... 50 
Figure 24 Uncontrolled process model. ........................................................................................ 50 
Figure 25 Automaton for simple achievement goal. ..................................................................... 50 
Figure 26 Product automaton, constructed on the fly for verification. ......................................... 50 
Figure 27 Plot of throttle input signal. .......................................................................................... 51 
Figure 28 Powertrain operating mode behavior. ........................................................................... 52 
Figure 29 Achieve and hold automaton. ....................................................................................... 59 
Figure 30 Single achievement automaton. .................................................................................... 59 
Figure 31 Repeated achievement automaton. ............................................................................... 60 
Figure 32 Maintenance automaton................................................................................................ 60 
Figure 33 Coverage automaton. .................................................................................................... 61 
Figure 34 Recurrent coverage automaton. .................................................................................... 61 
Figure 35 Sequencing automaton.................................................................................................. 62 
Figure 36 Recurrent sequencing automaton. ................................................................................ 63 
Figure 37 Avoidance automaton. .................................................................................................. 64 
Figure 38 Response automaton. .................................................................................................... 64 
Figure 39 Consistent response automaton. ................................................................................... 65 
 



3 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

1.0 SUMMARY 
In Phase II of HyCIRCA, Smart Information Flow Technology (SIFT) and Carnegie-Mellon 
University (CMU) addressed the challenge of effectively, reliably, and safely tasking 
cooperating teams of autonomous cyber-physical systems (CPSs). SIFT’s Playbook interface 
approach provides high-level, goal-based tasking for multi-agent autonomous missions. SIFT’s 
Cooperative Intelligent Real-time Control Architecture (CIRCA) automatically synthesizes 
correct-by-construction real-time, closed loop discrete controllers for multi-agent autonomous 
missions. To fully realize the potential of CIRCA and Playbook, we must extend them to handle 
CPSes with complex, non-linear dynamics.  Professor Ed Clarke’s group at CMU has developed 
a novel approach to verification of non-linear hybrid systems. CMU’s dReal system uses δ-
complete approximate reasoning methods combined with Satisfiability Modulo Theory (SMT) 
solvers to verify hybrid system models including non-linear constraints, ordinary differential 
equations (ODEs), and discrete dynamics. dReach is a wrapper around dReal enabling dReal to 
solve reachability problems for hybrid automata, a key modeling framework for CPSes.  SIFT 
teamed with CMU to build HyCIRCA, a system to automatically synthesize and verify closed-
loop hybrid controllers based on high-level mission specifications. 
Contributions of the Phase II work include  

(I) new methods for hybrid mission planning based on integrating SHOP2’s Hierarchical 
Task Network (HTN) planning with dReal’s SMT solving to handle complex 
dynamics;  

(II) the addition of complex temporal logic properties as constraints on CIRCA’s 
controller synthesis;  

(III) multiple abstraction level modeling for controller synthesis with three levels of 
abstraction:  
1. unclocked reactive discrete control;  
2. timed automata for hard real time constraints; and  
3. hybrid automata for correct supervisory control of complex cyber-physical 

systems;  
(IV) More expressive model-checking for hybrid systems based on translations from 

Signal Temporal Logic (STL) to SMT. 
  



4 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

2.0 INTRODUCTION 
SIFT’s Phase II HyCIRCA project builds on progress in Phase I. In Phase I, SIFT and CMU 
began integrating CIRCA and dReach/dReal to form the basis of HyCIRCA by developing three 
new techniques that are critical enablers for HyCIRCA. The key techniques proved out in Phase I 
were:  

• New Playbook translation techniques that translate Playbook’s mission goals and 
constraints into formal representations of mission goals, behaviors, and invariants, based 
on temporal logic. HyCIRCA synthesizes controllers guaranteed to satisfy these goals 
and constraints.  

• CIRCA uses multi-abstraction modeling to tame the complexity of controller synthesis, 
generating goal-achieving mission plans in an abstract state space and then verifying their 
correctness using a more accurate timed automaton model. In Phase I of HyCIRCA, we 
extended this approach to handle a third level of detail, a complex hybrid systems model 
that captures the full non-linear dynamics of the domain.  

• Another key to CIRCA’s controller synthesis is exploiting verifier counterexamples, 
through culprit identification, to backjump directly to faulty decisions. Culprit 
identification maps steps in a verifier counterexample into decisions in the controller 
synthesis process. In Phase I we developed culprit identification techniques that extend to 
dReal’s hybrid system counterexamples. 

In Phase II SIFT and CMU extended these capabilities to an end-to-end integrated prototype of 
HyCIRCA, whose architecture is shown in Figure 1. We tested and evaluate HyCIRCA on a 
family of scenarios based on the multi-unmanned aerial vehicle (UAV) firefighting scenario we 
used in Phase I, and additional small test cases that were designed to demonstrate key 
capabilities.  



5 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 
Figure 1 HyCIRCA system architecture. 

In Phase II we also explored additional research challenges identified in Phase I.  Significantly, 
we extended the integration of dReal hybrid automaton modeling from the controller synthesis 
process to the mission planner. We developed optimized SMT encodings of hybrid verification 
and parameter synthesis problems to improve efficiency and further scale HyCIRCA. Notably 
we developed new techniques, based on Monte Carlo Tree Search, for exhibiting sound solutions 
to parameter synthesis problems.  These new techniques were needed to overcome limitations of 
δ-soundness, which was only capable of soundly checking avoidance, not achievement.  We also 
developed new heuristics of SMT solving specific to planning applications.  Meanwhile, CMU 
developed encodings for Signal Temporal Logic (STL) properties into SMT formulas that could 
be checked by dReal.  This overcame another limitation of dReach/dReal, which were previously 
only able to check (un)reachability. We had originally planned to make an incremental variant of 
dReal for checking CIRCA controllers, along the lines that we have used in our work with 
temporal automata.  However, our experience with the high computational cost of dReal and the 
nature of efficient SMT encodings led us to abandon this approach in favor of an approach in 
which the hybrid checker would only be used in a post-check of controllers that had already been 
found to be (approximately) satisfactory by a temporal automaton analysis.  This fit well with 
our approach to checking more complex temporal logic-style goals in the CIRCA controllers. 



6 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 
In this section we discuss our methods, assumptions, and procedures.  The methods and 
assumptions are covered in the three background sections, that cover the technologies that were 
combined, and enhanced, to build HyCIRCA: CIRCA, Playbook, and dReal and dReach.  As we 
introduce these technologies, our assumptions – i.e., the way we modeled systems and the 
environment for high level hybrid control – will also be discussed.  We will end this section by 
introducing the technologies we have developed in the Phase II research:  new methods for 
Mission Planning, Controller Synthesis and Verification, and SMT encodings for Signal 
Temporal Logic. 

3.1 CIRCA Background 
This paper provides a brief overview of the research to date that has focused on CIRCA, the 
Cooperative Intelligent Real-Time Control Architecture. CIRCA is one of the first fully-
implemented Artificial Intelligence (AI) planning and execution architectures that supports hard 
real-time performance guarantees. CIRCA research has explored a broad spectrum of related 
areas including reliable plan execution semantics, adversarial reasoning, heuristic search 
guidance, the link between formal verification and planning, meta-control of deliberation in 
time-constrained domains, probabilistic planning, and multi-agent planning and coordination. In 
this paper we show how these topics tie together and relate to the general problem of building 
embeddable intelligent systems that provide formal, provable properties while retaining the 
complex, unpredictable elements of state-of-the-art intelligent planning and scheduling 
algorithms. 
 

 
Figure 2 CIRCA research timeline. 

CIRCA’s performance guarantees are constructed and enforced by components that are based on 
an underlying theory of reactive plan execution; the theory describes how planned reactions 
interact with an external world (including external sources of change). The CIRCA executive is 
carefully designed and implemented to enforce the semantics of the plan execution theory.  
To set the context, we briefly review the history of CIRCA research. As shown in Figure 2, for 
over 25 years, CIRCA research has explored numerous topics related to real-time intelligent 
control based on theoretically-grounded performance guarantees. Most of the CIRCA 
capabilities described in this paper are still active and available in the current codebase, so we 
describe them in the present tense, even though some were developed more than 25 years ago.  



7 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

3.1.1 “Classic” CIRCA 
In the beginning, we were mainly interested in automatically building real-time control plans to 
control things like robots in dangerous and adversarial environments. The key aspect of such 
domains is the potential for catastrophic failure— if the controlled agent (e.g., a UAV) does not 
respond to some threat (e.g., a surface-to-air missile launch) within a certain time limit, then it 
risks failing completely. So “Classic” CIRCA is designed to reason about such domains and 
automatically build and execute reactions that defeat such threats [1][2].  
CIRCA is an autonomous, self-adaptive control architecture designed specifically for mission-
critical domains. As illustrated in Figure 3, CIRCA combines on-line planning and scheduling 
systems in its AI Subsystem (AIS) with a very simple, very predictable real-time plan executive,  
the Real-Time Subsystem (RTS). CIRCA dynamically creates time-constrained reactive control 
plans -- cyclic loops of Test-Action Pairs (TAPs) -- based on its expectations about future world 
states and its own potential actions. The RTS is responsible for executing TAP plans in a 
completely predictable fashion, so that their execution matches the model used by the AIS. The 
RTS meets this criterion for TAP execution because it has no other function; it simply loops over 
the cyclic schedule of TAPs, testing and executing them repeatedly. Even communication into 
and out of the RTS is encapsulated within TAPs, so that all RTS activity is scheduled explicitly. 
 

 
Figure 3 The CIRCA architecture. 

The Planner and Scheduler, on the other hand, perform the complex, unpredictable reasoning 
required to develop guaranteed control plans, and the performance of these subsystems must not 
interfere with the RTS’ predictable execution. To achieve this isolation, each control plan 
executed on the RTS is designed both to achieve system goals and to ensure system safety 
throughout the range of environmental states that are anticipated during and after the 
accomplishment of the goals. In other words, the RTS keeps the system safe while the Planner 
and Scheduler try to build the next control plan; the planning operation is not constrained to meet 
domain deadlines.  

3.1.2 Theoretical Foundations of CIRCA 
The full details of the underlying CIRCA theory and executive design are beyond the scope of 
this paper but are available in several other publications. An intuitive treatment of the theory and 



8 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

executive design is available in [1], while [3] provides a more formal description in terms of 
timed automata. Here we briefly overview the theory underlying CIRCA’s performance 
guarantees, to set the context for describing the architectural evolution.  
 
Unlike most planning and scheduling systems that build plans as linear or partially-ordered 
action sequences, CIRCA builds plans that are actually reactive controllers, designed 
to sense and react to different world states (situations) within strictly-enforced time bounds. Each 
TAP has a boolean test expression that distinguishes between states where a particular action is 
and is not to be executed, and a timing constraint specifying the maximum time allowable 
between TAP executions. In this context, a “state” is a particular assignment of values to features 
or variables that describe the world and which can be sensed by the CIRCA-controlled agent. A 
sample TAP and an associated TAP schedule loop are shown in Figure 4. This example was 
taken from a domain controlling redundant spacecraft inertial reference units (IRUs).When 
executing a TAP, the RTS evaluates the test expression and, if it returns true, the RTS executes 
the corresponding action. CIRCA’s Scheduler module uses the TAP timing requirements when it 
builds looping TAP schedules.  

 
Figure 4 A sample Test-Action Pair and TAP schedule loop. 

The world model and planning algorithm that the AIS uses to develop TAP plans are detailed in 
[2]. For our purposes, it is sufficient to understand that the model is a modified state/transition 
graph in which states correspond to complete descriptions of the world (modulo some level of 
abstraction), and three types of transitions represent the ways the world can change. Temporal 
transitions represent time and ongoing processes. The timing behavior of a temporal transition is 
related to the rate of the process it represents: for example, the process of activating a 
spacecraft’s inertial reference unit may take some minimum amount of time to complete. Event 
transitions represent occurrences outside the agent’s control, while action transitions represent 
the intentional actions that can be taken by TAPs. Transitions have precondition and 
postcondition expressions that describe how they can link together states in the planned world 
model. CIRCA can control the timing behavior of action transitions by setting the timing 
constraints of the TAPs it builds.  
 
To build plans, CIRCA begins with a set of goal descriptions, a set of initial world states, and a 
set of transition descriptions that detail the types of events, actions, and processes possible in the 
world. Some of the transitions are identified as leading to a distinguished failure state, and 
CIRCA must build a TAP plan that makes failure unreachable while also doing its best to 
achieve the other goal conditions. The basic planning algorithm conducts a fairly standard type 
of heuristically-guided forward search with backtracking, expanding the set of reachable states 
by applying the uncontrollable temporal and event transitions and deciding on an action choice 
for each state. An action can be planned to preempt undesirable transitions (e.g., temporal 
transitions to failure) by constraining the action to execute quickly enough to definitely occur 
before the undesirable transition could possibly occur. This notion of preemption is the core 



9 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

aspect of CIRCA planning that allows the system to reason about real-time performance 
guarantees and system safety.  

3.1.3 CIRCA’s World Model 
Several key aspects of this real-time planning and control problem distinguish Classic CIRCA 
from most AI systems,1 including:  

• Exogenous Events — Unlike most planning systems, CIRCA considers exogenous 
sources of change in its environment, including adversaries. Because the focus is on 
making real-time safety guarantees, all exogenous processes and events are assumed to 
possibly happen at any time they could— in fact, the system takes Murphy’s Law to the 
extreme, expecting that anything bad that can happen will happen, at the worst possible 
time.  

• Time and Preemption — CIRCA tries to build plans that prevent failures through one 
primary mechanism: disabling the preconditions that allow an adversary (or the 
environment) to cause a failure. In addition to handling the logical elements of this sort of 
planning, CIRCA also must ensure that its safety-preserving actions will be taken quickly 
enough. In other words, CIRCA has to ensure that the right action is taken at the right 
time, and this timing may be dictated in part by consideration of the uncontrollable 
environment/adversaries. Unlike most temporal planning models, CIRCA does not label 
state with specific times; instead, it uses a purely relative (and non-Markov) temporal 
model that allows the system to compactly represent continuously-executing control 
loops (e.g., as long as you’re flying, any time someone shoots a radar-guided missile at 
you, deploy chaff and begin evasive maneuvers).  

• Nondeterministic Actions— CIRCA’s action models can be nondeterministic, having 
multiple sets of postconditions. For example, the model of a start-engine action may 
either result in the engine being started or not. Combining the unique CIRCA temporal 
model with the notion of indexical-functional variables [5] and nondeterministic actions 
allows CIRCA to efficiently reason about looping plans (reactive controllers) without 
overly-precise models of system dynamics (e.g., to hammer in a nail, keep hitting it until 
it is flush)[6]. 

• Continuous Embedded Operation — CIRCA is also designed to persist through changing 
missions that cannot be entirely pre-planned, so planning and execution occur 
concurrently and new plans need to be sent down to the RTS and begin execution without 
sacrificing the system’s safety guarantees. Thus CIRCA can reason explicitly about the 
safe transfer of control between two different reactive controllers, implemented by 
different TAP schedules.  

3.1.4 CIRCA and Formal Verification 
CIRCA’s world model is non-Markovian in the sense that the abstracted temporal model means 
that the path of transitions followed to reach a state can affect which transitions are possible out 
of that state, because of delays. For example, preempting a temporal transition to failure from 

                                                 
1 See [4] for an overview of Real-Time AI approaches 



10 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

one state may not disable that failure transition, but instead lead to a new state where it is still 
applicable; in this case the process represented by that temporal transition will have continued to 
run, so the safe time remaining in the new state is reduced. Naturally, this complicates the 
process of reasoning about the temporal model, and motivates our use of formal model checking 
to verify the required preemption properties that are necessary to ensure that a plan is guaranteed 
to avoid failure and keep the system safe [7].  
 
Each time the CIRCA State-Space Planer (SSP) makes a heuristic decision about what action 
should be taken in a state, it uses a verifier to confirm that failure is not reachable and that all the 
planned preemptions will occur as expected. This means that the verifier will be invoked before 
the plan (controller) is complete. At such points we use the verifier as a conservative heuristic by 
treating all unplanned states as if they are “safe havens.” Unplanned states are treated as 
absorbing states of the system, and any verification traces that enter these states are regarded as 
successful. Note that this process converges to a sound and complete verification when the 
controller synthesis process is complete.  
 
Incremental Verification: Our earliest efforts to incorporate model checking verifiers used off-
the-shelf systems such as Kronos [8][9]. However, because those systems are designed for batch 
verification of system designs, they are tremendously inefficient when used in the inner loop of 
the CIRCA planning engine, completely re-building their verification traces as each new action 
decision was made. Therefore, we implemented a CIRCA-Specific Verifier (CSV) that takes 
advantage of several key aspects of the CIRCA planning problem and is fully incremental. The 
CSV system can be orders of magnitude faster than the Kronos-based approach, without 
sacrificing verification accuracy or precision (in fact, the CSV has a more accurate model of the 
executive’s behavior than the atrophied Kronos interface).  
 
Trace-Directed Backjumping: When the verifier finds that the distinguished failure state is 
reachable, it can return a trace illustrating a path to failure. By mapping this failure trace onto the 
search stack choice points, CIRCA can pinpoint the decisions that are responsible for failure, and 
backjump to revise the most recent implicated decision. This backjumping avoids revisiting 
more-recent but irrelevant decisions and can considerably improve the efficiency of the search 
without sacrificing completeness.  

3.1.5 Heuristic Search 
Despite its temporal abstractions and other advantages, the CIRCA state space is highly exponential 
and explodes quickly. Our efforts to manage this complexity have resulted in several research 
contributions:  

• Plan Graphs for non-Closed-World Models — As with all state-space searches, heuristic 
guidance is critical. Fortunately, the early work on plan-graph (or “relaxed plan”) 
heuristics occurred just as CIRCA matured. Based on McDermott’s original work [10], 
we developed our own planning graph heuristic that combined the now-standard 
relaxation/abstraction elements (e.g., ignoring negative interactions) with CIRCA-
specific elements including nondeterministic outcomes and exogenous events.  

• Dynamic Abstraction Planning (DAP) — The intuition behind DAP is simple: in some 
situations, certain world features are important, while in other situations those same 



11 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

features are not important [11]. By representing only the important features, DAP allows 
CIRCA to avoid enumerating many unique but functionally-equivalent states. DAP 
begins with a maximally abstract world model (only distinguishing failure and non-
failure states) and incrementally adds more information to a state’s representation when 
necessary to improve the plan. By automatically selecting the appropriate level of 
abstraction at each step during the planning process, DAP can significantly reduce the 
size of the search space. It should be noted that our development of DAP is an 
independent discovery of the Counter Example Guided Abstraction Refinement (CEGAR) 
technique from model-checking [12]. 

