

AFRL-RH-WP-TR-2018-0094

Fusion Framework: Research Testbed for Human-Autonomy
Teaming

Allen Rowe, Sarah Spriggs
711 HPW/RHCI

James Boyer, Tom Hughes

InfoSciTex

August 2018

Final Report

AIR FORCE RESEARCH LABORATORY
711TH HUMAN PERFORMANCE WING
AIRMAN SYSTEMS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

Distribution A Approved for public release. Distribution is unlimited.

DESTRUCTION NOTICE – Destroy by any method that will prevent
disclosure of contents or reconstruction of the document.

Notice and Signature Page

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

Qualified requestors may obtain copies of this report from the Defense Technical Information
Center (DTIC) (http://www.dtic.mil).

AFRL-WP-TR-2018-0094 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

ALLEN ROWE JOSEPH PRICE, Maj, USAF
Fusion Program Lead Chief, Supervisory Control and Cognition Branch
Supervisory Control and Cognition Branch Warfighter Interface Division

LOUISE A. CARTER, Ph.D.
Chief, Warfighter Interface Division
711 Human Performance Wing
Air Force Research Laboratory

This report is published in the interest of scientific and technical information exchange and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved

OMB NO. 0704-0188
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY)
July 2018

2. REPORT TYPE
Final

3. DATES COVERED (From – To)
October 2014 – April 2018

4. TITLE AND SUBTITLE

Fusion Framework: Research Testbed for Human-Autonomy Teaming

5a. CONTRACT NUMBER
FA8650-14-D-6501
5b. GRANT NUMBER NA
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Allen Rowe, Sarah Spriggs (711 HPW/RHCI)

James Boyer, Tom Hughes (InfoSciTex)

5d. PROJECT NUMBER

5e. TASK NUMBER
0006
5f. WORK UNIT NUMBER
H0JF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
InfoSciTex REPORT NUMBER

4027Colonel Glenn Hwy,
Beavercreek OH 45431 OH 45431
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory
711th HPW/RHCI
2210 8th Street, Bldg 146
Wright-Patterson AFB, OH 45433

10. SPONSORING/MONITORING
AGENCY ACRONYM(S)
711th HPW/RHCI

11. SPONSORING/MONITORING AGENCY
REPORT NUMBER(S)

AFRL-RH-WP-TR-2018-0094

12. DISTRIBUTION/AVAILABILITY STATEMENT
Distribution A Approved for public release. Distribution is unlimited.
13. SUPPLEMENTARY NOTES
Cleared, 88PA, Case 88ABW-1812
14. ABSTRACT (Maximum 200 words)
Future unmanned systems operators and heterogeneous unmanned systems must be able to work as agile synchronous
teams to complete tactical reconnaissance, surveillance, and target acquisition related missions. Interface research in
this area is critical to the success of human-automation teaming, thus requiring a research test bed that brings together
humans, autonomy, and systems. Fusion is a framework that enables natural human interaction with flexible and
adaptive automation. There are four primary research threads that the Fusion framework is addressing to accomplish
these goals: cloud-based simulation architecture, software extensibility, interface instrumentation, and human-
autonomy dialog through retrospection. The current report documents the Fusion Framework’s features and the
motivation for its development.
15. SUBJECT TERMS
(U) Autonomy, Human-Autonomy Interface, Human-Autonomy Teaming, Operator Interface, Testbed, Software
Frameworks, Software Architecture, Service Oriented Architecture
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER OF 19a. NAME OF RESPONSIBLE PERSON
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE
Unclassified

ABSTRACT PAGES (Monitor)
Unlimited 28 Allen Rowe

 19b. TELEPHONE NUMBER (Include Area C
 937-713-7028

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

i

Table of Contents
Section Page

1.0 Background ...1
2.0 Tenants ...1
3.0 Objectives ... 2
3.1 Testbed for Human-Autonomy Interaction ... 2
3.1.1 Software Extensibility .. 2
3.1.2 Cloud-based Network System ... 3
3.1.3 Interface Instrumentation ... 4
3.1.4 Human-Autonomy Dialog through Retrospection ...4
4.0 Fusion Applications ... 5
4.1 Autonomy at Rest ... 5
4.1.1 IMPACT ..5
4.1.2 SWAMPED ... 5
4.2 Autonomy in Motion ... 6
4.2.1 ATACM ... 6
5.0 Fusion Architecture ...7
5.1 Framework .. 8
5.1.1 Features .. 8
5.2 Visual Framework ... 9
5.2.1 Login/Profile ... 9
5.2.2 Layout ... 9
5.2.3 Notification ..9
5.2.4 Feedback ... 9
5.2.5 Canvas .. 9
5.2.6 Tiles ... 10
5.3 Module / Messaging ... 14
6.0 Fusion Development Approach ... 16
6.1 Organization ... 16
6.1.1 Fusion Team ... 16
6.1.2 Research Facilities .. 16
6.2 Process – Virtual Distributed Laboratory .. 17
6.3 Software Development – Agile ... 18
6.4 Configuration Management ... 19
7.0 Lessons Learned ..19
7.1 Software Development Processes in a Research Environment ... 19
7.2 Challenges of Creating Extensible Software ... 20
8.0 Future .. 21
9.0 Acknowledgements .. 21
10.0 References .. 22
11.0 List of Symbols, Abbreviations, and Acronyms .. 23

ii

List of Figures

Figure Page

Figure 1. IMPACT Instantiation of Fusion .. 5
Figure 2. Conceptual Depiction of SWAMPED Effort (Stevens, et al., in press).. 6
Figure 3. Fusion High Level Framework for Current and Future Applications .. 7
Figure 4. Fusion Layered Architecture .. 8
Figure 5. Fusion Visual Framework Components .. 8
Figure 6. MMC Chat Tile .. 11
Figure 7. Help Tile ... 11
Figure 8. Sample Media Manager Tile ... 12
Figure 9. Sample Vehicle Dashboard Tile .. 13
Figure 10. Generic Cockpit Instrument Tiles ... 14
Figure 11. Example Cloud-based Network Architecture (IMPACT) ... 15
Figure 12. CSIL Capabilities .. 17
Figure 13. Fusion Virtual Laboratory Concept .. 18
Figure 14. Agile Software Development Process ... 18
Figure 15. Fusion Configuration Management Tools ... 19
Figure 16. Future Human Autonomy Teaming Reference Framework / Architecture 21

1.0 Background
The research, development and acquisition landscape is littered with attempts at automated capabilities
that have failed to live up to their promise and potential. Much of this failure can be attributed not to the
capabilities of the autonomy or automation themselves, but rather the limited capacity of these systems to
effectively adapt to the complexities and dynamics inherent in real-world operations. Operators often
reject such systems because of 1) their inability to fully understand autonomous reasoning processes
(observability), 2) the limited competency boundaries of these systems and the operators’ ability to
effectively direct these systems in response to these boundaries (directability), and 3) the uncertainty
associated with how these systems may behave in highly consequential situations (predictability). Many
of the autonomous and automated systems previously deployed have failed to appreciate the critical role
that human-machine communication and coordination plays in successful human-autonomy teaming.
Support for such communication and coordination has been a primary design driver in the development of
the Fusion Framework. In fact, the primary motivation for the development of the Fusion Framework was
the development of a simulation testbed built to support research into human-autonomy teaming.
Research directed at gaining greater insight into the socio-technical interaction between human-operators
and their autonomous teammates is the foundation upon which Fusion was conceived.

Automation, and particularly autonomous systems, have been gaining popularity in large part due to 1)
recent advances in the field of artificial intelligence and machine learning (technology push) and 2)
increased operational demands for more capable and adaptive systems to deal with the real challenges
of complex operational situations (requirements pull). Autonomy is a prominent tenant of the DoD’s recent
Third Offset Strategy which emphasizes the need to create increased efficiencies and effectiveness in our
ability to project power in an increasingly complex, dynamic and diverse national security environment.
One of the focuses of this strategy is the increased incorporation of unmanned systems and their
associated autonomy required to effectively adapt in the face of complex operational situations and to
combat anticipated vulnerabilities in datalinks within Anti-Access Area Denial (A2AD) environments
(Martinage, 2014). Fusion has been developed to explore the technical, operational, and organizational
challenges associated with increased autonomy and the means for supporting a more robust and resilient
form of coordination between human operators and these autonomous systems.

