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Abstract 

Artificial Intelligence: Algorithms, Operational Environments and Hyperbole, by MAJ Donald 
W. Griesmyer, US Army, 54 pages 
 
In the past two decades, artificial intelligence (AI) gained a lot of attention and inspired 
innovation across many fields of science. US military forecasters created numerous predictions of 
future operating environments with AI as a central feature. This paper reports on the historical 
trend of AI innovations leading to periods of high expectations for the emergence of a truly 
artificial general intelligence (AGI). These inflated expectations of continued innovation 
outpaced actual capabilities leading to disillusionment. Artificial intelligence goes through cycles 
of new innovations, over expectations, and disillusionment followed by modest advancement. 
The cyclical nature of AI innovation follows cycles of extreme hyperbole which, in past cycles, 
resulted in a loss of funding and the slowing of future innovations. To avoid future 
disillusionment and loss of progress, seen in the cycle of hyperbole, leaders need a realistic 
understanding of machine learning technology and what it will mean for future AI development. 
This paper presents a functional framework for understanding artificial intelligence’s interaction 
with the operational environment. 
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Introduction  

Semantics, technological optimism, misunderstanding, and agendas cloak the current 

debate about artificial intelligence (AI), and the nature of intelligence. Predictions about AI run 

the gamut from a dystopian Skynet apocalypse to an AI-driven utopia. AI and ‘Machine 

Learning’ may be on a path to disillusionment. Prominent experts in technology warn of the 

catastrophic effect AI will have on the future of humanity. Elon Musk, Chief Executive Officer 

(CEO) of Tesla and Space X, calls AI an existential threat and pleads for governments to regulate 

AI “before it is too late.”1 Steven Hawking, the late prominent physicist, argued that AI would be 

the end of humanity. News outlets run headlines such as “US Risks Losing Artificial Intelligence 

Arms Race to China and Russia.”2 Others invoke apocalyptical views and emotional responses to 

AI technology. For example, the New York Times recently published a  headline, “The 

Pentagon’s ‘Terminator Conundrum’: Robots That Could Kill on Their Own.”3 Unfortunately, 

fear-mongering statements resonate with the general public and builds on the pop culture 

narrative that AI will be the end of humanity. 

When observed in historical context, current views towards AI follow a measurable trend 

with stages of technological development that Gartner, Incorporated, an information technology 

(IT) research “hype cycle,” presented in Figure 1.4 The hype cycle begins with a “technology 

trigger,” a new conceptualized capability that only exists in prototypes, capturing media attention. 

                                                      
1 Samuel Gibbes, “Elon Musk: Regulate AI to Combat ‘Existential Threat’ before It’s Too Late,” 

The Guardian, July 17, 2017, accessed December 9, 2017, 
https://www.theguardian.com/technology/2017/jul/17/elon-musk-regulation-ai-combat-existential-threat-
tesla-spacex-ceo. 

2 Zachary Cohen, “US Risks Losing Artificial Intelligence Arms Race to China and Russia,” CNN, 
November 29, 2017, accessed December 9, 2017, http://www.cnn.com/2017/11/29/politics/us-military-
artificial-intelligence-russia-china/index.html. 

3 Jacob Regenstein, “The Pentagon’s ‘Terminator Conundrum’: Robots That Could Kill on Their 
Own,” New York Times, October 26, 2016, accessed December 9, 2017, 
https://www.nytimes.com/2016/10/26/us/pentagon-artificial-intelligence-terminator.html. 

4 “Gartner Hype Cycle,” Gartner Research Methodologies, accessed April 3, 2018, 
https://www.gartner.com/technology/research/methodologies/hype-cycle.jsp.  
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The next state is “peak of inflated expectations” where early adopters gain publicity for their 

successes in implementing the technology. The next stage is the “trough of disillusionment” when 

inherent physical limitations to technology becomes apparent and AI fails to mature and 

investment money moves to more promising ventures. After the trough of disillusionment, the 

technology continues to mature albeit at a much slower pace. In this slower environment, it is 

better understood, and implementation has real success. The final stage, the “plateau of 

productivity” is when there is broad implementation of the technology in well-understood 

conditions. Then industries create standards and regulations to govern the implementation and 

interoperability of the technology. 

 

Previous evolutions of AI development followed the cycle of hyperbole with several 

peaks and troughs that will be outlined here. Each time AI development entered a trough of 

disillusionment and US government and military spending ceased funding; development of AI 

Figure 1. The Hype Cycle for Technological Development. “Gartner Hype Cycle,” Gartner 
Research Methodologies, accessed April 3, 2018, 
https://www.gartner.com/technology/research/methodologies/hype-cycle.jsp. 



 

3 
 

stalled. The US government and military have been an integral part of the history of AI’s 

development and will continue to play a vital role in guiding future development. The US military 

cannot afford to have inflated expectations that precipitate a period of disillusionment that will 

cede initiative and technological advantage to US peer competitors, Russia and China; who are 

pursuing weaponized AI. Leaders and decision makers need a realistic technical understanding of 

AI development to guide them in their integration of AI into the Army enterprise. The past cycles 

of hyperbole provide examples of pitfalls to avoid but also of areas to look for useful applications 

and future innovations. 
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Literature Review 

Artificial Intelligence Research Beginnings 

The science of AI emerged from three important meetings. The first of which was the 

Sessions on Learning Machines held in Los Angeles, 1955. Researchers from the Massachusetts 

Institute of Technology (MIT) and RAND Corporation presented papers addressing machine 

systems learning abilities imitating the nervous systems’ self-organization and learning 

processes.5  The conference established the direction for using digital computers to build neural 

networks that imitate brain activity in areas of pattern recognition, image processing, and game 

playing.6 

The second was a summer research project on AI proposed by John McCarthy and held at 

Dartmouth College in 1956. The two-month study endeavored to quantify the features of 

intelligence with the desire to program machines to formulate concepts, use language, and solve 

problems normally believed to require human-level intelligence. A significant output from the 

project was the understanding that the processing of symbolic structures, or “heuristics,” were 

key elements in intelligent behavior and problem-solving. This project gave rise to a program 

called the “Logic Theorist,” dubbed a “thinking machine” by its creators and seen at the time by a 

cognitive psychologist as capturing the “central process in human problem-solving.”7  

The third meeting held in 1958, was a symposium called Mechanization of Thought 

Process; sponsored by the National Physical Laboratory in the United Kingdom. This conference 

attracted academics researching various aspects of artificial thinking; pattern recognition, 

language translation, programming, and mechanization of industrial planning. Researchers 

                                                      
5 Willis H. Ware, “Introduction to Session on Learning Machines,” in Proceeding of the Western 

Joint Computer Conference (New York: Association for Computing Machinery, 1955), 85. 
6 Ware, 85. 
7 Pamela McCorduck, Machines Who Think, 2nd ed. (Natick, MA: A K Peters, Ltd., 2004), 167-

170; Herbert A. Simon and Allen Newell; “Human Problem Solving: The State of the Theory in 1970,” 
American Psychologist 26, no. 2 (February 1971): 147. 
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Marvin Minsky (founder of MIT AI laboratory), John McCarthy (established Stanford’s AI 

laboratory), and Oliver Selfridge (father of machine perception) presented foundational papers on 

methods of AI with heuristic and common sense programming along with “Pandemonium,” a 

paradigm for processes with the ability to adapt and self-improve. 

Minsky described different methods for the use of heuristics in programming for pattern 

recognition, machine learning, and future planning.8 McCarthy developed a computer language 

incorporating computer friendly mathematical expressions in commonsense first-order logic.9 

Selfridge elaborated on the significance of parallel computing in performing calculations for 

pattern recognition.10 These ideas proved to be the foundations for further advances in AI. 

Balancing Optimism with Realty 

From the beginning, AI researcher envisioned a fast-maturing technology. Their 

optimism inspired the public to expect that shortly, man and intelligent machines will live and 

work together. However, the technological realities of the 1950s did not meet expectations. In 

2006, many of the founding and prominent AI researchers met at Dartmouth College to survey 

the last 50 years of AI achievements. McCarthy said then that the main reason AI advancements 

had not lived up to his expectations was that “AI is harder than we thought.”11 

History has shown that when it comes to new technology, whether clockwork from the 

18th century or steam power from the 19th century, there was a common expectation that the new 

                                                      
8 Marvin Minsky, “Some Methods of Artificial Intelligence and Heuristic Programming,” in 

Proceedings on the Symposium on Mechanization of Thought Processes, vol. 1, ed. D.V. Blake and A. M. 
Uttley (London: Her Majesty’s Stationery Office, 1959), 16-19. 

9 John McCarthy, “Programs with Common Sense,” in Proceedings on the Symposium on 
Mechanization of Thought Processes, vol. 1, ed. D.V. Blake and A. M. Uttley (London: Her Majesty’s 
Stationery Office, 1959), 77-80. 

10Oliver Selfridge, “Pandemonium: A Paradigm for Learning,” in Proceedings on the Symposium 
on Mechanization of Thought Processes, vol. 1, ed. D.V. Blake and A. M. Uttley (London: Her Majesty’s 
Stationery Office, 1959), 513. 

