
MASSIVELY PARALLEL MODELING AND SIMULATION OF NEXT
GENERATION HYBRID NEUROMORPHIC SUPERCOMPUTER
SYSTEMS

RENSSELAER POLYTECHNIC INSTITUTE

MARCH 2019

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2019-070

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nations. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2019-070 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S / / S /
RYAN LULEY QING WU
Work Unit Manager Technical Advisor, Computing

& Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MARCH 2019
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

MAR 2015 – SEP 2018
4. TITLE AND SUBTITLE

MASSIVELY PARALLEL MODELING AND SIMULATION OF NEXT
GENERATION HYBRID NEUROMORPHIC SUPERCOMPUTER
SYSTEMS

5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA8750-15-2-0078

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Christopher Carothers
Prasanna Date
James Hendler
Mark Plagge
Noah Wolfe

5d. PROJECT NUMBER
T2NS

5e. TASK NUMBER
TR

5f. WORK UNIT NUMBER
PI

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Rensselaer Polytechnic Institute
110 8th Street
Troy, NY 12180-3522

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITB
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2019-070
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09
13. SUPPLEMENTARY NOTES

14. ABSTRACT

The major theme of research investigated here is how might neuromorphic computing impact future designs of
supercomputer systems. This report provides both a summary and detailed experimental research results for the five
core research thrusts (CRTs) covered in this research project.

15. SUBJECT TERMS
Neuromorphic computing architectures, artificial neural network models, inference models, level-based computing, spike-
based computing, neuromorphic computing algorithms, neuromorphic system emulator, neuromorphic processor
simulation
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
RYAN LULEY

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

164

Contents

List of Figures iii

List of Tables viii

1 SUMMARY 1

2 INTRODUCTION 3
2.1 Parallel Discrete-Event Simulation & ROSS . 3
2.2 Neuromorphic Computing, IBM TrueNorth & NeMo 4
2.3 Classification of Supercomputer Failures Using TrueNorth: 5
2.4 Durango – A Hybrid System Performance Modeling Framework 6
2.5 HPC Network Models . 7
2.6 Classification of AFRL Data Using TrueNorth & NeMo: 9

3 METHODS, ASSUMPTIONS AND PROCEDURES 9
3.1 NeMo . 9

3.1.1 Background . 9
3.1.2 Design and Implementation of NeMo . 14
3.1.3 Design and Implementation of NeMo Super Synaspe (SS) 18

3.2 Classification of Supercomputer Failures Using TrueNorth 21
3.2.1 The RAS Data . 21
3.2.2 Using IBM TrueNorth . 23

3.3 Durango – A Hybrid System Performance Modeling Framework 25
3.3.1 Aspen Overview . 26
3.3.2 Durango Approach . 27
3.3.3 Representing Communication in Aspen . 27
3.3.4 Synthetic Program Execution . 28
3.3.5 Durango-Instantiated Executable . 29
3.3.6 CODES: An Extreme-Scale Systems Modeling and Simulation Framework . 29
3.3.7 Durango Direct Integration: Aspen with CODES 30

3.4 HPC Network Models . 34
3.4.1 CODES Framework . 34
3.4.2 HPC Network Models . 38

3.5 Classification of AFRL Data Using IBM TrueNorth & NeMo 47

4 RESULTS AND DISCUSSION 49
4.1 NeMo Results . 49

4.1.1 NeMo Validation . 49
4.1.2 NeMo-ES Performance Results . 51
4.1.3 NeMo-SS Performance Results . 55

4.2 Classification of Supercomputer Failures Using TrueNorth 61
4.2.1 Exploratory Data Analysis (EDA) . 61
4.2.2 Classification Results and Comparative Analysis 62

i

4.2.3 Speed and Power Consumption . 64
4.2.4 Discussion . 64

4.3 Durango – A Hybrid System Performance Modeling Framework 65
4.3.1 Durango Generated vs. Real LULESH Results 65
4.3.2 Evaluation of Durango Direct Integration . 68

4.4 HPC Network Models . 73
4.4.1 Model Validation . 73
4.4.2 Experimental Setup . 82
4.4.3 HPC Network Model Evaluations . 95

4.5 Classification of AFRL Data Using IBM TrueNorth & NeMo 130

5 CONCLUSIONS 133
5.1 NeMo: A Massively Parallel Neuromorphic Simulator 133
5.2 Classification of Supercomputer Failures Using TrueNorth 133
5.3 Durango – A Hybrid System Performance Modeling Framework 134
5.4 HPC Network Models . 134
5.5 Classification of AFRL Data Using TrueNorth & NeMo 136

A Publications 151

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 152

ii

List of Figures

1 Leaky Integrate and Fire (LIF) General Neuron Model. 12
2 TrueNorth leaky integrate and fire neuron model (TNLIF) 13
3 The NeMo neuron event flow. Details of each block, numbered 1 through 18, are

discussed in the text below. 15
4 Example event chain in NeMo with 3 neurons per neurosynaptic core. In this dia-

gram, an event is received at Axon 0 within a core at time t. At t+ 0.0001 + ε Axon
0 sends a message to Synapse 0,0. Synapse 0,0 then sends a message at t+0.0002+ε
to Neuron 0 and Synapse 0,1. Synapse 0,1 sends messages to Neuron 1 and Synapse
0,2 at t+ 0.0003 + ε. Synapse 0,2 then sends a message to Neuron 2 at t+ 0.0004 + ε.
If no messages are received on Axon 1 and 2, no messages are sent. Neurons will
send outgoing spike messages, if applicable, at t+ 1.0 + ε. 19

5 Figure (a) shows the NeMo-SS core layout with the super synapse virtual synaptic
grid. Figure (b) shows a trivial neurosynaptic core with 2 neurons. Input spikes arrive
at the start of the current big tick, t1 with a jitter value added. Jitter, represented
by ε, is added to every communication to prevent message collision. Some messages
have both a counter and jitter applied to the time stamp, represented by ν 20

6 Network configuration of TrueNorth SNN . 24
7 Visualization of TrueNorth SNN . 25
8 Durango overview. 25
9 CODES network simulations. 30
10 Durango hybrid runtime. 32
11 Diagram showing the general execution path of events in the Slim Fly specific parallel

discrete-event simulation. 36
12 A full 3-level fat-tree network using eighty 8-port switches results in a total of eight

pods with four switches per level per pod and a total of k3/4 = 128 compute nodes. 39
13 Example configuration for a pruned 3-level fat-tree using 32 8-port switches in three

pods and spine level yields a total of 3 · (k/2)2 = 48 compute nodes (darker colored
lines between L1 and L0 indicate a bundle of two links). 40

14 Full Five group dragonfly network. 42
15 General structure and layout of MMS slim fly graphs. Global connections between

subgraphs have been generalized for clarity. There are no intergroup connections
within the same subgraph. Each router contains one global connection to one router
in each of the q-many router groups in the opposing subgraph. 45

16 Example MMS graph with q = 5 illustrating the connection of routers within groups
and between subgraphs. 46

17 Two Izhikevich Validation Run TNLIF Neuron Parameters and Results. 50
18 Weak scaling performance experiments. 51
19 Strong scaling performance experiments. 52
20 Comparison of the efficiency and the running time of the strong scaling experiments. 53
21 Breakdown of the primary and secondary rollbacks for the strong scaling simulation.

Note that the net event population for these experiments is 13 billion events, but the
maximum number of rollbacks observed is only 7.6 million. 54

iii

22 Calculating Compass’s events per second per Blue Gene/Q Rack 55
23 Neuron activity in the identity matrix benchmark simulation. This chart represents

the number of spikes sent by each neruon in a 4096 neuron simulation across 512 ticks,
demonstrating the workload generated by the benchmark model run. We observed
an even distribution of neuron activity across the simulation running this benchmark. 57

24 Blue Gene/Q weak scaling performance experiments. Figure (a) shows the results
of running NeMo-ES with 256 neurons per core with 16 cores per rank. Figure (b)
shows the results of running NeMo-SS with 512 neurons per core with 64 cores per
rank. Figure (c) shows the results of NeMo-SS with 256 neurons per core with 64
cores per rank. Figure (d) shows the wall clock time taken for each run. 58

25 NeMo-SS BG/Q Weak Scaling Time Detail. 59
26 NeMo-SS Blue Gene/Q Strong Scaling Experiment Results. 60
27 Histograms of Categorical Variables. 61

28 Plot of Design Index for All Techniques. Accuracy Index is computed as log10

(
ep
et

)
,

where ep is the threshold error and et is the training error [52]. Overfitting Index is

computed as log10

(
ev
et

)
, where ev is the validation error and et is the training error

[52]. 64
29 LULESH vs. Durango: Average torus network packet hop count as a function of the

different LULESH phases. 66
30 LULESH vs. Durango: Finished torus network packet count as a function of the

different LULESH phases. 67
31 LULESH vs. Durango: Finished torus network packet hop count as a function of the

different LULESH phases. 68
32 LULESH vs. Durango: Total torus network bytes sent as a function of the different

LULESH phases. 69
33 Durango in direct integration mode with 32K node torus network and Aspen compute

node generator for 32 to 2,048 MPI ranks. 72
34 Durango in direct integration mode with 32K node torus network and Aspen compute

node generator for 1K to 16K MPI ranks. 73
35 Durango in direct integration mode with 1.3M node dragonfly network and Aspen

compute node generator for 1K to 32K MPI ranks. 74
36 Worst-case traffic layout for the slim fly topology. 75
37 Throughput comparison of minimal routing for uniform random (UR) and worst-case

(WC) traffic workloads. Figures are best viewed in color. 76
38 Throughput comparison of non-minimal routing for uniform random (UR) and worst-

case (WC) traffic workloads. Figures are best viewed in color. 77
39 Throughput comparison of adaptive routing for Uniform Random (UR) and worst-

case (WC) traffic workloads. Figures are best viewed in color. 78
40 Router occupancy comparison for simulations as a function of the Router ID and

percentage of simulation time across different offered loads for virtual channels (VCs)
0 and 1 using UR traffic and minimal routing with increasing injection load. Figures
are best viewed in color. 79

iv

41 Messages sent and received over time for the simulation across different router IDs
using UR traffic and minimal routing using 100% load. Figures 41a and 41b show
the number of sends and receives sampled over the simulation run time for all the
compute nodes. Figures 41c and 41d show the same for all routers in the simulation. 80

42 Distribution of simulation time for the 74K-node Slim Fly model with minimal rout-
ing, UR traffic, and 10% load. 81

43 Verification experiments showing observed network performance while increasing the
number of rails under a synthetic bisection-pairing workload. Both axes show the
relative injection in percent of the link speed (12.5 GB/s). 82

44 Validation results comparing network performance between the physical DRP system
and a similarly configured simulation system using the CODES Fat-Tree model. Both
simulation and hardware perform the ping-pong benchmark pattern between two MPI
processes on separate compute nodes. Subfigure 44a shows the packet end-to-end
latencies and Subfigure 44b presents the error between hardware and simulation. . . 83

45 Visualization of the networks utilized in this paper. Green and blue nodes are routers
(green being routers in the first plane/rail and blue routers being in the second
plane/rail, if one exists). Red nodes are compute nodes. 84

46 Communication pairing diagrams showing the level of communication between all
MPI processes in uniform random, and bisection workloads. Sending process IDs are
on the left axis and receiving process IDs are on the bottom axis. Note, the bisection
heapmap lines are faint due to resolution limitations of the image coupled with the
very high number of MPI ranks used in this graphic. 88

47 Communication pairing diagrams showing the level of communication between all
MPI processes in one, two, and three dimensional nearest neighbor workloads. Send-
ing process IDs are on the left axis and receiving process IDs are on the bottom axis.
Note, the heatmap lines are faint due to resolution limitations of the image coupled
with the very high number of MPI ranks used in this graphic. 89

48 Communication pairing diagrams showing the level of communication between all
CPU MPI processes in each CPU application. Sending process IDs are on the left
axis and receiving process IDs are on the bottom axis. 90

49 Integration of IBM TrueNorth, NeMo, and CODES ecosystems to form the large-
scale neuromorphic systems simulation workflow. The red dashed boxes indicate the
various entry points for users to setup a large-scale neuromorphic simulation. 92

50 Communication pairing diagrams showing the level of communication between all
neuromorphic chips in each neural network application. Sending chip IDs are on the
left axis and receiving chip IDs are on the bottom axis. 94

51 Million-node compute scaling analysis simulating 100 µs using minimal Routing, UR
traffic, and 10% network load. Figures are best viewed in color. Added result for
sequential execution. 97

52 Million-node memory and time scaling analysis simulating 100 µs using minimal
Routing, UR traffic, and 10% network load. The time scaling shows the slowdown
factor of simulation compared to real hardware as the number of MPI ranks increases.
Figures are best viewed in color. 98

v

53 Distribution of simulation time for the 74K-node Slim Fly model with minimal rout-
ing, UR traffic, and 10% load. Per node time is the average time each node spent in
each task while the total time is the average multiplied by the number of MPI ranks
in the simulation. Figures are best viewed in color. 100

54 Performance results for the Crystal Router application running with 1K MPI ranks
on the 3,042-node Slim Fly network. Black ’X’s indicate the mean value across all
compute nodes. Figures are best viewed in color. 102

55 Performance results for the Multigrid application running with 10K MPI ranks on the
74K-node Slim Fly network. Black ’X’s indicate the mean value across all compute
nodes. Figures are best viewed in color. 103

56 Performance results for the Multigrid application running with 110K MPI ranks on
the 74K-node Slim Fly network. Figures are best viewed in color. 104

57 Network statistics per compute node comparing AMG, Crystal Router, and Multigrid
application traces running in parallel on the 3,564-node dual-rail Fat-Tree system. . 107

58 Network performance comparison of a single rail 100 Gb/s network and a dual rail
56 Gb/s network. 108

59 Observed network bandwidth for one, two, four, and eight rails. 110
60 Multi-job allocation study on the dual-rail Fat-Tree network using contiguous, ran-

dom, and clustered allocation policies. 111
61 Dual-rail network performance when increasing the number of trace processes mapped

to a node from 8 to 48. 113
62 Observed load of the networks in response to increasing offered load (measure as a

percentage of link speed) for the uniform random synthetic traffic workload. 115
63 Observed load of the networks in response to increasing offered load (measure as a

percentage of link speed) for the bisection synthetic traffic workload. 116
64 End time performance for all network configurations running uniform random syn-

thetic workload with increasing offered load. 117
65 End time performance for all network configurations running bisection synthetic

workload with increasing offered load. 118
66 End time performance for all network configurations running 1D, 2D, and 3D nearest

neighbor synthetic workloads with increasing offered load. 119
67 Simulated end time results for CPU applications running alone on the Dragonfly-

1D, Dragonfly-1D, Fat-Tree, and Slim Fly HPC systems. End times are normalized
within a workload to the slowest performing topology result. Lower is better. 121

68 Aggregate global link traffic for Dragonfly-1D, Dragonfly-1D, Fat-Tree, and Slim Fly
running the single-job AMG execution. 121

69 Simulated end time results for Neuromorphic applications running alone on the
Dragonfly-1D, Dragonfly-1D, Fat-Tree, and Slim Fly HPC systems. End times are
normalized within a workload to the slowest performing topology result. Lower is
better. 122

70 Aggregate global link traffic for Dragonfly-1D, Dragonfly-1D, Fat-Tree, and Slim Fly
running the single-job MNIST execution. 123

vi

71 The top subfigure presents simulated end time results for the CPU applications
when running in the presence of neuromorphic applications on the Dragonfly-1D,
Dragonfly-1D, Fat-Tree, and Slim Fly HPC systems. End times are normalized within
each workload pairing to the slowest performing topology result. The bottom sub-
figure presents the net slowdown in end time performance for CPU workloads when
running in the presence of neuromorphic workloads. In both subfigures, lower is better.125

72 Aggregate global link traffic for Dragonfly-1D, Dragonfly-1D, Fat-Tree, and Slim Fly
running the hybrid AMG-MNIST execution. 125

73 The top subfigure presents simulated end time results for neuromorphic applications
when running in the presence of CPU applications on the Dragonfly-1D, Dragonfly-
1D, Fat-Tree, and Slim Fly HPC systems. End times are normalized within each
workload pairing to the slowest performing topology result. The bottom subfigures
present the net slowdown in end time performance for neuromorphic workloads when
running in the presence of CPU workloads. In all subfigures, lower is better. 126

74 Normalized end time results for each topology averaged over each workload cate-
gory including synthetic, CPU and neuromorphic workloads. Additionally a fourth
summary is provided averaging normalized end time across ”all” workloads. 128

vii

List of Tables

1 A matrix representation of a neurosynaptic core. 16
2 Description of Variables in a Typical RAS Log Entry. 22
3 Descriptions of symbols used. 44
4 Neuron Validation Parameters. 50
5 Breakdown of time spent during the simulation of 65,536 neurosynaptic cores on 1024

Blue Gene/Q nodes each with 64 MPI ranks. 52
6 Experimental Run Configurations. 56
7 Breakdown of time spent during the simulations on 2048 Blue Gene/Q nodes each

with 64 MPI ranks. The columns labeled with “Real-Time” text indicate the NeMo-
SS runs that use the Real-Time GVT synchronization protocol, in contrast to the
event count based GVT method. 60

8 Performance Comparison of All Techniques. 62
9 Design Index Computation. 63
10 Network configurations (Fat-Tree & Dragonfly). 85
11 Network configurations (Slim Fly). 86
12 CPU workload comparison. 90
13 Neuromorphic workload comparison. 94
14 Network cost comparison. 130
15 Speedup per $1M. 130
16 MNIST Data Set: NeMo vs. NSCS Spike Counts . 131
17 AFRL MSTAR Data Set: NeMo vs. NSCS neuromorphic Output Core Spike Counts. 132

viii

1 SUMMARY

The central task of the proposed research here is to explore and analyze how might a neuromorphic
accelerator type processor be used to improve the HPC application performance and overall system
reliability of future extreme-scale systems. To address this problem, we created a platform prototype
system modeling capability that leverages current supercomputer systems available at AFRL and
Rensselaer complete with the ROSS massively parallel discrete-event simulator. From this 3 year
research program, we completed the following five major core research thrusts (CRTs):

1. NeMo: A Massively Parallel Neuromorphic Simulator: Neuromorphic computing is
a broad category of nonvon Neumann architectures that mimic biological nervous systems
using hardware. Current research shows that this class of computing can execute data classi-
fication algorithms using only a tiny fraction of the power conventional CPUs require. This
raises the larger research question: How might neuromorphic computing be used to improve
application performance, power consumption, and overall system reliability of future super-
computers? To address this question, an open-source neuromorphic processor architecture
simulator called NeMo is being developed. This effort will enable the design space explo-
ration of potential heterogeneous compute systems that combine traditional CPUs, GPUs,
and neuromorphic hardware. This work examines the design, implementation, and perfor-
mance of NeMo. Demonstration of NeMo’s efficient execution using 2,048 nodes of an IBM
Blue Gene/Q system, modeling 8,388,608 neuromorphic processing cores is reported. The
peak performance of NeMo is just over ten billion events-per-second when operating at this
scale.

2. Classification of Supercomputer Failures Using TrueNorth: Today’s petascale super-
computers are comprised of ten’s of thousands of compute nodes. Failures on these massive
machines are a growing problem as the time for a single compute node to fail is shrinking.
Ideally, the job scheduler would like the capability to predict node failures ahead of time in
order to minimize the impact of node failures on overall job throughput. However, due to the
tight power constraints of future systems, the online modeling of real-time error data must be
accomplished using as little power as possible. To this end, the IBM TrueNorth Neurosynap-
tic System is used to create a Spiking Neural Network (SNN) model of supercomputer failure
data and the classification accuracy of this model is compared to other Machine Learning
(ML) and Deep Learning (DL) techniques. It is observed that the IBM TrueNorth failure
classification model yields a training accuracy of 99.41%, validation accuracy of 98.12% and
testing accuracy of 99.80% and outperforms other machine learning and deep learning ap-
proaches. Moreover, the TrueNorth SNN consumes five orders of magnitude less power than
the other ML/DL approaches during the testing phase. Additionally, it is observed that all
ML/DL approaches investigated as part of this study are able to produce accurate models of
the supercomputer system failure data.

3. Durango – A Hybrid System Performance Modeling Framework: Performance mod-
eling of extreme-scale applications on accurate representations of potential architectures is
critical for designing next generation supercomputing systems because it is impractical to
construct prototype systems at scale with new network hardware in order to explore designs

1
Approved for Public Release; Distribution Unlimited.

and policies. However, these simulations often rely on static application traces that can be
difficult to work with because of their size and lack of flexibility to extend or scale up without
rerunning the original application. To address this problem, we have created a new tech-
nique for generating scalable, flexible workloads from real applications, we have implemented
a prototype, called Durango, that combines a proven analytical performance modeling lan-
guage, Aspen, with the massively parallel HPC network modeling capabilities of the CODES
framework. Our models are compact, parameterized and representative of real applications
with computation events. They are not resource intensive to create and are portable across
simulator environments. We demonstrate the utility of Durango by simulating the LULESH
application in the CODES simulation environment on several topologies and show that Du-
rango is practical to use for simulation without loss of fidelity, as quantified by simulation
metrics. During our validation of Durango’s generated communication model of LULESH,
we found that the original LULESH miniapp code had a latent bug where the MPI Waitall

operation was used incorrectly. This finding underscores the potential need for a tool such
as Durango, beyond its benefits for flexible workload generation and modeling. Addition-
ally, we demonstrate the efficacy of Durango’s direct integration approach, which links Aspen
into CODES as part of the running network simulation model. Here, Aspen generates the
application-level computation timing events, which in turn drive the start of a network com-
munication phase. Results show that Durango’s performance scales well when executing both
torus and dragonfly network models on up to 4K Blue Gene/Q nodes using 32K MPI ranks,
Durango also avoids the overheads and complexities associated with extreme-scale trace files.

4. HPC Network Models: In the first part of this research thrust, we describe a subset of HPC
network topologies chosen for evaluation. The networks are chosen because they are either
currently used in a deployed HPC system or they posses characteristics such as a low-diameter
that make them a promising option as the interconnection network in a next generation su-
percomputer. We describe the Fat-Tree network and extensions made to represent pruned
multi-rail configurations. Additionally we discuss two approaches to Dragonfly networks se-
lected for comparison that leverage all-to-all connections and 2D grid connectivity within
router groups. We also cover a recently proposed theoretical network topology called the Slim
Fly. The topology layouts, connectivity and routing algorithms, as well as model validation
are discussed to provide a clear picture of each networks theoretical capabilities and simulator
accuracy. In the second part of this research thrust, we perform numerous evaluations analyz-
ing the scaling performance of the simulation framework as well as the performance of these
networks at large-scale in response to various workloads and HPC environment conditions.
The back-end discrete-event simulator is analyzed showing the effectiveness of the approach in
speeding up the simulation run times by running in parallel. The discrete-event based network
models are then used to perform a number of studies to predict and quantify performance
of the networks. We test the Slim Fly at large-scale under CPU workloads to observe the
effect of routing on end time performance. We study the performance benefits of additional
rails in the Fat-Tree network by analyzing rail-scaling, job placements, multi-job execution,
and increased computational power per compute node. Finally, we test equally provisioned
Dragonfly, Fat-Tree and Slim Fly networks under synthetically generated workloads as well as
real CPU application and novel neuromorphic application trace workloads taken from NeMo
to provide a fair comparison across a wide range of traffic workloads. Lastly, the results of

2
Approved for Public Release; Distribution Unlimited.

the comparisons are summarized and compared with physical system costs in an attempt to
provide a single figure of merit in comparing each network’s performance as an HPC system
interconnect.

5. Classification of AFRL Data Using TrueNorth & NeMo: To determine the accuracy of
the NeMo model, we used the MNIST benchmark and AFRL MSTAR SAR imagery data-sets
and compared NeMo’s output accuracy for each of those models against the IBM TrueNorth
neurosynaptic processor system. Here, each model was trained using the EEDN convolutional
neural network toolkit, a machine learning software toolkit provided by IBM for use with
the TrueNorth hardware. EEDN generates trained spiking neural networks in a format that
can be used for the TrueNorth hardware system. These trained networks were run using the
IBM TrueNorth software simulation tool, where spike activity between neurons and cores was
recorded. We then imported these models into NeMo, and compared the results against those
obtained on IBM TrueNorth.

2 INTRODUCTION

2.1 Parallel Discrete-Event Simulation & ROSS

Capturing performance measurements of extreme-scale networks having millions of nodes requires
an approach capable of decomposing a large problem domain. One such method, used in this
work, is parallel discrete-event simulation (PDES). PDES decomposes the problem into distinct
functional components called logical processes (LPs), each with its own maintained state. These LPs
encapsulate the specific functionality of computing components in the simulation such as routers,
nodes, and workload processes. LPs interact with one another and represent the system dynamics
by passing time-stamped event messages to one another. These LPs are mapped to physical MPI
rank processing elements (PEs), that compute their corresponding LPs’ events in time-stamped
order.

The Rensselaer Optimistic Simulation System (ROSS) provides the PDES platform with support
for both conservative and optimistic parallel execution of events [36]. Conservative execution uses
the YAWNS protocol [132] to keep all LPs from computing events out of order. The optimistic
event scheduler allows each LP to keep its own local time and therefore compute events out of order
with respect to other LPs. Optimistic event scheduling enables highly scalable simulations and has
demonstrated super-linear speedup capable of processing 500 billion events per second with over 250
million LPs on 120 racks of the Sequoia supercomputer at LLNL [24]. The speedup associated with
optimistic execution comes at the cost of out-of-order event execution, which is handled by reverse
computation [37]. When a temporal anomaly occurs and an event is processed out of timestamp
order, all events must be incrementally rolled back to restore the state of the LP to just before the
incorrect event occurred.

The rollback process uses a reverse event handler to undo the events. The reverse handlers for
the model must be provided by the model programmers. The reverse event handler is a negation
of the forward event handler performing inverse operations on all state changing actions. For
example, in the Slim Fly model using non-minimal routing, when a message packet arrives at its
first router from a node, that router LP performs forward operations in the router-receive forward
event handler. The router LP (1) increments the number of received packets, (2) sends a credit event

3
Approved for Public Release; Distribution Unlimited.

to the sending node LP, (3) computes the next destination by sampling a random number for the
random intermediate destination, and (4) creates a new router-send event to relay the packet to the
next hop router LP. The reverse event handler needs to undo these operations by (1) decrementing
the received packets state variable, (2) sending an anti-message to the sending node to reverse the
credit sent, (3) unrolling the random number generator by one, and (4) creating an anti-message
(a message indicating an event was issued out of timestamp order and needs to be rolled back in
optimistic execution) to cancel the router-send event.

2.2 Neuromorphic Computing, IBM TrueNorth & NeMo

In recent years, a new type of processor technology has emerged called neuromorphic computing.
This new class of processor provides a brain-like computational model that enables complex neural
network computations (e.g., data classification) to be done using significantly less power than current
processors. For example, IBM has created an instance of the TrueNorth architecture [15, 21, 40, 41]
that has 5.4 billion transistors arranged into 4,096 neurosynaptic cores with a total of 1 million
spiking neurons and 256 million reconfigurable synapses. This architecture consumes only 65 mW
of power when executing a multi-object detection and classification program using real-time video
input (30 fps) for 400 × 240 pixel images. Using that little power, TrueNorth could run for over
one week on a single charge inside today’s smartphones. For a list of TrueNorth-capable algorithms
and applications, see Esser et al. [59].

This extreme, low-power data analytics capability is particularly interesting as next generation
HPC systems are about to experience a radical shift in their design and implementation. The current
configuration of leadership class supercomputers provides much greater off-node parallelism than
on-node parallelism. For example, the 20 PFLOP “Sequoia” Blue Gene/Q supercomputer located
at LLNL has over 98 thousand compute nodes but each compute node provides at most 64 threads of
execution. However, in order to reach exascale compute capabilities, a next generation system must
be 50 times more power efficient. This dominating demand for power efficiency is resulting in future
designs that dramatically decrease the number of compute nodes while increasing the computational
power and number of processing cores. Case in point, a recent NASA vision report [151] predicts
that exascale class supercomputers in the 2030 time frame will have only 20,000 compute nodes and
the number of parallel streams per node will rise to nearly 16,000.

To meet the computational demands of these future designs, it has become a widely held view that
on-node accelerator processors, in close coordination with multi-core CPUs, will play an important
role in compute-node designs [151]. These accelerators are currently used in two forms. The first
are graphical processing units (GPUs) that offer a single-instruction-multiple-data approach to
parallelism, which matches the execution paradigm of graphics applications. GPUs offer a massive
amount of numerical compute power at a very affordable price. The second form of compute
node accelerators is a mesh processor architecture such as the Intel Phi [46] which has now been
discontinued. Here, a collection of lower clock-rate x86 cores are interconnected over an on-chip mesh
network. While GPUs promise increased FLOPs at a lower cost, the Intel Phi provides a simpler
programming paradigm, one capable of executing legacy HPC codes. The current marketplace
appears to be driven by performance over ease of programming.

A specific example neuromorphic computing device is the IBM TrueNorth Neurosynaptic System
[42]. It is a flexible, programmable substrate for neural algorithms, suited to sensory processing
and spatio-temporal pattern recognition. It features a many-core processor network on a chip de-

4
Approved for Public Release; Distribution Unlimited.

sign. Each TrueNorth chip contains 4096 neurosynaptic cores, each composed of 256 programmable
neurons, which is over a million neurons per chip. It typically uses about 65 mW of power [16].
Research is currently being pursued to explore the possibility of having neuromorphic chips on the
next generation supercomputing systems [80]. So, the setting that this work lies is one where the
next generation supercomputers have a Neuromorphic Processing Unit (NPU) on each node and
these NPUs are able to perform ML/DL tasks extremely fast and in an energy efficient way.

Given the advent of neuromorphic computing, the question we will address in this work is how
might a neuromorphic processor be used as an accelerator to improve the application performance,
power consumption, and overall system reliability of future exascale systems. This report highlights
the neuromorphic architecture as a key technology (especially in the next generation of supercom-
puting systems) for large-scale data processing.

To address this larger research question, an open-source neuromorphic processor architecture
simulator called NeMo was created. This effort will enable the design space exploration of potential
hybrid compute and neuromorphic systems.

2.3 Classification of Supercomputer Failures Using TrueNorth:

In addition to the NeMo simulator, we look at a particular application that would potentially be
running on the IBM TrueNorth processor that is available to us as part of an IBM Loan agreement.
The application is an operating system tool that can predict when a node on the supercomputer
is about to fail – a node failure predictor. Failures in supercomputers, especially node failures, are
an unfortunate and unpleasant reality that the modern day supercomputing systems have due to
their size and overall system complexity [171]. They not only result in extensive downtimes, lower
reliability and component loss, but also consume significant amount of human resources. Therefore
it would be ideal to have the ability to predict such failures ahead of time so that the jobs running
on a potentially failing node can be rerouted to other nodes, new jobs can be deferred to healthier
nodes and the node itself can be repaired during a scheduled maintenance period.

The main contributions of this work are as follows:

• We demonstrate that node failures can be modeled and classified using a neuromorphic com-
puting approach by leveraging the IBM TrueNorth chip.

• We show that the Spiking Neural Network (SNN) of TrueNorth outperforms other Machine
Learning (ML) and Deep Learning (DL) approaches for our application.

• We show that all ML, DL and neuromorphic computing approaches yield accurate results for
our application.

Now, the majority of research in modeling and predicting node failures has been domain-specific.
Gainaru and Cappello provide an overview of failures observed in large-scale High Performance
Computing (HPC) systems and also point out their characteristics with emphasis on modeling,
detection and prediction [69]. Schroeder and Gibson review the sources of failures, corresponding
decrease in application effectiveness, and also the coping strategies like application-level checkpoint
compression and system level process-pairs fault-tolerance for supercomputing [148]. Fiala et al.
study the use of redundancy to detect and correct soft errors in MPI applications that lead to silent
data corruption and eventually node failures [65]. Abawajy proposes a fault-tolerant scheduling

5
Approved for Public Release; Distribution Unlimited.

policy which couples job scheduling with job replication so that jobs are efficiently and reliably
executed for grid computing systems [11]. Chen et al. explore the use of a floating-point arithmetic
coding approach to build survivable HPC applications that can adapt to node failures without
being aborted [45]. Fagg et al. emphasize the importance of application-level fault-tolerant systems
and present a fault-tolerant version of the Message Passing Interface (MPI), which lets applications
recover from a node or link error and as a result continue execution normally [63]. These papers
focus on fault-tolerance from the point of view of applications being run.

When it comes to modeling failures, Zheng and Lan extend the Amdahl’s Law and Gustafson’s
Law in order to consider the impact of failures and the effect of fault-tolerance techniques on ap-
plications [172]. Their reliability-aware models can predict application scalability in failure prone
environments and also evaluate various fault-tolerant techniques. When it comes to tackling node
failures, Bautista-Gomez et al. propose a low-overhead high-frequency multi-level checkpoint tech-
nique to tackle node failures by integrating a highly reliable topology-aware Reed-Solomon encoding
in a three-level checkpointing scheme [27]. Egwutuoha et al. review the failure rates of HPC systems,
survey fault-tolerance approaches, discuss the feature requirements of rollback-recovery techniques
and develop a taxonomy for twenty checkpoint-restart solutions [57]. Brown and Patterson propose
Recovery-Oriented Computing (ROC), which is an approach that recognizes the inevitability of
unanticipated failure and focuses on recovery and repair as opposed to simple fault-tolerance [34].

Apart from the domain-specific approaches mentioned above, researchers have also used statistical
methods as to analyze node failures. Schroeder and Gibson analyze failure data from two large
HPC sites, and use a statistical approach to study the root cause of failures, the mean time between
failures and mean time to repair [147]. Hacker et al. analyze the event logs of two IBM Blue Gene
systems, characterize system failures statistically and propose a semi-Markov model for predicting
the probability of a node failure [77]. This work found that components within the supercomputer
often become “noisy” by issuing four or more warning events prior to complete failure and is a
driver for our research here. Liang et al. have used RIPPER (a rule-based classifier), Support
Vector Machines (SVM) and a Nearest Neighbor method to classify failures using error logs from
the IBM Blue Gene/L machine [112]. SVM (recall: 80%, precision: 50%) and Bi-Modal Nearest
Neighbor (BMNN) (recall: 85%, precision: 35%) were seen to perform best for 12-hour and 6-hour
prediction windows respectively. Yu et al. have used event-based Bayesian model to classify failures
using error logs from the IBM Blue Gene/P machine achieving 83.8% accuracy [169].

2.4 Durango – A Hybrid System Performance Modeling Framework

Performance modeling of extreme-scale applications using accurate representations of potential ar-
chitectures is critical for designing next generation supercomputing systems because it is impractical
to construct prototype systems at scale with new network hardware in order to explore designs and
policies. However, simulations often rely on static application traces that can be difficult to work
with because of their size and lack of flexibility to extend or scale up without rerunning the origi-
nal application. For example, the application traces available as part of the DOE Design Forward
program (see: http://www.exascaleinitiative.org/design-forward) can be hundreds of giga-
bytes. Moreover, once traces are created, they are fixed and cannot be changed Also, traces require
a system and time where the trace can be created.

On the other hand, well-known patterns [49] coded in a simulator-specific language also have
shortcomings. First, these patterns typically are synthetic and not often representative of real

6
Approved for Public Release; Distribution Unlimited.

application behaviors, thus driving the need for real application traces. Second, these patterns
often do not include any computation for the processors, so there is limited ability to inject realistic
processor behaviors between communication events.

To address this problem, we have created a new technique for generating scalable workloads
from real applications, and we have implemented a prototype, named Durango, that combines a
proven analytical performance modeling language, Aspen, with the massively parallel HPC network
modeling capabilities of the CODES framework. Our models are compact, parameterized and
representative of real applications with computation events. They are not resource intensive to
create and are portable across simulator environments. Specifically, we make the following two
contributions in this research thrust:

• Comparison of the Aspen-generated network communication patterns for the LULESH
miniapp with real LULESH application network communications via traces that are run
through the CODES packet-level network simulation framework. Durango shows identical
agreement with the real application trace data for key network performance statistics. During
our validation of Durango’s generated communication model of LULESH, we found that the
original LULESH miniapp code had a latent bug where the MPI Waitall operation was used
incorrectly. This finding underscores the potential need for a tool such as Durango, beyond
its benefits for flexible workload generation and modeling.

