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ABSTRACT 

This work presents some results in the value of information 

calculations for multi-attribute decision making under 

uncertainty. Almost all engineering activities are undertaken in 

the face of uncertainty and a decision that maximizes a suitably 

chosen metric is generally selected. It becomes essential 

sometimes to collect information regarding these uncertainties 

so that better informed decisions can be made. Calculation of the 

worth of this information (VoI) is a difficult task, particularly 

when multiple attributes are present and there exists dependence 

between the random attributes in the same alternative or across 

different alternatives. In this paper, closed-form expressions and 

numerical models for the calculation of VoI are presented. 

Particularly, we derive methods for the general scenario where 

we have to decide over two or more alternatives, each involving 

two or more continuous random attributes exhibiting some level 

of dependence with the others. These reduce or completely 

eliminate the need for conducting simulations or 

approximations, both of which tend to be either computationally 

expensive (such as Monte Carlo), limited in accuracy or both. It 

also allows us to conduct more involved analyses such as 

sensitivity analysis on design parameters and the engineer’s 

preferences in a feasible and even potentially automated way. We 

also introduce “attribute-wise VoI”, which shows that collecting 

information on one or more of the attribute(s) makes sense only 

in specific dependence scenarios and tradeoff relationships 

between attributes. Calculation methods for value of such 

information are also provided. We illustrate our models on 

mobile autonomous system selection decisions. We conclude 

with a discussion on the avenues for future research into the 

optimal mix of a system’s intelligence (autonomy), 

communication and information gathering. 

KEYWORDS: 

Value of information, multi-attribute decisions, uncertainty 

mitigation, risk aversion, autonomous vehicles 

NOMENCLATURE  

𝐶𝐸𝑖   Certainty Equivalent over the ith uncertain 

attribute 

MCS Monte Carlo simulation 

MVN Multivariate normal 

RON Range of negotiability 

𝔼[𝑈(. )]  Expected utility 

𝐸𝑈𝑒𝑟𝑟𝑜𝑟    Allowed error in 𝔼[𝑈(. )] before and after 

                             information when accounting for full VoI 

𝐾 Normalizing parameter to be used in the 

multilinear utility function. 

𝑛𝑔𝑒𝑛  Number of random generations 

𝑅 Risk tolerance used in exponential utility 

functions 

𝑈(. )    Single attribute utility function 

𝑉   Value of information 

𝑉𝑜𝐼𝐴𝑊𝑚𝑖𝑛 Minimum attribute-wise VoI 

𝑓𝑋(𝑥)  Probability density function of a continuous 

random variable 𝑋 

𝑘𝑖    Scaling constant for the ith attribute  

𝑝   Probability of uncertain outcome 

𝜌𝑋𝑌  Correlation between variables X and Y 

𝚺  Positive definite covariance matrix 

|𝚺|  Determinant of 𝚺 

Φ(𝑥, 𝜇, 𝜎) CDF of a Gaussian distribution 

1. INTRODUCTION 

Uncertainty is extremely prevalent in engineering design 

problems where one must select the best design(s) from a set of 

multiple options, each leading to uncertain attribute realizations. 

In this paper, similar to (Malak et al. 2009), we use the term 

“uncertainty” to characterize the “variability” representable 

using a probability density function. There are many techniques 

available in the literature to make design-decisions under 

uncertainty, such as, for robust design (Chen et al., 1996 and 

Mourelatos et al. 2006), reliability based design optimization 

(RBDO) (Choi et al., 2002 and Liang et al., 2007), and flexible 
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design (Cardin et al., 2008 and De Neufville, 2011). Concurrent 

work exists in uncertainty quantification and propagation, where 

extremely limited data is available or the calculation of the 

system outputs is computationally expensive (Nannapaneni et al. 

2016). Clearly, there also exist situations where uncertainty is so 

large that it is best to delay the decision until the uncertainty has 

been resolved to some extent.  

Alternatively, it also becomes possible in many practical 

design problems, to reduce uncertainty through collection of data 

or expert opinions. The immediate concern then becomes: how 

much information should be collected, or when translated into 

cost units, how much money should be expended to collect this 

additional information? This is termed Value of Information 

(VoI) in formal decision analysis. In general, the theory of the 

value of information is based on considering both, the 

uncertainties and its economic impact (Howard 1966). In other 

words, it involves finding the monetary value, additional to the 

cost of a particular design, of reducing or completely eliminating 

the uncertainty associated with it. When it is possible to 

eliminate the uncertainty completely, one can then calculate the 

value of perfect information. This is very beneficial in finding 

the maximum amount that someone should pay to completely 

eliminate the uncertainty associated with a specific option. In 

situations where the uncertainty is only reduced but not 

eliminated, the value of imperfect information is calculated 

(sometimes also called the expected value of sample 

information). This is useful in understanding the worth of 

conducting an experiment or simulation – which because of 

various constraints only reduce uncertainty. Prior efforts have 

looked into the benefits of value of information theory over wide 

range of applications including medical decisions, economics, 

environmental, energy, and increasingly in engineering design. 

Keisler et. al. (2014) gave an in-depth literature review on the 

applications trend of the VoI.  

Decisions involving the selection of the correct vehicle 

platform for a specific application are challenging, particularly 

vehicles that are expected to perform in on-road as well as off-

road environments. That is due to the uncertainties involved in 

the operating conditions and the performance of the vehicles 

themselves. The decision problems become more complex with 

the recent efforts to introduce autonomy and intelligence in these 

vehicles, as additional sources of uncertainty are involved. These 

include issues such as latency and bandwidth for tele-operated 

vehicles, and sensor fusion in fully autonomous vehicles. In this 

paper, we illustrate our models on mobile autonomous system 

selection decisions. 

Generally, the complexity of the problem is a function of 

different attributes such as the number of possible outcomes or 

alternatives, the number of uncertainties and the level of 

knowledge about the characteristics of these uncertainties. For 

example, in medical decision making scenarios, the decision can 

be simply among three choices: treatment, no treatment and test, 

with two deterministic outcomes: healthy and unhealthy with 

their associated probabilities (Felder et al. 2017), while other 

decision problems can involve as many as 10 parameters, each 

with its own probability distribution (Strong et al. 2013 and 

2014). Another example on using VoI in complex problems is 

looking into design decision scenarios of complex systems and 

how VoI can help in simplifying and optimizing the design 

process. For example, Panchal et. al. (2009) proposed a VoI 

metric called “improvement potential” to compare among the 

different design alternatives. VoI studies have also shown 

interesting results on the effect of uncertainty reduction on the 

risk attitude of the decision maker. For example, Wijayaratna and 

Dixit (2016) found that providing information early in a route 

selection scenario, where delay time was the only decision 

attribute, can change the risk attitude of the decision maker, 

particularly reducing risk aversion and also, not necessarily 

causally, the VoI. Another example of complex systems 

engineering problems is geotechnical projects, such as tunnels, 

where uncertainties play a major role in decision making (Xia et 

al. 2017).  

 

 Whereas prior research has looked into the value of 

information methodology and applied it to a range of 

applications, the majority of methods surveyed have utilized 

concepts such as expected value, project value or net benefit of 

an outcome, as opposed to a utility function as the formal 

decision theoretic method requires. For example, Strong et. 

al.(2013 and 2014) found an efficient method to overcome two 

of the drawbacks, high computation cost and inefficiency when 

the input parameters are correlated, for Monte Carlo simulations 

in calculating VoI, the main function for calculating VoI was 

found using the net benefit function. While the approach is 

interesting, the results may not be generalizable to a wider class 

of utility functions and distributions. Using a utility function is 

beneficial in capturing the risk-attitude of the decision maker and 

influences the decision making process including VoI 

calculations.  

Expectedly, using utility functions directly in VoI analysis is 

not without challenges and we address some of them here in this 

work. We also extend the analytical and numerical models to 

problems involving multiple attributes. We provide 𝔼[𝑈(. )] and 

VoI expressions for the multilinear form of the utility function 

for two or more attribute problems. The utility independence 

required for the use of the multilinear form allows us to 

generalize the VoI from results acquired in the single attribute 

cases. While the advancements in computational power and 

methods have allowed the modeling and simulation of 

increasingly complex problems, it is still preferable to be able to 

evaluate analytical or efficient numerical expressions without the 

need for expensive simulations. Furthermore, availability of 

these results also allows us to perform sensitivity analysis in a 

straightforward fashion. 

 

This paper is organized as follows. In the next section, 

expressions and methods for 𝔼[𝑈(. )] and VoI for multi-attribute 

problems are presented. Next we summarize the main factors 

affecting VoI. Results and discussion will follow as we apply the 

new methods on some notional case studies involving selection 

decision between vehicles that exhibit some level of autonomy. 

Last section will present conclusions and propose future work. 
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2. MULTI-ATTRIBUTE MULTI-LINEAR UTILITY 

FUNCTION 

A significant majority of design-decision problems in 

engineering involve multiple attributes. In such cases, one not 

only needs to model single attribute preferences, one must also 

understand the tradeoff behavior of the decision maker in 

addition to their multi-attribute preferences over risk. Arguably, 

they constitute a non-trivial and at the same time essential 

extensions of single attribute decision problems.  

