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1.0 Introduction 

The high cost and limited availability of emerging alternative fuels is often a major impediment 

to certification of these fuels as Fit-For-Purpose (FFP) for the U.S. Navy. A method whereby a 

candidate fuel could be rapidly screened for many FFP properties, using a minimal volume (< 1 

mL), would overcome this limitation. The Navy Fuel Property Monitor (NFPM) was a screening 

tool developed for shipboard quality surveillance, based on chemometric modeling of near-

infrared (NIR) spectra. While this is has proven to be a viable approach for known (calibrated) 

fuels, spectral modeling is not practical when applied to fuels that are radically different in 

composition (uncalibrated), from those used to derive the models. Thus, spectral modeling was 

deemed impractical as a tool to model properties of alternative fuels and/or blending stocks with 

unknown compositions. 

In order to meet this challenge, algorithmic modeling strategies were derived that establish the 

statistical relationships between composition and critical FFP fuel properties. This has allowed 

us to develop partial least squares (PLS) models based on gas chromatography-mass 

spectrometry (GC-MS) data that predict fuel properties more accurately than NIR. More 

significantly, these models are also capable of predicting critical specification properties of 

blends of Navy mobility fuels with new alternative fuels, regardless of their source or processing 

methods. 

The Fuel Composition and Screening Tool (FCAST) was developed as a general fuel screening 

tool that combines GC-MS based property predictions with a compositional profiler to provide a 

variety of useful information about a fuel sample.  

This document is an update to the previous NRL Memorandum report1, which includes 

additional features incorporated in FCAST version 3.0. 

2.0 Fuel Characterization by GC-MS 

2.1 NRL Compositional Profiler 

The NRL compositional profiler2 is an automated chemical component classification tool that 

was developed to provide a classification of all compound classes in a fuel, as an alternative to 

ASTM D24253, which does not function adequately with alternative, non-petroleum derived 

fuels. The profiler has been implemented in the Navy protocols for alternative jet4 and diesel5 

fuel certification. The profiler functions by reading the GC-MS data file, identifying each unique 

compound peak, performing a noise analysis, then sending the peak table to a NIST electron 

impact mass spectral library. The chemical compounds thus identified are classified with respect 

to a set of 25 defined compound classes using a set of selection rules that have been updated to 

_________
Manuscript approved February 21, 2019.
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operate on the molecular structure. This is a change from v2 which relied on the molecular 

formula or IUPAC name. In addition, the profiler calculates and reports carbon number 

distributions, average carbon number and degrees of unsaturation for each carbon number. 

The accuracy of the NRL compositional profiler has been verified with known fuels and 

surrogate fuel blends. In addition to certification, the profiler has proven to be a useful tool for 

rapid interpretation of GC-MS fuel analyses and is being employed in FCAST to provide 

compositional data for the statistical modeling. 

The profiler classifies all detectable compounds in the sample with respect to the following 

compound classes (numbers indicate order of precedence): 

Saturates 

 Normal Alkanes (24)

 Iso Alkanes (23)

 Monocyclo Alkanes (22)

 Alkyl Monocyclo Alkanes (21)

 Dicyclo Alkanes (20)

 Alkyl Dicyclo Alkanes (19)

 Tricyclo Alkanes (18)

 Alkyl Tricyclo Alkanes (17)

Olefins 

 Acyclic Alkenes (16)

 Cyclo Alkenes (15)

Aromatics 

 Alkyl Benzenes (14)

 Indans and Tetralins (13)

 Indenes (12)

 Naphthalene (11)

 Branched Naphthalenes (10)

 Acenaphthenes (9)

 Acenaphthylenes (8)

 Tricycloaromatics (7)

Heteroatomics 

 Methyl Esters (1)

 Sulfur-Bound (2)

 Nitrogen-Bound (3)

 Oxygen-Bound (4)

 Chlorine-Bound (5)

 Other Halogen-Bound (6)

Other (not in above classes) 
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A prefilter is also used to pre-emptively remove known interferents, e.g., polysiloxanes, which 

are associated with bleed from the GC column stationary phase and methylene chloride, 

commonly used as a solvent. Additionally each atom is checked against the list of what is 

expected for a hydrocarbon fuel based on the profiler classes (C, H, O, S, N, Cl, F, I, Br) and if 

any other atoms are found (i.e. Si or B) then the compound is automatically assigned to the 

‘Other’ class. 

 

Due to the fact that many fuel constituents can be multifunctional, with functionalities from 

multiple compound classes, the profiler operates in the above listed order of precedence when 

determining which class to assign a compound to. First the compound is checked to determine if 

there are any Heteroatomics, starting with the O=COCH3 methyl ester functionality, followed by 

S, N, O, Cl, or [F, Br, I] atoms in the compound and assigned to the respective classes.  

 

Second the Aromatics classes are checked, largest to smallest number of aromatic rings. These 

classes are checked against a reference compound to determine if the structure contains the 

required substructure defining the class. Compounds with 3 or more fused aromatic rings are 

places into the Tricycloaromatics class. Compounds containing a substructure of acenaphthylene 

or acenaphthene are assigned those classes respectively. Compounds containing two fused 

benzene rings are classified as ‘Branched Naphthalenes’, with the exception of Naphthalene 

which is place in the Napthalene class. Next the compound is checked against Indene and 

Indan/Tetralin substructure and placed into the respective categories. Last in the aromatics group 

is the ‘Alkyl Benzenes’ class which will catch all the compounds containing a ‘benzene’ ring or 

is aromatic that are missed in the other classes. 

 

Next the profiler checks if there is any alkyne functionality (triple bond), which assigns the 

compound into the ‘Other’ class. 

 

The Olefins classes are checked by determining if the compound contains any double bonded 

carbon atoms, but non-aromatic. Compounds with double bonds located within a ring are 

classified as cyclo-alkene, while double bonds not in a ring is classified as acyclic-alkene. 

 

The Saturates group first checks for the number of tricyclic or bicyclic rings. These rings can be 

spirocyclic (1 atom), fused (2 atoms), bridged (3+ atoms) or a combination. The structure is 

checked whether any atoms are not in the rings and classified as Alkyl-(Tri/Di)Cyclo Alkanes 

otherwise the compound is classified as (Tri/Di)Cyclo Alkanes each depending on whether there 

are 3 or 2 rings. If the compound contains any number of non tri/di-cyclic rings, the compound is 

classified as Alkyl Monocyclo Alkanes or Monocyclo Alkanes based on any additional non-ring 

carbon atoms. Lastly if the compound is check for any branches, defined as a carbon atom 

connected to more than 2 other carbon atoms, and if found classified as a IsoAlkane. Lastly if the 

compound is saturated and is not branched it is classified as a Normal Alkane. 
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Switching to a structural based profiler, removes the need to maintain a list of compounds whose 

primary name returned by the NIST Mass Spectral search is not a systematic IUPAC name. The 

structure information from the NIST Mass Spectral library became available when the interface 

method for searching was changed to a direct API request via DLL. 

The NRL Compositional Profiler has been demonstrated6,7 to be effective for rapid 

compositional profiling of complex mixtures that would otherwise take unreasonable times to 

manually analyze. Nevertheless, a major limitation of the standalone NRL profiler algorithm is 

that it reports relative contribution of each class of compounds as a percentage of the total area 

counts measured in each analysis, thus neglecting the effect of differing response factors among 

different compounds on the GC-MS. Compound-specific response factors observed with GC-MS 

are dependent on the molecular ionization efficiency of the compound, and to some extent, the 

fragmentation pattern induced by the mass spectrometer. This makes them highly dependent on 

molecular structure in ways that are difficult to generalize across a wide range of possible 

mixture constituents8. 

While peak area abundances are self-consistent within a given sample or group of similar fuels, it 

is not always possible to mathematically operate with such area based profiler results, when 

comparing as alternative and petroleum fuels. In order to convert area percent results to mass 

percent, response factors were empirically derived by collecting both the FID and MS responses 

from a GC-FID-MS instrument using standards for each compound class. The FID and MS 

responses were then compared and then an average for each compound class was used to derive 

the MS response factor. The normal alkane class was used as a baseline and given a response 

factor of 1.0. Additional classes that were accounted for included iso-alkanes, cyclo-alkanes, 

olefins and aromatics. 