• “Bad Smell” — Even with backjumping, the SSP might waste time repeatedly attempting 
to find a solution for “failed” states. Note that, because CIRCA’s state space model has 
non-Markov temporal semantics, the action choices (including reaction timing) that may 
occur before a failed state can be the cause of an anticipated failure, and it may be 
possible to revise those earlier action decisions in a way that makes a “failed” state no 
longer a failure. So these states should not be completely eliminated from the search for a 
good plan. For this reason, we wanted to control the SSP search so that it would try to 
avoid states that had previously failed. We gave such states a “bad smell,” so that the 
planner would prefer actions that avoided them wherever possible. This mechanism and 
its motivation are roughly analogous to aspects of Tabu search [13].  

3.1.6 TAP Scheduling 
The CIRCA TAP scheduling problem is fairly simple, but it has two unique aspects. First and 
foremost, the tasks being scheduled are automatically generated, so they are not as well-organized and 
optimized as human-generated tasks might be. One simple but confounding result is that TAP timing 
specifications do not fall on simple harmonic frequencies, so the least common multiple (LCM) of the 
TAP periods is generally extremely large. As a result, traditional schedulers that attempt to schedule 
calendars of task executions out to the LCM of the task periods (such as the Maruti scheduler [14]) 
will often be completely unable to deal with TAPs.  
 
The second special aspect of CIRCA’s scheduling problem is that, instead of a period specification, 
each TAP is given to the Scheduler with a specification of the maximum acceptable invocation 
separation. CIRCA specifies invocation separations because synchronous behavior is not necessary 
for the control tasks it plans. These unique constraints led us to develop novel TAP scheduling 
approaches that can significantly outperform simple adaptations of existing periodic-task scheduling 
algorithms [15].  

3.1.7 Meta Control 
The Adaptive Mission Planner (AMP) is responsible for the highest-level control of a CIRCA 
agent, managing the agent’s long-term goals and the agent’s deliberation activity. The agent’s 
long-term mission may be divided into phases, each of which requires its own safety-preserving 
and goal-achieving reactive plan. For example, our UAV scenarios include missions that have 
phases such as ingress, attack, and egress. The ingress phase is distinguished from the attack 
phase both by the characteristics of the flight path (e.g., a nap-of-earth stealthy approach vs. a 
popup maneuver very near a target) and by the expected threats (e.g., the types of missile threats 
present at different altitudes) and goals (e.g., reaching the target zone vs. deploying a weapon). 



12 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

The AMP reasons about long-term goals, problem structures, and approaching deadlines to 
decide what the near-term goals should be, and what problems the near-term reasoning should be 
focused on. Because the phase plans may need to be created under time pressure as a mission 
executes, the AMP can make tradeoffs in which mission goals and safety threats are considered 
in each phase. The AMP’s meta-control functions intelligently allocate the CSM deliberation 
effort to different mission phases, solving the problems with differing levels of safety and goal-
achievement depending on how much deliberation time is available [16][17][18]. 
  
We take an approximate decision-theoretic approach to the CIRCA deliberation scheduling 
problem: decision-theoretic, because we attempt to optimally allocate the CSM’s reasoning time; 
approximate because full formulations of the problem are intractable, and some formulations 
involve an infinite regress. CIRCA’s earliest meta-control used coarse-grain modifications to the 
problems it solved to trade planning time against plan quality [17]. In later work [16], we 
developed a Markov Decision Process (MDP) model of the deliberation scheduling problem, 
controlling which of several possible problems the system should work on at any time. Since the 
MDP may be very large and difficult to solve, we also presented greedy (myopic) 
approximations to the optimal solution. In those experiments we showed that a discounted 
myopic approximation technique provided good performance with very limited computational 
costs. We also compared the performance of the discounted greedy approximation with other 
strawman agents that attempt to manage deliberation using easy-to-compute heuristics.  

3.1.8 Distributed CIRCA 
We have also investigated methods for extending the real-time performance guarantees that single-
agent CIRCA provides to small teams of agents. At the highest level, the AMP’s primary 
responsibility is managing an individual agent’s tasks and coordinating with other agents to achieve 
the overall team mission. The AMP does this by determining what tasks are its responsibilities 
through negotiation with other cooperating agents, and then arranging to have plans (controllers) 
generated to successfully address those tasks during the execution of the mission.  
In this context, a team of CIRCA agents must arrange to have different agents responsible for different 
goals and threats, depending on their available capabilities and resources, e.g., Electronic Counter 
Measure (ECM) equipment and weapons loadout. Using a Contract-Net-like arrangement [19], the 
AMPs submit bids to handle these responsibilities. For each mission phase, the CIRCA agents must 
have plans, or controllers, that are custom-designed (either before or during mission execution) to 
execute the mission phase and make the best possible effort to achieve the goals and defeat the threats 
associated with the phase. When necessary, the agents can build coordinated plans that communicate 
at runtime to ensure real-time coordination across a team of agents. 
 
The most critical form of coordination for real-time safety guarantees is coordinated preemption, in 
which a set of complementary reactions executed by distributed agents detect threats and take action 
to preempt hazardous transitions. Two key issues underlie these “You sense, I’ll act” plans:  

1. Planned communication – The agents must recognize the need to explicitly communicate 
(both sending and receiving) at a rate fast enough to satisfy the coordinated preemption 
timing constraint. In our example, the sensing agent must agree not only to detect the hot 
spot fast enough, but also to tell the other agent about the opportunity quickly enough. 
Likewise, the acting agent must focus sufficient attention on “listening” for a message 



13 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

from the sensing agent at a high enough frequency that it can guarantee to both receive 
the message and act on the opportunity, all before the deadline. 

2. Distributed causal links – The distributed agents must be able to represent and reason 
about changes to their world that are not directly under their control, but which are 
predictable enough to be relied upon for a preemption guarantee. For example, in our 
scenario, the sensing agent must rely on the acting agent to take the appropriate action in 
time to guarantee that the data collection is performed in time. In complementary fashion, 
the acting agent must construct a plan that honors its commitment to the acting agent. If 
one of the agents cannot construct a plan that satisfies its commitments, it must inform 
the others.  

3.1.9 Probabilistic CIRCA 
As we applied CIRCA in increasingly demanding applications, it became apparent that the 
architecture’s theoretically-strong stance on performance guarantees was not flexible enough to deal 
with many real-world domains. In some problems, some action choices expose an agent to more 
possible failure-causing events than preemptive actions can be assured to avoid. More generally, there 
are many domains that are too dangerous to ever ensure 100% safety; in these domains, we’d like the 
system to make tradeoffs between mission performance and safety criteria.  
 
Faced with a domain that cannot be made 100% safe, Classic CIRCA fails to find a plan. And even if 
a 100% safe plan can be found, it may be less than satisfactory. For example, when we built a domain 
model for Classic CIRCA to control an aircraft in which the landing gear could fail, and there was no 
way to repair the landing gear or land safely with it broken, the system quickly constructed a safe plan: 
sit on the runway and don’t take off. Unfortunately, this plan did not achieve any of the non-safety-
related mission goals.  
 
Trading off some degree of safety in order to achieve important mission-related goals requires that 
CIRCA make careful choices about which potential failures it is most safe not to be prepared for. 
Probabilistic CIRCA does this by trimming away enough of the most unlikely transitions to failure 
that the remaining ones can be guaranteed preempted. When developing this variation of CIRCA, we 
developed a variety of techniques for estimating probabilities of reaching states and traversing 
transitions to failure; the non-Markovian aspects of CIRCA in particular make it challenging to assess 
the probabilities of transitions to failure that persist across sequences of states.  
The cumulative probabilities of the transitions that have been trimmed to achieve a subset of the space 
that can be safely controlled indicate the degree of risk that would be incurred should the control plan 
be followed. With this information, informed tradeoffs between risk and mission goals are possible 
[20].  
 
This in turn raises the question of what can or should happen if one of the trimmed transitions actually 
occurs, putting the agent into a state that its control plan isn’t prepared to handle. Our extensions 
consider all of the states just outside of the control envelope and develop tests to detect when such a 
state has been reached. A TAP is formed with this test, where the corresponding action involves 
replacing the current TAP schedule with another one that is intended to at least maintain safety. For 
example, in our aircraft domain, if the landing-gear failure was trimmed from the initial control plan, 
the TAP detects this failure and implements a control plan for circling the airport, with the expectation 
that this will buy time for the AIS to use in formulating an appropriate control plan for recovering 



14 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

from this situation. Alternatively, the appropriate control plan for this contingency might have been 
developed ahead of time, in which case it would be swapped in immediately [21].  
GSMDPs: To capture a more powerful and precise notion of probabilistic guarantees, we began 
exploring a modified CIRCA world model in which the fixed worst-case delays associated with 
transitions were replaced by probability distributions of possible delays. The idea then is to build plans 
that allow a certain level of safety risk, as long as the overall probability of failure remains below 
some specified threshold. It turns out that the resulting model is a Generalized Semi-Markov model, 
and is thus extremely intractable. Even assessing whether a particular controller meets the safety 
threshold is not analytically computable. So first we developed a sampling-based approach to 
probabilistic verification, deriving formal bounds on how many simulated plan executions (samples) 
had to be generated to ensure, with a certain level of confidence, that a plan met the desired safety 
threshold [22]. We then explored various approaches to extending the CIRCA CSM to build plans in 
this probabilistic model, as well as other techniques [23].  
 

 
Figure 5 HyCIRCA architecture. 

3.2 Playbook Background 
We will leverage SIFT’s 15 years of experience developing Playbook-based systems for 
command and control of teams of manned and unmanned platforms [24][25] to provide the 
guiding architecture and user interaction metaphor for HyCIRCA as shown in Figure 5. Playbook 
systems revolve around the concept of “calling a play.”  Calling a play is an efficient way to 
capture a commander’s intent or goals, including constraints and restrictions s/he wishes to 
impose. The Playbook metaphor has been a natural way to effectively task teams since at least 
1927, when Alonzo Stagg collected plays for his University of Chicago Maroons (see Figure 6). 
With the commander’s high-level intent established, automated or mixed-initiative planning 
systems then “fill in the details” of the play, designing a plan to accomplish the goals within the 
specified constraints. Plans can contain hierarchical abstraction: they may specify sub-goals that 
are assigned to lower-level echelons or units, for those units to treat as goals that trigger local, 
context-sensitive planning and execution behaviors. The assignment of lower-level goals to units 



15 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

may be either specified from above, or left unspecified and then accomplished via inter-unit 
negotiation. This hierarchical abstraction supports supervisory control that scales to very large 
organizations of heterogeneous assets.  
We have used our Playbook approach to develop some of the most sophisticated multi-platform 
command and control capabilities ever demonstrated in simulation or live flight. For example, 
for DARPA’s Heterogenous Urban Robot Teams (HURT) program, SIFT personnel developed a 
multi-UAV planning and control system that provided high-level Playbook tasking capabilities 
to multiple human operators commanding teams of up to six military-grade UAVs in Technical 
Readiness Level (TRL) 7 live flight experiments conducted with Marine training forces. Marine 
operators could request high-level Plays such as surveil-area and track- target. Our planning and 
control system automatically allocated platforms to tasks, planned and deconflicted routes, 
actively controlled real-time plan execution including cross-platform coordination, and replanned 
in sub-second time as goals changed and mission contingencies occurred.  

 
Figure 6  1927 playbook for the University of Chicago Maroons. 

 
Under the hood, Playbook systems depend on advanced automated planning systems to trans- 
late the commander’s intentions to an executable mission plan and, in most cases, to synthesize 
low-level controllers for the autonomous members of the commander’s team (see Figure 5). For 
HyCIRCA, we will integrate the HTN planning capabilities of the SHOP2 (Simple Hierarchical 
Ordered Planner, v. 2) planner, the real-time discrete controller synthesis of CIRCA, and the 
hybrid reasoning of dReal to create a Playbook system with the unique ability to accept mission 
specifications expressed in temporal logic and produce autonomous controllers that obey the 
discrete and continuous constraints on the mission. In the following sections, we describe each of 
these components in greater detail.  
 



16 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

HyCIRCA’s top-level Mission Planner (MP) interacts with the operator and the lower-level 
planners to direct the transformation of an incompletely specified play into a set of executable 
controllers. The well-proven SHOP2 HTN planner is the foundation of the HyCIRCA MP.  
SHOP2 is a modern HTN planner with a clean implementation that has performed well in past 
planning competitions. Another advantage of the SHOP2 planning system is that it is available 
under a generous open-source license and is maintained at SourceForge (by SIFT). Like other 
HTN planners, and unlike first-principles planners, SHOP2 searches top-down from a task or set 
of tasks, rather than chaining together primitive actions (see Figure 7). SHOP2 and other HTN 
planners decompose complex tasks into more primitive sub-tasks (methods), thus building a plan 
tree that terminates at leaves corresponding to primitive actions (operators).This method of 
operation has the advantage of providing an easy way to capture standard operating procedures 
(SOPs) and trajectory constraints, ensuring that SHOP2 will produce plans that are executable, 
and avoiding repeated derivations of SOPs from first principles.  

 
Figure 7 HTN planners build plans top-down, by task decomposition. 

The HyCIRCA MP will output a set of tasks to be accomplished by the autonomous vehicles and 
constraints on the tasks. Constraints may include temporal deadlines, resource limits, and 
synchronization requirements. For example, in an aerial firefighting domain the system might 
need different controllers for mission phases such as takeoff, ingress, coordinated monitor and 
extinguish, and landing. Those controllers would be responsible for accomplishing different 
types of goals and handling different types of failures in each phase. The MP builds problem 



17 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

specifications that describe these goals and possible failures, as well as the environment in which 
they are to be accomplished, the controlled-asset’s capabilities, and any agreements about what 
other cooperating assets will be doing. The MP then tasks the CSM and dReal to develop a 
reactive controller to accomplish those goals and handle associated threats. If a controller cannot 
be found that meets all of the constraints, a culprit or counter example will be provided to the 
MP, which may automatically modify the candidate plan or request constraint relaxation from 
the operator.  
 
For HyCIRCA, we will add a significant new capability to for the MP: the ability to specify plan 
requirements as expressions in temporal logic. For example, UAV operators may wish to express 
complex goals that have additional structure such as sequential goals (“do A before B”), 
operating constraints (“approach this fire only from this direction”), etc. In general, operators 
may wish to express goals that require the full complexity of logics such as Linear Temporal 
Logic (LTL) [23]. For HyCIRCA, we extended the MP to handle these more complex goals and 
provide them to the other planners and solvers for verification.  

3.3 dReal and dReach Background 
dReach is a bounded model checker for hybrid systems that uses the dReal SMT solver as a 
subroutine. dReach reads problem instances consisting of a hybrid system and a property, and 
then uses a variety of translations to SMT. The default dReach approach encodes an SMT 
problem for each step bound k ∈ {0,1,...,n}, and solves these until it finds a k where the property 
is not satisfied or it proves the property is satisfied for each value of k. Each SMT problem 
encodes all possible runs on the hybrid system with k jumps and the negation of a safety property. 
If unsatisfiable, the negated safety property is not reachable by a k jump run (i.e., safety is 
guaranteed for I).  
 
dReal is an SMT solver designed for verification of Cyber-Physical Systems (CPSs). CPSs are 
complex systems that combine continuous and discrete behaviors. While the past decades have 
seen the development of highly scalable formal methods for reasoning about discrete systems, 
we are facing the hard problem of handling the continuous components in CPSs and their 
interaction with the discrete part. This is a challenge to the state of the art in both theory and 
practice. On a theoretical level, to handle the continuous components that evolve in time and 
space, we have to reason about computations over the real numbers. This is missing from the 
existing theory in formal verification. In practice, algorithms that have been proposed for 
reasoning about continuous systems mostly rely on very expensive algebraic methods, which do 
not scale to anything more than a few variables due to inherent complexity.  
 
In recent work [26][27] at CMU, we proposed a new framework to meet all these challenges. 
Since the key is to understand continuous systems and computations over the reals, we based our 
theory on the rigorous foundation of computable analysis [28], the study of computability and 
complexity questions of continuous functions over the real numbers. Computable analysis 
provides the theory for understanding numerical algorithms with logical rigor. Note that the use 
of numerical algorithms, which are ubiquitous in engineering, has always been a missing piece in 
formal verification. The reason is that, while numerical algorithms can be highly scalable on a 
wide range of hard problems, they inevitably introduce numerical errors that would render them 
unusable for formal verification, which aims for definitely correct answers [29]. However, we 



18 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

realized that there are in fact ways to control numerical errors in a formal sense and ensure 
correctness of numerically-driven procedures for verification. We accomplish this by 
investigating the notion of numerical perturbations on logic formulas. The traditional decision 
problem asks whether a logic formula is “true” or “false”. Instead, we ask the question of 
whether a formula is “true”, or “its perturbed form is false”. This minor change lets us allow 
imprecision (in the form of a real parameter δ > 0) in the decision algorithms for logic formulas, 
while controlling it to be one-sided and bounded. We call this notion of decisions with errors the 
δ-decision problem and the corresponding algorithms δ-complete. We extensively investigated 
them in [26] and proved key results stating that, while the logic theories over the reals with any 
interesting functions are either highly intractable or undecidable, the δ-decision versions of the 
problems avoid undecidability and have a much lower complexity.  
 
δ-complete decision procedures are exactly what we need to advance the state-of-the-art in 
formal verification of CPSs. These procedures allow us to use the full power of numerical 
methods, while ensuring that numerical errors never cause correctness problems. For instance, in 
bounded model checking, we can translate the safety property of a system to a logical formula, P, 
such that if P is false, then the system is safe. Now, note that in δ-complete decision procedures, 
errors can only occur when the procedures decide a formula is true. Thus, when we conclude a 
system is safe, we are absolutely correct, and no numerical errors can affect the answer. On the 
other hand, when we say a system is unsafe, due to the possible errors in the procedures, we can 
conclude that either the system is indeed unsafe, or that under some perturbations the system 
would become safe. In the latter case, since the perturbations are controlled by the parameter δ 
which can be arbitrarily small, a minor change in the environment would render it unsafe, and 
consequently the system should not pass the verification stage anyway, since it is not robust. In 
this way, we can now take full advantage of scalable numerical methods in our reasoning tools.  



19 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 
Figure 8 dReal combines SAT and δ-complete numerical reasoning. 

