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1.0 Background 
The research, development and acquisition landscape is littered with attempts at automated capabilities 
that have failed to live up to their promise and potential. Much of this failure can be attributed not to the 
capabilities of the autonomy or automation themselves, but rather the limited capacity of these systems to 
effectively adapt to the complexities and dynamics inherent in real-world operations.  Operators often 
reject such systems because of 1) their inability to fully understand autonomous reasoning processes 
(observability), 2) the limited competency boundaries of these systems and the operators’ ability to 
effectively direct these systems in response to these boundaries (directability), and 3) the uncertainty 
associated with how these systems may behave in highly consequential situations (predictability).  Many 
of the autonomous and automated systems previously deployed have failed to appreciate the critical role 
that human-machine communication and coordination plays in successful human-autonomy teaming. 
Support for such communication and coordination has been a primary design driver in the development of 
the Fusion Framework. In fact, the primary motivation for the development of the Fusion Framework was 
the development of a simulation testbed built to support research into human-autonomy teaming. 
Research directed at gaining greater insight into the socio-technical interaction between human-operators 
and their autonomous teammates is the foundation upon which Fusion was conceived. 

Automation, and particularly autonomous systems, have been gaining popularity in large part due to 1) 
recent advances in the field of artificial intelligence and machine learning (technology push) and 2) 
increased operational demands for more capable and adaptive systems to deal with the real challenges    
of complex operational situations (requirements pull). Autonomy is a prominent tenant of the DoD’s recent 
Third Offset Strategy which emphasizes the need to create increased efficiencies and effectiveness in our 
ability to project power in an increasingly complex, dynamic and diverse national security environment. 
One of the focuses of this strategy is the increased incorporation of unmanned systems and their 
associated autonomy required to effectively adapt in the face of complex operational situations and to 
combat anticipated vulnerabilities in datalinks within Anti-Access Area Denial (A2AD) environments 
(Martinage, 2014). Fusion has been developed to explore the technical, operational, and organizational 
challenges associated with increased autonomy and the means for supporting a more robust and resilient 
form of coordination between human operators and these autonomous  systems. 

The Fusion Framework was conceived to serve as a testbed that would enable researchers the ability to 
explore this space in a meaningful manner. To achieve this objective, Fusion had to 1) facilitate the 
integration of automation/autonomous services from a broad range of developmental organizations 
serving a broad range of operational activities, 2) support flexibility and creativity in the development of 
operator interfaces allowing designers and analysts the opportunity to rapidly prototype and assess 
alternative design concepts, and 3) enable reliable assessment of these concepts providing insights that 
will serve as feedback in the refinement of autonomous services and the interfaces that support operator- 
autonomy communication and coordination. 

 
2.0 Tenants 
The Fusion framework was built upon the fundamental tenant of supporting the integration and 
coordination across humans, autonomy and systems.  In the context of complex operational  
environments characterized by highly dynamic situations, uncertainty and conflicting goals, understanding 
the interdependencies that are inherent in the systems and capabilities used to operate in these 
environments is critical to successful system performance. The Fusion Framework was envisioned as a 
testbed that would enable researchers the ability to investigate issues and challenges that reside at the 
intersection of human operators, autonomous agents, and the systems under their  control. 

Several challenges have emerged as we have explored the introduction of autonomous systems into the 
realm of complex military operations. Foremost among these challenges is supporting the coordination 
demands between human operators and their autonomous counterparts. Human-autonomy interaction or 
teaming has become a major research thrust across a broad range of operational domains (e.g., 
autonomous cars, manufacturing, package delivery, emergency response, etc.). The key to realizing the 
force multiplying potential of autonomy, particularly within complex operational environments, is 
understanding and resolving how to effectively support coordination across human and autonomous 
agents. 
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3.0 Objectives 

3.1 Testbed for Human-Autonomy Interaction 
In 2014 the Assistant Secretary of Defense Research and Engineering (ASD R&E) office initiated a series 
and Autonomy Research Pilot Initiatives (ARPI). The goals of these initiatives were to 1) identify key 
laboratory initiatives in autonomy, 2) strengthen community interest and improve communication across 
initiatives and 3) increase joint collaboration in autonomy research across the Department of Defense 
(DoD). In response to the ARPI, development of the Fusion Framework was initiated, and supported by 
the ARPI initially. Development and continued refinement of the Fusion Framework is motivated by the 
desire to explore interfaces that better support human-autonomy coordination and collaboration by 
introducing immersive dialogs, task delegation, cooperative planners, intelligent agents, goal-reasoners, 
and machine learning into a comprehensive autonomy framework. 

As a research organization, the Airmen Systems Directorate  Supervisory Control and Cognition) branch 
of the 711th Human Performance Wing within the Air Force Research Laboratory (AFRL) was working to 
establish a human factors testbed to enable 1) rapid prototype of human-machine interfaces (HMI) for 
human-autonomy teaming, 2) robust instrumentation to include human physiological instrumentation and 
human interaction with the HMI, 3) rich data sets so we can determine the effectiveness of the interfaces 
and the ability to support various system performance measures. Our goal was to explore novel concepts 
with a fully instrumented system tailored to the needs of research scientists that could provide the 
necessary feedback further informing the design process. 

The Fusion developers identified four key focus areas that endeavored to answer the following questions: 

How can a software system create a framework where every public element, regardless of its role 
as a model, user-interface element, etc., is customizable, Extendable and override-able by any 
other software developer in the system? 

How can a software system generalize disparate and similar messaging protocols to be protocol- 
agnostic while allowing a many-to-many relationship between Cloud-based Networked Systems 
for the generation, distribution and consumption of messages? 

How can a software system be Instrumented to gather real-time user/machine interactions and 
system details for use in experimentation, software agents, and machine learning? 

How can a software system record the state of each of its components at a rate near 30Hz and 
make it user-accessible to enable discrete and continuous Retrospection of the system in real- 
time? 

Recognizing there existed a gap in these areas drove the team toward a new architecture that would 
support the research needs for innovative development of human-autonomy interactions and teaming. 
The following sections explore each of these focus areas in more detail. 

3.1.1 Software Extensibility 
Fusion is being used in several different projects, all of which share the goal of improving operator 
interactions  with highly autonomous systems, but have vastly different HMI designs and algorithms. Due   
to this, Fusion was built with the goal of  extensibility. 

Fusion’s infrastructure allows developers to override aspects of the HMI by adopting a layered      
architecture in which the framework contains the building blocks for HMI tools and services. Developers   
can add new HMI tools and services by overriding those building blocks and developing new modules.  
Thus, developers can override or extend aspects of Fusion without altering the original or previous 
extensions. Modules can be either universal or project-specific. Through this architecture, the user can  
choose which modules are loaded, and therefore affect how the Fusion user interface looks and reacts. 