• A scaling study of Durango’s direct integration approach, which links Aspen into CODES as
part of the running network simulation model. Here, Aspen generates the application-level
computation timing events as part of an overall discrete-event system model, which in turn
drive the start of a network communication phase. Performance results show that Durango’s
performance scales well when executing both torus and dragonfly network models on upto
4K Blue Gene/Q nodes using 32K MPI ranks and avoids the overheads and complexities
associated with extreme-scale trace files.

2.5 HPC Network Models

As we move to the era of exascale computing, increasing computational power of supercomputing
systems will continue to increase demand on the underlying interconnection network to handle inter-
process communication. HPC systems today come in many sizes, compute complexities, compute
densities, and cost constraints making it hard to select one particular network topology as a “one
size fits all.” Furthermore, the increased adoption of hybrid architecture systems opens the door
for the consideration of new computing architectures like the biologically inspired neuromorphic
processor, further straining the network to handle complex new traffic workloads. To keep up with
the increasing amount of compute power and compute heterogeneity, HPC system designers must
weigh the many options for improving network performance to match. This research uses high-
fidelity end-to-end modeling and simulation using the CODES framework to analyze the ability of
current interconnection network topologies as well as theoretical topologies to handle such a wide
set of communication traffic workloads.

In recent years, new types of processor and network technologies have emerged that may be
deployed in future supercomputer system designs. First, neuromorphic computing is a new class
of processor that provides a brain-like computational model that enables complex neural network
computations to be done using significantly less power than current processors. IBM has created an

7
Approved for Public Release; Distribution Unlimited.

instance of a spiking neuromorphic processor, called TrueNorth, that has 4096 neurosynaptic cores
with a total of 1 million spiking neurons and 256 million re-configurable synapses that consume
only 63 milliwatts when executing a multi-object detection and classification program using real-
time video input [122]. Several other advanced neuromorphic processor hardware architectures
have been developed as well, featuring various hardware designs and features [97], [120], [29]. More
recently, Intel has created the Loihi spiking neuromorphic processor that is able to perform on-chip
learning [53].

The ability of the interconnection network to transfer data efficiently remains essential to the
successful implementation and deployment of large-scale HPC systems even in the face of architec-
tural changes like the neuromorphic processor. Now, supercomputer network designs are moving
away from multidimensional torus networks used in Cray XT and IBM Blue Gene systems with
the advent of high-radix routers enabling lower diameter interconnect topologies such as Dragon-
fly [98], [62], Fat-Tree [137] and Slim Fly [32]. There is a trade-off of latency, bandwidth, network
diameter, and cost among the potential network topologies. These networks promise either full
bisection bandwidth as is the case with the Fat-Tree or strike a balance between global and nearest
neighbor traffic patterns using fewer network links and lower overall costs as with the Dragonfly
and Slim Fly topologies. Each network topology provides a compelling option as interconnection
networks for large-scale computing systems.

In this research thrust, traditional synthetic workloads as well as representative workloads from
leadership class supercomputer systems and neuromorphic applications are used to analyze the
performance of homogeneous and hybrid compute systems where a compute node has both CPU
and neuromorphic chips. To perform the detailed design space exploration, we use an end-to-end
modeling and simulation workflow that allows asking metric-driven questions about the capabilities
of potential hybrid CPU-neuromorphic supercomputer system designs. Traditional, cycle-accurate
simulations provide high accuracy and are very detailed. Yet when it comes to replaying real appli-
cation traces using large node and process counts, the added detail limits the runtime performance
scalability resulting in the use of synthetic workloads [32], [98], [128]. Analytical modeling, on the
other hand, can provide an accurate picture of the application, but it lacks in modeling critical
interconnect details such as congestion and flow control. In this work, we leverage the CODES sim-
ulation framework that uses the optimistic discrete-event scheduling capability of ROSS to enable
efficient, scalable, and detailed packet-level network simulations [168], [130].

The focus of this research thrust is on predicting and analyzing the performance of different
networks under various potential configurations and traffic load conditions of next generation su-
percomputing systems. To reach that goal, the parallel discrete-event simulation (PDES) based
HPC system modeling package of ROSS and CODES are used as the foundation simulation frame-
work. The work in this thesis builds on that framework to include the network construction and
packet-level simulation capabilities of a new bandwidth optimized and cost effective theoretical Slim
Fly network topology. Additionally, the previously supported CODES Fat-Tree network model is
also expanded to provide the ability to simulate pruned Fat-Tree configurations as well as Fat-Tree
networks deployed with multiple network rails. Each of the new network models and model exten-
sions has been validated with published results, controlled workload analysis, and/or a controlled
hardware system comparison to ensure expected and accurate prediction of simulation results.

Finally, to perform detailed design space exploration of next generation hybrid compute sys-
tems, the MPI layer in the CODES framework, which is responsible for replaying CPU application
trace workloads, has been expanded to read and replay real neuromorphic computing application

8
Approved for Public Release; Distribution Unlimited.

traces through all supported HPC network models and configurations. This new feature provides
the capability to simultaneously replay CPU and neuromorphic workloads and allows the study
of metric-driven questions regarding the capabilities of potential hybrid CPU-neuromorphic super-
computer system designs. The HPC simulation contributions made to the CODES framework are
then used to predict and analyze performance of the available CODES network topologies under
synthetic, CPU trace, and neuromorphic trace workloads.

2.6 Classification of AFRL Data Using TrueNorth & NeMo:

To determine the accuracy of the NeMo model, we used the MNIST benchmark and AFRL MSTAR
SAR imagery data-sets and compared NeMo’s output accuracy for each of those models against
the IBM TrueNorth neurosynaptic processor system. Here, each model was trained using the
Energy-Efficient Deep neuromorphic Networks (EEDN) toolkit, a machine learning software toolkit
provided by IBM for use with the TrueNorth hardware. Here, EEDN generates trained spiking
neural networks in a format that can be used for the TrueNorth hardware system. These trained
networks were run using the IBM TrueNorth software simulation tool, where spike activity between
neurons and cores was recorded. We then imported these models into NeMo, and compared the
results against those obtained on IBM TrueNorth.

3 METHODS, ASSUMPTIONS AND PROCEDURES

3.1 NeMo

3.1.1 Background

Neuromorphic computing refers to hardware implementations of cognitive computing techniques.
More specifically, the goal of neuromorphic computation is the design and development of neuron
inspired hardware in an energy efficient package [121].

Several viable designs have already been produced, including offerings from IBM, Intel, and several
startup companies. Intel’s processor, “Loihi”, features a spiking neural network design along with
on-chip learning[53]. IBM’s offering, the “TrueNorth” processor [15, 21, 40, 41], features 1 million
spiking neurons and 256 million reconfigurable synapses, consuming only 65 mW of power when
executing a multi-object detection and classification program using real-time video input (30 fps)
for 400× 240 pixel images. TrueNorth could run for over one week on a single charge inside today’s
smart-phones.

Neuromorphic hardware development has significantly progressed, giving rise to new processor
designs. These hardware designs often implement spiking neural networks in hardware. Spiking
neural networks are a type of artificial neural network, similar in concept to a multilayer Perceptron
model. However, spiking neural network models have significant design differences from the more
traditional machine learning artificial neural networks used in many ML problems today.

In general, neuromorphic hardware implements a type of neuron model in specialized hardware.
There are several categories of neuron models used in modern applications, with each model pro-
viding tradeoffs between complexity, flexibility, and power.

One of the most prevalent category of neuron model are those based on the McCulloch-Pitts style
neuron[118]. These neurons form the basis of what can be considered the “traditional” artificial

9
Approved for Public Release; Distribution Unlimited.

neural network. These neuron models generally feature complex, differentiable activation functions,
allowing for well understood training algorithms [143]. Implementations of this neuron model in
hardware are complex[96, 18, 92], but this complexity can provide advanced capabilities, including
hardware based derivatives to facilitate on-chip training [26].

The other major category of neuron model contains neurons that behave in a manner inspired
by or directly modeling biological behavior. The original intent of these models were to reproduce
observed behavior in biological neurons, however, they are capable of solving machine learning
tasks [116]. Several different models have been developed, each with variations in complexity and
accuracy when compared to a biological neuron [87, 72]. The Hodgkin-Huxley model, for example,
uses four dimensional nonlinear differential equations to represent detailed behaviors observed in
a biological neuron [118]. Since this model provides accurate neuronal behaviors, it is a popular
choice for neuromorphic hardware that attempts to model biological systems [33, 73, 115, 83].

Other spiking models make a trade-off between computational complexity and model accuracy.
The simplest model, “Integrate-and-Fire”, takes the sum of weighted inputs, and produces an output
if the sum is greater than some set threshold. The Integrate-and-Fire model is relatively simple
to implement in hardware, but can still provide enough complexity for simple biological simulation
tasks, [71] as well as machine learning tasks [141, 86, 156].

These models differ from a traditional machine learning neuron model in a few key areas. The
output of a traditional artificial neural network is generally a function based on its total input:

yi = f(
n∑
j=0

wi,jxj)

[101]. Here i is a particular neuron in the ANN. The weight of a given inputj, is given as wij.
The input values to this neuron are represented by j, and yi is neuron i’s output value. From
this simplified version of a neuron, we can see that when inputs are sent to the artificial neural
network, outputs are calculated immediately, and there are no constraints on the type of values
used for inputs and outputs. This neuron model is the McCulloch-Pitts model, and is widely used
in machine learning tasks in software. For example, one commonly used Perceptron model is a
McCulloch-Pitts neuron with a simple linear threshold function as:f(yi) = sign(

∑n
j=0wi,jxi) [12].

Spiking neural networks, on the other hand, have significantly different features. One of the more
common models of spiking neurons, commonly used for machine learning tasks, is the leaky itegrate
and fire (LIF) model. An LIF neuron’s activation function is defined as [88]:

Cv = gleak(Eleak − v) + I(t), if v ≥ vthreshold then v ← c

Here, v is the “membrane potential” of the neuron, gleak and Eleak are “leak” factors, and I(t) is
the input value, at a particular time, t. This model has significant differences over the traditional
neural network model. Firstly, the spiking model has the concept of time and state changes. Spiking
neurons are modeled over a period of time, and have internal state that changes depending on the
model and input values. Secondly, the neuron outputs values as “spikes”, which are generally
considered to be equivalent to outputting True to the next connected neuron. This model is
discussed in more detail below.

Even though traditional machine learning neural networks used in deep learning are significantly
different than spiking models, the current generation of neuromorphic hardware generally imple-
ments spiking neuron models with binary outputs [149]. Spiking neural networks in hardware allow

10
Approved for Public Release; Distribution Unlimited.

for higher efficiency, providing excellent power per synaptic operation. Signals enter an axon, are
passed to a synapse, and are processed by a neuron. The neurons in these models currently manage
all of the computation—axons and synapses merely act as a signal transfer service to the neuron [81].

The concept of using neurons to facilitate computation has been an area of research since even
before the introduction of the perceptron model [12]. Conceptually in the machine learning field,
using multiple neurons chained together in an artificial neural network is a complex linear model [12].
Variations on these models have been used to great effect in many problem domains [23, 146, 52],
showing just how versatile these models can be.

Implementations of neural networks in hardware has significantly progressed, giving rise to many
new processor designs. These hardware designs implement a wide variety of neuron models, in-
cluding variations of biologically inspired models [87], integrate and fire models, and even models
based on the McCulloch-Pitts neuron model [18, 22]. This work focuses on simulations of neu-
romorphic hardware implementing spiking neural network models, primarily based on the leaky
integrate-and-fire neuron model.

There are numerous implementations of this type of hardware [15, 134, 121, 122], and new designs
are currently being developed. Spiking neural networks have input, internal connections, and output
components. Input elements are referred to as axons, output elements are called neurons, and
the connectors between axons and neurons are called synapses. Signals sent from a neuron are
generally referred to as “spikes,” as they are treated as binary signals. These terms stem from
more general ANN models, which in turn are borrowed from neuroscience [146]. Neuromorphic
processors generally operate on a synchronized clock, allowing them to receive, process, and send
new messages in between external clock cycles. For example, the TrueNorth hardware architecture
has an external clock rate of 1 kHz, allowing each neuron to receive and send a spike 1,000 times
per second [15].

Leaky Integrate and Fire (LIF) Neuron Model: This is a simple neuron model that is
able to emulate some biological neuron functions [87]. Because it is so straightforward (and does
not rely on partial differential equations), the LIF model (and variations of it) is used in many
neuromorphic hardware implementations.

Neurons that implement the LIF model follow a simple pattern of execution, shown in 1 [155].
Execution consists of an integration period, leak calculations, threshold checking, firing, and then
reset. In 1, the general form of the neuron equations are presented. During integration, shown in
1, the neuron updates its internal voltage based on each synapse i’s synaptic weight, si. This is
calculated based on the synapse’s activity at time t, shown as xi(t) in 1. Next, the LIF neuron
calculates leak, by subtracting the set leak value, λ, from the current membrane potential, shown
in 2. Next, in 3, the neuron checks the threshold value, α, against the current membrane potential.
If the current membrane potential is greater than α, the neuron spikes. If the neuron spikes, 4
executes, setting the neuron membrane potential to the reset voltage, Rj. This model forms the
basis of the TNLIF neuron model, and thus the basis of the NeMo simulation model.

IBM TrueNorth Neuron Model: This neuron model is a significantly enhanced version of
the simple LIF model. In 2, the full TrueNorth neuron model is presented. Functions used in this
model include the signum (sgn):

sgn(x) =


−1, x < 0

0, x = 0

1, x > 0

11
Approved for Public Release; Distribution Unlimited.

Integration:

Vj(t) = Vj(t− 1)
n−1∑
i=0

[xi(t) si] (1)

Leak:

Vj(t) = Vj(t)− λj (2)

Threshold Check and Spike:

if Vj(t) ≥ αj (3)

Spike

Vj(t) = Rj (4)

end if (5)

Figure 1: Leaky Integrate and Fire (LIF) General Neuron Model.

a comparison function for stochastic operations:

F (s, p) =

{
1, |s| ≥ p

0, |s| < p

and the Kroneker delta function: δ(x). The TrueNorth LIF or TNLIF neuron model features a
fully connected “neurosynaptic crossbar.” This crossbar connects each input axon with all neurons.
When an axon receives a spike, it sends signals to all connected synapses. The neuron integration
equation is presented in 6. At time t, if an axon ,i, is active, the synaptic activity, Ai(t), is 1,
otherwise it is 0. In the equation, wi,j represents connectivity between axons and neurons. If wi,j
is 1, there is a connection between axon i and neuron j. If the value is 0, there is no connection.

Each neuron assigns a type, represented by Gi, to each axon. Weights are then assigned to
each axon type. Gi is limited to four types, therefore each axon may be assigned one of four
different weights by each neuron. Neuron weights are stored as signed integers, shown in the
equation as sGi

j . bGi
j sets deterministic or stochastic integration mode. If the value is 0, neurons

update their membrane potential by taking the sum of each axon multiplied by each axon’s weight:∑n−1
i=0 [sGi

j](Ai(t)wi,j)

Neurons can be configured to use stochastic synaptic and leak integration. Setting bGi
j = 1 enables

stochastic synaptic integration and setting cλj = 1 enables stochastic leak integration. Stochastic
integration functions similarly for both leak and synaptic weight. For each integration event (either
a synaptic weight or a leak computation), a random number is drawn and stored as pj. If the drawn
random number is higher than the relevant weight (synaptic weight sGi

j or leak weight λj), then

the neuron adds sgn(λ) or sgn(sGi
j) to its membrane potential. Synapse integration is shown in

Equation 6, and leak integration is shown in Equations 8 and 7.
The TNLIF neuron model enhances the leak functionality of the LIF model by adding positive

or negative leak values, and a “leak-reversal” ability. Normal leak operation calculates the sign of

12
Approved for Public Release; Distribution Unlimited.

Integration:

Vj(t) = Vj(t− 1) +
n−1∑
i=0

[
Ai(t)wi,j

[
(1− bGi

j) sGi
j + bGi

j F (sGi
j , pi,j) sgn(sGi

j)
]]

(6)

Leak Integration:

Ω = (1− εj) + εj sgn(Vj(t)) (7)

Vj(t) = Vj(t) + Ω
[
(1− cλj)λ+ cλj F (λj, p

λ
j) sgn(λj)

]
(8)

Threshold, Fire, Reset:

etaj = pTt &Mj (9)

if Vj(t) ≥ α + ηj (10)

Spike

Vj(t) = Rj + δ(γj − 1) (Vj(t)− (α + ηj)) + δ(γj − 2)Vj(t) (11)

else if Vj(t) < − [βjκj + (βj + ηj)(1− κj)] (12)

Vj(t) = −βj κj + [−δ(γj)Rj + δ(γj − 1) (Vj(t) + (βj + ηj)) + δ(γj − 2)Vj(t)] (1− κj) (13)

end if

Figure 2: TrueNorth leaky integrate and fire neuron model (TNLIF)

the leak value λ, stores this value as Ω, and then integrates this value into the neuron’s membrane
potential. Leak sign calculation is shown in Equation 7, and integration is shown in Equation 8.
Leak-reversal mode changes the behavior of the leak function such that if the neuron has a positive
membrane potential, λ is integrated directly, but if the neuron has a negative membrane potential,
−λ is integrated. In addition, if the membrane potential of a neuron is 0, then no leak is applied.

In addition to the deterministic threshold modes available, the TNLIF neuron model provides a
stochastic threshold mode. Here, ηj is added to αj and βj. Then, ηj is calculated every cycle by
first generating a random number value, pTj , then taking the bitwise AND of Mj and pTj , as seen in
9. In Equations 12 and 10, ηj is added to the threshold values before they are checked against the
neuron membrane potentials.

The TNLIF model also adds two new reset modes to the standard LIF model. TNLIF supports
normal reset mode, a linear reset mode, and a non-reset mode. These values are chosen through
the variable γj, and used in Equations 12 and 11. Normal mode follows the standard LIF model.
Linear reset mode subtracts the threshold value from the membrane potential. In non-reset mode,
the membrane potential is not changed after a spike. These reset modes add additional functionality
to the standard LIF neuron model.

TNLIF adds a negative threshold feature to the LIF. This negative threshold value is represented
by βj, an unsigned integer. This gives neurons the ability to have a membrane potential floor or a
“bounce” feature. In the case of a floor setting, neurons with membrane potentials below −βj will
set their values at −βj. If the setting is set to a “bounce” value,, the neuron’s membrane potential
is reset to −βj. The mode is set by changing the value of κj. Equation 12 shows the negative

13
Approved for Public Release; Distribution Unlimited.

threshold check, and Equation 13 shows negative threshold reset and saturation.
The enhancements to the LIF model provided by TNLIF improves its flexibility and power.

The additional stochastic integration and threshold features allow the TNLIF model to emulate
continuous weight functions. Furthermore, the stochastic features allow neural networks trained
with traditional back-propagation techniques to run directly on the hardware [60]. Cassidy et al.
demonstrated the flexibility and power of this neuron model in [40] and Akopyan et al. implemented
this model in hardware in [15].

3.1.2 Design and Implementation of NeMo

NeMo simulates neuromorphic hardware using speculative simulation techniques. The properties of
neuromorphic hardware are such that discrete event simulation may provide excellent performance.
Spiking neural networks, as implemented in hardware, generally have a low rate of neuron activity
at any given time. Furthermore, spikes do not carry more than a binary piece of information,
making all spikes homogeneous across the network. This discrete output from the neurons, coupled
with the low average network activity, produces a connection dense network with relatively low
message activity. Based on promising results published by [114], NeMo implements a discrete-event
simulation of neuromorphic hardware, using optimistic event scheduling.

Given the properties of neuromorphic hardware activity rates, we chose a parallel discrete event
simulation that uses the Time Warp optimistic synchronization algorithm. Using an optimistic
algorithm can lead to performance gains over a conservative time-stepped simulation when syn-
chronization does not need to occur at every time-step. When simulating neuromorphic hardware,
this speedup will be limited by how active the neurons are over time. The worst case scenario
for this type of simulation would be a model where all neurons are actively sending spikes to each
other. In this situation, the optimistic synchronization method will fall behind the performance of
a conservative algorithm, due to the overhead induced by the optimistic synchronization algorithm.

The TNLIF model has specific limitations due to its implementation in hardware. NeMo, however,
is not designed as a simulation of solely the TrueNorth processor hardware, rather it is a more
generic neuromorphic processor simulation model. Given the constraints of the TNLIF model, NeMo
implements all documented features of the hardware. In addition, NeMo supports significantly more
features than the TrueNorth hardware. NeMo does not have the bit length constraints that are part
of TrueNorth. NeMo may have a 64-bit signed integer value for weights, thresholds, and pseudo-
random numbers. Furthermore, while NeMo operates with the same conceptual neurosynaptic
crossbar that TrueNorth uses, the crossbar can be set to an arbitrary size, constrained only by
memory of the system. This allows NeMo to simulate neurosynaptic cores of any size, across one
or more MPI ranks. NeMo adds to these features by allowing the removal of the neurosynaptic
crossbar completely, collapsing the model into a more traditional spiking neural network.

NeMo is also capable of simulating compute-on-synapse and compute-on-axon event models. This
features gives NeMo the ability to execute operations at the synapse or axon level, allowing for more
complex neurosynaptic chip designs to be simulated.

NeMo partitions the model of a neuromorphic processor into individual components. Each axon,
synapse, and neuron are modeled as a unique LP type. By having individual elements of the
neuromorphic chip running as individual LP types, NeMo is able to add processing features to the
synapses and axons. Furthermore, advanced axon→ synapse→ neuron connections could possibly
be modeled. A collection of axons, synapses, and neurons are contained within a logical container,

14
Approved for Public Release; Distribution Unlimited.

referred to as a neurosynaptic core. NeMo can model thousands of neurosynaptic cores with each
core containing hundreds of neurons and axons and tens of thousands of synapses.

Save Current Voltage
In Message

Integrate
Synapse Weight

Synapse
Message

Heartbeat
Message Sent?

No

Get

Set

Set

Get
AxonID

Get

No

Yes

Set

Get Get/Set

Yes

Set

Synapse Message Control Flow Heartbeat Message Control Flow

Voltage
1

2

3

4

5

7

Leak Calculation

14

Save Current
Membrane Potential

8

Find Current Time
10

Calculate Time
Differential td

11

Get Fire
Send Message to
configured Axon

16Reset
17

Negative
Threshold Check

18

is

15
Send Heartbeat

Message

6

Heartbeat
Message

9

Last Active Time

12

Time Differential

13

Get

Set

Yes

No

Neuron LP Event Handler

Figure 3: The NeMo neuron event flow. Details of each block, numbered 1 through 18, are discussed
in the text below.

Forward Event Computation: For the benchmarking and testing of NeMo, we implement a
model with similar capabilities as the TNLIF model. Therefore, we do not add any computation to
the axon and synapse logical processes or LPs. Table 1 shows the logical layout of neurons, axons,
and synapses on a neurosynaptic core. When an axon receives a message it relays the message
to each synapse in its row. In this model, the synapses simply relay any received message to the
neuron in their column. Like the TNLIF model, there are no computations that occur when axons
and synapses receive events; they simply relay their messages to the next element in the model.

In 3, Blocks 1–18, we show the NeMo neuron model control flow for the forward event handler.
The flow starts at the current simulation time, t, where t is measured in microseconds. If t > 1,
there has been at least one neurosynaptic tick since the simulation has started. There are two event
types that neurons receive: synapse messages and heartbeat messages. Synapse messages are set
at a nanosecond resolution, with events occurring at t + 0.0001 + ε where ε is an extremely small
random “jitter” value used to prevent ties in the scheduling of events to ensure a deterministic
ordering of events.

15
Approved for Public Release; Distribution Unlimited.

ε is a small random value chosen to prevent event timestamp collisions. While the TimeWarp
algorithm can theoretically return correct results when events occur simultaneously, the TimeWarp
implementation in ROSS does not guarantee that multiple runs of the same model will produce the
same output when event collisions occur. When ROSS manages rollback messages, these messages
are organized in a priority queue. If two events have the same timestamp, there is no way to
guarantee what order they will appear in the queue of events. Despite this, NeMo may produce
correct results even with event collisions, however, making NeMo deterministic and forcing NeMo
to generate exactly reproducible output with every run required adding a random jitter factor to
each event.

To wit, we use a random number generator that provides enough entropy to prevent event colli-
sion. Since the primary goal of NeMo is to simulate a neurosynaptic tick, we store the current tick
value as the whole number in a 64 bit floating point number. Jitter is added as a small component
of the floating point number. We assign 8 digits to the jitter value in the time variable, using the
integrated ROSS random number generator. ROSS provides warnings that alert model developers
to event collisions, allowing us to determine if any collisions have occurred. When combined with
the incrementing values in the time-step, we found that this technique prevents event collisions
during our tests.

The synapse message process begins in Block 1, when the neuron receives a synapse message.
The neuron first saves the current voltage value, Block 2, a double precision floating point value
Vj, in the synapse message, Block 3. This is to facilitate reverse computation, by saving Vj in
the message, when rolling back messages neurons are able to revert changes made during forward
computation.

The neuron then performs the integration function, shown in 3 as Block 4. This updates Vj with
a new value, computed by the integration function defined in 6.

Neuron heartbeat messages are NeMo’s technique to synchronize neuron firing. In a LIF model,
neurons integrate, leak, fire, and reset at specific intervals. We use heartbeat messages as way to
ensure that neurons will perform the leak,fire, and reset functions only after receiving a spike event.
This technique was chosen as a way to ensure that a neuron will leak and fire only after receiving
a spike in a time-stepped method, while still providing performance gains that come from inactive
neurons not computing at every time-step, as in a synchronized parallel model.

To increase performance, a heartbeat message is sent only when a neuron activates. In Block 5,
the neuron checks if it has already sent a heartbeat message. If it has not, it schedules a heartbeat
message at t + 0.1 + ε, in Block 6. This action completes the neuron’s integration function for a
particular axon. By executing this flow every time an axon message is received, NeMo recreates the

Table 1: A matrix representation of a neurosynaptic core.

Axons Synapses

0 0,0 0,1 . . . 0, n
1 1,0 1,1 . . . 1, n
...

...
...

...
...

n n, 1 n, 2 n, 3 n, n

Neurons 0 1 . . . n

16
Approved for Public Release; Distribution Unlimited.

integration formula in Equations 2 and 6.
When a heartbeat message is received, as shown in Block 7, the neuron begins its leak, fire and

reset function. The neuron also saves its current membrane potential in the received message(Blocks
8 and 9).

The neuron then finds the current neurosynaptic time in Block 10. This is computed as btc. In
Block 11, the neuron calculates a time differential, td. This value represents how many neurosynaptic
clock cycles have passed since this neuron has been active. By taking the last active time value,
Block 12, and subtracting the current time, the neuron is able to determine how many times it
needs to run the leak calculation, shown in Block 13. The neuron uses this time differential value
to compute leak. By using a loop, the neuron is able to run the leak function, shown in Equations 7
and 8, td times, bringing its voltage to where it would have been if the neuron had been calculating
the leak function in a synchronous fashion. This loop is shown in Block 14.

Once the neuron has computed the leak function, it proceeds to check the positive threshold
(Block 15), and either fires and resets, or moves on to the negative threshold check. If vj is greater
than the threshold, the neuron will fire(Block 16) and reset(Block 17). A fire operation schedules
a new message with ROSS at the next neurosynaptic clock time. Since the neurosynaptic clock
operates at the integer scale, simply adding 1 + ε to the current time will schedule the fire event at
the proper future time.

After the neuron completes the fire/reset functions, it then checks for negative threshold over-
flows(Block 18). If the neuron’s voltage is beyond the negative threshold, the neuron performs the
negative threshold integration functions specified in Equation 13. With some neuron configurations,
the reset voltage may be configured to subtract a value from the current membrane potential, rather
than reseting the value to zero. As a final check after both reset functions have completed, if there
is a remainder voltage that is past the threshold the neuron will schedule a heartbeat message for
the next neurosynaptic tick.

The neuron has now completed one neurosynaptic tick. This example is that of a neuron as
it receives spike events from connected axons. Here, the event flow assumes that the neuron is
not self-firing. Certain configurations of neurons can create a situation where neurons are able to
self-fire; setting the leak to a negative value, for example, will result in a neuron that spikes without
receiving any axon inputs. In NeMo, this situation is handled by first detecting the presence of a
self-firing neuron, and then managing the neuron.

If a neuron has a positive leak (a leak which increases the membrane potential of the neuron) or a
negative leak value with a corresponding negative reset value above the threshold value, NeMo will
detect this and apply a self-firing tag. This tag may be manually set when implementing neurons,
allowing for other, non-detected self-firing neurons to be handled properly.

If the self-firing flag is set, NeMo will detect this at the beginning of the simulation, and schedule
a heartbeat message for the next neurosynaptic tick. For all new ticks, this neuron will schedule
heartbeat messages at each neurosynaptic tick to ensure that all self-firing events are simulated.

Reverse Computation: Reverse computation is handled through swapping states at key points
in the neuron process and using bitfields to manage secondary state changes. The primary state
change that occurs is Vj, the neuron’s voltage. Neurons also contain a flag, marking when a neuron
has sent itself a heartbeat message. When performing reverse computation, neurons must revert
changes to both of these state elements.

Whenever a neuron receives a message from a synapse or receives a heartbeat message, before any
changes are made to Vj, it saves the current current voltage in the incoming message. During reverse

17
Approved for Public Release; Distribution Unlimited.

computation, neurons restore the saved voltage from the message. This reverts all integration, leak,
and reset functions that changed Vj.

When a neuron receives a synapse message for the first time, it checks to see if it has sent a
heartbeat message. If it has not, it changes an internal flag, and sends the message. The neuron
also changes the flag when receiving a heartbeat message. Neurons record boolean flag changes
in a bitfield in the incoming message. If there is a non-zero entry in the bitfield during reverse
computation, the flag state is toggled.

Fanout: Since NeMo has individual LPs configured for each component, simulations have a
large number of LPs running simultaneously. There are 2,164,260,864 LPs in our largest simulation
experiment. If NeMo sent messages at every time stamp, it would send 66,048 messages per neu-
rosynaptic core per tick. This large event population quickly becomes unmanageable due to memory
constraints. To counter this, NeMo implements a fanout technique for message transmission based
on work done in [106].

In Figure 4, an example of the fanout message technique is shown. Here we see a neurosynaptic
core with three axons, nine synapses, and three neurons. When a message is received by an axon,
it sends an axon message to the first synapse in the neurosynaptic core at time T + 0.0001 + ε. The
synapse then sends two messages: first to the neuron attached to it, second to the next synapse
in the row at T + 0.0002 + ε. The next synapse does the same, until the final synapse has been
reached. This technique generates far fewer messages, preventing memory usage issues.

3.1.3 Design and Implementation of NeMo Super Synaspe (SS)

NeMo-SS builds on original NeMo or NeMo-ES, implementing all of the features, while making some
significant changes to the simulation design. The biggest change implemented is the introduction
of a super-synapse, a single LP that manages axon→ neuron communication. This design reduces
the number of LPs by n2, where n is the number of neurons in a neurosynaptic core. For example,
using the standard TrueNorth core size of 256 neurons, NeMo-ES creates 65,536 synapse LPs per
core, while NeMo-SS creates 1 synapse LP per core. This reduction in the number of LPs reduces
memory constraints, and allows for larger simulations, as demonstrated later in the results section.

Further enhancements were made to the implementation of NeMo-ES, including optimizing of the
in-memory representation of neurons and providing enhanced I/O options for simulation results.

The major design change in NeMo-SS versus NeMo-ES is the synapse grid design. NeMo-SS
replaces individual synapse LPs with a single LP, here called a super-synapse. In Figure 5(a),
NeMo-SS ’s super-synapse layout is shown. The super-synapse represents the grid of synapse LPs
used in NeMo-ES .

This super-synapse folds the synapse event fanout in NeMo-SS into a series of “heartbeat” mes-
sages. Compared with the event flow of NeMo-ES , shown in Figure 3, NeMo-SS ’s event flow uses a
heartbeat style message to manage events sent to the neurons. Figure 5(b) shows an example event
chain in a trivial neurosynaptic core. For the purposes of illustration, Figure 3 shows a two neuron
core receiving two outside messages.

To manage the “super-synapse’s” heartbeat and neuron messages, we designed two time-steps:
ν, the internal clock time of a neurosynaptic core and t, the simulated hardware time. As with
NeMo’s fanout messages, ε is a small value added to scheduled event times that prevents collisions.
These values are defined as:

tn is the current simulated neurosynaptic hardware tick n. Each complete cycle of the hardware

18
Approved for Public Release; Distribution Unlimited.

Figure 4: Example event chain in NeMo with 3 neurons per neurosynaptic core. In this diagram,
an event is received at Axon 0 within a core at time t. At t + 0.0001 + ε Axon 0 sends a message
to Synapse 0,0. Synapse 0,0 then sends a message at t + 0.0002 + ε to Neuron 0 and Synapse 0,1.
Synapse 0,1 sends messages to Neuron 1 and Synapse 0,2 at t+ 0.0003 + ε. Synapse 0,2 then sends
a message to Neuron 2 at t+ 0.0004 + ε. If no messages are received on Axon 1 and 2, no messages
are sent. Neurons will send outgoing spike messages, if applicable, at t+ 1.0 + ε.

is considered one tick. Within ROSS, each event has a simulation time value, represented
by a floating point number, associated with it. NeMo and NeMo-SS use this to define the
hardware time as:

tn = btc

ε represents a small “jitter” value. This is a similar value to the one described in the implementation
of NeMo-ES .

ν is a small value that represents simulation steps that must be done within each hardware tick,
tn. This value is based on the number of neurons in each core. NeMo-SS calculates ν as:

ν =
1

2 ∗ Neurons Per Core
+ ε

Figure 5(a) shows the event flow of a two neuron core inside NeMo-SS . For illustration, the core
receives two spike events, both occurring at t1 + ε. We define our jitter value, ε, such that ε � ν.
Upon receiving the first axon message, the synapse LP sends a message to neuron 1 at time t1 + ν
and a heartbeat message at time t1 +ν. When the synapse receives this heartbeat message, it sends

19
Approved for Public Release; Distribution Unlimited.

(a) The NeMo-SS Core Layout Showing a Vir-
tual Synapse Grid.

1

1

Axon1

Axon1

Synapse

Synapse

Neuron1

Neuron1

Neuron2

Neuron2

Axon2

Axon2

1

2 Synapse Message

3 Heartbeat

4 Synapse Message

5

6 Synapse Message

7 Heartbeat

8 Synapse Message

9 Outbound Message

Input

Input

(b) NeMo-SS Event Implementation.

Figure 5: Figure (a) shows the NeMo-SS core layout with the super synapse virtual synaptic grid.
Figure (b) shows a trivial neurosynaptic core with 2 neurons. Input spikes arrive at the start
of the current big tick, t1 with a jitter value added. Jitter, represented by ε, is added to every
communication to prevent message collision. Some messages have both a counter and jitter applied
to the time stamp, represented by ν

a message to neuron 2, scheduled for time t1 +2ν. At this point, axon 2’s message is received by the
synapse, generating a new neuron message at t1 +3ν and a new heartbeat message at t1 +3ν. When
the synapse receives this second heartbeat message, a new neuron event is scheduled at t1 + 4ν.
In this example, we assume that neuron 1 has a high enough voltage to spike, so it schedules an
outbound neuron message at t2 + ε.

By separating the timestamps used by the synapse in this way, we observe that the order in
which events are processed by the super-synapse do not affect the outcome of the simulation.
Neuron integration can occur in any order in between the simulation ticks without changing the
determinism of the model.

With NeMo-SS , we implemented a reverse computation technique for managing rollback events
that affect neuron state. When a neuron in NeMo-SS receives a reverse message, the neuron applies a
reverse integration function, along with a reverse leak function. These reverse computation methods
were developed for both the LIF and TNLIF models, even though only the TNLIF model was used
for benchmarking purposes. In general, spiking neuron integration, leak, and reset functions tend
to be good candidates for reverse computation. Integration and leak functions are generally linear,
and reset functions are almost always deterministic. NeMo-SS maintains the ability to perform
incremental state swaps as well. Using state swapping will allow the quick addition of new models
without devising reverse computation methods, as well as the addition of non-linear or other complex
neuron functions.

