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Abstract 

Many continuum damage mechanics models for cementitious materials 
are typically phenomenological in design. Recent work has shown that a 
physics-based multiscale approach to modeling damage is efficient and 
effective. In order to use a multiscale approach, appropriate experimental 
data are necessary to model the microscale calculations that will then 
inform the continuum-scale calculations. This work uses the multiscale 
approach and experimentally determines the parameters necessary to 
model the microscale calculations. Notched three-point beam experiments 
were performed to determine the fracture energy of the ultra-high 
performance concrete known as Cor-Tuf. The fracture energy is then used 
by a simplified microscale calculation to determine a physics-based 
damage evolution equation that can be used in continuum-scale 
calculations. A meshfree method is used to show the usefulness of the 
newly determined damage evolution equation. Both a quasi-static 
application and a dynamic application are shown as examples. 

 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

1.1 Background     

Damage mechanics has been a suitable approach for predicting the behavior 
of quasi-static and high-strain-rate loading conditions for more than half a 
century. The theory of continuum damage mechanics (CDM) was first 
proposed by Kachanov (1958) and Rabotnov (1969) to creep problems. The 
approach was developed to describe the materials’ progressive deterioration 
of microdefects from a state of being undamaged (virgin state) to a state of 
crack growth and propagation at the macroscopic continuum level. The 
crack is idealized by a band of damaged material at the continuum level, and 
microcracks and voids are modeled at the microscale.  

Damage evolution within a multi-scale computational framework has been 
used to address these issues of microstructural resolution and 
computational efficiency. Recent efforts have led to a host of numerical 
investigations in which micromechanical models exploit homogenization 
techniques to link the representative volume element with the 
macrostructural continuum model. Lee et al. (1999) and Jain and Ghosh 
(2009) used Voronoi cell finite elements to explicitly model the 
microstructure and asymptotically expand the boundary-valued problem. 
Oskay and Fish (2007) developed a nonlocal eigendeformation 
homogenization method based on two-scale asymptotic expansion to 
describe damage in the composite structures. To reduce the computational 
cost due to solving a system of nonlinear equations, Sparks and Oskay 
(2016) proposed the method of overlapping failure paths. Ren et al. (2011) 
used enriched reproducing kernel particle methods (RKPMs) to investigate 
microcracks informed damage models (MIDMs). The damage evolution law 
is obtained from Helmholtz free energy from the microcrack and the 
continuum. This energy-bridging method is based on fracture mechanics 
and exploits the evolution of the microstructural strain field as the driver of 
the damage evolution function. A plethora of the CDM homogenization 
models has been applied to various materials and employed to solve a wide 
variety of problems, but the focus was on employing numerical experiments 
to validate the aforementioned computational methods.  

Other efforts in the literature have been devoted to characterizing the 
damage evolution function by utilizing an arc tangent damage evolution 
function based on material parameters (Oskay and Fish 2007; Sparks and 
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Oskay 2016). Such efforts provide reasonable approximations to describe 
the damage evolution at the microscopic and continuum levels, and the 
reliability of the approach is dependent on fitting the material parameters 
to experiments. The present work aims to extend the works of Ren et al. 
(2011) and Sherburn et al. (2015) by presenting the development of a 
damage evolution model that is directly informed by experiments that 
characterize the ultra-high performance concrete (UHPC) known as Cor-
Tuf. The experiments investigate UHPC fracture energy of three different-
sized, single-edge notched beams (SENBs) in closed-loop three-point tests. 
The crack evolution microcell model employs the experimental 
parameters, and numerical simulations are modeled to derive the 
corresponding damage evolution function in the continuum level. 

The strength of the MIDM in this work lies in the coupling of the UHPC 
experimental data to determine the physical parameters necessary to 
perform the microscale calculations. The previous work by Ren et al. 
(2011) relied on data found in the literature. This work will complete both 
the experimental characterization and the microscale numerical portion to 
determine an appropriate macroscale damage evolution function that will 
be used in macroscale numerical calculations of the experimental testing.  

1.2 Objectives 

There are two main objectives for this report. The first objective is to 
experimentally measure the fracture energy of Cor-Tuf without fibers by 
using standard beam experiments designed to measure fracture energy. 
The second objective is to use the experimentally measured value of 
fracture energy as input for running microscale single-crack calculations. 
These microscale calculations will be used to develop a macroscale damage 
evolution function that will be implemented and demonstrated in a few 
macroscale scenarios. 

1.3 Scope 

The organization of this report will be the following: The macroscale 
RKPM, microscale RKPM, and energy-bridging homogenization 
framework will be described in Chapter 2. In Chapter 3, the experimental 
approach, techniques, and data used in the multiscale modeling study are 
presented. In Chapter 4, the microscale and macroscale calculation results 
are presented alongside the experimental data along with a set of ballistic 
perforation calculations. Chapter 5 will make concluding remarks.     
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2 Meshfree Multiscale Framework 

2.1 Macroscale RKPM 

The RKPM framework’s ability to accurately model large deformation 
without the complexities of mesh-distortion problems makes the 
methodology extremely attractive for solving problems involving impact 
and penetration of brittle materials. The RKPM framework approximates 
the solution of the partial differential equation by utilizing a point-based 
discretization. The meshfree shape functions are constructed by using 
overlapping kernels of compact support. The benefits of the RKPM 
framework are the following: (1) the constraint of the geometric conformity 
on the domain discretization relaxes, (2) employing a Lagrangian 
discretization leads to the attainment of clear material interfaces, and 
(3) the formulation has consistency as opposed to smooth particle 
hydrodynamics (SPH), which lacks that attribute (Belytschko et al. 1998).   