We use the multilinear, multiattribute utility function 

(MAUF) (Keeney 1977 and Keeney and Raiffa 1993) to measure 

utility over multiple attributes and we provide a brief overview 

here. This choice is incident from the tractability the function 

affords in modeling the preferences of a decision maker, in 

addition to being flexible enough to model a wide range of 

preference structures. One first selects a range of negotiability 

(RON) for each attribute, which provides the upper and lower 

bounds on an attribute. This is important in multiattribute 

problems to limit our analysis to feasible and realistic situations 

and to provide clarity in decision making. Let the attributes form 

the vector 𝑋 = (𝑋1, …𝑋𝑛)𝑇 or its realization (𝑥1, … , 𝑥𝑛)𝑇. The 

multilinear utility functional form is given by: 

𝑈(𝑥1, … 𝑥𝑛) =  
1

𝐾
[∏(𝐾𝑘𝑖𝑈𝑖(𝑥𝑖) + 1) − 1

𝑛

𝑖=1

] (1) 

This functional form is widely used because it allows the 

utility functions to be defined over individual attributes 

separately. Each single attribute utility function, 𝑈𝑖(𝑋𝑖) is a 

utility function over the attribute 𝑋𝑖 and takes a value of 1 if the 

attribute is at the best possible level, and 0 if the attribute is at 

the worst possible level within its range of negotiability. The 

exponential form of the single attribute utility function with 

range of negotiability becomes: 

𝑈𝑥(𝑥𝑖) =  
1−𝑒

− 
(𝑥𝑚𝑎𝑥−𝑥𝑖)

𝑅𝑥

1−𝑒
− 

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)

𝑅𝑥

,  when less of the attribute is better 

𝑈𝑥(𝑥𝑖) =  
1−𝑒

− 
(𝑥𝑖−𝑥𝑚𝑖𝑛)

𝑅𝑥

1−𝑒
− 

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)

𝑅𝑥

, when more of the attribute is better 

 

Consequently, from the very construction of the utility 

function, if 𝑈 = 1, one has attained the best level on all attributes 

simultaneously and if 𝑈 = 0, one has attained the worst values 

on all attributes simultaneously. The scaling constants, 𝑘𝑖, 

measure the relative disinclination of the decision maker to trade 

off the ith attribute for improvement in other attributes. The 

individual utility functions and the scaling constants are assessed 

using standard lottery techniques described in the literature 

(Nikolaidis et al. 2011). The normalizing parameter, K, is 

calculated by setting all the single attribute utilities as well as the 

multi-attribute utility equal to 1 in Equation (1) and solving for 

K. 

In order for us to construct the functional form in Equation 

(1) above from single attributes, we should first check that the 

attributes exhibit preferential and utility independence. 

Preferential independence implies that the decision maker has 

the same preference order over an attribute when the other 

attributes are fixed, everywhere in the attribute space. An 

example is when a designer is considering beam designs over 

two attributes: strength and cost. Most designers will likely 

prefer a stronger beam to a weaker one, regardless of where the 

cost attribute is fixed. And vice versa for cost to strength. Utility 

independence implies that the certainty equivalent 

corresponding to an attribute is independent of where the other 

attributes are fixed. Utility independence implies preferential 

independence. The functional form used in Equation (1), implies 

and is implied by the utility independence condition. 

3. DERIVATION OF 𝔼[𝑼(. )] AND VoI IN MULTI 

ATTRIBUTE SCENARIO 

3.1. Two attribute decision problem with one random attribute.  

We start with two attribute decisions, where one attribute is 

deterministic and the other is a random variable following 

Gaussian distribution. Consider the decision problem shown in 

figure 1, involving a choice between two options, A and B. 

Option A is uncertain over the attribute X and 

𝑓𝑋𝐴
(𝑥𝐴)~𝑁(𝜇𝑥𝐴, 𝜎𝑥𝐴

2 ). In this scenario, closed form expressions 

can be found for both: 𝔼[𝑈(. )] for the random alternative, as 

well as the VoI for the decision.  

 
Figure 1. A two-attribute decision with one uncertain alternative.  

 

 To find the expected utility of option (A), we use the MAUF 

from Equation (1), which can be written for two attributes as: 

 

𝑈(𝑥, 𝑦) =
1

𝐾
[(𝐾𝑘𝑥𝑈𝑥(𝑥) + 1)(𝐾𝑘𝑦𝑈𝑦(𝑦) + 1) − 1]     (2) 

 

So we find: 

𝔼[𝑈(𝐴)] =  ∫ 𝑈(𝑥, 𝑦)𝑓𝑋(𝑥)𝑑𝑥

∞

−∞

= ∫ 𝑈(𝑥, 𝑦) (
1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2 )𝑑𝑥

∞

−∞

 

We evaluate the integral and find the resulting expression in 

Table (1). Notice that the expectation of the utility of a simple 

scenario of one attribute following Gaussian distribution has 

been known since the work of Howard (1971). Also, the VoI 

expressions the analysis for single attribute were found by Bickel 

(2008), Delique (2008), Zan and Bickel (2013) and Sun and 

Abbas (2014), here we extend these results to the multi-attribute 

A 

B 

𝑓𝑋𝐴
(𝑥𝐴) 

(𝑋𝐴, 𝑦𝐴) 

(𝑥𝐵 , 𝑦𝐵) 
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scenario shown in Figure (1). In order to calculate for the VoI, 

we need first to understand the ranges for the random variable X 

that make the 𝔼[𝑈(𝐴)] > 𝑈(𝐵) and vice versa. We consider the 

use of “certainty equivalent” 𝐶𝐸𝑥: the certainty equivalent over 

the uncertain attribute. This is the sure amount that makes a 

decision maker indifferent between a sure outcome with (𝑥𝐴 =
𝐶𝐸𝑥 , 𝑦𝐴) on one hand, and option (B) on the other. When the 

random variable X in option A is less than that amount, and if we 

consider the smaller of that attribute the better, then 𝔼[𝑈(𝐴)] >
𝑈(𝐵) and vice versa. That deterministic amount is found by 

equating: 

𝑀𝐴𝑈𝐹𝐴 = 𝑈(𝐵) (3) 
1

𝐾
[(𝐾𝑘𝑥𝑈𝑥(𝑥𝐴) + 1) (𝐾𝑘𝑦𝑈𝑦(𝑦𝐴)) − 1] = 𝑈(𝐵) (4) 

 

Where: 

𝑈𝑥(𝑥𝐴) =  
1−𝑒

− 
(𝑥𝑚𝑎𝑥−𝐶𝐸𝑥)

𝑅𝑥

1−𝑒
− 

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)

𝑅𝑥

= 
1−𝑒

− 
(𝑥𝑚𝑎𝑥−𝐶𝐸𝑥)

𝑅𝑥

𝐷𝑥
                 (5) 

𝑈𝑦(𝑦𝐴) =  
1−𝑒

− 
(𝑦𝑚𝑎𝑥−𝑦𝐴)

𝑅𝑦

1−𝑒
− 

(𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛)

𝑅𝑦

= 
1−𝑒

− 
(𝑦𝑚𝑎𝑥−𝑦𝐴)

𝑅𝑦

𝐷𝑦
                  (6) 

 

We substitute (6) and (5) in (4) and solve for 𝐶𝐸𝑥 

𝐶𝐸𝑥 = 𝑅𝑥 log𝑒 [1 −
(
𝑎𝑏

𝑐
−1)𝐷𝑥

𝐾𝑘𝑥
] + 𝑥𝑚𝑎𝑥                              (7) 

Where: 

𝑎 = 𝐾𝑘𝑥𝑈𝑥(𝑥𝐵) + 1 , 𝑏 = 𝐾𝑘𝑦𝑈𝑦(𝑦𝐵) + 1  

𝑐 = 𝐾𝑘𝑦𝑈𝑦(𝑦𝐴) + 1  

 

Now we can find the VoI, similar to Equation (5): 

𝔼[𝑈(𝑉)] = ∫ 𝑀𝐴𝑈𝐹(𝐴, 𝑉)𝑓𝑋(𝑥)𝑑𝑥
𝐶𝐸𝑥

−∞
+

∫ 𝑀𝐴𝑈𝐹(𝐵, 𝑉)𝑓𝑋(𝑥)𝑑𝑥
+∞

𝐶𝐸𝑥
                                             (8) 

 

We evaluate and solve for V, the closed-form solution is shown 

in Table (1). 

 

Table 1: Expected utility and Value of Information expressions for two attributes utility function and one uncertainty follows a 

Gaussian distribution 

𝔼[𝑈(𝐴)] =
1

𝐾
[(𝐾𝑘𝑦𝑈𝑦(𝑦) + 1) ∗  (𝐾𝑘𝑥

1−𝑒

𝜎2−2𝑅(𝑥𝑚𝑎𝑥−𝜇𝑥)

2𝑅𝑥
2

1−𝑒
−

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)

𝑅𝑥

+ 1) − 1]  

 

𝑉 = 𝑅𝑦 ln

[
 
 
 
 𝑘𝑦

𝐷𝑦
 𝛽 +  

(1 − Φ(𝐶𝐸𝑥 , 𝜇𝑥, 𝜎𝑥))
𝐾

[(𝐾𝑘𝑥𝑈𝑥(𝑥𝐵) + 1) (
𝐾𝑘𝑦

𝐷𝑦
+ 1) − 1] +

𝑘𝑥

𝐷𝑥
𝛼 − 𝑚𝑎𝑥(𝔼[𝑈(𝐴)], 𝑈(𝐵))

𝑘𝑦 (
1
𝐷𝑦

− 𝑈𝑦(𝑦𝐵)) + (1 − Φ(𝐶𝐸𝑥 , 𝜇𝑥, 𝜎𝑥)) [(𝐾𝑘𝑥𝑈𝑥(𝑥𝐵) + 1)𝑘𝑦 (
1
𝐷𝑦

− 𝑈(𝑦𝐵))]
]
 
 
 
 

 

Where: 

 𝐶𝐸𝑥: The certainty equivalent over the uncertain attribute. This is the sure amount that makes a decision maker 

indifferent between a sure outcome with (𝑥𝐴 = 𝐶𝐸𝑥 , 𝑦 = 𝑦𝐴) on one hand, and the outcome in option (B) where (𝑥 =
𝑥𝐵 , 𝑦 = 𝑦𝐵) on the other hand. 

 𝐷𝑦 = 1 − 𝑒
− 

(𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛)

𝑅𝑦   , 𝐷𝑥 = 1 − 𝑒
− 

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)

𝑅𝑥   ,  𝛽 =  
𝐾𝑘𝑥

𝐷𝑃𝑥
 𝛼 +  Φ(𝐶𝐸𝑥 , 𝜇𝑥, 𝜎𝑥) 

 𝛼 =  Φ(𝐶𝐸𝑥 , 𝜇𝑥, 𝜎𝑥) − 𝑒
𝜎2−2𝑅𝑥(𝑥𝑚𝑎𝑥−𝜇𝑥)

2𝑅𝑥
2

Φ(𝐶𝐸𝑥 , (𝜇𝑥 +
𝜎𝑥

2

𝑅𝑥
) , 𝜎𝑥)  

 

Note that the solution for the case when more of the attribute is 

better is exactly the same form but we substitute (𝒙𝒎𝒂𝒙 − 𝝁𝒙) 

with(𝝁𝒙 − 𝒙𝒎𝒊𝒏). Furthermore, a non-Gaussian distribution 

for the random variables can be modeled as a mixture of 

Gaussians and provides a relatively straightforward extension 

of this result. 