An important feature of NeMo is the ability to not only simulate the TNLIF neuron model but
virtually any neuromorphic model. This could be complex compute-on-synapse or compute-on-axon
models where synapse and axon LPs act as more than just message carriers but also play parts on

20
Approved for Public Release; Distribution Unlimited.

computation. It can also be as simple as a basic feed forward ANN.
In order to show this feature, the more simple Leaky Integrate and Fire (LIF) model described

in [87] was implemented to run on NeMo. The implementation of this model, while rudimentary,
shows the capability of NeMo: that it is general and flexible.

The model is generally simpler than the TNLIF model in most respects but it has distinctive
differences and flexibility. The TNLIF model’s behavior is defined and restricted by hardware that
the general LIF model (or any other conceivable model) is not bound to. For example, the data
types that define the synaptic weights can be 64-bit signed floating point values instead of integers.
In addition, there is no specified limit on the number of unique axon types that each neuron can
store as potential inputs whereas the TNLIF model is limited to four types.

The significance of these differences is that NeMo is able to show scalable performance of different
models ranging from simple to complex on arbitrary neuromorphic systems – including those that
have not yet been implemented in hardware.

3.2 Classification of Supercomputer Failures Using TrueNorth

The ability of machines to learn from data forms the crux of the field of Machine Learning (ML) [102]
Specifically, ML targets three problems: (i) Supervised Learning or Classification; (ii) Unsupervised
Learning or Clustering; and (iii) Reinforcement Learning. Supervised Learning refers to learning
from data when it is already available in a labeled format. Unsupervised Learning or Clustering
refers to learning from data when it is not available in labeled format. Reinforcement Learning
refers to learning by doing tasks, where a reward is awarded to the machine if it performs the task
correctly and the aim of the machine is to maximize the reward.

In the field of machine learning, there is a plethora of learning algorithms and techniques to choose
from: decision trees, rule-based learning, support vector machines, bayesian learning, evolutionary
algorithms [105, 165] etc. Deep Learning (DL) also is one of the techniques that enable machine
learning. While most of ML techniques target a specific problem (i.e. Classification, Clustering or
Reinforcement Learning), DL can tackle all three problems. ML can be thought of as a class of
problems in Artificial Intelligence (AI), and DL can be thought of as a technique that enables ML,
and in turn, also enables the larger field of AI [28].

3.2.1 The RAS Data

In our study, we used the Reliability, Availability and Serviceability (RAS) logs from the IBM Blue
Gene/L supercomputer that was stationed at the Center for Computational Innovation (CCI) at
the Rensselaer Polytechnic Institute (RPI). RAS logs from Blue Gene systems have been used to
model, classify and predict supercomputer failures in the literature [173]. Our Blue Gene/L system
consisted of 16,384 compute nodes, each node having two IBM 440 PowerPC processors. Each rack
is organized into two midplanes each with 512 compute nodes or 1024 compute nodes total per rack.
The network was a 3-D torus topology. The RAS log files span over one year worth of the machine’s
operational life. After cleaning and preprocessing the data, a typical log entry looks like the one
shown in Table 2. It documents data corresponding to sixteen variables. Table 2 also describes
what each variable means, whether it is categorical or not and what a sample value for the variable
looks like. The Severity feature in Table 2 denotes the severity of the log messages. It can contain
one of five values: INFORMATION, WARNING, ERROR, SEVERE or FATAL. A FATAL log entry corresponds

21
Approved for Public Release; Distribution Unlimited.

Table 2: Description of Variables in a Typical RAS Log Entry.

Variable Name Variable Description Categorical?
Sample
Value

RECID Record identification number of log entry No 1

FACILITY
Facility in the machine that registered the log

entry
Yes APP

NODE Virtual location of the node Yes 236
SERIAL-NUMBER Serial number of the component No 7.8E+56
YEAR Time variable: year No 2006
MONTH Time variable: month No 12
DAY Time variable: day No 6
HOUR Time variable: hour No 16
MINUTE Time variable: min. No 48
SECOND Time variable: sec. No 55
MICRO-SECOND Time variable: microsecond No 7849
LOC RACK Rack location Yes 0
LOC MID-PLANE Midplane location Yes 1
LOC NODE Node location Yes 8
LOC LINE Line location Yes 0
SEVERITY Severity of log entry Yes 1

to occurrence of a node failure. We want to classify the RAS logs into these five severity levels
using the remaining fifteen features.

Problem Description: Use neuromorphic computing, machine learning and deep learning tech-
niques to classify RAS logs into five Severity levels using fifteen features, which contain information
pertaining to origin of the log entry (Record ID, Facility, Virtual Node Address), serial number of
the component that initiated the log entry, temporal information (Year, Month, Day, Hour, Minute,
Second and Microsecond) and spatial information (Rack, Midplane, Node and Line).

Note that this is a time series dataset in the sense that the decision to label a node as failing or
not at a certain point of time may depend on the log entries that the node has registered till that
time. If it has registered a large number of ERROR or SEVERE messages, it is likely to fail soon and it
would be advisable to raise a red flag saying the node is not healthy for computation. This finding
was determined in a prior study by Hacker et al [77] using the same RAS log data. At no point do
we want the node to register a FATAL log entry because that would mean that a node failure has
occurred.

The raw data that we used consisted of 151, 766 log entries. The first task after obtaining the
data was to clean it. This comprised of removing data entries that contained values that were not
relevant to the study. For instance, some of the data entries contained ‘NaN’ entries and irrelevant
strings like “????????” which were removed. We ended up discarding only a small portion (1939
out of 151, 766 data entries or 1.28%) of the data during this process. After cleaning the data,
we were left with 149,827 log entries. We converted the data into a numeric format by assigning
numeric values to categorical variables like Facility, Rack Location, Midplane Location etc. Next,
we only kept the variables that were relevant to the task of node failure classification and discarded

22
Approved for Public Release; Distribution Unlimited.

the rest. Finally, we were left with fifteen features and 149,827 data points.
The next task was to split the dataset into Exploratory Data Analysis (EDA) set, training set

and test set. For this, we kept 10% of the data in the EDA set, 70% of the data in the training set
and 20% of the data in the test set. Although our dataset is a time-series dataset, we did not want
to be restricted to sequential classification techniques, which are generally used to analyze such
data (for e.g. Recurrent Neural Networks), but also wanted to leverage non-sequential techniques
(for e.g. Deep Neural Networks, K-Nearest Neighbors, Support Vector Machines). Since the non-
sequential classification techniques are chronologically independent we picked the data points in each
set uniformly at random. After this, each dataset was chronologically sorted in order to preserve
time-dependence for sequential classification techniques.

3.2.2 Using IBM TrueNorth

The IBM TrueNorth Neurosynaptic System is used to execute a Spiking Neural Network (SNN)
model which classifies the previously described failure data. A Spiking Neural Network (SNN) is
a type of neural network in the discrete domain, where each neuron in a layer may send discrete
signal spikes (for e.g. voltage in analog SNN, or a digital packet in digital SNN like TrueNorth)
to neurons in the next layer. This is unlike traditional Deep Neural Networks (DNNs) where all
neurons send all data at all times to the next layer, regardless of their input, or stimuli.

The software environment used for SNNs is EEDN, which is a framework built in conjunction with
MatConvNet (MATLAB) [160]. To compare the performance of SNN with other techniques, we
chose three machine learning (ML) techniques – Logistic Regression, K-Nearest Neighbors (KNN)
and Support Vector Machines (SVM) – and two deep learning (DL) techniques – Deep Neural
Networks (DNN) and Recurrent Neural Networks (RNN). We used the Scikit-Learn [135] and Ten-
sorFlow [10] libraries in Python for ML and DL techniques respectively. All the above models were
run on a machine that had 32 cores of two-way multi-threaded Intel Xeon CPUs running at 2.60
GHz, three NVIDIA GPUs (GeForce GTX 1080 Titan, GeForce GTX 950 and GeForce GTX 670),
112 GB DIMM Synchronous RAM, 32 KB L1 cache, 256 KB L2 cache and 20 MB L3 cache.

The IBM TrueNorth Neurosynaptic System can cater to any application having streaming
unstructured data that needs to be processed. It accepts input values that are 8-bit integers
([0, . . . , 255]). For a computer vision application, these correspond to the red-green-blue (RGB)
values that would be seen in an image. Furthermore, it supports Convolutional Neural Networks
(CNN), which are the de facto deep learning models used in computer vision tasks. Each input
data point must be reshaped and presented to the TrueNorth SNN as a 3-D array. This is because,
the TrueNorth system lends itself very naturally to image data, as compared to any other data.
Continuing the parallel to computer vision tasks, this corresponds to an image being read as a 3-D
array (Image Width × Image Height × Number of Channels) in a CNN. Since images are 3-D arrays
usually, TrueNorth expects its input data to be a 3-D array as well.

Our input data points were 15-dimensional vectors. So, in order to make them TrueNorth com-
patible, we first reshaped them into ‘images’ of shape 1 × 1 × 15 and later on added two layers of
zero padding, which were seen to work best for our data. Thus, the shape of each of our data points
was 5× 5× 15. This data reshaping, was the only way to run numeric datasets on the TrueNorth
chip. It must be noted that this reshaping of data is simply a workaround, and to the best of our
knowledge, does not have any learning advantages.

Developing neural network applications with TrueNorth follows a standardized workflow. Devel-

23
Approved for Public Release; Distribution Unlimited.

Figure 6: Network configuration of TrueNorth SNN

opment is done over six phases: Dataset, Preprocess, Train, Build, Test and Application. In the
Dataset phase, we converted the data from the raw Comma Separated Values (CSV) format into
the Lightening Memory-Mapped Database (LMDB) format. In the Preprocess phase, we scaled the
data down to 8-bit range (0 − 255) by normalizing and then rounding to the nearest integer. In
doing so, we did not incur a significant loss of information because almost all of our features had
values in the 8-bit integer range to begin with. The features that did not have values in this range
were scaled down. However, as can be seen from Section 4, any potential loss of information arising
from this operation did not seem to compromise our results.

The Train phase comprised of designing a SNN in EEDN and training it on the data obtained
from the Preprocess phase. Figure 6 shows the configuration of our SNN in a terminal window
output format and Figure 7 presents it in a pictorial format. Our network comprised of five layers,
of which the first was the input layer (I), followed by the transduction layer (P1) and subsequently
three convolutional hidden layers (C2–C4). The 5 × 5 × 15 input data was fed to the input layer,
and was encoded into spikes in the transduction layer. All in all, our SNN used 45 TrueNorth cores.
With 256 neurons per core, this gives an upper bound of 11, 520 TrueNorth neurons in total. Note
that 11, 520 is just an upper bound – it does not mean that our model used those many neurons. It
was not possible to get the exact neuron count using the TrueNorth development kit at our disposal.
Furthermore, note that spiking neurons in TrueNorth are hardware neurons and are different from
the software neurons used in deep learning frameworks like TensorFlow. In general, a software
neuron corresponds to multiple hardware neurons. The exact mapping is defined by the encoding
algorithm, which in this case was not available in the TrueNorth development kit.

The Build phase comprised of generating the binaries that would be deployed on the TrueNorth
chip. Finally, during the Test phase, we deployed our SNN model on the TrueNorth chip and
obtained the test results. The Application phase runs an application on the TrueNorth chip in
real time along with visualizations, analysis etc. In context of this work, it could potentially mean
that the model running on the TrueNorth chip accepts a live stream of error data generated by the
supercomputer and can predict failures ahead of time.

We now briefly describe all the machine learning and deep learning techniques that we have used.
For any classification problem, Logistic Regression serves as the first step of analysis as it is a
simple linear model and does not overfit the data easily unlike a complex model. We ran Logistic
Regression in Python using the TensorFlow library. The second technique that we applied was
K-Nearest Neighbors. We chose two values of K: K = 3, and K = 289. The former value has
been known to perform well empirically and the latter value, which is the square root of number of
data points in the training set (i.e.

√
83, 903 ≈ 289), is known to perform well theoretically. The

third technique that we used was Support Vector Machine (SVM) as it produces robust classifiers
and can model nonlinear data as well using the kernel trick. To run SVM and KNN, we used the

24
Approved for Public Release; Distribution Unlimited.

5

5

15

5

5 5 5 5

5 5 5

64
32 32

16

Input P1 L2 L3 L4

15

64
32 32

1

1

1

1
1

1

1
1

1	group 1	group 1	group 1	group

Input P1 L2 L3
15	cores 9	cores 9	cores

Figure 7: Visualization of TrueNorth SNN

Scikit-Learn library in Python.
The two deep learning techniques that we used were Deep Neural Networks (DNN) and Recurrent

Neural Networks (RNN). These were run using the TensorFlow library in Python. Deep Neural
Networks (DNN) are the traditional deep learning model where each neuron is a perceptron. Recur-
rent Neural Networks (RNN) are known to perform well on sequential data. So, RNNs are the go to
model for speech recognition and natural language processing. Since our data is a time series data,
it is also sequential in nature and that was our motivation to pick RNN as one of our techniques.

3.3 Durango – A Hybrid System Performance Modeling Framework

Aspen

App

Trace

Network
Simulator

(CODES/ROSS)

Trace
Reader

Aspen
Synthetic

Executable

Executable
Harness

Architecture
Parameters

Execution Driven

Network
Simulation

Results

Aspen
Synthetic Trace

Writer

③

①
②

⑥

⑤
④

⑧

Trace Driven

Application
Parameters

⑨

⑦

Synthetic

Figure 8: Durango overview.

To motivate Durango, we refer to Figure 8, which illustrates the multiple workflows for generating
a simulation workload. In this paper, we consider four scenarios when capturing the characteris-
tics of the application to be simulated. In the first scenario, we simply execute the application,
capturing the communication events, and transferring execution control between the application
and simulation as appropriate (path 1-2-3-9 in Figure 8). The application is built as it normally
would be, but the communication events are intercepted by the simulator and then simulated on

25
Approved for Public Release; Distribution Unlimited.

the theoretical network. This method is relatively straightforward and easy to perform, but it has
the disadvantage that it uses considerable resources in terms of execution time and memory.

In the second scenario, we use a tracing tool, such as DUMPI, to capture an event trace of all the
communicating tasks and communication events in the application. This trace is digested by the
simulator (path 1-4-5-3-9 in Figure 8) and the trace information is typically stored in a huge file.
Moreover, all the parameters of the trace are fixed at capture time; that is, the architect cannot
change the problem size or the number of processors after the trace has been created.

In the third scenario, we use synthetic communication patterns as a proxy for the application
communication patterns (path 1-6-7-4-5-3-9 in Figure 8). In the fourth scenario, the proxy trace
generator is glued directly into the simulator (path 1-6-8-2-3-9 in Figure 8). These last two ap-
proaches are the focus of this paper and are combined into a system we call Durango.

3.3.1 Aspen Overview

Aspen is a domain-specific language designed for analytical performance modeling [154, 161]. The
models represented in Aspen comprise application models and abstract machine models. The ma-
chine models describe the hierarchy of a machine as well as speeds and feeds of its components for
processing computation and communication. Application models contain descriptions of resource
usage of an algorithm (such as the computation and communication requirements) and control flow
(iteration, sequential and parallel dependencies, and kernel nesting).

The COMPASS framework described in [109] generates a parameterizable performance model
from a target application’s source code using OpenARC [110] for automated static analysis and
then evaluates this model using various performance prediction techniques available in Aspen. Prior
to using OpenARC, a small amount of manual annotation is required in order to specify regions of
interest and declare parameters to be directly exposed in the generated Aspen application model.
The Aspen control flow walker can dynamically instantiate values of parameters that cannot be
determined statically. Generation of applications models for the LULESH proxy application and
the matrix multiplication kernel used in the Durango research is described and validation of the
Aspen resource usage and runtime predictions with measurements on a real system is given in [110].
Aspen currently combines a the throughput-based node performance model based on the Roofline
model [164] with a simple latency plus bandwidth communication model, where computation and
communication can be overlapped to a specified degree. Part of the motivation of the Durango re-
search is to achieve more accurate communication modeling than is possible using Aspen’s analytical
methods.

Aspen, as an analytical tool, was initially designed to compute symbolic results for analysis
queries, such as the number of floating-point operations at a given problem size or the performance
of a kernel as a function of bus bandwidth. However, the expansion of Aspen’s capabilities has
allowed for more complex uses; while an Aspen model is not source code and cannot be executed
per se, the representation of a control flow is sufficiently rich to allow Aspen-based tools to traverse
an application model with the same control flow as with the original application. We build this
new capability to provide synthetic communication trace generation along with direct integration
in Durango.

26
Approved for Public Release; Distribution Unlimited.

3.3.2 Durango Approach

In contrast to the first two scenarios described above, our new approach allows the architect to
create a parameterized model of an application, and then instantiate the application with specific
parameters at simulation time. The potential benefit of this approach is multifaceted. First, the
model is malleable: the user can easily change the application and architecture parameters. In
our approach, a model can be instantiated for 16 MPI tasks as well as 1M MPI tasks. Second,
the models are compact, typically being only a dozen lines for miniapplications and up to a few
hundred lines for real applications. Third, the Durango models include computational and I/O
events in addition to the communication events so that computation and I/O demands can change
in concert with communication parameters. This approach has multiple benefits: the synthetic
workload can be generated dynamically as necessary with the required architecture and application
parameters; the description is compact; and the Aspen model can be as detailed or as sparse as
required, including computation, communication, I/O, and other important events.

More specifically, Durango requires that the user create a parameterized Aspen model (6) of the
application (1) and then use the Aspen model to create a synthetic workload, either by generating
a compatible trace directly (7) or by generating a synthetic MPI application (8) that can then be
traced (4-5-3-9 in Figure 8) or directly included in the simulation executable that avoids the need
to perform expensive read operations of large trace datasets.

3.3.3 Representing Communication in Aspen

Resource descriptions in Aspen are user-defined. There are common conventions such as flops,
loads, and stores for floating point operations and memory traffic, but these must merely match
what is defined in the abstract machine model for Aspen to be able to return predictive costs such
as runtimes and power consumption.

A commonly used resource for MPI communication is messages, but this results in a simplistic
mapping. Extensions via traits enable more expressive message passing patterns. For example, a
trait description such as “as positive x” can direct an Aspen-based tool to generate MPI calls if given
a regular processor decomposition. However, these trait descriptions are low-level, however, and
require significant effort from modelers to achieve communication patterns like 3D nearest-neighbor;
for example, requiring up to 26 separate message resource calls to generate message traffic for each
neighboring processor.

Listing 1: Example Aspen model with communication

model example
{

param nelem = 23
param words ize = 8

ke rne l main
{

execute { f l o p s [8∗ nelem ˆ3] from Domain as
simd}

execute {comm [1] o f s i z e [word] as a l l r educe ,
min}

27
Approved for Public Release; Distribution Unlimited.

execute {comm [nelem] o f s i z e [3∗word] as nn3d ,
f a c e }

}
}

Instead, we created a new resource convention, comm, that represents communication patterns
at a more semantic level. An abstract machine model can still easily interpret these in the same
manner as the simpler message construct for the purposes of determining costs, but we are now free
to interpret this new comm resource at a higher level in an Aspen tool in order to generate synthetic
patterns for executables and traces.

Listing 1 shows an example Aspen application model using this new comm resource. Note how
our new Aspen comm resource corresponds to popular synthetic communication patterns such as
nearest-neighbor but can be customized for application kernels as well. In particular, the pattern is
listed in the traits for the resource, and any options are listed as additional traits. For example, line
10 has the allreduce collective pattern with a min operation, and these are represented in the traits
as as allreduce, min. Combined with the quantity and size, that resource description is sufficient
to generate a synthetic MPI call. Line 12 has the nearest-neighbor 3D point-to-point pattern (nn3d)
for a domain size of nelelm with three double-precision fields (3*word) and communication only
along the six faces of each domain (face).

3.3.4 Synthetic Program Execution

Aspen models are not designed to be “executed” per se but have control flow such as iteration loops,
parallel maps, and kernel invocations. This control flow information was sufficient for us to create
a “walker” tool that uses the Aspen library to traverse application models in control flow order, as
if they are executable programs.

The tool we created supports two major types of traversal: implicit and explicit. The difference
typically manifests in control structures such as iteration. For example, if kernel K is called from
within an iteration control with count 7, the explicit traversal will descend into the kernel call seven
times, while the implicit traversal will descend into the kernel call only once but knows that it is
executing with multiplicity seven with a sequential dependence.

Some types of analyses are amenable to implicit traversal. For counting floating-point operations,
we can typically count how many operations are in kernel K in our example above and multiply
by seven. This is not possible in all cases, however, for example, if floating point operation counts
vary stochastically, we must use explicit traversal and sample values at each iteration. In the case
of synthetic trace generation, both implicit and explicit traversal have their place.

In typical analyses, implicit traveral will be faster because it performs less analysis and accumu-
lates results in bulk to provide the correct answer. In the context of generating a synthetic MPI
executable, in the implicit mode we can output a C for loop containing the appropriate MPI calls,
while the explicit mode would require generating many C copies of the same function calls. If Aspen
were to hook up directly to a simulator, we would, by necessity, switch to explicit traversal because
Aspen would need to feed the simulator every MPI call generated by the synthetic program.

Listing 2: Aspen model with control flow and communication.

model mpitest {
ke rne l main {

28
Approved for Public Release; Distribution Unlimited.

i t e r a t e [1 0] {
execute { comm [2] o f s i z e [word] as

a l l r educe , min }
}

}
}

Listing 3: Source generated by model in Listing 2 using implicit traversal.

f o r (i n t l o o p c t r =0; loopct r <10; l o o p c t r++)
{

i n t nwords=2;
std : : vector<f l o a t> sendvec (nwords , rank ∗1 .0 f) ;
s td : : vector<f l o a t> recvvec (nwords) ;
MPI Allreduce (&(sendvec [0]) , &(recvvec [0]) ,

nwords , MPI FLOAT, MPI MIN,
MPI COMM WORLD) ;

}

3.3.5 Durango-Instantiated Executable

Our first option for generating a synthetic workload is to instantiate an MPI-based source code file
that captures the parameters and patterns of the application via the Aspen model. Listing 2 shows
an example of a simple Aspen model with an iteration loop along with a single communication
pattern — in this case, an Allreduce. Listing 3 shows the output code (minus boilerplate) for this
small Aspen model. Note that this output was captured in implicit mode; in explicit mode we
would get ten copies of the body of the for loop, instead of a for loop with a count of ten.

After generating the source code instantiating the model’s control flow and communication pat-
terns, we can compile and execute it, optionally capturing a trace for study as output from the
Durango tool.

3.3.6 CODES: An Extreme-Scale Systems Modeling and Simulation Framework

To demonstrate our new Durango’s methodology and functionality, we have integrated Durango
with a popular massively parallel simulation system for interconnection networks, CODES/ROSS.

CODES enables the design-space exploration of HPC networks and storage systems with the help
of scalable discrete-event simulations of interconnection networks and storage systems. CODES uses
ROSS as its underlying parallel discrete-event simulation framework, which enables efficient and
scalable network models thanks to the optimistic event scheduling capability of ROSS [127]. The
core object within a ROSS model is a logical process (LP), which models some distinct compo-
nent of a network such as a terminal or router. Simulation time is advanced by LPs exchanging
time-stamped event messages. The optimistic parallel synchronization approach used by ROSS
guarantees that events are processed in time stamp order.

CODES supports high-fidelity network models for dragonfly, torus, and SlimFly interconnect
topologies. It uses an abstraction layer on top of the network models that allows users to con-
veniently plugin multiple network topologies while making minimal changes to their simulation

29
Approved for Public Release; Distribution Unlimited.

code. The network topologies are simulated at a packet-level detail with congestion control being
modeled through a credit-based flow control methodology on the virtual channels. The dragonfly
network model in CODES is built on the high-radix, low-cost network configuration proposed by
Kim et al. [99]. It models four forms of routing algorithms: minimal, non-minimal, adaptive,
and progressive adaptive routings. Multiple virtual channels are used for deadlock avoidance with
different routing algorithms. The dragonfly model has been validated against the Booksim inter-
connect simulator using synthetic traffic patterns [125]. The torus network model is inspired by
the Blue Gene architecture. It uses a bubble-escape virtual channel for deadlock avoidance with
deterministic dimension-order routing. Validation of the torus model has been carried out against
the Blue Gene/P and Blue Gene/Q architectures [126]. The SlimFly network model is based on
another high-radix network topology proposed by Besta and Hoefler to reduce the network cost
and diameter [30]. The CODES SlimFly simulation results were validated against the simulator by
Besta and Hoefler.

The CODES network models report detailed statistics about network performance for each sim-
ulated network node and router. Using metrics such as the average number of hops traversed,
average packet latency, data transmitted, and number of packets completed. Detailed statistics are
reported at the network link level, including the amount of data transmitted at each network link
and the time that the link gets saturated during the simulation. These metrics can be used to get
detailed insight into the network performance with different workloads.

To replay the MPI operations on CODES network models, one needs a mechanism that avoids
transmitting back to back MPI send messages on the network. Figure 9 shows how the MPI simu-
lation layer interacts with the CODES network abstraction layer to replay the workload operations
on top of the simulated networks. The MPI simulation layer in CODES digests the MPI operations
from the workloads and simulates them on top of the network models. It tracks the queues of MPI
sends and receives, matches sends with the receives, and simulates MPI wait and ait-all operations.
This functionality is vital for maintaining the correct causality order of MPI operations coming
from the traces.

Network(workload(
generator(

DUMPI(
traces(

Synthe8c(
workloads(

MPI(Simula8on(
Layer(

Feeds(in(MPI(
opera8ons(

Network(
Abstrac8on(Layer(

Network(
messages(

Torus(Slim(fly(Dragonfly(

Figure 9: CODES network simulations.

3.3.7 Durango Direct Integration: Aspen with CODES

At the core of the Durango direct integration approach is a CODES discrete-event model that
drives a network simulation component, coupled to an Aspen-based runtime estimator for parallel
applications. The model defines Aspen Server Logical Processes (Aspen LPs), which are the entities

30
Approved for Public Release; Distribution Unlimited.

in the simulation responsible for driving the creation of network traffic and for performing Aspen-
related computations. Each Aspen LP is paired to a corresponding CODES network terminal LP to
facilitate communication with the network layer within the CODES model. The CODES network
LPs are generated and organized based on the network topology chosen for the current runtime
estimation. When Aspen is called through the Aspen Server LPs, the estimation parameters are
passed from the primary configuration file for Durango. In return, Aspen returns the runtime
estimate based on the application and the machine details specified by the configuration file.

Listing 4: Aspen LP kickoff event handler.

s t a t i c void h a n d l e k i c k o f f e v e n t (
a s p e n s v r s t a t e ∗ ns ,
tw bf ∗ b ,
aspen svr msg ∗ m,
tw lp ∗ lp)

{
i n t d e s t i d ;
aspen svr msg m loca l ;
aspen svr msg m remote ;

m loca l . a spen sv r even t type = LOCAL;
m loca l . s r c = lp−>gid ;
m remote . a spen sv r even t type = REQ;
m remote . s r c = lp−>gid ;

/∗ r ecord when t r a n s f e r s s t a r t e d
// on t h i s s e r v e r ∗/
ns−>s t a r t t s = tw now (lp) ;

d e s t i d = g e t n e x t s e r v e r (lp) ;

mode l net event (net id , ” t e s t ” ,
d e s t i d , payload sz , 0 ,
s i z e o f (aspen svr msg) ,
(const void∗)&m remote ,
s i z e o f (aspen svr msg) ,
(const void∗)& m local , lp) ;

ns−>msg sent count++;
}

Under the current direct integration mode, Durango simulates a given application in two-step
rounds of network simulation and computation runtime estimation, handled by the internal CODES
model and Aspen respectively.

Figure 10 illustrates the runtime of a network-computation round in greater detail. First a
CODES network simulation is executed, and then the 0th Aspen Server LP, labeled “Aspen Master,”
reduces and processes all network data. Once the data have been reduced, the Master LP passes
control of the simulation to the Aspen runtime in order to estimate the computation cost for the

31
Approved for Public Release; Distribution Unlimited.

Figure 10: Durango hybrid runtime.

current round. Aspen returns a runtime estimate, and then returns control to the Master LP, which
resumes subsequent simulator rounds by sending network restart events to all other Aspen LPs.

Listing 5: Aspen computation event handler.

s t a t i c void handle computat ion event (
a s p e n s v r s t a t e ∗ ns ,
tw bf ∗ b ,
aspen svr msg ∗ m,
tw lp ∗ lp)

{
// Compute o v e r a l l network time e lapsed :
d e l t a += end g loba l − s t a r t g l o b a l ;

/∗ Cal l ASPEN framework to es t imate
// computation co s t : ∗/
de l t a += runtimeCalc (Aspen App Path [

roundsExecuted − computat ionRol lbacks] ,
Aspen Mach Path ,
Aspen Socket [roundsExecuted −

32
Approved for Public Release; Distribution Unlimited.

computat ionRol lbacks]) ;

// Save totalRuntime and then update i t :
m−>end t s = totalRuntime ;
totalRuntime += de l t a ;

// Increment number o f rounds executed :
roundsExecuted ++;
.
.
.

}

Each CODES network simulation phase begins with “kickoff” events sent by the Master LP
to all Aspen Server LPs, itself included. The code for handling kickoff events is shown in List-
ing 4. In response to kickoff events, Aspen LPs record the current simulation time and use
get next server(lp), a mapping function that uses the underlying CODES API for organizing
the logical processes to retrieve the identity of the LP that they will communicate with for the
duration of the network-computation round. Depending on the network traffic type specified in the
configuration file, get next ser-ver(lp) returns a different ID. If nearest neighbor is specified, for
example, then the next logical process ID that corresponds to an Aspen LP is returned. This is an
important distinction, since some of the logical processes in the simulation serve other purposes,
such as network terminals, rather than Aspen Servers. In the case of a random network traffic
pattern, a random identity corresponding to any other Aspen LP is returned. This means that mul-
tiple Aspen LPs may communicate with one Aspen LP for the duration of the round, but it does
not mean that they may communicate with themselves. The kickoff handler ends after the CODES
API is used with model net event(...) to send a “ping” to the LP whose ID was returned by
get next server(lp).

Upon receipt of a “ping” request, Aspen LPs respond with an acknowledgment event message to
the sender. For every “ping” and “ack” event that an Aspen LP receives, counters are incremented
and saved in the logical process state. The request-acknowledgment interchange continues until
the Aspen LP that initiated the exchange has sent the configured number of requests and received
the correct number of acknowledgments. The Aspen Server that initiated the exchange records the
simulation timestamp at which network communication ended with its counterpart.

With the first half of the network-computation round completed, the Aspen LPs cease driving
network communications and send their start and end timestamps to the 0th Aspen LP. Note that
the Aspen LPs could simply send their own total elapsed network communication time instead of
the separate start and end values; however, then the overall longest communication time might not
be accurately measured if the LP with the longest communication time begins simulation before
some other LPs but also ends before other LPs that began their network conversations later. In
all cases, the total network time elapsed is the difference between the globally earliest and globally
latest start and end timestamps, respectively. As a result, the 0th LP is responsible for finding
the longest time spent in the network phase overall and therefore keeps track only of the earliest
and latest values it receives from all of the Aspen LPs, itself included. This process is handled by
the handle data event(...) handler. Once all timestamps have been received, the Master LP

33
Approved for Public Release; Distribution Unlimited.

sends an “Aspen Computation” event to itself. The “Aspen Computation” event handler performs
a function call to the Aspen simulation engine with paths to the application model and machine
model sourced from the Durango configuration file. In Listing 5, an excerpt of the computation
event handler, the total network runtime, is calculated. Then a call to Aspen is made, passing the
parameters of the application and machine model as well as which compute socket to run on. The
computation runtime is returned and added to the global running counter, marking the end of the
network-computation round.

If only one round has been configured in the Durango configuration file, then the simulation will
terminate with only one iteration of CODES network simulation and Aspen runtime computation
estimation. Otherwise, the Master LP re-sends kickoff messages to each Aspen Server LP, signaling
the start of a fresh network-computation round. Upon receiving the re-kickoff message, all Aspen
Server LPs then find a new LP with which to communicate and start the next network simulation
phase.

3.4 HPC Network Models

3.4.1 CODES Framework

Built on top of ROSS, the CO-Design of multi-layer Exascale Storage and data-intensive systems
(CODES) framework can be used to simulate storage [152] and HPC network systems. CODES
helps to facilitate the use of HPC network workloads and simulate network communication in the
context of discrete event simulations. CODES also provides a range of high-fidelity packet-level
network models including Dragonfly [128], [131], Torus [129], Slim Fly [167], Fat-Tree [166], and
analytical LogGP [20]. CODES also supports a variety of network and I/O workloads that can drive
these high-fidelity models [130], [153]. Network workloads can be either synthetic traffic injection or
application communication traces. CODES supports traditional CPU application traces collected
using the DUMPI MPI tracing tool that is part of the structural simulation toolkit [142]. For this
work, we focus on DUMPI application communication traces from the Design Forward program [55].

The DUMPI MPI tracing tool provides a utility for collecting all MPI point-to-point and collective
operations executed by processes in the application. CODES’ MPI simulation layer ingests these
operations and replays them through the network models. This layer acts as a bridge between the
network workload and interconnect model, and is responsible for maintaining the correct causality
order between messages/events of the trace [130]. The traces in this work are run with compute
times disabled. In this case, the collected compute times within each trace are ignored and packets
are sent using their collected start times.

In addition to traditional CPU workloads, CODES now supports neuromorphic application traces.
Details on the new neuromorphic workload replay capability as well as the available workloads are
discussed later in this report.

Model Implementations: All network models discussed in this work follow the same overall
design and implementation within the CODES framework. Each topology is integrated into a
high level layer of abstraction called model-net. The model-net layer provides the convenience of
selecting and configuring different network models at runtime as well as consistent integration of all
network models with both synthetic and application trace workload generators. Since the simulation
framework is built on the discrete-event method of computing, each topology implementation follows
the same logical flow of function calls. Within the functions exist details specific to each topology

34
Approved for Public Release; Distribution Unlimited.

such as routing algorithms and number of virtual channels but the general outline of sending and
receiving packets remains consistent. Furthermore, each of the models have been implemented
to support reversible computation and optimistic execution of events. Each network model also
incorporates similar techniques for flow control and deadlock avoidance.

Flow Control: To control network congestion and avoid dropping packets, credit-based flow
control [104] methods are implemented at two different levels. Within each network model, each
compute node and router maintains a buffer space to store packets needing to be injected into the
network. The upstream router or node increments its credit counter when a packet is forwarded
and decrements the counter when credits are received. The Downstream router or node sends a
credit to the upstream router/node when a packet is forwarded and buffer space is available. At the
model-net layer, we utilize an additional FIFO queue for flow control which represents the queuing
of MPI and many higher-layer protocols.

To remove the possibility of head of line blocking associated with certain routing approaches,
physical channels (ports on a router/switch) are broken into virtual channels [51]. Generally, we
discretize our selection of virtual channels to the number of hops a message packet has taken.
Credit messages are also transmitted to the sender using the same virtual channel used in the
forward direction. In terms of the implementation, an output vc variable is added to the compute
node message state structure and initialized to 0 when a message is created. Each time a router
sends a message, it sends the message on the output vc virtual channel and increments output vc
so that the next router on the path will use the next corresponding VC.

Deadlock avoidance is obtained in our Slim Fly model with the use of virtual channels [51].
Following the approach in [31], we discretize our selection of virtual channels to the number of hops
a message packet has taken. In other words, for every hop i that a message packet takes, when
leaving a router, that packet uses the ith virtual channel. Packets that take a local route and have
only one hop will always use V C0. Packets that take a global path (assuming minimal routing) will
use V C0 for the first hop and then V C1 for the second hop. Thus, two VCs are needed for minimal
routing. In the case of non-minimal routing such as valiant and adaptive routing, the number of
virtual channels used is four, because the maximum possible number of hops in a packet’s route is
four. Credit messages are also transmitted to the sender using the same virtual channel used in the
forward direction.