The Fusion Framework was conceived to serve as a testbed that would enable researchers the ability to
explore this space in a meaningful manner. To achieve this objective, Fusion had to 1) facilitate the
integration of automation/autonomous services from a broad range of developmental organizations
serving a broad range of operational activities, 2) support flexibility and creativity in the development of
operator interfaces allowing designers and analysts the opportunity to rapidly prototype and assess
alternative design concepts, and 3) enable reliable assessment of these concepts providing insights that
will serve as feedback in the refinement of autonomous services and the interfaces that support operator-
autonomy communication and coordination.

2.0 Tenants
The Fusion framework was built upon the fundamental tenant of supporting the integration and
coordination across humans, autonomy and systems. In the context of complex operational
environments characterized by highly dynamic situations, uncertainty and conflicting goals, understanding
the interdependencies that are inherent in the systems and capabilities used to operate in these
environments is critical to successful system performance. The Fusion Framework was envisioned as a
testbed that would enable researchers the ability to investigate issues and challenges that reside at the
intersection of human operators, autonomous agents, and the systems under their control.

Several challenges have emerged as we have explored the introduction of autonomous systems into the
realm of complex military operations. Foremost among these challenges is supporting the coordination
demands between human operators and their autonomous counterparts. Human-autonomy interaction or
teaming has become a major research thrust across a broad range of operational domains (e.g.,
autonomous cars, manufacturing, package delivery, emergency response, etc.). The key to realizing the
force multiplying potential of autonomy, particularly within complex operational environments, is
understanding and resolving how to effectively support coordination across human and autonomous
agents.

1
Distribution A Approved for public release. Distribution is unlimited

InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH 45431

DISTRIBUTIONS STATEMENT A. Approved for Public Release Cleared, 88PA, Case 88ABW-1812

2
Distribution A Approved for public release. Distribution is

unlimited InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH
45431

DISTRIBUTIONS STATEMENT A. Approved for Public Release Cleared, 88PA, Cas88ABW-1812

3.0 Objectives

3.1 Testbed for Human-Autonomy Interaction
In 2014 the Assistant Secretary of Defense Research and Engineering (ASD R&E) office initiated a series
and Autonomy Research Pilot Initiatives (ARPI). The goals of these initiatives were to 1) identify key
laboratory initiatives in autonomy, 2) strengthen community interest and improve communication across
initiatives and 3) increase joint collaboration in autonomy research across the Department of Defense
(DoD). In response to the ARPI, development of the Fusion Framework was initiated, and supported by
the ARPI initially. Development and continued refinement of the Fusion Framework is motivated by the
desire to explore interfaces that better support human-autonomy coordination and collaboration by
introducing immersive dialogs, task delegation, cooperative planners, intelligent agents, goal-reasoners,
and machine learning into a comprehensive autonomy framework.

As a research organization, the Airmen Systems Directorate Supervisory Control and Cognition) branch
of the 711th Human Performance Wing within the Air Force Research Laboratory (AFRL) was working to
establish a human factors testbed to enable 1) rapid prototype of human-machine interfaces (HMI) for
human-autonomy teaming, 2) robust instrumentation to include human physiological instrumentation and
human interaction with the HMI, 3) rich data sets so we can determine the effectiveness of the interfaces
and the ability to support various system performance measures. Our goal was to explore novel concepts
with a fully instrumented system tailored to the needs of research scientists that could provide the
necessary feedback further informing the design process.

The Fusion developers identified four key focus areas that endeavored to answer the following questions:

How can a software system create a framework where every public element, regardless of its role
as a model, user-interface element, etc., is customizable, Extendable and override-able by any
other software developer in the system?

How can a software system generalize disparate and similar messaging protocols to be protocol-
agnostic while allowing a many-to-many relationship between Cloud-based Networked Systems
for the generation, distribution and consumption of messages?

How can a software system be Instrumented to gather real-time user/machine interactions and
system details for use in experimentation, software agents, and machine learning?

How can a software system record the state of each of its components at a rate near 30Hz and
make it user-accessible to enable discrete and continuous Retrospection of the system in real-
time?

Recognizing there existed a gap in these areas drove the team toward a new architecture that would
support the research needs for innovative development of human-autonomy interactions and teaming.
The following sections explore each of these focus areas in more detail.

3.1.1 Software Extensibility
Fusion is being used in several different projects, all of which share the goal of improving operator
interactions with highly autonomous systems, but have vastly different HMI designs and algorithms. Due
to this, Fusion was built with the goal of extensibility.

Fusion’s infrastructure allows developers to override aspects of the HMI by adopting a layered
architecture in which the framework contains the building blocks for HMI tools and services. Developers
can add new HMI tools and services by overriding those building blocks and developing new modules.
Thus, developers can override or extend aspects of Fusion without altering the original or previous
extensions. Modules can be either universal or project-specific. Through this architecture, the user can
choose which modules are loaded, and therefore affect how the Fusion user interface looks and reacts.

One example of the extensibility currently realized in Fusion is the vehicle symbol. In test beds that allow
operators to control or supervise unmanned systems, vehicle symbols are important and appear in many
different places in the user interface. Within Fusion, vehicle symbols appear on the map, in various
notifications, on the vehicle status tool, in tasking tools, in many project specific tools, and other places.

3
Distribution A Approved for public release. Distribution is

unlimited InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH
45431

DISTRIBUTIONS STATEMENT A. Approved for Public Release Cleared, 88PA, Cas88ABW-1812

Most projects have their own vehicle symbol design and it typically requires a lot of work to replace that
symbol everywhere for every project. Fusion was built with this in mind, therefore, there is a default
simplistic vehicle symbol included in the framework. Every project has the ability to design and implement
their own vehicle symbol. With a single line of code in the project-specific vehicle symbol, all vehicle
symbols in the entire Fusion test bed can be replaced. An additional benefit allows developers to no
longer need to consider this during implementation: the framework handles it at run time.

Extensibility saves a great amount of development time and allows designers to explore multiple design
solutions. A user interface can be designed and implemented in multiple ways and, depending on which
modules the user loads, a specific design is realized. This also facilitates experimentation to explore
tradeoffs between alternative designs.

3.1.2 Cloud-based Network System
Fusion has established an application programming interface (API) for external software components to
communicate and interact with Fusion within a service oriented architecture. To date, vehicle simulations,
intelligent task allocation agents, vehicle planners, speech interpreters, chat systems, sensor
visualizations, operator assistance components, map layer data, and monitoring components have been
incorporated into the Fusion network API. These networked components employ various messaging
transport layer protocols (e.g., UDP, TCP/IP, ZeroMQ) and communicate using a variety of messaging
serialization formats (Distributed Interactive Simulation (DIS), AFRL’s Lightweight Message Construction
Protocol (LMCP), Javascript Object Notation (JSON), and custom). In some form, all the components are
linked together in their communications modalities by use of a publish/subscribe hub. Where appropriate,
the connections and protocols are also realized into appropriate interface components in Fusion, and are
intended to aid in creating a more immersive and interactive system for human-autonomy teaming.

The goal of this network API is to make the incorporation of external software as transparent and natural
as possible while leveraging data efficiently. All of the instrumentation data (discussed in detail later in
this section) is published to the hub, and any component that wishes to consume the data can do so with
a simple subscription. Likewise, communication messages from the other components are published to
the same hub, and Fusion (or any other component) can subscribe and receive those messages. Each of
the networked components may also communicate with another networked component using this same
structure. The Fusion team has worked closely with developers of other software components in order to
ensure a seamless integration. The publish/subscribe architecture present on the communications hub
makes for a natural assembly: all the associated data published by any software entity is available to any
other entity that needs to leverage it, thus enabling great flexibility in the potential interactions between
the entities, including Fusion and its operator(s). It also establishes the framework that will be needed for
our near-future extension of Fusion to a MOMU (multiple operator/multiple unmanned system) interface.