11 Nils Nilsson, The Quest for AI: A History of Ideas and Achievements (Cambridge: Cambridge 
University Press, 2009), 80. 
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technology would create a machine with human-like general intelligence.12 An artificial general 

intelligence (AGI) is capable of performing intelligent human action. AGI is also called “strong 

AI” compared to a narrowly or weakly applied AI with purpose-built algorithms for problem-

solving and reasoning. The twentieth century was no different. The nascent digital computing 

with the initial advances in applying algorithms for game theory, logical reasoning, and 

mathematical computations spurred hope for the evolution of machine intelligence. Scientists saw 

the computer’s potential and started investigating algorithmic applications of speech recognition, 

natural language processing, image recognition and machine-control.  

The scientific theories along with researchers’ promises of an AGI outpaced actual 

computing hardware capabilities. The industry’s hubris led to several boom-bust cycles, where 

the money for research was plentiful with the expectations of big advances in AI. However, as 

these advances stalled, research funds dried up.  Logic and computational theory advances faster 

than what is physically capable through technology. The theoretical possibility of what a machine 

could do through applied logic was a powerful motivator for pushing AI technological 

development. However, hardware development comes in the form of punctuated equilibrium. The 

irregular bursts of activity divided AI development into three periods of activity resembling the 

Gartner’s hype cycle. The first two periods of AI development make significant strides forward in 

research but with unrealized expectations resulted in the trough of disillusionment, called an AI 

winter, which is characterized by research stagnation and lack of funding.13 Today’s AI is in the 

third period of development. 

The first boom started during the Cold War with high expectations for algorithms capable 

of machine translation and database manipulation. By the mid-1960s researchers began to lose 

                                                      
12 Herbert L. Sussman, Victorian Technology: Invention, Innovation, and the Rise of the Machine 

(Santa Barbara: ABC-Clio, 2009), 38-45. 
13 Jim Howe, “Artificial Intelligence at Edinburgh University: A Perspective; The Nature of 

Artificial Intelligence,” The University of Edinburgh, School of Informatics, last modified June 2007, 
accessed April 09, 2018, http://www.inf.ed.ac.uk/about/AIhistory.html. 
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confidence in AI’s ability to continue to progress; leading to a collapse in funding by the 1970s. 

This led to the start of the first AI winter, which was marked by broad public disappointment with 

AI. 

Advances in computer hardware and programming languages brought new life to the 

prospects of AI through the corporate adoption of expert systems in the early 1980s. However, by 

1987 desktop computing precipitated the collapse of the purpose-built microcomputer, expert 

system. The end of the expert system in consort with the Japanese failure to produce a 5th 

generation computer ushered in the second AI winter. The disillusionment for AI lasted 

throughout the 1990s and well into the first decade of the 21st century. 

However, as computing power and demand for robotic applications increased, research 

began to move forward but under different labels, attempting to avoid the stigma of the previous 

cycles of hyperbole. Some of the practical advances came in the form of industrial robots and 

machine translation. The practical advances lead to more advances in speech recognition, data 

mining, and information retrieval algorithms, such as Google’s search technology. As non-

technical users became familiar with machines that could perform tasks previously viewed as 

requiring human intelligence, users no longer viewed computing progress as moving towards an 

AGI. 

Three Major Research Periods 

The first period of AI research from 1952 to 1969, was a time of enthusiasm for 

intelligent machines coupled with great expectations for progress.14 Allen Newell and Herbert 

Simon, researchers from the Rand Corporation and Carnegie Institute of Technology, built upon 

their earlier success with reasoning programs and developed the General Problem Solver (GPS) 

which was designed to model human problem-solving methods incorporating heuristics to solve 

                                                      
14 Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. (Saddle 

River, NJ: Prentice Hall, 2009), 19. 
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simple logic problems.15 Success with GPS came with no small amount of hubris towards the 

prospects of a general AI. Simon, in 1957, announced, 

It is not my aim to surprise or shock you—but the simplest way I can summarize is to say 
that there are now in the world machines that think, that learn and that create. Moreover, 
their ability to do these things is going to increase rapidly until—in a visible future—the 
range of problems they can handle will be coextensive with the range to which the human 
mind has been applied.16 
 

This quote accompanied other statements that claimed that within ten years, machines would 

solve mathematical theorems and beat chess champions.17 The algorithms were showing promise 

for simple manipulation of data structures, yet resoundingly failed when trying to scale to larger 

more difficult manipulation of data. Initially, researchers thought AI programs could solve any 

problem just through scaling; harder problems would only need faster processor speeds and larger 

memories. “The fact that a program can find a solution in principle does not mean that the 

program contains any of the mechanisms needed to find it in practice.”18 In 1966, the Automatic 

Language Processing Advisory Committee (ALPAC 1966) authored a report describing the poor 

near-term prospects for AI in machine translation.19 The negative review published by ALPAC 

caused support to sour towards AI research. Joel Moses, an MIT computer scientist who was a 

student under Marvin Minsky, said, “1967 was the turning point in my mind when there was 

enough feeling that the old ideas of general principles had to go…the old ideas were dying.”20 In 

1969 the Mansfield Amendment caused Defense Advanced Research Projects Agency (DARPA) 

                                                      
15Allen Newell, J. C. Shaw, and Herbert Simon, Report on a General Problem-Solving Program 

(Santa Monica: The RAND Corporation, 1959), 13. 
16Russell and Norvig, 20-21. 
17 McCorduck, 116-118. 
18 Russell and Norvig, 21. 
19 John Hutchins, “ALPAC: The (In)famous Report,” MT News International, no. 14, (June 1996), 

9-12.  
20 McCorduck, 266. 
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to redirect their funding away from AI research.21 The discord among researchers along with a 

scarcity of funding ushered in the first AI winter. 

 The second period of progress for AI or “boom times” came from 1975 to 1985. 22 The 

next wave of research focused on advances in knowledge representation with a clear distinction 

between algorithms with programming knowledge and special purpose rules, and algorithms 

aimed at AGI reasoning. The new methods of representing expert knowledge offered solutions to 

specific real-world problems. 

Industries began automating expert knowledge, enabling faster data retrieval times 

reducing the need for human experts at significant cost savings. Economics drove almost “every 

major US corporation to have its own AI group…either using or investigating expert systems.”23 

The Japanese Ministry of International Trade and Industry, in 1981, established a Fifth-generation 

computer project to build computers with AGI. US technology companies responded by 

establishing the Microelectronics and Computer Technology Corporation consortium, to remain 

competitive by developing their own AGI systems.24 The ambitious efforts to develop AGI 

computing failed to materialize because of hardware and software limitations; primarily 

processing speeds, data storage and retrieval, and network configurations. Again, AI fell prey to a 

cycle of hyperbole where the physical limitations could not keep pace with excessive 

expectations about future AI capabilities. In the period of disillusionment, the majority of 

companies slashed funding for AI; starting the second AI winter.  

The term “artificial intelligence,” became a byword for failure, causing research to have 

to develop AI under different labels, closely integrated with computer science. AI methods 

                                                      
21 Nils Nilsson, The Quest for AI – A History of Ideas and Achievements (Cambridge: Cambridge 

University Press, 2010), 343. 
22 Nilsson, 343. 
23 Russell and Norvig, 24. 
24 Edward Feigenbaum and Pamela McCorduck, “The Fifth Generation: Japan’s Computer 

Challenge to the World,” Creative Computing 10, no. 8 (August 1984): 103. 
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continued to develop without being called AI. Industry and governments looked to high-

performance computing (HPC) for progress instead of AI solutions. Industries put money towards 

research to improve computing hardware, user interfaces, data methods, and productivity. 

Researchers scaled down their ambitions for AI and applied algorithmic technology only when it 

added value to computing systems.25 Progress in AI technology continued to develop albeit at a 

slower pace. 

By the start of the 21st century, the third period of AI development began as a result of 

advances in commercial applications for machine learning, image recognition, text translation and 

natural language processing. The new period of development brought AI back into public 

discourse. Advances in probabilistic inference algorithms and neural networks coupled with deep 

learning techniques brought new hopes of achieving an AGI.26 The new algorithms’ performance 

in tasks that appeared to need human intelligence had philosophers questioning what truly defines 

human intelligence. 

Achieving Artificial Intelligence 

A problem with trying to define AI is that researchers do not agree on a definition of 

human intelligence; which AI is supposed to emulate. Linda Gottfredson, professor emeritus of 

educational psychology at the University of Delaware, performed a study showing that 

psychologists disagree on an accepted definition of human intelligence.27 In 1996, the American 

Psychological Association formed a task force addressing the same question; could there be an 

agreement for a definition of human intelligence? The task force report uncovered, “when two 

dozen prominent theorists were recently asked to define intelligence; they gave two dozen 

                                                      
25 Nilsson, 429. 
26 Russell and Norvig, 24-30. 
27 Linda S. Gottfredson, “Mainstream Science on Intelligence: An Editorial with 52 Signatories, 

History, and Bibliography,” Intelligence 24, no. 1 (Jan-Feb, 1997): 13-23.  
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somewhat different definitions.”28 The task force concluded that there were “many ways to be 

intelligent,” along with different ways to look at intelligence.29 The difficulty in measuring 

intelligence has cascading effects on what we know about wisdom, creativity, practical 

knowledge, and social skill.30 Robert Serpell, Professor of Psychology at the University of 

Zambia, claims intelligence is an aspect of the human mind that is a cultural construct of 

society.31 Even if there was a scientific consensus on intelligence, it does not mean it will be 

accurate or useful. 