We solve such verification problems using decision procedures in the framework of Satisfiability 
Modulo Theories (SMT) [30]. SMT combines powerful Boolean satisfiability solvers with 
specialized theory solvers, such as those needed to reason about numeric constraints. Our dReal 
SMT solver for the hybrid decision problem [31][30] has shown very promising results. As 
shown in Figure 8, dReal implements a tight integration of Boolean Satisfiability (SAT) solving 
and Interval Constraint Propagation (ICP) solving. It translates a hybrid controller and safety 
property into an SMT formulation. It solves the SMT problem by first assigning values to 
Boolean variables in its SAT solver, and then applying ICP to the feasible intervals of numeric 
variables. In ICP, the numeric intervals are split (via branching) and pruned (via constraint 
propagation and ODE pruning) until shown δ-satisfiable or unsatisfiable.  
 
dReal proves safety properties for hybrid automata defined as follows: 
 

 
 

where X ⊆ Rn for some n ∈ N, Q = {q1,...,qm} is a finite set of modes, and the other components 
are finite sets of quantifier-free LRF-formulas. LRF is a logical language over the real numbers, 
where a logical formula φ is of the form: 
  



20 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 
 

dReal translates the hybrid system description H and the reachability problem for an unsafe set 
of states U into a k-step, M-bounded (mode occupation duration) SMT problem ReachH,U(k,M). 
If ReachH,U(k,M) is unsatisfiable, then the system is guaranteed safe (i.e., avoids U). The LRF - 
formula ReachH,U(k,M) is defined as: 

 

 
 

In this encoding, the quantifier superscripts denote the bounds on the quantified variables. The 
SMT formula encodes that each controller trajectory starts with some initial state satisfying 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑞𝑞(𝑥𝑥0����⃗ ) for some q. In each step, it follows flowq(⃗xi,⃗xt

i, t) and makes a continuous flow from 
⃗xi to ⃗xt

i after time t. When H makes a jump from mode q′ to q, it resets variables following 

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑞𝑞′→𝑞𝑞

(𝑥𝑥𝑘𝑘𝑡𝑡����⃗ , �⃗�𝑥𝑘𝑘+1). The auxiliary enforce formulas ensure that picking 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑞𝑞→𝑞𝑞′ 

in the ith 

step enforces picking 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑞𝑞′ in the (i + 1)st  step. The universal quantifier for each continuous 

flow expresses the requirement that for all the time points between the initial and ending time 
point    (t ∈ [0, ti + 1]) in a flow, the continuous variables �⃗�𝑥 must take values that satisfy the 
invariant conditions 𝑖𝑖𝑖𝑖𝑖𝑖𝑞𝑞(�⃗�𝑥).  
 
While the dReal tool is much more scalable than algebraic approaches, its complexity is still high. 
Using its full hybrid reasoning capabilities to synthesize controllers is currently only practical for 
small systems. For HyCIRCA, we address this problem by leveraging the same abstraction 
approach that CIRCA uses already: using the CIRCA CSM to quickly synthesize a timed 
automata controller that works in an approximation of the true hybrid model, and then verifying 
its correctness using the δ-complete decision procedure. As a result, the high-complexity search 
processes are conducted in the abstraction space, and most of the time the full hybrid model will 
simply confirm the abstract results. And, when the dReal verification fails, its counterexamples 
will help efficiently guide the search towards improved mission plans.  
 
Now that we have the necessary preliminaries, we go on to discuss the new developments in 
Phase II: our work on (1) hybrid mission planning, (2) controller synthesis and verification, and 
(3) Signal Temporal Logic encoding for SMT. 



21 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

3.4 Mission Planning 
“Classic” AI planning systems have traditionally been limited to finite, discrete state spaces.  
Later, extensions were made to add numerical parameters (e.g., distance traveled) and time.  
Currently, the cutting edge of research in this area is to add continuous processes to the discrete 
models, making hybrid planners.  In this project, we aimed to extend hybrid planning to more 
complex systems. In this section, we discuss the HyCIRCA approach to planning for complex 
hybrid systems (CHSs). CHSs are systems that have discrete aspects, as in typical planning 
systems, but that also involve the control of continuous processes. Unlike much previous work 
[32][33], we do not limit ourselves to systems with piecewise constant rates of change. Building 
on the dReal SMT solver [31] [30], we concern ourselves with systems whose continuous 
dynamics can be characterized by non-linear ordinary differential equations (ODEs).  
In previous work in this area, we have built a PDDL+-style “first principles” planner [34]. 
However, in many cases, we find that working from first principles is prohibitively expensive. 
Existing CHS planners can address only quite small, artificial planning benchmarks. In our 
current system, HyCIRCA, we have combined the SHOP2 HTN planner [35] with dReal. Using 
SHOP2, with its expressive power and search control, we generate a durative action [36] plan 
that is a tentative witness for a CHS plan, and an SMT problem – a Flow Temporal Network 
(FTN). The FTN is a more accurate formulation of the CHS plan, more accurate in the sense of 
incorporating a more accurate model of the continuous dynamics. This SMT problem is 
presented to dReal, which either solves the problem – generating a more accurate CHS plan – or 
rejects it, causing SHOP2 to backtrack and generate a new plan candidate. To further speed 
HyCIRCA’s problem solving, we preprocess the temporal constraints by applying traditional 
simple temporal network techniques based upon the Floyd-Warshall algorithm. In addition to 
efficiency challenges, previous work on CHS planning has often been unsound. Because of the 
complexity of nonlinear continuous inference, previous systems have not always been able to 
guarantee the soundness of the plans they generated. We have incorporated Monte Carlo Tree 
Search (MCTS) into HyCIRCA in order to generate sound witnesses for our plans.  
 
Descriptions of the major contributions of HyCIRCA are described as follows. First, a 
description of the HyCIRCA hybrid architecture combining SHOP2 and dReal. Second, a formal 
characterization of the Flow Temporal Network problem. Third, a description of the method by 
which SHOP2 generates FTN SMT problems as a side-effect of planning. Fourth, a description 
of our MCTS technique for finding sound FTN plans. Fifth, an empirical study and comparison, 
showing the efficiency gains from the HYCIRCA approach. 
 
HyCIRCA applies SHOP2 to synthesize plans consisting of a totally-ordered sequence of atomic 
actions (instantiated operators). SHOP2 uses an encoding of durative actions (corresponding to 
FTN activities), called multi-timeline processing (MTP) [35]. SHOP2 uses both Boolean and 
numeric state fluents in operator preconditions, add effects, and delete effects. To address more 
expressive hybrid problems, we adopt a generate-and-test approach that compiles candidate plans 
into a FTN. We annotate the SHOP2 method and operator schemas with additional constraints 
that are added to the RFTN if the corresponding methods and operators are used by the plan. 
These include flow statements 𝑓𝑓𝐴𝐴,𝑌𝑌(𝑌𝑌) for each numeric fluent Y upon which an operator A has a 
continuous effect, and temporal constraints T relating the start and end times of an activity (as 
part of the operator definition) and between activities (as part of a method definition).  



22 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

3.4.1 Representation 
The HyCIRCA representation involves specifying a SHOP2 planning instance, extended with 
PDDL2.1 Level 4-like continuous effects, instantaneous numeric effects, and conditions (at-start, at-
end, and overall). A SHOP2 instance includes an initial state, a goal task, a set of methods, and a set of 
operators. We add simple temporal constraints to methods (to relate inter-operator start and end points) 
and to operators (to relate intra-operator start and end points). To operators, we add at-start, at-end, 
and overall conditions, in addition to at-start, at-end, and continuous effects. SHOP2 ignores these 
additions to find a feasible plan. We collect the additions to actions and methods appearing in the plan 
and use them to transform the SHOP2 plan (which may not be valid) into an FTN. If the FTN is 
satisfiable, then the satisfying action start times and durations correspond to a PDDL+ plan. In the 
following, we omit the straightforward translation from an extended SHOP2 plan into a FTN, and 
focus upon the FTN representation.  
 
A Flow Temporal Network (FTN) is a temporal network that defines:  
 

 
 
Time Points: The initial time point X0 is used to constrain the initial values of variables and serve 
as an absolute time reference. Each activity A ∈ A defines a start A⊢ and end A⊣ time point. The 

set of all time points is X ={X0}∪{A⊢,A⊣ | A∈A} where the domain of each timepoint is the 

interval [0,Tmax]. The set T of temporal constraints consists of constraints of the form: a ≤ X−X′ 

≤ b where a and b are constants, and X,X′ ∈ X. T also includes the constraint X0 = 0. 
 
Flow Effects: Each flow variable Y ∈Y is a real variable whose value is bounded by [Ymin,Ymax] 
over the time interval [0,Tmax]. We adopt the semantics of mixed discrete and continuous change 
from the hybrid systems literature [37]. This semantics assumes that discrete change happens 
with zero “rise time”. This means that if a discrete change to Y occurs at time t, it holds two 
values at time t: a before and an after value. We denote by Y(t), Y ⊣(t), and Y ⊢(t) the value of Y 
at, before, and after time t, respectively. In the case of a discrete change at t, Y(t) is undefined; 
and if there is no discrete change, Y(t) = Y ⊣(t) =Y ⊢(t).  
 
Flow variables can change discretely at a time point, and continuously between time points. 
Discrete change can be relative or absolute. For each X ∈ X \X0 and Y ∈ Y , let ∆X (Y) denote 
the relative change due to timepoint X on variable Y , and let ∆ denote this set for all such X and 
Y. For each X ∈ X and Y ∈ Y , let ΘX (Y) denote the absolute change (i.e., assignment) at 



23 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

timepoint X to resource Y, and let Θ denote this set for all such X and Y. For each activity A ∈ A 

and continuous variable Y ∈ Y, let fA,Y (Y) denote the first order ODE defining the continuous 
effect of A upon Y, and let F denote this set for all such A and Y.  
 
We assume that all change is deterministic. To ensure determinism, no time point may effect 
simultaneous relative and absolute change upon a flow variable. If the FTN does not specify a 
relative or absolute change at time point X for flow variable Y, we assume that there is a relative 
change of zero. Similarly, if the FTN does not specify a continuous impact upon Y by an activity 
A, then we assume the impact (rate of change) is zero. By assuming determinism, we ensure that 
if given an assignment to Y(X0) for all Y ∈Y and each X ∈ X, there is a unique value for Y(t), Y 
⊣(t), and Y ⊢(t) for all t ∈ [0, T max], as appropriate.  
 
Flow Conditions: For each time point X ∈ X  there is a point condition fX(Y) in nonlinear real 

arithmetic [38] and we denote by P the set of all such conditions on timepoints. For all A ∈ A, 
there is an interval condition fA⊢⊣(Y) in nonlinear real arithmetic that must hold between A⊢ and 
A⊣, and we denote by I the set of all such conditions.  
 
Solutions to FTN: A solution to an FTN is an assignment to each timepoint variable X ∈ X, and 

initial value of each flow variable Y (X0) for Y ∈Y such that all constraints in ∆, Θ, F, T , P, 
and I are satisfied. 
 
Our formulation of FTN semantics resembles that of the PDDL2.1 Level 4 language (temporal 
actions with continuous effects) for planning. The main difference is that we assume that there is 
no ε-separation. PDDL2.1 uses ε-separation to ensure that all discrete change is “written” to the 
state before it is “read” by separating these by ε time units. We believe that this is an executor 
implementation issue. Our FTN definition does not prohibit problem designers from using this 
semantics, instead it requires that it be explicitly encoded it as part of the FTN.  

3.4.2 FTN to SMT Translation 
We encode an FTN in first order logic using nonlinear real arithmetic functions, the language "ℒℝℱ”, 
and check its satisfiability. A satisfying assignment to the variables encodes a solution to the FTN, and 
an unsatisfiable result proves infeasibility.  
 
One of the primary challenges we face is expressing the simultaneous effects of multiple 
activities upon a variable. Our solution is to encode what we call a happening timeline. The 
happening timeline is characterized by a totally ordered set of time points. Each FTN timepoint 
maps to one happening. Multiple FTN timepoints can map to the same happening. Discrete 
change only occurs at happenings, and continuous change occurs between happenings, in a 
hybrid automaton. Similarly, point and interval conditions are asserted at and between 
happenings, respectively. The notion of a happening gives us the ability to aggregate all active 
activities at and between happenings.  



24 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

Table 1 Encoding notation. 

 
 
Table 1 lists the real variables used in our encoding, along with their nominal bounds. In our encoding, 
we refer to the sets of corresponding variables , where the 
subscripts denote the variables for all happenings between 0 and H. For each set of variables,  
we use a shorthand notation for bounded existential quantification. We omit the bounds, which are 
listed in Table 1 for each variable. We also group variables into sets. For example ∃h0:H is equivalent 
to applying the existential quantifier to each element of h0:H , as in ∃h0 . . . ∃hH .  

Table 2 FTN encoding in 𝓛𝓛ℝ𝓕𝓕. 

 
 
We encode a FTN in ℒℝℱ as listed in Table 2. The encoding is existentially quantified over the 
variables listed above. The clauses state that the following must be satisfied (each bullet corresponds 
to a top-level conjunct in Table 2):  

• temporal constraints are met, 
• point constraints on the initial values of flow variables are met,  
• activity begin and end points coincide with a happening,  
• the initial happening is at absolute time zero,  
• the happenings are ordered,  
• activities that start, are active, or end at a happening impact conditions that must be met and  
• changes that occur at that happening (and up until the next happening, in some cases),  
• conditions (from the previous bullet) must be met at the appropriate time relative to the  

happenings, and  
• changes in flows, both discrete and continuous, must aggregate the impact of activities either 

at or between happenings, respectively. 
 
We abuse the notation for the set of FTN temporal constraints T to also denote the conjunction 
of its elements in the ℒℝℱ encoding. The hapA clauses correspond to:  



25 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 
which ensures that each activity start point maps to a happening, and the end point does not map 
to an earlier happening. For each happening hi, we use the active𝑖𝑖𝐴𝐴 clause to set the indicator 
variables 𝛾𝛾𝑖𝑖𝐴𝐴 to denote that A is active between happenings i and i + 1:  

 
The condition𝑖𝑖𝐴𝐴  clause asserts that activities starting, active, or ending at a happening must have 
their respective conditions satisfied just prior to the happening (start and end) or between it and 
the next happening (active):  

 
 
The var𝑖𝑖𝑌𝑌𝐴𝐴 clause aggregates the discrete (jump𝑖𝑖𝑌𝑌𝐴𝐴 clause) and continuous (flow𝑖𝑖

𝑌𝑌 clause) 
changes for a particular flow variable Y: 

 
 

The jump𝑖𝑖𝑌𝑌𝐴𝐴 clause states that the value of a flow variable after a happening is either the sum of 
all activities with additive effects upon Y or an assignment. The flow𝑖𝑖

𝑌𝑌 clause states how a flow 
variable will change continuously between happenings i and i + 1 by summing the rates of 
change for all active activities.  

3.4.3 Monte Carlo Tree Search (MCTS) in dReal SMT 
We check the satisfiability of the ℒℝℱ  𝑒𝑒ncoding of the FTN with an extension of the dReal SMT 
solver. The primary challenge that we address is that dReal can detect δ-satisfiability or 
unsatisfiability and must be modified to check satisfiability. Checking satisfiability of LRF is 
undecidable, whereas checking the satisfiability of a δ-relaxation is decidable. Intuitively, a δ-



26 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

relaxation numerically perturbs an ℒℝℱ  formula by replacing equalities f(x) = 0 by inequalities 
f(x) ≤ δ. If the original formula is satisfiable it implies the δ-relaxation is satisfiable, but not vice 
versa. In planning, we seek a satisfying assignment to an ℒℝℱ  formula to ensure that specific 
action start times and durations guarantee plan correctness. We add a generalization of its 
constraint search algorithm based upon Monte Carlo Tree Search (MCTS).  
 
dReal: We extend dReal to find satisfying assignments by building upon its approach for Interval 
Constraint Propagation (ICP), called branch and prune [39]. ICP is a type of constraint 
processing that represents a feasible interval for each numeric variable (e.g., [-∞, ∞]). We 
denote by a box, a set of intervals, one for each variable. If the lower and upper bound are 
equivalent for each variable, the box corresponds to a satisfying assignment. A box is 
unsatisfiable if at least one variable in a box has an empty interval. Algorithms like branch and 
prune will select a box and a variable to branch. Branching involves dividing an interval into a 
number of subintervals (most often two) and creating a new box for each. After branching, 
applying the constraints to prune the box often results in smaller intervals. Search algorithms 
prioritize which box to select, which variables to branch, how to branch, and how to prune by 
propagating constraints.  
dReal establishes unsatisfiability (“unsat”) and δ-satisfiability by recursively branching and 
pruning until either all boxes are unsatisfiable, or at least one box is δ-satisfiable. A δ-satisfiable 
box can include intervals that have non-zero width (i.e., the upper and lower bounds are not 
equal). It is sometime possible to extract a satisfying assignment from a box by iteratively 
assigning each variable to a value in its feasible interval. We frame this series of assignments as 
a random playout. 
 
Our MCTS algorithm for ICP called Branch Prune Playout (BPP) follows the pseudocode in 
Algorithm 1. BPP is based upon the UCT algorithm [40]. It uses the select method to find a leaf 
node b of the search tree corresponding to an unexpanded (unbranched) box. It uses the expand 
method to generate a child b′. If b′ is not unsat (i.e., not empty), then the playout method 

constructs a box b′′ that is either empty or a point. If it corresponds to a point (i.e., satisfying 
assignment), then BPP exits with a sat solution. Otherwise, BPP uses the backup method to 
update the value of each search node on the path from b′ up to b0. We omit detailed 
pseudocode for many of the methods referenced by Algorithm 1 because they are commonly 
used in MCTS algorithms and we did not make significant modifications.  
 
The playout method in Algorithm 2 involves assigning each variable i with interval width 
(denoted |b′′[i]|) greater than zero to a value in the interval. After each assignment, the 
algorithm uses the prune method on a box, which applies generalized arc consistency. If the box 
b′′ becomes unsatisfiable, then we update the value for the leaf box b to the average width 
just prior to becoming unsatisfiable. This value rewards playouts that on average have boxes 
with large width prior to becoming unsatisfiable.  
 
BPP is a direct generalization of branch and prune that combines a systematic branching strategy 
with stochastic playouts. As BPP splits boxes, the boxes become smaller. If a problem is 



27 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

satisfiable, then the branching and playouts can focus on regions that are likely to be satisfiable 
when other regions are shown unsatisfiable.  
The algorithms are presented below: 
 

 

3.4.4 Heuristic Improvements 
The SHOP2 plans include a network of temporal constraints as a subset of the set of continuous 
constraints.  To speed up solving in dReal, we extracted temporal constraints from the SHOP2 plan 
and expressed them as a simple temporal network (STN). We then applied a specialized STN 
constraint propagation algorithm (based on the Floyd-Warshall algorithm) to tighten the constraints. 
We then encode the tightened temporal constraints in the dReal formulation before running the SMT 



28 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

solver. Our experimentation showed promising speed-ups, because solving these STN-based problems 
– really an STN augmented with continuous constraints from the non-linear dynamics – can be done 
by simply making a limited number of ordering decisions and then propagating constraints that are 
implied by these decisions. 