The Profiler saves the data based on the area of the TIC, and adjusts the abundance of each 

compound, based on carbon number and class. This enables the compound class profiler in 

FCAST to report compound abundances in mass percent. 

2.1.1 Profiler Methods 

FCAST contains three search methods to find peaks within the mass-spectral data which are then 

sent to the NIST Mass Spectral Database for identification. Simple, Mass Channel Analysis and 

Evolving Window Factor Analysis-Multivariate Curve Resolution (EWFA-MCR). The ‘Simple’ 

method applies a peak finding algorithm to the TIC, whereas the ‘Mass Channel Analysis’ and 

‘EWFA-MCR’ deconvolve overlapping peaks in the TIC based on the underlying mass spectra. 

The computational time required for each method increases as does the number of compounds 

returned. 
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Simple 

The ‘Simple’ method finds peaks in the TIC by applying a derivative function and identifying 

zero point crossings. This method does not look into the underlying m/z data to determine where 

peaks are located. The scans at those retention times are then sent to the NIST MS Search 

program to identify the compound. No deconvolution is performed with this method, and most 

analyses are performed in less than a few minutes. 

Mass Channel Analysis 

Mass Channel Analysis uses the full mass data from the GC-MS data to determine peak 

locations. Noise factor analysis, peak picking, and peak deconvolution were performed in 

accordance with the work of Stein9, which is the foundation of NIST’s AMDIS software 

package. A characteristic noise factor is derived for each sample by examining each individual 

ion chromatogram and determining signal free windows and estimating the instrumental noise 

characteristics assuming Poisson statistics. An averaged noise factor is derived from the 

individual noise factors across all mass channels. This noise factor is then used in the peak 

picking step to set a minimum signal-to-noise ratio (SNR) threshold for determination of peaks. 

The peaks are identified as maxima of each mass channel that exceed the SNR threshold and 

accounts for skewing which is present in scanning mass spectrometers. Peaks across the mass 

channels are combined by matching retention times and peak shape. Next, the peaks are 

deconvolved using a least-squares method fitting to a model peak profile. These peaks are then 

sent to the NIST MS Search program for identification. Most analyses using this method are 

completed in tens of minutes. 

EWFA-MCR 

Evolving Window Factor Analysis (EWFA)10 and Multivariate Curve Resolution (MCR)11 is 

implemented for the automated, unsupervised deconvolution of GC-MS fuel data.12-14 At a 

conceptual level, EWFA is used to track the appearances, disappearances, and overlap of 

underlying data factors, known as loadings, across the retention time axes of multi-peak 

chromatographic data; MCR is used to refine the shapes of these loadings to more accurately 

reflect underlying chemical phenomena; and NIST/EPA/NIH library searches are used to 

produce MF values that serve as quality control metrics by which to filter out superfluous data 

artifacts, leaving only the loadings that can serve as meaningful representations of the individual 

mass spectra convolved within the parent GC-MS data. The basic outline of the combined 

EWFA-MCR algorithm developed to address the fuel peak deconvolution task at hand can be 

found in Figure 1. 
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Figure 1. Visual representation of the EWFA-MCR peak deconvolution algorithm. 

 

The algorithm proceeds by first locating peaks in the TIC produced from the original GC-MS 

data set and defining corresponding analysis window sizes as the number of variables 

corresponding to the width of the individual peak to be analyzed plus two variables, with even-

numbered widths being rounded up by an additional variable to ensure the existence of central 

variables in subsequent analysis windows. A window of the defined size is then moved across 

the peak, with the mandated central variable of the window beginning at one end of the peak 

along the retention time axis and ending at the opposite end, allowing for additional retention 

time variables outside of the TIC peak to inform deconvolution procedures to further account for 

cross-peak chemical information. 

 

At each possible window location, a full evolving factor analysis (EFA) operation is performed 

within the window, in the form of repeated SVD operations performed on increasingly large 

portions of a data matrix, proceeding in both the forward and reverse directions. In the forward 

direction, SVD is performed on a data subset, initially defined starting from the first row/column, 

which increases in size by one row/column per SVD operation until the last row/column is 

included in the SVD. In the reverse direction, the same stepwise increase in data subset size 

proceeds in the opposite direction from the last row/column instead. 
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SVD mathematically breaks a given data matrix down into its underlying LVs, which can be 

represented as scores, loadings, and singular values. The core decomposition of SVD can be 

represented by the following equation: 

 

R = USVT     (1) 

 

In this equation, R is the original data set (in this case, the portion of the GC-MS data being 

analyzed), VT is the transposed matrix of loadings that the developed algorithm uses to estimate 

the shapes of deconvolved mass spectral data, and US is the product of the scores and singular 

values that, combined, indicate the significance of the corresponding loadings to the variance 

within the original data set. 

 

The EWFA portion of the combined algorithm relies upon these multiple executions of SVD for 

two primary uses. First, the absolute values of the loadings can be interpreted along the original 

mass spectral data axis to assess underlying sources of mathematical variance which should, in 

turn, correlate to underlying sources of chemical variance. Second, the US product is subject to a 

threshold value of 1x10-15 to ensure that deconvolved mass spectral loadings have at least a 

minimal significance to the original data set before being collected during the course of the 

EWFA-MCR algorithm, thus reducing the number of superfluous compound identifications. 

 

Prior to interpreting the loadings as actually being informative of sources of chemical variance, 

however, individual SVD loading results are refined by means of MCR, applied to the data as it 

exists within the analysis window, with initial loading results serving as the initial estimates to be 

refined. The MCR portion of the overall algorithm performs ALS-based refinements repeatedly 

over the course of 1,000 iterations, though, as a stringent test for convergence, the algorithm is 

also designed to terminate early if an iteration produces a set of results whose maximum 

difference from the previous set of results is only 10-10 of the maximum result value, or if the 

average root mean square difference between the data as reconstructed from the refined results 

and the original data subset itself is only 10-10. 

 

The number of loadings that can be obtained from any given EWFA window is only limited by 

the size of the window itself. This means that large windows can produce large numbers of 

loadings, and all of these loadings could theoretically be subjected to further evaluations. A time 

saving output constraint was thus implemented in the EWFA-MCR algorithm in which only 

chemical compound identifications obtained from the three most significant loadings obtained 

from any given window are considered for the purposes of overall chemical profiling. 

 

The shape refined loadings are then interpreted as if they actually were mass spectra and sent to 

the NIST/EPA/NIH Mass Spectral Library. Only the results corresponding to the highest MF 

value thus obtained are maintained for any given retention time/LV combination. The 
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maintenance of retention time-specific results also allows for the subsequent derivation of 

retention time information for deconvolved component sub-peaks. The deconvolved results 

provide proportional information regarding peak composition, which is used to assign the 

proportional contributions of identified compounds to the original TIC peak areas. 

 

This algorithm is the most comprehensive and analyses require several hours per sample. Thus, 

the EWFA-MCR method would be most applicable when performing statistical analyses, such as 

the Fisher Ratio ANOVA analysis in FCAST to elucidate minor compositional differences 

between two fuels. The simple method is suitable for rapid first-order interpretation of GC-MS 

datasets and the m/z mass factor analysis would be the preferred method for routine fuel 

characterization.  