Discrete-Event Simulation: Each of the CODES network simulations follows the same overall
computational procedure. After constructing and configuring the LPs that make up the compute
nodes, routers, and MPI processes in the selected network, the dedicated MPI workload LPs (rep-
resenting MPI processes allocated to compute nodes) generate and receive messages. In the case
of synthetic workloads, the MPI LPs generate messages of a preset size at a rate determined by
an input load variable. For application trace workloads, the MPI operations are read from file and
placed in a queue allowing MPI LP processes to generate and replay the corresponding messages
on the network. Messages generated by MPI workload LPs are then sent to their corresponding
attached compute node LPs for injection into the network [127].

In the CODES network models, each LP represents one router, compute node, or simulated
MPI workload process in the network. Each timestamped event represents either a network packet
transferring through the network, or a message from an MPI workload process needing to be broken
down into packets. Figure 11 shows the general structure and event-driven procedure for the Slim
Fly network simulation, but the same general process is observed on each of the other models. In this
figure, we are running the simulation on two physical cores with one MPI rank per core, resulting

35
Approved for Public Release; Distribution Unlimited.

Figure 11: Diagram showing the general execution path of events in the Slim Fly specific parallel
discrete-event simulation.

in two PEs. All LPs are distributed equally among the two PEs. Events/messages, represented by
the arrows between LPs, are transferred between the LPs. For simplicity, only the LPs involved in
the example are illustrated.

Upon receiving a message event, the compute node LP decomposes the message into packets and
extracts the message destination. The compute node LP computes the next hop and corresponding
output port for each packet using the selected routing algorithm (specific to each network). Prior to
sending a packet, the sending node LP checks the occupancy of the selected port and virtual channel.
If space exists, the packet is allocated, and a receive event is scheduled on the destination router
with a time delay. This time delay incorporates the bandwidth and latency of the corresponding
network link. If the buffer is full, the node LP follows credit-based flow control and must wait for
a credit from the destination router to open up a space on the corresponding link.

In order to accurately analyze the network, various parameters and statistics are collected and
stored in both the LPs and the event messages. These statistics include start and end times of
packets on the network, average hops traversed by the packets, and the port occupancy of all
routers.

Once a packet arrives at the router LP, a credit event is sent back to the sending LP to free up
space in the sending LP’s output buffer. The LP then extracts the destination node ID. The router
LP determines the next hop and corresponding output port, once again using the routing algorithm
specified. The router also follows the same credit-based flow control scheme as the compute node

36
Approved for Public Release; Distribution Unlimited.

LP.
After the packet reaches its destination node LP, the node waits for all packets belonging to that

message to arrive before issuing a message arrival event on the destination workload LP. At this
point, we can collect the statistics stored in the messages, for example, packet latency and number
of hops traversed.

Related Work: Significant research has been done in simulating large-scale network intercon-
nects. The IBM-ETH collaborative Slim Fly model used in this work for validation leverages the
Venus simulation framework [95]. Venus is an OMNET++ based discrete-event network simulator.
The Venus framework provides packet-level granularity with support for multiple network topolo-
gies [124] but it has not been shown to achieve the ability to execute extreme-scale networks of the
size presented in this work.

The Structural Simulation Toolkit (SST) combines multiple discrete-event components to provide
network simulation capabilities. SST supports many different hardware components in addition to
interconnects such as memory and processors [142]. Groves et al. [76] have used SST to study
power and performance of Dragonfly networks at the scale of 110K nodes. However, SST only uses
a conservative distance-based approach for event scheduling while ROSS also provides optimistic
scheduling. Wen et al. [163] use the SST simulation framework to investigate a new Dragonfly-like
network implementation using silicon photonics to provide reconfigurable inter-group connectivity.

A popular alternative to discrete-event simulation is a cycle-based approach that advances time
by clock cycles and has no representation of time within a clock cycle [64]. Booksim, a cycle-
accurate network simulation framework, was used by the developers of the Slim Fly topology for
studying network performance in response to synthetic traffic workloads [95]. Booksim also has
support for multiple network topologies and has been shown to scale up to large-scale networks [19].
However, Booksim is a serial execution framework and has shown to have a slow execution time
in comparison to CODES [128]. A cycle-accurate network simulator was also used to analyze the
HyperX network developed by Ahn et al. [14] and shown to provide strong network performance
for extreme-scale networks on the order of 100,000 nodes. Grossman et al. [75] use a cycle-based
simulation framework called Cascade to design and validate a specialized system for computing
molecular dynamics computations.

Acun et al. [13] present TraceR, a tool that replays the BigSim application traces on top of
CODES network models. TraceR provides the ability to test CODES network models under real-
world production application workloads. In contrast, our work simulates synthetic uniform random
and worst-case traffic workloads. Since the TraceR tool has been interfaced with the CODES and
ROSS frameworks, it can be experimented with on the Slim Fly model.

Coll et al. [48] investigated the use of multiple independent network rails as a technique to
overcome bandwidth limitations. The study applies the multi-rail concept to the Quadrics network
(QsNet) which can be configured as Fat-Tree topology. The simulations cover round-robin and
dynamic rail allocation policies. Multi-rail performance analysis is done using synthetic workloads
with varying injection loads and message sizes.

Chen et al. [44] analyzed various topologies in comparison with a single-rail 3-level Fat-Tree. In
addition to the DOE Design Forward miniapps of AMG and MiniAMR, the authors also tested the
performance of these network topologies using uniform traffic, adversarial traffic, nearest neighbor,
and all-to-all synthetic workloads, while assuming direct, valiant, or adaptive routing algorithms.
However, the authors overlook the potential advantages or disadvantages of deploying multiple
planes of the same topology.

37
Approved for Public Release; Distribution Unlimited.

Domke et al. [56] proposed a network simulation environment, which estimates the throughput
of InfiniBand-based HPC interconnect topologies based on flit-level accurate simulations. The
toolchain is capable of simulating two traffic injection patterns, uniform random all-to-all and an
exchange pattern (similar to MPI Alltoall), for various topologies and static, destination-based
routing algorithms. However, the scalability of the flit-level simulation is limited and does not offer
application performance prediction.

Liu et al. [113] demonstrate the effectiveness of applying the Fat-Tree interconnect to large data
centers. The work focuses on the ability of Fat-Tree networks to perform well under data-center
applications at large scale. Unlike our work that currently focuses on HPC workloads, their work
focuses on workloads approximating the Hadoop MapReduce model and uses an equal-cost multi-
paths (ECMP) routing algorithm focusing on minimal path.

Hatazaki [82] describes design considerations and early experiences for deploying a production
HPC system with dual-rail Fat-Tree network connecting 1408 nodes using QDR InfiniBand. The
2.4 Pflop/s hybrid CPU/GPU system has a peak full-bisection bandwidth of 56.32 Tb/s and the
dual-rail fabric is showing almost double the performance of a single-rail.

Work has also been done looking at non-traditional HPC network topologies. Fujiwara et al. [68]
present a new HPC interconnection network called Skywalk that uses low-delay switches and random
connections to achieve shorter hop counts and end-to-end packet latencies. The Skywalk topology
is based on the random shortcut topology approach [100] which augments classical topologies with
random links to generate reduced network diameter, shorter average path lengths, and shorter
network cables.

3.4.2 HPC Network Models

The collection of networks chosen in this research for analysis range from the purely theoretical
topologies such as the Slim Fly and 1D Dragonfly, to the currently realized Cray 2D Dragonfly
and Fat-Tree. Here, we present the details of each topology to explain the configurations, routing
algorithms and other features which make them attractive options as HPC system interconnects.
We begin with the Fat-Tree network.

3.4.2.1 Fat-Tree

This network topology is a popular choice for modern HPC and data center networks[17]. Recently,
with the release of the Summit [133] and Sierra [107] supercomputing systems at Oak Ridge National
Laboratory and Lawrence Livermore National Laboratory, Fat-Tree networks have adopted a dual-
rail configuration to provide additional network resources to match increasing computational power
per compute node. In this section, the full fat-tree network model is presented, followed by the
pruned tree configuration, and finally we describe the multirail topology.

Fat-tree networks, which provide full-bisection bandwidth, are a popular choice for HPC systems.
DCS Summit supercomputer with its small number of computationally dense CPU-GPU nodes.
This section first describes the full fat-tree network model, followed by its pruned configuration,
and finally we describe the multi-rail topology.

Full Fat-Tree: The fat-tree graph layout is composed of typically two or three switch levels [136],
where all switches have as many uplinks as downlinks. Hence, for a given radix of k, each switch will
have k/2 link to switches in upper levels and k/2 link to switches or compute nodes in lower levels.

38
Approved for Public Release; Distribution Unlimited.

Figure 12: A full 3-level fat-tree network using eighty 8-port switches results in a total of eight pods
with four switches per level per pod and a total of k3/4 = 128 compute nodes.

For cost-saving purposes, the spine level L0, see Figure 12, uses half the number of switches with k
downlinks each. Having an equal number of links in both directions allows each node to communicate
via a unique path in the network. Theoretically, this results in full-bisection bandwidth, making
the fat-tree a popular choice.

We assume 3-level fat-tree networks for the remainder of this paper. Given a switch radix of k,
the structure for the 3-level fat-tree breaks down into k-many interconnected pods. Each pod
contains k/2 switches in the first and second levels, labeled L1 and L2, respectively. The two levels
of switches within each pod form a complete bipartite graph. Each switch of level L2 has k/2
connections down to compute nodes resulting in a total of k · (k/2) · (k/2) compute nodes. Switches
in the L1 level have k/2 connections to switches in the spine level L0. Furthermore, all links of L0
switches are connected downwards to provide the full interconnection of pods. An example of a
small-scale full-bisection fat-tree, using k = 8 and totaling 128 nodes is shown in Figure 12.

Pruned Fat-Tree: Attempting to model a fat-tree network that matches the scale and perfor-
mance of the future Summit HPC system requires modifications to the fat-tree. Summit’s ≈3 400
nodes are interconnected via a dual-rail fat-tree using EDR InfiniBand (IB) technology [133]. Cur-
rently, Mellanox commodity EDR switches are available with up to k = 36 ports. Hence, using
36-port switches and the standard 3-level fat-tree configuration [136] results in too many compute
nodes connected to the leaf switches, i.e., 36 · (36/2) · (36/2) = 11 664 nodes to be precise, to
efficiently construct the 3 400-node Summit system.

An alternative design option, the pruned fat-tree, starts with the full 11 664-node 3-level fat-
tree and then prunes/removes excess pods within the network. Full connectivity between pods is
maintained by adjusting L1 and L0 connections as needed. This process continues until the desired
node count for the Summit system is reached. Since, the number of compute nodes per pod (k/2) is

39
Approved for Public Release; Distribution Unlimited.

Figure 13: Example configuration for a pruned 3-level fat-tree using 32 8-port switches in three
pods and spine level yields a total of 3 · (k/2)2 = 48 compute nodes (darker colored lines between
L1 and L0 indicate a bundle of two links).

not modified with this approach, we can calculate the number of pods, Np, needed to get N -many
nodes via the equation Np = d N

k/2·k/2e. Hence, using the presumed 36-port switch radix, we need
at least 11 pods to construct a pruned fat-tree able to accommodate at least 3 400 nodes, or a
maximum of 3 564 nodes, respectively.

For visual reference, an example pruned fat-tree using 8-port switches is shown in Figure 13.
Starting with the standard 128 node, eight pod full fat-tree network in Figure 12, five pods and
eight L0 switches are removed to drop the total network node count to 48. Also, note the darker lines
between L1 and L0 switches indicate a bundle of two links. These two link bundles are necessary
to maintain the required k/2 uplinks to keep the full-bisection bandwidth.

Multi-Rail Fat-Tree: To mitigate the increased injection load of high-density compute nodes,
as used in Summit, multi-rail networks can be deployed to utilize multiple network interface cards
(NICs) to gain access to additional network planes. We assume that each network plane has
the same topology. All rails, and their corresponding planes, are independent of one another,
providing resiliency and additional relief from communication hot-spots. While the theoretical
injection bandwidth increases linearly with the number of planes, e.g., up to 25 GB/s for a dual-
rail EDR setup, so does the financial cost. Furthermore, an additional message scheduling layer is
needed to distribute the traffic across the available rails.

Fat-Tree Routing Algorithms: Here, we describe our methods for both intra-rail message
routing and inter-rail traffic injection used for the fat-tree network model. A key influencing factor
for application performance on a fat-tree topology is the routing algorithm, which determines the

40
Approved for Public Release; Distribution Unlimited.

physical path traversed by packets in the network. These routing algorithms can be categorized
and compared, such as static vs. dynamic, flow-oblivious vs. adaptive, and topology-aware vs. ag-
nostic [66], [50]. For the remainder of the paper, we will focus on two routing approaches that we
integrate into our fat-tree network model.

Fat-Tree Static Routing: One of the state-of-the-art routing algorithms for InfiniBand-based
fat-tree topologies is the flow-oblivious and destination-based fat-tree routing [170]. Instead of
implementing the fat-tree routing within the model, we adapt the approach of the fail-in-place
simulation framework [56]. This allows us to make use of the highly optimized and well-tested fat-
tree routing which is available as part of the InfiniBand (IB) subnet manager, called OpenSM [9].
Therefore, our simulations with static routing use the same forwarding tables as a IB-based produc-
tion HPC system with a similar topology. The tool chain presented in [56] consists of four stages:
topology loader/generator, routing engine, converter, and simulator. We make use of the first two
stages and load the extracted forwarding tables (LFT) back into our fat-tree model. Therefore,
our model writes out the topology specification in a hardware-neutral graph description language
(DOT format). We update the topology loader to read the DOT format, which is then translated
into an internal (IB-specific) network representation. The routing engine calculates and writes out
the LFTs for the virtual IB network. Our fat-tree model incorporates these LFTs of all switches to
accurately simulate the application traffic routed via the static fat-tree routing algorithm.

Fat-Tree Adaptive: This scheme aims at balancing traffic on different links by making locally
optimal decisions for forwarding packets on a switch, similarly to the minimal adaptive routing of
the CM-5 [111]. For each port (or virtual channel) on a switch, a token-count is maintained to
estimate the load on the port. The initial value of token-count is set to the length of the virtual
channel buffer used to store the packets being forwarded. When a packet is sent on a port, the
token-count is decremented by the length of the packet. On receiving an ack or credit notification
from the receiver, the value of the token-count is incremented. A port with higher value of token-
count is considered less loaded, while no packets can be sent on a port whose token-count is zero.
When a packet arrives at a switch, we compute all ports on which the packet can be forwarded
assuming shortest path routing. Among these ports, the port with maximum token-count is selected
to enqueue the packet.

Fat-Tree Multi-Rail Injection: Utilizing the additional networks in multi-rail configurations
requires another scheduling layer. This additional layer can schedule packets at multiple rails
deciding which NIC is selected to transmit the packet. After the packet is injected into the network
on a rail, the selected intra-rail routing algorithm takes over to finish routing the packet to its final
destination. Currently, random and adaptive policies have been implemented for rail selection as
described below.

Fat-Tree Multi-Rail Random and Adaptive Routing: The random approach offers a uni-
form distribution of traffic over all network rails regardless of traffic load and network congestion.
The adaptive approach samples the occupancy of all NICs on the compute node to select the one
with the lowest occupancy. For light network traffic conditions (i.e. when the packet injection rate
is less than link speed), all communication will traverse the default first rail as NIC occupancies are
empty by the time the next packet arrives at the NIC. This leads to an unbalanced communication
load among rails and increases the possibility of link congestion.

41
Approved for Public Release; Distribution Unlimited.

Figure 14: Full Five group dragonfly network.

3.4.2.2 Dragonfly

Next, we turn our attention to the Dragonfly network. In general, the Dragonfly network is a hi-
erarchical graph structure leveraging high-radix routers to generate scalable networks maintaining
a low diameter. The Dragonfly consists of many groups of routers following all-to-all global con-
nections between the groups. An example dragonfly network is shown in Figure 14 consisting of
five groups with four routers per group. Communication within groups traverses intra-group links
(shown in black), while inter-group communication can utilize both intra-group and inter-group
links (shown in blue), depending on the system connectivity and the location of the source and
destination nodes. Within each router group there are many options for intra-group connectivity.
In this work we study two different Dragonfly configurations based on the currently deployed two
dimensional Cray Cascade system [62] and the originally proposed single dimension Dragonfly [99].

The first configuration, which we call Dragonfly-2D, adopts the approach incorporated into the
“Edison” Cray XC30 [3] and “Cori” XC40 [2] systems deployed at Lawrence Berkeley National
Laboratory and the “Theta” XC40 [8] system deployed at Argonne National Laboratory. Following
the Cray Cascade architecture [62], the network nodes within a group are arranged in the form of
a “2D” matrix where routers in the same row have all-to-all connections and routers in the same
column have all-to-all connections. Furthermore, each router contains 8 global connections which
are combined into bundles of 4 links connecting to a router in one of the other groups. The final
distribution of connections for any given router is skewed toward local connections. In this work,
we consider a Dragonfly-2D configuration with 16x6 router matrix groups and 48 ports per router.
Routers can have up to 3.75x more local connections than global connections.

The second configuration, which we term Dragonfly-1D has much smaller groups with a better
distribution of local and global connections per router. Dragonfly-1D groups consist of a “1D” array
of routers with all-to-all connections. Depending on the radix of the switch, the remaining ports
are used for compute node connections and global connections to routers in other groups. In this
work we focus on a Dragonfly-1D network with arrays of 16x1 router array groups and 36 ports per
router. This configuration has a good distribution of both intra-group and inter-group connectivity

42

with only 1.25x more local connections than global connections.
Dragonfly Routing Algorithms: The method for selecting message paths is especially impor-

tant to efficiently utilize the hierarchical connectivity of the Dragonfly topology. In this work, we
use adaptive routing with both Dragonfly configurations in order to offer an optimal dynamically
selected balance between short message hop counts using minimal paths and reducing congestion by
redistributing traffic across the network using non-minimal paths. Ideally, all workloads would have
balanced traffic loads in which case minimal routing would offer optimal performance. In reality,
workloads can have highly unbalanced traffic loads in which case a dynamic selection of minimal
and non-minimal paths can provide the optimal performance.

Dragonfly Minimal Routing: Both the 1D and 2D Dragonfly networks follow the same general
approach to minimal routing. Each network first routes locally following the shortest path within
the source router group to a router containing a global connection to a router in the destination
router group. Dragonfly-1D requires only one hop to accomplish the first step because of the
all-to-all intra-group connectivity. The Dragonfly-2D requires at most 1 hop along each of the
two dimensions to reach any intra-group router. After traversing the global link and reaching the
destination router group, packets are again routed locally along the shortest path to the destination
router.

Dragonfly Non-Minimal Routing: Similar to Slim Fly, the non-minimal routing approach for
both Dragonfly configurations follows the Valiant randomized algorithm [158]. Instead of routing
directly from source router to destination router, an intermediate router is randomly selected with
the restriction that it is not in same group as the source or destination router. Packets are then
routed minimally from the router to the intermediate router and then routed minimally again to
the destination router. Non-minimal routing effectively distributes adversarial traffic across the
entire network to make use of all links to minimize congestion latency at the cost of increased path
lengths.

Dragonfly Adaptive Routing: Adaptive routing combines minimal and non-minimal ap-
proaches to achieve a dynamic selection of short paths and traffic load distribution based on router
congestion. Both models again use a UGAL algorithm that monitors local router occupancy to
influence the selection between minimal and non-minimal paths. The routing decision is made at
the source router and the path with the least congestion is selected. Additionally, there exists
an adaptive threshold value which allows the selection to be biased toward choosing minimal or
non-minimal paths.

3.4.2.3 Slim Fly

The Slim Fly is a new network topology with low network diameter and low cost. While the Slim
Fly is still a theoretical network with no known physical systems deployed to date, the low latency
and highly efficient use of hardware lend itself to being considered for next generation systems. In
this section, we describe the complex composition of the slim fly topology as well as the resulting
characteristics that show promise in an HPC system setting.

Introduced by Besta and Hoefler [31], the slim fly consists of groups of routers with direct con-
nections to other routers in the network, similar in nature to the dragonfly interconnect topology.
Each router has a degree of local connectivity to other routers in its local group and a global degree
of connectivity to routers in other groups. Unlike the dragonfly topology, however, the slim fly
does not have fully connected router groups. Within each group, each router has only a subset of

43
Approved for Public Release; Distribution Unlimited.

Table 3: Descriptions of symbols used.

Topic Symbol Description

p Nodes connected to a router
Nr Total routers in network (Nr = 2q2)

SF Nn Total nodes in network (Nn = Nr ∗ p)
k′ Router network radix
k Router radix (k = k′ + p)
q Prime power

CODES/ LP Logical Process (simulated entity)
ROSS PE Processing element (MPI rank)

intragroup connections governed by one of two specific equations based on the router’s subgraph
membership. Furthermore, all router groups are split into two subgraphs. Each router possesses
global intergroup connections only to routers within the opposite subgraph, forming a bipartite
graph between the two subgraphs. These global connections are constructed according to a third
equation [31]. Figure 15. shows a simple example of the described structure and layout of the slim
fly topology.

An important feature of the slim fly topology is that its graphs are constructed to guarantee a
given maximum network diameter. Network diameter describes the maximum shortest path length
between all routers in the network. Decreasing a network’s diameter shortens the path length (i.e.
number of hops), resulting in packets that experience less router and link latency. One example set
of graphs, which we use in this paper to construct router connections, is the collection of diameter 2
graphs introduced by McKay et al. [119], called MMS graphs. MMS graphs guarantee a maximum
of 2 hops and because they approach the Moore bound [123], these graphs constitute some of the
largest possible graphs that maintain full network bandwidth while maintaining a network diameter
of two. Note, the MMS graphs are used to construct the slim fly router network layer. When the
compute nodes are included, the system diameter becomes four with the addition of hops into and
out of the network from compute nodes. The 2-hop property holds true while scaling to larger
graphs because the router radix grows as well. For example, the 338 routers used to construct a 3K
compute node slim fly system require a radix of 28, while a much larger 1M compute node system
needs 53,138 routers with radix 367.

MMS graph Construction for Slim Fly: Following the methods derived in [78] and sum-
marized and applied to the slim fly topology in [31], we developed a separate application to create
the nontrivial MMS network topology graphs that govern the interconnection layout of nodes and
routers in slim fly networks. The process requires (1) finding a prime power q = 4w+ δ that yields
a desired total number of routers Nr = 2q2; (2) constructing the Galois field and the primitive
element ξ that generates the Galois field; (3) using ξ, computing generator sets X and X ′ [78] and
using them in conjunction with equations 14–16 to construct the interconnection of routers; and
(4) connecting compute nodes to routers. It’s important to note the importance of the variable q
as it indicates the number of routers per group and the number of global connections.

44
Approved for Public Release; Distribution Unlimited.

…" …" …"…"

…" …" …" …"

routers" nodes" node"connec,ons" local"connec,ons" global"connec,ons"

Figure 15: General structure and layout of MMS slim fly graphs. Global connections between
subgraphs have been generalized for clarity. There are no intergroup connections within the same
subgraph. Each router contains one global connection to one router in each of the q-many router
groups in the opposing subgraph.

router(0, x, y) is connected to (0, x, y′) iff y − y′ ∈ X; (14)

router(1,m, c) is connected to (1,m, c′) iff c− c′ ∈ X ′; (15)

router(0, x, y) is connected to (1,m, c) iff y = mx+ c; (16)

An example MMS graph is provided in Figure 16. As shown, all routers have three coordinates
(s, x, y) indicating the location of the router in the network. The s ∈ {0, 1} coordinate indicates
the subgraph, while the x ∈ {0, ..., q − 1} and y ∈ {0, ..., q − 1} coordinates indicate the router’s
group and position within the group, respectively. Following the coordinate system, Equation 14
is used to compute the intragroup connections for all groups of subgraph 0 shown in Figure 16.
Equation 15 performs the same computation for all groups in subgraph 1, shown in red. Equation
16 determines the connections between the two subgraphs, shown in blue. For simplicity, Equation
16 connections are displayed only for router(1, 0, 0).

Slim Fly Routing Algorithms: Our slim fly model currently supports three routing algorithms
for studying network performance: minimal, non-minimal, and adaptive routing. Overall, minimal
routing focuses on maintaining the smallest hop count for all packets, whereas non-minimal routing
sacrifices hop count to minimize congestion, and adaptive routing strives to find a balance between
the two.

In other words, for every hop i that a message packet takes, when leaving a router, that packet
uses the ith virtual channel. Packets that take a local route and have only one hop will always use

45

0,0,0#
 #
 #

0,0,3#
 #
 #

0,0,1#
 #
 #0,0,2#
 #
 #

0,1,0#
 #
 #

0,1,3#
 #
 #

0,1,1#
 #
 #0,1,2#
 #
 #

0,2,0#
 #
 #

0,2,3#
 #
 #

0,2,1#
 #
 #0,2,2#
 #
 #

0,3,0#
 #
 #

0,3,3#
 #
 #

0,3,1#
 #
 #0,3,2#
 #
 #

0,0,4#
 #
 #

0,1,4#
 #
 #

0,2,4#
 #
 #

0,3,4#
 #
 #

0,4,0#
 #
 #

0,4,3#
 #
 #

0,4,1#
 #
 #0,4,2#
 #
#

0,4,4#
 #
 #Figure 16: Example MMS graph with q = 5 illustrating the connection of routers within groups

and between subgraphs.

V C0. Packets that take a global path (assuming minimal routing) will use V C0 for the first hop
and then V C1 for the second hop. Thus, two VCs are needed for minimal routing. In the case of
non-minimal routing such as valiant and adaptive routing, the number of virtual channels used is
four, because the maximum possible number of hops in a packet’s route is four.

Slim Fly Minimal Routing: The minimal, or direct, routing algorithm routes all network
packets from source router to destination router using a maximum of two hops (property of MMS
graphs guarantees router graph diameter of two). If the source router and destination router are
directly connected, then the minimal path consists of only one hop between routers. If the source
compute node is connected to the same router as the destination compute node, then there are zero
hops between routers. In the third case, an intermediate router must exist that shares a connection
to both source and destination router so the packet traverses a maximum of two hops between
source and destination routers. The above numbers are all computed taking into account only the
router interconnection network and not the connections to compute nodes. If we include the hops
from source compute node to source router and from destination router to destination compute
node, then the minimum and maximum number of hops a packet can take under minimal routing
is two and four respectively. The number of virtual channels used is two because the maximum
number of network hops in a packet’s route is two.

Slim Fly Non-minimal Routing: Non-minimal routing for the slim fly topology follows the
traditional Valiant randomized routing algorithm [158]. This approach selects a random intermedi-
ate router that is different from the source or destination router and routes minimally from source
router to the randomly selected intermediate router. The packet is then routed minimally again
from the intermediate router to the destination router. The number of hops traversed within the
router network with non-minimal routing is double that of minimal routing. In the optimal case
when all three routers (source, intermediate, destination) are directly connected, the path is two
router hops. In the worst-case scenario, each minimal path to and from the intermediate router can
have two router hops, bringing the maximum number of possible hops within the router network to
four. Including the hops from source node into the router network and the hop from the network
to the destination compute node results in minimum and maximum hop counts of four and six
respectively. The number of virtual channels used for non-minimal routing is four.

46
Approved for Public Release; Distribution Unlimited.

Slim Fly Adaptive Routing: Adaptive routing mixes both minimal and non-minimal ap-
proaches by adaptively selecting between the minimal path and several valiant paths. To make
direct comparisons for validating our model, we follow a slightly modified version of the Universal
Globally-Adaptive Load-balanced (UGAL) algorithm [162] shown in [95]. After a packet reaches
the first router, the minimal path and several non-minimal paths (nI) are generated and their cor-
responding path lengths LM and LiI , i ∈ 1, 2, ...nI are computed. Next, we compute the penalty
c = LiI/LM ∗ cSF , where cSF is a constant chosen to balance the ratio between minimal and non-
minimal paths. Next, the final cost of each non-minimal route Ci

I = c ∗ qiI is computed, where qiI
is the occupancy of the first router’s output port corresponding to the path of route i. The cost of
the minimal path is simply the occupancy of the first router’s port along the path qM . Then, the
route with the lowest cost is selected, and the packet is routed accordingly. With this method, each
packet has a chance of getting routed between source and destination routers with anywhere from
one to four hops. The minimum and maximum hop counts between any two compute nodes is two
and six hops respectively.

3.5 Classification of AFRL Data Using IBM TrueNorth & NeMo

We first tested the neuron level accuracy of NeMo by re-creating results published by [40], with our
results published in [138]. These results showed that NeMo was able to accurately model the IBM
TrueNorth neuron when simulating synthetic benchmarks. To further validate the NeMo simulator,
we tested it using trained large-scale real world models.

To determine the accuracy of the NeMo model, we tested multiple models against the IBM
TrueNorth neurosynaptic processor system. Each model was trained using the EEDN convolutional
neural network toolkit, a machine learning software toolkit provided by IBM for use with the
TrueNorth hardware. EEDN generates trained spiking neural networks in a format that can be used
for the TrueNorth hardware system. These trained networks were run using the IBM TrueNorth
software simulation tool, where spike activity between neurons and cores was recorded. We then
imported these models into NeMo, and compared the results.

The datasets and models we chose to use for this process were the MNIST handwritten digit
dataset, and a model provided by the AFRL trained on the Moving and Stationary Target Acqui-
sition and Recognition (MSTAR) data set.

MNIST is a classic benchmark dataset for machine learning models. It is extremely well un-
derstood, providing simple and regular data that allows for detailed analysis of machine learning
algorithms. While MNIST is not a cutting edge or particularly challenging data set for machine
learning algorithms, it is useful as a baseline test for the design and base analysis of these algo-
rithms. MNIST consists of a series of images of handwritten numerical digits, size-normalized and
centered. The full MNIST dataset contains 60,000 training samples and 10,000 test samples.

MSTAR data consists of synthetic aperture radar (SAR) imagery of military hardware. The
data set contains SAR images of 15 targets (types of vehicles) along with various non-target images.
The images were collected using X-band SAR, using 15 deg and 17 deg depression angles, with some
targets containing 30 deg and 45 deg angles as well. These “images” are stored in a file format that
encapsulates the SAR data along with descriptive metadata.

The conversion of a trained EEDN model into a form that NeMo can understand involved de-
signing a intermediate representation of the model. EEDN generates a neural network file in a
dense JSON file format. This format represents the network using prototypes. At the start of

47
Approved for Public Release; Distribution Unlimited.

the file, crossbar and core prototypes are defined, each with a unique key and information about
connectivity. Next, neuron prototypes are defined. In the file, all neurons are given a default base
configuration. Changes to this configuration, such as different weights, leak values, and other set-
tings, are saved as neuron prototypes which are marked by a unique ID and placed in a list towards
the beginning of the file. The file represents the network after these prototype definitions via a
series of core entries that consist of:

• A Unique core identification information, including the core number.

• A list of dendrites, representing inputs

• A list of neuron types, with each value representing a neuron prototype.

• A list of destination core IDs and destination axon IDs for each neuron.

• The delays used for each neuron’s spike timing A crossbar prototype ID, which must be
previously defined in the top of the file.

The file resembles a flat-file relational database, with external keys defined in the list of cores
connecting to the prototypes defined at the top of the file. To import this file into NeMo requires
flattening the relations, so that NeMo neuron data structures can be created from the prototypes.
This is necessary since NeMo considers neurons to the be the basis of the neurosynaptic simulation,
whereas the EEDN file treats neurosynaptic cores as the base unit. A NeMo simulation would
define all neurons as unique elements, with neurosynaptic core groups generated as part of the
PDES simulation mapping. We attempted two techniques to do this conversion.

The first method uses a intermediary domain specific language. This technique uses a Python
script to generate a new neural network definition file. This file is a Lua script. Neuron information
is stored in a nested dictionary, with the neuron ID (consisting of the neurosynaptic core and local
neuron ID) being the key, and the value being all parameters of that particular neuron.

We embedded a Lua interpreter into NeMo, which then reads this script file during the simulation
initialization, and uses the dictionary to pull neuron parameters into the LP state as each LP is
initialized. This technique could provide some advantages over using a binary file format, or a
simpler text file format. Firstly, since the NeMo model file is a valid Lua script, if a different
neuron model is required, no re-tooling is needed to read that particular neuron’s parameters into
NeMo. The Lua script and interpreter are dynamically typed, giving great flexibility for data input.
For example, if we wished to simulate several TrueNorth neurons, followed by some custom neuron
that uses 64-bit integers for weights, the Lua interpreter and configuration file would require only
adding a new neuron type name to the file. The only other requirement would be adding the new
neuron model to NeMo, and finding the different name.

Another advantage of using an embedded Lua interpreter is in model error checking. Lua supports
introspection, and this is used inside NeMo to provide model level error checking. For example,
if in a model file a neuron has an invalid value, the Lua interpreter will see this, and report the
offending line number and neuron ID. This prevents both erroneous neuron models and provides
insight into where the invalid values reside.

A major disadvantage to using a DSL with a Lua interpreter is performance. Lua itself is a
tiny binary, and has minimal memory overhead when embedded into a C program. However,
since the NeMo model file is a flat representation of the complete neural network, file size and

48
Approved for Public Release; Distribution Unlimited.

conversion time became an issue. For a modest neural network of 4,000 neurosynaptic cores, the
NeMo configuration file would contain 1,024,000 lines, each with over 544 parameters, creating
roughly 557,056,000 entries. This large size made both generation and loading of the file take
significant time. To improve performance, we added a C++ library to NeMo which directly reads
in the EEDN model file and parses it during the simulation initialization. This provides an order
of magnitude reduction in initialization time, and eliminates the need for a large intermediary file.

We approached determining the accuracy of NeMo compared with TrueNorth from the following
perspectives: First, we extracted core and neuron connectivity. This information was used to
determine if NeMo was accurately representing the trained neural network that EEDN produced.
To extract neuron and core connectivity from the Compass simulation too, we used the built-in
spike activity monitoring system which records all spikes that take place in the simulation. This
large file was squashed into a edge table, with each edge representing at least one spike between
neurons. Using this data, we were able to compare NeMo’s interpretation of the EEDN model file
with what the simulator produced.

Next, we added to NeMo the ability to save spike information. Since there can be a huge quantity
of spikes occurring within a simulation, we added the option of saving all spike information, or just
the output neurons. In TrueNorth models, and NeMo, the output layer is represented by cores with
a value < 0. These spike activity files were used to gage the accuracy of NeMo by comparing the
spike activity with what was reported by the NSCS simulation tool.

We used these spike activity files to find the accuracy of the NeMo simulator. We examined
all spikes generated by NeMo and the NSCS simulator. For the MNIST data set and model, we
examined all spike activity simulated in the network. This comparison shows not just output layer
accuracy, but also internal spike activity. Using the pre-trained model provided by the AFRL, we
examined the output layer of the network. We compared the recorded spikes in the output layer
between what was reported by the NSCS simulation model and what NeMo produced, showing that
NeMo is accurately generating classification or output spikes compared to the base line simulation.
The results of this analysis are discussed in the next section.

4 RESULTS AND DISCUSSION

4.1 NeMo Results

4.1.1 NeMo Validation

Izhikevich implemented and reviewed 20 prominent features of biological neurons using a resonate-
and-fire model [89]. The TNLIF model was used to recreate many of these behaviors, demonstrating
the utility and validity of the TNLIF model [40]. NeMo, unlike Izhikevich’s model and the Compass
simulator used in the IBM reference paper, simulates TNLIF neurons using discrete events. Due to
this difference, the discrete model can only approximate, although with a high degree of accuracy,
Izhikevich’s models. Neurons only update internal state when an input message is received or if
they are a self-firing neuron (i.e., a neuron that can fire without first requiring input). However,
we do recreate the neuron behavior observed in the TrueNorth neuron model. The result of this
experimental run shows that while the inter-spike state of a simulated neuron may not be accurate,
the spike times match what is observed when running these biological models using the Compass
simulator.