This section will briefly cover the RKPM approximation method. Consider 
a heterogeneous closed domain, Ω� =  Ω ∪ 𝑑𝑑Ω, where Ω is the open domain 
and 𝑑𝑑Ω is the boundary of Ω. Spatially, the RKPM formulation uses a 
discrete kernel approximation (Chen et al. 1996) with reference to material 
coordinates, 𝑿𝑿, to approximate the displacements, 𝒖𝒖(𝑿𝑿, 𝑡𝑡), as 

 𝒖𝒖ℎ(𝑿𝑿, 𝑡𝑡) = ∑ Ψ𝐼𝐼(𝑿𝑿) 𝒅𝒅𝐼𝐼(𝑡𝑡)𝐼𝐼∈𝑁𝑁 , (1) 

where 𝒖𝒖ℎ is the approximation of 𝒖𝒖(𝑿𝑿, 𝑡𝑡) and  𝒅𝒅𝐼𝐼(𝑡𝑡) are unknown 
coefficients of the RK approximation that are to be solved for in the 
meshfree solution. Ψ𝐼𝐼(𝑿𝑿) is the RK shape function referenced to the 𝐼𝐼𝑡𝑡ℎ 
node, and 𝑁𝑁 is the number of nodes. The RK shape function is modified 
and constructed as a correction of the compact kernel function:  

 𝜙𝜙𝑎𝑎(𝑿𝑿− 𝑿𝑿𝐼𝐼)  

 Ψ𝐼𝐼(𝑿𝑿) = 𝐶𝐶(𝑿𝑿;𝑿𝑿 − 𝑿𝑿𝐼𝐼) 𝜙𝜙𝑎𝑎(𝑿𝑿 − 𝑿𝑿𝐼𝐼) (2) 

where continuity and locality are inherited from the kernel function. The 
correction function, 𝐶𝐶(𝑿𝑿;𝑿𝑿 − 𝑿𝑿𝐼𝐼), enforces the reproducibility conditions 
of the basis. A novel feature of RKPM is that any arbitrary basis can be 
reproduced due to the enforcement of the reproducing condition. 
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Employing a set of 𝑛𝑛𝑡𝑡ℎ order complete monomials, the correction function 
is denoted as 

 C(𝑿𝑿;𝑿𝑿 − 𝑿𝑿𝐼𝐼) = ∑ (𝑿𝑿 − 𝑿𝑿𝐼𝐼)𝛼𝛼𝑛𝑛
|𝛼𝛼|=0  𝑏𝑏𝛼𝛼(𝑿𝑿) = 𝑯𝑯𝑇𝑇(𝑿𝑿 − 𝑿𝑿𝐼𝐼) 𝒃𝒃(𝑿𝑿), (3) 

where |𝛼𝛼| ≡ 𝛼𝛼1 + 𝛼𝛼2 + 𝛼𝛼3, (𝑿𝑿 − 𝑿𝑿𝐼𝐼)𝛼𝛼 ≡ (𝑋𝑋1 − 𝑋𝑋1𝐼𝐼)𝛼𝛼1(𝑋𝑋2 − 𝑋𝑋2𝐼𝐼)𝛼𝛼2(𝑋𝑋3 −
𝑋𝑋3𝐼𝐼)𝛼𝛼3, and 𝑏𝑏𝛼𝛼(𝑿𝑿) ≡ 𝑏𝑏𝛼𝛼1𝛼𝛼2𝛼𝛼3(𝑿𝑿). The 𝑛𝑛𝑡𝑡ℎ order complete basis functions are 
contained in 𝑯𝑯𝑇𝑇(𝑿𝑿 − 𝑿𝑿𝐼𝐼), where 

𝑯𝑯𝑇𝑇(𝑿𝑿 − 𝑿𝑿𝐼𝐼) = [1, (𝑋𝑋1 − 𝑋𝑋1𝐼𝐼), (𝑋𝑋2 − 𝑋𝑋2𝐼𝐼), (𝑋𝑋3 − 𝑋𝑋3𝐼𝐼), (𝑋𝑋1 − 𝑋𝑋1𝐼𝐼)2, … , (𝑋𝑋3 −
𝑋𝑋3𝐼𝐼)𝑛𝑛]. (4) 

The reproducing conditions 

 ∑ Ψ𝐼𝐼(𝑿𝑿)𝐼𝐼∈𝑁𝑁 𝑿𝑿𝐼𝐼𝛼𝛼 = 𝑿𝑿𝛼𝛼   
                    |𝛼𝛼| = 0,1,⋯ ,𝑛𝑛 (5) 

are used to obtain the vector of coefficients,  𝒃𝒃(𝑿𝑿) = 𝑴𝑴−1(𝑿𝑿)𝑯𝑯(0), where 
𝑯𝑯𝑇𝑇(0) = [1,0, … ,0], and 𝑴𝑴(𝑿𝑿) is a moment matrix 