 

 

2.2 Modeling Fuel Properties from GC-MS Data 

 

It is known15-18 that a great deal of information regarding fuel composition can be obtained from 

GC-MS, and the wide availability of this instrumentation make it an ideal analytical technique 

upon which to base a fuel modeling tool. Compositional information can be derived from the 

analysis of GC data or GC×GC data without the benefit of mass spectrometry19-22 and from MS 

without the benefit of chromatography23, as well as GC-MS data and GC×GC-MS data without 

the benefit of complete mass/charge ratio information24-29. Nevertheless, fuel-based FFP 

modeling requires the discrimination of hundreds of discrete compounds, and gas 

chromatography-mass spectrometry (GC-MS) has the potential to provide this level of 

discrimination. Algorithms such as Target Factor Analysis (TFA)30, instrumental modes such as 

selected ion monitoring31, or comparative techniques requiring the use of internal standards32 can 

be used to interrogate GC-MS data sets for individual target compounds. However, attempting to 

explicitly target every compound that could potentially be found in a fuel sample is not realistic. 

Previous multi-way modeling33 performed in this laboratory focused on elucidating the 

compositional differences between different fuel samples. The data features quantified in that 

work were the same type of data features from which fuel constituencies would be derived in this 

study, but a more direct focus on fuel constituency is necessary for direct fuel property modeling. 

  

GC-MS data are represented by a 3-dimensional array34 consisting of (mass/charge) vs 

(abundance) vs (chromatographic retention time). In order to apply a PLS analysis to this data, it 

is first necessary to represent it with an appropriate 2-dimensional abstraction. This was 

accomplished by the construction of an n-dimensional abstraction vector, where n equals the 

number of discrete chemical compounds found in our worldwide fuel calibration set. Each 

element of this abstraction vector is assigned to a different specific compound and the magnitude 

of each element represents the abundance of that compound in the fuel sample. This 2-

dimensional abstraction vector that represents the fuel composition can be referred to as a 
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metaspectrum of compound vs abundance, as shown graphically in Figure 2. In order to 

construct the metaspectra, the TIC peaks are identified and, then sent to the NIST Mass Spectral 

search engine. Compound abundances are calculated from the TIC peak areas and these peak 

areas used to set the magnitudes of the appropriate elements in the abstraction vector. With 

appropriate peak thresholds, the vast majority of chromatographic artifacts and masking 

compounds are automatically eliminated. It was determined that a peak area threshold of 0.001% 

was the best choice for the most analyses. 

 

 
Figure 2. Plot of the abstraction vector, which is a two dimensional metaspectral representation 

of fuel composition. 

 

Because it would be impossible to predict every possible compound that could be present in a 

future fuel population, and to produce a training data set that would allow for their future 

identification, a methodology was developed to more ably accommodate those compounds that 

do not appear to any significant extent in the training data set. Instead of simply using the best 

possible NIST database identity match alone, the second best possible identity is also considered. 

These identities are then each compared to a master list of compounds that were actually found 

during the production of the original fuel property prediction models. If the first most likely 

compound does not appear in the master list, then the second most likely compound can be 

tested. In this fashion, uncalibrated compounds that are nonetheless structurally similar to 

calibrated compounds won’t be ignored and are allowed to influence fuel property prediction 

results in an appropriate fashion. 

 

PLS Regression Analysis. PLS regression was used to develop the statistical correlations 

between the component spectra of the fuel samples to their measured ASTM fuel property 

values. The technique of PLS is based on singular value decomposition (SVD), which 



 

10 

 

mathematically transforms data based on the underlying linear variances that can be found within 

it. SVD results in a linear transformation of the data into new variables, known as latent variables 

(LVs) because they are not directly observable in the original data. These LVs are calculated so 

as to maximize covariance between the data and the variable to be predicted, which allows the 

differentiation of larger and smaller sources of variance not only from each other, but also from 

possible interfering factors, producing multivariate prediction models that provide a higher level 

of overall model robustness than can be afforded by simple univariate prediction models.  

 

It is critical to choose the appropriate number of LVs to use in a particular property model. The 

trade-off is one of bias versus variance: if too few LVs are used, the model will inadequately 

model the property of interest, producing biased predictions, while if too many are used, the 

model will overfit to spurious variance in the calibration data and poorly predict the properties of 

new, uncalibrated sample data. Achieving this balance between modeling precision and 

robustness is particularly challenging when modeling fuel properties, due to the variable nature 

of fuel compositions. The number of LVs to be retained in each PLS fuel property model 

construction were determined using leave-one-out cross-validation (LOO-CV)35 which 

approximates model performance with uncalibrated data. In LOO-CV, the predicted fuel 

property value of each fuel sample in a given model is based on a sub-model built from every 

other sample except for the sample being given a prediction value. This operation produces a 

single Root Mean Square Error of Cross-Validation (RMSECV) result for each number of LVs 

evaluated. Choosing the number of LVs that minimizes this RMSECV value theoretically 

maximizes the performance of a given model with uncalibrated data. However, RMSECV results 

are ultimately an imperfect metric to use to optimize the number of LVs in this type of 

modeling.26-38 This is because RMSECV results are still based on models that take almost all of 

the available training data into account and are, therefore, being created under the assumption 

that the training data are completely representative of all possible future data. This assumption 

may be valid when only modeling petrochemical fuels, but is not necessarily valid with the 

inclusion of alternative fuels of unknown compositions in sample populations. 

 

To compensate for this reality, the numbers of LVs to be used for each fuel property prediction 

model produced were instead chosen automatically using an F-test statistic.39-41 The F-test was 

applied to the LOO-CV cumulative predicted residual error sum of squares (CUMPRESS) results 

with an 85% confidence interval, using a maximum of 10 LVs. The use of the F-test tends to 

select a smaller number of LVs than the minimum RMSECV value would suggest, which, in 

turn, sacrifices the immediate quality of a model in order to better preserve its robustness and its 

potential utility in the presence of uncalibrated data. By limiting the number of LVs that can be 

incorporated into a model, the F-test protects against overfitting. Once the number of LVs was 

chosen using the F-test, each model was rebuilt using all possible calibration data to obtain the 

final Root Mean Square Error of Prediction (RMSEP) results. 
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Uninformative Variable Elimination PLS. A modified version of PLS known as UVE-PLS42 

was used in this work to remove variables from the PLS model training data that contribute 

minimal or no relevant information toward the given modeling goal. With GC-MS derived 

metaspectra, this results in the elimination of uninformative individual compounds, focusing the 

construction of the PLS models on those compounds that are most statistically significant with 

respect to the fuel property being modeled. Although the elimination of specific compounds may 

seem counterintuitive, given the stated goal of developing a comprehensive FFP modeling 

strategy, the eliminated compounds deemed to be uninformative through UVE-PLS were not 

contributing constructively to model quality, and thus constituted only noise or interference. 

Furthermore, because the models produced through the use of UVE-PLS still retained many 

compounds, regardless of the strategy being used, it is our hypothesis that these models will still 

be capable of accommodating future fuels, regardless of their composition. 

In order to understand how UVE-PLS functions, first consider the basic equation for Partial 

Least Squares: 

 

𝑦 = (𝑋𝑐 × 𝑏) + 𝑒 (2) 

 

where, y is the (n x 1) vector of calibration values (in our case, fuel properties), one for each of 

the n fuel samples; Xc is the (n x p) data used to predict the calibration values (in this case, our 

metaspectral data, one vector of length p per sample because there are p possible compounds); b 

is the (1 x p) vector of regression coefficients that is obtained by using PLS; and e is the (n x 1) 

error vector (i.e. the data variance not described by the regression coefficients). 

 

The actual (n x 1) vector of fuel property predictions one obtains from the PLS model (ŷ) can be 

summarized as: 

�̂� = (𝑋𝑛 × 𝑏) (3) 

 

where, Xn is the data for the new sample to be analyzed, and ŷ is a vector of fuel property 

predictions. UVE-PLS requires a cross-validation procedure. In this work, as described 

previously, a leave-one-out cross-validation was used. Each step in the leave-one-out cross-

validation produces not only a separate ŷ vector of fuel property predictions (from which to 

ultimately calculate RMSECV values), but also a separate b vector of regression coefficients. 

Each of these vectors is the length of the number of compounds considered during the modeling 

procedure, which means that each compound is associated with a set of regression coefficients, 

consisting of one regression coefficient obtained from each step in the cross-validation 

procedure. Since each compound has a separate set of regression coefficients, they can then be 

averaged and assigned a standard deviation value. The ratio of the average over the standard 

deviation is defined as the reliability ratio of that particular compound in the context of a 

particular PLS property model.  