With Fusion as an operator’s interface, the communication with the components are more transparent
and natural. For example, in one of the programs that Fusion has recently supported, a user can define high-
level goals that Fusion dispatches to an intelligent agent. The agent allocates resources to be used for the
achievement of the goals and submits the realized requirement to the resource planner. The planner
reports the plan back to Fusion, which is then shown as a candidate solution. When accepted, the plan
is delivered to the resource simulation for execution, while another component monitors the plan execution to
alert the operator in case of issues. Each of these components communicate using a different set of
message protocols. To the operator, it appears as if all these components are part of Fusion: the operator
defines a goal and approves a plan, and it appears to the operator that the deliberative activity occurs
exclusively within Fusion. In this way, Fusion enhanced the operator’s teaming with the autonomous system
components while ensuring that the communication and feedback are transparent to the operator. Since
the operator is able to define high-level goals for the project, the system enables a realization of an
enhancement in the dialog between the operator and the various software entities that provide access and
control of autonomous systems. This enhancement was exercised in an initial evaluation and received
positive feedback from all the subjects. The flexibility and extensibility of the communications/network
framework have provided a baseline from which the development team will further enhance human-machine
teaming, creating a more immersive and flexible interactive environment.

4
Distribution A Approved for public release. Distribution is

unlimited InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH
45431

DISTRIBUTIONS STATEMENT A. Approved for Public Release Cleared, 88PA, Cas88ABW-1812

3.1.3 Interface Instrumentation
Data collection, agents, and machine learning all require capturing of data, which must be stored or
packaged up and sent across the network. User interface interactions are one of these critical data
sources. This capability was built into the Fusion framework and serves as a fundamental capability
enabling the exploration of key human-machine interactions. It is fairly non-invasive to the developers and
provides a host of information, both in real time and post-hoc. Every user interaction, such as button
clicks, typing, and mouse clicks are recorded and saved to a file.

All instrumented data is also packaged up and sent through the network to any agent, machine learning
algorithm, cognitive modeling service, or other automated service that is subscribing to the data source.
Instrumentation of all operator interactions is critical for human-autonomy teaming. There are many uses
for this feature of Fusion. Agents can leverage it to better understand user behavior and take or
recommend actions. Machine learning employs instrumentation data to learn how individual users
perform, and potentially recommend an interface change either after the fact or in real time (e.g., if a user
uses certain buttons more often, the buttons can be reorganized to better suit their use). The data can
inform cognitive modeling services, improving researchers’ understanding of how the operators are
performing.

During evaluations, all instrumentation data are recorded into a comma delimited log file, allowing the
experimenter to analyze performance data. Reaction times and accuracies based on the times of various
user actions saved in the file can then be determined. This was utilized in an initial evaluation for one of
the early applications of the Fusion framework. For example, a chat module was employed to request
tasks from the user. The chat requests and responses were instrumented, as were the user reactions.
The experimenter leveraged this data to analyze how quickly and effectively the task was performed. The
experimenter also noted any extra steps the operator performed, the sequence of steps taken, and the
modality of their actions. All data were used to analyze and improve the user interface as well as any
automated services.

3.1.4 Human-Autonomy Dialog through Retrospection
All of the instrumentation data can be used for retrospection. Since all the data is stored, it is natural to
allow it to be re-played post process or played back during runtime. Retrospection has two main
applications (and potentially more): experimenters can observe what was occurring to analyze why an
operator performed an action or series of actions, and operators can “pause” and “rewind” the scenario to
get another look at something that occurred in the past, further enhancing the human-autonomy dialog.

The concept of retrospection however goes beyond the notion of “replay” of the scenario. Retrospection
includes not only the ability to replay the scenario but also at any point during replay to terminate the
injection of recorded state data and proceed with real-time operator inputs. This allows analysts to
execute a broad range of “what-if” scenarios. How would the situation have played out if the system
chose this course of action over another course of action? It is envisioned that the capabilities made
available through the retrospection feature will allow both analysts and potential operators the ability to
gain greater insight into the reasoning processes of the autonomy services. Specifically, this feature will
help address challenges associated with the implementation of autonomous systems. One challenge is
the “black box” effect. A “black box” obscures the internal mechanisms providing insight only into its
inputs and resultant outputs. Given the nature of advanced autonomous systems, courses of actions
recommended by the system may run counter to operator expectations prompting operators to challenge
the recommendations. The “black box” nature of the autonomy has no explanation to provide and thus in
many cases operators may reject the recommendation merely because they do not understand the
reasoning behind it or is inconsistent with expectations (with a potential valid reason, the autonomy may
have access to or be able to conduct analysis on data that is unavailable to operators or operators are
unable to effectively analyze).

Likewise, another challenge is, upon analysts identifying situations that lie at the edge of the autonomy’s
competency boundary, exploring or experimenting with the reasoning processes of the autonomy. Use of
this feature may allow an analyst to better understand the demands and constraints of the problem, the
tradeoffs that may be required, and refine algorithms in an effort to expand or extend the overall
robustness of the system and the competency boundary of the algorithm. Retrospection has been

5
Distribution A Approved for public release. Distribution is

unlimited InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH
45431

DISTRIBUTIONS STATEMENT A. Approved for Public Release Cleared, 88PA, Cas88ABW-1812

envisioned as a tool that will allow stakeholders to explore and discover the decision space upon which
autonomous systems will be engaged.

4.0 Fusion Applications

4.1 Autonomy at Rest

4.1.1 IMPACT
As previously noted, the Fusion Framework was formed to support multiple ASD R&E ARPI projects (see
Section 3.0; two described herein). The purpose of this initiative was to foster research and push the
envelope for autonomy-based research. One such project, Realizing Autonomy via Intelligent Adaptive
Hybrid Control, developed an “Intelligent Multi-UxV Planner with Adaptive Collaborative/Control
Technologies” (IMPACT). This was a three year effort (fiscal years 2014-2016) with a focus on
maximizing human-autonomy team agility. The first year of this effort focused on designing and
implementing the user interface for higher level, goal-oriented plays (analogous to the sports ontology),
which included asset management and integrating the various autonomous components. This “play”
centric concept allows operators to focus on higher level goals for the vehicles, leveraging autonomous
aids in accomplishing those goals, thus reducing the need for the user to direct and control vehicles
manually.

The IMPACT instantiation of Fusion (Figure 1) employs a four screen layout: system tools, real time
tactical situation awareness (SA) display, sandbox tactical SA display, and sensor management. The
operator uses the sandbox display to perform all of their play calling and chat monitoring tasks. The other
screens display tools to enhance the operator’s SA.

All of the goals of the Fusion framework were critical to the success of the first year of IMPACT. Fusion,
autonomous agents, external simulations, a cooperative control planner, and machine learning algorithms
were combined to form a comprehensive, richly interactive environment. This was enabled by Fusion’s
flexible software architecture through a robust simulation environment, software extensibility, and
interface instrumentation.

4.1.2 SWAMPED

Figure 1. IMPACT Instantiation of Fusion

In order to realize the full potential of mixed airman and machine teams, airman workload must be
managed to prevent overload that could degrade team performance. A first step to achieving this goal is
measuring operator workload and projecting it into the near future, enabling proactive management.
Existing workload measures suffer from a number of problems making them unsuitable for this purpose.