3.5 Controller Synthesis and Verification 
In Phase II, the first issue we worked on in controller synthesis was an automated translation 
from the plans of the CIRCA CSM to hybrid automata compatible with dReach.  This enabled 
the use of dReach to check correctness of the CSM-generated controllers.  When descriptions of 
continuous processes were available to refine the CSM models (whose process information is 
limited to durations and did not feature continuous change except in clocks), this permitted more 
accurate checking of the CIRCA controllers. 

3.5.1 Translating CIRCA CSM to dReach 
SIFT have developed a method for automatically translating CIRCA models to dReach models 
(‘.drh’ files). The software module translates CIRCA-generated timed automaton controller 
models into a form suitable for checking by dReach and dReal. Using this translation, dReach 
will be able to check the safety of CIRCA controllers with respect to complex hybrid dynamics. 
In addition to the code to perform the translation itself, SIFT also developed an extension to the 
CIRCA model notation. This extension allows modelers to incorporate additional continuous 
process information, to be used by dReach and dReal, in CIRCA model files.  
 
Note that the dReach input format used in this checking relies on an extension to dReach 
allowing it to accept multiple hybrid automata in its input, instead of only a single automaton, 
and perform the product composition. That extension was developed by SIFT’s Dr. Bryce, on a 
different project, and is being leveraged for HyCIRCA. Dr. Bryce has worked with Dr. Soonho 
Kong, one of the dReal maintainers, to get the code for networks of automata into the dReal3 
release. This enhancement is a key enabler for our work because: (1) handling networks of 
hybrid automata enables STL model-checking by enabling the use of techniques based on 
compiling STL formulas into automata and (2) the models needed to verify CIRCA-generated 
controllers involve composing automata representing a program in the CIRCA real-time 
subsystem (which executes the controllers) and the environment (plant).  
 
In August 2016, we drafted a third version of the CIRCA to dReach translation supporting an 
enhanced version of the hybrid CIRCA modeling language we have called HyCML (hybrid 
CIRCA modeling language). Based on experiments with earlier iterations of the language and 
translation, we have replaced the continuous-exit-conds construct in HyCML with hybrid guards 
and invariants: “continuous-invar” and “continuous-guard.” This settles an ambiguity in the 
interpretation of the HyCML with respect to whether “continuous-exit-conds forces or only 
enables the transition to the next state or mode of the system.  
 
One challenge to HyCML was the difference between the more rigid PDDL+ event semantics 
and CIRCA’s more flexible semantics, which follow those of the timed automata community. In 
the PDDL+ community events follow “must” semantics – they occur as soon as their 
preconditions are satisfied. CIRCA’s model follows “may” semantics – events can occur when 
their preconditions are satisfied but may not. Although CIRCA’s “reliable temporals” follow 



29 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

“must” semantics, they still are not urgent – i.e. they are not obligated to occur as soon as 
possible, only before some upper bound. PDDL+ events, the start or stop of a process, always 
occur as soon as possible.  
 
In this effort, we extended the SMT encoding for networks of automata to use Boolean variables 
for the mode of each automata at each step. It was previously encoded with integers. This sped 
up many of the HSCC benchmarks because more of the consistency checking was done in SAT 
vs ICP.  
 
We integrated dReach hybrid reachability verification with the CIRCA Controller Synthesis 
Module (CSM) search. The dReach checks are made as a second verification step following 
successful verification with the CSM timed automaton verification, in order to minimize the use 
of the very expensive HA checker. Using the previously developed translator for CIRCA models 
to dReach models which we used for hybrid verification in a post-processing step (rather than 
integrated with the search), we created an inner loop translation and verification step. An 
example of the translation to SMT is given in Appendix 0. 
 
SIFT added culprit extraction from dReach reachability models and translation to CSM 
decisions. Culprit extraction maps elements of the verifier counterexamples to decisions in the 
search stack. Culprit extraction supports CSM backjumping – fixing verification failures by 
jumping directly to implicated planning decisions, avoiding expensive and wasteful 
chronological backtracking.  
 
Building on integrated hybrid verification, we developed code to extract the sequence of planner 
states and transitions that lead to failure when the dReach verifier determines that failure is 
reachable. This trajectory through the planner’s state space can then be analyzed to identify the 
set of planner decisions that led to the failure. The planner can then jump to the most recent 
relevant decision, ignoring any more recent decisions that are not involved in the failure.  
To test and demonstrate the advantages of backjumping, we created a “distracted-driver” domain 
related to our prior driving-downtown domain. In the new variant, after choosing to start driving 
downtown, the driver chooses to perform some goal-achieving tasks such as making a phone call 
and listening to a podcast, all while driving downtown. Although these actions achieve 
independent goals of the agent, they do not contribute to the success or failure of the agent’s goal 
to drive downtown. When the planner discovers that this goal cannot be achieved, it should be 
able to immediately jump back to that initial decision (start driving) and retract it.  
 
The distracted-driver domain revealed interesting characteristics of some hybrid domains and 
provoked a new research direction. The interesting twist in this domain is that there is no 
required order or schedule for the distraction activities. This leads to very unconstrained 
variables when the SMT searches for a counterexample solution. Furthermore, large 
counterexamples have many possible, and largely equivalent, assignments to continuous 
variables. The dReal algorithms for interval constraint propagation (ICP), which search for 
possible δ-satisfiable boxes, are often slow in such cases, because the variables are under-
constrained.  
 



30 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

To solve these problems, we developed a generalization of the branch-and-prune ICP algorithm 
which additionally uses Monte Carlo sampling to assign variables. This technique, which is 
based upon Monte Carlo Tree Search (MCTS), not only provides satisfiable assignments (not δ-
satisfiable boxes) but speeds up counterexample generation when the continuous variables are 
under-constrained. In contrast with branch-and-prune, our MCTS based ICP algorithm can find 
satisfying assignments without many costly iterations of branching and pruning. Later, we apply 
this technique to mission planning, as well (see Sections 3.4.3 and 4.1). 
 
We also made miscellaneous related improvements to the CSM.  Integration with dReach 
counterexamples revealed a bug in the existing heuristic in which it rejected possible paths with 
“loops” to goals in which a variable value would need to be established more than once. In fact, 
these are only “loops” over the value of a single variable in a state, not a loop of fully specified 
system states. A fix we developed, tested, and committed to the CIRCA codebase, accompanied 
by a correctness test to prevent regression in the future.  

3.5.2 Extending Goal Verification in CIRCA CSM 
Previously, the CSM had a two-phase verification process: in the first phase, controllers were checked 
for safety (represented as un-reachability of a distinguished failure state) and in the second (optional) 
phase, controllers were checked for goal achievement. This enabled the CSM to exhibit “anytime” 
behavior: as soon as the first controller was generated and checked, it could be safely employed, but 
further planning could be used to improve performance (goal achievement).  
 
Note that “goal verification,” as opposed to safety verification, is not done incrementally. The CSM 
runs its timed automaton (TA) verifier (reachability checker) after the synthesis process. However, 
goal verification is only done when synthesis is complete. This is because if a partial controller design 
– covering only part of the state space – failed to preserve safety – then any extension of the controller 
would also fail the safety property. However, this form of monotonicity does not hold when verifying 
reachability properties: a partial controller that does not reach a goal state (satisfy a reachability 
property) may be extended to a full controller that does.  
 
At first, goal verification did not support the counterexample guided revision that safety verification 
does. Recall that the CSM, when it finds a safety violation, uses the counterexample trace to guide 
backjumping [41]. This was partially because the CSM’s verifier did not produce counterexamples 
with loops (needed to provide counterexamples to reachability goals), and because the code for 
counterexample-to-backjumping translation, or culprit extraction, did not handle counterexamples 
with loops.  
 
We fixed both of these issues early in Phase II: the CSM’s TA verifier has been augmented to find 
looping counterexamples to reachability goals, and the culprit extraction algorithm has been extended 
to handle such counterexamples. The culprit extraction method directly carries over to handling 
counterexamples to reachability goals generated by hybrid verification using dReal.  
 
Improvements still need to be made to the counterexample-guided backjumping process for it to be 
fully useful. Since safety verification is performed incrementally, any counterexample discovered is 
guaranteed to contain the most recent synthesis decision. This limiting assumption is not true in the 
case of goal verification, which is not performed incrementally, but only after a full controller has 



31 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

been synthesized. For this reason, when the CSM simply uses the same backjumping code as before, it 
may wastefully explore parts of the state space that are not involved in the counterexample. To fix this, 
we had to rewrite the backjumping code to avoid states that do not appear in the counterexample trace. 
Examples of the utility of backjumping with goal verification are given in Section 4.2. 
 
In work on STL checking, we investigated work on model-checking Metric Interval Temporal Logic 
(MITL) properties, since procedures for this task can be generalized to STL (see Section 3.6). 
Unfortunately, the existing methods for such model-checking involve a very expensive translation 
from MITL property to automaton. This translation requires the addition of large numbers of new 
clocks, as a function of the time bounds on the properties [42]). Given that HyCIRCA has tight 
resource constraints, we argue that the fact that arbitrary MITL checking is expensive and complex, 
and that specific classes of properties are of greatest relevance, licenses us to choose a useful subset of 
properties – or rather property templates or classes that the CSM will be capable of checking on its 
controllers.  We have focused on property classes for a limited subset of Computation Tree Logic 
(CTL). 
 
This approach was prompted by literature review. We started the table of UAV mission-relevant 
properties from Humphrey, Wolff, and Topcu [43] (see Figure 9).  The properties in this table use the 
“Until” modal operator, U; “Next,”  and also the (derived) “Eventually,” ◊; and “Always,” �. We 
also did a literature review covering related works, including Finucane, et al. [44] and Konrad and 
Cheng [45]. 
 

 
Figure 9 Mission goals and properties from Humphrey, et al. 

We compared the existing goal verification capabilities of the CSM with those in the paper by  
Humphrey, et al., reaching the following conclusions: 

• Safety: In CIRCA. Verifiable safety guarantees have been a CIRCA design goal from the 
very beginning. CIRCA’s incremental model checker checks partial plans during search 
to identify unsafe plans early in the planning process and provide backjumping guidance. 

• (Weak) Reachability: In CIRCA. CIRCA’s model checker identifies reachable states in 
the course of verifying the safety of the plan. Any state encountered by the verifier is 



32 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

reachable in the sense of the CTL “exists” operator, ∃F g, i.e., there exists some path 
from the initial state to the goal state. 

• (Strong) Reachability: In CIRCA. For the HyCIRCA project, we have added a goal 
verification step to the planning process that can decide whether a set of states satisfying 
a goal feature is “always” reachable in the sense of the CTL operator, ∀F g.  

• (Repeated) Reachability: In CIRCA. The goal verification implemented for the HyCIRCA 
project can also verify that there always exists a path to the goal, ∀GF g.  

• Coverage: Not in CIRCA. It will be simple to add this to the CSM by exploding the 
conjunctions into individual checks.  

• Recurrent Coverage: Not in CIRCA. As with coverage, the CSM could be relatively 
easily extended to handle recurrent coverage goals.  

• Sequencing: Not in CIRCA. Sequencing, avoidance, and avoidance with reachability 
would require the CSM to support “until” operators, which it does not yet do.  

• Avoidance: Not in CIRCA.  
• Avoidance with Reachability: Not in CIRCA.  
• Sequencing with Avoidance: Not in CIRCA.  
• Previously: Not in CIRCA. We believe we will not need this. At any rate, “previously” as 

a temporal modality has odd semantics in a continuous time model.  
• Never After: Not in CIRCA. This also requires some thought because of the continuous 

time nature of the CSM models.  
We have also implemented maintenance goals which don’t correspond directly to the goal types 
on this list. Maintenance goals are “positive” safety goals (∀�φ), as opposed to the safety goals 

which the CSM has always supported (∀�¬φ).  
 
While this literature review provided useful guidance, it does not provide exactly the set of 
property classes we need for the CSM.  The reason is that mission goals [4] are not appropriate 
for the controllers of individual platforms that are concerned with correct execution of individual 
parts of missions, and with correct reaction to disturbances. For this reason, we derived from the 
above a reduced set of the most important property classes for CIRCA-style outermost-loop 
control of autonomous platforms operating cooperatively. 
 
To better instruct the development of new verifiable goal types for the CIRCA CSM, we have 
reviewed a previously constructed domain and attempted to extract useful goals and classes of 
goals. During Phase I of HyCIRCA, we developed a CIRCA domain for a fire-fighting airtanker. 
For several problems within this domain, the CIRCA CSM can find plans for the airtanker that 
verifiably satisfy mission goals, such as extinguish-fire (satisfied when a fire has been spotted 
and sufficient retardant has been dumped upon it) and airtanker-landed (satisfied when the 
airtanker returns safely to an airport). The domain also sketches out some ideas for spotter plane 
planning, which suggests goal classes for those cooperative agents, as well.  
 
Recall that the properties needed here differ from the ones developed by Humphrey, et al. 
because the latter were intended to characterize the behavior of the team performing a mission as 
a whole, and that role is played by the mission planner (SHOP2) in the context of HyCIRCA.  
The controllers whose synthesis we focus on here are for individual agents that must perform 



33 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

their role in the mission plan while responding to disturbances. So, for example, these controllers 
do not choose which waypoints to go to – they get them from the mission plan – but they provide 
the behaviors needed for waypoint following, sequencing between waypoints, and reacting to 
disturbances. 
 
Individual platform goals inspired by our firefighting domain include: 

• Return safely to base, an achievement goal (either strong or weak depending on whether 
loss of an autonomous vehicles is considered catastrophic).  

• Extinguish fire, an achievement goal (either strong or weak depending on the urgency of 
extinguishing the fire relative to possible costs). [Airtanker goal]  

• Bounded extinguish fire after notification, a bounded response goal, in which the 
airtanker verifiably attempts (if weak) or guarantees (strong) to put out a fire within T 
time units of notification by a spotter. [Airtanker goal]  

• Notify and receive acknowledgement, which is satisfied if the spotter receives a message 
received acknowledgement from an airtanker which will attempt to extinguish a fire. This 
will be represented as a bounded response goal. [Spotter goal]  

• Overfly after retardant dump, which is satisfied if the spotter flies over the fire zone to 
assess the effects of a retardant dump. This would likely be a weak achievement goal, 
since other opportunities to assess the effects may be available. [Spotter goal]  

• Zone coverage, which is satisfied when the spotter can verify that it will visit each of 
zone where fires may occur during its mission. [Spotter goal]  

• Zone avoidance (or zone deconfliction), which is satisfied if the spotter can guarantee 
that it will not interfere with the activities of an airtanker in a fire zone. [Spotter goal]  

• Zone avoidance with reachability, which is satisfied if the spotter avoids the fire zone 
when the airtanker is in the zone but can verifiably guarantee in a fire zone that it will 
eventually reach the zone to perform after action assessment.   

Focused by our initial efforts to define a useful set of temporal goal properties, we evaluated the 
state of the goal implementation in the CSM. Currently, goals are implemented as goal objects, 
that support methods for verification, which may be either strong (for all paths) or weak (there 
exists a path), in the style of CTL. The current goal implementation is idiosyncratic and 
sometimes unintuitive, particularly when there are multiple goals or goals include conjunctions 
of multiple feature values. For example, if a domain includes multiple, inconsistent single-
achievement goals, the planner’s heuristic may not discover paths to more than one goal. We 
have developed a straightforward approach to feature-encoding single-achievement goals which 
would avoid this difficulty.  
 
Furthermore, the current goal implementation does not directly support disjunctive goals. Once 
again, we have an approach that would overcome this problem, but it must be implemented as a 
post-processing step in domain definition.  
One interesting wrinkle facing the implementation of new goal structures in the CSM is that 
CIRCA’s domain language does not provide a way to instantly establish a feature value 
depending which depends on the multiple other feature values. These are often referred to as 
“rules,” “axioms,” or “derived predicates” in other planning formalisms. In CIRCA we can 



34 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

encode these rules as instantaneous transitions, but there is a cost in search efficiency because the 
planning engine does not understand that these transitions are unavoidable and sometimes 
futilely attempt to “preempt” a deduction during search. As part of our work on HyCIRCA, we 
have added an axiom facility to the CIRCA CSM. 
We have augmented HyCIRCA’s CSM to support the following limited class of properties: 

• The goals are in a limited form of CTL, with only a single, outermost ∀ or ∃ quantifier: 
i.e., all goals are either “strong,” or “weak,” respectively.  

• We are as yet using only qualitative CTL: the temporal modalities do not have time 
bounds. That means that we cannot have, for example, response goals with deadlines. 
(We will work to relax this limitation next).  

• Because the CIRCA controllers operate in dense time, we do not support the “next” 
temporal modality.  

• Temporal formulas are limited to the following set:  

 
…where the φ are temporal formulas, ψ are propositional formulas, and p are ground 
propositions. 
 

As described earlier, the previous implementation of CSM goals (properties) was based on an ad 
hoc set of classes.  With the above set of classes in hand, we moved to implement a translation 
from goal classes to Büchi automata for goal verification.  We implemented the LTL to Büchi 
Automaton translation algorithm of Gerth, et al. [46]  For illustrations, see Section 0, and the 
accompanying illustrations (in Appendix 0). 
 
We modified this representation to adapt it to the logic of the CIRCA CSM, which uses feature 
value assignments (e.g., 𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖 = ℎ𝑓𝑓𝑗𝑗𝑒𝑒), rather than propositions (𝑙𝑙𝑖𝑖(ℎ𝑓𝑓𝑗𝑗𝑒𝑒)).  This enables 
the translation to automata to handle HyCIRCA expressions like:  

 
yielding Büchi automata like the ones in Figure 10 and Figure 11. 



35 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 
Figure 10 Büchi automaton for "eventually achieve groceries at home" property. 

 
Figure 11 Automaton for always eventually achieving groceries at home.  

The final piece in the puzzle was to integrate Büchi automaton construction with the CSM’s 
CIRCA specific verifier.  In a sense, this is simply a straightforward matter of integrating the 
new goal-checking automaton with the other automata used in verifying (so far only for safety) 
the CIRCA controllers.  In practice, this involved a painstaking construction involving the 
synthesis of labels on the jumps in the automata in order to properly synchronize the previously-
existing automata with the Büchi automata for property checking. 