3.2. Decisions involving two or more correlated random 

variables 

In this section, we generalize our method from the 

previous section into the more general decision scenarios with 

two or more random variables that exhibit some degree of 

statistical relationship (correlation). Correlation can exist not 

only between attributes in the same alternative, but also 

between attributes across different alternatives. Calculations of 

𝔼[𝑈(. )] and VoI in this case not only reflect the more general 

and realistic engineering decision, but also have implications 

and insights on the optimal information gathering in a given 

scenario, since collecting information on one random variable 

can provide some information on the others. We show in Figure 

(2) a two-action notional example of this case, involving a 

decision scenario between two vehicles, A and B, where 

vehicle A exhibits uncertain performance over attributes X and 

Y, which are jointly distributed random variables following bi-

variate normal distribution. The density of this distribution is 

shown in Equation (9).  

 



DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited. OPSEC# 1960 

 

 5  

 
Figure 2. Decision with three attributes involving two 

correlated random variables. 

 

 

Now, in order to calculate 𝔼[𝑈(𝐴)], we need to evaluate 

the expression in Equation (10), where 𝑈(𝐴) here is similar to 

the form in Equation (2), but we add another term for the 

attribute c, which is assumed a constant. In many engineering 

acquisition decisions, the attribute of cost exhibits this behavior 

– while other performance attributes may be uncertain, a 

decision maker generally knows how much an option costs. 

Nevertheless, the approach presented here can easily 

accommodate uncertainty in all the variables. 

 

 
Figure 2. Decision tree for decision with three attributes, two 

are correlated random variables 

 

 
𝑓𝑋,𝑌(𝑥, 𝑦)

=
1

2𝜋𝜎𝑋𝜎𝑌√1 − 𝜌2
 𝑒𝑥𝑝 (

−1

2(1 − 𝜌2)
(
(𝑥 − 𝜇𝑋)2

𝜎𝑋
2

+
(𝑦 − 𝜇𝑌)2

𝜎𝑌
2 −

2𝜌(𝑥 − 𝜇𝑋)(𝑦 − 𝜇𝑌)

𝜎𝑋𝜎𝑌
)) 

 

 

 

(9) 

 𝔼[𝑈(𝐴)] =  ∬ 𝑈(𝑥, 𝑦, 𝑐)𝑓𝑋,𝑌(𝑥, 𝑦)𝑑𝑥𝑑𝑥
+∞

−∞
 (10) 

 

 

Where: 𝜌 = correlation coefficient, which is a measure of the 

linear relationship between the two variables and is given by 

Equation (19) (Navidi, 2015). 

𝜌𝑋,𝑌 =
𝐶𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌

 
 

(11) 

To our knowledge, no closed form solution exists for Equation 

(10). Therefore, MCS and efficient numerical method are 

proposed in the next sections. 

3.2.1. Monte Carlo Simulation Methods to Calculate 

𝔼[𝑼(. )] in the General Case: 

For the rest of the paper, we consider a notional decision 

problem of selecting between two vehicles or vehicle platforms 

– essentially similar to the decision tree in Figure (2). The 

decision maker needs to select between two vehicles, A and B, 

over the following attributes: 

1. Time to traverse a given terrain: (X) The preference order 

is ‘less is better’ and the range of negotiability, RON = [45s 

, 180s], where: 𝑋𝑎~𝑁(100, (10)2), 𝑥𝑏 = 100 s. 

2. Trafficable Percent Area, TPA: (Y) which is the percentage 

of the area of a given terrain that is trafficable by a vehicle, 

without getting stuck by an obstacle, uneven surface or 

other similar terrain related properties. The preference 

order is ‘more is better’ and the range of negotiability,RON 

= [10%, 100%], where: 𝑌𝑎~𝑁(0.65, (0.20)2 ), 𝑦𝑏 = 0.6. 

3. Total Cost: (c), The preference order is ‘less is better’ and 

the range of negotiability, RON = [$100k, $1,000k], 

where: 𝑐𝑎 = 𝑐𝑏 = $400𝐾. 

 

Let us also assume that the decision maker has chosen, for this 

particular decision scenario, the following risk tolerance values 

and scaling constants. Note that, the method is dependent on 

the choice of these parameters: 

𝑅𝑥 = 90, 𝑅𝑦 = 0.5, 𝑅𝑐 = 400 

𝑘𝑥 = 0.2, 𝑘𝑦 = 0.3, 𝑘𝑐 = 0.1 

We will be analyzing the sensitivity of 𝔼[𝑈(𝐴)] over the range 

of  𝜌: −1 ≤ 𝜌 ≤ +1.  

To benchmark the numerical method, we first use the 

algorithm shown in Figure (3) to calculate expected utility for 

the uncertain alternative A using monte carlo simulation 

(MCS). The total number of generations (𝑛𝑔𝑒𝑛) that is required 

in step 1 of the algorithm is set to: 𝑛𝑔𝑒𝑛 = 107. Figure (4) show 

the effect on 𝔼[𝑈(𝐴)] of change in 𝜌. 

 

 

 

 

 
Figure 3. MCS algorithm for calculating 𝔼[𝑈(𝐴)] for an 

alternative with jointly distributed normal random variables 

 

A 

B 

𝑓𝑋𝑎,𝑌𝑎
(𝑥𝑎, 𝑦𝑎) 

(𝑋𝑎, 𝑌𝑎 , 𝑐𝑎) 

(𝑥𝑏 , 𝑦𝑏 , 𝑐𝑏) 

A 

B 

𝑓𝑋𝑎,𝑌𝑎
(𝑥𝑎, 𝑦𝑎) 

(𝑋𝑎, 𝑌𝑎 , 𝑐𝑎) 

(𝑥𝑏 , 𝑦𝑏 , 𝑐𝑏) 
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Figure 4. Expected utility against ρ for vehicle A from Figure 

(2) using MCS when ngen =107 

 

By examining the results in Figure (4) we notice that 

expected utility has approximately linear trend when plotted 

against different 𝜌 values, everything else being constant. This 

trend is more evident, the higher the value of 𝑛𝑔𝑒𝑛. The 

decreasing trend of 𝔼[𝑈(𝐴)] is due to both random attributes 

(X and Y) having opposite preference order, recall that X is less-

is-better and Y is more-is-better type. The trend becomes an 

increasing one when both attributes have the same preference 

order. This is easily verified by reversing one of the attributes’ 

preference in the MAUF (Equation (1)).  

3.2.2. Numerical method to calculate 𝔼[𝑼(. )] in the general 

case. 

Prior research has extensively studied the problem of 

evaluating or estimating multiple integrals when dealing with 

multivariate normal (MVN) distribution with correlated 

variables. Different methods are used in the literature to 

achieve this goal including series expansion methods, such as: 

tetrachoric series for the bivariate case by Pearson (1901), 

Taylor Series expansion by Olson and Weissfeld (1991) to 

approximate the multivariate case, a novel series expansion 

based on Fourier Series by Fayed and Atiya (2014). Some 

approximation methods looked into approximating the 

multinormal integral by a product of one-dimensional normal 

integrals (Pandey, 1998). Another method by (Miwa et al. 

2003) used recursive integration algorithm to evaluate non-

centered probabilities. Some work has even looked at the 

general case where the random variables do not follow MVN, 

rather to solve multi integrals of any jointly random variables 

using numerical integration (Zhou and Nowak, 1988).  

One method that is frequently used and cited in the 

literature as being robust and efficient method is the Gaussian 

Quadrature. For example, the computation of the bivariate 

normal integral was studied by Drezner (1978) and later by 

Drezner and Wsolowsky (1990) using the Gaussian quadrature 

method. Genz (1992, 1993 and 2004) later presented a 

modified form of that algorithm for the bivariate and tri-variate 

normal probabilities for rectangles using numerical integration. 

Further improvements to Genz method was also performed by 

Brodtkorb (2006), where they used regression to eliminate low 

probability regions and developed a new method to determine 

redundant variables for faster estimates. Also, Somerville 

(1998) presented Fortran 90 algorithms to numerically 

calculate the multivariate normal and multivariate-t 

probabilities over convex regions instead of rectangles, where 

their method also relied on the Gauss-Legendre quadrature to 

estimate the value of the integral.  

In general, most of the methods surveyed were used for 

calculating MVN probabilities, and we did not find them 

flexible enough to calculate expectations of utility. Also, each 

had some drawbacks in application. For example, Taylor series 

performs poorly at levels of ρ close to 0.9 (Olson & Weissfeld, 

1991). Moreover, most approximation methods rely on 

numerical integration after reducing the number of random 

variables in the problem to around 5. Therefore, we selected 

the Gaussian quadrature method with numerical integration for 

its efficiency and flexibility of evaluating integrands with 

relatively low dimension. This is acceptable in our case 

because the general rule of thumb for the number of attributes 

in a multi-attribute decision scenario is between 2 and 5. Also, 

from a practical standpoint, the work by Shampine (2008) has 

resulted in an improved method (in MATLAB) based on 

function vectorization for faster and more reliable results. 