One example of the extensibility currently realized in Fusion is the vehicle symbol. In test beds that allow 
operators to control or supervise unmanned systems, vehicle symbols are important and appear in many 
different places in the user interface. Within Fusion, vehicle symbols appear on the map, in various 
notifications, on the vehicle status tool, in tasking tools, in many project specific tools, and other places. 
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Most projects have their own vehicle symbol design and it typically requires a lot of work to replace that 
symbol everywhere for every project. Fusion was built with this in mind, therefore, there is a default   
simplistic vehicle symbol included in the framework. Every project has the ability to design and implement 
their own vehicle symbol. With a single line of code in the project-specific vehicle symbol, all vehicle 
symbols in the entire Fusion test bed can be  replaced.  An  additional  benefit allows developers to  no   
longer need to consider this during implementation: the framework handles it at run time. 

Extensibility saves a great amount of development time and allows designers to explore multiple design 
solutions. A user interface can be designed and implemented in multiple ways and, depending on which 
modules the user loads, a specific design is realized. This also facilitates experimentation to explore 
tradeoffs between alternative designs. 

3.1.2 Cloud-based Network System 
Fusion has established an application programming interface (API) for external software components to 
communicate and interact with Fusion within a service oriented architecture. To date, vehicle simulations, 
intelligent task allocation agents, vehicle planners, speech interpreters, chat systems, sensor 
visualizations, operator assistance components, map layer data, and monitoring components have been 
incorporated into the Fusion network API. These networked components employ various messaging 
transport layer protocols (e.g., UDP, TCP/IP, ZeroMQ) and communicate using a variety of messaging 
serialization formats (Distributed Interactive Simulation (DIS), AFRL’s Lightweight Message Construction 
Protocol (LMCP), Javascript Object Notation (JSON), and custom). In some form, all the components are 
linked together in their communications modalities by use of a publish/subscribe hub. Where appropriate, 
the connections and protocols are also realized into appropriate interface components in Fusion, and are 
intended to aid in creating a more immersive and interactive system for human-autonomy teaming. 

The goal of this network API is to make the incorporation of external software as transparent and natural 
as possible while leveraging data efficiently. All of the instrumentation data (discussed in detail later in 
this section) is published to the hub, and any component that wishes to consume the data can do so with  
a simple subscription. Likewise, communication messages from the other components are published to 
the same hub, and Fusion (or any other component) can subscribe and receive those messages. Each of 
the networked components may also communicate with another networked component using this same 
structure. The Fusion team has worked closely with developers of other software components in order to 
ensure a seamless integration. The publish/subscribe architecture present on the communications hub 
makes for a natural assembly: all the associated data published by any software entity is available to any 
other entity that needs to leverage it, thus enabling great flexibility in the potential interactions between 
the entities, including Fusion and its operator(s). It also establishes the framework that will be needed for 
our near-future extension of Fusion to a MOMU (multiple operator/multiple unmanned system) interface. 

With  Fusion  as  an  operator’s  interface,  the  communication  with  the  components  are  more  transparent 
and natural. For example, in one of the programs that Fusion has recently supported, a user can define high-
level goals that Fusion  dispatches  to  an  intelligent  agent. The agent  allocates  resources  to be used  for  the  
achievement  of  the  goals  and  submits  the  realized  requirement  to  the  resource  planner.  The planner  
reports  the  plan  back  to  Fusion,  which  is  then  shown  as  a  candidate  solution. When accepted, the plan 
is delivered to the resource simulation for execution, while another component monitors the plan execution  to  
alert  the  operator  in  case  of  issues.  Each  of  these  components  communicate  using  a different set of 
message protocols. To the operator, it appears as if all these components are part of        Fusion:  the  operator  
defines  a  goal and  approves  a plan,  and  it appears  to the  operator  that  the deliberative activity occurs 
exclusively within Fusion. In this way, Fusion enhanced the operator’s teaming with the autonomous system 
components while ensuring that the communication and feedback are   transparent  to  the  operator.  Since  
the  operator  is  able  to  define  high-level  goals  for  the  project,  the system  enables  a realization of an 
enhancement in the  dialog between the operator and the various    software  entities  that  provide  access  and  
control  of  autonomous  systems.  This  enhancement  was exercised in an initial evaluation and received 
positive feedback from all the subjects. The flexibility and extensibility of the communications/network 
framework have provided a baseline from which the  development team will further enhance human-machine 
teaming, creating a more immersive and flexible interactive  environment. 
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3.1.3 Interface  Instrumentation 
Data collection, agents, and machine learning all require capturing of data, which must be stored or 
packaged up and sent across the network. User interface interactions are one of these critical data  
sources. This capability was built into the Fusion framework and serves as a fundamental capability 
enabling the exploration of key human-machine interactions. It is fairly non-invasive to the developers and 
provides a host of information, both in real time and post-hoc. Every user interaction, such as button 
clicks, typing, and mouse clicks are recorded and saved to a file. 

All instrumented data is also packaged up and sent through the network to any agent, machine learning 
algorithm, cognitive modeling service, or other automated service that is subscribing to the data source. 
Instrumentation of all operator interactions is critical for human-autonomy teaming. There are many uses 
for this feature of Fusion. Agents can leverage it to better understand user behavior and take or 
recommend actions. Machine learning employs instrumentation data to learn how individual users 
perform, and potentially recommend an interface change either after the fact or in real time (e.g., if a user 
uses certain buttons more often, the buttons can be reorganized to better suit their use). The data can 
inform cognitive modeling services, improving researchers’ understanding of how the operators are 
performing. 

During evaluations, all instrumentation data are recorded into a comma delimited log file, allowing the 
experimenter to analyze performance data. Reaction times and accuracies based on the times of various 
user actions saved in the file can then be determined. This was utilized in an initial evaluation for one of 
the early applications of the Fusion framework. For example, a chat module was employed to request 
tasks from the user. The chat requests and responses were instrumented, as were the user reactions. 
The experimenter leveraged this data to analyze how quickly and effectively the task was performed. The 
experimenter also noted any extra steps the operator performed, the sequence of steps taken, and the 
modality of their actions. All data were used to analyze and improve the user interface as well as any 
automated services. 

3.1.4 Human-Autonomy Dialog through  Retrospection 
All of the instrumentation data can be used for retrospection. Since all the data is stored, it is natural to 
allow it to be re-played post process or played back during runtime. Retrospection has two main 
applications (and potentially more): experimenters can observe what was occurring to analyze why an 
operator performed an action or series of actions, and operators can “pause” and “rewind” the scenario to 
get another look at something that occurred in the past, further enhancing the human-autonomy dialog. 