3.6 Signal Temporal Logic Encoding 
CMU led the development of the fundamental Signal Temporal Logic (STL) model-checking 
capability. The key idea is to convert the negation of the invariant – the formula to be verified – 
into a hybrid automaton. Then we reduce the problem to a reachability analysis on a network of 
hybrid automata, where the network contains only two automata: the automaton for negation of 



36 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

the property, and automaton for the hybrid system to be verified. This second hybrid automaton 
may itself be the product of multiple sub-automata for different subsystems. We can then 
perform the reachability analysis on a network of hybrid automata on dReach/dReal, and it 
follows that the hybrid system satisfies the property, if dReach/dReal returns unsat – that is, if it 
determines that the combined automata cannot reach their accepting state(s).  
 
The STL Syntax is given in Table 3.  𝒰𝒰𝐼𝐼 is a timed until, with 𝐼𝐼 a (half-)open or closed interval, 

and the special interval [0,∞) being “untimed interval.” 

Table 3 STL syntax. 

 
 
A key research focus is the translation of formulas with nested temporal modalities into hybrid 
automata. In Phase 1, CMU developed techniques that covered invariants without nested 
modalities. Complications in translation to automata arise through the combination of nested 
modalities and time bounds on temporal logic quantifiers. To correctly translate an STL formula 
into an automaton, we need to enforce the time bound on each mode on the automaton.  
 
SIFT have assisted CMU in formulating STL properties as a network of hybrid automata. Led by 
Dr. Bryce, we fixed several minor bugs in the network-of-automata specification to SMT 
translation process in dReach.  
 
We have also worked on verification of STL formula for hybrid systems. For a hybrid system, S, 
and STL property, φ, this involves two steps:  

1. Translating the STL property φ to a hybrid automaton, A¬φ  
2. Running some bounded reachability analysis on S × A¬φ  

The above two steps are mostly orthogonal. SIFT has extended dReach so that it can compute the 
product of hybrid automata (HA) and perform bounded-time reachability analysis on the product. 
The CMU team worked on STL translation. Any translation that takes into account the full 
semantics of STL is challenging, because of some potential difficulties regarding the 
interpretation of the resulting automata and their compatibility with respect to the interpretation 
of standard hybrid automata.  
We did some literature review on this topic. We found some relevant research papers on 
translating MITL/MTL logic into timed automata (TA) [47][42][48]. STL is an extension of 
MTL/MITL. The main difference is that MITL/MTL is expressed over boolean signals, whereas 



37 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

STL is expressed over real-valued signals. Based on our understanding from literature review, 
we proposed the following steps to translate STL into timed automata (TA). First, we restrict 
ourselves in the first phase to one of the following two STL segments:  

1. G(φ) segment, where φ is a past STL formula with only Historically(0,a), Once(0,a) and 
Since(0,a) temporal operators and 

2. Future segment, where we allow only Always(0,a), Eventually(0,a) and Until(0,a) temporal 
operators. 

The past STL restriction helps by yielding deterministic TA that are easier to follow. In both 
cases, we suggest restricting temporal operators to have only (0, a) bounds because such a 
restriction implies that only one clock is needed per temporal operator, hence again it will be 
simpler to understand the correctness of our construction and to debug it. The extension to 
support all kinds of bounds, such as (a, b), is purely technical if we have a bounded model 
checker for formulas that have only (0, a), because it can readily be extended to the general case.  
In late 2016, based on literature research, CMU began a collaboration with Marcello Bersani  
and colleagues at the Politecnico di Milano.  Dr. Bersani had done work on more practical 
translations of MITL to SMT [49], [49], [50]: the translations described earlier, by Nickovic, 
Maler, and Piterman, were of theoretical interest only as a proof-of-concept. The resulting 
translations were not efficient enough for practical use. The work by Bersani, et al. follows the 
Bounded Model Checking (BMC) approach to verifying MITL formulas. The key idea is to 
encode the MITL formula as an SMT formula and solve it in state-of-the-art SMT solver like Z3 
or dReal. In their work another language CLTLoc (Clocked, Timed Logic) is used as an 
intermediary, because it already has a translation algorithm. This process is illustrated in Figure 
12. 

 
Figure 12 Two-step translation process, STL to SMT. 

The development process, then, moves to a two-stage process: developing an algorithm for the 
translation from STL into CLTLoc and then translating CLTLoc to dReal.  The previous work by 
Bersani translated CLTLoc to formulas for Z3 and was not sufficient to handle the complex 
continuous dynamics in HyCIRCA. 
 
Using this technique, CMU were able to successfully translate an STL formula with nested 
modal operators – F[0,5]G[0,3]x ≤ 0 – and check it with dReal, against several hybrid automata, 
under different sets of initial conditions. The encodings developed through the two-phase 
translation process, however, turned out to yield disappointingly poor performance when 
checked with dReal.  There were a large number of quantified integration expressions that are 
very difficult to check. As a result, CMU revitalized its earlier approach, based on translating 
SMT properties into Büchi automata.  This yields much tighter translations, but not fully 
generalized.  It is not able to handle arbitrary nested temporal quantifiers, but only formulas such 
as 𝐹𝐹𝐹𝐹𝐹𝐹 and 𝐹𝐹(𝐹𝐹1 ⟶ 𝐹𝐹𝐹𝐹2), and variations that exchange F’s and G’s.  Previously, CMU had 
shelved the automaton-based approach because of technical issues concerned with unbounded 
variability. However, the other techniques – including QTSolver, Bersani’s tool  – all rely on an 
assumption of bounded variability. So the automaton-based approach is not obviously unsuitable.  



38 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

Further, even the limited nested quantifications the approach can handle are of pragmatic value.  
CMU tested this method earlier on properties from the Toyota powertrain example (see Section 
4.3), as well as to the Brusselator test problem and some simple UAV problems from SIFT. 
 
CMU developed proofs of correctness for the translation of nested quantifications like 
F[0,a]G[0,b]φ and G[0,a]F[0,b]φ into automata. This provides a useful extension of the verification 
capabilities of dReal.  Previously, dReal has offered only safety checking, being able to verify 
only G[a,b]¬φ.   We give illustrations in Figure 13, Figure 14, Figure 15, Figure 16, and Figure 17. 

 
Figure 13 Verifying 𝝓𝝓𝑺𝑺𝑺𝑺𝑺𝑺 ∶=  𝑭𝑭[𝟎𝟎,𝒂𝒂𝟏𝟏]𝑮𝑮[𝟎𝟎,𝒂𝒂𝟐𝟐]𝝓𝝓𝒃𝒃. 



39 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 
Figure 14 Verifying 𝝓𝝓𝑺𝑺𝑺𝑺𝑺𝑺 ∶=  𝑭𝑭[𝟎𝟎,𝒂𝒂𝟏𝟏]𝑮𝑮[𝟎𝟎,𝒂𝒂𝟐𝟐]𝝓𝝓𝒃𝒃. 

  



40 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 
Figure 15 Verifying 𝝓𝝓𝑺𝑺𝑺𝑺𝑺𝑺 ∶=  𝑮𝑮[𝟎𝟎,𝒂𝒂𝟐𝟐] → (𝝓𝝓𝟏𝟏 → 𝑭𝑭[𝟎𝟎,𝒂𝒂𝟏𝟏]𝝓𝝓𝟐𝟐 ) (1). 

 
Figure 16 Verifying 𝝓𝝓𝑺𝑺𝑺𝑺𝑺𝑺 ∶=  𝑮𝑮[𝟎𝟎,𝒂𝒂𝟐𝟐] → (𝝓𝝓𝟏𝟏 → 𝑭𝑭[𝟎𝟎,𝒂𝒂𝟏𝟏]𝝓𝝓𝟐𝟐 ) (2). 

  



41 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 
Figure 17  Verifying  𝝓𝝓𝑺𝑺𝑺𝑺𝑺𝑺 ∶=  𝑮𝑮[𝟎𝟎,𝒂𝒂𝟐𝟐] → (𝝓𝝓𝟏𝟏 → 𝑭𝑭[𝟎𝟎,𝒂𝒂𝟏𝟏]𝝓𝝓𝟐𝟐 ) (3). 

Experiencing difficulty with checking, because of the problems with integration mentioned 
above, CMU (with Bersani) worked on eliminating quantification in the translation from STL 
into CTLoc.  Specifically, The STL translation into CLTLoc formulas uses point and interval 
evaluation of an atomic proposition formula φA: 
 

 
 

where: 
 

 
The universally quantified formula 𝐻𝐻𝜑𝜑𝐴𝐴 is the bottleneck of this encoding.  Using a technique 
developed by Cimatti, et al., we recursively rewrite these formulas to eliminate the quantifiers.  
If g(x) is differentiable, and �̇�𝑔(𝑥𝑥) is finitely variable: 
 

 
where: 

 



42 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

Consider an example where the system dynamics are  and the STL formula to check is 
.  Here  The translation of STL formulas into 

CLTLoc formulas will contain subformulas like this: 
 

 
 

An example of the step-by-step recursive translation procedure is as follows: 



43 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

4.0 RESULTS AND DISCUSSION 
 
In this section, we describe the results of experiments and tests of various components of the 
HyCIRCA system.  We proceed from top to bottom.  First, we discuss a set of experiments to 
compare the HyCIRCA approach to planning for hybrid systems with the state of the art in the 
field.  Then we move on to discuss developments in controller synthesis in HyCIRCA.  Here we 
discuss tests of a number of new facilities added to the original CIRCA CSM, including 
backjumping for goal verification (in addition to safety verification), checking of safety with 
respect to a complex hybrid model of the plant and disturbances, and generation of controllers 
that satisfy temporal logic specifications more expressive than CIRCA’s original goals of 
achievement.  Finally, we discuss the work done by CMU on extending hybrid system 
verification to a substantial subset of Signal Temporal Logic (STL). 

4.1 Mission Planning Evaluation 
Our experimental design tests the hypothesis that a two-phase approach to hybrid systems 
planning can provide substantial savings by pruning the space that needs to be considered by the 
hybrid SMT solver. To do this, we compare the performance of our HyCIRCA Mission Planner 
(HMP) against other hybrid systems planners: CoLin and SMTPLAN.  We additionally tried to 
check against the DiNO hybrid systems planner, but we had great difficulty building it, and were 
never able to replicate the results that the developers reported in their paper.  We corresponded 
with one of the authors (the supervisor of the student who built the system), but he was unable to 
help us.  For this reason, we ended up comparing with only CoLin and SMTPLAN, but used the 
test domains from all three planners.  
 
We compare the planners’ performance on a variety of hybrid planning domains, some 
previously-existing benchmarks, and some newly created. There is not, as yet, a clearly 
identified set of test problems for evaluating hybrid systems planners: this is partly due to the 
fact that existing planners still differ substantially in their capabilities. For this reason, we have 
adopted benchmarks used in previous hybrid planning papers and added problems that highlight 
HMP’s capabilities. In some cases, we have created families of problems to explore sensitivity of 
performance to particular parameters of interest. The domains fall into the following set of 
classes: (1) Benchmark problems from the SMTPLAN distribution: the car problem and a 
number of variants of the generator problem. (2) Benchmark problems from the DINO 
distribution: DINO is distributed with the above problems, as well as new solar rover and 
powered descent domains. (3) Our own benchmark problems from a UAV firefighting domain.  
 
The car domain is the simplest of the domains: it involves getting to a target location, at rest, 
using step-valued accelerate and decelerate operators. The family of generator problems all 
involve running a generator for a fixed duration, without running out of fuel, requiring that the 
plan schedule refueling actions without overflowing the generator’s fuel tank. In the nonlinear 
variant, the rate of filling accelerates over time, instead of being a constant function of time. The 
Toricelli variant uses a more complex fill rate based on Torricelli’s law.  
 
DINO adds the solar rover and power descent domains. DINO’s approach to hybrid systems 
planning is based on discretization of the continuous mechanics, and the solar rover domains are 



44 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

intended to stress the discretization. The nonlinear variant adds a nonlinear function modeling 
battery charging to the base domain. The powered descent problem also seems aimed to stress 
discretization – it involves using a planetary lander’s thruster to make a gentle landing by 
controlling acceleration due to gravity while simultaneously managing power (as in the solar 
rover domain).  
 
Our firefighting domains are quite simple domains that involve following a course through a set 
of waypoints, while managing fuel usage. For the purposes of this comparison, we have 
simplified this to a one-dimensional problem; as we will see, even this can be difficult for some 
planners.  
 
For each planner/problem pair, we have conducted FIXME trials, and report mean runtime and 
standard deviation. We also test the resulting plans using VAL [51]to verify that they are correct.  
 
Evaluation Domains The linear generator problem involves filling a generator with reserve fuel 
canisters so that it may run for a given period of time. The challenge to the problem instances is 
that plans may simultaneously fill the generator with all but one canister, lest the generator will 
overflow. Successful plans reserve at least one canister until the point where the generator will 
not overflow, and then refuel using the remaining canisters. SHOP2 solves this problem with 
methods that use all but one canister at the start of the generate action, and the final canister at 
the end of the plan (ending at the same instant as the generate action). Results are shown in 
Figure 18. 

 
Figure 18 Comparison results. 

Figure 18 illustrates results comparing HyCIRCA with SMTPlan and CoLin on four planning 
domains.  We compare with SMTPlan on all problem domains, but only CoLin in the Fire 
Fighter domain. CoLin can only address linear change in our simplified Fire Fighter domain.  
The figures report the total time in seconds to generate a plan for increasingly challenging 
problem instances.  The Generator (linear and nonlinear) and Fire Fighter instances require plans 
with more actions as the problems increase in scale.  The Car instances require the same number 
of actions per instance but increase the number of available actions.   The Fire Fighter domain 
increases the number of waypoints an air asset must fly to extinguish a fire, while tracking its 
linearly changing distance from the starting point. 
 
The Generator instances illustrate that HyCIRCA has a small overhead associated with SHOP2 
search, SMT translation, and dReal solving that is not justified in smaller instances.  As the 
instances become larger, the overhead associated with applying HTN planning to select actions is 
well justified.   HyCIRCA outperforms SMTPlan because SMTPlan couples its search over 
action choice and numeric reasoning, where HyCIRCA decouples the two.  The Car instances 
illustrate that the overhead associated with HyCIRCA is not a significant factor even in smaller 
instances, unlike Generator.  The Fire Fighter domain illustrates how HyCIRCA is competitive 



45 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

with CoLin, a purpose-built planner for linear numeric change, and is significantly better than 
SMTPlan.  We believe the primary difficulty in the Fire Fighter domain is how the durative 
actions associated with flying between waypoints have a computed duration.  Planners such as 
SMTPlan that must couple action selection with temporal and resource reasoning may perform 
more search.  Decoupling action selection from action scheduling, in this case, provides a more 
effective organization of the search space. 
 
The overall theme we observe in these experiments is that separating action selection from 
temporal and resource reasoning can have a dramatic impact on scalability. Furthermore, 
structuring action selection search with an HTN planner that applies domain knowledge can be 
particularly helpful. 

4.2 CSM Improvements 

4.2.1 Hybrid model-checking 
As described above, HyCIRCA would initially check its controllers for safety, using its original, 
cheaper, timed automaton model-checker.  If a controller was found to be safe, in the timed 
abstraction of the full hybrid system, the hybrid system would then be translated into a hybrid 
automaton so that dReach and dReal could check it for correctness using the richer model, featuring 
continuous nonlinear processes. 
An example from the UAV firefighting domain is the “low fuel light” scenario.  This checks whether 
a controller that will abort its mission when it receives a low fuel warning can operate safely (i.e., 
never running out of fuel and falling out of the sky).  CIRCA uses a simple, temporal abstraction of 
the problem, in which the abstraction is made that the UAV will have some amount of flight time left 
after the low fuel indicator.  The hybrid model is more accurate, representing the fact that the low fuel 
indicator actually indicates a fixed amount of fuel remains, and that whether or not the UAV lands 
safely is a function of distance, fuel consumption, and fuel remaining. 
 
The model is captured in a lifted form in HyML (the HyCIRCA Markup Langauge).  Some example 
components follow.  First, the controller cannot predict when the low fuel warning will come on (a 
discrete controller, it does not monitor actual fuel level): 
 
(def-event low-fuel-warning-turns-on  
  :documentation "Low fuel warning turns on."  
  :continuous-invar "(fuel >= LOW_FUEL)"  
  :preconds ((low-fuel-warning f)  
             (landed f))  
  :postconds ((low-fuel-warning t))) 
  



46 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 
The temporal abstraction is captured by the following failure process: 
(def-temporal failure-no-reaction-to-low-fuel  
  :documentation "CIRCA fails if it doesn't start emergency return 
                  w/in 20 ticks of low-fuel-warning."  
  :continuous-invar "(fuel >= 0)"  
  :continuous-guard "(fuel <= 0)"  
  :preconds ((low-fuel-warning t)  
             (flight-mode nominal)  
             (landed f))  
  :postconds ((failure t))  
  :min-delay 20) 
 
Note that the minimum delay component captures the temporal abstraction, but the continuous 
invariant and guard provide a more accurate model based on fuel level. 
Finally, we have an expression which captures a simple model of fuel flow: 
 
(def-drh-text define-fuel-flows  
  :text "#define FLIGHT_FLOWS(on) \\  
  d/dt[velx] = 0; \\  
  d/dt[vely] = 0; \\  
  d/dt[posx] = velx; \\  
  d/dt[posy] = vely; \\  
  d/dt[fuel] = - FUEL_ECO * (sqrt(velx^2+vely^2) + 0.1 * on);"  
) 
 
If the CSM can successfully construct a controller, and check it using the temporal abstraction, the 
information in the HyML domain description is used to compose an SMT model suitable for dReach.  
An example of this model is given in Appendix B. 
 

4.2.2 Heuristic improvements 
As we worked to extend the CIRCA CSM, we addressed limitations in the CSM’s overall search 
heuristic, which guides the search for a safe (initially) and goal-achieving (later) controller.  We 
tested these improvements on the “windy grid” domain.   
 
The windy-grid domain involves a simple moving agent trying to reach a goal location in a grid 
by turning in a particular direction and then moving forward, while also subject to “wind” in 
each grid location that may push the agent towards falling off the edge (failure). Because the 
wind and the agent’s actions race against each other, the agent can sometimes actually perform a 
movement action in a state for which it was not intended (a race condition, hazard, or “ghost” 
action). The multi-model verifier’s job is to ensure that failure states are not reachable, even in 
the presence of race conditions; if it is reachable, the planner backtracks to make a different 
choice.  