To apply the numerical method to finding E[U(.)] for 

correlated random variables, we consider the decision problem 

in Figure (2), where we need to calculate expected utility for 

random alternative A, 𝔼[𝑈(𝐴)]. We evaluate Equation (10) as 

follows: 

𝐸[𝑈(𝐴)] =  ∬{𝑀𝐴𝑈𝐹}{𝑝𝑑𝑓} 𝑑𝑥 𝑑𝑦

+∞

−∞

 

 

(12) 

Using Equation (1) for MAUF for three attributes, we find: 

𝐸[𝑈(𝐴)] =  ∬
1

𝐾
[(𝐾𝑘𝑥𝑈(𝑋𝑎) + 1)(𝐾𝑘𝑦𝑈(𝑌𝑎)

+∞

−∞

+ 1) (𝐾𝑘𝑐𝑈(𝑐𝑎) + 1) − 1]  
∗ 𝑝𝑑𝑓 𝑑𝑥 𝑑𝑦 

 

 

 

(13) 

  

Since the cost attribute (𝑐𝑎) here is deterministic: 

=
(𝐾𝑘𝑐𝑈(𝑐𝑎) + 1)

𝐾
∗ ∬ [(𝐾𝑘𝑥𝑈(𝑋𝑎) + 1)(𝐾𝑘𝑦𝑈(𝑌𝑎)

+∞

−∞

+ 1)]𝑝𝑑𝑓𝑑𝑥𝑑𝑦 −
1

𝐾
∬ 𝑝𝑑𝑓 𝑑𝑥𝑑𝑦 

+∞

−∞

 

 

 

 

 

(14) 

But we know that: ∬ 𝑝𝑑𝑓 𝑑𝑥𝑑𝑦 
+∞

−∞
= 1 

Also, let (Q) be the result of numerical evaluation of the double 

integral, we then find: 

𝐸[𝑈(𝐴)] = [(𝑘𝑐 𝑈(𝑐𝑎) +
1

𝐾
) ∗ 𝑄] −

1

𝐾
 

 

(15) 

Where: 

𝑄 = ∬ [(𝐾𝑘𝑥𝑈(𝑋𝑎) + 1)(𝐾𝑘𝑦𝑈(𝑌𝑎) + 1 )]

+∞

−∞

𝑝𝑑𝑓𝑑𝑥𝑑𝑦 
 

(16) 

The method in Equation (15) requires only one evaluation of 

the numerical integral (Q), which on average requires around 

0.01 seconds of computational time on a personal laptop 

computer, with Intel processor of 2.9 GHz speed and 4GB of 

memory. The advantage of writing the model in the form in 

Equation (15) is to show the simplicity in scaling the model 
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into 3 or more attributes problems, we only add SAU term in 

Equation (16) for each additional random variable, and use the 

correct MVN pdf accordingly. In the next section, we compare 

this method with MCS in calculating expected utility. 

Comparison between Numerical and MCS method for 𝔼[𝑈(. )] 
We now use our numerical method in Equations (15) and 

(16) to calculate 𝔼[𝑈(𝐴)] as a function of 𝜌, the results are 

shown in Figure (5). We notice that we get almost identical 

results with the numerical method to the ones found in Figure 

(4) using MCS. Table (2) show a comparison of the results for 

selected 𝜌 values. Not only the linear trend is more evident in 

the numerical method than the MCS method, the computational 

time required in the numerical method was 3.4 seconds only, 

compared to 12 seconds using MCS.  

 
Figure 5. Expected utility against ρ for vehicle A from Figure 

(2) using the numerical method 

 

 

Table 2: Comparison between EUMCS and EUNumerical methods 

in 3 attributes over selected ρ values 
ρ -0.9 -0.5 0 +0.5 +0.9 

EUNumerical 0.70960 0.70860 0.70737 0.70618 0.70524 

EUMCS 0.70960 0.70857 0.70744 0.70620 0.70528 

 

We now generalize the numerical method by considering an 𝑛-

dimensional Gaussian distribution given in Equation (17) (Gill, 

2014). 

 

𝑁𝑛(𝐗|𝛍, 𝚺2) =  (2𝜋)−
𝑛
2|𝚺|−

1
2 

𝑒𝑥𝑝 [−
1

2
(𝐗 − 𝛍)′𝚺−𝟏(𝐗 − 𝛍)] 

 

 

(17) 

Where: 

𝐗 is 𝑛-dimensional vector of variables 

𝛍 is the corresponding 𝑛-dimensional means vector 

𝚺 is the 𝑛𝑥𝑛 -dimensional, positive definite covariance matrix 
|𝚺| is the determinant of 𝚺 

Consider now a decision problem shown in Figure (6). 

This decision problem is very similar to the previous decision 

problem, except we add a fourth attribute which is latency - a 

measure of the communication delay encountered with a 

vehicle that exhibits some level of autonomy, such as tele-

operated vehicles or full autonomous vehicles with sensing 

feed. Let us assume that latency (L) is a random variable that 

follows a normal distribution and is correlated with the other 

attributes of time and trafficable percent area. Additionally, it 

is also a decision attribute with its own range of negotiability. 

The relevant parameters are listed below.  

 

𝐿~𝑁(0.7, (0.20)2) , 𝑅𝑙 = 0.9, 𝑘𝑙 = 0.2, RON = [0𝑠, 2𝑠] . 

𝜌𝑋𝐿 = +0.5 , 𝜌𝑌𝐿 = +0.7. 

 

To preserve the positive definiteness of the covariance matrix 

of the random variables and to avoid numerical issues arising 

out of using a correlation value very close to one, 𝜌𝑋𝑌 in this 

scenario only ranges between: −0.2 ≤ 𝜌𝑋𝑌 ≤ +0.9.  

 

 
Figure 6. Decision tree for decision with four attributes, three 

are correlated random variables 

 

The time required to evaluate the expected utility in this 

case with four attributes was 3.2 seconds. This time would have 

increased to around 5 seconds if it were feasible to calculate 

over 19 values of 𝜌𝑋𝑌 as we did in the case of three attributes. 

This confirms that computational time is still manageable as 

we scale our method to higher number of attributes. The time 

required to do the same analysis using MCS method was 10.8 

seconds. While the improvement in computational time is 

evident in the case when calculating expected utility using our 

numerical method, we will show in the next sections that the 

substantial advantage in computational time is more evident 

when calculating VoI. 

3.2.3. Monte Carlo simulation to calculate VOI in the 

general multiattribute case 

We show use an MCS method to estimate the VoI for the 

same example in Figure (2). It is worth mentioning that while 

the method here is shown for notional example with 2 

alternatives where one is random, it can easily be modified to 

calculate VoI for decision scenarios with both alternatives are 

random, or for scenarios with three or more alternatives. To 

calculate the VoI, we find the amount that satisfies Equation 

(18). Practically, we allow small error in Equation (18) that we 

call “𝐸𝑈𝑒𝑟𝑟𝑜𝑟” under which the error in the resulting VoI 

calculation will be negligible. The overall MCS algorithm is 

shown in Figure (A.1) in the Appendix. Clearly, the first step 

in the algorithm is the same as the algorithm found in the prior 

section for calculating expected utility without information. 

 

𝔼[𝑈𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑖𝑛𝑓𝑜] =  𝔼[𝑈𝑤𝑖𝑡ℎ 𝑖𝑛𝑓𝑜] (18) 

 

A 

B 

𝑓𝑋𝑎,𝑌𝑎, 𝐿𝑎
(𝑥𝑎, 𝑦𝑎 , 𝑙𝑎) 

(𝑋𝑎, 𝑌𝑎 , 𝐿𝑎 𝑐𝑎) 

(𝑥𝑏 , 𝑦𝑏 , 𝑙𝑏 , 𝑐𝑏) 
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We notice from analyzing the algorithm that the required time 

to calculate VoI is very large compared to only calculating 

expected utility. Clearly, using a simple linear search to find 

the correct V will be very computationally intensive. For 

example, when we use ngen =104 over −1 ≤ 𝜌 ≤ +1 range, 

total time required is 2,663 seconds (~ 45 minutes). Therefore, 

we use binary search method instead of linear search to find V, 

which reduces the search complexity from 𝑂(𝑛) to 𝑂(𝑙𝑜𝑔 𝑛) 

(Seidl et al, 2011). 

 

Using the proposed algorithm we can now calculate the VoI 

more efficiently, for example, for ngen =107 the time required 

was 178 seconds. Clearly the smaller the allowed error in 

expected utility, the more accurate the results for VoI. 

Therefore, the results emphasize the high level of accuracy 

required in expected utilities calculations, specifically for VoI 

calculations purposes. Another major observation we notice 

from Figure (7) is the relatively wide range of VoI across the 

range of ρ values. This shows the large impact of the correlation 

coefficient (ρ) on VoI. Therefore, assuming independence 

between random variables, especially when finding VoI over 

one or a subset only of the variables, can lead to erroneous 

results.  

 
Figure 7. 𝑉𝑜𝐼 against ρ when ngen =107 , 𝐸𝑈𝑒𝑟𝑟𝑜𝑟 = 10−5 using 

MCS with binary search 

3.2.4. Numerical calculation of VOI in the general 

multiattribute case 

We will focus in this section on deriving an efficient 

method for calculating VoI in scenarios where information is 

collected on all the attributes, which we call “Full-attribute 

VoI”. In a later section, we will discuss the scenarios when we 

collect information on only a subgroup of the random variables, 

and see how the model and results will change. 

 

Problems in two or more dimensions 

Let us revisit the example in Figure (2), where we have three 

attributes in each alternative, two of the attributes in alternative 

A are random variables (X and Y). Here, with alternative B 

being deterministic as 𝑥𝑎𝑎𝑛𝑑 𝑦𝑎 are constants, we know that 

its utility is constant (regardless of the realizations of 𝑋𝑎  and 

𝑌𝑎). In this case, we can draw its iso-preference curve as shown 

in Figure (8). An iso-preference curve is a collection of (x, y) 

points that all have the same utility. Therefore, any realization 

of the pair (𝑥𝑎, 𝑦𝑎) that is to the left of the iso-preference curve 

for B will mean that 𝔼[𝑈(𝐴)] > 𝑈(𝐵), and vice versa. Notice, 

in this particular case, that the utopia point is at the minimum 

value of each attribute (from the range of negotiability), 

reflecting a less-is-better preference order for both attributes. 

Now, since in our example attribute Y has more-is-better 

preference, then a simple conversion is required to make it 

calculated as a less-is-better attribute. This can be easily 

accomplished by replacing each Y by  
𝑦𝑚𝑎𝑥 + 𝑦𝑚𝑖𝑛 − 𝑌.  Each time we collect “full-attribute” 

information on 𝑋𝐴  and 𝑌𝐴, we can immediately decide whether 

𝔼[𝑈(𝐴)] > 𝑈(𝐵) or 𝔼[𝑈(𝐴)] < 𝑈(𝐵) or 𝔼[𝑈(𝐴)] = 𝑈(𝐵). 