Pulitzer Prize winner, Douglas Hofstadter said, “Once some mental function is 

programmed, people soon cease to consider it… ‘real thinking.’ The…core of intelligence is 

always in the next thing not yet programmed.32 Philosophy professor, Vincent Müller from 

Anatolia College echoes the difficulties of the moving benchmark for machine intelligence in 

Larry Tesler’s Theorem: “Intelligence is whatever machines have not done yet.” 33 With the 

sliding scale for comparing AI against human intelligence, it would be like trying to make 

airplanes to fool birds.34 Advancement in human flight came about when developers stopped 

trying to imitate birds and looked to understand aerodynamics. 

A more promising approach is to base AI on models of the human brain developed by 

cognitive scientists working on algorithms following human reasoning steps. Another approach to 

AI is through creating precise formulations of problems for algorithmic computation. The 

                                                      
28 Ulric Neisser et al., “Intelligence: Knowns and Unknowns,” American Psychologist 51, no. 2 

(Feb 1996): 77. 
29 Neisser et al., 95. 
30 Neisser et al., 96. 
31 Robert Serpell, “The Cultural Construction of Intelligence,” Psychology and Culture, ed. Walter 

J. Lonner and Roy S. Malpass (New York: Pearson, 1994), 163. 
32 Hofstadter, 601. 
33 Vincent C. Müller, “New Developments in the Philosophy of AI,” in Fundamental Issues of 

Artificial Intelligence, ed. Vincent C. Müller (Cham, Switzerland: Springer International Publishing, 2016), 
3. 

34 Russell and Norvig, 3. 
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downside is all problems need reduction to logical notation. The most promising approach to AI 

is to create algorithms that generate the best probable solutions through various mechanisms of 

rationality.35 AI innovations thus far include combinations of rational mechanism in software and 

hardware. 

The benefits of applying AI algorithms to new problems seems endless. Currently, there 

are hours of TEDx talks with experts claiming the current AI trend is different and to expect an 

AGI that will match or surpass human cognition. One of these experts is Nick Bostrom, a 

philosophy professor at Oxford, where he describes that in twenty years there will be a super-

intelligent AI with a “super-human level of general intelligence.”36 He claims twenty years is 

close enough to be concerned about AI today yet long enough to account for new breakthroughs 

and to allow developers to find simple solutions to hard problems.37 

Bostrom sees several paths to achieve superintelligence. The first is to “simply replicate 

the relevant evolutionary processes on Earth that produced human-level intelligence.”38 Another 

method for super-intelligent machines can come from a whole brain emulation by creating a 

detailed model of a person’s brain recreating the exact neural network. With powerful enough 

hardware and an exact 3D model of the person’s brain, “the result would be a digital reproduction 

of the original intellect, with memory and personality intact.”39 Bostrom sees whole brain 

emulation only depending on technical capability allowing computers to match or surpass the 

brain in neurons and processing speed.40 

 

                                                      
35 Russell and Norvig, 4. 
36 Nick Bostrom, Superintelligence (Oxford: Oxford University Press 2014), 39. 
37 Bostrom, 19. 
38 Bostrom, 42. 
39 Bostrom, 48. 
40 Bostrom, 51. 
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Artificial Intelligence Challenges 

Since the enlightenment philosophers still debate the relationship between human 

cognition and machine computation. Journalist George Johnson, author of Machinery of Mind: 

Inside the New Science of Artificial Intelligence, described the fundamental assumptions of AI is 

that the human mind is a formal system for manipulating symbols representing the environment. 

“it doesn’t matter what the brain is made of…Using the right software, one system (the mind) can 

be mapped into the other.”41 

Earlier in the evolution of AI, there was more of a dialectical view of AI and the 

prospects of the relationship of the mind to the machine. A professor of philosophy, Alan 

Anderson pondered where the separation between the mind and the machine existed. He offered 

two extreme opposing positions to the dialogue. 

1. We might say that human beings are merely very elaborate bits of clockwork, and that 
our having "minds" is simply a consequence of the fact that the clockwork is very 
elaborate. 
2. We might say that any machine is merely a product of human ingenuity (in principle 
nothing more than a shovel), and that though we have minds, we can't impart that 
peculiar feature of ours to anything except our offspring: no machine can acquire this 
uniquely human characteristic.42 
 

Today most in the AI community would lean towards the first position.43 Some mathematicians, 

scientist, and philosophers offer theories that support the argument against a mechanical mind 

offered in position two. The arguments against a mechanical mind and thus against AGI involve 

the inherent limitations of algorithmic computations. 

Computer scientist David Harel, at the Weizmann Institute of Science, authored 

Computers Ltd.: What They Really Can't-Do, where he describes what he calls the “bad news” of 

computing which are “proven, lasting and robust…problems that computers are simply not able 

                                                      
41 George Johnson, Machinery of Mind: Inside the New Science of Artificial Intelligence (New 

York: Random House, 1986), 250. 
42 Alan Ross Anderson, Minds and Machines (Englewood Cliffs, NJ: Prentice-Hall, Inc., 1964), 2. 
43 Nilsson, 382. 
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to solve, regardless of…hardware, software, talents or patience.”44 For AI to solve a problem, it 

must first have an appropriate algorithm that provides “correct outputs for all legal inputs.”45 This 

algorithm requires routines programmed with all the intended meanings for input. The tasks given 

to the algorithm to perform must be unambiguous and explicitly detailed. 

At the machine level, the algorithm will execute all legitimate inputs and attempt to find a 

rule-based output.46 Even with the a priori conditions met, there is no way to determine the time 

needed for an algorithm to solve a problem, or where the algorithm is at in the calculation 

including if it will compete the calculation (self-terminate or halt) with a correct output.47 Once 

an AI algorithms start a computation, it cannot self-terminate if a problem turns out to be 

unsolvable. Turing first envisioned “the halting problem,” proposing the impossibility to 

predetermine an algorithm's ability to finish a calculation.48 The halting problem is part of a 

larger problem in computability theory known as Rice’s Theorem; which describes that the non-

trivial properties of an algorithm are undecidable, meaning that “nothing about computation is 

computable!”49 Additional problems arise for algorithms when they do self-terminate but produce 

an erroneous output. The algorithm cannot determine if the output is correct or the intended result 

independently.50 

In addition to the algorithm computation, AI has limitations based on the formal system 

structuring the algorithm. Kurt Gödel, the twentieth-century mathematician, and philosopher 

                                                      
44 David Harel, Computers Ltd.: What They Really Can’t Do (Oxford: Oxford University Press, 

2000), viii. 
45 Harel, 16. 
46 Harel, 16-20. 
47 Harel, 26,48, 56-58. 
48 S. Barry Cooper and Jan van Leuven, Alan Turing: His Work and Impact (Amsterdam: Elsevier, 

2013), 209. 
49 John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman, Introduction to Automata Theory, 

Languages, and Computation, 2nd ed. (Boston: Addison-Wesley, 2001), 388; Harel, 54. 
50 Harel, 78. 
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formulated the incompleteness theorem which postulates that “truth transcends theoremhood, in 

any…formal system.”51 Within any formal, complex, self-referencing system, some statements 

are unprovable in that system. Based on the incompleteness theorem, AI’s algorithmic system 

may encounter problems that are unsolvable in that system’s frame of reference. John Lucas, a 

Merton College Fellow at Oxford University, used Gödel’s incompleteness theorem to argue 

against the idea that a machine could have a mind because it would require the machine to 

question its processes and reflect on what it can and cannot do.52 The human mind can resolve 

conflicts in self-referencing logic, whereas an algorithm currently cannot. 

Gödel’s incompleteness theorem translates Epimenides paradox, involving self-

referencing logic, “All Cretans are liars,” or “This statement is false” into a mathematical 

expression.53 The human mind unconsciously filters through millions of patterns sorting through 

features and options for action. Although machines are excellent at processing per an algorithm, 

they cannot independently determine rules for action. AI needs a predefined frame for addressing 

the secondary and irrelevant incidents and possibilities that occur in a complex reality. This 

framing problem requires AI to have rules, heuristics set by a human to cope with infinite 

possibilities. In short, AI is following instructions set by humans in an artificially constrained 

environment.  