47 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 
Figure 19 Run time for "trap" domain with and without backjumping. 

The heuristic improvements included making the heuristic better at anticipating race conditions 
that might lead to immediate failure. Earlier versions of the heuristic were also not correctly 
accounting for path-dependent costs and could yield poor decisions that caused a lot of 
backtracking in these problems. We achieved dramatic performance improvements on windy-
grid and other domains, with no degradation in the dozens of other CIRCA test domains. With 
improvements to the path-cost tracking, the control- synthesizer (planner) now solves all scales 
of the windy-grid domain with only a single backtrack (or none at all, if the domain is encoded 
without conditional postconditions).  For example, the solving time for the 9x9 windy-grid 
domain with conditional postconditions improved from 96s to 30s, and without conditional 
postconditions it dropped from 27s to just 3.4s.  

4.2.3 Backjumping 
When it uses counterexample guided backjumping, the CSM can skip over many planning decisions 
that are irrelevant to a failed goal verification (i.e., one that found a counterexample to the desired 
property). If the relevant decision occurred early in the planning process, backjumping can save 
significant time compared to chronological backtracking. To illustrate the potential of this technique, 
we created a demonstration domain in which the planner may make bad decisions early in the 
planning process.  
 
As shown in Figure 19, without backjumping planning time increases super-linearly with the size of a 
goal-maintaining loop of states, but with backjumping enabled, planning time increases by a small 
linear factor of the domain size.  



48 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

  

Figure 21 Safe controller 
that fails to achieve goal. Figure 20 A safe 

controller that does 
achieve goal. 



49 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

4.2.4 Goal Verification 
Figure 21 and Figure 20 show the effects of goal verification. Figure 21 shows the initially 
synthesized, safe controller that fails to achieve the goal. The goal here is to achieve and 
maintain GOAL = True. Note that the controller is guaranteed to safely avoid having the system 
be destroyed by the trap, after it springs.  
 
This scenario demonstrates the difference between strong and weak achievement goals and the 
benefit of culprit-directed backtracking for goal achievement. A “strong” achievement goal in 
traditional CIRCA terminology is equivalent to an “eventually always” goal in LTL terms. 
Similarly, a “weak” goal corresponds to an “eventually” goal (which may be satisfied if the goal 
condition is satisfied for only a finite period). Before the HyCIRCA project CIRCA’s CSM did 
not correctly verify “strong” achievement goals or provide counter-examples to direct 
backtracking for goal verification. The first graph shows the first plan that the CSM’s will 
produce. Its search heuristic eagerly achieves the goal from the initial state, but leaves a “trap” in 
place that will eventually defeat the goal conditions. (The uncontrollable trap has been 
constructed so that it cannot be rectified once the goal has been achieved, a bit like leaving your 
office key at home before driving to work.)  
 
This plan is verifiably safe and does contain a reachable state that satisfies the goal condition so 
it is accepted by the first phase of plan generation. However, the goal verifier recognizes that the 
“always” requirement is not met. It also produces a counter example that the planner can use to 
backtrack over the numerous loops states to the initial state in which the planner made the wrong 
action choice. After backtracking, the CSM produces the plan shown in the second figure, in 
which it uses the “defuse_trap” action to defeat the long-running trap transition before it achieves 
the goal conditions. 
 
As described in Section 3.5.2, we implemented a translation from our limited set of goals to Büchi 
Automata.  The resulting automata are given as a series of figures at the end of the report, see 
Appendix Figure 29 to Figure 39. 
 
Property Checking Here we give an example of the integration of property automata with CIRCA’s 
controller verification.  First, Figure 23 shows a candidate controller, synthesized by CIRCA’s CSM. 
Recall that the CSM generates memoryless and un-clocked controllers. This is for a very simple 
controller whose objective is to bring groceries home but must deal with a mischievous child who can 
steal and eat the groceries. However, once the groceries are delivered to the home, the system’s goal is 
satisfied (even if the kid then eats the groceries). Note that this figure shows the addition of a synthetic 
feature, HAVE-DINNER-GROCERIES T LOC HOME for the conjunction “HAVE-DINNER-
GROCERIES and LOC HOME”, which is added to the state space, and managed by an axiom.  
To verify this controller, the CSM’s model checker composes the multiple models shown in Figure 22 
to Figure 25.   
Figure 22 shows the evolution of the system’s state, which is affected by controlled and uncontrolled 
(disturbance) actions. Figure 23 shows the CIRCA-generated controller, which senses the world and, 
based on sensory inputs, asynchronously interacts with the environment by triggering controlled 
processes. Figure 24 is a model for a single uncontrolled/disturbance action, in this case a child who, 
at arbitrary times, may steal groceries and eat them.  In general, there will be many such disturbance 
models. Figure 25 is the automaton that captures the simple achievement goal of reaching home with 



50 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

groceries (not stolen by the kid).  Finally, Figure 26 is the product automaton, assembled by 
combining the previous sub-models. 
These models show the functioning of the world, as affected by the controlled and uncontrolled 
processes; the controller; an example uncontrolled process; and the automaton that captures the goal. 
The CSM’s verifier computes the product automaton (on the fly), shown in Figure 26 and, in this case, 
determines that there exists a path that leads to the solution. The transition from RTA-State 11 to 
RTA-State 12 is the end of a path to a goal-achieving state. The location vector Location (6 
1 1 2 2) – where each element in the vector is the index of a state in one of the component 
automata – represents the goal satisfying state by the final ”2” in the vector which corresponds to the 
goal-satisfying state in the goal automaton.  
 

SEE ATTACHMENT FIGURE 22 

Figure 22 State model. 
 

SEE ATTACHMENT FIGURE 23 

Figure 23 Controller model. 
 

SEE ATTACHMENT FIGURE 24 

Figure 24 Uncontrolled process model. 
 

SEE ATTACHMENT FIGURE 25 

Figure 25 Automaton for simple achievement goal. 
 

SEE ATTACHMENT FIGURE 26 

Figure 26 Product automaton, constructed on the fly for verification.  



51 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

4.3 STL Verification 
CMU worked on a benchmark problem from the powertrain controller domain [52]. Specifically, 
they worked to verify the throttle component of the controller. The throttle generates an input 
signal for the controller (see Figure 27). This input signal needs to satisfy a specific input profile 
that can be specified as an STL formula:  
 

 
 

The main challenge is to convert an STL formula to a corresponding timed hybrid automaton 
(hybrid automaton with time bounds for dwell in states). In our current approach, we first 
convert the formula to a Büchi automaton (without any time bound). Next, we convert the Büchi 
automaton as a timed automaton by adding clock variables for each temporal operator. The main 
challenge is to compute the correct invariant set for each mode of the timed automaton. As the 
formula for rise and fall is simple, we can, however, compute the invariant set in these cases  
CMU extended their coverage to more of the powertrain controller, specifically to the 
requirement constraint of normal operating mode (See Figure 28):  
 

 

Given the above definitions, the normal operating mode requirement can be expressed as STL  
formulas as follows:  

 

The main challenge in verifying such requirements is the complexity of the formula, in particular 
the nested temporal operators. We have not automated the conversion of such formulas to 
automata, since, to the best of our knowledge, no such algorithm exists. 
 

 
Figure 27 Plot of throttle input signal. 

  



52 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 
Figure 28 Powertrain operating mode behavior. 

 
The CMU team also verified the stability property of the Brusselator[53], [54] model. This model is 
an example of an autocatalytic, oscillating chemical reaction. The dynamics of the model is defined as: 
 

𝑥𝑥1̇ = 𝑓𝑓1(𝑥𝑥) =  1 − (𝑏𝑏 + 1)𝑥𝑥1 + 𝑙𝑙𝑥𝑥12𝑥𝑥2 
𝑥𝑥2̇ = 𝑓𝑓2(𝑥𝑥) =  𝑏𝑏𝑥𝑥1 − 𝑙𝑙𝑥𝑥12𝑥𝑥2 

 
where 𝑥𝑥 = [𝑥𝑥1, 𝑥𝑥2] are state vectors, 𝑓𝑓 = [𝑓𝑓1,𝑓𝑓2] is the vector field and a and b, are model parameters 
with a, b> 0.  
 
The equilibrium state or fixed point (𝑥𝑥𝑒𝑒𝑞𝑞) of a dynamical system is defined as:   𝑓𝑓(𝑥𝑥𝑒𝑒𝑞𝑞) = 0. 
The local asymptotic stability of a system around its fixed point 𝑥𝑥𝑒𝑒𝑞𝑞is defined as: 
𝐼𝐼𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑖𝑖𝑎𝑎 𝛿𝛿 > 0, 𝑠𝑠𝑗𝑗𝑙𝑙ℎ 𝑖𝑖ℎ𝑙𝑙𝑖𝑖 �𝑥𝑥(0) − 𝑥𝑥𝑒𝑒𝑞𝑞� < 𝛿𝛿 → lim

𝑡𝑡→∞
(𝑥𝑥(𝑖𝑖) − 𝑥𝑥𝑒𝑒𝑞𝑞) → 0 

We encoded this stability property as an STL formula as follows:  
𝐹𝐹[0,𝑎𝑎1]𝐹𝐹[0,𝑎𝑎2]��𝑥𝑥(0) − 𝑥𝑥𝑒𝑒𝑞𝑞� < 𝛿𝛿 → |(𝑥𝑥(𝑖𝑖) − 𝑥𝑥𝑒𝑒𝑥𝑥))| < 𝜖𝜖�.  
 
Instead of zero, we consider a small positive number 𝜖𝜖, as we are using bounded-time encoding. We 
then verify this property on dReach/dReal by combining the automaton corresponding to the negation 
of the formula with the Brusselator model. Similarly, we also encoded local Lyapunov stability as : 
𝐹𝐹[0,𝑎𝑎1]𝐹𝐹[0,𝑎𝑎2]��𝑥𝑥(0) − 𝑥𝑥𝑒𝑒𝑞𝑞� < 𝛿𝛿 → |(𝑥𝑥(𝑖𝑖) − 𝑥𝑥𝑒𝑒𝑥𝑥))| < 𝜖𝜖� and then verified it on dReal/dReach.  



53 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

5.0 CONCLUSIONS 
In this report, we have described SIFT and CMU’s work on the Phase II HyCIRCA STTR.  In 
particular, we have reviewed our contributions in the area of hybrid planning; controller 
synthesis; and model-checking verification for complex hybrid systems with non-linear 
continuous dynamics.  The key contributions of this work are the following: (I) new methods for 
hybrid mission planning based on integrating SHOP2’s HTN planning with dReal’s SMT solving 
to handle complex dynamics; (II) the addition of complex temporal logic properties as 
constraints on CIRCA’s controller synthesis; (III) multiple abstraction level modeling for 
controller synthesis with three levels of abstraction: (1) unclocked reactive discrete control; (2) 
timed automata for hard real time constraints; and (3) hybrid automata for correct supervisory 
control of complex cyber-physical systems; (IV) More expressive model-checking for hybrid 
systems based on translations from Signal Temporal Logic (STL) to SMT. 
 
The HyCIRCA Phase II opens a number of areas for further investigation.  Our work in hybrid 
planning, integrating the SHOP2 HTN planner with dReal suggests that carefully staging 
problem solving can provide substantial improvements in efficiency.  It also shows the 
limitations of existing SMT solvers for nonlinear systems: taking advantage of specific features 
of our planning problems was critical to achieving acceptable performance.  Also while our 
approach to generating an abstract mission plan using HTN, and then performing parameter 
synthesis with dReal provided impressive speed-up, there are challenges if the abstract plan does 
not have the downward refinement property – i.e., when the SHOP2 plan is not a conservative 
abstraction and may not have a sound refinement.  Note that our work in controller synthesis 
does not have this problem – if a controller does not have an extension, we have mechanisms to 
efficiently repair it – our counterexample guided backjumping. 
 
The controller synthesis work in HyCIRCA likewise raises a number of interesting questions.  
One is, what is the right relationship between the abstract and base models?  Should the abstract 
model be conservative, coming as close as possible to the downward refinement property, so that 
we avoid the time cost of checking controllers that are unsound?  The cost of such a policy is that 
we may lose many controllers that are sound, but that look unsound in the abstract representation.  
Another question is whether we can perform parameter synthesis for hybrid controllers in the 
CIRCA framework, making them more powerful than the purely discrete, unclocked controllers 
that CIRCA currently generates. 
 
Finally, there are a large number of questions about STL verification for hybrid systems.  Key 
questions include what is the boundary between practical and intractable?  Are there subsets of 
STL that are effectively checkable, even if not actually tractable?  What limitations need to be 
made for STL verification to be practicable, and are there interesting controllers in this space?  
Finally, we considered at one time whether we could use controllability theory to find parts of 
the control space that are provably controllable, even if we cannot generally verify correct 
control behaviors. 
 



54 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

6.0 REFERENCES 
 
[1] D. J. Musliner, “CIRCA: The Cooperative Intelligent Real-Time Control Architecture,” University of 

Michigan, Ann Arbor, 1993. 
[2] D. J. Musliner, E. H. Durfee, and K. G. Shin, “World Modeling for the Dynamic Construction of Real-Time 

Control Plans,” Artif. Intell., vol. 74, no. 1, pp. 83–127, Mar. 1995. 
[3] R. P. Goldman, D. J. Musliner, and M. J. S. Pelican, “Exploiting Implicit Representations in Timed 

Automaton Verification for Controller Synthesis,” 03, pp. 225–238. 
[4] D. J. Musliner, J. A. Hendler, A. K. Agrawala, E. H. Durfee, J. K. Strosnider, and C. J. Paul, “The 

Challenges of Real-Time AI,” IEEE Comput., vol. 28, no. 1, pp. 58–66, Jan. 1995. 
[5] P. E. Agre and D. Chapman, “Pengi: An Implementation of a Theory of Activity,” in Proceedings of the 

Sixth National Conference on Artificial Intelligence - Volume 1, Seattle, Washington, 1987, pp. 268–272. 
[6] D. J. Musliner, “Using Abstraction and Nondeterminism to Plan Reaction Loops,” 1994, pp. 1036–1041. 
[7] D. J. Musliner, R. P. Goldman, and M. J. Pelican, “Using Model Checking to Guarantee Safety in 

Automatically-Synthesized Real-Time Controllers,” in ICRA, 2000. 
[8] S. Yovine, “Kronos: A Verification Tool for Real-Time Systems,” Springer Int. J. Softw. Tools Technol. 

Transf., vol. 1, no. 1/2, Oct. 1997. 
[9] C. Daws, A. Olivero, S. Tripakis, and S. Yovine, “The tool Kronos,” in Hybrid Systems III: Verification and 

Control, 1996, pp. 208–219. 
[10] Drew McDermott, “Using Regression-match graphs to control search   in planning,” Artif. Intell., 

vol. 109, no. 1-- 2, pp. 111–159, Apr. 1999. 
[11] R. P. Goldman, D. J. Musliner, K. D. Krebsbach, and M. S. Boddy, “Dynamic Abstraction Planning,” 1997, 

pp. 680–686. 
[12] E. M. Clarke et al., “Abstraction and Counterexample-Guided Refinement in Model Checking of Hybrid 

Systems.,” Int J Found Comput Sci, vol. 14, no. 4, pp. 583–604, 2003. 
[13] F. Glover and M. Laguna, Tabu Search. Norwell, MA, USA: Kluwer Academic Publishers, 1997. 
[14] S. Levi, S. K. Tripathi, S. D. Carson, and A. K. Agrawala, “The MARUTI Hard Real-time Operating 

System,” SIGOPS Oper Syst Rev, vol. 23, no. 3, pp. 90–105, Jul. 1989. 
[15] D. J. Musliner, “Scheduling Issues Arising from Automated Real-Time Scheduling,” University of Maryland 

Department of Computer Science, CS-TR-3364, UMIACS-TR-94-118, Oct. 1994. 
[16] R. P. Goldman, D. J. Musliner, and K. D. Krebsbach, “Managing Online Self-Adaptation in Real-Time 

Environments,” in Self-Adaptive Software: Applications, pp. 6–23. 
[17] D. J. Musliner, “Imposing Real-Time Constraints on Self-Adaptive Controller Synthesis,” in Lecture Notes 

in Computer Science, SV, 2001. 
[18] R. P. Goldman, D. J. Musliner, and K. D. Krebsbach, “Deliberation Scheduling for Hazardous Missions,” in 

submitted to AAAI’02, 2002. 
[19] R. G. Smith, “The Contract Net Protocol: High-level Communication and Control in a Distributed Problem 

Solver,” TCOMPUTERS, vol. C–29, no. 12, pp. 1104–1113, 1980. 
[20] E. Atkins, E. H. Durfee, and K. G. Shin, “Plan Development Using Local Probabilistic Models,” pp. 49–56. 
[21] E. M. Atkins, E. H. Durfee, and K. G. Shin, “Detecting and Reacting to Unplanned-for World States,” pp. 

571–576. 
[22] H. L. Younes and D. J. Musliner, “Probabilistic Plan Verification through Acceptance Sampling,” in Proc. 

AIPS-02 Workshop on Planning via Model Checking, Toulouse, France, 2002, pp. 81–88. 
[23] H. L. S. Younes, D. J. Musliner, and R. G. Simmons, “A Framework for Planning in Continuous-time 

Stochastic Domains,” in ICAPS, 2003, p. 10. 
[24] C. A. Miller, R. P. Goldman, H. B. Funk, P. Wu, and B. Pate, “A Playbook Approach to Variable Autonomy 

Control: Application for Control of Multiple, Heterogeneous Unmanned Air Vehicles,” in American 
Helicopter Society 60th Annual Forum Proceedings, Baltimore, MD, 2004, pp. 2146–2157. 

[25] C. Miller and R. P. Goldman, “‘Tasking’ Interfaces; Associates that Know Who’s the Boss,” in Proceedings 
of the Fourth USAF/RAF/GAF Conference on Human/Electronic Crewmembers, Kreuth, Germany, 1997. 

[26] S. Gao, J. Avigad, and E. M. Clarke, “Delta-Complete Decision Procedures for Satisfiability over the 
Reals,” in IJCAR, 2012, pp. 286–300. 

[27] S. Gao, M. Ganai, F. Ivancˇic, A. Gupta, S. Sankaranarayanan, and E. M. Clarke, “Integrating ICP and 
LRA Solvers for Deciding Nonlinear Real Arithmetic Problems,” p. 9. 



55 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

[28] V. Brattka, P. Hertling, and K. Weihrauch, “A Tutorial on Computable Analysis,” in New Computational 
Paradigms, S. B. Cooper, B. Löwe, and A. Sorbi, Eds. New York, NY: Springer New York, 2008, pp. 425–
491. 