 



 

12 

 

If random variables (compounds) are then added to the list of compounds for a given fuel sample 

(the original Xn data set), and thus added to the abstraction vector, then the reliability ratio 

described above can be calculated for them as well. This is done by adding a number of random 

variables to the abstraction vector equal to one-fifth of the number of compounds found in that 

fuel. By comparing the reliability ratios of the added random variables with the actual 

compounds found in the fuel, it is possible to determine if a given fuel constituent is more 

informative to a particular model than a random compound.  

 

In this manner, each compound detected in a fuel is tested to determine if its reliability ratio is 

higher than at least 85% of the random-variable reliability ratios. If it is equal to or greater than 

85%, then that compound is retained in the final model. Otherwise, it is removed, since it is 

inconsistently informative and not contributing to that particular property model. 

 

2.3 Comparison Functions 

 

Two gas chromatography – mass spectrometry (GC-MS) data comparison strategies are 

implemented in the Fuel Composition and Screening Tool (FCAST). The deltaCompare sub-

routine was designed to quickly and quantitatively compare two fuel samples, while the feature 

selection strategy based on Analysis of Variance (ANOVA) was designed to use the relative 

differences between larger replicate data populations to isolate more subtle yet still informative 

data features for further analysis and assessment. It is shown that both comparison strategies 

produce different but complementary sets of results, and that both sub-routines can find uses in 

many aspects of fuel analysis. 

deltaCompare. This novel computational strategy was developed to provide quantitative 

information regarding compositional differences of all detected compounds in two fuels. It is a 

simplified GC-MS comparison strategy that only considers the area-normalized total ion 

chromatograms (TICs) of the two fuel samples to be compared. At each individual retention 

time, the magnitude of the TIC for the two fuel samples are compared, and if the difference 

between the two values is greater than the standard deviation of the differences in the two TICs 

at all retention times multiplied by a constant value, then the higher-magnitude mass spectrum 

corresponding to that retention time is subjected to a NIST database search for identification 

purposes. This is roughly equivalent to operating on peak differences that are statistically 

significant with respect to the overall signal to noise ratio of the data. In order to minimize false 

identifications, it is generally recommended that the constant value be set at 2.33, which is 

consistent with a one-tailed statistical z-test at a conservative 99% confidence interval (CI). 

However, there are provisions for the user to specify smaller values, at the risk of false 

identifications, which can however, be of some use in cases where more subtle compositional 

changes are sought.  
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ANOVA Fisher-Ratio Feature Selection. A pointwise ANOVA-based feature selection of GC-

MS data was also implemented into FCAST to elucidate compositional changes between 

replicate populations of two samples. As implied previously, this is an improved and streamlined 

implementation of the methodology used in previous modeling studies to uncover the sometimes 

subtle compositional changes undergone by fuels during thermal stress. The primary difference 

between the previous work and the present implementation is that the ANOVA feature-selected 

data subset representing the compositional differences, can be interpreted by the tools in FCAST 

instead of the moving-window parallel factor analysis (PARAFAC) as previously used.  

 

This approach is based on comparing the variance between the two sample populations to the 

variance present within each population in accordance with Equations 4 and 5. The ratio between 

these two sources of variance corresponds to the well-known ANOVA F-test statistic, also 

known as a Fisher ratio, or f-ratio. In summary, the ANOVA feature selection algorithm 

calculates between and within-sample variance estimates at each point in the GC-MS 

chromatogram, and then uses these to calculate the f-ratio for every data point in the GC-MS 

data cube. 

 

𝑓-𝑟𝑎𝑡𝑖𝑜 =  
𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑙𝑎𝑠𝑠 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑤𝑖𝑡ℎ𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
= (

𝜎𝑐𝑙𝑎𝑠𝑠
2

𝜎𝑒𝑟𝑟
2

) (4) 

𝜎𝑐𝑙𝑎𝑠𝑠
2 =

∑(�̅�𝑖 − �̅�)2 𝑛𝑖

(𝑘 − 1)
 𝜎𝑒𝑟𝑟

2 =
[∑ ∑(𝑥𝑖𝑗 − �̅�)

2
] − [∑(�̅�𝑖 − �̅�)2𝑛𝑖]

(𝑁 − 𝑘)
 (5) 

where, 𝑘 = #classes (#samples); �̅�𝑖 = mean of the ith class (sample); 𝑥𝑖𝑗 = ith measurement of class j; 

𝑛𝑖  = #measurements in ith class; 𝑁 = #GC-MS spectra 

In its most basic form, an ANOVA F-test is used to assess whether or not the means of two or 

more sample populations are different. The null hypothesis for this test is that the means are the 

same. The f-ratio is calculated and compared against a critical value derived from an F 

distribution with the appropriate degrees of freedom and associated with a given significance 

level. If the f-ratio is larger than the critical value, then the null hypothesis is rejected and it is 

concluded that the sample means are different within the confidence interval that is the 

complement of the significance1 level used in the test (i.e., a significance level of 0.05 leads to a 

confidence interval of 95%). Thus, larger f-ratios imply a greater certainty that the sample means 

are different, although, strictly speaking, the significance level of a statistical test is chosen prior 

to the test and not driven by the data. At present, FCAST allows for the manual selection of f-

ratios using a slider, which, in turn, allows end-users to customize the certainty associated with 

ANOVA-based comparison results. 

 

                                                 

1 Significance in this context is defined as the probability of incorrectly rejecting the null hypothesis. 



 

14 

 

Outside of a purely statistical context, the f-ratio can also be viewed as a heuristic measure of 

how discernable two sample populations are, and is conceptually similar to other quantitative 

measures, such as signal-to-noise and chromatographic peak resolution. In this implementation, 

there are three main factors that influence the ANOVA f-ratio feature selection results: 1) the 

magnitudes of the difference in chemical composition, 2) the measurement error, and 3) the 

number of replicates. The magnitude of the difference in chemical composition between two 

samples at a given location in the GC-MS chromatogram is reflected in the numerator of the f-

ratio, while the denominator is essentially an embodiment of the measurement error itself (Eq. 

6). Thus, a sample composition difference of a given magnitude measured by an instrument with 

a given measurement error can be viewed as a signal-to-noise proposition with an implied 

tradeoff between the two quantities. In other words, either reducing the measurement error or 

increasing the magnitude of the chemical composition difference would result in a larger f-ratio 

while a commensurate increase and reduction in one and the other would maintain a constant f-

ratio. 

 

𝑓-ratio(GC-MS)=
variance of a peak between different samples

variance of a peak between replicates of a single sample
 (6) 

 

The number of sample replicates influences the ANOVA f-ratio feature selection by 

influencing the accuracy with which the component variances of the f-ratio are estimated. As the 

numbers of replicates are increased, the accuracy of these estimates also increases, conferring 

increased statistical power2 to the F-test implied by the f-ratio calculation. This means that for a 

given confidence interval, more replicates will enable chemical differences with smaller "signal-

to-noise" to be detected. This is illustrated in Figure 3, where the base 10 logarithm of the f-ratio 

is plotted against the logit3 of the p-value. As shown in Figure 3, assuming a 99.9% confidence 

interval, an F-test with three replicates of each sample requires an f-ratio of at least 74 to detect a 

sample difference, while one with 10 replicates of each sample requires an f-ratio of only 15. 

This represents a five-fold reduction in signal to noise requirements for detection without 

altering the magnitude of the chemical difference or measurement error of the instrument. At 

least five replicate analyses of each sample are thus generally recommended in order to help 

ensure that the component variance estimates are reasonable.  

 

                                                 

2 Statistical power is defined as the probability of correctly detecting a real difference between samples. 

3Logit is defined as the logarithm of the odds ratio for a given probability, logit(p) = log(p/(1-p)). Logit values 

less than zero correspond to probabilities less than 0.5 and those greater than zero to probabilities greater than 0.5. 