Artificial Intelligence Critics 

If AI research groundbreakers, Minsky, Newell, and Simon were overly optimistic about 

AI’s capabilities, then the late, Hubert Dreyfus, a philosophy professor at the University of 

California Berkeley, was equally confident in what AI could not do. While as a consultant for 

                                                      
51 Douglas R. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid (New York: Basic 

Books, 1999), 86-87. 
52 John R. Lucas, “Minds, Machines and Gödel,” Philosophy 36, no. 137 (April – July 1961): 124. 
53 Hofstadter, 19. 
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RAND Corporation, he did a study called “Alchemy and Artificial intelligence” in 1965, 

attacking AI with comparisons to the pseudo-sciences in the Middle Ages. 

In 1972, Dreyfus published a book called What Computers Can't-Do; A Critique of 

Artificial Reason which describes the naivety of the assumption that “human and mechanical 

information processing ultimately involve the same elementary processes.”54 Dreyfus argues 

against the assumption that it is possible to formalize all knowledge and express it in logical 

terms of Boolean functions. Further, he claims that algorithms presuppose that all information 

about the environment that is essential to intelligent behavior are “analyzable as a set of situation-

free determinate elements…logically independent of all the others.”55 In Dreyfus’ view, AI 

research sought, “the discovery of rules—rules for moral behavior, rules of intellectual behavior, 

and rules for practical behavior.”56 

Rule-based behavior does not give AI the ability to understand the meaning of 

knowledge. If the AI learns “red car = car + red” it does not intuitively know that the “red car is a 

red colored car.” Dreyfus understood what is still called the symbol grounding problem.57 

Dreyfus’ challenge of AI’s philosophical assumptions pushed AI researchers to look for more 

scientific approaches to intelligent behavior.58 Pamela McCorduck, documenting in her 

interviews with Minsky and Simon, offers a unique take on Dreyfus’ work, 

The funny thing is that both sides might turn out to be more or less right. It may indeed 
be that human intelligence in complete detail cannot be realized on a computer…But that 
doesn’t preclude the possibility that machines may eventually exhibit intelligent 
behavior.59  
 

                                                      
54 Hubert Dreyfus, What Computers Can't-Do: A Critique of Artificial Reason (New York: Harper 

& Row, 1972), 67. 
55 Dreyfus, 68. 
56 McCorduck, 211. 
57 Dreyfus, 203. 
58 McCorduck, 239. 
59 McCorduck, 239. 
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Dreyfus philosophical opposition to AI is a counterbalancing effect to the hubris of Minsky, 

Newell, and Simon. 

Max Tegmark, a professor at Massachusetts Institute of Technology, provides a balanced 

approach to AI’s philosophical debate. He describes that in addition to asking if AGI is 

achievable we should also ask what it will mean. Tegmark explains that AI experts are in one of 

three schools of thought; those who are skeptical, those who see it as beneficial, and those who 

claim AI to be the coming of a digital utopia. There will always be Luddites opposing any 

technology replacing humans. Tegmark created a matrix representation of the spectrum of 

different positions and their relationship to when they think AGI will arrive and whether it will be 

beneficial, in Figure 2. The current forecast for AI goes “from confident optimism to serious 

concern.”60 The range for when an AGI will arrive goes from decades to centuries.  

                                                      
60 Max Tegmark, Life 3.0: Being Human in the Age of Artificial Intelligence (New York: Alfred A. 

Knopf, 2017), 30-31. 
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Artificial Intelligence Problem Solving 

As seen in early developmental phases of AI, researchers and industry need to continue 

set realistic goals for AI. The goals need to take into account the inherent limitations of 

computing without overpromising capabilities. In Stuart Russell’s and Peter Norvig’s 

foundational text, Artificial Intelligence: A Modern Approach, they identify that continued 

advances in AI will arrive by focusing on creating intelligent agents. What makes these agents 

intelligent is their rational actions derived from rational decision making from environmental 

Figure 2. Mac Tegmark’s Matrix of Philosophical Positions. Max Tegmark, Life 3.0: Being 
Human in the Age of Artificial Intelligence (New York: Alfred A. Knopf, 2017), 30-31. 
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inputs.61 The intelligent agent is an AI algorithm designed to solve a problem, instead of an AI 

that is designed to mimic human behavior. The desire should be in trying to create intelligent 

agents that act rationally which may include using human problem-solving methods to arrive at 

rational decisions. 

 Herbert Simon, an economist and political scientist, working with Allen Newell, 

computer and cognitive scientist, present an information-processing theory of rational human 

problem solving, which provides a framework for understanding a method of AI problem-solving. 

As a problem solver, AI is fundamentally an information-processing system. The “task 

environment” is the way a programmer describes the problem that the algorithm is to solve. The 

“problem space” is the cognitive structure that the AI will use to represent the task environment 

for problem-solving.62 The AI and task environment define the problem space regarding the 

problem state. Included in the problem space, are the operations the AI needs to perform to 

change the problem from one state to another and what functions the AI will use to evaluate the 

change of state.63 A problem space represents the “possible states of knowledge” that an AI might 

attain, and the state of knowledge represents what the AI “knows about the problem” at any 

particular time.64 

Newell and Simon identified with the early GPS program, a roadmap for future iterations 

of problem-solving algorithms.65 John Laird, building upon the work of Newell and Simon on the 

GPS, developed a cognitive architecture for problem spaces named Soar. Soar is a comprehensive 

cognitive architecture for the organization of knowledge and behavior for rational agents 

                                                      
61 Russell and Norvig, 30. 
62 Herbet A. Simon and Allen Newell, “Human Problem Solving: The State of the Theory 1970,” 
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functioning at the human level.66 Soar is an example of many ways researchers create a problem-

space computational model (PSCM). The PSCM provides a fixed framework for controlling AI’s 

behavior through multi-levels deliberation across hierarchical representations of goals and meta-

cognitive knowledge.67 Creating a general fixed framework is an effort to address AI framing 

problems and characterize the task environment. 

Researchers looking for methods to achieve AI, use PSCMs, in developing machine 

learning for pattern recognition, which involves categorizing data into different classes. The 

process of machine learning uses a probabilistic statistical model to predict the appropriate 

classification for unknown data based on previously learned rules or heuristics. Humans have 

great difficulty in mathematically categorizing multi-dimensional data. Machine learning 

algorithms parameterize patterns into a number vector or matrix. Machine learning algorithms 

apply the pattern data to different data categories by changing matrix dimensions.68 A task easy 

for algorithms but not so easy for humans to do computationally. 

Is machine learning truly intelligent learning? Edsger Dijkstra, the computer scientist, 

speaking at the 1984 Association for Computing Machinery conference, presented a commentary 

about the negative detractors towards efforts to develop AI. Dijkstra describes Alan Turing's 

attempt to create criteria defining the threshold for a thinking machine is “about as relevant as the 

question of whether submarines can swim.”69 Russell and Norvig elaborated on his statement by 

defining the word “swim” from the American Heritage Dictionary. The authors identified that the 

definition of “swim” is a movement through water by “limbs, fins or tails,” yet most people 
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would agree that a limbless submarine cannot swim. However, when it comes to airplanes most 

would agree that they fly. When in reality neither definition has any bearing on the how it is 

designed or used.70 It does not matter that machine learning will not become an AGI because 

there is great utility in “pattern classification and prediction based on input data.”71 Practical 

approaches to AI have brought about some very useful algorithms. Future advances will come out 

of utility versus the possibility of AGI. 

Artificial Intelligence’s Third Period of Development 

Machine learning triggered AI’s third period of development in the early 2000’s which 

followed Gartner’s hype cycle. Machine learning is dependent on large data sets, and without 

them, machine learning began entering into the trough of disillusionment. As the internet became 

prolific, the availability of open data grew exponentially. The recognition of massive amounts of 

open data, “Big Data,” on the internet started a second peak in the hype cycle breathing new life 

into machine learning. When large data sets and machine learning started the downward slope 

after over-hyped expectations, innovation in neural networks and deep learning started the third 

peak in the hype cycle. These peaks of innovation leave open the question of whether deep 

learning will precipitate a period of disillusionment or will another innovation trigger the 

continued hope for machines with general intelligence? 

For decision makers directing the integration of AI, it is important to know where AI is 

along the hype cycle. An understanding of the past developmental challenges and limitations 

offers a way to qualitatively parse the hyperbole. Over the past six decades, AI has been through 

many cycles of inflated hyperbole. The reality of AI’s narrow, asymmetric progress coupled with 

unrealized hopes led to protracted periods of disillusionment. Currently, deep learning algorithms 
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with training data have difficulty scaling and generalizing to other problem sets. Which still 

leaves AI algorithms too narrowly focused and unable to make intelligent meta-decisions. 

Researchers, developers and integrators need to manage expectations throughout the hype 

cycle to avoid disillusionment. Significant disillusionment leads to extended periods of resources 

directed away from AI development ultimately delaying advancement of useful algorithms. 

Military, government and for profit organizations need methods to evaluate AI’s capabilities. It is 

difficult to generalize on AI because each algorithm is designed to solve specific problems. 

However, it is possible to characterize AI based off how they represent their task environment 

through their problem spaces.  
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Methodology 

This paper will use an inductive approach to develop a model for qualitatively evaluating 

AI, its problem spaces, and relationships to task environments. The historical narrative of AI’s 

development provides the initial technical conditions and path dependencies for continued 

innovation. The theoretical model is an amalgamation of sense-making devices assembled to 

characterize technology’s relationships to other systems.  