6
Distribution A Approved for public release. Distribution is

unlimited InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH
45431

DISTRIBUTIONS STATEMENT A. Approved for Public Release Cleared, 88PA, Cas88ABW-1812

AFRL funded a multi-directorate effort to augment traditional physiological and performance data
analyses with a cognitive model, allowing integration of measures for a more robust multidimensional
workload metric. For this effort, we were responsible for the collection and data analysis using the
IMPACT system to provide operator performance measures. These performance measures, together with
capabilities from other AFRL teams (behavior measures, physiological measures, and cognitive
modeling), aim to: 1) better understand the complex relationship between an operator’s physiological and
behavioral measures with performance and workload associated with a human completing multiple tasks,
and 2) apply cognitive modeling techniques to help achieve assessment and prediction capabilities that
could be leveraged to inform dynamic workload management through adaptive task allocation. This
project, referred to as “SWAMPED” (System for Workload Assessment and Monitoring for Predicting
Effective Decision Making), is illustrated in Figure 2’s schematic and is described in more detail via this
reference (Stevens, et al., in press).

Figure 2. Conceptual Depiction of SWAMPED Effort (Stevens, et al., in press)

4.2 Autonomy in Motion

4.2.1 ATACM
US Forces must be able to conduct air combat operations in denied areas with highly dynamic, uncertain,
and adversarial conditions involving coordinated air-to-air and surface-to-air threats. One concept for
dealing with this challenge is the introduction of mixed manned and unmanned air combat teams.
Autonomy capabilities to enable cross-platform coordination and operations within an adversary’s
planning/decision/action timeline in an A2AD environment will be required, and have been called for in
numerous recent DoD and USAF planning documents (Ernest, et.al, 2016). The DoD Unmanned
Systems Roadmap specifically lists development of technologies and tactics for manned/unmanned
teaming as a critical challenge. The objective of the Autonomy for Air Combat Missions (ATACM) project
was to develop critical autonomous decision and machine learning technologies to enable
manned/unmanned air combat teams to operate in highly contested environments, and integrate them
into a tactical battle manager (TBM). The TBM enables a single human to manage the team and
coordinate unmanned air vehicles with manned aircraft (we refer to these as mixed teams). To develop
the TBM, refine its capabilities, and assess its combat effectiveness, the ATACM project used high fidelity
constructive and virtual analysis and training simulators for air combat missions using the Fusion
framework to also create a pilot-vehicle interface to support pilot interaction and coordination with a set of
unmanned wingmen. The project included a diverse, multi-domain team of experts from the United States
Air Force and Navy.

Since its initiation in 2013, the ATACM project pursued a spiral development approach, integrating
automation development and Pilot Vehicle Interface (PVI) design to enable a single pilot to command
multiple unmanned wingmen from the cockpit of a fighter aircraft. A series of simulation studies were
conducted in order to explore the feasibility and potential operational utility of a mixed manned-unmanned
configuration within the context of Offensive Counter-Air (OCA) operations. The primary objective of each

7
Distribution A Approved for public release. Distribution is

unlimited InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH
45431

DISTRIBUTIONS STATEMENT A. Approved for Public Release Cleared, 88PA, Cas88ABW-1812

study was to investigate human-machine interaction and teaming, along with different levels of system
autonomy in the execution of OCA scenarios. Secondary objectives include:

Assess the extent to which support for effective human-autonomy coordination is achieved
Assess the pilot’s workload and situation awareness when controlling unmanned wingmen
Assess operator/system performance between manned and unmanned wingman across various
levels of wingman autonomy
Solicit operator feedback regarding the quality of the operator interface relative to directing the
autonomous wingman and the feedback received from the autonomous wingman
Assess the allocation of mission functions between pilot and automation
Solicit pilot feedback on the level of observability and controllability of wingman operations
Solicit pilot input on novel ways to employ an unmanned aircraft as a wingman

5.0 Fusion Architecture
Fusion is a framework that enables natural human interaction with flexible and adaptive automation. It
employs multiple components: intelligent agents’ reasoning among disparate domain knowledge sources
(Douglass & Mittal, 2013); machine learning that provides monitoring services and intelligent aids to the
operator (Vernacsics & Lange, 2013), cooperative planners (Kingston, et al., 2009), and advanced
simulation via an instrumented, goal-oriented operator interface (Calhoun, et al., 2017). These empower
scientific experimentation and advancement across multiple autonomous technologies (Figure 3).

Figure 3. Fusion High Level Framework for Current and Future Applications

The Fusion Framework is essentially a Software Development Kit that provides generic extensible code
to enable autonomy based research. The framework consists of four fundamental layers: (a) the core
framework layer, (b) the extensibility and API layer, (c) the module / messaging layer, and (d) the
application layer (Figure 4). The core framework layer provides foundational software classes and an API.
This layer enables functionality for module lifecycle, user profile, and display layout management.
Additional features of this layer include system level notifications, multi-modal interactions and feedback,
workspace management, asset management (vehicles, tracks, sensors, named areas of interest, etc.),
geospatial information services (GIS) data and earth mapping capability, and user interface elements. All

8
Distribution A Approved for public release. Distribution is

unlimited InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH
45431

DISTRIBUTIONS STATEMENT A. Approved for Public Release Cleared, 88PA, Cas88ABW-1812

software modules have a public framework API to support interface extensibility. This is accomplished in
the extensibility and API framework layer. The module and messaging layer contains code written for
single and specific purposes. This is the layer that contains user interfaces, utility classes, and messaging
protocol support for communication to external software components. Finally, the application layer
contains code related to executable applications such as a test-bed, utility application, or test operator
console. All code is written utilizing agile software development principles, namely the SOLID principles
(Single Responsibility, Open/Closed, Liskov Substitution, Interface Segregation, and Dependency
Inversion) (Martin, 2012).

5.1 Framework

Figure 4. Fusion Layered Architecture

5.1.1 Features
While most of Fusion is completely customizable, there are a few core aspects that are common across
all projects. Each project maintains a scenario that basically contains the instructions on which modules
should be loaded as well as how Fusion should look and operate. The Fusion visual framework is broken
into six key concepts: (a) Login, (b) Layout, (c) Notification, (d) Feedback, (e) Canvas, and (f) Tiles/Views
(Figure 5). All of the core user interface items can be customized to a certain extent as well as turned on
or off to suit the needs of this project

Figure 5. Fusion Visual Framework Components

9
Distribution A Approved for public release. Distribution is

unlimited InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH
45431

DISTRIBUTIONS STATEMENT A. Approved for Public Release Cleared, 88PA, Cas88ABW-1812

5.2 Visual Framework

5.2.1 Login/Profile
Fusion requires a user login and profile which contain information about a specific user such as last
selected scenario and layout. There are also several key user interface components common across all
scenarios, such as screen layouts, canvases, feedback/notification bars, and tiles. All of these are
completely configurable to meet the needs of the scenario.

5.2.2 Layout
The layout system gathers information from the operating system on the number of screens as well as
their size. To avoid confusion, Fusion internally renumbers the screens based on their top left corner
position; ordering is from left to right, top to bottom. This allows the layout to be consistent across
machines with potentially different screen layouts and resolution configurations. The Fusion layout per
screen identifies which physical screens are to be used, what canvas to show on those screens, if the
notification/feedback bars are to be shown, and if that screen should be a sandbox. These concepts will
be described in the following sections.

5.2.3 Notification
The notification bar is another core user interface element of Fusion. This bar lives at the top of each
screen and can be turned on or off for individual displays. The notification bar contains quick actions, a
scrolling notification summary area, an indicator area, a time area, and an expanded notification area.
Quick actions are customizable and currently contain map functions (if tied to a map canvas) such as
reset map to north up and center on a particular symbol. The scrolling notification area simply provides a
quick summary of each notification present. Notifications are used to inform the user of events, such as
system alerts, errors, or custom events defined by the developer. These are present in the expended
notification area that can be opened by double clicking on the scrolling summary area. The indicator area
is also customizable and contains general system indicators such as the vehicles present in the system,
whether a multi-modal device is connected, or custom system status indications defined by the developer.
The time area contains the current system time as well as a stopwatch. This element is completely
extensible by the Fusion developer for specific requirements of the system under design.