The concept of retrospection however goes beyond the notion of “replay” of the scenario. Retrospection 
includes not only the ability to replay the scenario but also at any point during replay to terminate the 
injection of recorded state data and proceed with real-time operator inputs. This allows analysts to 
execute a broad range of “what-if” scenarios. How would the situation have played out if the system 
chose this course of action over another course of action? It is envisioned that the capabilities made 
available through the retrospection feature will allow both analysts and potential operators the ability to 
gain greater insight into the reasoning processes of the autonomy services. Specifically, this feature will 
help address challenges associated with the implementation of autonomous systems. One challenge is  
the “black box” effect. A “black box” obscures the internal mechanisms providing insight only into its 
inputs and resultant outputs. Given the nature of advanced autonomous systems, courses of actions 
recommended by the system may run counter to operator expectations prompting operators to challenge 
the recommendations. The “black box” nature of the autonomy has no explanation to provide and thus in 
many cases operators may reject the recommendation merely because they do not understand the 
reasoning behind it or is inconsistent with expectations (with a potential valid reason, the autonomy may 
have access to or be able to conduct analysis on data that is unavailable to operators or operators are 
unable to effectively analyze). 

Likewise, another challenge is, upon analysts identifying situations that lie at the edge of the autonomy’s 
competency boundary, exploring or experimenting with the reasoning processes of the autonomy. Use of 
this feature may allow an analyst to better understand the demands and constraints of the problem, the 
tradeoffs that may be required, and refine algorithms in an effort to expand or extend the overall 
robustness of the system and the competency boundary of the algorithm.  Retrospection has  been 
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envisioned as a tool that will allow stakeholders to explore and discover the decision space upon which 
autonomous systems will be engaged. 

 
4.0 Fusion Applications 

4.1 Autonomy at Rest 
 
4.1.1 IMPACT 
As previously noted, the Fusion Framework was formed to support multiple ASD R&E ARPI projects (see 
Section 3.0; two described herein).  The purpose of this initiative was to foster research and push the  
envelope for autonomy-based research. One such project, Realizing Autonomy via Intelligent Adaptive  
Hybrid Control, developed an “Intelligent Multi-UxV Planner with Adaptive Collaborative/Control 
Technologies” (IMPACT). This was a three year effort (fiscal years 2014-2016) with a focus on     
maximizing human-autonomy team agility. The first year of this effort focused on designing and 
implementing the user interface for higher level, goal-oriented plays (analogous to the sports ontology),   
which  included  asset  management  and  integrating  the  various  autonomous  components.  This  “play” 
centric concept allows  operators to focus on higher  level goals for the vehicles, leveraging autonomous     
aids in accomplishing those goals, thus reducing the need for the user to direct and control vehicles   
manually. 

The IMPACT instantiation of Fusion (Figure 1) employs a four screen layout: system tools, real time    
tactical situation awareness (SA) display, sandbox tactical SA display, and sensor  management. The   
operator uses the sandbox display to perform all of their play calling and chat monitoring tasks. The other 
screens  display tools to  enhance the  operator’s  SA. 

All of the goals of the Fusion framework were critical to the success of the first year of IMPACT. Fusion, 
autonomous agents, external simulations, a cooperative control planner, and  machine  learning  algorithms 
were combined to form a comprehensive, richly interactive environment. This was enabled by Fusion’s  
flexible  software  architecture  through  a  robust  simulation  environment,  software  extensibility,  and 
interface  instrumentation. 

 

4.1.2 SWAMPED 

Figure 1. IMPACT Instantiation of Fusion 

In order to realize the full potential of mixed airman and machine teams, airman workload must be    
managed to prevent overload that could degrade team performance. A first step to achieving this goal is 
measuring operator  workload and projecting  it  into the  near future,  enabling proactive   management. 
Existing workload measures suffer from a number of problems making them unsuitable for this purpose. 
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AFRL funded a multi-directorate effort to augment traditional physiological and performance data 
analyses with a cognitive model, allowing integration of measures for a more robust multidimensional 
workload metric. For this effort, we were responsible for the collection and data analysis using the 
IMPACT system to provide operator performance measures. These performance measures, together with 
capabilities from other AFRL teams (behavior measures, physiological measures, and cognitive 
modeling), aim to: 1) better understand the complex relationship between an operator’s physiological and 
behavioral measures with performance and workload associated with a human completing multiple tasks, 
and 2) apply cognitive modeling techniques to help achieve assessment and prediction capabilities that 
could be leveraged to inform dynamic workload management through adaptive task allocation. This 
project, referred to as “SWAMPED” (System for Workload Assessment and Monitoring for Predicting 
Effective Decision Making), is illustrated in Figure 2’s schematic and is described in more detail via this 
reference (Stevens, et al., in  press). 

Figure 2.  Conceptual Depiction of SWAMPED Effort (Stevens, et al., in press) 
 
4.2 Autonomy in Motion 

 
4.2.1 ATACM 
US Forces must be able to conduct air combat operations in denied areas  with highly dynamic, uncertain,   
and adversarial conditions involving coordinated air-to-air and surface-to-air threats. One concept for    
dealing  with this challenge  is  the introduction of  mixed manned and unmanned  air  combat teams. 
Autonomy capabilities to enable cross-platform coordination and operations within an adversary’s 
planning/decision/action timeline in an A2AD environment will be required, and have been called for in 
numerous  recent  DoD  and  USAF  planning  documents  (Ernest,  et.al,  2016).  The  DoD  Unmanned 
Systems  Roadmap  specifically  lists  development  of  technologies  and  tactics  for  manned/unmanned 
teaming as a critical challenge. The objective of the Autonomy for Air Combat Missions (ATACM) project 
was to develop critical autonomous decision and machine learning technologies to enable    
manned/unmanned  air  combat  teams  to  operate  in  highly  contested  environments,  and  integrate  them 
into a tactical battle manager (TBM). The TBM enables a single human to manage the team  and       
coordinate  unmanned  air  vehicles  with manned  aircraft (we refer to these as mixed teams). To develop    
the TBM, refine its capabilities, and assess its combat effectiveness, the ATACM project used high fidelity 
constructive and virtual analysis and training simulators for air combat missions using the Fusion     
framework to also create a pilot-vehicle interface to support pilot interaction and coordination with a set of 
unmanned wingmen. The project included a diverse, multi-domain team of  experts from  the United  States 
Air Force and Navy. 