The Artificial Intelligent Algorithm 

This paper makes three critical assumptions about AI’s limitations: 

• There is a frame problem where an algorithm cannot self-identify the knowledge 

needed to solve a problem.  

• There is a symbol grounding problem where algorithms understand a symbol as 

defined and not the concepts that put one symbol with another. 

• There is a feature engineering problem where an algorithm cannot independently 

identify what feature about an object or phenomena to focus on and the requisite 

information needed for understanding the object or phenomena because doing 

either would violate the frame problem or the symbol problem.  

 Because of these limitations, AI functionality within operational art requires human input 

to identify the appropriate machine learning algorithms, features and model parameters that apply 

to a specific problem. The application of machine learning in the operations process will consist 

of recursive training and testing until achieving the desired output. AI will need a human to 

provide the cognitive links between tactical actions and strategic objectives. Realistic 

expectations for AI will depend on how operational artists quantify the elements of operational art 

in a logical framework facilitating algorithmic computation.  
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The Task Environment 

International Business Machine (IBM) developed a “sense-making device” called the 

Cynefin framework. 72 The Cynefin frame work is a method to categorize knowledge for 

information processing. Developers of AI create a problem space that characterizes a task 

environment for an algorithm. Problem spaces are a cognitive framework representing knowledge 

and structure of the environment. The AI does not care about the task environment it will act on 

the provided inputs for the task environment and processes the input based on the problem space 

framework. The Cynefin framework provides a general method to characterize operational task 

environments and the nature of the problem spaces where AI will function. The value of the 

Cynefin framework is that it has broad recognition as a method to categorize knowledge for 

information-processing systems. 

This paper will use a “taxonomy of levels of technological function” created by Arizona 

State University professors, Braden Allenby, professor of law and environmental science, and 

Daniel Sarewitz, professor of science and society, to describe the interaction between AI task 

environments.73 Allenby and Sarewitz explain that cultures make choices that shape the purpose 

and development of their technologies. Societal choices affect the advancement of technology, 

and the advancement of technology affects the physical, cultural and political environment. To 

understand the recursive relationship between society and its technology there needs to be a 

method to describe the function of technology and its interconnectedness to the environment.  

AI Functional Framework 

This paper combines the Cynefin framework along with Allenby and Sarewitz’s 

taxonomy to create a model called, AI functional framework (AIFF). The AIFF in this paper will 
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categorize an AI algorithm’s capability and its corresponding problem space according to the 

Cynefin framework at the different levels of technology defined by Allenby and Sarewitz. The 

functional framework will offer a graphical representation for conceptualizing AI’s physical and 

cognitive relationship and capability. The framework offers a method to gauge AI’s current state 

against a future state. Identifying the differences between past to possible future states concerning 

time offers a gauge to compare where AI is along the curve depicting the hype cycle. 

I will be looking at AI integration through the lens of the Cynefin model combined with a 

taxonomy of technological function to create an AI functional framework, because the US Army 

needs to understand where its current understanding of AI is and the boom and bust cycle of 

America’s infatuation with AI as our near-peer adversaries are forging ahead in this area. 
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Analysis 

Questions 

What is the operating environment for AI? What is a method of characterization for AI 

that will represent current functionality, and requirements for future innovations of AI? What are 

current uncertainties affecting AI’s future development? 

Objectives 

Previous decades of AI research, any significant advances or new capability give way to 

excessive optimism followed by disappointment and another drought of funding until the next 

breakthrough. Executives responsible for technology investment and integration have the 

challenge to determine the appropriate level of funding for research and development (R&D) and 

timing the integration of technology into their organization. As seen in past evolutions, AI is 

vulnerable to inflated expectations. Excessive hyperbole misinforms the laymen public and 

politicians on the future of AI. Mass disillusionment toward AI from unmet expectations 

negatively impacts future innovations. 

The object of this paper is to provide a generalized framework to reduce the complexities 

that characterize the state of AI capabilities and to highlight unrealistic expectations, risks, and 

limitation to future development. Army decision makers have a challenge in balancing conflicting 

demands for limited resources. Decisions for AI need to stand on a realistic understanding of 

what algorithms can do. Understanding AI's capabilities will assist in determining the most 

effective approach to addressing performance and cost objectives for AI. 

Artificial Intelligence Future Operating Environment  

Many of the current successes in AI stem from government and military spending. 

Today, AI sees an increased contribution from private investment. Government military funding 

towards AI is subject to political factors. Private funding for AI is dependent on perceived return 

on investment (ROI). The funding conditions are vulnerable to public disenfranchisement. Cracks 
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are starting to form revealing evidence of over-hyped expectations for AI. In 2015 Facebook 

launched a general purpose personal assistant with much fanfare dubbed a supercharged AI. After 

two and half years Facebook has canceled the program for lack of usability and progress toward 

improved capability.74 After several highly publicized fatal crashes, driverless cars are proving 

not to be infallible in understanding road and weather conditions or predicting actions of human 

pedestrians, cyclists and drivers, leaving many investors disillusioned.75 Sensational news stories 

from a prominent scientist about the threat of an AI apocalypse, when added to investors 

reluctance to fund new projects, have many researchers questioning if AI will fall into the trough 

of disillusionment and experience another AI winter. 

To quantify the current industries intent on integration of AI, Gartner Inc. surveyed 3,160 

Chief Investment Officers (CIO) in ninety-eight countries. The results showed that AI initiatives 

were in the top-five funding priorities for the surveyed corporations. Chiraq Dekate, Research 

Director at Garnter Inc., assesses that by the year 2020 85% of the corporations will be in some 

form of buy, build or outsource for AI programs.76 Figure 3, shows the results of the 2017 survey 

for 2018 AI deployment. Fifty percent of the respondents say they are either deploying or are 

planning to deploy AI.  AI has the potential for widespread proliferation in the private sector, as 

long as the CIOs are planning with reliable data setting realistic objectives. Many of the CIOs in 

the survey claimed they were using poor or uncertain data to shape their planning efforts, while 
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others were struggling to understand AI’s capabilities and did not think their organizations had 

the requisite skills to integrate AI properly.77    

The data from the survey shows that roughly 80% of the CIO’s are either planning or 

thinking about AI with only 4% deploying the technology. AI is in an early adoption phase of the 

current hype cycle which still leaves room for a significant number of these CIOs to become 
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Figure 3. Results from Surveyed CIOs for 2018 AI Project Deployments. Laurence 
Goasduff, “2018 Will Mark the Beginning of AI Democratization,” Digital Business, 
Smarter with Gartner, December 19, 2017, accessed April 5, 2018, 
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disillusioned if they do not foresee an ROI due to planning on over-hyped or unreliable 

information. 

Similarly, with industry’s integration of AI for profit and efficiency, future battlefields 

will see AI’s proliferation. The Army Capabilities Integration Center’s (ARCIC) document, The 

Operational Environment (OE) and the Changing Character of Future Warfare, assesses that the 

future environment will have two critical drivers; one of societal change and the other of an 

evolving art of warfare, both spurred by breakneck advances in science and technology.78 The 

pervasiveness of AI technology will see applications influencing every aspect of the future 

operating environment. Inflated expectations for AI involve extrapolation of capabilities across 

OEs without taking into consideration how the algorithm will interact with other rational agents 

in the OE. 

As in previous iterations of AI development, recent innovations in AI applications give 

way to developers overpromising future capabilities of AI followed by years of technological 

abandonment. Each time AI development entered a trough of disillusionment and US government 

and military spending ended crippling AI development. The US government and military have 

been an integral part of the history of AI’s development and will continue to play a vital role in 

guiding future development. The US military cannot afford to have inflated expectations that 

precipitate a period of disillusionment that will cede initiative and technological advantage to US 

peer competitors, Russia and China; who are pursuing weaponized AI. Leaders and decision 

makers need a realistic understanding of AI development to guide them in their integration of AI 

into the Army enterprise. 
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Operational Environment Translated into the Cynefin Framework 

To avoid unrealistic expectations for AI’s capabilities in the OE, the Cynefin framework 

offers a method to generalize the algorithms’ OE. AI will execute tasks in the OE through 

algorithmic problem spaces, where it will sense the OE’s current state and employ operators to 

attempt to change the OE to the desired state. The Cynefin framework consists of two knowledge 

domains which are a broad characterization of the AI’s problem spaces for the OE. Figure 4, 

shows a graphical depiction of the Cynefin framework knowledge domains; one ordered and the 

other unordered. The knowledge domains contain quadrants, each with a unique context and 

Figure 4. Cynefin Framework Knowledge Domains and Problem Space Quadrants. Cynthia. 
F. Kurtz and David J. Snowden “The New Dynamics of Strategy: Sense-Making in a 
Complex and Complicated World,” IBM Systems Journal 42, no. 3 (February 2003): 462. 
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specific characterization of a problem space derived from the OE.79 The quadrant problem spaces 

associate the “decisions, perspectives, conflicts and changes in order,”80 that are unique 

combinations of rational choices and intentional action that an AI will need to manage to meet its 

designed objective successfully. The Cynefin ordered knowledge domain is an environment 

where the order is directed and can be described based on rules. The unordered knowledge 

domain is an environment where any order in the problem space is emergent and seeking 

equilibrium.81 In the ordered domain there are two of the quadrants; one is a simple problem 

space, and the other is a complicated problem space. The unordered domain contains the 

remaining two quadrants; one is a complex problem space and the other is a chaotic problem 

space. In the center of the knowledge domain is ‘disorder’ which is the antithesis to both the 

unordered and ordered knowledge domain where any AI problem space does not relate to the task 

environment of the OE. 