5.2.4 Feedback
The feedback bar is similar to the notification bar and is located at the bottom of each screen. This is the
area the user receives feedback on their interactions with the system. It is primarily used for automation
and multi-modal feedback. The user receives speech command feedback, such as confirmation of what
was understood, or speech related errors on the feedback bar. Automated agents or other processes can
also feed messages to Fusion and can be displayed in this area. Like the notification bar, the feedback
bar contains a hidden expansion area to allow the user to see all of the current feedback items, since only
a single item displays on the bar at once for a set amount of time. The full view can be expanded clicking
on an indicator that displays the number of feedback items present in the system. This element is
completely extensible by the Fusion developer for specific requirement of the system under design.

5.2.5 Canvas
Each screen can have either an earth canvas, a blank canvas, or a custom canvas. The canvas can be
thought of as an artist’s canvas of which to place widgets developed by the Fusion developer for specific
projects. The widgets can be embedded in the canvas itself, such as the earth, or can be a space to place
tiles (see Section 5.2.6). Currently fusion contains an earth canvas which hosts OSG earth, a blank
canvas, and one custom canvas that hosts video management widgets. Custom canvases can be made
to suit any projects’ needs. This element is completely extensible by the Fusion developer for specific
requirement of the system under design.

 Mapping

SharpEarth is a three-dimensional (3D) mapping tool used within Fusion to display geospatial data and
layers onto a 3D earth. SharpEarth was created as a wrapper in C++/CLI to extend the functionality of the
C++ toolkits (OsgEarth and OpenSceneGraph (OSG)) into the C# environment. Extending such massive

10
Distribution A Approved for public release. Distribution is unlimited

InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH 45431

toolkits allows the framework to have a feature rich map with a huge set of layers draped over the earth
such as WMS imagery, elevation data, weather layers, and tiled image layers (tiff, png, jpg). This also
allows for the drawing of any 3D object on the map such as shapes, text, icons and indicators.
SharpEarth runs completely independent of Fusion by being placed inside of its own thread.
Communication between Fusion and SharpEarth occurs through thread safe callback layers. Touch and
mouse manipulations of the map are fully supported and can easily be hooked into programmatically
allowing complex interactions on the map such as shape manipulations. The earth can be displayed as
either a tile or a canvas within Fusion and can be completely customized through an earth configuration
file without the need to change the code-base.

5.2.6 Tiles
Another key user interface component is the concept of a tile. Tiles are smaller windows that are placed
on a canvas that contain widgets to display data to the user or accept user inputs. They are completely
customizable and serve as the primary mechanism used to build user interfaces within Fusion. The
Fusion Framework includes several core tiles that are described in the following sections.

 MMC Chat
The multi-modal communications (MMC) chat tile (Figure 6) allows multiple Fusion users and different
processes to communicate with one another. There are two components to an MMC tile, the chat server
connection management and the user interface.

The MMC framework within Fusion manages connections to an XMPP chat server running as either a
local service or a network service. The MMC framework manages chat users and chat rooms from within
Fusion. Users are automatically logged in using their Fusion login profile and they have the option of
logging in as other users. The MMC framework also handles connection errors as well as providing a way
to programmatically send chat messages.

Each tile represents a single chat room which is selected upon creating a MMC tile. The tile is the
mechanism by which the user interacts with the chat system by typing in chat messages, engaging
speech to text, text to speech, basic text editing functions, specifying keyword highlighting, changing the
text to speech volume, assigning a 3D audio location for that chat channel, or playing audio messages.
The 3D audio feature allows the user to hear the chat messages in their headset from a variety of spatial
locations. The MMC tile has also been extended to support an internet relay chat (IRC) client
functionality as well as a server-less broadcast chat functionally.

11
Distribution A Approved for public release. Distribution is unlimited

InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH 45431

 Integrated Help System

Figure 6. MMC Chat Tile

Inherent in the Fusion Framework is the concept of integrated help for all aspects of the user experience.
Each user interface component has the ability to specify a popup help tile or tooltip that contains an
HTML page with data pertaining specifically to that tile. These are accessed by clicking the question mark
button while Fusion is in help mode. Each tile contains a key, which is dynamically created based on tile
name at the time of its creation. Each HTML help file contains meta-data used to associate it with certain
Fusion concepts. The “helpType” meta-tag describes the type of category of a help page (Tile, Frame,
Voice, and Input). The project meta-tag describes the association of a project to its help file.

Figure 7. Help Tile

The Help Manual (Figure 7) is a navigable, searchable tile in Fusion utilizing web components. The help
manual is dynamically generated based on the HTML help files and the associated meta-tags. The
manual injects every HTML file it needs based on the project meta-tag into a book-style web app. It
simply displays a list of help files from all related projects loaded for a particular scenario. For example,
while running IMPACT the user would see a list of help files relevant to Fusion Core and IMPACT. These
same help files are also displayed if clicking a tile’s question mark button in help mode.

The Help Manual dynamically creates a data store in JavaScript to be utilized as a search tool, since
there is no connected database. The search function processes the pages based on keywords the user
inputs, and allows them to easily find the associated help page.

12
Distribution A Approved for public release. Distribution is unlimited

InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH 45431

 Media Manager Tile
The media manager tile (Figure 8) allows the user to view and markup images, view videos, and listen to
audio files. By default, the media manager monitors the output directory for the current Fusion run and
loads any existing media therein as well as any new media that becomes available in this directory during
execution of a particular scenario. Additional media directories can also be specified and monitored.

The Main Media Display Panel shows the media that is currently selected. The buttons located at the
bottom of the media manager Tile interact with this display area. Image media can be zoomed in this
display using the mouse wheel and slewed by dragging with the left mouse button clicked.

Within the media manager, media that can be displayed are shown in individual media tiles. These tiles
contain a thumbnail image, an information summary, and a “Favorite” button indicated by a star. Clicking
on the thumbnail or information summary sets the specified media as the currently selected media for the
media manager and will display it in the Main Media Display Panel. Clicking on the “Favorite” button sets
the specified media as a “Favorite” with in the media manager but does not select it.

Figure 8. Sample Media Manager Tile

The Favorites fly-out menu (aka fly-out) labeled “Favorites” is located on the left hand side of the media
manager tile. This fly-out displays three drop down lists of Media Tiles, one each for images, videos, and
audio. Each list header identifies the type and number of Media Tiles in the corresponding list. Located at
the top of the fly-out are buttons for toggling the display of the various media types. This allows for the
display of only media types of interest to the user.

The Available Media fly-out labeled “Media” is located on the right hand side of the media manager tile.
This fly-out displays four drop down lists of Media Tiles, one each for images, videos, audio, and new
media files available that have become available. Located at the top of the fly-out are buttons for toggling
the display of the various media types. This allows for the display of only media types of interest to the
user.

The Extended Info fly-out labeled “Info” is located on the right hand side of the media manger tile under
the Available Media fly-out and displays pertinent information about the currently selected media. This
information includes but is not limited to: metadata, user notes, and any miscellaneous information. The
information is displayed in appropriately labeled individual drop downs.

The Media Information Bar is located below the Main Media Display Panel and is divided into three
sections. These sections display information pertinent to the currently selected media, including but not
limited to: file location, creation time, status, geo-location of the media, time last modified, and media
format specific information.

13
Distribution A Approved for public release. Distribution is unlimited

InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH 45431

 Vehicle Dashboard
The vehicle dashboard tile (Figure 9) provides a visual overview of the dynamic components of a specific
vehicle. It is used as a window or view into the vehicle itself, much as if one were to be sitting in the seat
of the vehicle. All the components on this view are to provide at-a-glance information to inform the user
of all major events occurring in a vehicle. As mentioned, the look and feel of the dashboard were
designed to resemble a vehicle popup heads up display (HUD).