49
Approved for Public Release; Distribution Unlimited.

Parameter Neuron 0 Value

Synaptic Weights
(
sGi
j

)
0,20,0,0

Leak Value (λ) 2
Positive Threshold (α) 2
Negative Threshold (β) -10

Reset Voltage (Rj) -15

Reset Mode
Normal
Negative Saturation

(a) Phasic Spiking Parameters

Neuron 0 Value Neuron 1 Value

1, -100, 0, 0 1, 0, 0, 0

1 0

18 6

20 0

1 0

Normal

Negative Saturation

Normal

Negative Saturation

(b) Tonic Bursting Neuron Parameters

Table 4: Neuron Validation Parameters.

Phasic Spiking Simulation Run

No
rm

al
ize

d
M

em
br

an
e

Po
te

nt
ia

l

0

11

22

Simulation Ticks
0 500 1000

Membrane Potential
Output Spike

(a) Izhikevich phasic spiking run.

Tonic Bursting Simulation Run

No
rm

al
ize

d
M

em
br

an
e

Po
te

nt
ia

l

1

4

7

10

13

16

19

22

Simulation Ticks
0 500 1000

Membrane Potential
Output Spike

(b) Izhikevich tonic bursting run.

Figure 17: Two Izhikevich Validation Run TNLIF Neuron Parameters and Results.

To validate NeMo, we implemented two of the Izhikevich models as done in [40] using the TNLIF
model. Our goal was to match the behavior of these models, showing that NeMo correctly simulates
the TNLIF model. To do this, we used the same parameters for each neuron as were used to generate
the original results. A Phasic spiking neuron was configured this way, with a single axon input set
to send spikes out every 200 ticks. The results of this run are shown in Figure 17a.

We then implemented a tonic bursting neuron, again following the parameters used to recreate
this behavior using the TNLIF model in COMPASS. In this configuration, we used two neurons and
three axons. One axon was configured to send input spikes every 300 ticks. The neuron parameters
used for this run are shown in Table 4b, and the membrane potential results are shown in Figure
17b.

The information shown in Figures 17b and 17a visually presents neuron behavior that is nearly
identical to the behavior observed using COMPASS. Slight differences in the values are a result of
neurons updating state only when events warrant. We also do not record the membrane potential
of the input axons. Despite this, we do see qualitatively similar neuron behaviors. Thus, the NeMo
simulation model is able to recreate the simulation results produced by the IBM simulation tool,
COMPASS.

50
Approved for Public Release; Distribution Unlimited.

4.1.2 NeMo-ES Performance Results

Experimental Setup: For each of the following experiments, we simulate TrueNorth-like neurosy-
naptic cores using the ROSS framework. Each neurosynaptic core connects 256 axon LPs, 65,536
synapse LPs, and 256 neuron LPs for a total of 66,048 LPs per core. We perform experiments with
up to 32,768 neurosynaptic cores, giving a maximum number of 2,164,260,864 LPs in our largest
simulation.

To fully test the performance of our model, we used a neurosynaptic core model which generates
over 1,500 events per neurosynaptic core per tick. For this benchmark, each core consists of an
“identity-matrix” of neurons. In this model, axon i will trigger synapse i, i, which triggers the
neuron at i. The output destination of each neuron is set randomly with an 80% chance that it will
output to a different neurosynaptic core. To start, each axon in the simulation fires. Overall, this
creates an immense number of events, a larger workload than would be expected in a real-world
application.

All simulations were performed on an IBM Blue Gene/Q machine. Each node of the Blue Gene/Q
features eighteen 1.6 GHz processor cores, 16 of which are devoted to application use [79]. For the
two remaining cores, one conducts operating system functionality while the other serves as a spare.
All nodes are connected by an effective, high-speed communication network [43].

The 16 GB of DDR3 memory on each Blue Gene/Q node can be a limiting factor in memory
intensive simulations. To allow for maximum utilization, each node is highly configurable in terms
of parallelism. Each of the 16 processors can run up to 4 hardware threads (for a total of 64 MPI
ranks per node) or the processor cores can be under-subscribed (with a minimum of 1 MPI rank
per node). Our experiments test several parallel configurations.

All experiments were performed using the time-warp based optimistic synchronization algorithm
in ROSS.

Weak Scaling Performance
W

al
l C

lo
ck

 T
im

e
(S

ec
on

ds
)

70
14

0
21

0
28

0
35

0

Ev
en

t R
at

e
(m

illi
on

s/
se

c)

0

525

1050

1575

2100

Blue Gene/Q Nodes 
Neurosynaptic Cores Simulated

16 
1024

32 
2048

64 
4096

128 
8192

256 
16384

512 
32768

1024 
65536

64 MPI Ranks per Node
32 MPI Ranks per Node
32 MPI Ranks Wall Clock Time
64 MPI Ranks Wall Clock Time

Figure 18: Weak scaling performance experiments.

Weak Scaling Experiment: Our first set of experiments tested two configurations: one and
two neurosynaptic cores per MPI rank. These configurations ran on either 64 or 32 MPI ranks per
Blue Gene/Q node, scaling from 16 to 1024 Blue Gene/Q nodes (see Figure 18). We achieved a

51
Approved for Public Release; Distribution Unlimited.

peak performance of over 2 billion events per second when simulating 65,536 neurosynaptic cores
on 1024 Blue Gene/nodes with 64 MPI ranks per node. These experiments simulated a total of
1,000 neurosynaptic core ticks.

Table 5: Breakdown of time spent during the simulation of 65,536 neurosynaptic cores on 1024 Blue
Gene/Q nodes each with 64 MPI ranks.

Time Taken
Clock Cycle Category (seconds) Percentage
Priority Queue (enq/deq) 1.8825 0.86%
AVL Tree (insert/delete) 0.0192 0.01%
Event Processing 38.2921 17.52%
Event Cancel 0.7486 0.34%
GVT 154.6155 70.75%
Fossil Collect 12.7742 5.85%
Primary Rollbacks 5.1278 2.35%
Network Read 5.0715 2.32%

Table 5 presents a breakdown of time spent during our peak performance simulation. These
statistics are representative of all of our weak scaling experiments. The most noteworthy statistic
is the time that the ROSS simulator spent performing GVT calculations. With less than 20%
of simulation time being spent performing local event processing, we observe over 70% of the
simulation time is spent performing GVT calculations. Since the GVT calculation is based around
an MPI all reduce calculation, this indicates that there is a load imbalance within the simulation.
That is, not all MPI ranks are reaching the blocking MPI reduction operation at the same time.

The slight load imbalance is to be expected. Every time a neuron fires, it has an 80% chance
to send a signal to a neuron within a different synaptic core. Since the location of the receiver
neuron is also chosen randomly, there is in an unpredictable, yet expected load imbalance across
the simulation.

Strong Scaling Performance

Ev
en

t R
at

e
(m

illi
on

s/
se

c)

0

125

250

375

500

Blue Gene/Q Nodes
16 32 64 128 256 512 1024

8192 Neurosynaptic Cores Simulated

Figure 19: Strong scaling performance experiments.

52
Approved for Public Release; Distribution Unlimited.

Strong Scaling Experiment: To understand the ways in which the NeMo model scales as
parallelism increases, we ran a series of strong scaling experiments. Figure 19 shows performance
results for a simulation of 8,192 neurosynaptic cores using 16 to 1,024 Blue Gene/Q nodes. These
experiments were run for 1,000 ticks resulting in more than 13 billion net events. We achieved
peak performance when we used 1,024 Blue Gene/Q nodes, where we observed over 421 million
events per second. This benchmark was run with the same randomly generated neuron model as
the weak scaling experiments, with an 80% chance of neurons communicating to remote cores. One
interesting thing to note is that NeMo does not place a neurosynaptic core across multiple MPI
ranks. This is a limiting factor in the strong scaling results, as simulating 8,192 neurosynaptic cores
gives a maximum of 8,192 MPI ranks. When running on 512 Blue Gene/Q nodes, there are 32,768
possible MPI ranks, and on 1,024 nodes there are 1,048,576 ranks available. We ran at these scales
with 8,192 ranks, and the lack of increase in performance is attributable to this limitation in the
NeMo system.

Efficiency Compared to Running Time 
for Strong Scaling Experiments

R
un

ni
ng

 T
im

e
(s

ec
)

0

45

90

135

180

Ef
fic

ie
nc

y
Pe

rc
en

ta
ge

0%

25%

50%

75%

100%

Blue Gene/Q Nodes
16 32 64 128 256 512 1024

Efficiency
Wall Clock Simulation Time

Figure 20: Comparison of the efficiency and the running time of the strong scaling experiments.

One interesting phenomena is observed when analyzing the running time and efficiency of the
strong scaling experiments, Figure 20. Here, we see that an unexpected correlation between overall
simulation efficiency and the running time of the simulation: a decrease in efficiency corresponds to
faster running times. This indicates a very low cost for performing an event rollback. Overall, the
optimistic simulation is able to find more parallelism (and thus more speedup) despite incurring an
increased number of rollback events.

Figure 21 shows a breakdown of the rollbacks observed during the strong scaling experiments.
At first the number of rollbacks does increase as the parallelism increases however all experiments
on 128 nodes or more each incur approximately 7.7 million rollbacks. This indicates that our
simulations have a maximum amount of parallelism where increases in hardware do not correlate
to increases in performance.

Both Figures 20 and 21 show that increasing the number of parallel nodes is only effective up to
a point. At more than 128 Blue Gene/Q nodes, we see diminishing returns in performance scaling.
In the 128 node experiment, each node simulates 64 neurosynaptic cores. We see that the overall
workload is balanced (i.e., there is no decrease in performance which would indicate an over decom-
position of the system). For the 128, 256, 512, and 1,024 node experiments, the communication

53
Approved for Public Release; Distribution Unlimited.

Rollbacks During 
Strong Scaling Experiments

M
illi

on
s

of
 R

ol
lb

ac
ks

0

2

4

6

8

Blue Gene/Q Nodes
16 32 64 128 256 512 1024

Primary Rollbacks
Secondary Rollbacks

Figure 21: Breakdown of the primary and secondary rollbacks for the strong scaling simulation.
Note that the net event population for these experiments is 13 billion events, but the maximum
number of rollbacks observed is only 7.6 million.

overheads surpass the time spent doing local event processing. What is most intriguing about these
experiments is that the number of rollbacks remains constant, despite an increase in parallelism.

Comparison with Compass: Comparing NeMo with IBM’s own early parallel neuromorphic
simulation software, Compass, poses some challenges. The intention of NeMo is to provide an
open-source way to simulate various neuromorphic hardware designs. The Compass simulator is
tuned for a similar purpose, but is tied into the TrueNorth architecture. Furthermore, Compass is
proprietary software that we are unable to use on our benchmarking hardware. IBM Blue Gene/Q
support for Compass was also eliminated in favor of focusing support on x86 architectures. These
factors make a meaningful direct comparison impossible. However, in [140], benchmark runs of
Compass are done using several models. Using these existing benchmarks, we can create a rough
comparison between NeMo and Compass 1.

While both NeMo and Compass can exploit massively parallel supercomputer systems like the
Blue Gene/Q, there are a number of key differences between the two. First, Compass employs a
time-stepped algorithm which iterates over the set of neurons assigned to a particular thread (or
MPI rank) and then iterates over each synapse event that targets that neuron from the enclosing
iteration loop. NeMo is implemented using a pure event-driven approach with all neuron, axon
and synapse events being enqueued into a single priority queue. This approach avoids the cost of
iterating over neurons which do not have any posted synapse events.

In [140], Compass weak-scaling benchmarks are presented using the CoCoMac neuron model. We
do not have access to the specific implementation details of the neuron model used in the paper, so
we can not explicitly re-create the author’s benchmarks in NeMo. CoCoMac is a message-sparse
model, generating on average 1.3 spikes per simulated neurosynaptic core [140].

1Today the IBM simulator does not execute in parallel on a Blue Gene supercomputer and has been renamed
NSCS which was used in other parts of our research.

54
Approved for Public Release; Distribution Unlimited.

etotal = sreported × 2× f (17)

esecond = stotal/t (18)

esecond/rack = esecond/16 (19)

Figure 22: Calculating Compass’s events per second per Blue Gene/Q Rack

Given that we are not able to run the same model and we are not able to run Compass on our
benchmark hardware, we have decided to compare the events per second produced by Compass
with NeMo. To find this value for Compass, we took the number of spike events per simulated tick
reported in [140] and made some reasonable assumptions about the underlying model. We took the
values from the largest run of Compass that ran on 16 racks of IBM Blue Gene/Q that generated 22
million spikes per simulated tick. The paper does not specify if that value is for all spikes generated
simulating the model, or if it was for remote-core spikes (spikes originating on a different node than
the destination). To compare NeMo’s performance with Compass, we will assume the best-case
scenario for Compass: that the 22 million spikes generated are only the remote spikes. The paper
further specifies that the CoCoMac model simulated has some cores that generate a ratio of 80
remote spikes to 20 local spikes, and other cores that generate a 60/40 ratio. For the purposes of
our comparison, we assume a best-case scenario for Compass and assume a 50/50 ratio of remote
spikes versus local spikes. This assumption would mean that the 22 million spikes per simulated
tick would be 50% of the total spikes generated by the simulation. For comparison, our benchmark
model generated an average of 80% remote spikes per core.

The set of equations that approximate the performance of the Compass simulation are shown in
Equations 17-19. To find the number of events per second, we assume that 1 axon and 256 synapse
fan-out events, f are scheduled for each spike s event over the paper’s reported 500 ticks tsim, shown
in Equation 17. We also multiply the total spikes reported, etotal by 2, per our assumption that
50% of the spikes are not remote. We then divide the calculated total number of events by the wall
clock time taken by Compass, twall to get the spikes per second, esecond, shown in Equation 18. We
then divide by the number of Blue Gene/Q racks used in the simulation r, to get Compass’s events
per second per rack, shown in Equation 19.

These values were chosen to help represent the number of events NeMo produces. For every
neuron spike event in NeMo, there are 256 neuron events generated with one axon event. Our
largest current NeMo simulation ran on one rack of Blue Gene/Q, thus comparing Compass’s event
rate per rack p er second will provide a roughly accurate gauge of performance.

This gives ((22M × 2 × 257) × 500 ticks)/ 194 secs/16 racks = 1, 821M events/ second/ rack. Our
benchmark runs of NeMo showed an event rate of 2, 082M events/ rack. The weak scaling experi-
ments run on NeMo show 261M events per second more than Compass. While a direct comparison
between NeMo and Compass is currently impossible, this result shows that NeMo is on par with
the performance of Compass, and a viable option for simulation of neuromorphic hardware.

4.1.3 NeMo-SS Performance Results

Understanding the performance of NeMo-SS within a massively parallel environment is important.
The purpose of NeMo-SS is to allow for simulations of novel neuromorphic hardware and designs, for

55
Approved for Public Release; Distribution Unlimited.

both exploration of novel neuromorphic hardware as well as simulation of neuromorphic hardware
within a simulated heterogeneous HPC system. Providing the ability to simulate extremely large
neuromorphic hardware networks will provide insights into massively connected hardware networks.
To show that NeMo-SS will be able to simulate large structures of neuromorphic hardware, we ran
NeMo-SS with extremely large networks in a massively parallel environment.

To accomplish this, we first examine a weak scaling experiment done on an IBM Blue Gene/Q,
where we simulate up to 8,388,608 neurosynaptic cores with a total of 4,269,367,296 neurons. We
then examine the strong scaling performance of a 65,536 neurosynaptic core simulation. We also
compare these results with the first version of NeMo. A smaller run on an Intel based cluster is
also examined, showing performance results that compare with the Blue Gene/Q architecture.

Experimental Setup: For each of the following experiments, we simulate TrueNorth-like neu-
rosynaptic cores using the ROSS framework. In the weak scaling experiments, we compare a
simulation containing neurosynaptic cores with 256 axon LPs, 1 synapse LP, and 256 neuron LPs,
and a simulation containing neurosynaptic cores with 512 axon LPs, 1 synapse LP, and 512 neuron
LPs. The largest NeMo-SS simulation contains a total of 8,598,323,200 LPs.

To test the performance of our model, we used a neurosynaptic core design that generates over
1,500 events per neurosynaptic core per tick. The neurons are configured such that they will fire
a spike if they receive an input spike from an axon with the same ID. Each neurosynaptic core in
this benchmark has weights such that an input from axon i will trigger neuron i to send one spike.

We have also implemented a “neuron connection pool” benchmark. In this network, every neuron
is connected to 20 randomly selected axons (a pool of connections). All connected axons have a
weight value of 1, and neurons have a threshold value of 5. As in the other benchmark model,
neurons are connected to a pseudo-random output, with a probability of .9 of a connection to a
different core.

The output destination of each neuron is set randomly with a 90% chance that it will output to
a different neurosynaptic core. When the benchmark starts, each axon fires once. This benchmark
setup generates an extremely large number of events, resulting in a larger workload than would be
expected in a real-world application.

These simulations were performed on both an IBM Blue Gene/Q machine, and an Intel based
cluster. Each node of the Blue Gene/Q features eighteen 1.6 GHz processor cores, 16 of which are
dedicated to application use [79]. For the two remaining cores, one conducts operating system
functions while the other serves as spare. All nodes are connected by an effective, high-speed
communication network [43].

The 16 GB of DDR3 memory on each Blue Gene/Q node can be a limiting factor in memory
intensive simulations. To allow for maximum utilization, each node is highly configurable in terms
of parallelism. Each of the 16 processors can run up to 4 hardware threads (for a total of 64 MPI
ranks per node) or the processor cores can be under-subscribed (with a minimum of 1 MPI rank

56
Approved for Public Release; Distribution Unlimited.

Parameter

256 256 256 512 512
GVT Real-Time GVT Real-Time GVT

Neurons Per Core
Synchronization Mode
NeMo Version 1 2 2 2 2

Table 6: Experimental Run Configurations.

In
pu

t S
pi

ke
 C

ou
nt

Figure 23: Neuron activity in the identity matrix benchmark simulation. This chart represents the
number of spikes sent by each neruon in a 4096 neuron simulation across 512 ticks, demonstrating
the workload generated by the benchmark model run. We observed an even distribution of neuron
activity across the simulation running this benchmark.

per node). Our experiments test several parallel configurations.
Blue Gene/Q Weak Scaling Experiments: Our first set of experiments tested several con-

figurations. For each NeMo-SS experiment, we configured the simulation with 16 neurosynaptic
cores per MPI rank, for a total of 64 neurosynaptic cores per Blue Gene/Q node. In this weak
scaling model, we ran NeMo-SS with 64 MPI ranks per Blue Gene/Q node. We ran two different
neurosynaptic core configurations with NeMo-SS : One with 256 neurons per core, and the other
with 512 neurons per core. The TrueNorth architecture has 256 neurons per neurosynaptic core. By
adding a configuration with 512 neurons per core, we were able to simulate a theoretical hardware
configuration. We ran the simulation for a total of 1,000 neurosynaptic core ticks. This is equivalent
to running the TrueNorth hardware for 1 second, as the hardware runs at 1,000 Hz. The results of
these runs are shown in Figure 24.

In Figure 24a, we also show the results of a weak scaling experiment running NeMo-ES . In these
runs, NeMo-ES was configured to simulate 256 neurons per neurosynaptic core, running the same
benchmark configuration as NeMo-SS . Due to memory limitations, the NeMo-ES simulation was
run with 16 neurosynaptic cores per MPI rank. This run was limited to 1024 Blue Gene/Q nodes.

The NeMo-ES experiment achieved a peak performance of over 2 billion events per second when
simulating 65,536 neurosynaptic cores on 1024 Blue Gene/Q nodes with 64 MPI ranks per node. In
Figure 24d, NeMo-ES shows a near linear performance across the weak scaling simulation. Towards
the upper end of the simulation, the wall-clock time increased. This is due to a slight load imbalance,
caused by excessive GVT calculations. Every time a neuron fires, it has a 90% chance to send a
signal to a neuron within a different neurosynaptic core. As the simulation encounters more network
latency, the effects of rollbacks become more apparent in the simulation time. This long event chain
(seen in Figure 4), coupled with the large number of random remote messages, results in an expected
load imbalance. Generally, NeMo-ES shows near linear performance in weak scaling experiments.

We ran NeMo-SS using two synchronization modes: GVT calculated based on the number of
events processed and real-time GVT. In Figures 24b and 24c, we show the performance of NeMo-SS

57
Approved for Public Release; Distribution Unlimited.

0.0e+00

2.5e+09

5.0e+09

7.5e+09

1.0e+10

16 32 64 128 256 512 1024

BG/Q Nodes
E

ve
n
ts

/S
ec

on
d

256 Neurons/Core NeMo-ES Benchmark

(a) NeMo-ES Weak Scaling
256 Neurons per Core

0.0e+00

2.5e+09

5.0e+09

7.5e+09

1.0e+10

16 32 64 128 256 512 1024 2048

BG/Q Nodes

E
ve

n
ts

/S
ec

on
d

512 Neurons/Core Benchmark

(b) NeMo-SS Weak Scaling
512 Neurons Per Core

0.0e+00

2.5e+09

5.0e+09

7.5e+09

1.0e+10

16 32 64 128 256 512 1024 2048

BG/Q Nodes

E
ve

n
ts

/S
ec

on
d

256 Neurons/Core Benchmark

(c) NeMo-SS Weak Scaling
256 Neurons Per Core

00:00:00

00:08:20

00:16:40

00:25:00

00:33:20

00:41:40

00:50:00

00:58:20

01:06:40

01:15:00

16 32 64 128 256 512 1024 2048

BG/Q Nodes

W
al

l
C

lo
ck

T
im

e

Time Taken

(d) NeMo Weak Scaling Wall
Clock Times

,

Identity Matrix Benchmark

Identity Matrix Benchmark
Identity Matrix Benchmark Realtime

Neuron Pool Benchmark
Neuron Pool Benchmark Realtime

256 Neurons/Core NeMo-SS

Identity Matrix Benchmark
Identity Matrix Benchmark Realtime

Neuron Pool Benchmark
Neuron Pool Benchmark Realtime

512 Neurons/Core NeMo-SS NeMo-ES

Figure 24: Blue Gene/Q weak scaling performance experiments. Figure (a) shows the results of
running NeMo-ES with 256 neurons per core with 16 cores per rank. Figure (b) shows the results
of running NeMo-SS with 512 neurons per core with 64 cores per rank. Figure (c) shows the results
of NeMo-SS with 256 neurons per core with 64 cores per rank. Figure (d) shows the wall clock time
taken for each run.

using these two different synchronization modes. Interestingly, real-time GVT provides significantly
better performance, especially when simulating 512 neurons per neurosynaptic core.

In Figure 24d, the wall-clock time for these runs is shown. We found that both implementations
of NeMo showed near linear wall-clock time across all identity matrix benchmark runs. NeMo-SS ,
running with 512 neurons per core, showed a slight increase in wall-clock time as the simulation
size increased. This is likely due to the increased amount of time spent in GVT, as it can be seen
in Figure 25.

The results of the neuron pool benchmark show the impact on NeMo of the significant increase in
neuron activity within this benchmark network. The wall-clock time of the 512 neuron per core pool
benchmark illustrates the potential limits of optimistic simulation in this scope. Switching from
the standard GVT synchronization technique to the real-time technique improved scaling results as

58
Approved for Public Release; Distribution Unlimited.

well.
Figure 25 shows the wall clock time spent in each phase of simulation during these runs. We

observed that real-time GVT significantly reduced the amount of time spent processing GVT. NeMo-
SS benefits greatly from the real-time GVT, showing reduced time spent waiting for synchronization.

Optimistic synchronization in ROSS creates MPI barriers at each MPI rank after a specific
number of events have been processed. Real-time synchronization creates these barriers after a
set period of time. Real-time synchronization can provide performance increases over standard
optimistic methods if many MPI ranks are waiting for a GVT to occur, while few MPI ranks are
still processing events. This algorithm is based on the real time algorithm proposed by [67], but
adapted from a shared memory system to a fully distributed system.

In NeMo, we observed a significant burst effect of messages. Some MPI ranks will generate large
numbers of messages quickly, while others are waiting to process new events. Given the burst-
like nature of the simulation, the real-time synchronization protocol will generally provide better
performance in this case. This performance increase is specific to the neurosynaptic model, as there
are many bursts of high message activity followed by slower periods of message activity.

Figure 24d also shows the wall clock time taken for the NeMo-SS weak scaling simulation runs.
For most of the NeMo-SS runs, a near linear wall-clock time is observed. The exception occurs
when running the simulation with 512 neurons and standard GVT synchronization. This increase
in execution time is most likely due to increased network communication overhead, along with the
significantly higher time spent on event processing, as seen in Figure 7.

00:00:00

00:16:40

00:33:20

00:50:00

16 256 2048
BG/Q Nodes

W
al

l C
lo

ck
 T

im
e

(H
H

:M
M

:S
S)

512 Neurons/Core Real−time GVT

00:00:00

00:16:40

00:33:20

00:50:00

01:06:40

16 256 2048
BG/Q Nodes

W
al

l C
lo

ck
 T

im
e

(H
H

:M
M

:S
S)

512 Neurons/Core

00:00:00

00:08:20

00:16:40

16 256 2048
BG/Q Nodes

W
al

l C
lo

ck
 T

im
e

(H
H

:M
M

:S
S)

256 Neurons/Core Real−time GVT

00:00:00

00:08:20

00:16:40

16 256 2048
BG/Q Nodes

W
al

l C
lo

ck
 T

im
e

(H
H

:M
M

:S
S)

256 Neurons/Core

AVL Tree

Event Cancel

Event Processing

Fossil Collect

GVT

Network Read

Primary Rollback

Priority Queue

Figure 25: NeMo-SS BG/Q Weak Scaling Time Detail.

Blue Gene/Q Strong Scaling Experiments: To understand the ways in which the NeMo-SS
model scales as parallelism increases, we ran a series of strong scaling experiments. Figure 26 shows
performance results for a simulation of 65,536 neurosynaptic cores using 16 to 1024 Blue Gene/Q
nodes and the number of rollbacks observed. These experiments were run for 1,000 ticks resulting in
over 9 billion net events. We achieved a peak performance of 5,834,092,242 events per second when
we used 1,024 Blue Gene/Q nodes. This benchmark was run with the same randomly generated
neuron model as the weak scaling experiments.

One thing to note is that NeMo-ES and NeMo-SS do not place a neurosynaptic core across
multiple MPI ranks. This limits the maximum parallelization possible during strong scaling exper-
iments. In this experiment, running 65,536 neurosynaptic cores gives a maximum of 65,534 MPI
ranks. Figure 26a shows the simulation performance increase at a near linear rate until the number
of neurosynaptic cores starts to equal the number of available MPI ranks. Eventually, the Blue

59
Approved for Public Release; Distribution Unlimited.

512 Cores
512 Cores

Real-Time GVT
256 Cores

256 Cores
Real-Time GVT

Priority Queue (enq/deq) 130615 ms 134795 ms 49065 ms 49778 ms

AVL Tree (insert/delete) 1316 ms 1239 ms 764 ms 666 ms

Event Processing 2005299 ms 2079298 ms 697964 ms 713461 ms

Event Cancel 4577 ms 2808 ms 1027 ms 1002 ms

GVT 1023165 ms 333997 ms 321908 ms 167047 ms

Fossil Collect 428499 ms 497998 ms 169134 ms 200164 ms

Primary Rollback 2379 ms 2308 ms 881 ms 45 ms

Network Read 187937 ms 195584 ms 74874 ms 78527 ms

Gene/Q’s individual node compute power eclipses the available network bandwidth, slowing strong
scaling performance gains. Figure 26b shows the increase in primary and secondary rollbacks as
the communication overheads surpass the time spent during local event processing.

00:00:00

00:04:10

00:08:20

00:12:30

16 32 64 128 256 512 1024
BG/Q Nodes

W
al

l
C

lo
ck

 T
im

e
(H

H
:M

M
:S

S)

Benchmark Type
NeMo2 Identity Matrix Benchmark
NeMo2 Neuron Pool Benchmark

(a) Blue Gene/Q Strong Scaling Performance.

NeMo2 Identity Matrix Benchmark NeMo2 Neuron Pool Benchmark

16 32 64 128 256 5121024 16 32 64 128 256 5121024
0.0 × 100

5.0 × 106

107

1.5 × 107

2.0 × 107

BG/Q Nodes

N
um

be
r

of
 R

ol
lb

ac
ks

Rollbacks
Primary Rollbacks
Secondary Rollbacks

(b) Blue Gene/Q Strong Scaling Rollbacks.

Figure 26: NeMo-SS Blue Gene/Q Strong Scaling Experiment Results.

A major factor in the increase in overhead as the simulation reaches maximum parallelism is the
time spent rolling back events. In Figure 26b, the number of rollbacks dramatically increases as
the number of nodes increases. When run at 1024 Blue Gene/Q nodes, the number of rollbacks
approaches the number of events computed.

The largest simulation done on the Blue Gene/Q used two racks, 2048 nodes, to simulate
4,294,967,296 neurons in 8,388,608 neuromorphic cores. This simulation achieved a maximum event
rate of 9,524,353,605 events per second when run with real-time synchronization. When the number
of neurons per core was reduced to 256, the event rate increased to 10,589,662,119 events per second
across 2,147,483,649 neurons.

60
Approved for Public Release; Distribution Unlimited.

Table 7: Breakdown of time spent during the simulations on 2048 Blue Gene/Q nodes each with 64
MPI ranks. The columns labeled with “Real-Time” text indicate the NeMo-SS runs that use the Real-
Time GVT synchronization protocol, in contrast to the event count based GVT method.

(a) Facility (b) Location: Rack (c) Location: Midplane

(d) Location: Line (e) Location: Node (f) Severity

Figure 27: Histograms of Categorical Variables.

4.2 Classification of Supercomputer Failures Using TrueNorth

4.2.1 Exploratory Data Analysis (EDA)

The first step after cleaning the data was to perform Exploratory Data Analysis (EDA). EDA
summarizes the main characteristics of the dataset so that we can form a solid understanding
of the dataset and decide on further data analysis. Because we are using machine learning and
deep learning in our analysis, we cannot perform exploratory data analysis on the whole dataset.
This is in line with the machine learning principle that once any kind of inference is drawn from
any part of the dataset, we should not use it to train the learning models. We ran a Singular
Value Decomposition (SVD) on the dataset to check if dimensionality reduction was possible. This
revealed that all the chosen features were significant and dimensionality reduction was not necessary.

The next step in EDA was to plot histograms of the categorical variables and the output variable,
i.e. SEVERITY to get an idea of their distributions (see Figure 27). We used a value of −1.0 for all
those data entries which did not have a value for the variable. The variable FACILITY is bimodally
distributed with majority of log files initiated from DISCOVERY and KERNEL. The histogram for the
Rack location is unimodal, meaning that in the 10% of the data that forms the EDA set, all the
data points happened to have a Rack value of zero. It is, however, very unlikely that this would
be true for the training and test datasets as well. Histogram for Midplane is uniformly distributed
with some noise present in the data. The midplane can have two values, and in the EDA set, they
are more or less equally distributed. When it comes to the LINE location, the EDA dataset was
extremely noisy, as is evident from a large portion of −1.0 values. The histogram for the NODE

location is more or less uniformly distributed around the frequency value of 1000 and contains very

61
Approved for Public Release; Distribution Unlimited.

Table 8: Performance Comparison of All Techniques.

ML/DL Technique
Training Accu-
racy (%)

Validation Ac-
curacy (%)

Testing Accu-
racy (%)

Logistic Regression 93.59 98.63 94.52
K-NN (K=3) 97.84 98.67 96.75
K-NN
(K=
√

83, 903 =
289)

94.14 98.48 94.97

SVM 92.85 97.65 93.75
DNN 96.57 98.54 96.23
RNN 96.27 98.36 95.98
SNN
(TrueNorth)

99.41 98.12 99.80

little noise.

4.2.2 Classification Results and Comparative Analysis

Our Spiking Neural Network (SNN) model consists of an input layer followed by a transduction
layer, which is followed by three convolutional layers (see Fig. 6 and Fig. 7). The output layer
is a softmax layer. This spiking convolutional neural network uses a total of 45 TrueNorth cores.
Given that each TrueNorth core has 256 neurons, this gives us an upper bound of 11,520 TrueNorth
neurons. We use the phrase ‘upper bound’ because it could be the case that not all 256 neurons
in each of the 45 cores are being used. Nevertheless, we count it as part of the total system cost
because most likely, these unused neurons cannot be used for other applications running on the
TrueNorth chip. We used IBM’s EEDN software framework, which is built in conjunction with
MatConvNet (MATLAB) for SNN.

Our TensorFlow DNN model consists of six fully connected layers containing 105 neurons and 1750
synapses. The layer-wise neuron configuration is as follows: 30-25-20-15-10-5. We use hyperbolic
tangent (tanh) and rectified linear unit (relu) as our activation functions and we alternate them for
each layer. The output layer is a softmax layer. Our TensorFlow RNN model consists of a Long
Short Term Memory (LSTM) layer followed by a softmax layer. The maximum sequence length of
this RNN was 100, meaning we would monitor information from the previous 100 log entries to make
a prediction for the current log entry. To store relevant information from older as well as current
sequence of log entries, we chose the RNN cell size as 50. We also observed that the DNN and RNN
models with number of neurons in ballpark of the SNN overfitted the training data, and were thus
discarded. The DNN and RNN configurations mentioned above gave the best performance metrics
amongst all the configurations that we tested.

Table 8 shows the results of our ML/DL classifiers. Although we present the results for just one
hyperparameter configuration of each of the ML/DL techniques described above, we fine tuned the
hyperparameters for these techniques over multiple iterations to obtain the best possible configu-
ration. So, for example, the DNN model presented in Table 8 was seen to be the best performing
DNN model. We used three performance metrics – Training Accuracy, Validation Accuracy and

62
Approved for Public Release; Distribution Unlimited.

Table 9: Design Index Computation.

ML/DL Technique
Training Error
(%)

Validation Er-
ror (%)

Accuracy
Index (Ia)

Overfitting In-
dex (Io)

Logistic Regression 6.41 1.37 1.1931 -0.6701
K-NN (K=3) 2.16 1.33 1.6655 -0.2106
K-NN (K=289) 5.86 1.52 1.2321 -0.5861
SVM 7.15 2.35 1.1457 -0.4832
DNN 3.43 1.46 1.4647 -0.3709
RNN 3.73 4.02 1.4283 -0.3569
SNN
(TrueNorth)

0.59 1.88 2.2291 0.5033

Test Accuracy. All our ML/DL models perform better than 92% classification accuracy. The best
model as per all the performance metrics was SNN with a test accuracy of 99.80%. KNN (K = 3)
seems to be the second best model with test accuracy of 96.75%. The two deep learning models
(DNN and RNN) show comparable results with respect to each other with test accuracy of 96.23%
and 95.98% respectively. These are followed by KNN (K = 289), logistic regression and SVM with
test accuracy of 94.97%, 94.52% and 93.75% respectively.

We also computed the design index [52] for all seven ML/DL and neuromorphic models used in
this paper. The design index is a tool which functions as an aid during the designing phase of DNN.
Although it was defined for DNNs, it can easily be extended to other ML/DL and neuromorphic
computing techniques. It consists of an index tuple containing Accuracy Index (Ia) and Overfitting
Index (Io), which gives a quantitative estimate of how accurate and how overfitted a trained DNN
model is. Moreover, it is easy to represent visually. In this work, the threshold error was chosen
as 1.0, the accuracy threshold was chosen as 1.0 and the overfitting threshold was chosen as 2.0.
The threshold error is the order of magnitude of the smallest enumerated label. In our case, since
the enumerated labels go from 1 to 5, the order of magnitude of smallest enumerated label is 0 and
thus, the threshold error error was 100 = 1. We chose an accuracy threshold of 1.0 because for this
application, we would be happy to have a training error which is an order of magnitude less than
the smallest enumerated label. We chose an overfitting threshold of 2.0 because for our application,
we would render a trained model as overfitted if the training error is two orders of magnitude less
than the validation error.