 𝑴𝑴(𝑿𝑿) = ∑ 𝑯𝑯(𝑿𝑿 − 𝑿𝑿𝐼𝐼)𝑯𝑯𝑇𝑇(𝑿𝑿− 𝑿𝑿𝐼𝐼) 𝜙𝜙𝑎𝑎(𝑿𝑿− 𝑿𝑿𝐼𝐼)𝑰𝑰∈𝑵𝑵   (6) 

Consequently, the Lagrangian RK shape function is  

 Ψ𝐼𝐼(𝑿𝑿) = 𝑯𝑯𝑇𝑇(𝑿𝑿− 𝑿𝑿𝐼𝐼)𝑴𝑴−1(𝑿𝑿)𝑯𝑯(0)𝜙𝜙𝑎𝑎(𝑿𝑿− 𝑿𝑿𝐼𝐼) (7) 

The numerical integration technique used in this study is the stabilized 
conforming nodal integration (SCNI; Chen et al. 2001). SCNI is 
appropriate for applications that involve large deformations but do not 
fracture. To explain SCNI, first consider the Galerkin weak form of the 
equation of motion 

 ∫ 𝜌𝜌𝒘𝒘ℎ ∙ �̈�𝒖ℎ𝑑𝑑Ω 
Ω + ∫ 𝜺𝜺(𝒘𝒘ℎ):𝝈𝝈�𝜺𝜺(𝒖𝒖ℎ)� 

Ω 𝑑𝑑Ω 
                           −∫ 𝒘𝒘ℎ ∙ 𝒃𝒃 𝑑𝑑Ω 

Ω − ∫ 𝒘𝒘ℎ ∙ 𝒕𝒕 𝑑𝑑Γ 
Γℎ = 0, (8) 

where 𝜌𝜌 is density, 𝒘𝒘ℎ and 𝒖𝒖ℎ are test and trial functions, 𝜺𝜺 is strain, 𝝈𝝈 is 
stress, Γℎ is the natural boundary, and 𝒃𝒃 and 𝒕𝒕 are body forces and surface 
tractions, respectively. Gradients are approximated through a gradient-
smoothing operator 
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 𝜺𝜺�𝐼𝐼(𝒖𝒖ℎ) = (1/𝑉𝑉𝐼𝐼)∫ (1/2)(𝒖𝒖ℎ ⊗ 𝒏𝒏 + 𝒏𝒏⊗ 𝒖𝒖ℎ)𝑑𝑑Γ 
𝜕𝜕Ω𝐼𝐼

, (9) 

where 𝜕𝜕Ω𝐼𝐼 is the boundary of an integration subdomain Ω𝐼𝐼 corresponding 
to the Ith node, 𝒏𝒏 is the outward normal to the cell boundary, 𝑉𝑉𝐼𝐼 is the 
strain-smoothing cell volume, and 𝜺𝜺�𝐼𝐼 is the smoothed nodal strain. A 
further discussion of Eq. (9) can be found in Guan et al. (2011). The 
advantage of using the gradient-smoothed operator is that the derivatives 
of 𝒖𝒖 are no longer required to be calculated. Only the conforming cell 
topological features such as the boundary surface area, outward normal, 
and the boundary segment midpoint location are required to construct the 
strain approximation. This leads to an efficient calculation of strain, and 
an optimal convergence rate is achieved. 

2.2 Microscale RKPM 

For the microscale calculations, an extrinsically enriched RKPM 
formulation is introduced following the work of Lin et al. (2016) and Ren 
et al. (2011) in order to properly model discontinuities. A brief summary of 
this enriched RKPM will be described here. The enriched near-tip 
displacement field is described by 

𝒖𝒖ℎ(𝑿𝑿, 𝑡𝑡) = ∑ Ψ𝐼𝐼(𝑿𝑿)𝑑𝑑𝐼𝐼(𝑡𝑡)𝐼𝐼∈𝑁𝑁 + ∑ 𝐻𝐻(𝑿𝑿)Ψ𝐽𝐽(𝑿𝑿)𝑎𝑎𝐽𝐽(𝑡𝑡)𝐽𝐽∈𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 +
                                           ∑ 𝑓𝑓𝑖𝑖(𝑿𝑿)Ψ𝐾𝐾(𝑿𝑿)𝑏𝑏𝐾𝐾(𝑡𝑡)𝐾𝐾∈𝑁𝑁𝑐𝑐𝑡𝑡𝑡𝑡,𝑖𝑖 , (10) 

where 𝑁𝑁𝑐𝑐𝑐𝑐𝑡𝑡 is the number of the enriched nodes cut by the discontinuity, 
and 𝑁𝑁𝑡𝑡𝑖𝑖𝑡𝑡 is the number of enriched nodes near the tip of the discontinuity. 
The enrichment function 𝐻𝐻(𝑿𝑿) is defined as 