Since its initiation in 2013, the ATACM project pursued a spiral development approach, integrating 
automation development and Pilot Vehicle Interface (PVI) design to enable a single pilot to command    
multiple unmanned wingmen from the cockpit of a fighter aircraft. A series of simulation studies were 
conducted in order to explore the feasibility and potential operational utility of a mixed manned-unmanned 
configuration within the context of Offensive Counter-Air (OCA) operations.  The primary objective of    each 
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study was to investigate human-machine interaction and teaming, along with different levels of system 
autonomy in the execution of OCA scenarios. Secondary objectives include: 

Assess the extent to which support for effective human-autonomy coordination is achieved 
Assess the pilot’s workload and situation awareness when controlling unmanned wingmen 
Assess operator/system performance between manned and unmanned wingman across various 
levels of wingman autonomy 
Solicit operator feedback regarding the quality of the operator interface relative to directing the 
autonomous  wingman and  the feedback  received  from  the  autonomous wingman 
Assess the allocation of mission functions between pilot and automation 
Solicit pilot feedback on the level of observability and controllability of wingman operations 
Solicit pilot input on novel ways to employ an unmanned aircraft as a wingman 

 
 
5.0 Fusion Architecture 
Fusion is a framework that enables natural human interaction with flexible and adaptive automation. It 
employs multiple components: intelligent agents’ reasoning among disparate domain knowledge sources 
(Douglass & Mittal, 2013); machine learning that provides monitoring services and intelligent aids to the 
operator (Vernacsics & Lange, 2013), cooperative planners (Kingston, et al., 2009), and advanced    
simulation via an instrumented, goal-oriented operator interface (Calhoun, et al., 2017). These empower 
scientific  experimentation and advancement across multiple autonomous  technologies  (Figure     3). 

Figure 3.  Fusion High Level Framework for Current and Future Applications 

The Fusion Framework is essentially a Software Development Kit  that provides generic extensible code        
to enable autonomy based research. The framework consists of four fundamental layers: (a) the core 
framework layer, (b) the extensibility and API layer, (c) the module / messaging layer, and (d) the    
application layer (Figure 4). The core framework layer provides foundational software classes and an API. 
This layer enables functionality for module lifecycle, user profile, and display layout management. 
Additional features of this layer include system level notifications, multi-modal interactions and feedback, 
workspace management, asset management (vehicles, tracks, sensors, named areas of interest, etc.), 
geospatial information services (GIS) data and earth mapping capability, and user interface elements. All 
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software modules have a public framework API to support interface extensibility. This is accomplished in    
the extensibility and API framework layer. The module and messaging layer contains code written for     
single and specific purposes. This is the layer that contains user interfaces, utility classes, and messaging 
protocol  support for  communication  to external software components. Finally, the  application  layer 
contains code related to executable applications such as a test-bed, utility application, or test operator    
console. All code is written utilizing agile software development principles, namely the SOLID principles 
(Single  Responsibility,  Open/Closed,  Liskov  Substitution,  Interface Segregation,  and  Dependency 
Inversion) (Martin, 2012). 

 

 
 
 
5.1 Framework 

Figure 4.  Fusion Layered Architecture 

 

5.1.1 Features 
While most of Fusion is completely customizable, there are a few core aspects that are common across  
all projects. Each project maintains a scenario that basically contains the instructions on which modules 
should be loaded as well as how Fusion should look and operate. The Fusion visual framework is broken 
into six key concepts: (a) Login, (b) Layout, (c) Notification, (d) Feedback, (e) Canvas, and (f) Tiles/Views 
(Figure 5). All of the core user interface items can be customized to a certain extent as well as turned on 
or off to suit the needs of this project 

 
 

Figure 5.  Fusion Visual Framework  Components 
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5.2 Visual Framework 
 
5.2.1 Login/Profile 
Fusion requires a user login and profile which contain information about a specific user such as last 
selected scenario and layout. There are also several key user interface components common across all 
scenarios, such as screen layouts, canvases, feedback/notification bars, and tiles. All of these are 
completely configurable to meet the needs of the scenario. 

5.2.2 Layout 
The layout system  gathers information from  the operating system  on the number of screens as well as    
their size. To avoid confusion, Fusion internally renumbers the screens based on their top left corner  
position; ordering is from left to right, top to bottom. This allows the layout to be consistent across   
machines with potentially different screen layouts and resolution configurations. The Fusion layout per 
screen identifies which physical screens are to be used, what canvas to show on those screens, if the 
notification/feedback bars are to be shown, and if that screen should be a sandbox.   These concepts  will     
be described  in the following  sections. 

5.2.3 Notification 
The notification bar is another core user interface element of Fusion. This bar lives at the top of each 
screen and can be turned on or off for individual displays. The notification bar contains quick actions, a 
scrolling notification summary area, an indicator area, a time area, and an expanded notification area. 
Quick actions are customizable and currently contain map functions (if tied to a map canvas) such as  
reset map to north up and center on a particular symbol. The scrolling notification area simply provides a 
quick summary of each notification present. Notifications are used to inform the user of events, such as 
system alerts, errors, or custom events defined by the developer. These are present in the expended 
notification area that can be opened by double clicking on the scrolling summary area. The indicator area 
is also customizable and contains general system indicators such as the vehicles present in the system, 
whether a multi-modal device is connected, or custom system status indications defined by the developer. 
The time area contains the current system time as well as a stopwatch. This element is completely 
extensible by the Fusion developer for specific requirements of the system under design. 

5.2.4 Feedback 
The feedback bar is similar to the notification bar and is located at the bottom of each screen. This is the 
area the user receives feedback on their interactions with the system. It is primarily used for automation 
and multi-modal feedback. The user receives speech command feedback, such as confirmation of what 
was understood, or speech related errors on the feedback bar. Automated agents or other processes can 
also feed messages to Fusion and can be displayed in this area. Like the notification bar, the feedback   
bar contains a hidden expansion area to allow the user to see all of the current feedback items, since only 
a single item displays on the bar at once for a set amount of time. The full view can be expanded clicking 
on an indicator that displays the number of feedback items present in the system. This element is 
completely extensible by the Fusion developer for specific requirement of the system under design. 

5.2.5 Canvas 
Each screen can have either an earth canvas, a blank canvas, or a custom canvas. The canvas can be 
thought of as an artist’s canvas of which to place widgets developed by the Fusion developer for specific 
projects. The widgets can be embedded in the canvas itself, such as the earth, or can be a space to place 
tiles (see Section 5.2.6). Currently fusion contains an earth canvas which hosts OSG earth, a blank 
canvas, and one custom canvas that hosts video management widgets. Custom canvases can be made      
to suit any projects’ needs. This element is completely extensible by the Fusion developer for specific 
requirement of the system under design. 