More specifically,   𝔼[𝑈(𝐴)] > 𝑈(𝐵) when the pair (𝑥𝑎, 𝑦𝑎) is 

within the region (D). The expression for the isopreference 

curve is given by:  

𝑔𝑖𝑠𝑜(𝑥) = 𝑦𝑚𝑎𝑥 + [𝑅𝑦 ∗ ln (1 +
𝐷𝑦

𝐾∗𝑘𝑦
 −

𝐷𝑦(1+𝐾∗𝐸𝑈𝑏)

(𝐾𝑘𝑥𝑈(𝑥)+1)∗(𝐾𝑘𝑐𝑈(𝑐𝑎)+1)∗𝐾∗𝑘𝑦
)]          (19) 

 

Therefore, using the density for the bivariate normal 

distribution, we can calculate the expectation for when (𝑥𝑎, 𝑦𝑎) 

is inside or outside the region D, which is required to calculate 

the expected utility of the decision tree after receiving the full-

attribute information. This concept can be extended into 

scenarios with three or more random variables. For example, in 

the case with 4 attributes decisions where each alternative has 

3 random variables (X, Y, Z), the iso-preference curves become 

surfaces, where any (x, y, z) point that is inside that surface and 

closer to the utopia point (making sure all attributes have less-

is-better preference order) will have higher expected utility 

than points outside that surface, and vice versa.  

 

Figure 8. Iso-preference curve for U(B) as a sure outcome and 

region D (highlighted) with higher utility 

VoI in scenarios with one random alternative 

We follow now the same steps in sections 2 and 4 to derive VoI: 

The detailed steps to derive VoI are shown in the Appendix.  
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𝑉 = 𝑅𝑐 ∗ ln

[
 
 
 
 
 

[(
𝐾𝑘𝑐

𝐷𝑐
+ 1) (𝑄2 + 𝛾𝑏 − 𝛾𝑏𝑄1)] − (𝐾 ∗ 𝑀𝑎𝑥𝐸𝑈) − 1

[𝑄2 (
𝐾𝑘𝑐

𝐷𝑐
) 𝑒

−
(𝑐𝑚𝑎𝑥−𝑐𝑎)

𝑅𝑐 ] + [(𝛾𝑏 − 𝛾𝑏𝑄1) ((
𝐾𝑘𝑐

𝐷𝑐
) 𝑒

−
(𝑐𝑚𝑎𝑥−𝑐𝑎)

𝑅𝑐 )]
]
 
 
 
 
 

 

 

(20) 

 

Equation (20) provides a model to calculate VoI for two 

action decisions where one is random and another leads to a 

deterministic outcome. 

 

VoI results compared to Monte Carlo simulation method 

We compare the results found using the model in Equation 

(20) to the results found using MCS (shown in Figure (7)). The 

results are shown in Figure (9). The computational time 

required to create the graph was only 0.6 seconds. That is 

compared to 178 seconds required for the MCS method. This 

confirms the large improvement in computational time 

required when using our numerical method. Also, the accuracy 

of this method is superior to the MCS method with any 

𝐸𝑈𝑒𝑟𝑟𝑜𝑟 ≤ 104. As mentioned earlier, the extension of this 

method to decision scenarios of 3 or more random variables is 

straightforward. We can modify the joint density function and 

the 𝛾𝑎, 𝛾𝑏variables to accept the additional random variables, 

and evaluate the higher dimensional integrals numerically. 

 
Figure 9. 𝑉𝑜𝐼 against ρ using the proposed numerical method 

 

3.2.5. Numerical method to calculate “attribute-wise VOI” 

in the general case 

In this section, we consider the VoI for situations where we 

collect information on only a subgroup of the random variables, 

whether it is a 2-action scenario with only one random 

alternative, or a scenario with two or more random alternatives, 

where alternatives exhibit some correlation among their 

variables. We call VoI in this case “attribute-wise VoI”. While 

prior research have looked at correlated outcomes and/or more 

than 2-outcome decisions, such as Frazier and Powell (2010), 

Evangelou and Eidsvik (2016), Capser and Nikolaidis (2017), 

those efforts did not study the formal and more general case of 

multiattribute utilities and when the decision maker is risk 

averse.  

We consider Figure (2) where only alternative A is random. 

Let us assume we are interested in finding VoI when collecting 

information on attribute X only. Clearly, collecting information 

on X can provide insights on the value of Y, since both are 

correlated. Calculation steps for expected utilities before 

information is the same as we did earlier and we can use the 

new numerical method for that step. To calculate VoI, we will 

follow similar algorithm to the one in Figure (A.1) in the 

appendix but with the following modifications: 

1. We first only generate random realizations for one 

attribute, which are generated from its marginal pdf. 

2. We calculate the conditional mean and standard deviation 

for Y, for each generated 𝑥𝑖, given by (Devore, 2012): 

𝜇𝑦|𝑥𝑖
= 𝜇𝑦 +

𝜎𝑦

𝜎𝑥

𝜌𝑥𝑦(𝑥𝑖 − 𝜇𝑥) 

𝜎𝑦|𝑥𝑖

2 = (1 − 𝜌𝑥𝑦
2 )𝜎𝑥

2 

3. Use the expression in Table (2) to find 𝐸𝑈𝑎𝑓𝑡𝑒𝑟 𝑖𝑛𝑓𝑜 where 

one attribute is random, which in this case is Y, for each 

generated 𝑥𝑖. 

4. Continue similarly as we did earlier to find VoI. 

 

The results for the attribute-wise VoI, when we collect 

information on X only in the example in Figure (2), are shown 

in Figure (10), we have also added the full-attribute VoI results 

on the graph for comparison. The computational time required 

was 14.9 seconds. We notice that attribute-wise VoI here 

decreases to the lowest value at a specific value for 𝜌𝑥𝑦 ≈ 0.3, 

before increasing again.  That minimum VoI value is around 

9.3, which is compared to full-attribute VoI =174.9 at the same 

value of 𝜌𝑥𝑦. That means for this specific decision scenario, 

when 𝜌𝑥𝑦 ≈ 0.3, we will not gain much utility from collecting 

information only on attribute X. This result has very important 

implications on design and on strategies for collecting 

information. Another interesting result is that: 𝑉𝑜𝐼𝜌=0 >

𝑉𝑜𝐼𝜌=0.3, for this particular scenario. This is interesting 

because it implies that for every decision scenario, there exists 

a value of the correlation coefficient that provides the lowest 

attribute-wise information which, counterintuitively, is not 

necessarily the point when 𝜌𝑥𝑦 = 0.  

 

We also will find that VoI is very close at the extreme ends for 

𝜌𝑥𝑦 ≈ ∓1 (i.e. perfect positive and perfect negative 

correlation). This is somewhat expected as information on one 

attribute should give more information on the other when their 

correlation is higher in absolute terms.  
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Figure 10. Full-attribute VoI (+) compared to attribute-wise VoI 

(o) for example in Figure (2), calculated against 𝜌. 

 

We should also note that the non-monotonic trend in 

attribute-wise VoI is not always the case for all input parameters 

and constants. For example, if we increase 𝜎𝑥 from 10 to 30 

and decrease 𝜎𝑦 from 0.2 to 0.1 , then the same attribute-wise 

VoI trend when collecting info on X becomes monotonic and 

decreasing. We explain this by the fact that now more variation 

is attributed to X rather than Y, compared to the previous case. 

Therefore, collecting information over X, regardless of the 

correlation between X and Y will still be valuable to make better 

decisions. 

All alternatives random and correlated: 

In this section, we consider the more general case where 

we have two or more correlated random alternatives, and we 

are collecting information on a subgroup from the full vector 

of random variables (Z). An example is shown in Figure (11). 

While we show here an example of two random alternatives, 

each with two random attributes, the extension to higher 

number of alternatives and random attributes is straightforward 

using the same methodology, as we will see in a case study 

later. Let us assume the decision maker is selecting between 

two autonomous vehicles. 1 and 2, each with random 

performance, where the variables have a joint multivariate 

normal distribution as follows. Let Z be a vector of the random 

variables where: 

𝐙 = [

𝑋1

𝑋2

𝑌1

𝑌2

]  Where: 𝐙~𝑁(𝝁𝒛, 𝚺𝒛)  , where:   𝛍𝐳 = [

𝜇𝑋1

𝜇𝑋2

𝜇𝑌1
𝜇𝑌2

] , and 

 

𝚺𝐳 =

[
 
 
 
 

𝜎𝑥1
2 𝜌𝑥𝜎𝑥1

𝜎𝑥2
𝜌𝑥1𝑦1

𝜎𝑥1
𝜎𝑦1

𝜌𝑥1𝑦2
𝜎𝑥1

𝜎𝑦2

𝜌𝑥𝜎𝑥1
𝜎𝑥2

𝜎𝑥2
2 𝜌𝑥2𝑦1

𝜎𝑥2
𝜎𝑦1

𝜌𝑥2𝑦2
𝜎𝑥2

𝜎𝑦2

𝜌𝑥1𝑦1
𝜎𝑥1

𝜎𝑦1
𝜌𝑥2𝑦1

𝜎𝑥2
𝜎𝑦1

𝜎𝑦1
2 𝜌𝑦𝜎𝑦1

𝜎𝑦2

𝜌𝑥1𝑦2
𝜎𝑥1

𝜎𝑦2
𝜌𝑥2𝑦2

𝜎𝑥2
𝜎𝑦2

𝜌𝑦𝜎𝑦1
𝜎𝑦2

𝜎𝑦2
2

]
 
 
 
 

  

 

Now, if we need to find VoI when collect on only one or a subset 

of the random variables from the vector Z, let us say for 

example on attribute 𝑋1, we will first need to partition the 

vector Z as follows: 

 

𝐙 = [
𝐙𝟏

𝐙𝟐
] = [

𝑋2

𝑌1

𝑌2

𝑋1

]    Where: 𝐙𝟏 = [

𝑋2

𝑌1

𝑌2

]  , 𝐙𝟐 = 𝑋1  

 

So the mean becomes: 

𝛍𝐳 = [
𝝁𝟏

𝝁𝟐
] Where: 𝛍𝟏 = [

𝜇𝑋2

𝜇𝑌1
𝜇𝑌2

] , and  𝛍𝟐 = 𝜇𝑋1
  

To find the conditional covariance matrix, we follow Schur’s 

complement method (Sheng et al. 2008). Detailed derivation is 

shown in the appendix. Therefore, we now have the joint 

probability density function for random attributes 𝑋2, 𝑌1, 𝑌2 , 

conditional on 𝑋1. Notice that while we only collect 

information on 𝑋1 in this example for simple illustration, the 

same method can be used to collect information on any 

subgroup of the random variables. Next, we follow the same 

methods shown earlier when calculating VoI to find the 

attribute-wise VoI. A more involved example will be shown in 

a later section involving the selection decision between 3 

vehicles with some level of autonomy, and the ideal strategy 

for information collection in that scenario. 