Figure 9. Sample Vehicle Dashboard Tile

The vehicle popup HUD provides the bulk of the high level information the user would need to make
reactive decisions to the scenario on a per vehicle basis. At the core of this control is a Vehicle
Presenter, enabling the user to see the specific type of vehicle being controlled, the amount of fuel left,
the play that has been instantiated and the quality of that play. The notion of a play is analogous to a
high level goal or task the user can assign to the system and depending on the services currently
associated with a particular scenario, the system will allocate the necessary vehicles to accomplish the
play. For each indicator on the HUD, color is used to encode the state of that subsystem (green, yellow
and red). Green indicates normal state, yellow being degraded and red being severe. Accompanied with
the vehicle presenter are two dials to show speed and altitude that follow the same indicator color system.
At the far left of the vehicle presenter we have error indicators that show and hide depending on the
severity of the specific system in the vehicle. These errors include items such as high fuel burn rate and
malfunctioned battery. In between the vehicle presenter and the error indicators is a single
button/indicator which allows the user to manually override the vehicle or then re-engage back to
automation mode. This button provides several basic actions to control the vehicle. First is a toggle-able
button to disengage/reengage automation mode of the vehicle and being in manual mode allows the user
to select the other options. The first action available is Go To Waypoint, which allows the vehicle to
immediately head towards a waypoint selected in the successive window. The second action available is
Flight Directed, enabling the user to send the vehicle on a straight line path in its current heading
indefinitely. The last action is the Loiter Now function which sets a loiter point at the current location.
Lastly, on the right of the HUD are payload indicators showing which payloads the vehicle has as well the
relative color coded status. The payloads consist of items such as lethal and nonlethal weapons, EO
sensor or IR sensor. Finally, across the top of the HUD is the current heading of the vehicle. The next
main feature of the dashboard is what lies underneath the popup HUD, the vehicle view.

The vehicle view is a toggle-able artificial horizon indicator and sensor video feed view. This view serves
as the primary display / canvas. The default view is an artificial horizon indicator for the vehicle and on
the top left of the tile is a toggle button to switch modes to a live feed of the active sensor. If the sensor

14
Distribution A Approved for public release. Distribution is unlimited

InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH 45431

has a gimbal, the sensor can then be steered via clicking on the video feed at the geo-location to focus on
as well as zoom in to specific locations via mouse wheel scrolling. Next to the video toggle button is a
center on command which is used to quickly find the vehicle, center on it and lock the camera to it as it
moves. If the scenario supports the notion of goal-directed plays that define the actions of one or more
vehicles, there is a color coded border around the edges of the vehicle view which directly correlates with
the play color to easily see which dashboard is associated with what play.

 Generic Cockpit Tiles

Since Fusion is intended to provide support to a broad range of autonomy research initiatives, the
development of a generic cockpit to support baseline manned-unmanned teaming became a priority
requirement. The Fusion development team created a series of tiles to represent a number of common
flight instruments and control/display features required to support the virtual simulation of a 3rd or 4th

generation aircraft. The development of these tiles provides the basic building blocks to easily construct
a representative cockpit of almost any configuration, and with minor modification could be tailored to
accurately represent any cockpit or flight deck. A version of the generic cockpit tiles being used for an
ongoing program within AFRL is presented in Figure 10.

5.3 Module / Messaging

Figure 10. Generic Cockpit Instrument Tiles

Keeping with our philosophy of flexible interaction, Fusion can be adapted to interface to any number of
messaging protocols and is therefore considered protocol agnostic. For example in one of the current
Fusion projects, IMPACT (discussed in more detail in Section 4.1.1), all inter-machine communication is
accomplished through DIS, LMCP, or the industry standard JSON formats (Figure 11). The DIS
messages support simulation of entities, such as vehicles, people, weapons, and effects. The DIS
messaging also drives the simulated sensor video feed and is rendered through SubrScene (see
https://sourceforge.net/projects/subrscene).

15
Distribution A Approved for public release. Distribution is unlimited

InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH 45431

Figure 11. Example Cloud-based Network Architecture (IMPACT)

LMCP (see https://github.com/afrl-rq) is a protocol focused on vehicle control and simulation. Its message
structures are defined through extensible markup language (XML) using its Message Data Model (MDM),
which is employed to generate class libraries in several computer programming languages and
documentation in html. The class libraries support serialization of the messages into binary format
suitable for transfer over the network. This protocol is employed primarily by Fusion, AMASE (Aerospace
Multi-Agent Simulation Environment; see https://github.com/afrl-rq/OpenAMASE/wiki/About-AMASE), and
UxAS (Unmanned Systems Autonomy Services; see https://github.com/afrl-rq/OpenUxAS - (Rasmussen,
Kingston, 2016)). AMASE defines vehicle dynamical models and propagates them through time to
produce states using LMCP throughout its internal representations. UxAS employs LMCP primarily as its
communication mechanism, collecting requests from Fusion and an intelligent agent service (Cognitively
Enhanced Complex Event Processing (CECEP) – (Atahary, Douglass, Webber, 2015)) then generating
plans to fulfill the requests, which are then sent on to AMASE. Fusion collects the plans generated by
UxAS and the states from AMASE to illustrate current and expected activity to the operator.

The JSON format is employed by Fusion, CECEP, and the plan monitoring service to satisfy various
communication needs. Fusion sends play specification information to CECEP, then proposes and
invokes play solutions, and finally the plan monitoring defines play status during execution with all using
JSON. Using JSON, we can create message structures in a much more concise manner and ease the
interoperability between the various software applications. JSON does not specify how to serialize itself,
and this is left up to the system developers.

This hybrid messaging structure has worked well to date, but there are a few ongoing issues that may
justify alternative protocols:

1. The open representation supported by JSON message definitions has caused problems in the
past where one software system is sending messages in a format that another software system
does not expect. Casting the resulting message to a class can cause exceptions if the format is
not agreed upon and rigorously enforced.

2. LMCP was designed to be very flexible in specifying messages and ease-of-use in a research
setting, but may lack in performance for high-message scenarios where other serialization
protocols are more appropriate. Its specification supports rigorous typing, but undisclosed MDM
modifications can cause significant issues. Thus, the synchronization of the MDMs across ALL
software components becomes a concern.

3. LMCP compiles to several popular programming languages, but unfortunately Javascript is not
one of them. Conversely, JSON is a first class citizen in Javascript.

16
Distribution A Approved for public release. Distribution is unlimited

InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH 45431

6.0 Fusion Development Approach

6.1 Organization

6.1.1 Fusion Team
The Fusion team is a small group of software developers that are a mix of government civilians and
government contractors. The Fusion team consists of several key members that break down, plan, and
execute requirements from many diverse research projects. These key roles are the project manager,
product owner, scrum master (described in more detail in Section 6.3), and the developers. These roles
and the team member performing them have evolved over time to best suit the needs of the team and the
different projects. Due to having a smaller team, some team members often fulfill more than one role at a
time. Usually all of these roles are filled by team members who are also developers on the project. The
roles and responsibilities are:

Project Manager
o Builds the project team
o Helps define the requirements
o Defines the goals and the timeframes for them to be achieved
o Handles the budget for the project

Product Owner
o Coordinates with the project manager, customers, and stakeholders
o Determines product functionality and content
o Decides when the product is ready for release
o Manages and prioritizes the product backlog
o Ultimate arbiter on requirement issues

Scrum Master
o Facilitates the software development process
o Enforces full involvement in all meetings and roles
o Communicates team progress and product status
o Shields the team from external interference

Developers
o Self-organize and collaborate with the rest of the Fusion team to accomplish tasks

defined for the sprint
o Defines, as a group, which tasks will be worked for a given sprint cycle based on

customer requirement priorities

6.1.2 Research Facilities
A key enabler of the research conducted under the Fusion effort was the development and sustainment of
the research facilities. This work included the procurement, setup and installation of all development
stations, simulation testbeds, specialized test equipment and the networks required to connect these
systems within the Crew Systems Integration Laboratory (CSIL) (Figure 12).