 𝐻𝐻(𝑿𝑿) = �1          𝑦𝑦 > 0
−1        𝑦𝑦 < 0 (11) 

where 𝑦𝑦 is the local coordinate system normal to the discontinuity surface. 
The singular-tip enrichment functions, 𝑓𝑓𝑖𝑖(𝑿𝑿), are the following: 

𝑓𝑓𝑖𝑖(𝑿𝑿) = 𝒇𝒇(𝑟𝑟,𝜃𝜃) = �√𝑟𝑟 sin �𝜃𝜃
2
� ,√𝑟𝑟 cos �𝜃𝜃

2
� ,√𝑟𝑟 sin �3𝜃𝜃

2
� ,𝑎𝑎𝑛𝑛𝑑𝑑√𝑟𝑟 cos �3𝜃𝜃

2
��. (12) 

In a similar fashion the cohesive zone model enrichment functions are 
defined as 

 𝑓𝑓𝑖𝑖(𝑿𝑿) = 𝒇𝒇(𝑟𝑟,𝜃𝜃) = �𝑟𝑟 sin �𝜃𝜃
2
� , 𝑟𝑟

3
2 sin �𝜃𝜃

2
� , 𝑟𝑟2 sin �𝜃𝜃

2
�� , (13) 
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where 𝜃𝜃 is the angle between a local x-axis relative to the discontinuity and 
the connected line of the crack tip and the enriched node, and 𝑟𝑟 is the 
radius to the evaluation point. For a thorough explanation, see Lin (2014). 
The integration method used in this process is SCNI-based and is 
described in the enhanced RKPM context in Lin (2014). 

2.3 Energy-bridging homogenization 

The methodology for the MIDM employs principles based on the 
thermodynamics of cracked microstructure and the corresponding 
damaged macroscopic continua. Ren et al. (2011) introduced the 
relationship between the microcracks due to material deterioration at the 
local microscopic level and the damaged continuum. Figure 1 shows the 
energy-based bridging between multiple scales. The representative 
microcell has heterogeneities and defects within the domain of the 
microstructure, Ω𝑦𝑦, and the stresses and strains are obtained through 
homogenization. The Helmholtz free energy (HFE) of the cracked 
microcell, Ψ𝜀𝜀, is defined as  

 Ψ𝜀𝜀 = 1
2
𝝈𝝈𝜀𝜀: 𝒆𝒆𝜀𝜀 (14) 

where 𝝈𝝈𝜀𝜀 and 𝒆𝒆𝜀𝜀 are the microcell stress and strain, respectively. The 
homogenized macroscale HFE is obtained through volume-averaging the 
microcell HFE and the respective microcell displacement field, 𝒖𝒖𝜀𝜀, over the 
domain of the microstructure, Ω𝑦𝑦: 

 Ψ� = 1
𝑉𝑉𝑦𝑦
�∫ Ψ𝜀𝜀 
Ω𝑦𝑦

𝑑𝑑Ω + 1
2 ∫ 𝒖𝒖𝜀𝜀 ∙ 𝒉𝒉 𝑑𝑑Γ 

Γ𝑐𝑐
�  ,          (15) 

where 𝑉𝑉𝑦𝑦 is the microcell volume. From Eq. (15), the opening 
displacements corresponding to the microcracks are modelled explicitly, 
and it is straightforward to see the homogenized HFE is a function of the 
microcell stresses and strains. The microcell fracture is related to the 
macroscopic HFE by a two-scalar continuum damage model expressed as 

 Ψ� = (1 − 𝑑𝑑+)Ψ0+ + (1 − 𝑑𝑑−)Ψ0−  ,                    (16) 

where 𝑑𝑑+ and 𝑑𝑑− are the damage parameters tension and shear, 
respectively, and Ψ0 is the free energy corresponding with the undamaged 
continuum. The subsequent HFE terms are defined according to signs of 
the eigenvalues in the principal stress. 
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FFigure 1. Energy-bridging homogenization from the microscale to macroscale.

The Clausius-Duhem inequality of irreversible thermodynamics derived 
from Eq. 16 is stated as 

 ± = ±    ,                  (17) 

where ± are the damage energy release rates. Combining Eqs. (16-17), the 
microscale-informed tensile damage evolution law is obtained as 

= 1 1  (18)

and can be evaluated by using a finite difference method. A fully tensorial 
damage model can be obtained from incorporating the damage evolution 
law into the macroscale equations. For brevity, a summary of the key 
features of the MIDM was discussed; for further explanation refer to Ren 
et al. (2011). 
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3 Fracture Energy Experiments 

The microscale calculations utilized experimental data captured through a 
series of three-point bend tests conducted on UHPC single-edge notched 
beams (SENB). The SENB test series was designed to capture the fracture 
energy of the UHPC. Three different beam sizes were selected based on 
previous work by O’Neil (2008). O’Neil measured the fracture toughness 
and fracture energy of an early variant of this ERDC-developed UHPC 
through a two-parameter fracture model (Jenq and Shah 1985) and a 
numerical method created by Navalurkar et al. (1999). Since the work of 
O’Neil, the UHPC has been further developed, modified, and patented by 
the ERDC. Subsequently, Williams et al. (2009) published the updated 
UHPC mixture proportions with casting and curing guidelines, and 
laboratory quasi-static triaxial characterization data. This updated ERDC 
UHPC, known as Cor-Tuf, is the material used in this study.  