 
Figure 11. Notional example on two random alternatives 

4. FACTORS AFFECTING VoI IN MULTI 

ATTRIBUTE SCENARIOS 

5.1. Complement vs. Substitute attributes: 

Scaling constants, 𝑘𝑖, measure the relative disinclination 

of a decision maker to trade off an attribute for improvement in 

other attributes. Qualitatively, we can say n attributes are 

complements when: ∑ 𝑘𝑖
𝑛
𝑖=1 < 1. In which case the 

normalizing constant, 𝐾 > 0. And they are substitutes when 

∑ 𝑘𝑖
𝑛
𝑖=1 > 1, in which case −1 < 𝐾 < 0.  

5.2. Attribute preference order: 

We will investigate here the effect of the attributes’ 

preference order on the full-attribute VoI. Let us start by 

recreating the results shown in Figure (9), but when attribute Y 

has less-is-better preference order, keeping all other inputs the 

same. The results are shown in Figure (12). We notice the 

opposite trend (increasing) of VoI as ρ increases from -1 to +1. 

This result is robust against changing the attributes from 

complements to substitute, or vice versa.  

1 

2 

𝑓𝑋1,𝑌1,(𝑥1, 𝑦1) 

𝑓𝑋2,𝑌2,(𝑥2, 𝑦2) 
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Figure 12. VoI  for the example in Figure (2) when attributes 

are complements and involve the same preference order. 

5.3. Decision maker’s risk tolerance: 

Here we investigate the effect of risk tolerance value for 

the attributes (𝑅𝑖). We know that the smaller the risk tolerance, 

the more concave the utility function and the more risk averse 

the DM is. Therefore, we reduce the constants in the same 

example in Figure (2) to the following values and measure how 

that affects VoI: 𝑅𝑥 = 45 , 𝑅𝑦 = 0.25 , 𝑅𝑐 = 200. One would 

expect that the VoI be always higher for more risk aversion. 

However, the results show that VoI is only higher in the region 

with negative correlation, and is actually lower in most of the 

region with positive correlation between the two random 

attributes. This resulted in the range between 𝑉𝑜𝐼𝑚𝑎𝑥,𝜌=−1and 

𝑉𝑜𝐼𝑚𝑖𝑛,𝜌=+1 becoming wider, in this particular case. Some 

exact values are shown in Table (3). In fact, we notice that the 

VoI has increased even at 𝜌 = 0. The value for 𝜌 with almost 

no change in VoI was at 𝜌 = 0.3. This is the same value from 

Figure (10) with attribute-wise analysis of VoI, which had the 

lowest VoI when collecting information on X. 

 

Table 3: Comparison between VoImore aversion and VoIless aversion 

over some ρ values (attributes with opposite preference order) 
ρ -0.9 -0.5 0 +0.5 +0.9 

VoImore aversion 218 206 188 165 141 

VoIless aversion 208 199 185 168 151 

Difference 4.5% 3.5% 1.7% -1.4% -6.3% 

 

Notice here that this observation occurs only when the 

attributes are of opposite preference order. If we run the same 

analysis but with attributes having the same preference order, 

we find that VoI increases over the full range of correlation 

coefficient 𝜌, for a more risk averse DM. The results are shown 

in Table (4).  

 

Table 4: Comparison between VoImore aversion and VoIless aversion 

over some ρ values (attributes with same preference order) 
ρ -0.9 -0.5 0 +0.5 +0.9 

VoImore aversion 122 148 173 192 205 

VoIless aversion 106 129 153 173 187 

Difference 15.6% 15.1% 13.2% 11.2% 9.8% 

5.4. Attribute-wise mean, variance and preference order: 

Here we investigate the factor(s) affecting the minimum 

value for attribute-wise VoI, let us call it 𝑉𝑜𝐼𝐴𝑊𝑚𝑖𝑛 in Figure 

(10). We know that increasing 𝜎𝑥 from 10 to 30 and reducing  

𝜎𝑥 to 0.1 caused the notch in the VoI curve to disappear. The 

reason is that uncertainty now is caused more by X than Y. So 

there is a benefit from collecting information on X regardless 

of the correlation between X and Y. To confirm this theory, let 

us reduce 𝜎𝑥 to 𝜎𝑥 = 1 and keep 𝜎𝑦 = 0.2. That causes 

𝑉𝑜𝐼𝐴𝑊𝑚𝑖𝑛 to be centered at 𝜌 = 0 and its value then is very 

close to 0, to be precise 𝑉𝑜𝐼𝐴𝑊𝑚𝑖𝑛 = 0.12. We can also notice 

the wide range for VoI where the maximum value in this case 

is 𝑉𝑜𝐼𝐴𝑊𝑚𝑎𝑥 = 166.7. The reason is that uncertainty now is 

almost fully caused by Y attribute and, therefore, the value of 

collecting information on attribute X will be highly dependent 

on the correlation between X and Y. In fact, increasing the 

variance of attribute Y does not change the location of 

𝑉𝑜𝐼𝐴𝑊𝑚𝑖𝑛 with respect to 𝜌. Instead, it only changes the range 

of 𝑉𝑜𝐼 by increasing 𝑉𝑜𝐼𝐴𝑊𝑚𝑎𝑥, here 𝑉𝑜𝐼𝐴𝑊𝑚𝑎𝑥 = 224.7 .  

It is important to note that attributes means (𝜇𝑥𝑎 and 𝜇𝑥𝑏, 

or in this case 𝑥𝑏, since option B is deterministic in this 

example) does not affect this trend, as long as the ratio of the 

two means is the same. Another important note to make here is 

the effect of preference order on attribute-wise VoI. While we 

showed previously that the “Full-attribute” VoI trend changes 

when the attributes have same preference order versus opposite 

preference order, in the case of “attribute-wise” information, 

the non-monotonic trend remains the same. 

We also notice that changing the variance for attribute X is 

changing the location of the 𝑉𝑜𝐼𝐴𝑊𝑚𝑖𝑛 only in the region of 

positive correlation between X and Y (in the case when 

collecting information on X and X involves less-is better 

preference). Therefore, if we collect information on X, and X 

has a more-is-better preference order, we notice that the 

𝑉𝑜𝐼𝐴𝑊𝑚𝑖𝑛 is now in the region of negative correlation 

coefficient between X and Y. To confirm, we overlay the “full-

attribute” and “attribute-wise” VoI in this case on the same 

graph. The results are shown in Figure (13), which confirm our 

observation. This result has important implications on design 

and information collection strategies. The results can help 

decide, based on the preference order of both attributes and 

their variances, which attribute to collect information on. We 

summarize the previous results regarding the location of 

𝑉𝑜𝐼𝐴𝑊𝑚𝑖𝑛 in Figure (14). We should note that these guidelines 

apply to the cases of 2-action decisions with one random 

alternative only.  
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Figure 13. Difference between full-attribute (+) and attribute-

wise (o) VoI (when X preference is more-is-better). 

 

 
Figure 14. Location diagram and controlling factors for the 

𝑉𝑜𝐼𝐴𝑊𝑚𝑖𝑛 in decision problem in  Figure (2) 

 

5. CASE STUDY: DECISIONS INVOLVING 

AUTONOMOUS VEHICLES 

5.1. Framing the decision problem 

In this section, we will apply our methods on an example 

decision problem involving the selection of the best vehicle 

platform with some level of autonomy, for a given application, 

and the best strategy for collecting information to mitigate the 

decision uncertainties. Autonomous vehicles find applications 

in delivery, rescue, exploration, farming, hazard disposal and 

many others. It should be noted that while the focus of this 

example is on autonomous ground vehicles, the same 

methodology can be used for any autonomous system in 

general.  

Prior art has investigated intelligent vehicles mobility with 

respect to selecting and optimizing a certain level of autonomy 

(Yang et al, 2017 and Ort et al, 2018). However, the decision 

maker’s preferences will vary based on the mission type and 

operating conditions. Our method provides an analytical 

framework for vehicle platform selection that maximizes the 

utility of the decision maker under a given scenario, given the 

trafficability of the terrain and the intelligence and 

communication mix. Let us assume we have the decision in 

Figure (15), where a decision maker needs to select the best 

platform design among vehicles 1, 2 and 3, for a given 

operation or mission. Clearly each different mission will 

require different scales of the attributes tradeoff, as reflected in 

the scaling constants. Therefore, the alternative that maximizes 

the designer’s utility in one specific operation will not 

necessarily be the best alternative in a different one. The three 

vehicles are to be evaluated based on three attributes: time (T) 

to traverse a specific terrain, trafficable percent area (A) for the 

vehicle on that specific terrain, and cost (c) of each vehicle. 

Details of the three vehicles are shown in Table (5). 

 
Figure 15. Example autonomous vehicles decision example 

with three random alternatives. 

 

Table 5: Vehicles operation mode in the case study with 

corresponding attributes and uncertainties 
Vehicle Operation 

Mode 

Time (T) 

(S) 

TPA (A) 

(%) 

Cost 

($) 

1 Manual 100 𝑁(0.50, (0.3)2) 200 

2 Tele-operated 𝑁(120, (30)2) 𝑁(0.65, (0.3)2) 350 

3 Fully 

Autonomous 

100 𝑁(0.65, (0.1)2) 800 

 

Therefore, we have four random variables in this decision 

problem that are jointly distributed with a multivariate normal 

distribution. The correlation matrix is shown in Table (6), 

where we assume 𝜌𝑎𝑡𝑠 = −0.7 ,  𝜌𝑎𝑡 = −0.4  and 𝜌𝑎 is selected 

from the set {0,0.1, … ,0.9} to investigate its effect on VoI. The 

correlation between time and TPA, whether in the same 

alternative (𝜌𝑎𝑡𝑠) or across alternatives (𝜌𝑎𝑡) is chosen to be 

negative, since the more trafficable percent area a vehicle can 

transverse on a terrain, the less time it will take to go from point 

A to point B on that terrain. It is also possible that for certain 

vehicles TPA is at the expense of speed and hence increased 

time, but when considering a given class of vehicles a negative 

correlation could be expected. Also, an increase in the TPA for 

one vehicle on a terrain might imply a more trafficable terrain 

in general, which should also be the case (to some degree) for 

other vehicles, hence the positive correlation region for 𝜌𝑎 

across vehicles.  These input assumptions can be validated 

using simulation or actual testing. 