17
Distribution A Approved for public release. Distribution is unlimited

InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH 45431

Figure 12. CSIL Capabilities

6.2 Process – Virtual Distributed Laboratory
The notion of a virtual distributed laboratory (VDL) connecting various DoD and contractor sites
throughout the CONUS was paramount to foster a more cohesive and distributed development and
research environment. Fusion has adopted a DoD open source model, enabling joint development across
a variety of projects and collaborators, all contributing to a single source repository. The core
development team is located at Wright-Patterson AFB, and there are currently several offsite laboratory
development teams (Figure 13). Fusion is hosted on a secure web server and program access can be
requested at https://www.vdl.afrl.af.mil/ (please contact the authors for further instructions). The software
is developed on a standard Windows 10 PC platform in Microsoft Visual Studio and several third party
developer libraries (Figure 15). All distributed laboratory sites have similar hardware configurations and
the software developers use a common set of software development and configuration management
tools.

http://www.vdl.afrl.af.mil/

18
Distribution A Approved for public release. Distribution is unlimited

InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH 45431

Figure 13. Fusion Virtual Laboratory Concept.

6.3 Software Development – Agile
Fusion adheres to agile software development principles by utilizing an iterative and incremental software
development framework known as Scrum (see https://www.scrum.org/). Scrum allows for the software
development process to adapt, as needed, to changing work constraints and deadlines. While the
durations and times specified may change, the following process will remain. Currently, the Fusion team
will typically follow a 2-4 week sprint cycle depending upon the dynamics of the product backlog and the
nature of emerging requirements (Figure 14).

Figure 14. Agile Software Development Process

http://www.scrum.org/)

19
Distribution A Approved for public release. Distribution is unlimited

InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH 45431

From a development perspective, the Fusion team was similar to a scrum team, however the roles of the
product owner and scrum master were shared between a government civilian and a government
contractor representative.

Sprint Planning was held on the first day of every sprint cycle and was time-boxed to 4 hours. Attendees
included the Fusion team and any subject matter experts (SMEs) as needed. However, SMEs attended
primarily to answer questions or clarify misunderstandings as they arise from the Fusion Team. Standups
were held at least once per week during every sprint cycle, time-boxed to 15 minutes, and only attended
by the Fusion team. During a standup, attendees took turns sharing the following:

- What they accomplished prior to the previous standup
- What they plan to accomplish until the next standup
- What issues they may need help with until the next standup

Any and all problem solving, hypothesizing, or further inquiry discussions on issues or requirements
shared by attendees occurred only after the standup meeting had concluded.

Change review board meetings were defined within the typical scrum process, but were added to help
facilitate requirement expectations among the Fusion product owners and Fusion stakeholders. The
change review board meetings were held 1 day before the end of a sprint cycle and time-boxed to 2
hours. Only unresolved change requests (CRs) submitted prior to the meeting by the Fusion team and
stakeholders were typically addressed.

Backlog grooming meetings were held 1 day before the end of a sprint cycle and after the change review
board meeting. Backlog grooming meetings were time-boxed to 3 hours and only attended by the Fusion
team. A backlog grooming meeting was done when the time-box expires or enough product backlog
items (PBI) had been groomed such that they would fill two sprint backlogs (two sprint cycles). Difficulty
estimations were given to PBIs by Fusion developers and were determined by, but not exclusively:
complexity, risk, time, and scope.

Sprint review meetings were held on the last day of the sprint cycle and time-boxed to 2 hours. Attendees
included the Fusion team and any stakeholders who wished to attend. However, Fusion stakeholders
attended primarily to observe and inquire for further clarification to what the Fusion team presents.

6.4 Configuration Management
The Fusion source code repository follows a strict configuration management process. Once a week,
offsite developers submit their changes, and the core Fusion team integrates those changes and posts a
new version of Fusion on VDL for the offsite developers and researchers. In the near future, the team will
transition to a fully on-line software development cycle utilizing Git (a software configuration repository
structure) and the secure Defense Research & Engineering Network (DREN). This process allows all
offsite labs to keep up to date with the core Fusion team as well as keep their software well maintained.
The concept of a virtual distributed laboratory has been successful due to Fusion providing a robust and
flexible software architecture. The Fusion development team uses YouTrack during the scrum process to
track the product and sprint backlogs, and TeamCity to create specific software builds (Figure 15).

Figure 15. Fusion Configuration Management Tools

7.0 Lessons Learned

7.1 Software Development Processes in a Research Environment
Over the course of the project, several variations of software development processes have been
explored. It is rather difficult to find a good process that works well in a research environment due to

20
Distribution A Approved for public release. Distribution is unlimited

InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH 45431

rapidly changing requirements. The type of software development process to utilize took trial and error
before finding something that worked well for the team.

Agile processes sound great academically but can be challenging to practice as they tend to work best
when requirements and priorities are well defined and can be planned for well ahead of time. The
requirements can then be broken down into smaller pieces and planned out over one or more cycles.
Often exact requirements are not known in a research environment or they change within a development
cycle so it is hard to stay on task during the cycle. Developers get side tracked with new requirements
that come up during a cycle and eventually tasks are forgotten or pushed out. The process is supposed to
be agile and adjust to these situations but that isn’t as easy as it sounds.

Software development cycle time is an important factor. Is the software development broken into smaller
time spans or just treated as one giant timespan over the course of the project? Breaking it into some
type of timeframe allows the developers to regroup at specific times, allows for requirements to change or
be better defined without effecting the developers to often, and allows the developers to tackle issues one
at time without being overwhelmed. We have tried large cycles that span months and small one week
cycles. The shorter the cycle the more meetings and cycle management required, the longer the cycle the
larger the requirement list is going to be.

Another issue to consider is team size and arrangement. Are all developers developing within a common
framework treated as one giant team, are they assigned particular projects, or are tasks assigned based
on skill sets? Large teams equal more people to work on more requirements but might be switching
between types of requirements often, whereas smaller teams allow developers to focus on a smaller
number of tasks or task types.

We have tried many different combinations of software development processes to follow and have found
that you cannot strictly follow any given software development process within a research environment.
The solution we have found to work the best is to break the development team down into smaller more
focused teams that work on a single project or smaller subset of goals. Each team can decide and use
the software development process that works well for them. Each small team also has the freedom to
change the software development process if it isn’t working. Sometimes teams will need to change their
process for only a short period time to accommodate deadlines or particular tasks, but the important thing
to remember is that they have the flexibility to make that decision. Most of the software sub teams use a
variation of Scrum with 2-3 weeks cycles, then switch to a more queued task Kanban (see
https://en.wikipedia.org/wiki/Kanban) like approach when needed based on upcoming events.

We have also learned the most important part of any software development process is communication.
As long as everyone from the developers to the project managers are aware of what is going on, what the
tasks are, the priorities of the tasks, and which tasks are being working on, everything seems to run more
smoothly.

7.2 Challenges of Creating Extensible Software
One of the main goals and reasons for creating Fusion was to create an extensible software framework.
The idea behind creating an extensible framework for user interface research was so that user interface
elements as well as the data models can easily be changed to support a variety of different projects.

Developing extensible software comes with challenges. There is a delicate balance between making it too
extensible and not extensible enough. It can be rather difficult at design time to decide whether or not
that element should be extensible. Over the life of Fusion there have been elements they were made
extensible that have never been extended so they are often viewed as over complicated. There are also
elements that would have made tasks much easier if they had been written to be extendable.

The core Fusion framework is fairly extensible but should projects that extend from Fusion also be
extensible? When writing modules for new projects that extend from Fusion the developers don’t always
think that one day their project will be important enough that others may want to extend it. Sections of
code are often refactored to make them more useable and extensible years after they were originally
created and the team has acquired additional insight into how others will use them.

21
Distribution A Approved for public release. Distribution is unlimited

InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH 45431

8.0 Future
Currently there does not exist a comprehensive Reference Framework that supports applying and
extending RHCI’s existing suite of software testbeds to provide symbiotic human machine interfaces for
command and control of unmanned systems that harness potential benefits of autonomy across multiple
domains (Air, Ground, Surface, Cyber, Space). Within RHCI there exists several testbeds and software
services/tools to explore a rich set of research domains, each having its own unique characteristics and
capabilities. As these systems mature over time, not having a common Reference Framework creates
barriers for transiting concepts from one testbed/service/tool to another, both within and outside our
branch. In an effort to overcome this barrier, the development of a common Reference Architecture and
ontology will aid in the smooth transition of concepts across disparate testbeds, reduce software
development costs/effort, and promote an enterprise approach to modeling, simulation, and analysis
(MS&A) across AFRL (and potentially beyond).