Thus, integer intervals on a logit scale represent order of magnitude differences in probability, e.g. the interval 

(0.001, 0.01) is approximately (-3, -2) on the logit scale. 
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Figure 3. Dependence of the probability of rejecting the null hypothesis on f-ratio. 

 

As was also the case with the deltaCompare sub-routine, this ANOVA-based feature selection 

approach implicitly assumes that any systematic differences between the two replicate 

populations are purely due to actual differences in chemical composition. Therefore, 

practitioners should be careful regarding the potential to introduce non-chemically related 

systematic differences between the replicate sets; for example, by using widely different GC-MS 

instruments, or methods to generate the two replicate sets in isolation from each other. 

 

3.0 FCAST Software Overview 
 

FCAST combines the functionality of an improved version of the NRL compositional profiler2 

with modeling of critical fuel properties. The software requires the NIST Mass Spectral Search 

program to identify the compounds in the sample, and it will notify the user if the spectral 

database is not installed on the computer. If it is not installed, the software will still run and load 

Agilent Chemstation GC-MS data files, but no new analyses can be run. FCAST saves all results 

of the analyzed data and can display processed results without the original data files. In this way, 

FCAST will always show any files that have been analyzed without the need for directory 

navigation. However, in order to get the results in a readable format, the data must be exported. 

Analyzed results can be imported from or exported to another computer running FCAST.  
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FCAST performs all necessary preprocessing and processing steps automatically, and presents 

the user with the predicted properties, the composition organized by compound class, a lists of 

compounds found in a fuel, the fuel-relevant compound classes within which these compounds 

can be classified, carbon number distributions, and other analysis results that may be of interest 

to various expert and non-expert users. The overall process is illustrated in the flowchart shown 

in Figure 4.  

Figure 4. Computational flowchart for FCAST. 

 

In the current version of FCAST (version 3.0), the compositional profiling is performed 

independently of the fuel property modeling. This allows a level of versatility in the 

compositional profiling that is not available in the property modeling because the property 

modeling must be performed using a certain set of analysis parameters. Changing, for example, 

the peak area threshold value to be used with an incoming data set creates a metaspectrum that is 

fundamentally ill-suited for use in models constructed using different peak area threshold values. 

However, the compositional profiler, not being similarly restricted, can be used with different 

minimum peak area thresholds, MF thresholds, and MS data ranges to parse and explore fuel 

composition in a more free-form manner. The default settings for these parameters are nearly the 

same as those used for the property modeling, so leaving them unchanged will still result in an 

effective analysis. A solvent delay can also be an input into the compositional profiler in order to 

exclude non-compositional, early-spectrum data artifacts. 

 

The property predictions are checked against the models to determine if the data falls within the 

model to make a valid prediction. If the sample falls outside of the property model the value is 

reported as NaN (Not a Number), so as to not report a false value. In addition, since the property 
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models were designed for conventional fuels and fuel blends containing alternative fuels, these 

models are not accurate when applied to compositionally sparse or pure compounds. Thus, if any 

single component makes up more than 80% of the sample no property calculations are 

performed. The fuel properties that are predicted by PLS modeling of the GC-MS metaspectra in 

FCAST are shown in Table 1. 

 

Detection of sample overloading. In a GC-MS analysis, there are two ways that a sample can 

overload the system that will impact the integrity of the final results: 1) Chromatographic 

overloading, and 2) detector overloading. Chromatographic overloading occurs when the 

quantity of an analyte on a GC column exceeds the capacity of the stationary phase, causing the 

analyte to elute in a non-Gaussian manner characterized by non-symmetrical peak shapes and 

can adversely affect peak area calculations. However, even when column overloading is not 

evident, GC-MS detector overloading can still occur. This is a consequence of a limitation in the 

Agilent GC-MS data file format, where the number of ion counts for a particular m/z fragment 

peak is limited to a maximum value of 8388608. Since the TIC is calculated as the sums of 

detector counts at each GC retention time, if this variable limit is exceeded, the peak areas will 

not be correct. 

 

However, software variable overloading of this nature is not always evident from TIC peak 

shapes and must be explicitly checked. FCAST checks each incoming GC-MS data file for 

variable overloading by checking all m/z values to ensure that they are less than the maximum 

value (8388608). Any m/z values that are at maximum are classified as “overloaded” and the 

total percentage of overloaded peaks are calculated as a percentage of the total number of peaks. 

Overloaded peaks will introduce errors in the relative abundances of the different compounds 

calculated by the profiler, as well as cause errors in the calculated properties. If the user 

processes a file that contains overloaded peaks, this will be shown in red in the information box, 

to the right of the TIC display. It is recommended that overloaded GC-MS data be reacquired 

with a lower sample concentration. Functionality to correct mildly overloaded peaks has been 

added, which looks at the last scan that is not overloaded and uses the ratio of the non-

overloaded masses to determine the intensity of the overloaded masses. This approach, however, 

has limitations if too many masses are overloaded, or if the signal the too overloaded, then an 

accurate correction will not be achieved. 

 

Direct Calculations. Those fuel characteristics that can be directly calculated from the GC-MS 

data, are not modeled. Fuel system icing inhibitor (FSII) is required to be added to military jet 

fuels. FSII, more specifically diethylene glycol monomethyl ether (DiEGME), is a single 

compound which can be identified by its two most abundant mass fragment ions at m/z=45 and 

59. There are a limited number of other typical fuel constituents that produce the same m/z=45 

ion, but since those interfering compounds do not also produce the m/z=59 ion, they can be 

eliminated. Examining these two fragment ions, the software first determines if there is any 
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DiEGME at all and returns zero (0) as a value if not. If DiEGME is determined to be present, 

then the sum of the two fragment ions are compared to the whole sample and used to determine 

FSII composition in the fuel. 

 

Distillation curves acquired in accordance with ASTM D8643 can be modeled from composition, 

but direct calculations are more precise. A method was developed by which a simulated 

distillation (SIMDIS) type of calculation can be performed on the GC-MS data without 

calibration standards. The SIMDIS determines the temperatures at which 10%, 20%, 50%, and 

90% of the fuel would be distilled from the fuel. This is accomplished by using the GC retention 

time indices of identified straight chain alkanes (with known boiling points) as an internal 

standard. The alkane retention time indices are used to map boiling point to retention time and 

the distillation points are then calculated as percentages of total fuel eluted from the column. If 

there are too few identified alkanes to adequately define the boiling point map (e.g., a pure 

compound or a mixture of two pure compounds), the software will not display the distillation 

point numbers. FCAST has an n-Alkane Marker Override option, which would allow for setting 

the retention time indices. Using this option would give a predicted distillation curve for samples 

run with the same method, but do not contain the necessary n-alkane markers. 
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Table 1. Properties predicted by FCAST. 

PROPERTY Units ASTM #Samples LVs RMSEP 

Collegative 

Density (g/cm3) g/cm3 D4052 777 9 0.0051 

Flash Point °C D93 949 9 5.1187 

Pour Point °C D5949 431 5 5.9645 

Freeze Point °C D5972 425 8 2.4902 

Cloud Point °C D2500 412 4 3.9342 

Viscosity -20 °C cSt D445 76 1 0.9902 

Viscosity 40 °C cSt D445 597 5 1.1598 

Acid Number mg/g KOH D3242 510 5 0.0598 

Cetane Index -- D976 536 8 1.8765 

Dist. IBP (°C) °C D86 (a) (a) (a) 

Dist. 10% (°C) °C D86 (a) (a) (a) 

Dist. 20% (°C) °C D86 (a) (a) (a) 

Dist. 50% (°C) °C D86 (a) (a) (a) 

Dist. 90% (°C) °C D86 (a) (a) (a) 

Dist. FBP (°C) °C D86 (a) (a) (a) 

Constituents-Major 

Olefins vol% D1319 61 2 0.7828 

Saturates vol% D1319 61 6 0.8732 

Aromatics vol% D6379 71 7 0.9248 

Naphthalenes vol% D1840 47 3 0.2972 

Constituents-Minor 

FSII (DiEGME) (b) wt% D5006 (a) (a) (a) 

Hydrogen wt% D3701  38 6 0.7547 

Sulfur wt% D4294 561 9 0.1192 

Karl-Fischer Water ppm D6304 50 2 13.1203 

Insolubles 

Existent Gum mg/100 mL D381 233 3 1.7007 

Lubricity (BOCLE) WSD mm D5001 253 3 0.0489 

Storage Stability mg/100 mL D5304 391 2 0.9636 

Demulsification minutes D1401 407 1 3.0557 

 

(a) Predicted by direct calculation. 