Table 6: Correlation matrix for the 4 jointly distributed random 

variables in the case study 
 T2 A1 A2 A3 
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T2 1 𝜌𝑎𝑡  𝜌𝑎𝑡𝑠 𝜌𝑎𝑡  

A1 𝜌𝑎𝑡  1 𝜌𝑎 𝜌𝑎 

A2 𝜌𝑎𝑡𝑠 𝜌𝑎 1 𝜌𝑎 

A3 𝜌𝑎𝑡  𝜌𝑦 𝜌𝑎 1 

 

In this example, we considered the time to traverse the 

terrain as a function of communication latency only for similar 

vehicle platforms. The latency is defined as the delay in 

communicating control actions or sensor location between a 

robotic vehicle and an operator, or response delay and 

information delay as defined by Allender, (2017). Temporal 

latency is a major contributor to human robot interaction (HRI) 

as reported by NATO (2007), which is the reason we assume 

vehicles 2 and 3 to have time as random variable (uncertain 

performance over time), with relatively higher variance for the 

vehicle that completely rely on tele-operation for control and 

sensing. All vehicles clearly encounter uncertainty over the 

terrain elevation, obstacles and soil type, with relatively better 

performance for robotic vehicles (tele-operated or fully 

autonomous), as they tend to withstand more uneven terrains 

and surfaces. We will assume the following RONs and 

constants in this study: 

 

𝑅𝑂𝑁𝑡  =  [45𝑠 , 180𝑠], 𝑅𝑂𝑁𝑎  =  [10%, 100%] 
𝑅𝑂𝑁𝑐  =  [$100𝑘 , $1,000𝑘] 
Risk tolerance factors are as follows: 

𝑅𝑥 =  90 , 𝑅𝑦 =  0.5 , 𝑅𝑐 =  400 

Scaling constants are as follows:  

𝑘𝑥  =  0.2 , 𝑘𝑦  =  0.3 , 𝑘𝑐  =  0.1 

5.2. Intelligence, communication and information. 

The main goal is to find the best strategy in mitigating the 

uncertainties in autonomous vehicles platforms and terrains. 

VoI methods can help us in deciding whether collecting 

information on one attribute is better than the other, given the 

correlation level between the attributes and the parameters for 

their uncertainties. There is an increase in the amount of 

research on new methods for terrain remote sensing, optimal 

communication and bandwidth networks and other related 

topics in robotic and autonomous vehicles. These methods can 

all be considered different methods for collecting information 

and mitigating uncertainties in similar scenarios. Examples 

include the use of unmanned aerial vehicles (UAV) and drones 

to survey an area for obstacles and surface roughness, or the use 

of satellites for imaging and communications (Lucieer and 

Harwin, 2012 and Rivard et al, 2014). Also, prior research have 

looked into modeling of a given terrain, where statistical 

models for a terrain elevation profiles can be created, like the 

work of Chaika et al (2004) and Lamb et al (2007). Clearly all 

that comes at a cost. The cost needs to be compared to the cost 

of increasing the vehicle’s “intelligence” through adding 

sensors and computational power for faster and more adaptable 

operation by the vehicle to its surroundings.  

Results and Analysis:  

First, we need to calculate the utility of each vehicle 

without information to compare which vehicle has higher 

utility. We find: 

 

𝐸[𝑈(𝑣𝑒ℎ𝑖𝑐𝑙𝑒1)] = 0.6116 

𝐸[𝑈(𝑣𝑒ℎ𝑖𝑐𝑙𝑒2)] = 0.6199 

𝐸[𝑈(𝑣𝑒ℎ𝑖𝑐𝑙𝑒3)] = 0.6133 
The tele-operated platform has relatively higher utility than the 

other two vehicles. We intentionally selected the input 

parameters so the three vehicle have similar expected utility 

for illustration purposes, because that is when the VoI is at the 

highest level. If we have the options to collect information on 

the uncertainties in vehicles’ performance, we first collect 

information to mitigate the uncertainty over time taken for 

vehicle 2, 𝑇2. Using the methods found earlier, we will find the 

results as shown in Figure (16). Since we have the correlation 

coefficient in this scenario between time and TPA of vehicle 2 

to be 𝜌𝑎𝑡𝑠 = −0.7, then the attribute-wise value of information 

here is 𝑉𝑜𝐼 = 206. Now, let us assume we collect information 

on the TPA of vehicle 2, 𝐴2. Not only do we reduce the 

uncertainty over the performance of vehicle 2, but also we gain 

information for the TPA of vehicles 1 and 3 because of the 

correlation between the TPA attributes across the three 

vehicles (𝜌𝑎). We calculate the attribute-wise VoI in this case 

with the same method. The results are shown in Figure (17). 

We notice here that: 𝑉𝑜𝐼 < 206 in the range: 0 < 𝜌𝑎 < 0.8. 

We conclude that collecting information on the time (or speed 

over the given terrain) of vehicle 2 will have more value, in 

this particular scenario, than collecting information on the 

TPA, for any level of correlation between TPA of the three 

vehicles below 𝜌𝑎 = 0.8. Attribute-wise VoI study can, 

therefore, help identify the best strategy to collecting 

information in the presence of uncertainty.  

 

 
Figure 16. Attribute-wise VoI against the correlation between 

time and TPA in vehicle 2 (𝜌𝑎𝑡𝑠), when collecting information 

on T2 

 



DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited. OPSEC# 1960 

 

 14  

 
Figure 17. Attribute-wise VoI, against the correlation across 

the TPA of the 3 vehicles (𝜌𝑎), when collecting information on 

A2 

 

6. CONCLUSIONS 

In this paper we provided analytical and numerical 

methods to calculate the value of information (VoI) in 

multiattribute decisions under uncertainty, and when the 

decision maker exhibits some level of risk aversion. We 

validated our methods against Monte Carlo Simulation (MCS) 

methods and showed that the proposed methods are superior in 

computation time and accuracy to MCS. We also introduced a 

new measure for VoI called “attribute-wise VoI” where we 

measure the value of collecting information on only one or a 

subgroup of the random variables in a decision. The main 

results were then summarized in a set of guidelines to show the 

main factors affecting VoI in multiattribute decisions. These 

guidelines can help decision makers (such as designers, 

operational planner or acquisition managers) in making good 

decisions under uncertainties that maximize their utility, and to 

plan the best information collection strategy to mitigate the 

uncertainties. We showed our methods in examples involving 

decisions on ground vehicles with some level of autonomy and 

uncertain performance. The results show that collecting 

information on one variable or the other is strictly dependent 

on the decision scenario and its unique inputs. 

Future extension of this work is to analyze the cases when 

the data source is not perfect (imperfect information) and, 

therefore, Bayesian statistics methods should be used to draw 

conclusions on the posterior distribution of the unknown 

parameters, given a prior belief. The literature is limited in 

analyzing the effect of imperfect information in the case of 

multiattribute problems. Another extension is to conduct 

analysis for the scenarios when the uncertainties over the 

random attributes do not follow a normal distribution. While 

we envision that the recommendations will hold for most 

distributions, it is possible that certain corrections need to be 

made in particular cases. Lastly, Since our methods allow for 

automating the decision making process, one promising 

extension is to demonstrate the methods we found on decision 

making of autonomous vehicles for instantaneous scenarios 

such as vehicle sensing and tracking. 
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APPENDIX 

 

Derivation of “Full-attribute” VoI in Equation (20): 

𝐸[𝑈(𝑉)] = 𝐸[𝑈(𝑉𝐸𝑈(𝐴)>𝐸𝑈(𝐵))] + 𝐸[𝑈(𝑉𝐸𝑈(𝐵)>𝐸𝑈(𝐴))] (A.1) 

Where: 

𝐸[𝑈(𝑉𝐸𝑈(𝐴)>𝐸𝑈(𝐵))] = ∬
1

𝐾
[(𝐾𝑘𝑥𝑈(𝑋𝑎) + 1)(𝐾𝑘𝑦𝑈(𝑌𝑎) +

 

𝐷

1)(𝐾𝑘𝑐𝑈(𝑐𝑎 + 𝑉) + 1) − 1]𝑝𝑑𝑓𝑑𝑥𝑑𝑦  

=
(𝐾𝑘𝑐𝑈(𝑐𝑎+𝑉)+1)

𝐾
∬ (𝐾𝑘𝑥𝑈(𝑋𝑎) + 1)(𝐾𝑘𝑦𝑈(𝑌𝑎) +

 

𝐷

1)𝑝𝑑𝑓𝑑𝑥𝑑𝑦 −
1

𝐾
∬ 𝑝𝑑𝑓𝑑𝑥𝑑𝑦

 

𝐷
  

𝐸[𝑈(𝑉𝐸𝑈(𝐴)>𝐸𝑈(𝐵))] =  −
𝑄1

𝐾
+

(𝐾𝑘𝑐𝑈(𝑐𝑎 + 𝑉) + 1)

𝐾
∗ 𝑄2 (A.2) 

Where: 

𝑄1 = ∬ 𝑝𝑑𝑓𝑑𝑥𝑑𝑦
𝑓(𝑥)𝑥𝑦𝑚𝑖𝑛

−∞
   

𝑄2 = ∬ (𝐾𝑘𝑥𝑈(𝑋𝑎) + 1)(𝐾𝑘𝑦𝑈(𝑌𝑎) + 1)𝑝𝑑𝑓𝑑𝑥𝑑𝑦  
𝑓(𝑥)𝑥𝑦𝑚𝑖𝑛

−∞
=

∬ 𝛾𝑎 ∗ 𝑝𝑑𝑓𝑑𝑥𝑑𝑦 
𝑓(𝑥)𝑥𝑦𝑚𝑖𝑛

−∞
  

 

 

 

We evaluate 𝑄1 and 𝑄2 using the numerical method. Notice 

here that 𝛾𝑎 is flexible where it can be modified for higher 

number of random attributes in the cases of three or more 

random variables. 