Table 9 and Figure 28 show the computation and scatter plot of of design indices. A peculiar
feature in this figure is that the overfitting indices of all ML/DL techniques except SNN are negative,
meaning that their validation errors were less than their training errors. We think this happened
because in spite of picking the log entries identically and independently for training and validation
datasets, their distributions were slightly different. However, as denoted by the green star in
Figure 28, the SNN was able to correctly model the error data, showing the highest accuracy index
(2.2291) and an acceptable overfitting index (0.5033). The blue region in the figure shows the
acceptable region – we will accept a particular model if it lies in this region. All of our ML/DL
and neuromorphic models lie in the acceptable range – i.e. not only do they demonstrate a certain
acceptable level of accuracy, but also show that they do not overfit or underfit the training data.
This confirms that ML/DL and neuromorphic techniques can be used to model and classify node

63
Approved for Public Release; Distribution Unlimited.

Figure 28: Plot of Design Index for All Techniques. Accuracy Index is computed as log10

(
ep
et

)
,

where ep is the threshold error and et is the training error [52]. Overfitting Index is computed as

log10

(
ev
et

)
, where ev is the validation error and et is the training error [52].

failures on supercomputers as they display a respectable level of accuracy for this application.

4.2.3 Speed and Power Consumption

We now shed some light on the running times and power estimates of our models. During the
test phase, all the techniques used in this study were able to classify 29, 965 data points in the
test dataset fairly quickly. The fastest was DNN (9.6 milliseconds) and the slowest was RNN
(2.2 seconds). The TrueNorth SNN took 23.5 milliseconds to classify the test dataset. When it
comes to power consumption, DNN, RNN and Logistic Regression models were running on GPUs
and consumed around 250 Watts of power. The models running on CPUs (i.e. K-NN and SVM)
consumed around 60 Watts of power. The SNN ran on the TrueNorth chip and was estimated to
consume less than 2 milliwatts of power – five orders of magnitude less than GPU and four orders
of magnitude less than CPU. To the best of the authors’ knowledge, a more detailed breakdown of
power consumption is not possible with the TrueNorth development kit at our disposal.

4.2.4 Discussion

From the analysis so far, we understand that while all the ML/DL techniques fall within the ac-
ceptable range, the convolutional SNN seems to be performing the best for our dataset as per the
performance metrics used in this work. This result is unexpected because CNNs are inherently not
designed for sequential data such as the error data used in this paper. The model that is known
to perform well on sequential datasets is the RNN owing to its inherent dynamical nature. Con-
sequently, we expected RNN to outperform all other models, but that was not the case. Although
our error log dataset is a sequential dataset, it also is a spatio-temporal dataset, because it contains
information about the physical location and timestamp of the log entries. Spiking Neural Networks
(SNN) have been shown to perform well on spatio-temporal datasets [94, 58]. While the exact
reason for good performance of SNN on spatio-temporal datasets is unknown, a brief intuition is
as follows. SNNs were modeled after the human brain and resemble it very closely. Since human

64
Approved for Public Release; Distribution Unlimited.

brain is excellent at perceiving, interpreting and analyzing spatio-temporal data, one might expect
SNNs to behave similarly – and they indeed perform well on spatio-temporal data, as demonstrated
previously in the literature and by our results.

It must be pointed out that although SNN used 45 TrueNorth cores, which correspond to a
maximum of 11,520 neurons, they cannot be compared directly to hundreds of neurons used in
our DNN and RNN models. First of all, 11,520 is the number of hardware neurons used and
is different from the software neurons used by DNN and RNN models. A single software neuron
usually maps to multiple hardware neurons – the exact mapping depends on the encoding algorithm.
Furthermore, we had to add two layers of padding to our dataset, which required 25 times more
neurons to represent a single data point – this directly adds to the neuron cost as previously
indicated. Secondly, the 11,520 neurons is just an upper bound – it does not necessarily mean that
our SNN used all 11,520 neurons. With the TrueNorth development kit that we had, it was not
possible to know the exact number of neurons used.

4.3 Durango – A Hybrid System Performance Modeling Framework

Here, we present two series of experiments. The first uses the LULESH miniapp and compares it
with Durango’s generated facsimile of its communication pattern. For these experiments, a 64-way
multicore system is used with 64 GB of RAM and 2.2 TB of disk space. Here, the real LULESH
DUMPI trace for a 4x4x4 grid (64 MPI ranks) configuration is compared with that of the Durango
generator, which also runs and creates a DUMPI trace. For the comparison, both DUMPI traces
are run through the CODES torus network simulator, which is configured with a torus network
topology in a 4x4x4 configuration.

In the second series of experiments, we demonstrate the efficacy of our direct integration approach.
Performance results are shown for Durango when a computational kernel implemented in Aspen
is linked into a executable network model. For this series of experiments, both a torus and a
dragonfly network are used. All simulations are run in parallel on the “AMOS” IBM Blue Gene/Q
supercomputer located at the Center for Computational Innovations at Rensselaer.

4.3.1 Durango Generated vs. Real LULESH Results

4.3.1.1 LULESH Proxy Application

LULESH [4, 93] is a scientific computing application that performs explicit shock hydrodynamics
calculations on an unstructured grid. It has been ported to several programming models. To explore
modeling of the communication behavior, we studied the parallel version of LULESH implemented
by using MPI for interprocess communication.

LULESH has a processor decomposition that is regular. While the mesh elements are defined with
explicit connectivity allowing for unstructured elements other than hexahedra, the implementation
of communication between the problem domains has a logical structure that allows nearest neighbor
communication along the three-dimensional mesh i/j/k directions.

LULESH has three styles of communication:

(A) bidirectional nearest-neighbor communication across only faces;
(B) bidirectional nearest-neighbor communication across faces, edges, and corners and

65
Approved for Public Release; Distribution Unlimited.

Figure 29: LULESH vs. Durango: Average torus network packet hop count as a function of the
different LULESH phases.

(C) unidirectional communication across faces, edges, and corners, from a lower-rank
task to a higher-rank task.

LULESH has four phases of communication, each conforming to one of these three styles. We
label experiments using a bit pattern representing which phase is active: “1” for the first phase
(style B), “2” for the second phase (style A), “4” for the third phase (style B), and “8” for the
fourth phase (style C). This allows us to describe the behavior of the full application with multiple
phases active by summing the bit patterns of every active phase. Because the first communication
phase in LULESH is used only for problem initialization, we focused on the analysis of the other
three phases, which occur every time step. The analysis results are labeled “2,” “4” and “8” for
their respective LULESH phases.

4.3.1.2 Experimental Results

In this first series of experiments, we compare the CODES network output statistics for the Durango
generated and the real LULESH miniapp MPI communication traces. The key network statistics
are as follows:

• Average packet hop count: the total number of hops traversals divided by the total number
of packets sent into the network

• Finished packets: the total number of packets that reached their final destination

66
Approved for Public Release; Distribution Unlimited.

Figure 30: LULESH vs. Durango: Finished torus network packet count as a function of the different
LULESH phases.

• Finished packet hop count: the total number of hop traversals divided by the total number
of packets that reached their final destination

• Total bytes sent: total amount of data sent into the network

These statistics avoid any measure of time either absolute or relative such as an interarrival time.
While such information is important, it largely depends on the amount of compute time between
MPI messages and/or architectural features of the underlying machine model. The four statistics
we use capture the communication behaviors that are independent from computation.

In validating Durango’s generated LULESH communication patterns relative to the original
LULESH miniapp code, we discovered an incorrect use of the MPI Waitall operation by LULESH,
whereas the Aspen-generated code was correct. Specifically, the number of wait requests sent is
hard coded to 26 when only a small fraction (e.g., about 8) of the 26 available MPI Isend and
MPI Irecv requests were used in this specific scenario. This error resulted in the CODES simula-
tion prematurely terminating because of unmatched requests within the MPI Waitall, which is a
correct behavior for the simulator since it denotes a “bad” trace. Once provided the right number
of active requests, the MPI Waitall trace events were correct, and the CODES simulator completed
without error. This finding underscores the potential need for a tool such as Durango beyond its
benefits for flexible workload generation and modeling.

With regards to the network results, Figure 29 shows the average packet hop count as a function
of different LULESH phases. The average ranges from 1.0 in phase 2 to nearly 1.06 in phase 4.

67
Approved for Public Release; Distribution Unlimited.

Figure 31: LULESH vs. Durango: Finished torus network packet hop count as a function of the
different LULESH phases.

Across all the phases, we observe identical results between the Durango generated and the real
LULESH communication patterns.

Figures 30 and 31 show the number of finished packets and hops as a function of LULESH phases.
In Figure 30 the number of finished packets ranges between 272K and 320K packets; similarly, the
finished hop counts are in the same range because the hop count for the majority of LULESH
packets is a single hop away in the 3D torus network. Across all the phases, we observe identical
results the Durango finished packets/hop count and the real LULESH finished packets/hop count.

Figure 32 reports the total number of packets sent as a function of LULESH phases. As before,
we observe no difference between the Durango generator and the real LULESH miniapp. The range
in packets is 140MB for phase 2 up to 151MB for phases 4 and 8.

4.3.2 Evaluation of Durango Direct Integration

The Durango direct integration approach was executed on AMOS, an IBM Blue Gene/Q supercom-
puter located at the Rensselaer Polytechnic Institute Center for Computational Innovation. AMOS
has 5 racks, each with 1,024 nodes. Each node contains 16 GB of DDR3 RAM and one IBM A2
processor, clocked at 1.6 GHz with 16 compute cores and 64 hardware threads.

Across all tests, Durango was run using BG/Q node counts ranging from 4 to 4096 nodes and 32
to 32,768 MPI ranks. For the network simulation component, torus and dragonfly network models
were configured with a nearest-neighbor traffic pattern, and a custom Aspen machine model based
on the AMD processors was written for calculating runtimes with a matrix multiplication kernel

68
Approved for Public Release; Distribution Unlimited.

Figure 32: LULESH vs. Durango: Total torus network bytes sent as a function of the different
LULESH phases.

model. The torus network is a 5D (85) topology yielding 32K nodes with each link having 2 GB/sec
bandwidth. The dragonfly network’s configuration is taken from [126] and has 1.3M terminal nodes.

Unlike the previous test, Aspen is driving the compute time between phases of nearest-neighbor
communications. The purpose of this performance study is to demonstrate that the Aspen compute
model does impede the parallel network simulation. Future work on Durango will enable the Aspen
system model to drive both compute node timing activity and network patterns at the same time.

4.3.2.1 Runtime Configuration

Configuration of Aspen when executed in this direct integration mode with the CODES parallel
simulation framework is accomplished through a primary and secondary configuration file. The
primary configuration file is used to specify the Aspen compute kernel and machine models that
will be utilized during each network-computation round. This configuration file also allows per-
round selection of the socket on each node of the Aspen machine to be used to “run” the compute
kernel, as well as the number of rounds to be simulated. The number and size of the “ping” requests
sent between Aspen Server logical processes are configured as well. A sample primary configuration
file is shown in part in Listing 6, where Durango has been configured to simulate two rounds of
matrix multiplication on an AMD-based cluster using the CPU in the first round and the GPU
in the second round over the CODES-provided “SimpleNet” testing topology. Note that in the
primary configuration file, the level of debug information can be adjusted as follows:

• Level 0: supresses all debug output

69
Approved for Public Release; Distribution Unlimited.

• Level 1: allows configuration details to be printed

• Level 2: allows runtime progress messages to be printed

Listing 6: Aspen parameter configuration excerpt.

ASPEN PARAMS
{

debug output =”1”;
n e t w o r k c o n f f i l e=”s implenet . conf ” ;
n e t w o r k t r a f f i c p a t t e r n=”random ” ;
num rounds =”2”;
aspen mach path =”./ models /

machine/ BigTestRig . aspen ” ;
s o c k e t c ho i c e 0 00=”amd 830 ” ;
s o c k e t c ho i c e 0 01=”amd HD5770 ” ;
aspen app path000 =”./ models /matmul/

matmul . aspen ” ;
aspen app path001 =”./ models /matmul/

matmul . aspen ” ;
}

s e r v e r p i n g s
{

num reqs =”128”;
pay load sz =”1024”;

}
The second configuration file used by Durango is included in the simulator runtime by a param-

eter in the primary configuration file, called network conf file. The parameters in the network
configuration file are directly passed on to the underlying CODES-Net framework, and allow for
network topology and size settings to be adjusted. The network configuration file also controls
how logical processes are organized in the simulator. Durango contributes the Aspen Server LP.
Required by the CODES framework are the network-level “server” LPs and the chosen network
topology’s routing LPs. Listing 7 shows the basic network configuration file for the SimpleNet
network topology.
LPGROUPS contains the ASPEN SERVERS subcategory, and lists the classes and organization of

the LPs in the simulation. For the SimpleNet topology the only two LP types needed are the
CODES-level “modelnet simplenet” LPs and the “server” LPs, which drive the overall Aspen-
CODES simulation layer. The other two supported topologies, torus and dragonfly, also require
two CODES-level LPs to function.

Listing 7: Aspen SimpleNet network configuration.

LPGROUPS
{

simplenet has a s e t o f s e rve r s , each with
point−to−point a c c e s s to each other

70
Approved for Public Release; Distribution Unlimited.

ASPEN SERVERS
{

requ i r ed : number o f t imes to repeat
the f o l l o w i n g key−value p a i r s
r e p e t i t i o n s =”4096”;

LP types
s e r v e r =”1”;
mode lnet s implenet =”1”;

}
}
Network Params :
PARAMS
{

ROSS−s p e c i f i c parmeters :
− message s i z e :
mes sage s i z e =”340”;
pe mem factor =”512”;
model−net−s p e c i f i c parameters :
− i n d i v i d u a l packet s i z e s f o r network
ope ra t i on s where each ” packet ” i s
repre s en ted by an event
− independent o f under ly ing network being
used
p a c k e t s i z e =”512”;
− order that network types w i l l be presented
to the user in
mode l net set params . In t h i s example ,
we ’ re only us ing a s i n g l e
network topology
modelnet order=(” s implenet ”) ;
− packet s chedu l ing a lgor i thm
mode lnet schedu le r=” f c f s ” ;
− s implenet−s p e c i f i c parameters
n e t s t a r t u p n s =”1.5”;
net bw mbps =”20000”;

}

PARAMS includes topology-specific configuration details; for the excerpt shown here include the
packet size, network bandwidth, latency, and packet scheduling algorithm. The dragonfly network
topology adds to this list the number of routers in each subgroup, the global and local channel
bandwidths, and several other topology-specific parameters. The torus topology also adds several
unique parameters to this section, including the torus dimensionality (and corresponding dimension
sizes).

71
Approved for Public Release; Distribution Unlimited.

4.3.2.2 Performance Results

Figure 33: Durango in direct integration mode with 32K node torus network and Aspen compute
node generator for 32 to 2,048 MPI ranks.

Figure 33 shows strong-scaling results for Durango when configured with a 32K node torus net-
work and executed using 32 to 2048 MPI ranks across a varing number of ranks per compute node
on the Blue Gene/Q supercomputer. Here, the execution time ranges from 24,000 seconds down
to just over 1,000 seconds. This implies an overall worst-case to best case speedup of 24x using
just 16x the hardware (e.g., 4 nodes to 64 nodes). This superlinear performance is attributed to
performance gains because of a smaller memory “working set” which yields higher cache hit rates
as the core counts increase. Similar performance gains were reported by Barnes et al. [24]. Parallel
simulation efficiency ranges from a peak of 92% on 4 nodes with 32 ranks to a low of 61% on
64 nodes using 2048 ranks. This is to be expected because of the likelihood of out-of-order event
computations grows as the number of nodes increase.

The out-of-order event computations become more problematic at larger MPI rank counts, as
shown Figure 34. Here, the same 32K node torus network configured with an Aspen LP for deter-
mining the compute phase timing for the matrix-multiplication kernel is being scaled from 1K to
16K MPI ranks and 128 to 512 Blue Gene/Q compute nodes. The worst-case efficiency of -314% is
report when using 512 nodes and 16K MPI ranks. This implies that nearly three events are being
rolled back for each forward event per the efficiency definition used in [24]. Clearly, the simulation
has become overly speculative. The fastest execution case is with 256 nodes and 4,096 MPI ranks
and completes in 726 seconds.

If we increase the network simulation workload by using a much larger network, we observe

72
Approved for Public Release; Distribution Unlimited.

Figure 34: Durango in direct integration mode with 32K node torus network and Aspen compute
node generator for 1K to 16K MPI ranks.

much better Durango performance, as shown in Figure 35. Here, a 1.3M node dragonfly network is
configured with the Aspen computation timing event generation. The parallel simulation run with
128 nodes and 1K MPI ranks completes in 24,000 seconds while the run with 4,096 node and 32K
MPI ranks completes in just 2200 seconds. The observed performance is nearly a 11x speedup for
32x the hardware, which is in line with results reported in previous dragonfly network simulation
studies [127].

Overall, the integration of Aspen’s code timing event generation does not impact the overall
Durango performance. Also, we avoid the performance penalty of reading in large, memory-intensive
traces datasets.

4.4 HPC Network Models

4.4.1 Model Validation

4.4.1.1 Slim Fly

We begin with a comparison with published Slim Fly network results by Kathareios et al. [95] to
validate the implementation of our Slim Fly model. Validation with a real testbed Slim fly system is
optimal. Unfortunately, we do not currently have access to such a system so we resort to published
simulation results from the creators of the Slim Fly topology. The specifics of the IBM-ETH-SF
simulator that we compare with are not provided, but the authors do mention that it is based
on the OMNeT++ simulator, which also employs parallel discrete-event simulation [159]. This

73
Approved for Public Release; Distribution Unlimited.

Figure 35: Durango in direct integration mode with 1.3M node dragonfly network and Aspen
compute node generator for 1K to 32K MPI ranks.

IBM-ETH collaborative work presents throughput results for a slim fly network with the 3K-node
configuration.

Slim Fly Synthetic Traffic Workloads: To accurately simulate and analyze the network
communication using a slim fly interconnection topology, we leverage two traffic workloads. The
first workload is the uniform random (UR) traffic pattern which sends packets to randomly selected
compute nodes anywhere in the network. The second workload is a worst-case (WC) traffic pattern
designed specifically as the worst-case adversarial workload for Slim Fly minimal routing algorithm.
The WC workload leverages the minimal path information to simulate an application that pairs
compute nodes for communication such that their minimal paths all take the maximum two hops
and all flow through a select few links in the network and thus creates a bottleneck for minimal
routing. In this workload, each compute node in a router, R1, will communicate to a node within
a paired router that is the maximum two hops away. Another pair of routers that share the same
middle link with the previous pair of routers will be established to fully saturate that center link.
As shown in the example in Figure 36, all compute nodes connected to R1 communicate with nodes
connected to R3 along the blue path. Also, the reverse communication is true, because all nodes
connected to R3 communicate with nodes connected to R1 along the red path. The router pair R2
and R4 are set up in the same manner communicating along the gray and green paths, respectively.
This setup of network communication puts a worst-case burden on the link between routers R2 and
R3 as 4p nodes are creating 2p data flows (where p is the number of compute nodes in the system).
With all nodes paired in this configuration, congestion quickly builds up for all nodes in the system
and limits maximum throughput to 1/2p.

74
Approved for Public Release; Distribution Unlimited.

Figure 36: Worst-case traffic layout for the slim fly topology.

Synthetic workloads generate and inject messages into the network following an input load vari-
able. The load governs the percent of linkspeed to inject messages of a given size into the network.
By providing the load and message size, the simulation can calculate the ns time delay between
message injections such that the injection rate is load% of linkspeed.

Slim Fly Routing Validation: The necessary simulation parameters are disclosed by the IBM-
ETH simulator and replicated in our Slim Fly simulation for an accurate comparison of both UR
and WC workloads using minimal, non-minimal and adaptive routing algorithms. The simulations
are set up to use a 100 Gbps link bandwidth for all links with a latency of 50 ns. The routers
utilize virtual channels, a buffer space of 100 KB per port (equally divided among the VCs), and
a 100 ns traversal delay. Flow control is done with the use of credits, and messages are 256 byte
packets. Simulation time for the IBM-ETH-SF was 200 µs with a 20 µs warmup. In our simulation,
we include the warmup time in the total execution and therefore run the simulation for 220 µs.
The results include minimal, non-minimal, and adaptive routing for uniform random and worst-
case traffic workloads. Our simulation results in comparison with the IBM-ETH-SF results are
presented in Figures 37, 38, and 39. The metric used for comparison is throughput percentage
and is a measure of observed system throughput as a percentage of the aggregate network injection
load. The observed throughput is obtained from our Slim Fly model by performing a sum reduction
to get the total number of packets transferred by all compute nodes, multiplying by the 256 byte
packet size and dividing by the total number of compute nodes.

throughput percent =
observed throughput Gbps

0.71 ∗ 100Gbps
∗ 100 (20)

Slim Fly Minimal Routing Comparison: Figure 37 presents the throughput analysis for the
minimal routing algorithm under input loads varying from 10% to 100% link bandwidth. Focusing
on the uniform random workload case, our Slim Fly model closely matches that of the IBM-ETH-
SF. As expected, the minimal routing algorithm excels under uniform random workloads. Both
simulations show the Slim Fly network throughput matching the injection load from 10% load to
about 95% load, at which point the throughput trails off to roughly 98% throughput at 100% load.
The difference between the two simulators is consistently under 1%. In the worst-case workload
results, the two results are again a close match within 2% difference of one another. Both show
roughly 5.5% throughput utilization from 10% to 100% load.

Slim Fly Non-minimal Routing Comparison: The results comparing throughput for non-
minimal routing are shown in Figure 38. In this case, the results also compare favorably as both

75
Approved for Public Release; Distribution Unlimited.

(a) Throughput (b) Percent Difference

Figure 37: Throughput comparison of minimal routing for uniform random (UR) and worst-case
(WC) traffic workloads. Figures are best viewed in color.

simulators observe less than 2% difference. Under both uniform random and worst-case traffic
routing, the Slim Fly network achieves a throughput equal to the injection load until 50% load
is reached. At this point, the network throughput reaches a bottleneck and maintains just under
half-link bandwidth up to 100% injection load. Non-minimal routing under-performs compared
with minimal routing for uniform random traffic because the maximum path length of all routes
is twice as long at four hops compared with two hops in minimal routing. Therefore, non-minimal
routing reaches congestion in UR traffic at roughly 50% load, roughly half the load of minimal
routing. However, non-minimal routing outperforms minimal routing in worst-case traffic because
of its ability to perform a uniform load balancing of traffic as it selects a random intermediate router
along its path.

Slim Fly Adaptive Routing Comparison: The throughput comparison results for the adap-
tive routing algorithm are shown in Figure 39. In all cases, we set the number of indirect routes,
ni = 3, and balancing constant, cSF = 1. Once again, the observed results for our Slim Fly model
agree with those of the IBM-ETH-SF simulator with no more than 2% difference. In both uniform
random and worst-case traffic workloads, the network throughput matches the injection load until
55% load, at which point the worst-case traffic results reach congestion and are limited at 58%.
The uniform random traffic results continue with optimal throughput and reach nearly full system
throughput at 100% load. Adaptive routing outperforms both minimal and non-minimal routing for
worst-case traffic because of its ability to dynamically select between the minimal and non-minimal
routes.

Slim Fly Validation Visualization: Continuing the analysis, we show visual representations
of router occupancy and message sends and receives for both router LPs and compute node LPs
during the validation simulations. These visualizations provide visual confirmation of correct packet
routing functionality by explaining the low level network statistics that contribute to the Slim Fly’s
observed load thresholds under the synthetic traffic.

The router occupancy metric collects the number of packets sitting in queue waiting for space to

76
Approved for Public Release; Distribution Unlimited.

(a) Throughput (b) Percent Difference

Figure 38: Throughput comparison of non-minimal routing for uniform random (UR) and worst-case
(WC) traffic workloads. Figures are best viewed in color.

open up on the necessary router output port. Since we use VCs for deadlock avoidance, the Slim
Fly router occupancy metric can be further divided into virtual channels with 2 VCs per port per
router used in the case of minimal routing and 4 VCs per port per router used in non-minimal
routing.

Figure 40 presents a number of graphs visualizing the occupancy of all virtual channels for all
ports on all routers in the simulation. All four Slim Fly test cases are from simulation data displayed
in Figure 37, in which we run the 3K-node Slim Fly model using minimal routing for uniform random
traffic. As shown in Table 11, the 3K-node Slim Fly consists of 338 routers with a network radix of
19 and 2 VCs per port. The result is a total of 6,422 ports, each with 2 virtual channels. Figures
40a–40d display the occupancy of VC0 with increasing load from 50% to 100%, and Figures 40e–40h
display the same for VC1.

The 3K-node Slim Fly model experiences little congestion for this traffic pattern until about 90%
injection load, where VC0 sees a uniform distribution of roughly 20% congestion in the network. At
100% injection load, the network begins to reach the buffer space limit as packets enter the network
at an increased rate, further explaining why we see a slight dip in throughput for minimal routing
under uniform random traffic in Figure 37. The VC0 buffer fills up first, because it is always used
for the first hop in a packet’s path. VC0 is always the gate.

In addition to buffer occupancy, the number of message packets sent and received by all routers
and compute nodes is visualized over the simulation time. The results are collected during the same
simulation in Figures 40d and 40h and are displayed in Figure 41. The first noticeable feature is the
large spike in the beginning of the compute node sends (Figure 41a). Occurring at the beginning
of the simulation, this spike is a result of the initial packet burst into the system, which is followed
by a balancing out as the network reaches a steady state. The same phenomenon is reflected as a
slow start in router sends and receives plots in Figures 41c and 41d. These figures all resemble the
uniform random traffic workload being simulated, except for the initial start-up phase.

The added capability of visual analysis of these important network metrics at this fidelity not only

77
Approved for Public Release; Distribution Unlimited.

(a) Throughput (b) Percent Difference

Figure 39: Throughput comparison of adaptive routing for Uniform Random (UR) and worst-case
(WC) traffic workloads. Figures are best viewed in color.

helps detect network congestion but also helps identify the time, location, and effect of congestion
on the entire network simulation.

Extreme-Scale Slim Fly: Here, we validate large-scale Slim Fly networks with 74 K and 1 M
compute nodes to confirm correct model performance at extreme-scale. We again confirm both large-
scale configurations achieve expected performance using all three routing algorithms—minimal,
non-minimal, and adaptive—under both uniform random and worst-case traffic workloads. Both
throughput utilization for each system and average packet latency are shown in Figure 42. The
results follow the same general trend as was observed for the 3K-node Slim Fly verification. Minimal
routing performs at nearly full bandwidth under uniform random traffic. Simulating worst-case
traffic, minimal routing maintains roughly half the throughput achieved with 10% load of uniform
random traffic. non-minimal routing hits congestion at 50% load under both uniform random and
worst-case traffic. Again, this is the result of the non-minimal routing algorithm forcing path lengths
to be twice as long as minimal routing. Adaptive routing achieves better throughput over minimal
and non-minimal routing for worst-case traffic because it has the added benefit of selecting between
the minimal or non-minimal route.

Unlike the 74K-node Slim Fly performance, which trails off to a maximum throughput of 8.2
GBps, the million-node model achieves a maximum of 8.7 GBps. As shown in the Slim Fly network
configuration parameters of Table 11, the million-node configuration has only 19 compute nodes
per router, well below the suggested provisioning of p = bk′

2
c nodes per router. Therefore, the

million-node Slim Fly model does not experience any congestion under uniform random traffic with
minimal routing because there is ample network bandwidth to satisfy the much smaller injection
load bandwidth.

78
Approved for Public Release; Distribution Unlimited.

(a) VC0 50% Load (b) VC0 90% Load (c) VC0 95% Load (d) VC0 100% Load

(e) VC1 50% Load (f) VC1 90% Load (g) VC1 95% Load (h) VC1 100% Load

Figure 40: Router occupancy comparison for simulations as a function of the Router ID and per-
centage of simulation time across different offered loads for virtual channels (VCs) 0 and 1 using
UR traffic and minimal routing with increasing injection load. Figures are best viewed in color.

4.4.1.2 Fat-Tree Validation:

The fat-tree network simulation model used in this paper is an extension of previously validated
work [90]. Previously, the Fat-Tree network was capable of fully provisioned single-rail networks. In
this work, the CODES Fat-Tree model has been extended to include the simulation of pruned Fat-
Tree configurations with multiple rails. In this section we validate the extensions by showing the new
configurations still maintain full bisection bandwidth under a bisection workload. Additionally, we
further validate the CODES Fat-Tree model by comparing results with a physical Fat-Tree system
in a controlled MPI packet latency test.

Fat-Tree Routing Validation: In this validation study we ensure that a model configured
with a pruned Fat-Tree and multiple rails still observes expected full-bisection bandwidth. For this
test we use the single-rail 3,240 node pruned Fat-Tree previous described as the base configuration
and then scale the number of rails to generate models with two, four, and eight rails. The tested
synthetic workload is based on bisection pairing, which establishes unique compute node pairs in
the network to transfer messages. Using static routing in combination with the bisection-pairing
results in each pair of compute nodes having their own distinct path in the fat-tree network to
transfer messages without any contention.

All nodes should have an observed throughput performance equal to the injection load up un-
til 100% link bandwidth, at which point all links of a single-rail network will be fully saturated.
When injecting beyond 100%, each additional rail in the network should provide a corresponding
increase in observed bandwidth above the 100% injection load. These expectations are validated
in Figure 43, which shows the observed network throughput matching the injection load. This
confirms the expected performance for multi-rail networks under ideal workload conditions.

79
Approved for Public Release; Distribution Unlimited.

(a) Compute Node Sends (b) Compute Node Receives

(c) Router Sends (d) Router Receives

Figure 41: Messages sent and received over time for the simulation across different router IDs using
UR traffic and minimal routing using 100% load. Figures 41a and 41b show the number of sends
and receives sampled over the simulation run time for all the compute nodes. Figures 41c and 41d
show the same for all routers in the simulation.

Fat-Tree Network Hardware Validation: Previously, work has been performed to validate
the Fat-Tree simulation model with hardware results using the Trace-R trace replay utility [13].
The experiments were conducted to see how well the simulator predicts run time performance
of synthetic workloads with increasing message sizes and mini application benchmarks [91]. The
simulator results were compared with a 2:1 tapered two level Fat-Tree. The summarized results
showed the Fat-Tree model consistently predicting synthetic ping-pong traffic within 10% error of
hardware with no more than 30% error.

In this test we use the DRP cluster at the Rensselaer Polytechnic Institute Center for Computa-
tional Innovations to validate the accuracy of the CODES Fat-Tree model using the DUMPI trace
replay utility [144]. The DRP is a 64 node Intel based system interconnected via a non-tapered
2-level Fat-Tree network with 56Gbps FDR Infiniband. Testing is performed using the ping-pong
benchmark provided by the MPPTest program. MPPTest is a program consisting of of multiple
MPI message passing routines specifically for accurately measuring MPI performance at a high res-
olution [74]. The ping-pong workload (labeled as “roundtrip” in MPPTest [7]) is a traffic pattern
that first sends a message of selected size from the source MPI process to a selected destination
process. Upon receiving the message, the destination MPI process then sends an acknowledgement
message of the same size back to the source MPI process. The time reported is the end-to-end
latency from the time the first message is generated, to the time the acknowledgment message is
received.

For realistic simulation results, constant latency and overhead delays for the software layer and
hardware devices are extracted from the DRP system for accurate representation in the CODES Fat-

80
Approved for Public Release; Distribution Unlimited.

(a) Injection Load (b) Packet Latency

Figure 42: Distribution of simulation time for the 74K-node Slim Fly model with minimal routing,
UR traffic, and 10% load.

Tree simulation model. Testing with increasing message sizes showed a sharp change in performance
going from 4KB to 8KB message sizes indicating a change in MPI transfer protocol from eager to
rendezvous, so we set the eager threshold in the simulator to 8KB. Sending a zero byte message
between the same source and destination MPI process showed a combined MPI overhead and NIC
delay of 1.25us. In the simulator we use an MPI overhead value of 1us and NIC delay of 250ns.
Router traversal delay is set to 90ns and was extracted from sending a zero byte sized message
between two MPI processes connected to the same switch and subtracting the end time from the
MPI self message found earlier. Finally, the overhead associated with copying messages using the
MPI eager protocol is set to 0.65ns after observing the increase in end time associated with sending
increasing messages from 4B to 8KB.

The network performance of the DRP system is first measured using the MPPTest ping-pong
benchmark workload. The end-to-end latencies are collected for increasing message sizes doubling
from 4B to 32KB sent between two MPI processes. Each process is mapped to a compute node
in the system located the maximum distance apart separated by three intermediate switches. The
ping-pong pattern is repeated and averaged over 2,000 message iterations to alleviate the effect of
performance anomalies. At the same time the ping-pong workload is run through the DRP system,
the DUMPI tracing library is used to record and save the actual ping pong benchmark traffic in a
dumpi trace file. With the necessary latencies and MPI parameters extracted and set in the simu-
lator, each of the collected workload traces are replayed in CODES through a similarly configured
Fat-Tree model to compare end-to-end latency. In order to remove the effects of communication
interference from other active jobs running on the system, test runs of the Ping Pong benchmark
were made during a maintenance day after given solitary access to the system.

Figure 44 presents the average message end-to-end latency for both the DRP system and the

81
Approved for Public Release; Distribution Unlimited.

0 100 200 300 400 500 600 700 800

Offered Injection Rate [% link speed]

0

100

200

300

400

500

600

700

800

O
b
s
e
rv

e
d
 I
n
je

c
ti
o
n
 [
%

 l
in

k
 s

p
e
e
d
] 1 Rail

2 Rails

4 Rails

8 Rails

Figure 43: Verification experiments showing observed network performance while increasing the
number of rails under a synthetic bisection-pairing workload. Both axes show the relative injection
in percent of the link speed (12.5 GB/s).

CODES Fat-Tree simulation. Overall, the simulation results match the trend of the DRP hardware
system. From the 4B message size to 6KB we see a constant increase in latency resulting from the
eager protocol copy overhead. At 8KB the protocol switches and we again see a constant increase
in latency resulting from the increased transmission delays for the larger message sizes. While the
simulation results show very consistant increases, the hardware results show variance resulting in
up to 20% difference with simulation predictions. The differences are believed to be the result of
operating system jitter as the current configuration of the linux operating system for the DRP nodes
does not allow pinning operating system task threads to one specific core. Instead, threads are able
to migrate across cores and can interfere with performance measurements especially at the larger
message sizes where the results show some of the most variance.

4.4.2 Experimental Setup

All networks used in this thesis are configured with the parameters shown in Tables 10 and 11.
Table 11 lists and compares the network configurations of selected Dragonfly-1D, Dragonfly-2D,
single-rail Fat-Tree and dual-rail Fat-Tree topologies. Table 10 lists the Slim Fly configurations.
The 74K and 1M node Slim Fly configurations are used for large-scale analysis and validation of the
Slim Fly model. Each of the remaining network configurations are leveraged in prior the network
performance comparison evaluations and are therefore generated to provide a fair comparsion prior-

82
Approved for Public Release; Distribution Unlimited.

4B 4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB
Message Size

0

5

10

15

20

Av
er

ag
e

M
sg

 L
at

en
cy

 [u
s] hardware

simulation

4B 4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB
Message Size

-30%

-20%

-10%

 0%

 10%

 20%

 30%

D
iff

er
en

ce
 [%

]

(hw-sim)/hw

(a) Round Trip Time

4B 4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB
Message Size

0

5

10

15

20

Av
er

ag
e

M
sg

 L
at

en
cy

 [u
s] hardware

simulation

4B 4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB
Message Size

-30%

-20%

-10%

 0%

 10%

 20%

 30%

D
iff

er
en

ce
 [%

]

(hw-sim)/hw

(b) Percent Difference

Figure 44: Validation results comparing network performance between the physical DRP system
and a similarly configured simulation system using the CODES Fat-Tree model. Both simulation
and hardware perform the ping-pong benchmark pattern between two MPI processes on separate
compute nodes. Subfigure 44a shows the packet end-to-end latencies and Subfigure 44b presents
the error between hardware and simulation.

itizing similar compute node counts of roughly 3,000 nodes. Other parameters such as router radix
are unrestrained to avoid placing design constraints which limit the specific benefits of the different
topologies. Figure 45 provides a visual representation of each 3K node system configuration showing
the overall composition and connectivity of each network topology.