 The OE is not specific to any quadrant problem space and is relative to the tasks the 

algorithm attempts to solve. The tasks environment can cross from one quadrant to another 

depending on the data and knowledge available to the algorithm. The boundary between the 

simple quadrant and the chaotic quadrant is precipitous and represents how an AI working in a 

simple problem space without careful attention to detail can fall into chaos quickly and 

dangerously.82 Unlike the transition between the simple and chaotic quadrant transitions between 

the other three domains tend to have a more gradual transition. 
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Artificial intelligence knowledge domains 

Each quadrant of the Cynefin framework represents a problem space that has a unique 

relationship with the task environment. The first and second quadrant are in an ordered 

knowledge domain, and the third and four quadrants are in an unordered knowledge domain. The 

simple and complicated problem spaces in the ordered knowledge domain are a product of 

directed order that is governed by rules. The unordered knowledge domain is where complex and 

chaotic problems are, represented in the third and fourth quadrants. In the unordered knowledge 

domain, general rules and principles do not apply. 

Simple problem space 

In the ordered domain, the simple and complicated quadrants are problem spaces; where 

researchers use the scientific methods to create a body of knowledge by empirical testing. The 

simple problem space is where cause and effect between actions and outcomes are known and 

predictable; relationships are quantifiable. With quantifiable relationships, standard operating 

procedures, predictive modeling, and process achieve consistency and efficiency. Decision- 

making in the simple domain consists of a function to sense input, categorize the data and 

respond based on defined procedures and best practices. The simple problem space models tasks 

with explicit methods and techniques.83 AI in the simple problem space can easily outperform 

human cognitive abilities; these algorithms are examples of straightforward automation. 

Complicated problem space 

The second quadrant in the ordered knowledge domain is the complicated problem space 

where cause and effect are knowable. The connection between cause and effect are ambiguous, 

leaving a limited number of experts available to fully characterize the relationships.  All elements 

in this problem space may translate to the simple problem space through expert knowledge, time 

and resources. The complicated problem space relies on experts and requires the ability to discern 
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between the contradictory opinions of competing experts. Experimentation, and interpretation to 

identify the properties and patterns of relationships dominate the complicated problem space.84 

The defense industry has used AI in the complicated problems space for decades. An 

example of this was the US Army Artificial Intelligence Center’s (AIC) Single Army Battlefield 

Requirements Evaluator (SABRE). This system helped decision-makers assimilate information 

and data that was only available to experts across warfighting functions. Analysts were unable to 

sort through the massive databases and extract relevant data for calculations to support “decisions 

on the Army’s ability to provide the necessary forces to accomplish Desert Storm II.”85 The 

SABRE AI was a descriptive model that built alternative force structures, showing graphical 

command relationships and annotating detailed unit information. SABRE allowed decision 

makers to identify force readiness, modernization paths, and deployment dates. Planning 

processes that took days to complete would now only take hours. 

SABRE demonstrated AI capability to function in the complicated problem space 

successfully. Advances in computing power, memory storage, and software have only given AI 

broader, cheaper and more accessible applications in the complicated problem space. Today 

individuals have access to AI tools and algorithms that were once only available to well-

capitalized institutions. AI will continue to proliferate the complicated problem space and will be 

the primary domain of AI in the future. Developers will continue to use expert knowledge to find 

a way to quantify problems and pull tasks from the complex and chaotic environments into the 

complicated problem space for AI to solve. 

Complex problem space 

The third Cynefin framework quadrant is where complexity theory dominates. With 

complexity, cause and effect relationships are impossible to identify. The combined output from 
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independent actions of agents, whether human, machine or environmental in response to each 

other, resist any form of categorization.86 The complex problem space is only understandable 

through retrospective coherence, hindsight of the systems emergent patterns and properties. 

Observation of the complex problem space has the potential to disrupt the entire system and if the 

system stabilizes there is no guarantee that it will continue it that state.87 

It is in the complex problem spaces where the effectiveness or certainty of AI starts to 

break down. AI uses inference, and stochastic algorithms to model the complex task environment 

where results are relative and probabilistic. The impossibility to predict in complex problem 

spaces provides another challenge to fully autonomous AI. The dynamics of complex 

environments require near constant monitoring to detect changes of state. Depending on the 

nature of the problem space, an AI will need sensor systems to perceive state changes. The input 

from these systems can be faulty and vulnerable to noise and interference. Actuator control and 

goal-oriented planning algorithms are susceptible to perception issues that compound with 

sensing intervals and data processing limitations.88 

The future use of AI in complex problem spaces relies on advances in knowledge 

representation, soft computing, genetic algorithms, and quantum computing. For AI to 

independently solve complex problems algorithms will need to combine first-order logic with 

probability, which is debatable if possible. The future of AI relies on the technical coevolution of 

society. Human-machine teaming provides a means to overcome the inherent limitations posed by 
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the framing and symbol grounding problems which will allow AI to solve problems with 

increasingly higher levels of complexity.89 

Chaotic problem space 

The chaotic quadrant is where any connection between cause and effect is unperceivable. 

The unsettled chaotic system represents consequences of abrupt changes within extreme 

disproportionate systems and structures. The goal of purposeful action in the chaotic problem 

space is to attempt actions that will nudge the system into another problem space. For an AI 

operating in a truly chaotic problem space, any probability or inference algorithm will fail to 

produce meaningful results. 

For an AI to truly function in a complex or chaotic problem space, it will require an 

intelligence capable of overcoming the framing problem by axiom revision when faced with new 

data, and evaluating the validity of one’s belief system. However, future AI operating in the 

chaotic problem space will need robust methods of addressing the frame problem, symbol 

problem, and the feature engineering problem. In addition to solving significant computational 

challenges, there are significant ethical considerations that need addressing for autonomous AI 

functioning in the complex and chaotic problem spaces. 

Artificial Intelligence Levels of Function 

AI not only operates in knowledge domains but also interacts with other rational agents 

and their problems spaces at different levels. Inflated expectations for AI come from not taking in 

account these levels of interaction. Allenby and Sarewitz’ taxonomy of levels of technology 

offers a method to understand the recursive interplay between society and its technology. 

Technologies function and its interconnect with the environment is in three levels. The levels 

offer a quantifiable model to gauge AI’s functional interaction with other systems and problem 

                                                      
89 Klaus Mainzer, “Toward a Theory of Intelligent Complex Systems: From Symbolic AI to 

Embodied and Evolutionary AI,” Fundamental Issues of Artificial Intelligence, ed. Vincent C. Müller 
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spaces. Figure 5, is a graphical representation of the different levels of technology and their 

functional interaction with other systems. 

Level 1 is the “immediate effectiveness of the technology itself as it is used” per the 

intended cause-and-effect.90 An example of a Level 1 interaction is an air defense target 

acquisition system that uses an AI algorithm designed for pattern recognition. This algorithm 

learned from a large data set, characteristics of the target and non-target images. Level 1 is the 

                                                      
90 Allenby and Sarewitz, 37. 

Figure 5. Allenby and Sarewitz's Levels of Technology. Braden Allenby, and Daniel 
Sarewitz, The Techno-Human Condition (Cambridge: MIT Press, 2011), 33-66. 
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target acquisition system’s algorithm and other electro-mechanical systems functioning as 

designed and correctly identifying targets within its composite problem space. 

Level 2 is when the technology becomes a part of a larger networked system. The larger 

systems include not only the hardware/software system but also the support infrastructure with 

the users and maintainers. For example, the Level 2 is when the target acquisition system 

becomes a part of a larger more complex integrated air defense system (IADS). The Level 2 has a 

complex problem space that includes the problem space of Level 1. The functionality of Level 2 

is an emergent property of the larger system. The reason Level 2 functionality is an emergent 

property is that Level 2’s overall performance is not predictable from Level 1 behavior.91 How 

well an AI performs in target acquisition is not an indicator of the overall Level 2 IADS’s 

performance. Level 1 does contribute to the overall performance of Level 2. It is impossible to 

predict Level 2 performance solely on that of Level 1. 