Similarly:  

𝐸[𝑈(𝑉𝐸𝑈(𝐵)>𝐸𝑈(𝐴))] =  ∬
1

𝐾
[(𝐾𝑘𝑥𝑈(𝑥𝑏) +

+∞

𝑓(𝑥)𝑥𝑦𝑚𝑖𝑛

1)(𝐾𝑘𝑦𝑈(𝑦𝑏) + 1)(𝐾𝑘𝑐𝑈(𝑐𝑏 + 𝑉) + 1) − 1]𝑝𝑑𝑓𝑑𝑥𝑑𝑦  

= 
1

𝐾
[(𝐾𝑘𝑥𝑈(𝑥𝑏) + 1)(𝐾𝑘𝑦𝑈(𝑦𝑏) + 1)(𝐾𝑘𝑐𝑈(𝑐𝑏 +

𝑉) + 1) − 1] ∗ ∬ 𝑝𝑑𝑓𝑑𝑥𝑑𝑦
+∞

𝑓(𝑥)𝑥𝑦𝑚𝑖𝑛
  

= 
1

𝐾
[(𝐾𝑘𝑥𝑈(𝑥𝑏) + 1)(𝐾𝑘𝑦𝑈(𝑦𝑏) + 1)(𝐾𝑘𝑐𝑈(𝑐𝑏 + 𝑉) +

1) − 1] ∗ (1 − 𝑄1)  

=
(1 − 𝑄1)

𝐾
∗ [(𝛾𝑏 ∗ (𝐾𝑘𝑐𝑈(𝑐𝑏 + 𝑉) + 1)) − 1] (A.3) 

We substitute Equations (A.2) and (A.3) in (A.1) to find: 

 

 

𝐸[𝑈(𝑉)] = −
𝑄1

𝐾
+

(𝐾𝑘𝑐𝑈(𝑐𝑎 + 𝑉) + 1)

𝐾
∗ 𝑄2 +

(1 − 𝑄1)

𝐾
∗ [(𝛾𝑏 ∗ (𝐾𝑘𝑐𝑈(𝑐𝑏 + 𝑉) + 1)) − 1]  

We now equate: 

𝐸[𝑈(𝑉)] = 𝑀𝑎𝑥𝐸𝑈(𝐸𝑈𝐴, 𝐸𝑈𝐵) 

And solve for (V) to find: 

𝑉 = 𝑅𝑐 ∗ ln

[
 
 
 
 
 

[(
𝐾𝑘𝑐

𝐷𝑐
+ 1) (𝑄2 + 𝛾𝑏 − 𝛾𝑏𝑄1)] − (𝐾 ∗ 𝑀𝑎𝑥𝐸𝑈) − 1

[𝑄2 (
𝐾𝑘𝑐

𝐷𝑐
) 𝑒

−
(𝑐𝑚𝑎𝑥−𝑐𝑎)

𝑅𝑐 ] + [(𝛾𝑏 − 𝛾𝑏𝑄1) ((
𝐾𝑘𝑐

𝐷𝑐
) 𝑒

−
(𝑐𝑚𝑎𝑥−𝑐𝑎)

𝑅𝑐 )]
]
 
 
 
 
 

 

 

 

Derivation of Conditional Covariance Matrix for the Joint 

MVN Using Schur Complement: 

 

Referring to Figure (12), let us assume the correlation matrix is 

as follow: 

 X1 X2 Y1 Y2 

X1 1 𝜌𝑥 𝜌𝑥1𝑦1
 𝜌𝑥1𝑦2

 

X2 𝜌𝑥 1 𝜌𝑥2𝑦1
 𝜌𝑥2𝑦2

 

Y1 𝜌𝑥1𝑦1
 𝜌𝑥2𝑦1

 1 𝜌𝑦 

Y2 𝜌𝑥1𝑦2
 𝜌𝑥2𝑦2

 𝜌𝑦 1 

We partition the covariance matrix as: 

𝚺 = [
𝚺𝟏𝟏 𝚺𝟏𝟐

𝚺𝟐𝟏 𝚺𝟐𝟐
] 

Where: 

𝚺𝟏𝟏 = [

𝜎𝑥2
2 𝜌𝑥2𝑦1

𝜎𝑥2
𝜎𝑦1

𝜌𝑥2𝑦2
𝜎𝑥2

𝜎𝑦2

𝜌𝑥2𝑦1
𝜎𝑥2

𝜎𝑦1
𝜎𝑦1

2 𝜌𝑦𝜎𝑦1
𝜎𝑦2

𝜌𝑥2𝑦2
𝜎𝑥2

𝜎𝑦2
𝜌𝑦𝜎𝑦1

𝜎𝑦2
𝜎𝑦2

2

]  

And: 

𝚺𝟏𝟐 = [

𝜌𝑥𝜎𝑥1
𝜎𝑥2

𝜌𝑥1𝑦1
𝜎𝑥1

𝜎𝑦1

𝜌𝑥1𝑦2
𝜎𝑥1

𝜎𝑦2

]  

𝚺𝟐𝟏 = [𝜌𝑥𝜎𝑥1
𝜎𝑥2

𝜌𝑥1𝑦1
𝜎𝑥1

𝜎𝑦1
𝜌𝑥1𝑦2

𝜎𝑥1
𝜎𝑦2] 

And: 𝚺𝟐𝟐 = 𝜎𝑥1
2  

Therefore, the conditional distribution of 𝐙𝟏|𝐙𝟐 = 𝑥1 becomes: 

𝑓(𝐙𝟏|𝐙2 = 𝑥1)~𝑁(𝛍𝒄𝒐𝒏𝒅, 𝚺𝒄𝒐𝒏𝒅) 

Where: 

𝛍𝒄𝒐𝒏𝒅 = 𝛍𝟏 + 𝚺𝟏𝟐𝚺𝟐𝟐
−𝟏(𝑥1 − 𝜇𝑋1

) 

→ 𝛍𝒄𝒐𝒏𝒅 = [

𝜇𝑋2

𝜇𝑌1
𝜇𝑌2

] + [

𝜌𝑥𝜎𝑥1
𝜎𝑥2

𝜌𝑥1𝑦1
𝜎𝑥1

𝜎𝑦1

𝜌𝑥1𝑦2
𝜎𝑥1

𝜎𝑦2

] ∗ 𝜎𝑥1
−2 ∗ (𝑥1 − 𝜇𝑋1

) 
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→ 𝛍𝒄𝒐𝒏𝒅 = [

𝜇𝑋2
+ 𝜌𝑥𝜎𝑥1

−1𝜎𝑥2
(𝑥1 − 𝜇𝑋1

)

𝜇𝑌1 + 𝜌𝑥1𝑦1
𝜎𝑥1

−1𝜎𝑦1
(𝑥1 − 𝜇𝑋1

)

𝜇𝑌2
+ 𝜌𝑥1𝑦2

𝜎𝑥1
−1𝜎𝑦2

(𝑥1 − 𝜇𝑋1
)

]  And: 

𝚺𝒄𝒐𝒏𝒅 = 𝚺𝟏𝟏 − 𝚺𝟏𝟐𝚺𝟐𝟐
−𝟏𝚺𝟐𝟏 

→ 𝚺𝒄𝒐𝒏𝒅 = [

𝜎𝑥2
2 𝜌𝑥2𝑦1

𝜎𝑥2
𝜎𝑦1

𝜌𝑥2𝑦2
𝜎𝑥2

𝜎𝑦2

𝜌𝑥2𝑦1
𝜎𝑥2

𝜎𝑦1
𝜎𝑦1

2 𝜌𝑦𝜎𝑦1
𝜎𝑦2

𝜌𝑥2𝑦2
𝜎𝑥2

𝜎𝑦2
𝜌𝑦𝜎𝑦1

𝜎𝑦2
𝜎𝑦2

2

] −  [

𝜌𝑥𝜎𝑥1
𝜎𝑥2

𝜌𝑥1𝑦1
𝜎𝑥1

𝜎𝑦1

𝜌𝑥1𝑦2
𝜎𝑥1

𝜎𝑦2

] ∗ 𝜎𝑥1
−2 ∗ [𝜌𝑥𝜎𝑥1

𝜎𝑥2
𝜌𝑥1𝑦1

𝜎𝑥1
𝜎𝑦1

𝜌𝑥1𝑦2
𝜎𝑥1

𝜎𝑦2]  

𝚺𝒄𝒐𝒏𝒅 = [

𝜎𝑥2
2 𝜌𝑥2𝑦1

𝜎𝑥2
𝜎𝑦1

𝜌𝑥2𝑦2
𝜎𝑥2

𝜎𝑦2

𝜌𝑥2𝑦1
𝜎𝑥2

𝜎𝑦1
𝜎𝑦1

2 𝜌𝑦𝜎𝑦1
𝜎𝑦2

𝜌𝑥2𝑦2
𝜎𝑥2

𝜎𝑦2
𝜌𝑦𝜎𝑦1

𝜎𝑦2
𝜎𝑦2

2

] − [

𝜌𝑥
2𝜎𝑥2

2 𝜌𝑥𝜌𝑥1𝑦1
𝜎𝑥2

𝜎𝑦1
𝜌𝑥𝜌𝑥1𝑦2

𝜎𝑥2
𝜎𝑦2

𝜌𝑥𝜌𝑥1𝑦1
𝜎𝑥2

𝜎𝑦1
𝜌𝑥1𝑦1

2 𝜎𝑦1
2 𝜌𝑥1𝑦1

𝜌𝑥1𝑦2
𝜎𝑦1

𝜎𝑦2

𝜌𝑥𝜌𝑥1𝑦2
𝜎𝑥2

𝜎𝑦2
𝜌𝑥1𝑦1

𝜌𝑥1𝑦2
𝜎𝑦1

𝜎𝑦2
𝜌𝑥1𝑦2

2 𝜎𝑦2
2

] 

 

 

Figure (A.1): MCS algorithm to calculate VoI using binary search: 

 

 