 
 Mapping 

SharpEarth is a three-dimensional (3D) mapping tool used within Fusion to display geospatial data and    
layers onto a 3D earth. SharpEarth was created as a wrapper in C++/CLI to extend the functionality of the  
C++ toolkits (OsgEarth and OpenSceneGraph (OSG)) into the C# environment. Extending such massive 
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toolkits allows the framework to have a feature rich map with a huge set of layers draped over the earth  
such as WMS imagery, elevation data, weather layers, and tiled image layers (tiff, png, jpg). This also 
allows for the drawing of any 3D object on the map such as shapes, text, icons and indicators. 
SharpEarth runs completely independent of Fusion by being placed inside of its own thread. 
Communication between Fusion and SharpEarth occurs through thread safe callback layers. Touch and 
mouse manipulations of the map are fully supported and can easily be hooked into programmatically 
allowing complex interactions on the map such as shape manipulations. The earth can be displayed as 
either a tile or a canvas within Fusion and can be completely customized through an earth configuration 
file without the need to change the code-base. 

5.2.6 Tiles 
Another key user interface component is the concept of a tile. Tiles are smaller windows that are placed 
on a canvas that contain widgets to display data to the user or accept user inputs. They are completely 
customizable and serve as the primary mechanism used to build user interfaces within Fusion. The 
Fusion Framework includes several core tiles that are described in the following sections. 

 MMC Chat 
The multi-modal communications (MMC) chat tile (Figure 6) allows multiple Fusion users and different 
processes to communicate with one another. There are two components to an MMC tile, the chat server 
connection management and the user  interface. 

The MMC framework within Fusion manages connections to an XMPP chat server running as either a 
local service or a network service. The MMC framework manages chat users and chat rooms from within 
Fusion. Users are automatically logged in using their Fusion login profile and they have the option of 
logging in as other users. The MMC framework also handles connection errors as well as providing a way 
to programmatically send chat  messages. 

Each tile represents a single chat room which is selected upon creating a MMC tile. The tile is the  
mechanism  by which  the user  interacts  with  the chat  system  by typing  in chat  messages,  engaging 
speech to text, text to speech, basic text editing functions, specifying keyword highlighting, changing the  
text to speech volume, assigning a  3D  audio location for that chat channel,  or  playing audio messages.   
The 3D audio feature allows the user to hear the chat messages in their headset from a variety of spatial 
locations.   The MMC tile has also been extended to support an internet relay chat (IRC) client     
functionality as  well as  a server-less  broadcast  chat functionally. 
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 Integrated Help System 

Figure 6.  MMC Chat Tile 

Inherent in the Fusion Framework  is the concept of integrated help for all aspects of the user experience.  
Each user  interface component  has  the ability to specify a popup  help tile or tooltip that contains  an   
HTML page with data pertaining specifically to that tile. These are accessed by clicking the question mark 
button while Fusion is in help mode. Each tile contains a key, which is dynamically created based on tile  
name at the time of its creation. Each HTML help file contains meta-data used to associate it with certain 
Fusion concepts. The “helpType” meta-tag describes the type of category of a help page (Tile, Frame,     
Voice, and Input). The project meta-tag describes the association of a project to its help file. 

Figure 7. Help Tile 

The Help Manual (Figure 7) is a navigable, searchable tile in Fusion utilizing web components. The help 
manual  is  dynamically generated  based  on  the  HTML  help  files  and  the  associated  meta-tags.  The 
manual injects every HTML file it needs based on the project meta-tag into a book-style web app. It      
simply displays a list of help files from all related projects loaded for a particular scenario. For example,  
while running IMPACT the user would see a list of help files relevant to Fusion Core and IMPACT. These 
same help files are also displayed if clicking a tile’s question mark button in help mode. 

The Help Manual dynamically creates a data store in JavaScript to be utilized as a search tool, since 
there is no connected database. The search function processes the pages based on keywords the user 
inputs, and allows them to easily find the associated help page. 
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 Media Manager Tile 
The media manager tile (Figure 8) allows the user to view and markup images, view videos, and listen to 
audio files. By default, the media manager monitors the output directory for the current Fusion run and     
loads any existing media therein as well as any new media that becomes available in this directory during 
execution of  a particular  scenario.  Additional media  directories  can  also be specified and monitored. 

The Main Media Display Panel shows the media that is currently selected. The buttons located at the 
bottom of the media manager Tile interact with this display area. Image media can be zoomed in this 
display using the mouse wheel and slewed by dragging with the left mouse button clicked. 

Within the media manager, media that can be displayed are shown in individual media tiles. These tiles 
contain a thumbnail image, an information summary, and a “Favorite” button indicated by a star. Clicking    
on the thumbnail or information summary sets the specified media as the currently selected media for the 
media manager and will display it in the Main Media Display Panel. Clicking on the “Favorite” button sets 
the specified media as a “Favorite” with in the media manager but does not select it. 

Figure 8.  Sample Media Manager Tile 

The Favorites fly-out menu (aka fly-out) labeled “Favorites” is located on the left hand side of the media 
manager tile. This fly-out displays three drop down lists of Media Tiles, one each for images, videos, and 
audio. Each list header identifies the type and number of Media Tiles in the corresponding list. Located at 
the top of the fly-out are buttons for toggling the display of the various media types. This allows for the 
display of only media types of interest to the user. 

The Available Media fly-out labeled “Media” is located on the right hand side of the media manager tile.  
This fly-out displays four drop down lists of Media Tiles, one each for images, videos, audio, and new    
media files available that have become available. Located at the top of the fly-out are buttons for toggling    
the display of the various media types. This allows for the display of only media types of interest to the    
user. 

The Extended Info fly-out labeled “Info” is located on the right hand side of the media manger tile under  
the Available Media fly-out and displays pertinent information about the currently selected media. This 
information includes but is not limited to: metadata, user notes, and any miscellaneous information. The 
information is displayed in appropriately labeled individual drop   downs. 

The Media Information Bar is located below the Main Media Display Panel and is divided into three 
sections. These sections display information pertinent to the currently selected media, including but not 
limited to: file location, creation time, status, geo-location of the media, time last modified, and media 
format specific information. 
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 Vehicle Dashboard 
The vehicle dashboard tile (Figure 9) provides a visual overview of the dynamic components of a specific 
vehicle.  It is used as a window or view into the vehicle itself, much as if one were to be sitting in the seat     
of the vehicle.   All the components on this view are to provide at-a-glance information to inform the user     
of all major events occurring in a vehicle.   As mentioned, the look and feel of the dashboard were     
designed  to resemble a  vehicle  popup heads  up  display (HUD). 