Table 1 reports the nominal dimensions for the three different beam sizes 
investigated, while Figure 2 and Figure 3 show the test setup for the fracture 
energy experiments. The notched beams were center-loaded with supports 
at each beam end. Supports were designed to minimize friction, with one 
support allowing rotation about an axis parallel to the beam’s longitudinal 
axis to alleviate potential torsion in the beam. An MTS servo-hydraulic 
testing machine was used to load the beams in a closed-loop control mode 
with a crack mouth opening displacement (CMOD) clip-on gauge as the 
feedback signal. The CMOD gauge was clipped to epoxy-mounted knife 
edges, as shown schematically in Figure 2. The CMOD displacement rate 
was 0.0005*(beam depth) per min for all experiments. In addition to the 
CMOD gauge, surface strains and crack growth were measured by using 3-D 
digital image correlation (DIC). DIC is an experimental technique using 
calibrated digital cameras to capture specimen surface displacement/ 
deformation and an algorithm to calculate the associated surface strains. 
For this test series, calibrated stereo digital cameras with a pixel resolution 
of 64 μm were used to capture movement of the specimen surface in 3-D 
space under load. This technique helped to monitor beam response and 
ensure proper loading conditions applied by the loading apparatus. A 
comprehensive overview of the 3D DIC theory and a description of the 
experimental technique is covered by Sutton et al. (2009).  
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Table 1. Nominal Cor-Tuf beam dimensions. 

Beam 
Type Length (l) (mm) 

Width (w) 
(mm) 

Depth (d) 
(mm) 

Notch 
Length 
(ao/d) 

Notch Width 
(mm) 

Number of 
Beams 

A 171 38 38 0.33 3 7 

B 343 38 76 0.33 3 6 

C 513 38 114 0.33 3 2 

Figure 2. Test configuration for three-point bending. 

 

Figure 3. Experimental setup of the three-point bending test.  
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Upon completion of the SENB test series, the 3D DIC strain field data were 
analyzed as a qualitative check for proper loading conditions. As an 
example, Figure 4 shows the strain field in the XX direction (i.e., horizontal, 
axis parallel with beam length) for beam type C, test number 1.  The YY and 
ZZ strain field data were also evaluated to ensure near-ideal loading 
conditions were achieved in each test. Results from all of the SENB 
experiments are shown in Figure 5. Figure 5 is a plot of the load versus 
CMOD data obtained for all three beam sizes. The fracture energy was 
calculated by using the area under the load-CMOD curves and the beam 
ligament area of each respective beam. These values are reported in Table 2. 

Figure 4. DIC strain field data for XX-strain (horizontal) showing location of crack path. 
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Figure 5. Load versus CMOD for the SENB experiments.  

 

Table 2. Fracture energy for beam types A, B, and C. 

Beam Type Test Number Fracture Energy (N/m) 

A 1 36.8 

A 2 33.0 

A 3 34.4 

A 4 32.6 

A 5 35.4 

A 6 34.0 

A 7 34.4 

B 1 36.9 

B 2 36.7 

B 3 34.4 

B 4 37.8 

B 5 33.8 

B 6 35.8 

C 1 35.4 

C 2 34.2 

 Average = 35.0 
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4 Numerical Calculations 

The experimental data can now be used to produce a damage evolution law 
that is informed by microscale calculations. The MIDM damage evolution 
law can then be implemented into the macroscale continuum code that 
will model the full-scale experiment to validate the process. 

4.1 Microscale calculation 

The microscale calculation was performed by using the two-dimensional 
static RKPM-based code known as the micro-nonlinear meshfree analysis 
program (NMAP-Micro), which was developed by UCSD-UCLA and the 
ERDC. The code was developed for microcrack informed multiscale 
modeling and is largely based on the work by Ren et al. (2011) and Lin et al. 
(2016). The microcell calculation setup for this study is shown in Figure 6. 
The dimensions of the microcell are 1.5 mm by 1.5 mm. The microcell is 
loaded in tension with a pre-existing crack in the center with a length of 
0.15 mm, which is 10% of the microcell length. The microcell discretization 
is 101 by 101 particles for a total of 10,201 particles. The microcell upper 
surface displacement was incrementally loaded up to a vertical 
displacement of 0.1 mm. This microcell initial microstructure is a simplified 
microscopic scenario that is appropriate for a mode I fracture. Future work 
will include a more physical microstructural representation.     