Over the next several years our goal is to create a comprehensive Reference Framework / Architecture
(Figure 16) that will provide a template/schema to define a Human Autonomy Teaming Testbed Suite
(HATTS). This Reference Framework will include the following components …

1. Reference Model - Defines mission statement,
principles, and ontologies/vocabulary.

2. Process – Define the processes used in developing this
capability

3. Organization – Define roles and responsibilities and
skillset needed

4. Human Autonomy teaming (HAT) Reference
Architecture – Contains the Application Programming
Interfaces (APIs), Interface Control Documents (ICDs),
Development Standards, Schemas/Patterns.

Figure 16. Future Human Autonomy Teaming Reference Framework / Architecture

This comprehensive reference framework will ultimately promote interoperability, standardized
practices/interfaces, consistency across the tool suite, collaboration/communication/sharing across
projects/organizations, and mobility of developers across our organization and beyond.

9.0 Acknowledgements
The authors would like to acknowledge the entire Fusion, IMPACT and ATACM teams for their
contributions to the development and application of the Fusion Framework. It is only through the hard
work of implementing the framework within the context of specific research programs attempting to

The HAT
fundamental
components

Reference
software

(such as

Architecture provides a
foundation by which

services, libraries, tools,
models, design guidelines, etc.) can be created to be
compatible and extensible with each other to formulate
a Systems of Systems Modeling and Simulation
capability. This ensures that System A can effectively
communicate with System B and so forth.

22
Distribution A Approved for public release. Distribution is unlimited

InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH 45431

explore real-world challenges that Fusion can continue to serve as a viable human-autonomy testbed.
The authors would like to specifically acknowledge the contributions of those developers and analysts
that were directly involved in the development of the Fusion Framework including Austin Bangert, George
Bearden, James Boyer, Adam Buchanan, Bruce Clay, Michael Holland, Daylond Hooper, Michael
Howard, Prothima Kollegal, Jerry Van Pelt, and Kenneth Wickline.

The authors would also like to acknowledge the software developed at AFRL for the Vigilant Spirit
Program (Rowe, et al., 2009) as software engineering principles and concepts have transitioned into the
Fusion Framework.

10.0 References
Atahary, T., Taha, T., Douglass, S. A., & Webber F. (2015). Knowledge mining for cognitive agents
through path based forward checking. In Proceedings of the 16th IEEE/ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2015),
Takamatsu, Japan.

Calhoun, G. L., Ruff, H. A., Behymer, K. J., & Frost, E. M. (201a). Human-autonomy teaming interface
design considerations for multi-unmanned vehicle control. Theoretical Issues in Ergonomics Science,
19(3), 321-352.

Ernest, N., Carroll, D., Schumacher, C., Clark, Cohen, K. & Lee,G. (2016). Genetic fuzzy based artificial
intelligence for unmanned combat aerial vehicle control in simulated air combat missions. Journal of
Defense Management, 6(144), 2167-0374.

Kingston, D. B., Rasmussen, S.J., & Mears, M. J. (2009). Base defense using a task assignment
framework. AIAA Guidance, Navigation, and Control Conference, AIAA-2009-6209

Martin, R. C., Martin, Micah (2012). Agile Principles, Patterns, and Practices in C#.

Martinage, R. (2014), Toward a New Offset Strategy: Exploiting U.S. Long-Term Advantages to Restore
U.S. Global Power Projection Capability. Center for Strategic and Budgetary Assessments, Washington
D.C.

Rasmussen, S., Kalyanam, K., & Kingston, D. (2016). Field experiment of a fully autonomous multiple
UAV/UGS intruder detection and monitoring system. IEEE International Conference on Unmanned
Aircraft Systems (ICUAS), 1293-1302.

Rowe, A. J., Liggett, K.K., & Davis, J.E. (2009). Vigilant Spirit Control Station: a research testbed for
multi-UAS supervisory control interfaces. Proceedings of the 15th International Symposium on Aviation
Psychology.

Stevens, C., Spriggs, S., Dukes, A., Myers, C., Behymer, K., Ruff, H., Morris, M., Credlebaugh, C.,
Blackford, E., & Fisher, C., System for Workload Assessment and Monitoring for Predicting Effective
Decision-making (SWAMPED): Year 1 (in press). Air Force Research Laboratory Technical Report.

Vernacsics, P. & Lange, D. (2013). Using autonomics to exercise command and control networks in
degraded environments. 18th International Command and Control Research and Technology
Symposium, Alexandria, VA. DTIC ADA 587015.

23
Distribution A Approved for public release. Distribution is unlimited

InfoSciTex 4027 Colonel Glenn Hwy, Beavercreek, OH 45431

11.0 List of Symbols, Abbreviations, and Acronyms

3D – Three Dimensional
A2AD - Anti-Access Area Denial
AFRL - Air Force Research Laboratory
API - Application Programming Interface
AMASE - Aerospace Multi-Agent Simulation Environment
ARPI - Autonomy Research Pilot Initiatives
ASD R&E - Assistant Secretary of Defense Research and Engineering
ATACM - Autonomy for Air Combat Missions
CECEP - Cognitively Enhanced Complex Event Processing
CR - Change Request
CSIL - Crew Systems Integration Laboratory
DIS - Distributed Interactive Simulation
DoD - Department of Defense
DREN - Defense Research & Engineering Network
HATTS - Human Autonomy Teaming Testbed Suite
HMI - Human-Machine Interfaces
ICD - Interface Control Documents
IMPACT - Intelligent Multi-UxV Planner with Adaptive Collaborative/Control Technologies” (IMPACT)
IRC - Internet Relay Chat
JSON - Javascript Object Notation (JSON)
LMCP - Lightweight Message Construction Protocol
MDM - Message Data Model
MS&A - Modeling, Simulation, and Analysis
OCA - Offensive Counter-Air
OSG – Open Scene Graph
PBI - Product Backlog Item
PVI - Pilot Vehicle Interface
SA - Situation Awareness
SME - Subject Matter Expert
SWAMPED - System for Workload Assessment and Monitoring for Predicting Effective Decision-making
TCP/IP - Transmission Control Protocol/Internet Protocol
TBM - Tactical Battle Manager
UDP - User Datagram Protocol
UxAS - Unmanned Systems Autonomy Services
VDL - Virtual Distributed Laboratory
XML - eXtensible Markup Language
ZeroMQ – Zero Message Queue

	1.0 Background
	2.0 Tenants
	3.0 Objectives
	3.1 Testbed for Human-Autonomy Interaction
	3.1.1 Software Extensibility
	3.1.2 Cloud-based Network System
	3.1.3 Interface Instrumentation
	3.1.4 Human-Autonomy Dialog through Retrospection
	4.0 Fusion Applications
	4.1 Autonomy at Rest
	4.1.1 IMPACT
	4.1.2 SWAMPED
	4.2 Autonomy in Motion
	4.2.1 ATACM
	5.0 Fusion Architecture
	5.1 Framework
	5.1.1 Features
	5.2 Visual Framework
	5.2.1 Login/Profile
	5.2.2 Layout
	5.2.3 Notification
	5.2.4 Feedback
	5.2.5 Canvas
	5.2.6 Tiles
	5.3 Module / Messaging
	6.0 Fusion Development Approach
	6.1 Organization
	6.1.1 Fusion Team
	6.1.2 Research Facilities
	6.2 Process – Virtual Distributed Laboratory
	6.3 Software Development – Agile
	6.4 Configuration Management
	7.0 Lessons Learned
	7.1 Software Development Processes in a Research Environment
	7.2 Challenges of Creating Extensible Software
	8.0 Future
	9.0 Acknowledgements
	10.0 References
	11.0 List of Symbols, Abbreviations, and Acronyms