Figure 9.  Sample Vehicle Dashboard Tile 

The vehicle popup HUD provides the bulk of the high level information the user would need to make 
reactive decisions to the scenario on a per vehicle basis.  At the core of this control is a Vehicle  
Presenter, enabling the user to see the specific type of vehicle being controlled, the amount of fuel left, 
the play that has been instantiated and the quality of that play.  The notion of a play is analogous to a  
high level goal or task the user can assign to the system and depending on the services currently 
associated with a particular scenario, the system will allocate the necessary vehicles to accomplish the 
play. For each indicator on the HUD, color is used to encode the state of that subsystem (green, yellow 
and red). Green indicates normal state, yellow being degraded and red being severe. Accompanied with 
the vehicle presenter are two dials to show speed and altitude that follow the same indicator color system. 
At the far left of the vehicle presenter we have error indicators that show and hide depending on the 
severity of the specific system in the vehicle. These errors include items such as high fuel burn rate and 
malfunctioned battery.  In between the vehicle presenter and the error indicators is a single 
button/indicator which allows the user to manually override the vehicle or then re-engage back to 
automation mode. This button provides several basic actions to control the vehicle. First is a toggle-able 
button to disengage/reengage automation mode of the vehicle and being in manual mode allows the user 
to select the other options. The first action available is Go To Waypoint, which allows the vehicle to 
immediately head towards a waypoint selected in the successive window. The second action available is 
Flight Directed, enabling the user to send the vehicle on a straight line path in its current heading 
indefinitely. The last action is the Loiter Now function which sets a loiter point at the current location. 
Lastly, on the right of the HUD are payload indicators showing which payloads the vehicle has as well the 
relative color coded status. The payloads consist of items such as lethal and nonlethal weapons, EO 
sensor or IR sensor. Finally, across the top of the HUD is the current heading of the vehicle. The next 
main feature of the dashboard is what lies underneath the popup HUD, the vehicle view. 

The vehicle view is a toggle-able artificial horizon indicator and sensor video feed view.   This view serves   
as the primary display / canvas.  The default view is an artificial horizon indicator for the vehicle and on     
the top left of the tile is a toggle button to switch modes to a live feed of the active sensor.  If the sensor 
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has  a gimbal, the sensor can then be steered via  clicking on the video feed  at the  geo-location to focus  on   
as well as zoom in to specific locations via mouse wheel scrolling.  Next to the video toggle button is a    
center on command which is used to quickly find the vehicle, center on it and lock the camera to it as it  
moves. If the scenario supports the notion of goal-directed plays that define the actions of one or more 
vehicles, there is a color coded border around the edges of the vehicle view which directly correlates with     
the play color to  easily see which dashboard is associated  with  what   play. 

 
 Generic Cockpit Tiles 

Since Fusion is intended to provide support to a broad range of autonomy research initiatives, the 
development of a generic cockpit to support baseline manned-unmanned teaming became a priority 
requirement. The Fusion development team created a series of tiles to represent a number of common 
flight instruments and control/display features required to support the virtual simulation of a 3rd or 4th 

generation aircraft. The development of these tiles provides the basic building blocks to easily construct 
a representative cockpit of almost any configuration, and with minor modification could be tailored to 
accurately represent any cockpit or flight deck. A version of the generic cockpit tiles being used for an 
ongoing program within AFRL is presented in Figure 10. 

 

5.3 Module / Messaging 

Figure 10.  Generic Cockpit Instrument Tiles 

Keeping with our philosophy of flexible interaction, Fusion can be adapted to interface to any number of 
messaging protocols and is therefore considered protocol agnostic. For example in one of the current 
Fusion projects, IMPACT (discussed in more detail in Section 4.1.1), all inter-machine communication is 
accomplished through DIS, LMCP, or the industry standard JSON formats (Figure 11). The DIS 
messages support simulation of entities, such as vehicles, people, weapons, and effects. The DIS 
messaging also drives the simulated sensor video feed and is rendered through SubrScene (see 
https://sourceforge.net/projects/subrscene). 
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Figure 11. Example Cloud-based Network Architecture (IMPACT) 

 
 

LMCP (see https://github.com/afrl-rq) is a protocol focused on vehicle control and simulation. Its message 
structures are defined through extensible markup language (XML) using its Message Data Model (MDM), 
which is employed to generate class libraries in several computer programming languages and 
documentation in html. The class libraries support serialization of the messages into binary format 
suitable for transfer over the network. This protocol is employed primarily by Fusion, AMASE (Aerospace 
Multi-Agent Simulation Environment; see https://github.com/afrl-rq/OpenAMASE/wiki/About-AMASE), and 
UxAS (Unmanned Systems Autonomy Services; see https://github.com/afrl-rq/OpenUxAS - (Rasmussen, 
Kingston, 2016)). AMASE defines vehicle dynamical models and propagates them through time to 
produce states using LMCP throughout its internal representations. UxAS employs LMCP primarily as its 
communication mechanism, collecting requests from Fusion and an intelligent agent service (Cognitively 
Enhanced Complex Event Processing (CECEP) – (Atahary, Douglass, Webber, 2015)) then generating 
plans to fulfill the requests, which are then sent on to AMASE. Fusion collects the plans generated by 
UxAS and the states from AMASE to illustrate current and expected activity to the operator. 

The JSON format is employed by Fusion, CECEP, and the plan monitoring service to satisfy various 
communication  needs.   Fusion sends  play specification  information to CECEP, then  proposes  and 
invokes play solutions, and finally the plan monitoring defines play status during execution with all using 
JSON. Using JSON, we can create message structures in a much more concise manner and ease the 
interoperability between the various software applications. JSON does not specify how to serialize itself,  
and this is left up  to the system   developers. 

This hybrid messaging structure has worked well to date, but there are a few ongoing issues that may 
justify alternative protocols: 

1. The open representation supported by JSON message definitions has caused problems in the 
past where one software system is sending messages in a format that another software system 
does not expect. Casting the resulting message to a class can cause exceptions if the format is 
not agreed upon and rigorously enforced. 

2. LMCP was designed to be very flexible in specifying messages and ease-of-use in a research 
setting, but may lack in performance for high-message scenarios where other serialization 
protocols are more appropriate. Its specification supports rigorous typing, but undisclosed MDM 
modifications can cause significant issues. Thus, the synchronization of the MDMs across ALL 
software components becomes a  concern. 