Figure 6. Microcell loading conditions. 
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The constitutive response for the material in NMAP-Micro is a linear elastic 
material with a linear cohesive law. The form of the cohesive law 
implemented is shown in Figure 7. The material has an elastic response 
until it reaches a tensile strength threshold. Once over the tensile threshold, 
the material follows a linear softening down to a displacement, 𝑢𝑢𝐵𝐵, governed 
by the fracture energy (i.e., area of the triangle 𝑢𝑢𝐴𝐴𝜎𝜎𝑇𝑇𝑢𝑢𝐵𝐵 in Figure 7). The 
required material parameters for the cohesive law and the values used for 
the UHPC considered in this study are listed in Table 3. The average 
fracture energy measured in the experiments was used for the microcell 
calculation.   

Figure 7. Cohesive law implemented in NMAP-Micro. 

 

Table 3. Cohesive law parameters for 
microcell calculations. 

Parameter Value 

Young’s modulus (MPa) 44,300 

Poisson’s ratio 0.2 

Tensile strength (MPa) 11.0 

Fracture energy (N/m) 35.0 
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Once completed, the output of the microcell calculation is microscale-
stresses and microscale-strains. These values must be processed through 
the energy-bridging homogenization described in Section 2.3 in order to 
produce a damage evolution function for use in the macroscale calculations. 
The resulting damage evolution function is shown in Figure 8. It should be 
noted that the microcell damage evolution function shown in Figure 8 is 
valid only for a macroscale particle spacing of 1.5 mm. If a different 
macroscale particle spacing is used along with this damage evolution curve, 
a well-known size effect would emerge. This can be eliminated by 
developing a scaling law that takes into account the proper size effect to 
reduce this mesh-sensitive behavior (Ren et al. 2011; Lin et al. 2016). In this 
study, only a macroscale particle spacing of 1.5 mm will be used to avoid the 
mesh-sensitive behavior. 

Figure 8. Damage evolution curve based on the single-crack microscale calculation. 

 

4.2 Macroscale calculation 

The macroscale calculation was performed using the three-dimensional, 
explicit RKPM-based code known as nonlinear mesh-free analysis program 
(NMAP; Chi et al. 2012). NMAP was developed for the dynamic analysis of 
linear and nonlinear solid mechanics problems. The size of the three-point 
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bending beam problem in this study is small enough that an explicit code 
like NMAP can handle this type of problem. RKPM has shown great success 
in modeling quasi-static-type problems (Chen et al. 2002). The setup of the 
three-point bending calculation is shown in Figure 9. All three beam types 
were considered for the macroscale calculation. The dimensions are 
identical to the ones described in Table 1. The nodal spacing of the problem 
is exactly the microcell size of 1.5 mm in all directions. The top of the beam 
was loaded at a rate of 0.02 mm/s until the top displacement reached 
0.2 mm of total displacement.   

Figure 9. Three-point bending simulation setup. 

 

The concrete constitutive model used in the macroscale calculation is the 
Advanced Fundamental Concrete (AFC) model developed by Adley et al. 
(2010). The AFC model is a three-invariant plasticity model that includes 
the effects of hydrostatic crushing, plastic flow, rate-dependency, and 
damage. The hydrostatic and deviatoric responses are decoupled for 
simplicity. The model was designed for modeling the dynamic response of 
concrete under high-rate loading conditions. A number of studies have 
shown that the AFC model can be applied to a large range of penetration 
type scenarios (Sherburn et al. 2014; Sherburn et al. 2015; Nordendale et 
al. 2016). The AFC model used in this study follows the approach of 
Sherburn et al. (2014) and Sherburn et al. (2015), which includes the 
MIDM tensile damage evolution function described in Section 4.1. This 
addition was not originally included in the AFC model of Adley et al. 
(2010). Although the AFC model was not primarily developed for quasi-
static-type problems, it can be applied to this type of problem. A brief 
summary of the AFC model will now be described. 

The hydrostatic response of the AFC model can be broken into three 
separate regimes, as shown in Figure 10. The first portion is regime I, 
where there is a linear bulk modulus hydrostatic response. The slope of the 
line is the initial bulk modulus of the material. Once the material reaches a 
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threshold point defined by the two parameters, 𝐶𝐶6 and 𝐶𝐶7, the material 
enters regime II. Regime II is a nonlinear irreversible hydrostatic crushing 
portion that is defined by  

 𝑃𝑃 = 𝐾𝐾1𝜇𝜇 + 𝐾𝐾2𝜇𝜇2 + 𝐾𝐾3𝜇𝜇3 (19) 

where 𝐾𝐾1, 𝐾𝐾2, and 𝐾𝐾3 are input parameters, 𝜇𝜇 is the measure of volumetric 
strain defined by the ratio of the initial volume minus the current volume 
to the current volume, (𝑉𝑉0 − 𝑉𝑉)/𝑉𝑉, and P is the pressure where 
compression is defined as positive. The third regime is defined by a locking 
bulk modulus, 𝐶𝐶8, and locking strain, 𝐶𝐶9. This point represents the point at 
which all the voids in the concrete have been crushed out of the concrete. 
The locking region is linear. 

Figure 10. AFC hydrostatic fit for Cor-Tuf used in this study. 