(b) FSII calibration is specific to DiEGME; this tool will not detect other icing inhibitors.  
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4.0 Using FCAST 
 

FCAST was developed to operate with Agilent GC-MS Chemstation data files. It is important to 

bear in mind that the information presented by FCAST is based on library pattern matching and 

chemometric analyses of the GC-MS data. Thus, the quality of the results obtained will be 

directly related to the quality of the raw GC-MS data and care must be taken to ensure that the 

instrument is configured properly and the chromatography and mass detection are functioning 

properly. 

 

4.1 GC-MS Data Acquisition 

 

The Instrument must be configured as follows: 

  

 Instrument: Agilent 7890A GC connected to an Agilent 5975C MSD with a heated 

transfer capillary line (250 °C) 

 Column: 60m x .25mm x 0.5 µm Agilent DB-1ms fused silica with a helium flow of 

2.0 mL/min. 

 MS Parameters: Source temperature 250 °C, Quad temperature 150 °C, Scan Mode 

scanning from 35 – 400 m/z with a threshold of 250 and a gain factor of 1.5. 

 Oven Program: 40 °C for 2 min, 5 °C/min to 165 °C, 2.5 °C/min to 265 °C, 10 

°C/min to 295 °C for 0 min, Total Run Time of 70 min. 

 GC Inlet: Split mode, 35:1 split ratio, 285°C 

 Sample Preparation: dilute 5:1 with methylene chloride 

 Injection Volume: 0.5 µL  

It is imperative that the GC-MS method used when generating data for FCAST be identical or 

as similar as possible to that used to collect the training data upon which the models and direct 

property calculations are based. Slight deviations between GC-MS instruments will exert 

minimal impact on the accuracy of the compositional profiler, as the peak-based mass spectral 

abstraction process is relatively robust with respect to calibration transfer between different 

similar instruments. However, the precision of the property models is sensitive to the acquisition 

parameters used, since they are based on compositional distribution data.  
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4.2 Data Processing System Requirements 

 

FCAST is designed to run on the Microsoft Windows platform and the .NET 4.6 Framework. A 

minimum screen resolution of 1024×768 pixels is required and also requires that the NIST Mass 

Spectral Search Program (NIST11/14/17). If the NIST MS Search program is not installed, 

FCAST will still run and load samples (even those imported from other systems) but no new 

analyses can be conducted. FCAST also requires the Visual C++ Redistributable for Visual 

Studio 2015 for connection to the NIST Mass Spectral Search. 

 

4.3 Software Installation 

 

The FCAST Installation program will install FCAST and check whether the .NET 4.6 

Framework is installed. The installer will NOT check if NIST MS Search is installed as the 

software does not need it to run, but is necessary to process data. 

 

If you are upgrading from a previous version of FCAST v3, the installer will remove the 

previous version. Any data files created by the program will remain, and the preferences will be 

maintained. FCAST v3.0 will load results from v2.x and convert the database index for v3.0. The 

data files are not backwards compatible, and any v2.x version would need to reanalyze the data. 

 

4.4 Interface Design 

 

The interface (Figure 5) is designed to be user friendly with the ability to open data folders and 

select which files to process. The program also displays previously processed data, eliminating 

the need to reprocess the data to display results. In addition to the predicted fuel properties, the 

complete output of the compositional profiler is displayed in a tree format that allows the 

operator to expand the tree to display the individual compounds detected with estimated 

abundances in normalized volume or mass percent. Once a compound is selected, the eluted peak 

is indicated by a marker on the plot of the total ion chromatogram (TIC), as well as the mass 

spectrum, chemical structure, and NIST library match factor. A tabbed interface also allows the 

user to view the carbon distributions of the total fuel, as well as in the aromatic, saturated and 

olefinic fractions. Degrees of unsaturation are also shown, organized by carbon number. 

Additional tabs show the carbon distribution by hydrocarbon class, an approximated distillation 

curve, and a TIC display with user selectable compound labels. 

 

Zoom/Pan 

Pan Right mouse button  

Zoom Mouse Wheel 

Zoom by rectangle Ctrl+Right mouse button 

Reset Axes ‘A’, Home, right click context menu 
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Figure 5. FCAST screenshot showing a profiled fuel sample. 

 

The program allows for a selection of methods to identify the peaks in the spectrum. The 

quickest analysis uses a simple first derivative approach to identify peaks in the TIC, while the 

most intensive uses factor analysis to identify peaks in the individual mass channels. The 

identified peaks are sent to the NIST mass spectral database for identification. Processing times 

are dependent on the analysis method used, ranging from a couple of minutes for the simple 

method, to hours for the factor analysis method per sample for typical petroleum based fuels. To 

account for uncalibrated compounds not in the master list for property prediction, the second 

result returned from the NIST search is used. FCAST also incorporates a data export 

functionality that allows the operator to select which processed data will be sent to a formatted 

MS Excel spreadsheet. There is also the option to export the compositional information, 

including compound classes, carbon numbers and other data to text files for import into other 

software applications.  

 

All processed data are listed in an XML index and stored in a separate binary database, so that it 

is not necessary to retain the original raw GC-MS data files to view or reprocess the analysis 

results. It is only necessary to retain the raw data if it is desired to maintain the original context 

for the data. When the user selects a directory containing Agilent Chemstation data, or selects the 

processed data folder, the names of the files in that directory are shown in the pane on the left. 

Selecting any of the file names immediately displays the TIC and file header information. The 
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user has the option of processing selected files or all files and once processed, they file names are 

displayed in bold text. 

 

5.0 Menu Commands 
 

5.1  File 

Load: Select the folder containing the Agilent Chemstation GC-MS “.D” files to process. 

While loading the list of files in the directory, hitting ESC will stop at the files loaded. 

Recent Folders: Keeps track of the last 5 folders selected 

Export Results: Saves a comprehensive summary results from all processed samples in an 

Excel spreadsheet “Summary-MM-DD-YYYY hh-mm-ss.xlsx” in the folder containing the 

“.D” data files. The spreadsheet contains a summary tab with the calculated property results 

and compositional profiler results for all samples, and a separate tab for each fuel sample that 

contains the above results for that sample, in addition to the entire list of identified 

compounds from the NIST mass spectral search. 

Figure 6 shows the selection window for selection files to export. Once the export is 

complete, the user has the option to open the file in Excel, or return to FCAST. 

Figure 6. File export dialog window. 
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Processed Files: This menu item allows for importing, exporting and viewing processed data 

files. 

 Import: Imports the XML and processed data files previously exported from another 

computer running FCAST. The software will ask for a folder location containing the 

file and copy them into the user directory. 

 Export: Exports the XML and processed data files to a folder, for moving to another 

computer running FCAST. The user will be prompted for which files to export from 

the list of ALL processed files (not just the directory selected). Then the user will be 

prompted for which folder (or create a new folder) to save the files. 

 View: This option will populate the list of files stored in the database that are already 

processed (but without knowing the original location). All other options of seeing the 

GCMS data, Properties, and Profile are available, as well as reprocessing the file. 

 Manage Entries: This option allows for sorting (by Name or Date) or removal of 

processed data files from the database, this will not remove the original data files 

located outside of FCAST. 

Exit: Exits FCAST. The user will first be prompted to confirm.  