Level 3, is an “Earth System – that is, a complex, constantly changing and adapting 

system in which human, built and natural elements interact,” where the complexity is difficult to 

observe, comprehend and manage.92 Understanding of Level 3 does not exist in any one 

discipline or intellectual framework. Level 3 develops as an aggregate of social constructions 

where the subjective reality and objective reality apply mutually recursive feedback. An example 

of Level 3 is when an IADS is part of a national defense system where the overall strategy of 

employment and the IADS effectiveness forces changes to adversarial aircraft doctrine, tactics, 

techniques, and procedures (TTP), and countermeasures. A change in enemy doctrine or TTP 

elicits changes in Level 1 technology through the application of new methods in AI for targeting 

algorithms or missile guidance systems. 
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Innovations in one level will have a cascading effect that precipitate changes in the other 

levels.93 System changes caused by advancements in technology at other levels are not reversible 

without large expenditures of energy. The changes across levels of interaction are difficult to 

anticipate rendering forecast for AI integration spurious. Extrapolation of AI capabilities from 

other levels are ripe for inflating expectations at the Earth system. 

Artificial Intelligence Functional Framework 

 Current breakthroughs in AI are the results of research from 30 years ago. The first neural 

network appeared in 1950s called the Perceptron. In 1969, Minsky proved the Perception could 

calculate simple functions. In 1986, a cognitive psychologist, Geoffrey Hinton showed that a deep 

neural net is trainable. Not until 2012 did computational power arrive that could train the deep 

neural net for pattern recognition. Pattern recognition sparked a resurgence of interest in the 

future potential of a general AI. However, deep learning is a “thoughtless fuzzy pattern 

recognizer…they represent, at best, a limited brand of intelligence, one that is easily fooled.”94 

Pattern recognition is very useful and deep learning provides a powerful tool for special purpose 

algorithms. However deep learning is not human level intelligence because real intelligence, 

“doesn’t break when you slightly change the problem.”95 

 Over two thousand years of philosophical tradition has envisioned the arrival of some 

human-made form of AI rivaling human intelligence. The historical belief and desire for a true 

AGI are vulnerable to overestimation of AI technology through the hype cycle. The AI functional 

framework (AIFF) provides a method to delineate the fungible boundaries between human and 

algorithm intelligence. 
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The AIFF is a graphical representation of an algorithm’s relationship respect to the OE. 

For AI to operate in the OE, it needs to characterize the task environment into formalized 

problem spaces. The characteristics of an AI’s problem space will be at some point in the Cynefin 

quadrants: simple, complicated, complex or chaotic. The AI using the Cynefin quadrants problem 

space will function as Level 1 (purposely designed system), Level 2 (networked system of 

systems) and Level 3 (Earth system) technologies. 

For example, an average automobile has an algorithm that controls the amount of fuel 

delivered to the engine. This algorithm receives input from the car’s sensors; accelerator pedal, 

mass air flow, cam position, etc. The sensors’ data allows the algorithm to quantify the OE and 

respond with the appropriate fuel quantity. The automobile fuel delivery algorithm is an example 

of an AI, Level 1, with a problem space in the ordered knowledge domain, shown in Figure 6. As 

the algorithm functions, part of a larger system of systems, Level 2, with the human driver and 

the road network the task environment grows in complexity but the AI problem space remains in 

the ordered knowledge domain. The fuel algorithm’s problem space does not change when the 

task environment changes.  

Figure 6. Artificial Intelligence Functional Framework (AIFF), Fuel Delivery Algorithm. 
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The algorithm is oblivious to the drivers desired objective of going from point A to point 

B. The human driver interprets the complexity of Level 2 into tasks solvable in the AI’s simple 

problem space. The Level 3, Earth system, is beyond the Algorithm’s comprehension through its 

problem space. For the AI to adapt to changes to Level 3, it requires additional systems of R&D 

and legislators to create and implement new fuel delivery requirements. The new requirements 

force changes to Level 1 technology. At Level 2 and 3, the AI has the relevant elements from the 

unordered knowledge domain translated into meaningful usable inputs. 

The AIFF for a deep learning AI is more complicated than a simple fuel delivery 

algorithm. Deep learning methods use stochastic and heuristic algorithms to make an 

approximation of the complex and chaotic problem spaces. The AI approximations of complex 

problems spaces allow algorithms to remain in the ordered problem space and manage 

randomness and entropy. However, the chaotic problem space is incompatible with probabilistic 

algorithmic methods and require an intelligence capable of self-reference while dealing with 

incomplete information. 

Deep learning is a purpose-built algorithm for a specific application that depends on the 

available data. Figure 7, is a graphic showing the AIFF for a deep leaning algorithm. At Level 1 

an algorithm uses data from the unordered knowledge domain. The data is ingested through a 

complicated problem space to determine an appropriate algorithmic response. The algorithmic 

response that is learned in Level 1 is then applied to a specific application in a complex task 

environment at Level 2. Feedback from actions in Level 2 reinforces the deep leaning from Level 

1. A deep learning AI developed for a specific application applied at Level 2 cannot change to a 

new application at Level 3 without feedback to Level 1. At Level 1 the AI will need a period of 

relearning for the new specific application. 
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Deep learning algorithms reside in the ordered knowledge domain at Level 1. The AI has 

methods to bring complex data into the complicated domain without needing a complex problem 

space. The deep learning algorithm at Level 2 acts on the goals established and learned at Level 

1. The framing, symbol and feature engineering problems currently prevent deep learning form 

picking the appropriate method for applying machine learning at Level 2. The problems for AI at 

Level 2 are exponentially more difficult at Level 3. 

Pundits inflating the hype cycle using scenarios with independent AI operating at Level 3 

drastically overestimate the trajectory of development. The hype cycle using “The Matrix” and 

“Ex Machina,” as data points, place AI functioning in the chaotic quadrant at Level 3. 96 The 

current AI functioning in the complicated problem spaces in the ordered knowledge domains sets 

AI development on a low angle trajectory within the next twenty to thirty years. If the expectation 

                                                      
96 Ryan Browne, “Elon Musk Warns A.I. Could Create an ‘Immortal Dictator from which We Can 

Never Escape’,” Tech, CNBC (April 2018), accessed April 10, 2018, 
https://www.cnbc.com/2018/04/06/elon-musk-warns-ai-could-create-immortal-dictator-in-
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Figure 7. Artificial Intelligence Functional Framework (AIFF), Deep Learning Algorithm. 
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is for independent AGI at Level 3 problem spaces, the US will see a period of disillusionment 

which risks allowing peers with more realistic expectations to achieve AI technical dominance. 

US Army future objectives 

In 1989, the Logistics Management Institute authored “A Plan for the Application of 

Artificial Intelligence to DoD Logistics.” In this report Jeffrey Melaragno and Mary Allen, Ph.D. 

suggested six AI technologies with the potential application: expert/knowledge-based systems, 

natural language, speech recognition, three-dimensional vision, intelligent robotics, and neural 

networks. They claimed that integration of AI would reduce cost, improve efficiency, and reduce 

the time for planning and mobilizing.97 

Nearly thirty years later with improvements in neural networks and deep learning for 

pattern recognition, the US Army has issued new objectives for the integration of AI. The current 

focus on AI technologies as part the Army’s strategy to maintain technical overmatch with 

adversaries. In 2014 the Army Capabilities Integration Center (ARCIC) released The US Army 

Operating Concept: Win in a Complex World (AOC). The AOC advocates for autonomous and 

semi-autonomous robotic systems with the ability to learn, aid in the decision-making process, 

and reduce the cognitive burdens of rapid decisions.98 The US Army Research Laboratory, in 

2015, published Visualizing the Tactical Ground Battlefield in the Year 2050: Workshop Report 

describing the battlefield of 2050. Per the report, a component of the future battlefield will be AI 

providing automated decision making and controlling autonomous processes. “Decision agents 

would be integral to all of the processes associated with” command and control, intelligence 

collection and processing. 99 The ARCIC released in 2017, TRADOC pamphlets covering The 
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Army Functional Concepts (AFC) for the warfighting functions of 2020 – 2040, each warfighting 

functions anticipates the broad incorporation of AI technologies to solve a host of challenges.100 

Each warfighting functions’ functional concept includes some form of AI to aid in decision-

making, control systems autonomously, and monitor the OE. Desire to integrate AI across 

warfighting functions will involve more than just developing purpose built algorithms.  

Current efforts for adoption of AI come from the Algorithmic Warfare Cross-Function 

Team from the Office of the Undersecretary of Defense for Intelligence who launched Project 

Maven, 2017, an AI algorithm for extracting data from full motion video. This is an effort to use 

AI for greater efficiencies in imagery analysis by process millions of hours of video. Col. Drew 

Cukor, commenting on Project Maven’s focus on using machine learning for pattern recognition, 

said, “We are in an AI arms race...No area will be left unaffected by the impact of this 

technology.”101 The pending success of Project Maven will impact how the DoD integrates AI 

across the enterprise. 