All parameters independent of the network topology such as link speed, buffer space, and router
latency are the same across all six of the 3K node systems to maintain a fair comparison. Also, buffer
spaces are allocated per-vc and per-direction. The system diameter indicates the maximum number
of links between any two compute nodes in the configured system. Max path length indicates
the maximum number of link traversals between any two compute nodes using the selected routing
protocol. For adaptive routing, the max path length is given from the worst-case non-minimal path.
Table entries for local, global and compute node connections are per router. Router Radix Total
describes the commodity type switch used for each configuration and Router Radix Used indicates
how many ports are utilized. Injection bandwidth (total terminal to router links∗link speed) and

83
Approved for Public Release; Distribution Unlimited.

(a) Fat-Tree (b) Fat-Tree-2 (c) Dragonfly-2D

(d) Dragonfly-1D (e) Slim Fly

Figure 45: Visualization of the networks utilized in this paper. Green and blue nodes are routers
(green being routers in the first plane/rail and blue routers being in the second plane/rail, if one
exists). Red nodes are compute nodes.

network bandwidth (total router to router links ∗ link speed) calculations are provided for each
configuration in Tables 10 and 11 showing a simple high level comparison of bandwidth available
for compute nodes to inject traffic into the network and bandwidth available for transferring the
data throughout the network.

4.4.2.1 Slim Fly Model Configurations

It’s important for a network simulator to provide the capability to model a wide range of network
sizes in order to keep up with ever-changing node counts for HPC systems. We test this capability
in the CODES Slim Fly model by constructing and simulating networks from 3K to 1M compute
nodes.

3K-Node Slim Fly Model: This configuration is of particular interest because it yields a total
number of compute nodes that is similar to the number of nodes in the Summit supercomputer
housed at Oak Ridge National Laboratory [133]. Using 338 routers, each with a radix of k = 28
and 9 compute node connections, results in a network size of 3,042 nodes.

84
Approved for Public Release; Distribution Unlimited.

Table 10: Network configurations (Fat-Tree & Dragonfly).

Metric Fat-Tree
Single

Fat-Tree
Dual

Dragonfly
1D

Dragonfly
2D

Approximated System Summit Summit n/a Theta
Network Diameter 6 6 5 7
Max Path Length 6 6 8 12
Avg Path Length 5.79 5.79 4.80 6.51
Levels 3 3 n/a n/a
Pods/Groups 10 20 25 8
Routers per Pod/Group 36 36 16 96
Planes/Rails 1/1 2/2 1/1 1/1
Compute Nodes 3,240 3,240 3,200 3,072
Routers 468 936 400 768
Total Links 9,720 19,440 8,600 11,424
Router Radix Total 36 36 36 48
Router Radix Used 36 36 35 42
Router Latency 90ns 90ns 90ns 90ns
Routing Protocol static static adaptive adaptive
Virtual Channels 1 1 6 8
Buffer Space per VC 64 KB 64 KB 64KB 64 KB
Local Connections 18 18 15 30
Global Connections n/a n/a 12 8
Compute Node Connections 18 18 8 4
Link Speed 100 Gbps 100 Gbps 100 Gbps 100 Gbps
Injection Bandwidth 316 Tbps 632 Tbps 313 Tbps 300 Tbps
Network Bandwidth 648 Tbps 1.55 Pbps 540 Tbps 835 Tbps

85
Approved for Public Release; Distribution Unlimited.

Table 11: Network configurations (Slim Fly).

Metric Slim Fly
3K

Slim Fly
74K

Slim Fly
1M

Network Diameter 4 4 4
Max Path Length 6 6 6
Avg Path Length 3.93
Groups 26 74 326
Routers per Group 13 37 163
Planes/Rails 1/1 1/1 1/1
Compute Nodes 3,042 73,926 1,009,622
Routers 338 2,738 53,138
Total Links 6,253 149,221 4,394,123
Router Radix Total 36 108 324
Router Radix Used 28 82 255
Router Latency 90ns 90ns 90ns
Routing Protocol adaptive adaptive adaptive
Virtual Channels 4 4 4
Buffer Space per VC 64 KB 64KB 64 KB
Local Connections 6 18 73
Global Connections 13 37 163
Compute Node Connections 9 27 19
Link Speed 100 Gbps 100 Gbps 100 Gbps
Injection Bandwidth 297 Tbps 7.0 Pbps 96 Pbps
Network Bandwidth 321 Tbps 7.2 Pbps 323 Pbps

86
Approved for Public Release; Distribution Unlimited.

74K-Node Slim Fly Model: Here, we describe a Slim Fly model at the expected scale of
Aurora, the future supercomputer to be deployed at Argonne National Laboratory. Aurora is
expected to have over 50,000 nodes, which is significantly larger than Summit [1]. This 73,926-node
Slim Fly model is the smallest configuration that can obtain at least 50,000 nodes without exceeding
the p = bk′

2
c restriction for obtaining optimal system throughput. It requires 2,738 routers, each

with a radix of k = 82.
Million-Node Slim Fly Model: Further showcasing the scalability of the Slim Fly model, we

scale the topology over 1 million nodes. To the best of our knowledge, this is the largest simulated
Slim Fly network model. The feasibility of such a large Slim Fly topology must take into account
the requirement of a router/switch containing at least 264 ports. Also, utilizing only 19 node
connections per router leaves a significant amount of bandwidth on the network side of the router
and provides the ability to scale the system up to 6.4 million nodes with up to p=122 nodes per
router. This number of nodes reaches the desired p = bk′

2
c where we still achieve full link bandwidth

throughout the system [31]. Unfortunately, this also raises the necessary router radix k′ to 367.

4.4.2.2 Fat-Tree Model Configuration

Two dual-rail pruned Fat-Tree configurations are generated with similar node counts for testing.
We generated a 3,564 compute node system to approximate the system size of the Summit super-
computer and used for multi-rail performance studies. We also generated a slightly smaller 3,240
compute node system for a closer comparison with the other network topologies. The two configura-
tions are similar except one additional pod of switches and nodes added to generate the 3,564 node
system. A third single-rail version of the 3,240 Fat-Tree configuration is generated for comparison
as well. Each Fat-Tree setup uses 36-port switches with a 90 ns switch traversal delay and one
virtual channel.

4.4.2.3 Dragonfly Model Configuration

We generate one network configuration for both the 1D and 2D Dragonfly models. Again, for fair
comparison with Slim Fly and Fat-Tree, the priority is focused on generating systems with just
over 3,000 nodes. Without placing any other restraints on each Dragonfly model, we end up with a
Dragonfly-1D configuration with 3,200 compute nodes and a Dragonfly-2D configuration with 3,072
compute nodes. The Dragonfly-2D configuration has a smaller number of groups than Dragonfly-1D
and Slim Fly but many more routers per group resulting in roughly double the number of routers
than Dragonfly-1D and Slim Fly.

4.4.2.4 Synthetic Workloads

The analysis of network performance benefits greatly from the existence of workloads that represent
real system use cases. These representative workloads can be broken down into two categories,
namely synthetic workloads and trace workloads. Synthetic workloads are manually constructed
by the user to replicate specific activity observed from applications running on the system. In this
section we describe the communication patterns of a select number of synthetic workloads used to
quantify performance of the network topologies.

The rate at which each synthetic workload process generates and injects messages into the network
is governed by an input load variable. The load variable is in the form of a percentage ranging

87
Approved for Public Release; Distribution Unlimited.

(a) Uniform Random (b) Bisection

Figure 46: Communication pairing diagrams showing the level of communication between all MPI
processes in uniform random, and bisection workloads. Sending process IDs are on the left axis
and receiving process IDs are on the bottom axis. Note, the bisection heapmap lines are faint due
to resolution limitations of the image coupled with the very high number of MPI ranks used in this
graphic.

from 0 − 100, and dictates the desired percentage of link speed to inject the packets into the
network. Knowing load, each simulated synthetic workload process repeatedly generates synthetic
messages of size msg size to be injected into the network at time send time. The send time is
calculated following equation 21. The result of the quotient is the exact time in nano seconds
that a message of size msg size needs to be sent to achieve a constant link utilization of load ∗
link bandwidth. The Rand Exp(x) function provides a slight deviation from the exact timing by
returning an exponentially distributed random number with mean x.

send time = last send time+Rand Exp(
msg size

load ∗ link bandwidth
) (21)

Uniform Random: Uniform random is a workload with communication load that is well bal-
anced across the entire network typically resulting in high bandwidth utilization. Each destination
is generated from a uniform distribution resulting in a random destination MPI process ID between
0 and P −1 where P is the total number of MPI processes in the simulation. The generated random
destination must be different from the source, otherwise a new destination is sampled until satisfied.
A communication pairing heatmap for an example uniform random simulation on Slim Fly with
each process sending a total of 100 messages is presented in Figure 46a. The figure shows what looks
like white noise as each sending MPI rank sends 100 messages to random destinations. Each MPI
process injects one message at a time into the network with a delay that follows the user provided
injection load for the user selected message size.

Bisection: In a bisection workload, all compute nodes are divided into two equal groups and
paired to communicate with one and only one compute node in the opposite group. In the common
minimal bisection, the bisecting of compute nodes into two equal partitions is done such that the
number of links between each partition is the minimum [70]. It’s arguable as to how representative
a true minimum bisection workload for the Slim Fly and Dragonfly networks would be of a real

88
Approved for Public Release; Distribution Unlimited.

(a) 1D Nearest Neighbor (b) 2D Nearest Neighbor (c) 3D Nearest Neighbor

Figure 47: Communication pairing diagrams showing the level of communication between all MPI
processes in one, two, and three dimensional nearest neighbor workloads. Sending process IDs are
on the left axis and receiving process IDs are on the bottom axis. Note, the heatmap lines are faint
due to resolution limitations of the image coupled with the very high number of MPI ranks used in
this graphic.

application workload. To maintain the same logical communication mapping across each topology
we adopt a simple ”middle cut” bisection which generates two equal groups of compute nodes by
splitting compute nodes in half using their node IDs. Compute nodes are then paired to communi-
cate using an offset of N/2 following Equation 22 where N is the total number of compute nodes in
the network and % is the modulo operator. An example communication heatmap for the 3K node
Slim Fly topology is shown in Figure 46b confirming the N/2 mapping offset. MPI processes are
mapped one-to-one to compute nodes and transfer one message at a time according to the input
load following the bisection node pairing.

destination id = (source id+
N

2
)%N (22)

Nearest Neighbor: Nearest neighbor traffic replicates the communication patterns typically
observed in grid/mesh based applications. The approach for solving equations on a grid in parallel
across many processes usually follows a domain decomposition where each MPI process gets a piece
of the overall domain and is required to transfer the boundaries of that simulated domain with
nearest neighbors. In this work we consider the case where the simulated grid has one, two, and
three dimensions that need to be exchanged between processes with respective grid sizes shown
in Equations 23, 24, and 25. Example communication heatmaps for 1D, 2D, and 3D workloads
are shown for the 3K Slim Fly in Figure 47 showing the mapping offset of the dimensions in the
simulated domain to the compute node IDs. At each sending iteration, the workloads send two
messages per dimension for the neighbors in the positive and negative direction of each dimension.
Again, the input load value controls the time between each dimension exchange in order to maintain
the correct % utilization of injection bandwidth.

1D Grid: N × 1 (23)

89
Approved for Public Release; Distribution Unlimited.

(a) AMG (b) Crystal Router (c) Multigrid

Figure 48: Communication pairing diagrams showing the level of communication between all CPU
MPI processes in each CPU application. Sending process IDs are on the left axis and receiving
process IDs are on the bottom axis.

Table 12: CPU workload comparison.

Workload Processes End Time Msgs Msg Size Waits
AMG 1,728 0.50ms 2.2M 0.79KB 101.1K
CR 1,000 258.48ms 39.9M 7.95KB 39.9M
MG 1,000 5.51ms 0.5M 9.30KB 0

End time is the virtual time to replay the workload through the Fat-Tree
configuration. Msg size is the average size of all messages transfered
across all processes.

2D Grid: (N/6)× 6 (24)

3D Grid: (N/9)× 3× 3 (25)

4.4.2.5 Application Trace Workloads

Trace workloads, on the other hand, are generated from an actual execution of an application on a
real hardware system and are therefore able to replicate the activity of that application in a sim-
ulated environment. In this section, we describe select trace application workloads extracted from
both neuromorphic and CPU architectures used in the next chapter to benchmark the performance
of each network topology.

CPU Three trace workloads are used from common HPC scale CPU applications. All three
applications are part of the DOE Design Forward initiative [55]. Conforming to the DUMPI trace
format [142], each workload is read in from file by the CODES framework and replayed over the
configured HPC network system allowing network performance analysis studies in response to re-
alistic traffic. The three CPU workloads considered are Algebraic Multigrid, Crystal Router, and
Multigrid each of which emphasize a different load on the HPC network.

DUMPI: DUMPI traces provide detailed information on the type of MPI point-to-point and
collective operations executed by the application. CODES’ MPI simulation layer ingests these

90
Approved for Public Release; Distribution Unlimited.

operations and replays them on the network models. This layer acts as a bridge between the
network workload and interconnect model, and is responsible for maintaining the correct causality
order between messages/events of the trace [127]. The DUMPI traces in this paper are run with
compute times disabled. In this case, the collected compute times within each trace are ignored
and messages are sent without observing any corresponding compute delay.

The communication traces for this work are selected from the Design Forward program because
they represent a variety of communication patterns and intensities at varying application scales [55].
These application traces are important tools for next generation interconnection network develop-
ment because they provide examples of the network workload requirements for the Department of
Energy. In the following, we provide details of these applications and communication traces, which
provide the workload for the evaluations of the various HPC network configurations.

Design Forward Trace – Algebraic Multigrid: AMG application trace: AMG is a parallel
Algebraic Multigrid solver mini-application derived from the BoomerAMG solver [84]. The AMG
solver approach is used for linear systems on unstructured grids and was developed at LLNL [47].
AMG decomposes the data grid into 3D chunks, resulting in a 3D nearest neighbor communication
pattern among processes as shown in Figure 48a. Our application trace of AMG, collected for 1,728
MPI processes, represents the communication in a single V-cycle of the multigrid sequence. MPI
operations account for 52.9% of its run time.

Design Forward Trace – Crystal Router: Crystal Router application trace: Crystal Router
represents the many-to-many communication pattern of the highly scalable Nek5000 spectral ele-
ment code developed at ANL [150]. The MPI ranks in Crystal Router perform large data transfers
in the form of a n-dimensional hypercube. Crystal Router is a very structured and synchronization
heavy workload. In this work we use the trace for 1 000 MPI ranks which shows an overall commu-
nicating time of 68.5% of the application’s runtime. MPI processes each communicate with 10 other
processes, sending and receiving a total of 4000 messages at roughly 5 KB each with synchronization
after each message transfer.

Design Forward Trace – Multigrid: Multigrid application trace: The Geometric Multigrid
production application implements a single production cycle of the elliptic solver used in BoxLib [54],
an adaptive mesh refinement code typically for structured grids. Multigrid is similar to the AMG
mini-app but each use a different solver algorithm. In this case, processes communicate along the
diagonals, which results in many-to-many communication. The two Multigrid communication traces
used in the paper have been executed on 10,648 and 110,592 MPI ranks with roughly 5% and 4%
of runtime spent in MPI communication respectively.

For Multigrid, extrapolation of statistics from application analysis available online for the 1K
MPI rank case [54] shows each MPI process in Multigrid communicates with up to 2.2% of the total
MPI processes in the simulation. Each one of these communication pairings sends and receives a
total of 104 messages varying in size from 8 B to 9.4 KB. One major difference between Multigrid
and Crystal router is that Multigrid has much less synchronization sending large amounts of data
in many bursty phases.

In summary, Table 12 shows Crystal Router is a highly synchronized application that consistently
injects data over a longer period of time. The one-to-one ratio of msg transfers to waits makes Crys-
tal Router a latency sensitive workload. Multigrid, in comparison, can be classified as a bandwidth
sensitive workload because it has no synchronization between MPI processes and sends a smaller
number of larger messages. Finally, AMG is the most network resource heavy application injecting
relatively small messages in a short amount of time with a decent amount of synchronization.

91
Approved for Public Release; Distribution Unlimited.

NeMo

Simulation

Chip Scaling

Inter-chip
Workload Collector

Network.conf

IBM TrueNorth

Deployment

Compass
Ns1e

Ns1e16
Ns16e

Development

EEDN

Configuration
Network.dat

Spikes.dat

CODES
Workloads

CPU
AMG

CR
MG

Neuro
Hopfield
From File

Compute Nodes
CPU

Neuro

HPC Network
Dragonfly
Fat-Tree
Slim Fly

Figure 49: Integration of IBM TrueNorth, NeMo, and CODES ecosystems to form the large-scale
neuromorphic systems simulation workflow. The red dashed boxes indicate the various entry points
for users to setup a large-scale neuromorphic simulation.

Neuromorphic Workflow and Trace Generation: In this section, we describe the simulation
framework being used for exploring the design space of HPC-neuromorphic systems. We present a
complete workflow capable of taking predefined spiking neural networks, scaling them up beyond
a single chip and simulating them on a large-scale neuromorphic system to study application and
system performance. A high level overview of the workflow is shown in Figure 49. The workflow is
composed of three loosely integrated components including the IBM TrueNorth, NeMo and CODES
frameworks. The exploration process requires an ensemble of simulation runs to analyze the per-
mutations of different parameters where both HPC and neuromorphic architectures are modeled at
a detailed fidelity.

TrueNorth: The first component in the workflow is the IBM TrueNorth Neurosynaptic Sys-
tem [145]. TrueNorth is a currently available neuromorphic processor capable of deploying neural
network applications with up to 1M neurons. Using the TrueNorth ecosystem we can generate
realistic neuromorphic application workload traces.

NeMo: The second component to the workflow is NeMo, a general purpose neuromorphic pro-
cessor simulator. NeMo [139] is a simulation model leveraging the high-performance and massively
parallel Rensselaer Optimistic Simulation System (ROSS) discrete-event simulation framework [36]
and validated against the IBM TrueNorth Simulator. In addition to simulating the TrueNorth style
neuromorphic processor, NeMo provides the ability to read in and simulate applications developed
within the IBM TrueNorth ecosystem. From there, both custom NeMo developed neuromorphic
applications as well as TrueNorth applications can be scaled to run on thousands of chips utilizing
NeMo’s chip-scaling capability.

NeMo is able to generate partially synthetic multi-chip workloads for the purposes of bench-
marking novel processor designs. These multi-chip benchmarks are created through interpolation
of existing models. NeMo extracts the communication between cores to generate an approximation
of a multi-chip neural network. If the number of desired virtual chips is greater than or equal to
the number of physical neurosynaptic cores, NeMo simply splits the core-to-core communication
across that many chips. For smaller numbers of simulated chips, NeMo will generate chip-to-chip
communication based on the underlying core communications. For benchmarking network traffic,
this is a reasonable approach, as the traffic of trained classification spiking neural networks tends to

92
Approved for Public Release; Distribution Unlimited.

be extremely structured, as observed in other distributed spiking neural network research [38], [39].
This is in contrast to what is observed when simulating biological simulations of spiking networks,
where traffic is generally homogenous and complex [157]. If the underlying model is constructed in
NeMo, rather than imported from a trained TrueNorth network, NeMo’s multi-chip simulation will
produce complete chip-to-chip traffic using the underlying synthetic neuromorphic model.

A limitation of NeMo is that it lacks the ability to simulate inter-chip communication through an
external network such is the case in large-scale HPC systems. When inter-chip spikes are detected,
NeMo routes them instantaneously to their destination. We address this limitation by using the
HPC network models provided by CODES, as explained in the next section. To allow for external
processing of inter-chip communication, NeMo collects the chip-to-chip connections as well as the
time dependent spiking information, computes the average number of spike transfers per connection
per tick, and saves it all to file. The result is a neuromorphic many-chip communication workload
representing the average number of spikes transferred between all chip connections during one tick of
execution. This serves as an input to the CODES network simulation framework, which is described
next.

CODES: The final component in the workflow is the CODES framework for HPC network sim-
ulations. Two new options for running neuromorphic workloads have been added to the CODES
HPC network simulation toolkit. The first feature allows CODES to read in inter-chip communi-
cation data files to accurately replay real neuromorphic workloads in an HPC environment. In this
approach, CODES leverages a NeMo generated input file to establish the network of neuromor-
phic chips, their connections, and their number of spikes transferred to each connected chip over
the length of the simulation. When inter-chip spikes are observed, they are sent in an MPI Isend

and routed through the network to their destination chip. Alternatively, a second feature allows
the modeler to run a fully synthetic neuromorphic workload based on a hopfield style neural net-
work [85]. Following this type of neural network, in which all neurons are fully connected, results in
all-to-all communication between chips. During each 1ms tick, each chip sends a user-configurable
number of spikes to all chip destinations using the MPI Isend operation.

Application Development: Currently, modelers have three different points of entry into the neu-
romorphic HPC workflow, each providing a different level of detail/accuracy. First, neural network
applications can be generated using the IBM TrueNorth development platform. This level provides
an easy adoption by TrueNorth developers. Entering at this level benefits from the data being
generated from a real application source. However, this approach requires knowledge of and access
to the TrueNorth specific hardware and software systems.

Modelers without any knowledge of TrueNorth can enter the workflow by generating a neu-
ral network workload within NeMo. Developing an application within NeMo allows for custom
neuromorphic hardware constraints but requires learning the NeMo development API. Finally, a
neuromorphic workload can be constructed at a much higher level of abstraction using the CODES
framework. CODES specifically deals with only the inter-chip communication. Therefore, if the
modeler understands their neural network application in terms of number of connections per chip,
and number of spikes per tick transferred over those connections, they can implement a strong
application workload approximation at scale directly. Additionally, if the connections and spiking
data is available, modelers can convert the data to the CODES neuromorphic input file format to
be read and replayed over the network.

When mapping the virtual neuromorphic cores to simulated chips we use a simple contiguous
placement approach. Sawada et. al. [145] describe the IBM heuristic placement algorithm which

93
Approved for Public Release; Distribution Unlimited.

(a) MNIST (b) CIFAR (c) Hopfield

Figure 50: Communication pairing diagrams showing the level of communication between all neu-
romorphic chips in each neural network application. Sending chip IDs are on the left axis and
receiving chip IDs are on the bottom axis.

Table 13: Neuromorphic workload comparison.

Workload Chips Connectivity Spikes/Tick MB/Tick Waits
MNIST 1234 15 layers 577K 4.4MB 0
CIFAR 1024 15 layers 647K 4.9MB 0
Hopfield 1024 all-to-all 10.2M 80MB 0

A tick is 1ms of simulated time.
optimizes the placement of virtual neurons to the TrueNorth hardware in order to minimize message
travel distance. The algorithm is optimized for placing virtual cores on hardware that uses a 2D
connectivity of chips. However, we aren’t using a 2D connectivity of chips. We are using, dragonfly,
Fat-Tree and Slim Fly connectivity of chips and opt for a simple linear scaling and placement
approach which is non-optimized but provides a consistent placement for many chips connected via
Dragonfly, Fat-Tree, and Slim Fly topologies. Therefore, our results can be seen as a non-optimized
or possibly even worst-case outcome. We created two trained neural network trace workloads and
one synthetic workload to test the simulated distributed neuromorphic hardware systems. Using
the IBM TrueNorth EEDN framework [61], we trained two convolutional neural networks based on
common neural network datasets, MNIST and CIFAR. These applications were then imported into
NeMo, scaled to thousands of chips, and simulated to obtain theoretical large-scale communication
workloads. Starting from real TrueNorth neural network applications, we are able to generate
approximations of traffic produced by potential large distributed neural networks. The following
neuromorphic workloads are studied in this work.

Neuromorphic Workload – MNIST: MNIST is a dataset containing 28x28 pixel images of
handwritten digits zero through nine [108]. The MNIST workload used in this study is a convolu-
tional network trained on the MNIST dataset to classify handwritten digits. This network workload
is of interest because it leverages the common convolutional neural network structure. MNIST can
also be considered a gold standard benchmark for neural networks as a number of different imple-
mentations and results have been very well documented. For the implementation, we are using a
prebuilt MNIST configuration provided in the set of IBM examples. The network consists of 15

94
Approved for Public Release; Distribution Unlimited.

layers of neurons using 2,468 neurosynaptic cores which is roughly 60% of one TrueNorth chip.
For the large-scale neuromorphic studies, we have scaled the workload from 1 chip to 1234 chips.
Figure 50a presents a heatmap showing the layered connections between chips in the network.

Neuromorphic Workload – CIFAR: CIFAR is a much larger and complex image dataset
containing 32x32 pixel images of objects that belong to one of 100 different classes [103]. The classes
include various animals, foods, and inanimate objects. The workload used in this study is again,
a convolutional neural network implemented in the IBM TrueNorth ecosystem and provided as an
IBM generated example. The network consists of 15 layers of neurons using 4,044 neurosynaptic
cores, totaling roughly 99% of one TrueNorth chip. The CIFAR workload again, represents the
very popular convolutional network approach, but the increased size and complexity of the input
data results in a more dense connectivity between layers as compared to MNIST. For the large-scale
neuromorphic studies, we have scaled the workload from 1 chip to 1024 chips. Figure 50b shows a
heatmap indicating the different layers and connections between chips in the network.

Neuromorphic Workload – HF: The third network workload is a synthetic implementation of
a Hopfield network. We have chosen Hopfield because it represents another commonly used neural
network approach posing a different communication workload from the TrueNorth implementations
of MNIST and CIFAR. Unlike the layered connectivity of the CIFAR and MNIST convolutional
networks, the Hopfield network consists of one layer of fully connected neurons [85]. The high degree
of connectivity poses it’s own concerns for large-scale HPC networking and therefore an interesting
case to study. The Hopfield network is also a recurrent network, and unlike the convolutional net-
works of CIFAR and MNIST, TrueNorth does not currently support recurrent networks. Therefore,
we implemented a synthetic representation of the Hopfield network workload at the HPC network
level within the CODES framework. We configure the Hopfield workload to utilize all neuromorphic
chips in each simulated HPC system configuration. For comparison with the MNIST and CIFAR
workloads, a chip connectivity heatmap for the Hopfield workload running on 1024 chips is provided
in Figure 50c along with workload details in Table 13. While Hopfield has more data transfered
per tick than CIFAR and MNIST workloads, its communication spans the entire network following
all-to-all connections instead of tightly grouped layered connections as seen in the convolutional
workloads. Note, the data values presented in Table 13 are aggregate totals for the entire workload
and not per MPI rank.

4.4.3 HPC Network Model Evaluations

We first start off with a study analyzing the scaling and run time performance of the discrete-event
simulation framework used to perform the network evaluations. Achieving high performance from
the underlying simulation framework is key to enable the large ensembles of runs necessary for an
exhaustive set of results. From there, we focus on the individual performance of the Slim Fly and
Fat-Tree topologies. For Slim Fly, we look at the effect of routing algorithms on CPU application
traces on 3K node and 74K node systems. For Fat-Tree, we focus on answering questions regarding
the benefits of a multi-rail configuration by performing experiments on rail scaling, job placement,
and scaling up compute power per node.

Finally, we get into studies focused on comparing the performance of similarly configured Dragon-
fly, Fat-Tree and Slim Fly networks. First, we perform a load analysis to see how well the networks
are able to respond to increasing message injection rates. Then, we focus on workload specific
performance as we study run times for synthetic, CPU and neuromorphic application workloads,

95
Approved for Public Release; Distribution Unlimited.

as well as interference of CPU and neuromorphic workloads running in parallel. Finally, a cost
analysis is computed to provide a picture of performance per dollar for each network topology.

4.4.3.1 Discrete-Event Simulation Analysis

Performing HPC network analysis can quickly result in hundreds or even thousands of executions
as we try to investigate many independent variables such as routing algorithms, workloads, job
mappings, etc. The ability to execute a fixed problem on increasing numbers of resources provides
the opportunity to accelerate discovery. In this section, we study the simulator performance of the
Slim Fly network model, in terms of node scaling and clock cycle analysis, to show the efficiency of
the model in using available compute resources and speeding up the discovery process.

Scaling Analysis: In this section, we present the strong-scaling performance analysis of the
extreme-scale 74K and 1M-node configurations of the Slim Fly network model using an Intel Xeon
cluster at Rensselaer Polytechnic Institute (RPI). The system has 34 nodes, each node consisting of
two 4-core Intel Xeon E5-2643 3.3 GHz processors and 256 GB of RAM. We scale the simulations
from 16 processes to 128. Each execution of the 74K-node Slim Fly model is allocated with 8
MPI ranks per node, while the million-node model is allocated with 4 because it’s larger memory
footprint requires at least 4 nodes. Following the same simulation parameters as in previously
described, we use 100 Gb/s link bandwidth with a latency of 50 ns. Routers utilize virtual channels,
a buffer space of 100 KB per port, and a 100ns traversal delay. Messages are broken down into 256 B
packets and simulations are executed for 220µs of virtual time. Finally, all simulations are executed
using minimal routing, uniform random traffic, and an injection load of 10%.

Additionally, ROSS uses simulation specific parameters that can be used to tune the simulation
performance by controlling the frequency of global virtual time (GVT) calculation [35]. These
parameters are the “batch” and “gvt-interval.” The batch size is the number of events the ROSS
event scheduler will process before checking for the arrival of remote events (events issued from
other MPI ranks) and anti-messages (messages indicating an event was issued out of time stamp
order and needs to be rolled back in optimistic execution). The GVT interval is the number of
times through the main scheduler loop before a GVT computation will be started. The default
values “batch=16” and “gvt-interval=16” are used in the optimistic event scheduling simulations
and the default lookahead value of 1 is used in the conservative executions.

The scaling performance is evaluated using several measurements that provide insight into how
well the Slim Fly model performs as a large-scale parallel discrete-event simulation. The following
measurements are collected:

• Simulation Run Time: The real-time taken to complete the simulation on the cluster.

• Packet Rate The total number of simulated network packets successfully transfered divided
by the runtime of the simulation.

• Event Efficiency: Measured as a percentage, the efficiency provides insight into how much
work is being performed in processing the forward events. Instead of using traditional state
saving techniques, ROSS uses reverse event handlers that undo events executed out of order.
This technique saves memory by not having to save the state but requires extra compute to
unroll the events processed out of order [25]. The efficiency is computed using Equation 26.

96
Approved for Public Release; Distribution Unlimited.

(a) Running Time (b) Packet Rate

(c) Optimistic Efficiency (d) Total Events

Figure 51: Million-node compute scaling analysis simulating 100 µs using minimal Routing, UR
traffic, and 10% network load. Figures are best viewed in color. Added result for sequential
execution.

• Total Events: Total events collects the total number of completed events in both the forward
and reverse directions.

• Memory Consumption: Memory consumption measures the physical amount of system mem-
ory required to initialize the model and run the simulation.

• Slowdown: Slowdown is a measurement indicating how much slower the simulation is compared
to the real-world experiment being modeled. For example, a simulation taking 1000 seconds
to simulate 10 seconds of network traffic has a slowdown of 100.

efficiency = 1− rolled back events

total events
(26)

As shown in Figure 51, utilizing optimistic event scheduling results in solid compute performance
speedups for both the Slim Fly million-node model and the 74K-node model. The largest packet
rate is achieved running the 74K-node Slim Fly model on 128 MPI ranks, executing 2.3 million
network packets per second and processing 543 million discrete events. Not far behind, the million-
node model achieves a rate of 1.9 million simulated packets per second processing 7 billion events.

97
Approved for Public Release; Distribution Unlimited.

(a) Memory Consumption (b) Time Slowdown

Figure 52: Million-node memory and time scaling analysis simulating 100 µs using minimal Routing,
UR traffic, and 10% network load. The time scaling shows the slowdown factor of simulation
compared to real hardware as the number of MPI ranks increases. Figures are best viewed in color.

Additionally, with an 8x increase in compute performance, the 74K-node and 1M-node models
achieve 6.1x and 8.3x improvements respectively in run time. Comparing with sequential execution
on only one node, optimistic execution achieves a 12x improvement with 16 nodes. Conservative,
on the other hand, achieves only a 1.7x speedup for the 1M-node model and actually gets worse for
the 74K-node model at .85x speedup.

The super linear speedup of the optimistic 1M-node model is a result of memory consumption
during the 16 rank execution. As can be seen in Figure 52a, at 16 ranks the 1M-node model
consumes 1001GB of memory. Taking into account memory used by the operating system and
other resident background tasks, the 1024GB of total available memory provided from the four
nodes is closely maximized. Increasing the number of nodes in the simulation provides relief from
the memory pressure. Specifically, going from 16 ranks on four nodes to 32 ranks on eight nodes,
we see a super linear 2.2x improvement in runtime with only a 3% increase in memory footprint
for the 1M-node model. Ignoring the speedup due to the memory footprint, we can calculate the
speedup using 128 nodes from the 32 rank case to be 3.75x.

A direct cause for the strong compute scaling results for optimistic event scheduling is the uniform
random workload. The workload optimally distributes the simulated network packets across the
network, resulting in a balanced workload across all MPI ranks. This balanced workload helps
reduce the chances of one or more of the MPI ranks getting ahead of others in virtual time, executing
events out of order, and requiring costly rollbacks. Furthermore, the mapping of 7 billion events to
128 MPI processes translates to each process staying saturated with events and leads to an event
efficiency above 99%. Running the smaller 74K-node Slim Fly configuration on as many processes
leads to a drop in event efficiency because of less available work. At 128 MPI processes, the smaller
74K-node Slim Fly model has a 3% lower event efficiency than does the million-node model but
manages to execute packets at a 20% faster packet rate. The smaller number of packets per PE in
the 74K-node model translates to less overhead reordering discrete events to maintain timestamp
order but also translates to less work mapped per PE, and as a result, only achieves a 6.8x increase
in performance at 128 MPI processes with an 8x increase in compute.

The last measurement analyzed is the slowdown of the simulation model, shown in Figure 52b.

98
Approved for Public Release; Distribution Unlimited.

Slowdown indicates how far away the simulation runtime is from executing workloads in real-time.
In the context of our scaling tests, real-time is the 100µs length of the uniform random workload.
Starting with 16 process, simulation of the 100µs workload takes a total of 1,640s for the 1M-node
model and 73s for the 74K-node model. Therefore at 16 processes the models are 160 million and
7.3 million times slower than real-time execution. Following the curves in Figure 52b, the best
performance for both models is achieved at 128 nodes where the simulations are 20 million and
1.2 million times slower than real-time execution. In order to improve analysis and development of
future network systems, it’s vital to improve the execution time of these models to closer approach
real-time execution and allow for simulation of much longer workloads in a reasonable amount of
time.

4.4.3.2 Clock Cycle Analysis

In order to understand the performance of the Slim Fly model within the context of the underlying
discrete-event simulation engine, this section sheds light on the tasks during which the model
spends the majority of its clock cycles. Figure 53 presents four area plots showing the distribution
of time the 74K-node Slim Fly model simulation spends in each phase of the ROSS discrete-event
computation when using optimistic or conservative event scheduling protocols. This study utilizes
a 220 µs virtual time simulation using minimal routing under uniform random traffic with an
increasing number of MPI ranks (PEs). Figures 53a and 53b present data for the model under
optimistic event scheduling while Figures 53c and 53d present the conservative event scheduling
execution results. Within the figures, the timings for each compute task are stacked on top of
one another so the vertical length of each colored section indicates the time spent performing the
associated task for the execution with the corresponding x-axis number of ranks. The max height
of all stacked color sections represents the sum of all compute tasks for the execution with the given
number of ranks. Finally, the optimistic simulations use a batch size of 16 and GVT interval of 16,
and the conservative executions use a lookahead of 1.

Focusing first on the time spent per node in the optimistic execution, we see in Figure 53a that
the Slim Fly model scales well, roughly cutting its total time spent in the compute tasks in half
for each doubling of MPI ranks allocated. Moving on to Figure 53b we see that the total time
to completion stays fairly constant with a slow upwards trend in response to increasing MPI rank
counts. The distribution of computation by task starts off at 2 ranks spending the majority of the
time making forward progress processing events. This trend is consistent regardless of the number
of MPI ranks utilized. In addition, the distribution of time spent in each aspect of the simulation
stays constant for optimistic scheduling as the number of MPI processes increases. This denotes
an ideal distribution of events to LPs, and even further, an ideal distribution of LPs to PEs. This
characteristic allows the simulation to scale strongly as there is an equal amount of work for each
processor, preventing the case where some processors have less work. Less work causes the PE to
advance its local time further than the global virtual time. The result is a much higher chance of
processing an event out of order and forcing a large number of primary and secondary rollbacks.