[29] D. J. Musliner, M. J. S. Pelican, and R. P. Goldman, “Incremental Verification for On-the-Fly Controller 
Synthesis,” Electron. Notes Theor. Comput. Sci., vol. 149, no. 2, Feb. 2006. 

[30] S. Gao, S. Kong, and E. M. Clarke, “dReal: An SMT Solver for Nonlinear Theories of Reals,” in CADE, 
2013, pp. 208–214. 

[31] S. Gao, S. Kong, and E. M. Clarke, “Satisfiability modulo ODEs,” in FMCAD, 2013, pp. 105–112. 
[32] J.-A. Shin and E. Davis, “Processes and continuous change in a SAT-based planner,” Artif. Intell., vol. 

166, no. 1–2, pp. 194–253, Aug. 2005. 
[33] S. Bogomolov, D. Magazzeni, A. Podelski, and M. Wehrle, “Planning as Model Checking in Hybrid 

Domains,” in Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 
2014, Québec City, Québec, Canada., 2014, pp. 2228–2234. 

[34] D. Bryce, “A Happening-Based Encoding for Nonlinear PDDL+ Planning,” p. 8. 
[35] D. Nau et al., “SHOP2: An HTN Planning System,” J. Artif. Intell. Res., vol. 20, pp. 379–404, 2003. 
[36] M. Fox and D. Long, “PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains.,” 

JAIR, vol. 20, pp. 61–124, 2003. 
[37] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani, “Verifying Industrial Hybrid Systems with 

MathSAT,” Electron. Notes Theor. Comput. Sci., vol. 119, no. 2, pp. 17–32, Mar. 2005. 
[38] D. Jovanović and L. de Moura, “Solving Non-linear Arithmetic,” in Automated Reasoning, vol. 7364, B. 

Gramlich, D. Miller, and U. Sattler, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 339–
354. 

[39] P. Van Hentenryck, D. McAllester, and D. Kapur, “Solving polynomial systems using a branch and prune 
approach,” SIAM J. Numer. Anal., vol. 34, no. 2, pp. 797–827, 1997. 

[40] L. Kocsis and C. Szepesvári, “Bandit Based Monte-Carlo Planning,” in Machine Learning: ECML 2006, 
vol. 4212, J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, Eds. Berlin, Heidelberg: Springer Berlin 
Heidelberg, 2006, pp. 282–293. 

[41] J. Gaschnig, “Performance measurement and analysis of certain search   algorithms,” 
Carnegie-Mellon University, CMU-CS-79-124, 1979. 

[42] O. Maler, D. Nickovic, and A. Pnueli, “From MITL to Timed Automata,” in Formal Modeling and Analysis of 
Timed Systems, 2006, pp. 274–289. 

[43] L. R. Humphrey, E. M. Wolff, and U. Topcu, “Formal Specification and Synthesis of Mission Plans for 
Unmanned Aerial Vehicles,” in Proceedings of the AAAI Spring Symposium: Formal Verification and 
Modeling in Human-Machine Systems, 2014, pp. 116–121. 

[44] C. Finucane, G. Jing, and H. Kress-Gazit, “LTLMoP: Experimenting with language, temporal logic and 
robot control,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, 
2010, pp. 1988–1993. 

[45] S. Konrad and B. H. Cheng, “Facilitating the construction of specification pattern-based properties,” in 
Requirements Engineering, 2005. Proceedings. 13th IEEE International Conference on, 2005, pp. 329–
338. 

[46] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, “Simple On-the-fly Automatic Verification of Linear 
Temporal Logic,” in Protocol Specification, Testing and Verification XV, P. Dembiński and M. Średniawa, 
Eds. Boston, MA: Springer US, 1996, pp. 3–18. 

[47] D. Nickovic, “Checking Timed and Hybrid Properties: Theory and Applications,” Theses, Université 
Joseph-Fourier - Grenoble I, 2008. 

[48] D. Ničković and N. Piterman, “From MITL to Deterministic Timed Automata,” in Formal Modeling and 
Analysis of Timed Systems, vol. 6246, K. Chatterjee and T. A. Henzinger, Eds. Berlin, Heidelberg: 
Springer Berlin Heidelberg, 2010, pp. 152–167. 

[49] M. M. Bersani, M. G. Rossi, and P. San Pietro, “On the Satisfiability of Metric Temporal Logics over the 
Reals,” Electron. Commun. EASST, vol. 66, 2013. 

[50] M. M. Bersani, M. G. Rossi, and P. San Pietro, “Deciding Continuous-Time Metric Temporal Logic with 
Counting Modalities,” in Proc. 7th International Workshop on Reachability Problems, Berlin, Heidelberg, 
2013, pp. 70–82. 

[51] R. Howey, D. Long, and M. Fox, “VAL: Automatic Plan Validation, Continuous Effects   and 
Mixed Initiative Planning Using PDDL,” in Proceedings ICTAI, 2004, pp. 294–301. 



56 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

[52] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts, “Powertrain control verification benchmark,” in 
Proceedings of the 17th international conference on Hybrid systems: computation and control - HSCC 
’14, Berlin, Germany, 2014, pp. 253–262. 

[53] R. Singh, “Brusselator as a Reaction Diffusion System,” The Institute of Mathematical Sciences, Chennai, 
India, 2008. 

[54] Brusselator, “Brusselator --- Wikipedia, The Free Encyclopedia,” 2016. 



57 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

ARMOR AFRL Space Vehicle Directorate’s next-generation satellite program on Advanced 
Reconfigurable Modular technology for improved Operational Resilience.  

BMC Bounded Model Checking.  Checking a property for correctness only over a bounded 
scope.  The bounding might be metric (e.g., over a bounded interval of metric time) or discrete 
(e.g., permitting only a bounded number of discrete jumps in the trace of a hybrid automaton), or 
both. 

CBJ Conflict-Directed Backumping. Search method that tracks conflicts (culprits) that cause 
search failure and uses that information to jump back to the most recent relevant decision when 
backtracking, instead of simply the last decision.  

CIRCA Cooperative Intelligent Real-time Control Architecture, SIFT’s architecture for hard 
real-time intelligent control.  

CODE DARPA’s Collaborative Operations in Denied Environments program. 

CPS Cyber-physical system: a system involving both continuous processes and discrete logic 
(typically in control).  

CSM Controller Synthesis Module: the component of CIRCA that automatically generates 
closed-loop, hard real-time controllers for asynchronously-operating systems.  

DBM DARPA’s Distributed Battle Management program. 

dREACH CMU’s front-end for the dREAL SMT solver, allowing users to describe hybrid 
automata in a convenient notation that is automatically translated to dREAL input for 
reachability solving.  

dREAL CMU’s SMT solver for δ-complete reasoning.  

HA Hybrid Automaton. An automaton model combining continuous variables and discrete state 
transitions.  

HAMMER The Highly Autonomous Mission Manager for Event Response architecture for 
satellite autonomy, which SIFT is developing with AFRL funding for the ARMOR program.  

HTN Hierarchical Task Network. An AI planning method; SHOP2 is an HTN planner.  

MCTS Monte Carlo Tree Search. 

MITL Metric Interval Temporal Logic. 



58 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

ODE Ordinary differential equations.  

Playbook SIFT’s approach to supervisory control of automation, based on the notion of 
“calling a play,” in which a vocabulary of actions is shared between automation and users, user 
intent is expanded into a full, executable mission plan through the use of a Hierarchical Task 
Network (HTN) planner, and execution is managed by a smart, plan-aware executive.  

SHOP2 The HTN planner used by HyCIRCA. Originally developed at the University of 
Maryland, the award-winning, open source SHOP2 planner is now maintained by SIFT.  

SIFT Smart Information Flow Technologies is a small research company specializing in 
intelligent automation, verification, and human-centered systems.  

SMT Satisfiability Modulo Theories. A reasoning system that couples one or more special-
purpose theory solvers (e.g., for non-linear equations) with a satisfiability solver.  

STL Signal Temporal Logic: a temporal logic that admits propositions over continuous-valued 
variables.  

TA Timed Automaton. A finite-state automaton enhanced with real-valued clocks used to model 
system dynamics. 

TL Temporal Logic.  



59 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

Appendix A: Büchi Automata for CIRCA CSM goals 

 
Figure 29 Achieve and hold automaton. 

 
Figure 30 Single achievement automaton. 

  



60 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 
Figure 31 Repeated achievement automaton. 

 
Figure 32 Maintenance automaton. 

  



61 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 
Figure 33 Coverage automaton. 

 

 
Figure 34 Recurrent coverage automaton. 

  



62 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 
Figure 35 Sequencing automaton. 

  



63 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 
Figure 36 Recurrent sequencing automaton. 

  



64 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 
Figure 37 Avoidance automaton. 

 

 
Figure 38 Response automaton. 

  



65 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 
Figure 39 Consistent response automaton.



66 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

Appendix B: SMT translation of CIRCA model 
(set-logic QF_NRA_ODE) 
(declare-fun fuel () Real [0.000000, 1000.000000]) 
(declare-fun posx () Real [-20.000000, 20.000000]) 
(declare-fun posy () Real [-20.000000, 20.000000]) 
(declare-fun time_clock1 () Real [0.000000, 1001.000000]) 
(declare-fun time_clock2 () Real [0.000000, 1001.000000]) 
(declare-fun time_clock3 () Real [0.000000, 1001.000000]) 
(declare-fun time_clock4 () Real [0.000000, 1001.000000]) 
(declare-fun velx () Real [-100.000000, 100.000000]) 
(declare-fun vely () Real [-100.000000, 100.000000]) 
(declare-fun fuel_0_0 () Real [0.000000, 1000.000000]) 
(declare-fun fuel_0_t () Real [0.000000, 1000.000000]) 
(declare-fun posx_0_0 () Real [-20.000000, 20.000000]) 
(declare-fun posx_0_t () Real [-20.000000, 20.000000]) 
(declare-fun posy_0_0 () Real [-20.000000, 20.000000]) 
(declare-fun posy_0_t () Real [-20.000000, 20.000000]) 
(declare-fun time_clock1_0_0 () Real [0.000000, 1001.000000]) 
(declare-fun time_clock1_0_t () Real [0.000000, 1001.000000]) 
(declare-fun time_clock2_0_0 () Real [0.000000, 1001.000000]) 
(declare-fun time_clock2_0_t () Real [0.000000, 1001.000000]) 
(declare-fun time_clock3_0_0 () Real [0.000000, 1001.000000]) 
(declare-fun time_clock3_0_t () Real [0.000000, 1001.000000]) 
(declare-fun time_clock4_0_0 () Real [0.000000, 1001.000000]) 
(declare-fun time_clock4_0_t () Real [0.000000, 1001.000000]) 
(declare-fun velx_0_0 () Real [-100.000000, 100.000000]) 
(declare-fun velx_0_t () Real [-100.000000, 100.000000]) 
(declare-fun vely_0_0 () Real [-100.000000, 100.000000]) 
(declare-fun vely_0_t () Real [-100.000000, 100.000000]) 
(declare-fun time_0 () Real [0.000000, 1001.000000]) 
(declare-fun mode_1_0 () Real [1.000000, 21.000000]) 
(declare-fun mode_2_0 () Real [1.000000, 29.000000]) 
(declare-fun mode_3_0 () Real [1.000000, 3.000000]) 
(declare-fun mode_4_0 () Real [1.000000, 3.000000]) 
(declare-fun mode_5_0 () Real [1.000000, 3.000000]) 
(declare-fun mode_6_0 () Real [1.000000, 3.000000]) 
(declare-fun mode_7_0 () Real [1.000000, 3.000000]) 
(declare-fun mode_8_0 () Real [1.000000, 3.000000]) 
(declare-fun mode_9_0 () Real [1.000000, 3.000000]) 
(declare-fun mode_10_0 () Real [1.000000, 3.000000]) 
(declare-fun mode_11_0 () Real [1.000000, 1.000000]) 
(declare-fun mode_12_0 () Real [1.000000, 1.000000]) 
(declare-fun mode_13_0 () Real [1.000000, 1.000000]) 
(declare-fun gamma_rts_model0_1 () Real [0.000000, 1.000000]) 
(declare-fun gamma_clock4_1 () Real [0.000000, 1.000000]) 
(declare-fun gamma_clock3_1 () Real [0.000000, 1.000000]) 
(declare-fun gamma_clock2_1 () Real [0.000000, 1.000000]) 
(declare-fun gamma_rts_model0_1_0_0 () Real [0.000000, 1.000000]) 
(declare-fun gamma_clock4_1_0_0 () Real [0.000000, 1.000000]) 
(declare-fun gamma_clock3_1_0_0 () Real [0.000000, 1.000000]) 
(declare-fun gamma_clock2_1_0_0 () Real [0.000000, 1.000000]) 
  



67 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 
(define-ode flow_0  
  ((= d/dt[time_clock1] (* 1 gamma_rts_model0_1)) 
   (= d/dt[time_clock2] (* 1 gamma_clock2_1))  
   (= d/dt[time_clock3] (* 1 gamma_clock3_1))  
   (= d/dt[time_clock4] (* 1 gamma_clock4_1))  
   (= d/dt[gamma_rts_model0_1] 0)  
   (= d/dt[gamma_clock4_1] 0)  
   (= d/dt[gamma_clock3_1] 0)  
   (= d/dt[gamma_clock2_1] 0) (= d/dt[fuel] 0) (= d/dt[posx] 0)  
   (= d/dt[posy] 0) (= d/dt[velx] 0) (= d/dt[vely] 0))) 
(assert (and (= mode_10_0 1) (= mode_9_0 1) (= mode_8_0 1) (= mode_7_0 1)  
             (= mode_6_0 1) (= mode_5_0 1) (= mode_4_0 1) (= mode_3_0 1)  
             (= mode_1_0 1) (= time_clock1_0_0 0) (= mode_2_0 1)  

 (= fuel_0_0 1000) (= posy_0_0 0) (= posx_0_0 0) (= vely_0_0 0)  
 (= velx_0_0 0) (= mode_11_0 1) (= time_clock4_0_0 0)  
 (= mode_12_0 1) (= time_clock3_0_0 0) (= mode_13_0 1)  
 (= time_clock2_0_0 0))) 

(assert true) 
(assert (and (= [time_clock1_0_t time_clock2_0_t time_clock3_0_t 

     time_clock4_0_t gamma_rts_model0_1_0_0 gamma_clock4_1_0_0       
     gamma_clock3_1_0_0 gamma_clock2_1_0_0 fuel_0_t posx_0_t  
     posy_0_t velx_0_t vely_0_t]  
    (integral 0. time_0  
      [time_clock1_0_0 time_clock2_0_0 time_clock3_0_0  
       time_clock4_0_0 gamma_rts_model0_1_0_0 gamma_clock4_1_0_0  
       gamma_clock3_1_0_0 gamma_clock2_1_0_0 fuel_0_0 posx_0_0 
       posy_0_0 velx_0_0 vely_0_0] flow_0))  
 (=> (= gamma_rts_model0_1_0_0 0)  
     (not (= mode_1_0 1)))  
 (=> (not (= mode_1_0 1))  
     (= gamma_rts_model0_1_0_0 0))  
 (=> (= gamma_rts_model0_1_0_0 1)  
     (= mode_1_0 1))  
 (=> (= mode_1_0 1)  
    (= gamma_rts_model0_1_0_0 1))  
 (=> (= gamma_clock4_1_0_0 0) (not (= mode_11_0 1)))  
 (=> (not (= mode_11_0 1)) (= gamma_clock4_1_0_0 0))  
 (=> (= gamma_clock4_1_0_0 1) (= mode_11_0 1))  
 (=> (= mode_11_0 1) (= gamma_clock4_1_0_0 1))  
 (=> (= gamma_clock3_1_0_0 0) (not (= mode_12_0 1)))  
 (=> (not (= mode_12_0 1)) (= gamma_clock3_1_0_0 0))  
 (=> (= gamma_clock3_1_0_0 1) (= mode_12_0 1))  
 (=> (= mode_12_0 1) (= gamma_clock3_1_0_0 1))  
 (=> (= gamma_clock2_1_0_0 0) (not (= mode_13_0 1)))  
 (=> (not (= mode_13_0 1)) (= gamma_clock2_1_0_0 0))  
 (=> (= gamma_clock2_1_0_0 1) (= mode_13_0 1))  
 (=> (= mode_13_0 1) (= gamma_clock2_1_0_0 1)))) 

(assert false) 
(check-sat) 
(exit) 
 


	LIST OF FIGURES
	1.0 SUMMARY
	2.0 INTRODUCTION
	3.0 METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1 CIRCA Background
	3.1.1 “Classic” CIRCA
	3.1.2 Theoretical Foundations of CIRCA
	3.1.3 CIRCA’s World Model
	3.1.4 CIRCA and Formal Verification
	3.1.5 Heuristic Search
	3.1.6 TAP Scheduling
	3.1.7 Meta Control
	3.1.8 Distributed CIRCA
	3.1.9 Probabilistic CIRCA

	3.2 Playbook Background
	3.3 dReal and dReach Background
	3.4 Mission Planning
	3.4.1 Representation
	3.4.2 FTN to SMT Translation
	3.4.3 Monte Carlo Tree Search (MCTS) in dReal SMT
	3.4.4 Heuristic Improvements

	3.5 Controller Synthesis and Verification
	3.5.1 Translating CIRCA CSM to dReach
	3.5.2 Extending Goal Verification in CIRCA CSM

	3.6 Signal Temporal Logic Encoding

	4.0 RESULTS AND DISCUSSION
	4.1 Mission Planning Evaluation
	4.2 CSM Improvements
	4.2.1 Hybrid model-checking
	4.2.2 Heuristic improvements
	4.2.3 Backjumping
	4.2.4 Goal Verification

	4.3 STL Verification

	5.0 CONCLUSIONS
	6.0 REFERENCES
	LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS
	Appendix A: Büchi Automata for CIRCA CSM goals
	Appendix B: SMT translation of CIRCA model
	SF298.pdf
	REPORT DOCUMENTATION PAGE

	FinalCorrectedCoverSheet.pdf
	AFRL-RQ-WP-TR-2018-0196
	This is a Small Business Technology Transfer (STTR) Phase II report.





home_to_grocery
Type: action-fire
Guard: ()
Resets: NIL
Events: (D_UNC_HAVE_DINNER_GROCERIES_T__LOC_HOME_true D_UNC_kid_eats_groceries F_ACT_home_to_grocery)


home_to_grocery
Type: action-commit
Guard: ()
Resets: NIL
Events: (D_UNC_HAVE_DINNER_GROCERIES_T__LOC_HOME_true D_UNC_kid_eats_groceries C_ACT_home_to_grocery)


buy_dinner_groceries
Type: action-commit
Guard: ()
Resets: NIL
Events: (D_UNC_HAVE_DINNER_GROCERIES_T__LOC_HOME_true D_UNC_kid_eats_groceries C_ACT_buy_dinner_groceries)