3. LMCP compiles to several popular programming languages, but unfortunately Javascript is not  
one of them. Conversely, JSON is a first class citizen in Javascript. 
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6.0 Fusion Development Approach 

6.1 Organization 
 
6.1.1 Fusion Team 
The Fusion team is a small group of software developers that are a mix of government civilians and 
government contractors. The Fusion team consists of several key members that break down, plan, and 
execute requirements from many diverse research projects. These key roles are the project manager, 
product owner, scrum master (described in more detail in Section 6.3), and the developers. These roles 
and the team member performing them have evolved over time to best suit the needs of the team and the 
different projects. Due to having a smaller team, some team members often fulfill more than one role at a 
time. Usually all of these roles are filled by team members who are also developers on the project. The 
roles and responsibilities are: 

 

Project Manager 
o Builds the project team 
o Helps define the requirements 
o Defines the goals and the timeframes for them to be achieved 
o Handles the budget for the project 

Product Owner 
o Coordinates with the project manager, customers, and  stakeholders 
o Determines product functionality and content 
o Decides when the product is ready for release 
o Manages and prioritizes the product backlog 
o Ultimate arbiter on requirement issues 

Scrum Master 
o Facilitates the software development process 
o Enforces full involvement in all meetings and   roles 
o Communicates team progress and product  status 
o Shields the team from external interference 

Developers 
o Self-organize and collaborate with the rest of the Fusion team to accomplish tasks 

defined for the sprint 
o Defines, as a group, which tasks will be worked for a given sprint cycle based on 

customer requirement priorities 

6.1.2 Research Facilities 
A key enabler of the research conducted under the Fusion effort was the development and sustainment of 
the research facilities. This work included the procurement, setup and installation of all development 
stations, simulation testbeds, specialized test equipment and the networks required to connect these 
systems within the Crew Systems Integration Laboratory (CSIL) (Figure 12). 
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Figure 12.  CSIL Capabilities 

 
 
6.2 Process – Virtual Distributed Laboratory 
The notion of a virtual distributed laboratory (VDL) connecting various DoD and contractor sites     
throughout the CONUS  was paramount to foster a more cohesive and  distributed  development and    
research environment.  Fusion  has  adopted a  DoD  open source model,  enabling  joint  development  across 
a variety of projects and collaborators, all contributing to a single source repository.   The core      
development team is located at Wright-Patterson AFB, and there are currently several offsite laboratory 
development teams (Figure 13). Fusion is hosted on  a  secure web  server  and  program  access  can be 
requested at  https://www.vdl.afrl.af.mil/  (please contact the  authors for  further  instructions). The software 
is developed on a standard Windows 10 PC platform in Microsoft Visual Studio and several third party 
developer  libraries (Figure 15). All distributed laboratory sites have similar hardware configurations  and    
the  software  developers  use  a  common  set  of  software  development  and  configuration  management 
tools. 

http://www.vdl.afrl.af.mil/
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Figure 13.  Fusion Virtual Laboratory Concept. 
 
 

6.3 Software Development – Agile 
Fusion adheres to agile software development principles by utilizing an iterative and incremental software 
development framework known as Scrum (see https://www.scrum.org/). Scrum allows for the software 
development  process  to  adapt,  as  needed,  to  changing  work  constraints  and  deadlines.  While  the 
durations and times specified may change, the following process will remain. Currently, the Fusion team      
will typically follow a 2-4 week sprint cycle depending upon the dynamics of the product backlog and the 
nature of  emerging requirements (Figure   14). 

Figure 14.  Agile Software Development  Process 

http://www.scrum.org/)
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From a development perspective, the Fusion team was similar to a scrum team, however the roles of the 
product owner and scrum master were shared between a government civilian and a government 
contractor representative. 

Sprint Planning was held on the first day of every sprint cycle and was time-boxed to 4 hours. Attendees 
included the Fusion team and any subject matter experts (SMEs) as needed. However, SMEs attended 
primarily to answer questions or clarify misunderstandings as they arise from the Fusion Team. Standups 
were held at least once per week during every sprint cycle, time-boxed to 15 minutes, and only attended 
by the Fusion team. During a standup, attendees took turns sharing the following: 

- What they accomplished prior to the previous standup 
- What they plan to accomplish until the next    standup 
- What issues they may need help with until the next standup 

Any and all problem solving, hypothesizing, or further inquiry discussions on issues or requirements 
shared  by attendees  occurred  only  after  the  standup  meeting  had concluded. 

Change review board meetings were defined within the typical scrum process, but were added to help 
facilitate requirement expectations among the Fusion product owners and Fusion stakeholders. The 
change review board meetings were held 1 day before the end of a sprint cycle and time-boxed to 2 
hours. Only unresolved change requests (CRs) submitted prior to the meeting by the Fusion team and 
stakeholders were typically addressed. 

Backlog grooming meetings were held 1 day before the end of a sprint cycle and after the change review 
board meeting. Backlog grooming meetings were time-boxed to 3 hours and only attended by the Fusion 
team. A backlog grooming meeting was done when the time-box expires or enough product backlog 
items (PBI) had been groomed such that they would fill two sprint backlogs (two sprint cycles). Difficulty 
estimations were given to PBIs by Fusion developers and were determined by, but not exclusively: 
complexity, risk, time, and scope. 

Sprint review meetings were held on the last day of the sprint cycle and time-boxed to 2 hours. Attendees 
included the Fusion team and any stakeholders who wished to attend. However, Fusion stakeholders 
attended primarily to observe and inquire for further clarification to what the Fusion team presents. 

6.4 Configuration Management 
The Fusion source code repository follows a strict configuration management process. Once a week, 
offsite developers submit their changes, and the core Fusion team integrates those changes and posts a 
new version of Fusion on VDL for the offsite developers and researchers. In the near future, the team will 
transition to a fully on-line software development cycle utilizing Git (a software configuration repository 
structure) and the secure Defense Research & Engineering Network (DREN). This process allows all 
offsite labs to keep up to date with the core Fusion team as well as keep their software well maintained. 
The concept of a virtual distributed laboratory has been successful due to Fusion providing a robust and 
flexible software architecture. The Fusion development team uses YouTrack during the scrum process to 
track the product and sprint backlogs, and TeamCity to create specific software builds (Figure 15). 

Figure 15.  Fusion Configuration Management Tools 
 

7.0 Lessons Learned 

7.1 Software Development Processes in a Research Environment 
Over the course of the project, several variations of software development processes have been 
explored. It is rather difficult to find a good process that works well in a research environment due to 
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rapidly changing requirements. The type of software development process to utilize took trial and error 
before finding something that worked well for the team. 

Agile processes sound great academically but can be challenging to practice as they tend to work best 
when requirements and priorities are well defined and can be planned for well ahead of time. The 
requirements can then be broken down into smaller pieces and planned out over one or more cycles. 
Often exact requirements are not known in a research environment or they change within a development 
cycle so it is hard to stay on task during the cycle. Developers get side tracked with new requirements  
that come up during a cycle and eventually tasks are forgotten or pushed out. The process is supposed to 
be agile and adjust to these situations but that isn’t as easy as it  sounds. 

Software development cycle time is an important factor. Is the software development broken into smaller 
time spans or just treated as one giant timespan over the course of the project? Breaking it into some   
type of timeframe allows the developers to regroup at specific times, allows for requirements to change or 
be better defined without effecting the developers to often, and allows the developers to tackle issues one 
at time without being overwhelmed. We have tried large cycles that span months and small one week 
cycles. The shorter the cycle the more meetings and cycle management required, the longer the cycle the 
larger the requirement list is going to be. 