 

5.2  Analyze 

FCAST analyzes the TIC for identifiable peaks meeting the minimum area criteria. These 

peaks are then sent to the NIST MS Search program for identification. The returned results 

are then screened, selecting those that are above the minimum match factor criteria. All the 

results are saved so that the minimum match factor can be changed without needing to 

reprocess the file. These compounds are then sent to the profiler to determine which class 

they fall into. Additionally, the results of the NIST search are used to calculate the properties 

of the fuel. The status of the analysis is shown at the bottom of the window indicating how 

many peaks are being analyzed and approximately how long the current processing should 

take. 

Profile: This menu group allows for processing of files in the current folder 

 Selected File(s): Process the currently selected file(s) 

 New Files: Process all unprocessed files 

 All Files: Process all files in the current directory 

 Cancel Processing: Terminate the analysis, without saving any information. 

Reduced Profile: Once the fuel is profiled, the user can select a section of the sample, based 

on retention time, and view the compounds in only that section of the sample. The 

percentages listed will still be based on the entire sample and not only from the reduced set 
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of compounds. This feature is useful to selectively examine, for example, heavy 

contaminants in a fuel sample. 

Blend Fuels: Experimental feature, allows for calculating properties of mixes of two fuels (at 

10% intervals). This option is available when the processed files are displayed, since the user 

first chooses two fuels to test blending (Figure 7). Once processed a new window (Figure 8) 

shows TIC for fuel A, fuel B and blended fuel, a slider to choose blend level. A table of 

properties for each step of the blended fuel is also shown. 

Figure 7. Blend Fuels selection window. 

 

Figure 8. Blended Fuels results window, (1) allowing mixing percentage, (2) Fuel A, (3) 

Mixed Fuel, (4) Fuel B, (5) Blended properties. 
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ANOVA: This function allows the comparison of two fuels using the Fisher Ratio44, which is 

derived from an analysis of variance (ANOVA). For the ANOVA procedure, a minimum of 5 

replicate GC-MS analyses are required for each fuel sample to be compared. The data files 

available are those in the directory selected by the main FCAST window. Figure 9 shows a 

screenshot of the ANOVA comparison tool. The left listbox (1) shows all the files available 

to compare. The two list boxes middle are the samples selected as class A (2) and B (3) for 

comparison. The two buttons labeled ‘>’ add files to each class respectively, and the buttons 

labeled ‘<’ remove samples. The button ‘A <-> B’ swaps the samples used for each class, 

which is useful if the alignment step does not give good results. Since the ANOVA operates 

on all data points, proper alignment of the replicate spectra is critical in order to avoid errors. 

In the ANOVA subroutine, all the samples are aligned to the first sample in class A, which in 

some cases, can result in misalignment.  

 

The checkboxes for Normalize and Align allow the user to select whether or not those 

options are enabled. The Analyze button will load the data, then normalize and/or align, if 

selected, then show a plot of the processed data for observation (Figure 10) to allow the 

operator to ensure that the peaks are properly aligned. If the data are not aligned, the operator 

has the option of reversing the two classes, or not aligning the data, to obtain proper 

alignment of the peaks. The feature selected mass spectrum derived from the ANOVA is 

displayed for the chosen f-ratio (4) which can be adjusted using the slider control (6). The 

sum of the f-ratios at each retention time is displayed (5), showing where the largest variance 

between the two samples is located in the spectrum. Figures 7 and 8 show the feature 

selected TIC (in blue) based on the currently chosen f-ratio, with the full TIC in light gray for 

reference. 
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Figure 9. FCAST ANOVA screen, showing 1) List of data files; 2) Selected samples for class A; 

3) Selected samples for class B; 4) Feature selected mass spectrum based on the selected f-ratio; 

5) Sum of the f-ratios at each retention time; 6) f-ratio selector; 7) Feature selected TIC for class 

A and 8) Feature selected TIC for class B. 

Figure 10. FCAST ANOVA chromatogram alignment window. 
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deltaCompare: The deltaCompare is a simplified GC-MS comparison strategy that only 

considers the area-normalized TICs of two fuel samples to be compared. The advantage of 

the deltaCompare is that it only requires one GC-MS analysis per sample. The disadvantage 

of the deltaCompare with respect to the ANOVA is that instrumental variations are not taken 

into account. At each individual retention time, the TIC values for the two fuel samples are 

considered, and if the difference between the two values is greater than the standard 

deviation of the TIC-based differences at all retention times multiplied by a constant value 

(two standard deviations), then the mass spectra corresponding to that retention time is 

reported. Figure 11 shows the deltaCompare window after processing two samples. 

 

Figure 11. deltaCompare screen, showing 1) List of data files; 2) Selected sample for class A 

and B; 3) Selected sigma multiplier; 4) Feature selected mass spectrum based on the selected f-

ratio; 5) Graph of the A-B and B-A TIC showing identified components. 
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Dendrogram: The dendrogram function provides a means for the operator to compare a set 

of replicate GC-MS data, or GC-MS data from different fuel samples. The dendrogram is a 

simplified hierarchical analysis based on the first two principal components from a PCA 

cluster analysis of the submitted GC-MS data. The distance between two dendrograms on the 

x-axis is indicative of the similarity in the samples and can be used to determine if a set of 

replicates of samples are suitable for use in the comparison functions available in FCAST. It 

can also serve as a means to classify a set of fuel samples with respect to their compositions. 

Figure 12 shows the selection window for generating dendrograms. Figure 13 shows the 

results of 2 sets of data, one similar types of fuel, and one with different fuel types. The 

results on the left show a strong similarity between all the samples, while the samples on the 

right show a strong difference with three groups.  

 

Figure 12. Dendrogram screen selection, showing the method for selecting the data to 

analyze (>) add to selected data (<) remove from selected data and (Compare) to begin 

cluster analysis.  

 

Figure 13. Dendrogram results screen, showing two examples. The results on the left show a 

strong similarity between all the samples with a cluster difference less than 0.1. The results 

on the right show a strong difference with three groups, consisting of 2, 1 and 7 samples, 

with a very strong difference between the first 3 samples and the remaining 7. 
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5.3 Settings 

Search Parameters: These settings (Figure 14) allow the user to select the search 

parameters for the compositional analysis. Selecting Reset, returns the settings to their 

default values. The file currently viewed will be reloaded to account for any change in the 

Min Match Factor in the display of the profiled hydrocarbon results. 

 

Figure 14. Dialog for setting compositional profiler peak search parameters. 

 

 Minimum Area: The minimum area for a component to be added to the profile 

(default = 0.001%). 

 Minimum Match Factor: The minimum match factor from the NIST MS Search for 

the component to be added to the profile (default = 850).  

 Solvent Delay: The number of minutes to exclude from the data at the beginning of 

the acquisition to account for solvent elution (default = 0).  

 Mass Range: The minimum/maximum mass range to use for the NIST MS Search, 

constrained by the mass range used to acquire the GC-MS data (default = 35 to 400). 

 Use GCMS Method Mass Range: FCAST will attempt to read the 

minimum/maximum mass range from the method file of the sample, if available. 

Otherwise it will default to the parameters listed under Mass Range. 
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 Apply Mass Factor Corrections: When processed data is loaded, peak areas are 

converted to mass percent with the appropriate compound class mass factors.  

 Allow Duplicate Compounds: The reported profile listing will identify all peaks, 

and not combine peaks with the same name. This is only done when the data file is 

first processed. 

 Correct for Column Bleed: The GCMS data file will be loaded, and the last 200 

spectra will be used to do a baseline correction of the chromatogram to account for 

column bleed. 

 Correct Overloaded Peaks: The GCMS data file will be loaded and any moderately 

overloaded peaks will be adjusted to correct for overloading. 

 n-alkane Marker Override: This setting enables the user to ignore the retention 

times of the n-alkane compounds in the sample (if there are any) and use the saved 

list of n-alkane retention times to determine the distillation point profile.  

 Peak Selection Method: This is a dropdown menu that allows the operator to select 

the desired peak recognition method that is applied to the incoming data\, i.e., Simple, 

Mass Channel Analysis, or EWFA. 