RTA-Location 0
INIT
Active clocks: NIL
Invariant: uninitialized


RTA-Location 3
SSP-State 1
Action: buy_dinner_groceries
(FAILURE F)
(HAVE-DINNER-GROCERIES F)
(HAVE-DINNER-GROCERIES_T__LOC_HOME F)
(HAVE-LUNCH-GROCERIES F)
(LOC GROCERY)
Active clocks: NIL
Invariant: ()


buy_dinner_groceries
Type: action-fire
Guard: ()
Resets: NIL
Events: (D_UNC_HAVE_DINNER_GROCERIES_T__LOC_HOME_true D_UNC_kid_eats_groceries F_ACT_buy_dinner_groceries)


RTA-Location 1
SSP-State 0
Action: home_to_grocery
(FAILURE F)
(HAVE-DINNER-GROCERIES F)
(HAVE-DINNER-GROCERIES_T__LOC_HOME F)
(HAVE-LUNCH-GROCERIES F)
(LOC HOME)
Active clocks: NIL
Invariant: ()


home_to_grocery
Type: action-sense
Guard: ()
Resets: NIL
Events: (D_UNC_HAVE_DINNER_GROCERIES_T__LOC_HOME_true D_UNC_kid_eats_groceries S_ACT_home_to_grocery)


buy_dinner_groceries
Type: action-sense
Guard: ()
Resets: NIL
Events: (D_UNC_HAVE_DINNER_GROCERIES_T__LOC_HOME_true D_UNC_kid_eats_groceries S_ACT_buy_dinner_groceries)


grocery_to_home
Type: action-sense
Guard: ()
Resets: NIL
Events: (D_UNC_HAVE_DINNER_GROCERIES_T__LOC_HOME_true D_UNC_kid_eats_groceries S_ACT_grocery_to_home)


kid_eats_groceries
Type: unpreempted-nonvol
Guard: ()
Resets: NIL
Events: (F_UNC_kid_eats_groceries D_UNC_HAVE_DINNER_GROCERIES_T__LOC_HOME_true D_UNC_kid_eats_groceries)


RTA-Location 5
SSP-State 5
Action: no_op
(FAILURE F)
(HAVE-DINNER-GROCERIES T)
(HAVE-DINNER-GROCERIES_T__LOC_HOME F)
(HAVE-LUNCH-GROCERIES F)
(LOC HOME)
Active clocks: NIL
Invariant: ()


RTA-Location 2
FAILURE
Active clocks: NIL
Invariant: uninitialized


grocery_to_home
Type: action-fire
Guard: ()
Resets: NIL
Events: (E_UNC_HAVE_DINNER_GROCERIES_T__LOC_HOME_true E_UNC_kid_eats_groceries F_ACT_grocery_to_home)


HAVE_DINNER_GROCERIES_T__LOC_HOME_true
Type: unpreempted-nonvol
Guard: ()
Resets: NIL
Events: (F_UNC_HAVE_DINNER_GROCERIES_T__LOC_HOME_true D_UNC_HAVE_DINNER_GROCERIES_T__LOC_HOME_true E_UNC_kid_eats_groceries)


kid_eats_groceries
Type: unpreempted-nonvol
Guard: ()
Resets: NIL
Events: (F_UNC_kid_eats_groceries D_UNC_HAVE_DINNER_GROCERIES_T__LOC_HOME_true D_UNC_kid_eats_groceries)


grocery_to_home
Type: action-commit
Guard: ()
Resets: NIL
Events: (D_UNC_HAVE_DINNER_GROCERIES_T__LOC_HOME_true D_UNC_kid_eats_groceries C_ACT_grocery_to_home)


RTA-Location 7
SSP-State 11
Action: no_op
(FAILURE F)
(HAVE-DINNER-GROCERIES F)
(HAVE-DINNER-GROCERIES_T__LOC_HOME T)
(HAVE-LUNCH-GROCERIES F)
(LOC HOME)
Active clocks: NIL
Invariant: ()


RTA-Location 6
SSP-State 8
Action: no_op
(FAILURE F)
(HAVE-DINNER-GROCERIES T)
(HAVE-DINNER-GROCERIES_T__LOC_HOME T)
(HAVE-LUNCH-GROCERIES F)
(LOC HOME)
Active clocks: NIL
Invariant: ()


no_op
Type: action-no-op
Guard: ()
Resets: NIL
Events: (NOOP)


RTA-Location 4
SSP-State 3
Action: grocery_to_home
(FAILURE F)
(HAVE-DINNER-GROCERIES T)
(HAVE-DINNER-GROCERIES_T__LOC_HOME F)
(HAVE-LUNCH-GROCERIES F)
(LOC GROCERY)
Active clocks: NIL
Invariant: ()


no_op
Type: action-no-op
Guard: ()
Resets: NIL
Events: (NOOP)


no_op
Type: action-no-op
Guard: ()
Resets: NIL
Events: (NOOP)


Figure 3: State model, which captures the evolution of the system’s state, as actuated by the
controller and by uncontrolled processes.


Figures 3 to 6. In turn, these models show the functioning of the world, as affected by the controlled
and uncontrolled processes; the controller; an example uncontrolled process; and the automaton
that captures the goal. The CSM’s verifier computes the product automaton (on the fly) and,
in this case, determines that there exists a path that leads to the solution. The transition from
RTA1-State 11 to RTA-State 12 is the end of a path to a goal-achieving state. The location
vector Location (6 1 1 2 2) – where each element in the vector is the index of a state in
one of the component automata – represents the goal satisfying state by the final ”2” in the vector
which corresponds to the goal satisfying state in the goal machine.
3.2 CMU


This month, Prof. Pfenning has been working on extending the temporal type system for con-
current communicating systems to encompass a continuous notion of time. The principal difficulty
is presented by the interaction between modalities talking about all future times or at some fu-
ture time with the modality advancing time continuously. For this reason, he does not yet have a
theorem proving soundness of the system.


1Real-Time Automaton


4








no_op
Guard: ()
Resets: NIL
Events: (NOOP)


RTA-Location 0
initial state
Active clocks: (1)
Invariant: ()


RTA-Location 1
s0
Active clocks: (1)
Invariant: (c(1) <= 0)


init RTS
Guard: ()
Resets: (1)
Events: (INIT)


sensing_grocery_to_home
Guard: ()
Resets: NIL
Events: (S_ACT_grocery_to_home)


ghost_fire_home_to_grocery
Guard: (c(1) >= 0)
Resets: (1)
Events: (GHOST F_ACT_home_to_grocery)


RTA-Location 4
ghost_commit_home_to_grocery
Active clocks: (1)
Invariant: (c(1) <= 2)


RTA-Location 6
sense_buy_dinner_groceries
Active clocks: (1)
Invariant: (c(1) <= 0)


sensing_buy_dinner_groceries
Guard: ()
Resets: NIL
Events: (S_ACT_buy_dinner_groceries)


RTA-Location 9
sense_grocery_to_home
Active clocks: (1)
Invariant: (c(1) <= 0)


RTA-Location 11
waiting
Active clocks: NIL
Invariant: ()


ghost_fire_buy_dinner_groceries
Guard: (c(1) >= 0)
Resets: (1)
Events: (GHOST F_ACT_buy_dinner_groceries)


RTA-Location 7
ghost_commit_buy_dinner_groceries
Active clocks: (1)
Invariant: (c(1) <= 15)


sensing_home_to_grocery
Guard: ()
Resets: NIL
Events: (S_ACT_home_to_grocery)


RTA-Location 3
sense_home_to_grocery
Active clocks: (1)
Invariant: (c(1) <= 0)


ghost_fire_grocery_to_home
Guard: (c(1) >= 0)
Resets: (1)
Events: (GHOST F_ACT_grocery_to_home)


RTA-Location 10
ghost_commit_grocery_to_home
Active clocks: (1)
Invariant: (c(1) <= 2)


commit_grocery_to_home
Guard: (c(1) >= 0)
Resets: (1)
Events: (C_ACT_grocery_to_home)


fire_grocery_to_home
Guard: (c(1) >= 0)
Resets: (1)
Events: (F_ACT_grocery_to_home)


RTA-Location 8
commit_grocery_to_home
Active clocks: (1)
Invariant: (c(1) <= 2)


fire_HAVE_DINNER_GROCERIES_T__LOC_HOME_true
Guard: ()
Resets: (1)
Events: (F_UNC_HAVE_DINNER_GROCERIES_T__LOC_HOME_true)


fire_kid_eats_groceries
Guard: ()
Resets: (1)
Events: (F_UNC_kid_eats_groceries)


fire_buy_dinner_groceries
Guard: (c(1) >= 0)
Resets: (1)
Events: (F_ACT_buy_dinner_groceries)


RTA-Location 5
commit_buy_dinner_groceries
Active clocks: (1)
Invariant: (c(1) <= 15)


commit_buy_dinner_groceries
Guard: (c(1) >= 0)
Resets: (1)
Events: (C_ACT_buy_dinner_groceries)


commit_home_to_grocery
Guard: (c(1) >= 0)
Resets: (1)
Events: (C_ACT_home_to_grocery)


fire_home_to_grocery
Guard: (c(1) >= 0)
Resets: (1)
Events: (F_ACT_home_to_grocery)


RTA-Location 2
commit_home_to_grocery
Active clocks: (1)
Invariant: (c(1) <= 2)


Figure 4: Controller model: the controller senses the world and based on sensory inputs,
asynchronously interacts with the world through controlled processes.


5








disable_kid_eats_groceries
Guard: ()
Resets: (2)
Events: (INIT D_UNC_kid_eats_groceries)


RTA-Location 0
initial
Active clocks: NIL
Invariant: ()


disable_kid_eats_groceries
Guard: ()
Resets: NIL
Events: (D_UNC_kid_eats_groceries)


fire_dis_kid_eats_groceries
Guard: (c(2) >= 5)
Resets: NIL
Events: (F_UNC_kid_eats_groceries D_UNC_kid_eats_groceries)


enable_kid_eats_groceries
Guard: ()
Resets: (2)
Events: (INIT E_UNC_kid_eats_groceries)


enable_kid_eats_groceries
Guard: ()
Resets: NIL
Events: (E_UNC_kid_eats_groceries)


RTA-Location 1
en-kid_eats_groceries
Active clocks: (1)
Invariant: ()


fire_en_kid_eats_groceries
Guard: (c(2) >= 5)
Resets: (2)
Events: (F_UNC_kid_eats_groceries E_UNC_kid_eats_groceries)


RTA-Location 2
d-kid_eats_groceries
Active clocks: NIL
Invariant: ()


disable_kid_eats_groceries
Guard: ()
Resets: NIL
Events: (D_UNC_kid_eats_groceries)


enable_kid_eats_groceries
Guard: ()
Resets: (2)
Events: (E_UNC_kid_eats_groceries)


Figure 5: Uncontrolled process model for the kid who at arbitrary points may steal groceries
and eat them.


6








RTA-Location 0
goal init
Active clocks: NIL
Invariant: ()


init
Guard: ()
Resets: NIL
Events: (INIT)


RTA-Location 1
unachieved
Active clocks: NIL
Invariant: ()


achieve-HAVE-DINNER-GROCERIES_T__LOC_HOME
Guard: ()
Resets: NIL
Events: (F_UNC_HAVE_DINNER_GROCERIES_T__LOC_HOME_true)


still-unachieved-HAVE-DINNER-GROCERIES_T__LOC_HOME
Guard: ()
Resets: NIL
Events: NIL


RTA-Location 2
achieved
Active clocks: NIL
Invariant: ()


achieve-HAVE-DINNER-GROCERIES_T__LOC_HOME
Guard: ()
Resets: NIL
Events: (F_UNC_HAVE_DINNER_GROCERIES_T__LOC_HOME_true)


Figure 6: Automaton capturing the semantics of the simple achievement goal of reaching
home with groceries.


7








RTA-State 0
Location #(0 0 0 0 0) = SSP-State INIT
Invar: ()
Active clocks: NIL
Clock zone:
 <=0  <=0  <=0  <=0
 inf  <=0  inf  inf
 inf  inf  <=0  inf
 inf  inf  inf  <=0


init RTS
Guard: ()
Resets: (3 1 2)
Type: #<STANDARD-CLASS PRODUCT-TRANSITION>


RTA-State 1
Location #(1 1 2 2 1) = SSP-State 0
Invar: (c(1) <= 0)
Active clocks: NIL
Clock zone:
 <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0


home_to_grocery
Guard: ()
Resets: NIL
Type: #<STANDARD-CLASS ACTION-SENSE-PRODUCT-TRANSITION>


RTA-State 2
Location #(1 3 2 2 1) = SSP-State 0
Invar: (c(1) <= 0)
Active clocks: NIL
Clock zone:
 <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0
 inf  <=0  <=0  <=0
 inf  <=0  <=0  <=0


home_to_grocery
Guard: (c(1) >= 0)
Resets: (1)
Type: #<STANDARD-CLASS ACTION-COMMIT-PRODUCT-TRANSITION>


RTA-State 3
Location #(1 2 2 2 1) = SSP-State 0
Invar: (c(1) <= 2)
Active clocks: NIL
Clock zone:
 <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0
 inf  inf  <=0  <=0
 inf  inf  <=0  <=0


home_to_grocery
Guard: (c(1) >= 0)
Resets: (1)
Type: #<STANDARD-CLASS ACTION-FIRE-PRODUCT-TRANSITION>


RTA-State 4
Location #(3 1 2 2 1) = SSP-State 1
Invar: (c(1) <= 0)
Active clocks: NIL
Clock zone:
 <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0
 inf  inf  <=0  <=0
 inf  inf  <=0  <=0


buy_dinner_groceries
Guard: ()
Resets: NIL
Type: #<STANDARD-CLASS ACTION-SENSE-PRODUCT-TRANSITION>


RTA-State 5
Location #(3 6 2 2 1) = SSP-State 1
Invar: (c(1) <= 0)
Active clocks: NIL
Clock zone:
 <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0
 inf  inf  <=0  <=0
 inf  inf  <=0  <=0


buy_dinner_groceries
Guard: (c(1) >= 0)
Resets: (1)
Type: #<STANDARD-CLASS ACTION-COMMIT-PRODUCT-TRANSITION>


RTA-State 6
Location #(3 5 2 2 1) = SSP-State 1
Invar: (c(1) <= 15)
Active clocks: NIL
Clock zone:
 <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0
 inf  inf  <=0  <=0
 inf  inf  <=0  <=0


buy_dinner_groceries
Guard: (c(1) >= 0)
Resets: (1)
Type: #<STANDARD-CLASS ACTION-FIRE-PRODUCT-TRANSITION>


RTA-State 7
Location #(4 1 2 2 1) = SSP-State 3
Invar: (c(1) <= 0)
Active clocks: NIL
Clock zone:
 <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0
 inf  inf  <=0  <=0
 inf  inf  <=0  <=0


grocery_to_home
Guard: ()
Resets: NIL
Type: #<STANDARD-CLASS ACTION-SENSE-PRODUCT-TRANSITION>


RTA-State 8
Location #(4 9 2 2 1) = SSP-State 3
Invar: (c(1) <= 0)
Active clocks: NIL
Clock zone:
 <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0
 inf  inf  <=0  <=0
 inf  inf  <=0  <=0


grocery_to_home
Guard: (c(1) >= 0)
Resets: (1)
Type: #<STANDARD-CLASS ACTION-COMMIT-PRODUCT-TRANSITION>


RTA-State 9
Location #(4 8 2 2 1) = SSP-State 3
Invar: (c(1) <= 2)
Active clocks: NIL
Clock zone:
 <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0
 inf  inf  <=0  <=0
 inf  inf  <=0  <=0


grocery_to_home
Guard: (c(1) >= 0)
Resets: (2 1 3)
Type: #<STANDARD-CLASS ACTION-FIRE-PRODUCT-TRANSITION>


RTA-State 10
Location #(5 1 1 1 1) = SSP-State 5
Invar: (c(3) <= 0 c(1) <= 0)
Active clocks: NIL
Clock zone:
 <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0


no_op
Guard: ()
Resets: NIL
Type: #<STANDARD-CLASS ACTION-NO-OP-PRODUCT-TRANSITION>


RTA-State 11
Location #(5 11 1 1 1) = SSP-State 5
Invar: (c(3) <= 0)
Active clocks: NIL
Clock zone:
 <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0


still-unachieved-HAVE-DINNER-GROCERIES_T__LOC_HOME
Guard: ()
Resets: NIL
Type: #<STANDARD-CLASS PRODUCT-TRANSITION>


HAVE_DINNER_GROCERIES_T__LOC_HOME_true
Guard: (c(3) >= 0)
Resets: (1)
Type: #<STANDARD-CLASS UNPREEMPTED-NONVOL-PRODUCT-TRANSITION>


RTA-State 12
Location #(6 1 1 2 2) = SSP-State 8
Invar: (c(1) <= 0)
Active clocks: NIL
Clock zone:
 <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0


no_op
Guard: ()
Resets: NIL
Type: #<STANDARD-CLASS ACTION-NO-OP-PRODUCT-TRANSITION>


RTA-State 13
Location #(6 11 1 2 2) = SSP-State 8
Invar: ()
Active clocks: NIL
Clock zone:
 <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0
 inf  <=0  <=0  <=0


kid_eats_groceries
Guard: (c(2) >= 5)
Resets: (1)
Type: #<STANDARD-CLASS UNPREEMPTED-NONVOL-PRODUCT-TRANSITION>


RTA-State 14
Location #(7 1 2 2 2) = SSP-State 11
Invar: (c(1) <= 0)
Active clocks: NIL
Clock zone:
  <=0   <=0  <=-5   <=0
  <=0   <=0  <=-5   <=0
  inf   inf   <=0   <=0
  inf   inf   <=0   <=0


no_op
Guard: ()
Resets: NIL
Type: #<STANDARD-CLASS ACTION-NO-OP-PRODUCT-TRANSITION>


RTA-State 15
Location #(7 11 2 2 2) = SSP-State 11
Invar: ()
Active clocks: NIL
Clock zone:
  <=0   <=0  <=-5   <=0
  <=0   <=0  <=-5   <=0
  inf   inf   <=0   <=0
  inf   inf   <=0   <=0


Figure 7: Product automaton, constructed on the fly for verification.


8