 

The AFC failure surface of the UHPC is described as the deviatoric 
response that is dependent on the pressure, strain rate, and damage. The 
failure surface in compression is described as 

 𝑆𝑆𝑌𝑌
𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 = (𝐶𝐶1 − [𝐶𝐶2 + (𝐶𝐶1 − 𝐶𝐶2)𝑑𝑑−]𝑒𝑒−𝐴𝐴𝑛𝑛𝑃𝑃 + 𝐶𝐶4𝑃𝑃)(1 + 𝐶𝐶3 ln(𝜀𝜀�̇�𝑛)), (20) 
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where 𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3, 𝐶𝐶4, 𝑎𝑎𝑛𝑛𝑑𝑑 𝐴𝐴𝑛𝑛 are constants greater than zero; 𝑑𝑑− is the 
compressive scalar damage term that goes from 0.0 to 1.0; and 𝜀𝜀�̇�𝑛 is a 
normalized strain rate. The normalized strain rate is defined by  

 𝜀𝜀�̇�𝑛 = �̇�𝜀
�̇�𝜀0

  , (21) 

where 𝜀𝜀0̇ is a reference strain rate. The reference strain rate is 0.0001 s-1. 
The tensile failure surface is defined as 

 𝑆𝑆𝑦𝑦𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡 = (𝐶𝐶1 − [𝐶𝐶2 + (𝐶𝐶1 − 𝐶𝐶2)𝑑𝑑−])(1 + 𝐶𝐶3 ln[𝜀𝜀�̇�𝑛]) 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚�1−𝑑𝑑+�+𝑃𝑃
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚(1−𝑑𝑑+)  (22) 

where 𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎 is the maximum allowable tensile pressure. The failure surface 
fit used in this study is shown in Figure 11.  The compressive scalar 
damage, 𝒅𝒅−, is defined by  

 𝑑𝑑− = ∑ �∆𝜀𝜀𝑡𝑡
𝑃𝑃𝐷𝐷1

+ ∆𝜇𝜇𝑡𝑡
1.5𝐶𝐶9

�, (23) 

where 𝐷𝐷1 is a material constant, and ∆𝜀𝜀𝑡𝑡 and ∆𝜇𝜇𝑡𝑡 are the plastic strain 
increment and volumetric strain increment, respectively. The three-
invariant dependency of the AFC model is through calculation of the 
extension failure surface. First, the Lode angle is calculated, and a factor is 
calculated by using a Willam-Warnke Lode function (Fossum and Brannon 
2006). The factor is then multiplied by the compressive failure surface to 
produce the extension failure surface. The AFC constants used in this 
study are shown in Table 4. 
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Figure 11. AFC failure surface fit for Cor-Tuf used in this study. 

 

Table 4. AFC constants used for Cor-Tuf. 

Parameter Value 

Density (kg/m3) 2555.7 

Shear Modulus (MPa) 18457 

C1 (MPa) – Failure Surface Constant 1016.3 

C2 (MPa) – Failure Surface Constant 942 

C3 – Failure Surface Constant 0.003 

C4 – Failure Surface Constant 0.10382 

C5 (MPa) – Failure Surface Constant 792.88 

C6 (MPa) – Pressure Where Crushing Begins 172.37 

C7 – Volumetric Strain at Crushing  0.00781 

C8 (MPa) – Locking Modulus  45039 

C9 – Volumetric Strain at Locking 0.10094 

K1 (MPa) – Hydrostatic Compression Constant 7919.2 

K2 (MPa) – Hydrostatic Compression Constant -29206 

K3 (MPa) – Hydrostatic Compression Constant 187100 

D1 (MPa-1) – Damage Constant 0.000406 

AN (MPa-1) – Failure Surface Constant 0.001735 

Tmax (MPa) – Maximum Allowable Tensile Pressure 6.89 
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The results of the NMAP macroscale calculations are shown in Figure 12. 
The NMAP calculations with the MIDM Cor-Tuf damage evolution 
function described in Section 4.2 generally match the trend of the 
experimental data across all three beam sizes. The peak stress of the 
NMAP calculations is on the high end of the beam type A and B and is 
overpredicted for beam type C. The softening portion of the beam test 
follows the general pattern; and when the fracture energy is calculated 
from these curves, the MIDM NMAP calculated fracture energy is within 
2.6% of the average experimental fracture energy reported in Table 3 
across all of the beam types. Figure 13 shows the tensile damage field 
contours for the MIDM NMAP three-point beam calculation. The tensile 
damage pattern in Figure 13 correctly mimics the expected single crack 
growth of the experimental beams. For an additional piece of comparison, 
the original AFC model response is included in Figure 14 to show how the 
damage evolution function presented in Section 4.1 is superior to the 
original AFC implementation for this type of problem. The original AFC 
model response predicts the fracture energy to be approximately 46% 
lower than the experimentally measured value. The original AFC model 
uses only Eq. 23 to calculate a single scalar damage that is purely 
phenomenological in nature. Since Eq. 23 has no concern for size effects, 
the softening response is not appropriately captured.  

Figure 12. Experimental results compared to NMAP calculation. 
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Figure 13. Damage field results of the NMAP MIDM three-point beam type A calculation. 

 

Figure 14. MIDM AFC NMAP calculations versus original AFC NMAP calculations.  