Ignore Compounds: The ignore compounds tab allows the user to add specific 

compounds or name fragments that will be dropped from the profile if returned by the 

NIST MS Search. These include methylene chloride, siloxane, silane, silcoc, silyl and 

trifluoro as the initial default list. Care must be taken not to add any fragment (or name) 

to the list that is a valid compound that should be reported. For example “fluor” would 

be a poor choice to remove fluorine containing compounds, since flourene is a 

polycyclic aromatic hydrocarbon that would also be removed. Additionally the user may 

select the minimum number of m/z masses needed to be a valid compound, otherwise 

the program will skip the search for those below the set threshold. 

 

Changing the Minimum Match Factor and Apply Mass Factor Correction settings will 

recalculate the area/mass percent listings in the Hydrocarbon Profile listing of profiled 

samples. The n-Alkane Marker Override will recalculate the Distillation Curve, but will 

not affect the calculated property table. 

 

Profile Order: Allows the user to specify whether the compounds listed under each 

compound class in the compositional profiles are sorted with respect to Abundance or 

Retention Time. 
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n-Alkane Marker Calibration: Allows the user to set the retention time of the n-alkanes 

(C6-C24) that are used in the simulated distillation calculations. The display (Figure 15) 

shows the TIC of the currently selected sample, indicating the retention times of the 

identified n-alkane compounds. The retention times are color coded to indicate whether they 

appear to be in the correct locations and are therefore used in the distillation calculations. 

Dark red lines are determined to be correctly located, while the light red lines appear to be 

incorrect and are ignored. The green lines throughout the sample are the saved calibration 

times that are used if the n-alkane Marker Override option is selected. 

 

The saved calibration times should be adjusted to match the method used for any data where 

the override option is enabled. The average offset of retention times is shown below the 

displayed TIC, as well as the option to apply that delta to the saved calibration. To change 

individual Calibration retention times, just adjust the numbers in the table. Closing the 

window via OK will save the Calibration RT data, while clicking CANCEL will ignore any 

changes made. 

Figure 15. Interface screen showing n-alkane retention times in diesel fuel. The green lines 

show the saved calibration values available, whereas the red lines identify the retention times 

determined by the sample being analyzed. 
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5.4  Help 

 

About: The about screen (Figure 16) shows the current version of FCAST as well as the 

current version of the property models being used. These version numbers are saved into the 

results files as the data is processed, so a record is kept as to how and when the samples 

were processed. 

 

Figure 16. FCAST information window, showing versions of the application and property 

models used. 

 

ChangeLog: Describes the changes in the software since the previous versions. 

 

6.0 Output of Processed Results 
 

Exported Data. The results of processed data files can be exported to an Excel spreadsheet. The 

data exported consists of a summary sheet that contains for all exported files, the filename, 

sample name, noise factor, number of components found, a measure of data overloading, and 

which version of the software/property models was used. It also contains the profiler output, 

which consists of a summary of abundance in the major compound classes (saturates, aromatics, 

olefins, heteroatomics), compounds and their abundances in volume percent for each defined 

compound class, degrees of unsaturation (0-11), carbon number distributions (average, C6-C28) 

and the calculated properties. 

 

Each individual sample that was exported also has a tab that contains more specific details about 

that sample. In addition to the information listed on the summary sheet. The report is broken 

down into several sections: 

 general sample identification information 

 area % by hydrocarbon class 
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 20 largest peaks 

 area% by degrees of unsaturation 

 carbon profile by hydrocarbon class 

 component listing by hydrocarbon class 

 calculated properties 

 plot of the total ion chromatogram  

 

 

GCMS information Screen. The main screen of FCAST (Figure 17) was designed to provide 

the analyst with an informative overview of the composition and properties of the processed fuel 

GC-MS data file. A variety of types of information are displayed about the selected sample, 

including the predicted properties, composition, total ion chromatogram, as well as the mass 

spectrum and mass fragmentation pattern of any selected fuel constituent. The slider in the 

Properties section allows the user to choose whether to evaluate the predicted properties against 

the relevant specifications for Jet or Diesel fuel. The property values are shown as green (in 

spec), red (out of spec), or black (no spec available). Any predicted property values that are not 

considered valid, are not displayed (NaN). 

 

The list of data files indicates if a file has been processed by showing that entry as bold. The 

status bar at the bottom of the screen shows the data directory selected, the number of samples 

processed and the total number in the directory. The right side of the status bar contains a 

progress bar used in many aspects of the program. 
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Figure 17. FCAST GCMS Information screen, showing 1) List of data files; 2) GCMS data file 

properties, as well as the date the file was processed with FCAST; 3) TIC of selected file, 

showing selected retention time of the selected compound; 4) m/z table for selected compound; 

5) m/z plot for selected compound; 6) Calculated Properties of the sample; 7) Compositional 

profile in area percent; 8) Chemical structure of the selected compound in the hydrocarbon 

profile. 

  

1
2

3

4

5

6
7

8



 

36 

 

Hydrocarbon Distribution Screen. This screen (Figure 18) displays various information about 

the hydrocarbon distribution of the sample. The upper table shows area percentages for All 

CxHy/Saturates/Olefins/Aromatic by carbon number. By selecting the rows of this table, the bar 

graph changes to display the carbon number distribution of saturates, olefins or aromatics 

detected in the fuel sample. Additionally, the degrees of unsaturation by carbon number in the 

fuel are shown.  

 

Figure 18. FCAST Hydrocarbon Distribution screen, showing 1) List of data files; 2) Carbon 

number distributions in area percentages for different classes of hydrocarbons in the sample; 3) 

Bar graph depicting the carbon number distributions in a selected compound class (selectable via 

the upper table). 
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Compound Class Distribution Screen. This screen (Figure 19) displays the abundance of 

different compound classes in a stacked bar graph. The operator can select which compound 

classes are displayed on the right side of the graph and the bar graph changes to display the 

carbon number distribution of each of the selected compound classes in the fuel sample. A 

context menu is available by right-clicking on the graph to choose all or none of the compounds 

as well as changing the colors of the bars displayed for each class. By right clicking on the graph, 

the operator can copy the plot to the clipboard for export to other applications. 

 

Figure 19. FCAST Hydrocarbon Distribution screen, showing 1) List of data files; 2) Stacked 

Bar graph depicting the carbon number distributions in the selected compound classes 3) 

Compound class list as check boxes to add or remove from bar chart.  
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Distillation Curve Screen. This screen (Figure 20) displays a predicted distillation curve using 

the same algorithm as the property calculations for the distillation points. The current sample 

selected is displayed with a black line along with typical jet and diesel distillation curves, for 

reference. If there is insufficient alkane peaks to calculate the temperature access, the screen will 

indicate that with an “insufficient data to generate plot” warning. 

 

Figure 20. FCAST Distillation Curve screen, showing 1) List of data files; 2) Predicted 

distillation curve shown in black, along with jet and diesel reference curves.  
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Label Peaks Screen. This screen (Figure 21) displays the TIC with labels, showing the names of 

compounds with retention times. The selection tree on the right side allows for selecting/de-

selecting labels based on major classes, minor classes, or even individual compounds. 

 

Figure 21. FCAST Label Peaks screen, showing 1) List of data files; 2) TIC with labels based on 

profile; 3) Selection tree enabling choices of either compound class, or individual compounds. 

 

7.0 Third Party Libraries 
The following third-party libraries are used in FCAST.  

Math.NET Numerics is licensed under MIT/X11 License [http://numerics.mathdotnet.com/] 

Intel MKL Libraries is licensed under Intel Simplified Software License (April 2018) 

EPPlus is licensed under LGPL v2.1 license. [http://epplus.codeplex.com/] 

OxyPlot is licensed under MIT License. [http://www.oxyplot.org/] 

Extended WPF Toolkit™ Community Edition is licensed under Microsoft Public License (MS-

PL).[http://wpftoolkit.codeplex.com/] 
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