Looking at Project Maven through the AIFF puts the Python scripted coded rules in the 

ordered domain problem spaces. It may use complex data but the AI is not functioning in a 

complex problem space. At Level 1, the algorithm looks for specific objects defined by users. The 

Level 2 interaction of the pilot program is the systems of systems that incorporates Google, other 

                                                      
100 TRADOC Pamphlet 525-2-1, The US Army Functional Concept for Intelligence 2020-2040 

(Washington, DC: Government Printing Office, 2017), 24, 44-46; TRADOC Pamphlet 525-3-3, The US 
Army Functional Concept for Mission Command 2020-2040 (Washington, DC: Government Printing 
Office, 2017), 56; TRADOC Pamphlet 525-3-4, The US Army Functional Concept for Fires 2020-2040; 
2017, 23, 25; TRADOC Pamphlet 525-3-5, The US Army Functional Concept for Maneuver Support 2020-
2040 (Washington, DC: Government Printing Office, 2017), 13, 21, 24, 37-39; TRADOC Pamphlet 525-3-
6, The US Army Functional Concept for Movement and Maneuver 2020-2040 (Washington, DC: 
Government Printing Office, 2017), 41; TRADOC Pamphlet 525-4-1, The US Army Functional Concept 
for Sustainment 2020-2040 (Washington, DC: Government Printing Office, 2017), 9, 15, 38; TRADOC 
Pamphlet 525-8-2, The US Army Functional Concept for Training and Education 2020-2040 (Washington, 
DC: Government Printing Office, 2017) 31, 32-38. 

101 Cheryl Pellerin, “Project Maven to Deploy Computer Algorithms to War Zone by Year’s End,” 
DoD News, Defense Media Activity, July 21, 2017, Accessed April 7, 2018, 
https://www.defense.gov/News/Article/Article/1254719/project-maven-to-deploy-computer-algorithms-to-
war-zone-by-years-end. 



 

44 
 

government agencies, and the DoD. Where the developers and clients provide objectives and 

interpret the complexity into meaningful input for the algorithm to apply its deep learning for 

pattern recognition. The Level 3 involvement includes not only the developer and users but 

thousands in Silicon Valley’s tech culture who object and protest the DoD use of AI in warfare.102 

The Level 3, ethical considerations articulated by the public, industry and US government will 

impact how AI functions at Level 2. Additionally, the ethical consideration will affect future 

development of the technology. 

Machine learning has been in the Level 1 ordered domain for over thirty years. Recent 

methods using complex data for machine learning is not allowing algorithms to make the leap 

from ordered knowledge domain problem spaces to the unordered problem spaces. To progress 

towards unordered problem spaces require improvements in algorithmic planning, which is still 

extremely difficult. Without algorithmic planning, an AI will be incapable of autonomously 

navigating tactical situations. The weakness in planning in a complex problem space leaves 

algorithms not smart enough to be of any strategic advantage. Progress in machine learning may 

continue to advance but without domain-independent planning AI will limit military applications 

of AI.103 

Realistic AI Capabilities  

The current AI technology shows promise for semi-automated decision making and semi-

autonomous control. For AI to contribute to successful problem solving across both ordered and 

unordered knowledge domains it will depend on more than the linear progression of technological 

advancement. There are still significant challenges in knowledge representation and algorithm 

development that will need new tools and hardware for processing. Researchers believed that for 
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an algorithm to achieve grandmaster chess playing ability it would need some form of general 

intelligence, with abstract thinking, flexible planning and modeling the other players’ thinking. 

However, it turned out that a special purpose algorithm would work. Deep Blue, an AI chess 

engine beat chess master Garry Kasparov in 1997. Kasparov claimed to have seen a glimpse of 

intelligence in Deep Blues moves. The AI’s ability to play grandmaster-level chess turned out to 

be a relatively simple algorithm. The simplicity of the algorithm left Deep Blue incapable of 

anything else but chess game play. The trend in AI development as seen in Deep Blue is to take 

complex task environments and translate them in to simple or complicated problem spaces. The 

simplification of task environments comes at a cost in creating a narrowly focused algorithms.  

Google’s AI, AlphaGo, won against a human Go champion in 2017. This win offered 

hope that machine learning will lead to general intelligence for AI. The game of Go is more 

challenging than chess requiring significant probability and decision making calculations; but just 

like Deep Blue, AlphaGo is a purpose-built algorithm. The game of Go is also at best no more 

than a complicated problem space of directed order. AI’s use of inference algorithms is still costly 

regarding computational power. Machine learning algorithms need more R&D to move past the 

nascent stage of development. For AI to have autonomy in complex problem spaces, algorithms 

will need to create high-level actions from primitive ones automatically, learning new model 

structures. The capability of AI to autonomously create high-level actions from primitive ones is 

still an unknown quantity.104  

The unpredictable and dynamic nature of the unordered domain will continue to present 

challenges for automated decision making and autonomous control algorithms. AI is a powerful 

tool for quickly processing information, once given a specific set of rules. AI systems function as 

designed based on their programming. Which in most cases AI trends to be “only as smart as the 
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programmer who has written the programs in the first place.”105 AI researcher Francois Chollet at 

Google explains that the biggest problem for AI is abstraction and reasoning. He further describes 

that current learning algorithms require massive amounts of data, use direct pattern recognition, 

and are poor at planning.106 AI functions on rules and probabilities which makes the algorithms 

fragile and ineffective outside of their designed problem space.107  

 Humans are capable of learning from a few instances, doing long-term planning, creating 

abstracts models of imaged problem spaces, and manipulating the models for broad 

generalizations. In contrast to humans, for a machine to learn, it needs an enormous amount of 

strictly labeled data annotated for specific objectives. Chollet explains that neural networks using 

statistical algorithms have impressive results generalizing with large data samples, but the same 

algorithms are inconsistent with individual cases “making mistakes humans would never 

make.”108  The results are highly dependent on the data and fall prey to ‘garbage-in, garbage-out’ 

scenarios.  

Deep learning data dependency makes AI vulnerable to algorithmic bias. For example, 

automated decision-making (ADM) criminal justice algorithms used by state and local 

governments to assess the risk of criminal recidivism upon parole demonstrated algorithmic bias 

against minorities.109 Mathematician Cathy O’Neil says, “people are often too willing to trust in 

mathematical models because they believe it will remove human bias…People trust them too 
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much.”110 ADM algorithms cannot determine on their own what rules to apply for any given task. 

Machine learning and deep learning will not make a general AI. Unlike human learning AI, 

learning is pattern recognition, classification, and extrapolation based on large datasets.111 

Success in deep learning is in directed order problem spaces. Deep learning methods in one 

problem space cannot scale to other problem spaces which would require general intelligence.112   

Conclusion 

General officers, field grade officers, and company grade officers each have different 

information requirements for decision making. AI has the potential to help but needs tailoring to 

their specific informational requirements. Those closest to the problem where AI can offer 

advantages need a method to understand the technology and determine its appropriateness. The 

AI functioning framework provides a method to visualize algorithmic capability. Understanding 

the general nature of AI provides a gauge to judge AI innovation and the accompanying hype 

cycle. The hype cycle has the ability to cause delays in developing functional solutions with AI. 

David Pizarro, associate professor of psychology at Cornell University underscored that 

the “social and moral institutions – are ill-equipped to deal with the rapid pace of technological 

innovation.”113 The advent of the steam engine and the mass production of steel changed the 

physical landscape and led to the codification of intangible property rights and contract law. AI 

technology is permeating the technological landscape at an exponential rate and will impact most 

of modern society. As society integrates more expansive AI with interconnected systems there 

will be compounding affects creating increased complexity along with a demand for people who 
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can operate in the new complex environment. The current societal infrastructure will need to 

evolve to support a knowledge industry of researchers, developers, maintainers and knowledgable 

users. 

The current state of AI as technology has significant challenges to overcome before it 

meets the US Army’s desire for future integration of AI. The current AI technologies are not 

scalable form ordered to unordered knowledge domain problem spaces. New methods and 

technologies will need to be invented and refined before achieving true human-like AGI. 

Additional technical issues that need resolution: 

• Reduce the need for massive data sets. 
• Have a natural way of managing hierarchical structures. 
• Have an efficient method for open-ended inference. 
• Have neural networks be open for verification and validation. 
• Manage and incorporate prior knowledge from other agents. 
• Delineate between correlation and causation. 
• Have dynamic rules to address complex problem spaces. 
• Be trustworthy with the probabilistic output. 
• Be manufacturable and serviceable.114 

 
The Department of Defense (DoD), as well as the Army, are looking at future technology to 

mitigate future adversarial asymmetric capabilities. AI as a technology has a history of big 

promises and overselling progress. US security should focus on identifying future problems and 

work to create solutions to those problems instead of focusing on technology with the expectation 

that technological advances will solve future asymmetrical threats. AI surely will in some cases 

offer solutions to these future threats, but in many cases, the level 3 interactions with the Earth 

systems will produce unintended consequences that may be worse than the initial problem.  

The US Army needs to avoid falling prey to the cycle of hyperbole. Previous iterations of 

AI development give way to developers overpromising future capabilities of AI which was then 

followed by years of technological abandonment. The military cannot afford to have inflated 
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expectations that precipitate a period of disillusionment ceding initiative and technological 

advantage peer and near peer competitors like Russia and China who are pursuing weaponized 

AI. Leaders and decision makers need a realistic understanding of AI development to guide them 

in their integration of AI into the Army enterprise. 
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