Another issue to consider is team size and arrangement. Are all developers developing within a common 
framework treated as one giant team, are they assigned particular projects, or are tasks assigned based  
on skill sets? Large teams equal more people to work on more requirements but might be switching 
between types of requirements often, whereas smaller teams allow developers to focus on a smaller 
number of tasks or task types. 

We have tried many different combinations of software development processes to follow and have found    
that  you cannot strictly follow any given software development process within a research environment.      
The solution we have found to work the best is to break the development team down into smaller more 
focused teams that work  on a  single  project or  smaller  subset of  goals. Each team  can decide  and  use   
the software development process that works well for them. Each small team also has the freedom to      
change the software development process if it isn’t working. Sometimes teams will need to change their 
process  for only a short  period  time to accommodate deadlines or particular tasks, but the  important thing  
to remember is that they have the flexibility to make that decision. Most of the software sub teams use a 
variation of Scrum with 2-3 weeks cycles, then switch to a more queued task Kanban (see 
https://en.wikipedia.org/wiki/Kanban)  like approach  when needed based  on  upcoming   events. 

We have  also  learned  the  most  important  part  of  any  software  development  process  is  communication. 
As long as everyone from the developers to the project managers are aware of  what is going on, what the  
tasks are, the priorities of the tasks, and which tasks are being working on, everything seems to run more 
smoothly. 

7.2 Challenges of Creating Extensible Software 
One of the main goals and reasons for creating Fusion was to create an extensible software framework. 
The idea behind creating an extensible framework for user interface research was so that user interface 
elements as well as the data models can easily be changed to support a variety of different  projects. 

Developing extensible software comes with challenges. There is a delicate balance between making it too 
extensible and not extensible enough.  It can be rather difficult at design time to decide whether or not 
that element should be extensible. Over the life of Fusion there have been elements they were made 
extensible that have never been extended so they are often viewed as over complicated. There are also 
elements that would have made tasks much easier if they had been written to be  extendable. 

The core Fusion framework is fairly extensible but should projects that extend from Fusion also be 
extensible? When writing modules for new projects that extend from Fusion the developers don’t always 
think that one day their project will be important enough that others may want to extend it. Sections of 
code are often refactored to make them more useable and extensible years after they were originally 
created and the team has acquired additional insight into how others will use them. 
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8.0 Future 
Currently there does not exist a comprehensive Reference Framework that supports applying and 
extending RHCI’s existing suite of software testbeds to provide symbiotic human machine interfaces for 
command and control of unmanned systems that harness potential benefits of autonomy across multiple 
domains (Air, Ground, Surface, Cyber, Space). Within RHCI there exists several testbeds and software 
services/tools to explore a rich set of research domains, each having its own unique characteristics and 
capabilities. As these systems mature over time, not having a common Reference Framework creates 
barriers for transiting concepts from one testbed/service/tool to another, both within and outside our 
branch. In an effort to overcome this barrier, the development of a common Reference Architecture and 
ontology will aid in the smooth transition of concepts across disparate testbeds, reduce software 
development costs/effort, and promote an enterprise approach to modeling, simulation, and analysis 
(MS&A) across AFRL (and potentially beyond). 

 
 

Over the next several years our goal is to create a comprehensive Reference Framework / Architecture 
(Figure 16) that will provide a template/schema to define a Human Autonomy Teaming Testbed Suite 
(HATTS). This Reference Framework will include the following components … 

1. Reference Model - Defines mission statement, 
principles,  and  ontologies/vocabulary. 

2. Process – Define the processes used in developing this 
capability 

3. Organization – Define roles and responsibilities and 
skillset  needed 

4. Human Autonomy teaming (HAT) Reference 
Architecture – Contains the Application Programming 
Interfaces (APIs), Interface Control Documents (ICDs), 
Development  Standards, Schemas/Patterns. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 16.  Future Human Autonomy Teaming Reference Framework / Architecture 
 
 

This comprehensive reference framework will ultimately promote interoperability, standardized 
practices/interfaces, consistency across the tool suite, collaboration/communication/sharing across 
projects/organizations, and  mobility of  developers  across  our  organization  and beyond. 

 
 
9.0 Acknowledgements 
The authors would like to acknowledge the entire Fusion, IMPACT and ATACM teams for their 
contributions to the development and application of the Fusion Framework. It is only through the hard 
work of implementing the framework within the context of specific research programs attempting to 

The HAT 
fundamental 
components 

Reference 
software 

(such   as 

Architecture provides a 
foundation by which 

services,    libraries,    tools, 
models, design guidelines, etc.) can be created to be 
compatible and extensible with each other to formulate 
a Systems of Systems Modeling and Simulation 
capability. This ensures that System A can effectively 
communicate with System B and so forth. 
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11.0 List of Symbols, Abbreviations, and  Acronyms 

 
3D – Three Dimensional 
A2AD - Anti-Access Area Denial 
AFRL - Air Force Research Laboratory 
API - Application Programming Interface 
AMASE - Aerospace Multi-Agent Simulation Environment 
ARPI - Autonomy Research Pilot  Initiatives 
ASD R&E - Assistant Secretary of Defense Research and Engineering 
ATACM - Autonomy for Air Combat Missions 
CECEP - Cognitively Enhanced Complex Event Processing 
CR - Change Request 
CSIL - Crew Systems Integration Laboratory 
DIS - Distributed Interactive Simulation 
DoD - Department of Defense 
DREN - Defense Research & Engineering Network 
HATTS - Human Autonomy Teaming Testbed Suite 
HMI - Human-Machine Interfaces 
ICD - Interface Control  Documents 
IMPACT - Intelligent Multi-UxV Planner with Adaptive Collaborative/Control Technologies” (IMPACT) 
IRC - Internet Relay  Chat 
JSON - Javascript Object Notation (JSON) 
LMCP - Lightweight Message Construction Protocol 
MDM - Message Data Model 
MS&A - Modeling, Simulation, and Analysis 
OCA - Offensive Counter-Air 
OSG –  Open  Scene Graph 
PBI - Product Backlog Item 
PVI - Pilot Vehicle Interface 
SA - Situation Awareness 
SME - Subject Matter  Expert 
SWAMPED - System for Workload Assessment and Monitoring for Predicting Effective Decision-making 
TCP/IP -  Transmission Control Protocol/Internet  Protocol 
TBM - Tactical Battle Manager 
UDP - User Datagram  Protocol 
UxAS - Unmanned Systems Autonomy Services 
VDL - Virtual Distributed Laboratory 
XML - eXtensible Markup Language 
ZeroMQ  –  Zero  Message Queue 
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