 

One of the limitations of the MIDM approach in this study is that the 
damage evolution function in Figure 8 is applicable to a mode I type crack 
failure due to the simplified microstructure representation of the 
microscale calculations performed in this study. Ideally, the microscale 
calculation would contain all of the relevant microstructure features with 
appropriate properties.  
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Figure 15 shows an X-ray microcomputed tomography of the UHPC 
studied in this work. Future work will investigate incorporating a better 
representation of the microstructure into the microscale calculations in 
order to improve the applicability of the damage evolution function for 
this UHPC. 

Figure 15. X-ray computed micro-tomography image of Cor-Tuf. 

 

4.3 Ballistic numerical application 

A dynamic application of the MIDM damage evolution law is a numerical 
ballistic perforation. The setup of the example ballistic perforation is a 
12.7-mm-diameter steel projectile impacting a Cor-Tuf cylinder. The Cor-
Tuf cylinder has a diameter of 406.4 mm and a thickness of 25.4 mm. A 
range of steel sphere impact velocity calculations was completed to show 
the perforation response of the target. The velocity range was between 
300 m/s and 900 m/s.  The basic setup of the numerical experiment is 
shown in Figure 16. 
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FFigure 16. Setup of numerical ballistic perforation experiment.

 

The MIDM damage evolution law shown in Figure 8 is valid for quasi-
static situations. In order to accurately represent dynamic tension, some 
modifications to the damage evolution law must occur. It is well known in 
the literature that concrete has an increase in strength under dynamic 
loading (Hughes et al. 1993). This dynamic increase factor (DIF) is 
different based on whether concrete is loaded under a tension or a 
compression stress state. The DIF for compression is taken care of in the 
AFC by the parameter C3.  The tension DIF will use a simple modification 
to the damage evolution law by shifting the damage evolution law based on 
the tensile strain rate and is defined as = [1 + ln( )] , (24)

where  and  are the dynamic tensile stress and static tensile stress, 
respectively. The constant, , controls the amount of dynamic strength 
increase. In this study, a value of  was chosen to be 0.186. The strain rate 
adjusted damage evolution law due to strain rate is shown in Figure 17.  
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Figure 17. Strain rate adjusted damage evolution law for two different strain rates. 

 

The strain rate adjusted damage evolution law (Equation 24) was 
implemented into NMAP. The nodal spacing of the target and projectile 
was approximately 1.5 mm, which ensures the same spacing as the beam 
calculation and the microcell considered in Section 4.1. The steel sphere is 
treated as a rigid projectile and has a density of 7,850 kg/m3. The steel 
sphere contains 24,064 particles, and the Cor-Tuf target contains 
1,285,233 particles. The range of residual velocity results of the NMAP 
calculations are shown in Figure 18. Based on inspection of Figure 18, the 
perforation limit velocity prediction is between 350 m/s and 400 m/s. The 
damage field plot for the 500-m/s calculation is shown in Figure 19. For 
comparison, an NMAP calculation was performed with the original AFC 
model and a 500-m/s impact velocity. The damage contours for this 
calculation are shown in Figure 20.  
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Figure 18. Residual velocity results of NMAP perforation calculations. 
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Figure 19. Damage field contours of the 500 m/s NMAP perforation 
calculation with MIDM improvements (impact face, back face, and 

side view).  
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Figure 20. Damage field contours of the 500-m/s NMAP perforation 
calculation with original AFC model (impact face, back face, and 

side view). 
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The MIDM NMAP perforation calculation reveals that the newly 
implemented damage evolution law produces radial and circumferential 
tensile damage patterns on both the impact face and the back face. These 
patterns were expected for this type of perforation event. A clear difference 
between the original AFC model and the MIDM AFC model can be seen 
between the damage contours from all the different views in Figure 19 and 
Figure 20. In the original AFC model, the fully damaged material is seen 
only in a small localized area around the penetration impact area. The exit 
velocity of the MIDM AFC calculation was 61.0 m/s, and the analogous 
original AFC version was 63.9 m/s. From this comparison, exit velocity 
seems not to be sensitive to the tensile improvements.   
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5 Conclusions 

The MIDM framework was applied to Cor-Tuf with corresponding physical 
experiments to inform the simplified microscale calculations. This 
represents the first time the experiments, microscale calculations, and 
macroscale calculations were completed entirely in one study. The damage 
evolution relationship produced through the MIDM framework has shown 
to be superior to the simple phenomenological damage function of the 
original AFC model and matches the experimentally measured results well. 

A slight variation to the MIDM damage evolution law was introduced to 
account for the expected tensile DIF observed in experimental literature. 
The new dynamic MIDM damage evolution law was applied to a range of 
impact velocities on a cylindrical target to show the residual velocities for a 
range of impact velocities. The largest effect of the new dynamic MIDM 
damage evolution law was the distribution of damage, which is much more 
pronounced than it was in the original AFC model. 

This study focused on a simple microscale approximation to show the 
utility of using the MIDM approach for application to Cor-Tuf when the 
correct material properties like fracture energy are included. Future work 
will concentrate on including realistic void distributions in the microscale 
calculations along with including the size effect with application to ballistic 
perforation experiments.  
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