Note, at 16 ranks, there is a unique drop in total compute time. Using 16 ranks appears to be the
sweet spot balancing the tradeoffs of the default parameters of GVT-interval=16 and batch=16,
which allows each processing element to freely execute events far enough in the future without
getting too far ahead of others and computing events out of time-stamp order. Moving above 16
ranks, time spent computing GVT increases as it takes more time to synchronize global time across

99
Approved for Public Release; Distribution Unlimited.

(a) Optimistic Per Node Time (b) Optimistic Total Time

(c) Conservative Per Node Time (d) Conservative Total Time

Figure 53: Distribution of simulation time for the 74K-node Slim Fly model with minimal routing,
UR traffic, and 10% load. Per node time is the average time each node spent in each task while
the total time is the average multiplied by the number of MPI ranks in the simulation. Figures are
best viewed in color.

the growing number of process. Also, starting at 32 ranks, the time processing rollbacks increases
which indicates our load distribution per rank is varying, due to less total work available per node.
All in all, the Slim Fly model excels under optimistic event scheduling.

In conservative event scheduling using a lookahead value of 1 and starting with 2 MPI ranks, we
see a large portion of the Slim Fly model compute cycles spent in GVT. Unlike optimistic schedul-
ing where each PE can maintain its own local time and process events accordingly, conservative
execution forces all PEs to maintain the same virtual time, essentially executing in a semi-lockstep
manner. This event scheduling guarantees that no messages are processed out of order, but it re-
quires more interaction from GVT, and as shown in Figure 53c results in processors being blocked
from productive event processing. Moving from 2 to 8 MPI ranks, the execution time decreases
because there is enough work per processor to keep busy between each execution of GVT but at
the same time performing GVT computation slightly rises. At 16 MPI ranks, the amount of work
available for the number of processes decreases to the point that GVT must intervene more often
to keep the processes in order, so we experience a large increase in GVT cycles. As the number
of MPI processes increases, so does the number of number of PEs the event scheduler must keep
locked at the same virtual time. This situation inevitably leads to PEs sitting idle waiting for GVT

100
Approved for Public Release; Distribution Unlimited.

to advance the time window.

4.4.3.3 Slim Fly CPU Trace Evaluation

In this study, we investigate the performance of the Slim Fly network in response to real application
workloads and the effects of routing algorithms. Both Crystal Router and Multigrid application
workloads are executed on the 3 K and 74 K node Slim Fly systems while performance metrics are
collected to compare the performance of minimal, non-minimal and adaptive routing algorithms.
All network parameters such as link speed and router buffer sizes are the same as in previous
experiments except now a packet size of 4 KB is used. The specific application workloads used in
this study are a 1K MPI rank Crystal Router trace as well as 10K and 110K rank Multigrid traces
as previously described.

The following metrics are studied in this section:

• Observed Bandwidth: Observed bandwidth measures the rate at which each node is able
to inject data into the network. Each compute node calculates the observed bandwidth by
dividing the total amount of bytes transferred by the total time spent transferring the data.

• Average Congestion: The average terminal congestion delay quantifies the amount of time
(in microseconds) a compute node spends with its NIC’s buffers completely filled. Lower is
better, indicating less injection congestion.

• Average Packet Latency: Average latency describes the average source to destination delay of
all packets injected per compute node.

• Average Hops: Average hops collects the average number of links traversed within the network
by each packet per compute node. It does not include the compute node injection link.

CDF plots are chosen to visualize the results data because they provide robust analysis for large
data sets that have a high variance in data values. Within the CDF figures, each plotted line
corresponds to the values for all compute nodes in that given simulation. Each (x; y) coordinate
along a plotted line indicates the percentage y of compute nodes that took on a value equal to or
less than x. Portions of a line that have a very small slope (horizontal line) indicate few compute
nodes, if any, took on values within the given range of x values. On the other hand, a very high
slope (vertical line) indicates many compute nodes took on similar x values.

3K-Node Slim Fly: Figure 54 presents the results for the 1 K MPI rank Crystal Router ap-
plication running on the 3 K Slim Fly network under minimal, non-minimal and adaptive routing
algorithms. The simulated 1 K MPI ranks are contiguously mapped to compute nodes at a ratio of
1:1, leaving 2,042 nodes in the system unallocated and sitting idle. Focusing first on Figure 54a,
we can see that the 1K Crystal Router trace performs best under minimal routing where it fin-
ishes 7.96ms faster than adaptive for a 3.1% improvement, and 11.2ms faster than non-minimal
routing for a 4.3% improvement. Moving on to average number of hops per packet in Figure 54b, we
see minimal routing has a mean average hop count improvement of roughly 47% over non-minimal
and adaptive routing protocols.

Due to the large amount of synchronization and the few number of messages transfered between
each synchronization barrier, the amount of congestion in the network for the Crystal Router
application is low regardless of routing algorithm. As shown in Figure 54d, minimal routing, which

101
Approved for Public Release; Distribution Unlimited.

252 254 256 258 260 262
End Time [ms]

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

[%
]

minimal max: 251.09

nonminimal max: 262.26

adaptive max: 259.0

minimal nonminimal adaptive

(a) Simulation End Time

3.0 3.5 4.0 4.5 5.0 5.5 6.0
Avg Hops

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

X 3.198 X4.779

X4.73

minimal nonminimal adaptive

(b) Packet Hops

700 800 900 1000 1100 1200 1300
Avg Packet Latency [ns]

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

minimal max: 1113.64

X 910

nonminimal max: 1349.803

X1072

adaptive max: 1147.609

X 1072

minimal nonminimal adaptive

(c) Packet Latency

0 100 200 300 400 500
Router Link Busy Time [ns]

0.850

0.875

0.900

0.925

0.950

0.975

1.000

1.025

1.050

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

X 16.21

X 0.04

X 0.0

minimal nonminimal adaptive

(d) Network Congestion

Figure 54: Performance results for the Crystal Router application running with 1K MPI ranks on
the 3,042-node Slim Fly network. Black ’X’s indicate the mean value across all compute nodes.
Figures are best viewed in color.

has the highest potential for network congestion, observes an average of only 16.21ns of busy time
per link over the length of the simulation and at most 500ns for a few links. The packet latency
correlates more closely to the number of hops a packet takes en route to it’s destination. In the case
of adaptive routing, it continually sees traffic on the minimal path option (as the Crystal Router
workload only communicates with 10 other process), and as a result frequently selects one of the
four random non-minimal paths. For Crystal Router, taking the shorter number of hops is worth
the minimal extra delay due to network congestion.

In summary, Slim Fly’s routing algorithm can be set to minimal as the more complex routing
algorithms non-minimal and adaptive do not appear to offer significant performance benefits for
the highly synchronized Crystal Router application workload. Adaptive routing is able to mitigate
network congestion observed by minimal and nonminimal routing but at the cost of an increased
number of average hops per packet. In the case of the Crystal Router application, the path length
is most critical to network performance and therefore minimal routing performs best with a 3.1%
improvement in simulation end time with adaptive routing being second best.

102
Approved for Public Release; Distribution Unlimited.

5.36 5.38 5.40 5.42 5.44
End Time [ms]

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

minimal max: 5.429

X 5.41

nonminimal max: 5.423

X 5.411
adaptive max: 5.422

X 5.409

minimal nonminimal adaptive

(a) Simulation End Time

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Avg Hops

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

X 2.736
X4.888

X4.835

minimal nonminimal adaptive

(b) Packet Hops

500 1000 1500 2000 2500 3000 3500
Avg Packet Latency [ns]

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

minimal max: 3503.848

X1113

nonminimal max: 2362.675

X 1174

adaptive max: 2467.657

X 1611

minimal nonminimal adaptive

(c) Packet Latency

0 1000 2000 3000 4000
Router Link Busy Time [ns]

0.95

0.96

0.97

0.98

0.99

1.00

1.01

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

minimal max: 4419.528

X11.263
nonminimal max: 172.419

X0.01

adaptive max: 574.954

X0.104

minimal nonminimal adaptive

(d) Network Congestion

Figure 55: Performance results for the Multigrid application running with 10K MPI ranks on the
74K-node Slim Fly network. Black ’X’s indicate the mean value across all compute nodes. Figures
are best viewed in color.

74K-Node Slim Fly: We now present network performance under real application workloads
for the 74 K node Slim Fly model. In this study we use the 10 K and 110 K MPI rank Multigrid
applications as they each contain enough MPI processes to utilize a significant fraction of the 74 K
node network. Again, we test network performance using minimal, non-minimal and adaptive
routing approaches. All of the 10 K MPI ranks are contiguously mapped to compute nodes at a
ratio of 1:1, while the 110 K MPI ranks are mapped at 2:1 because the number of ranks exceeds the
number of compute nodes in the system. These configurations respectively leave 86% and 26% of
the nodes in the system idle.

Starting with the smaller 10 K MPI rank Multigrid application workload, we observe similar
overall performance from all three routing algorithms. As shown in Figure 55a, the median, mean,
and max end times for all compute nodes are very close between minimal, non-minimal, and adaptive
routing. In fact, the most variance is in the max end time where adaptive routing provides only
0.1% and 0.02% speedups over minimal and non-minimal respectively.

Diving deeper into minimal routing, the remaining subfigures in Figure 55 show that minimal

103
Approved for Public Release; Distribution Unlimited.

4.6 4.8 5.0 5.2 5.4 5.6 5.8
End Time [ms]

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

minimal max: 5.635
X 5.383

nonminimal max: 5.407

X
5.16

adaptive max: 5.418

X
5.046

minimal nonminimal adaptive

(a) Simulation End Time

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Avg Hops

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

X 2.709 X5.028
X5.097

minimal nonminimal adaptive

(b) Packet Hops

0 2000 4000 6000 8000 10000 12000 14000
Avg Packet Latency [ns]

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

X 1608

X 1274
X 1906

minimal nonminimal adaptive

(c) Packet Latency

0 5000 10000 15000 20000 25000 30000
Router Link Busy Time [ns]

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

minimal max: 30020.225
X156.914

nonminimal max: 871.765

X1.948

adaptive max: 2318.248

X17.52

minimal nonminimal adaptive

(d) Network Congestion

Figure 56: Performance results for the Multigrid application running with 110K MPI ranks on the
74K-node Slim Fly network. Figures are best viewed in color.

routing is able to significantly lower the average packet hop count per compute node, and achieve
a lower average packet latency than non-minimal and adaptive routing. However minimal routing
suffers from small communication hotspots in the network, which prevents some compute nodes
from finishing their message transfers in a timely manner. As seen in Figure 55d, roughly 98% of
the links in the network have zero congestion while roughly 0.01% of links observe close to 4000ns of
busy time. Compute nodes using these congested links observe large packet latencies that increase
the simulation end time.

In contrast, non-minimal and adaptive routings mitigate network congestion with their ability
to distribute packets throughout the network via random intermediate routers. Of course, the
improved path diversity comes at the cost of extra hops, resulting in additional transmission and
router traversal delays. The key result which gives non-minimal and adaptive routing the benefit
over minimal is the much smaller variance in average packet latencies. Network hotspots associated
with minimal routing significantly reduce performance for a few compute nodes while increased hop
counts for non-minimal and adaptive provide a smaller consistent delay to all compute nodes.

Finally, we have the performance results for the largest application workload, 110 K MPI rank

104
Approved for Public Release; Distribution Unlimited.

Multigrid, shown in Figure 56. In this case, the performance trends are similar to the 10 K rank
Multigrid application with a few differences relating to the increased number of compute nodes
utilized in the system by 110 K Multigrid. Overall adaptive and non-minimal routings performs
better than minimal routing. Non-minimal has a 0.2% increase over adaptive with respect to the
max compute node end time, while adaptive has a 2.3% increase over non-minimal with respect to
the mean compute node end time. Minimal performs 4.2% and 6.7% worse than the non-minimal
routing algorithm in terms of max and average end time respectively.

The main deployment difference between the 10 K and the 110 K MPI rank Multigrid applications
is the number of compute nodes utilized in the system. Mapping to more compute nodes increases
the number of links injecting packets into the network. Starting with the number of hops in
Figure 56b, little change is observed between the 10 K and the 110 K applications with respect to
minimal and non-minimal routing. However, the curve for adaptive routing shifts to the right,
indicating adaptive is selecting more non-minimal paths for the 110 K trace as the increase in
compute node utilization translates to increased network congestion. In response to the increased
congestion, adaptive routing issues more non-minimal routes to help distribute the network load and
minimize congestion. The same trend is observed in Figures 55c and 55d as the maximum observed
values for packet latency and network congestion grow substantially for the 110 K workload under
minimal routing as compared to non-minimal and adaptive. The max value for avg packet latency
grows by a factor of 4x for minimal while non-minimal and adaptive increase by only 1.4x and
1.2x, showing the latter’s capability to redistribute traffic in response to increased levels of network
congestion.

In summary, all three routing algorithms make different trade-offs in hop count and path diversity
that result in similar network performance for the Multigrid workload. Minimal routing maintains a
low hop count per packet but creates hotspots in the network delaying communication for compute
nodes. Non-minimal routing eliminates network hotspots at the cost of increased number of packet
hops. Finally, adaptive routing balances between the two to arrive at a marginally optimal middle
ground.

The results from both Crystal Router and Multigrid application studies indicate routing protocols
do not significantly influence network performance for the Slim Fly topology in the case of practical
workloads. In these communication workload examples, the Slim Fly routing algorithm can be set
to the simple minimal routing to observe similar performance without added complexity. Clearly,
synthetic workloads that are created to exploit weaknesses in the topology and routing algorithms,
such as the worst-case workload, will perform poorly in those scenarios but it’s unclear if such
communication workloads exist in practice.

4.4.3.4 Multi-Rail Fat-Tree Evaluation

Using multiple separate studies, we focus on characterizing general trends as well as quantifying net-
work performance for a Summit supercomputer approximate dual-rail Fat-Tree system under three
application workloads. A multi-job test configuration consisting of the AMG, Crystal Router, and
Multigrid workloads is used throughout our studies to explain expected performance of the system
in a multi-job HPC environment. We present and discuss the results from four performance studies
including single-rail vs. dual-rail comparison, rail scaling, job placement and network response to
increasing compute performance. All executions simulate a multi-job run on the 3,564-node system
using concurrently executing AMG, Crystal Router, and Multigrid application traces. The trace

105
Approved for Public Release; Distribution Unlimited.

workloads have 13,824, 1,000, and 10,648 MPI processes, respectively, and each compute node hosts
eight MPI processes. Hence, our simulated workload utilizes 3,184 compute nodes, while the rest
are kept idle.

To quantify network performance, each node within the 3,564-node simulated system collects and
aggregates statistics for all MPI processes mapped to it. In multi-rail cases, the metrics are further
aggregated over all NICs within a node. The following metrics are collected:

• Bandwidth: Observed bandwidth measures the rate at which each node is able to inject data
into the network. Each compute node calculates the observed bandwidth by dividing the total
amount of bytes transferred by the total time spent transferring the data.

• Injected Traffic: Injected traffic describes the total amount of data transferred throughout the
network by each compute node over the length of the simulation.

• Total Congestion Delay: The total congestion delay quantifies the amount of time (in bytes)
a node spends with one or more of its corresponding NIC’s buffers completely filled. Lower is
better, indicating less injection congestion.

• Average Latency: Average latency describes the average source to destination delay of all
packets injected per node.

• Average Hops: Average hops collects the average number of links traversed within the network
by each packet. It does not include the compute node injection link.

We use a quad-plot layout with clustered error bars throughout this section to present bandwidth
performance results for the different job placement and routing schemes. The sub-figure labeled
“System Aggregate” represents the data aggregated over all active compute nodes in the 3 564-node
system, i.e., idle nodes are excluded from the data aggregation. The remaining trace specific sub-
figures present data from the same parallel multi-job run extracted with respect to the corresponding
application trace workload. The y-axis in each plot shows observed bandwidth in GB/s. The height
of each bar represents the average bandwidth among all compute nodes, while the upper and lower
limits on each bar indicate the maximum and minimum compute node bandwidths, respectively.
Furthermore, each cluster of bars has a corresponding hyphenated x-axis label indicating intra-rail
routing and inter-rail injection policies. For example, a “Static-Adapt” label indicates all runs in
that cluster used static intra-rail routing with adaptive inter-rail injection.

Multi-Job Trace Workload: We first perform analysis of the multi-job workload to characterize
each application’s base load on the Fat-Tree network. For the test we use the 3,564-node Summit
approximation system previously described. For this study, all 3 application traces are executed in
parallel. The simulation uses adaptive intra-rail routing, adaptive rail injection, and contiguously
maps the processes of each job to compute nodes in the dual-rail system (eight processes per node),
as shown in Figure 57a.

Among the three application traces, AMG and Multigrid have similar network characteristics
opposite that of Crystal Router. Both, AMG and Multigrid, transfer much smaller amounts of data
than Crystal Router, i.e., 246× less for AMG and 34× less for Multigrid, as shown in Figure 57a.
The higher node counts of AMG and Multigrid traces also result in traffic that traverses longer
distances in the Fat-Tree and with higher variance in average hop count than Crystal Router, see

106
Approved for Public Release; Distribution Unlimited.

500 1000 1500 2000 2500 3000 3500
Compute Node ID

0

100

200

300

400

500

600

700

Tr
af

fic
 (M

B
)

AMG
Crystal Router
Multigrid

(a) Total Injected Traffic

500 1000 1500 2000 2500 3000 3500
Compute Node ID

0

100

200

300

400

500

To
ta

l C
on

ge
st

io
n

D
el

ay
 (u

s)

AMG
Crystal Router
Multigrid

(b) Total Congestion Delay

500 1000 1500 2000 2500 3000 3500
Compute Node ID

1

1.5

2

2.5

3

3.5

4

4.5

A
ve

ra
ge

 H
op

s

AMG
Crystal Router
Multigrid

(c) Average Hops

500 1000 1500 2000 2500 3000 3500
Compute Node ID

0

5

10

15

20

25

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (u

s)

AMG
Crystal Router
Multigrid

(d) Average Packet Latency

Figure 57: Network statistics per compute node comparing AMG, Crystal Router, and Multigrid
application traces running in parallel on the 3,564-node dual-rail Fat-Tree system.

Figure 57c. Using only 124 nodes, the entire Crystal Router job fits within one pod of the Fat-Tree
network lowering the maximum number of hops between any two MPI processes.

The total congestion delay, presented in Figure 57b, shows AMG and Multigrid experience more
congestion at the node level than Crystal Router. The bursty communication pattern of AMG and
Multigrid workloads follow periods of high injection rates resulting in long buffer saturation times
coupled with lower data transfer totals. In comparison, the highly synchronized communication
pattern of Crystal Router uses many blocking wait-all operations which provide a more balanced
injection bandwidth, resulting in less congestion at each node’s NIC. Finally, Crystal Router ex-
periences less average packet delay. The lower hop count coupled with lower congestion delay of
Crystal Router translates to a lower average packet latency compared to AMG and Multigrid, as
shown in Figure 57d.

Overall, AMG and Multigrid follow similar non-synchronized communication patterns transfer-
ring small messages in high activity periods which results in higher NIC congestion than Crystal
Router in the dual-rail Fat-Tree network. Crystal Router, with its smaller node count and synchro-
nized communication pattern, transfers larger amounts of data resulting in longer average packet
latencies.

Fair Comparison of Single-Rail vs. Dual-Rail: Here, we conduct a performance compar-
ison of single-rail and dual-rail networks under comparable conditions. Theoretically adding an
additional rail to a network increases the bisection bandwidth by two. We seek to determine the
ability of the dual-rail network to match or even exceed network performance of a similar single-
rail configuration using currently available InfiniBand link speeds under AMG, Crystal Router and
Multigrid workloads.

Both test cases use the same 3,564-node system described previously, running the three contigu-

107
Approved for Public Release; Distribution Unlimited.

Adapt-Adapt Adapt-Rand Static-Adapt Static-Rand
System

0

1

2

3

4

5

6

7

O
bs

er
ve

d
ba

nd
wi

dt
h

(G
B/

s)

Fat Tree Single vs Dual Rail Network Performance
Single-Rail 100Gbps
Dual-Rail 56Gbps

(a) System Aggregate

Adapt-Adapt Adapt-Rand Static-Adapt Static-Rand
AMG Trace

0

1

2

3

4

5

6

7

O
bs

er
ve

d
ba

nd
wi

dt
h

(G
B/

s)

Fat Tree Single vs Dual Rail Network Performance
Single-Rail 100Gbps
Dual-Rail 56Gbps

(b) AMG

Adapt-Adapt Adapt-Rand Static-Adapt Static-Rand
Crystal Router Trace

0

1

2

3

4

5

6

7

O
bs

er
ve

d
ba

nd
wi

dt
h

(G
B/

s)

Fat Tree Single vs Dual Rail Network Performance
Single-Rail 100Gbps
Dual-Rail 56Gbps

(c) Crystal Router

Adapt-Adapt Adapt-Rand Static-Adapt Static-Rand
MultiGrid Trace

0

1

2

3

4

5

6

7

O
bs

er
ve

d
ba

nd
wi

dt
h

(G
B/

s)
Fat Tree Single vs Dual Rail Network Performance

Single-Rail 100Gbps
Dual-Rail 56Gbps

(d) Multigrid

Figure 58: Network performance comparison of a single rail 100 Gb/s network and a dual rail 56
Gb/s network.

ously allocated trace jobs. The only differences between the two configurations are the number of
rails and the link speeds. The dual-rail configuration has twice the number of switches and links
using the slower FDR link speed of 56 Gbps. The single-rail configuration has half as many switches
and links using the faster EDR links speed of 100 Gbps, i.e., nearly double the speed of FDR used
for the dual-rail case. Figure 58 presents the observed bandwidth performance of the single-rail and
dual-rail network configurations under all combinations of intra-rail routing and inter-rail injection
policies. Rail injection has obviously no influence for the single-rail but is included in Figure 58 for
easier comparison with dual-rail.

108
Approved for Public Release; Distribution Unlimited.

Overall, the observed bandwidth performance is almost identical for both rail configurations. A
slight variance in performance between the two networks can be seen depending on the application
trace and dual-rail injection policy. For example, Crystal Router achieves better single-rail per-
formance for all rail injection and routing algorithms with up to 25% improvement over dual-rail.
Multigrid observes equal or better performance on the dual-rail configuration with up to 17% im-
provement compared to single-rail. Finally, AMG sees split preference to single-rail and dual-rail
depending on the dual-rail injection policy. Adaptive rail injection suffers up to 26% lower band-
width on the dual-rail configuration while random injection allows for up to 4% improved bandwidth
on the dual-rail network. When injection bandwidth for an application trace falls below link band-
width, which is the observed outcome in the bursty AMG and Multigrid workloads, then output
buffers on the compute nodes are emptied by the time packets are generated. In this case, packets
are repeatedly issued on the first rail and can lead to a slight network load imbalance and congestion
within the network which compounds over time. In contrast, random rail injection is impervious
to injection loads and balances communication among available rails at all times, resulting in less
congestion and slightly higher bandwidth performance under bursty communication patterns.

In summary, the dual-rail network matches and even exceeds bandwidth performance of a similar
single-rail network with roughly twice the link speed. The network performance is application and
rail injection policy dependent with Crystal Router outperforming on the single-rail and Multigrid
outperforming on the dual-rail configuration with random rail injection.

Rail Scaling: Next, we seek to analyze the improvement in network performance as the number
of rails increases. Ideally, scaling the number of rails in the network should proportionally increase
the observed bandwidth. However, taking into account that multiple jobs are running on the
HPC system with each job having its own communication pattern, such linear increases in observed
performance is doubtful. To quantify bandwidth performance under realistic HPC center conditions,
we configured our simulated Fat-Tree networks for single, dual, quad, and octo-rail configurations
all with link speeds of 100 Gbps. Again, using the same 3,564-node system as previously described,
each rail configuration is subjected to a multi-job execution of the three contiguously allocated jobs.
Each rail configuration is tested with varying intra-rail routing and inter-rail injection combinations.
The resulting observed bandwidths are shown in Figure 59.

At the aggregated system level, see Figure 59a, observed network bandwidth starts off increasing
from one to two rails across all rail injection and routing policy executions. Eventually, the increases
in observed bandwidth start to trail off at four and eight rails. Similar to previous experiments,
the performance depends more on the rail injection policy than the intra-rail routing algorithm.
The best performance at the system level is achieved by random rail injection allowing up to
5.3× speedup in observed bandwidth at eight rails over one rail. As discussed in the previous
experiments, adaptive rail injection resorts to an over-utilization of the first rail and under-utilization
of the remaining rails in multi-rail configurations under the bursty communication patterns such as
Multigrid. The net effect is less performance compared to random rail injection which balances the
workload regardless of injection load utilizing both rails equally.

Rail scaling performance of the individual traces shows mixed results. Crystal Router observes
poor scaling across the board achieving at most 1.86× increase in observed bandwidth under static
intra-rail routing with random rail injection while using eight rails compared to one rail. Increasing
the number of rails provides extra links at the same link speed. However, Crystal Router synchro-
nizes after every few messages making it more sensitive to end-to-end packet latency than injection
bandwidth and therefore limiting the effectiveness of additional rails.

109
Approved for Public Release; Distribution Unlimited.

Adapt-Adapt Adapt-Rand Static-Adapt Static-Rand
System

10-1

100

101
O

bs
er

ve
d

ba
nd

wi
dt

h
(G

B/
s)

Strong Scaling Rail Performance

Single-Rail
Dual-Rail
Quad-Rail
Octo-Rail
Link-Speed
Ideal

(a) System Aggregate

Adapt-Adapt Adapt-Rand Static-Adapt Static-Rand
AMG Trace

10-1

100

101

O
bs

er
ve

d
ba

nd
wi

dt
h

(G
B/

s)

Strong Scaling Rail Performance

Single-Rail
Dual-Rail
Quad-Rail
Octo-Rail
Link-Speed
Ideal

(b) AMG

Adapt-Adapt Adapt-Rand Static-Adapt Static-Rand
Crystal Router Trace

10-1

100

101

O
bs

er
ve

d
ba

nd
wi

dt
h

(G
B/

s)

Strong Scaling Rail Performance

Single-Rail
Dual-Rail
Quad-Rail
Octo-Rail
Link-Speed
Ideal

(c) Crystal Router

Adapt-Adapt Adapt-Rand Static-Adapt Static-Rand
MultiGrid Trace

10-1

100

101

O
bs

er
ve

d
ba

nd
wi

dt
h

(G
B/

s)

Strong Scaling Rail Performance

Single-Rail
Dual-Rail
Quad-Rail
Octo-Rail
Link-Speed
Ideal

(d) Multigrid

Figure 59: Observed network bandwidth for one, two, four, and eight rails.

In comparison, Multigrid strongly benefits from additional rails, see Figure 59d. Under random
inter-rail injection, Multigrid obtains a 7.3× increase in observed bandwidth when going from one
to eight rails. The reason is Multigrid’s communication pattern which follows bursty periods of
high injection rates sending large quantities of small messages with fewer synchronization points.
As shown in Figure 57, the Multigrid application trace observes significantly more total congestion
delay than Crystal Router. Hence, each additional rail increases the available bandwidth and path
diversity between source and destination nodes.

AMG’s performance, shown in Figure 59b, falls between Multigrid and Crystal Router in response
to an increasing rail count. Performance increases decently with 1.5× speedup for two rails but
quickly tapers off with a maximum speedup of 2.4× when using eight rails. Less network conges-
tion, see comparison to Multigrid in Figure 57b, indicates fewer queued packets available to take
advantage of additional rails.

In summary, performance improvements resulting from additional rails in a Fat-Tree network
depend on the application’s communication pattern. Applications similar to Crystal Router, trans-
ferring small numbers of larger packets and doing frequent synchronization, see diminished im-
provement with additional rails. However, applications sending large numbers of small packets with
fewer synchronization points, such as AMG and Multigrid, gain major improvements in observed

110
Approved for Public Release; Distribution Unlimited.

bandwidth.

Adapt-Adapt Adapt-Rand Static-Adapt Static-Rand
System

0

5

10

15

20

25
O

bs
er

ve
d

ba
nd

wi
dt

h
(G

B/
s)

Contiguous Random Cluster

(a) System Aggregate

Adapt-Adapt Adapt-Rand Static-Adapt Static-Rand
AMG Trace

0

5

10

15

20

25

O
bs

er
ve

d
ba

nd
wi

dt
h

(G
B/

s)

Contiguous Random Cluster

(b) AMG

Adapt-Adapt Adapt-Rand Static-Adapt Static-Rand
Crystal Router Trace

0

5

10

15

20

25

O
bs

er
ve

d
ba

nd
wi

dt
h

(G
B/

s)

Contiguous Random Cluster

(c) Crystal Router

Adapt-Adapt Adapt-Rand Static-Adapt Static-Rand
MultiGrid Trace

0

5

10

15

20

25

O
bs

er
ve

d
ba

nd
wi

dt
h

(G
B/

s)

Contiguous Random Cluster

(d) Multigrid

Figure 60: Multi-job allocation study on the dual-rail Fat-Tree network using contiguous, random,
and clustered allocation policies.

Multi-Job Placement: Job placement describes the selection and mapping of MPI processes
in one or more applications to available compute nodes in an HPC system. Mapping processes can
have a large effect on the performance of the workload depending on the specific traffic pattern.
Many times, in an HPC environment, mapping selection is highly limited due to the fragmented
availability of nodes as applications are constantly allocated and completed at various times and
requiring varying quantities of nodes. In this section we investigate Fat-Tree network response to
the following three placement policies that are either in practice at HPC centers or have been shown
in previous works to provide performance increases [168].

• Contiguous: Each job is assigned a consecutive set of available nodes. This method helps
to maintain spatial locality of nodes, reducing the number of hops, but also increasing the
chances of congestion along the localized links.

• Random: All jobs receive a random selection of available nodes. This approach can help to
distribute the communication load throughout the network, but may increase the number of

111
Approved for Public Release; Distribution Unlimited.

hops on Fat-Tree networks as packets are increasingly forced to traverse spine switches to
reach their destination.

• Clustered: The clustered placement randomly assigns each job a central node. Subsequent
node selections are then clustered around the center for each job, where the distance to the
center follows a geometric distribution. Hence, most allocated nodes maintain a close spatial
locality, while few nodes are distributed across the entire system. This allocation scheme tries
to mimic the natural fragmentation found in batch systems of production HPC systems.

For this set of experiments, the variable parameters are job allocation, rail injection and intra-rail
routing policies. In each test case, the link speed remains constant at 100 Gbps. The results are
visualized in Figure 60.

Starting with the aggregate system level in Figure 60a, both contiguous and clustered allocation
policies outperform random for all intra-rail routing and rail injection combinations. Contiguous
allocation also shows a significantly smaller variance in maximum observed bandwidth among the
compute nodes. At the application level, the contiguous allocation policy results in the worst perfor-
mance for both AMG and Crystal Router applications. Both applications perform better under the
clustered approach of structurally spreading out communication to small groups of compute nodes
instead of one contiguous block or a completely random scattering. Nodes within the structured
small groups have a high chance of residing in the same pod and therefore reduce the number of
hops between one another. It also provides a better opportunity to distribute different applications
and their different network loads throughout the system to avoid self starvation of network resources
in workloads such as Crystal Router which transfer large quantities of data.

Contiguous allocation for Multigrid offers best overall performance, where it sees up to 1.6× im-
provement in bandwidth over the second best option of clustered allocation. Compared to clustered
and random approaches which can intertwine MPI processes of different applications, contiguous
allocation helps to minimize interference by providing potentially disjoint groupings of network re-
sources in the Fat-Tree topology. This helps applications such as Multigrid with sporadic bursts of
communication from competing with large data transfer applications like Crystal Router.

Similar to the other studies, the injection policy provides a stronger influence on network perfor-
mance than the intra-rail routing policy. Choosing random injection over adaptive provides slight
improvements up to 15% for contiguous and cluster allocations. Random allocation policy uniformly
distributes the workload throughout the system and sees virtually no benefit to the rail injection
and intra-rail routing policies which also serve to further balance network load.

In summary, network performance as it relates to job placement again largely depends on the
parallel job applications and their workloads. The cluster approach provides a fair distribution of
Fat-Tree network resources to all jobs while contiguous mapping can deliver the strongest observed
bandwidth for applications similar to Multigrid. Random rail injection can further contribute to
improve network performance across the system for contiguous and cluster allocation policies.

Increased Computational Power per Node: In this final multi-rail study, we present re-
sults quantifying the ability of the dual-rail Fat-Tree network to match increasing compute node
performance. We capture the response of the network to the increasing compute load by increasing
the number of application trace processes mapped to each node in the system. Compute nodes of
the Summit HPC system will have multiple IBM Power9 CPUs [133]. With 24-cores per POWER9
CPU [117], two CPUs per node will result in up to 48 MPI processes mapped onto a single node.
Therefore, we simulate configurations of 8, 16, and 48 application trace processes per node. Since

112
Approved for Public Release; Distribution Unlimited.

the application size remains constant as the number of processes per node increases, the num-
ber of compute nodes utilized by each application job decreases. Finally, we assume a contiguous
job placement policy for this study. However, we are varying the intra-rail routing and inter-rail
injection combinations.

Adapt-Adapt Adapt-Rand Static-Adapt Static-Rand
System

0

2

4

6

8

10

12

14

16

18

20

O
bs

er
ve

d
ba

nd
wi

dt
h

(G
B/

s)

8traces 16traces 48traces

(a) System Aggregate

Adapt-Adapt Adapt-Rand Static-Adapt Static-Rand
AMG Trace

0

1

2

3

4

5

6

7

8

9

10

O
bs

er
ve

d
ba

nd
wi

dt
h

(G
B/

s)

8traces 16traces 48traces

(b) AMG

Adapt-Adapt Adapt-Rand Static-Adapt Static-Rand
Crystal Router Trace

0

1

2

3

4

5

6

7

8

9

10

O
bs

er
ve

d
ba

nd
wi

dt
h

(G
B/

s)

8traces 16traces 48traces

(c) Crystal Router

Adapt-Adapt Adapt-Rand Static-Adapt Static-Rand
MultiGrid Trace

0

2

4

6

8

10

12

14

16

18

20

O
bs

er
ve

d
ba

nd
wi

dt
h

(G
B/

s)

8traces 16traces 48traces

(d) Multigrid

Figure 61: Dual-rail network performance when increasing the number of trace processes mapped
to a node from 8 to 48.

Figure 61 shows our simulation results for increasing the number of trace processes per node on
the 3,564-node dual-rail system. Once again, the rail injection policy has a larger effect on network
performance than intra-rail routing, with random injection consistently outperforming adaptive.
Both, AMG and Crystal Router, experience a constant decrease of observed bandwidth in response
to increasing trace processes per node, see Figure 61b and 61c. The compressed mapping condenses
network traffic to a smaller set of available links resulting in increased packet latency and increased
congestion. In Figure 61d, Multigrid follows a unique trend, i.e., first the bandwidth decreases
similarly when increasing from 8 to 16 processes per node, but then improves by up to 130% when
scaling further to 48 processes per node. The explanation for the initial drop in performance arises
from the growth in network traffic over a smaller set of links. However, the performance increases
again due to a significant drop in average packet hop count. At 8 processes per node, Multigrid

113
Approved for Public Release; Distribution Unlimited.

requires 1,331 nodes or just over four pods. Mapping 48 processes per node further decreases the
footprint to 222 nodes fitting all Multigrid processes within one pod, completely removing the need
for any packets to traverse through the spine of the Fat-Tree to reach the destination.

Regardless of application workload, the general trend shows that network performance decreases
in response to more dense MPI process per node mappings. Nonetheless, with the Multigrid example
we see that positive performance can be achieved through the ability to isolate applications in
distinct pods within the network lowering link traversal counts and network interference.

4.4.3.5 Synthetic Workload Performance

We evaluate performance of each network topology under synthetic workloads. In the first part, the
evaluations look at the ability of each network to handle increasing levels of injection bandwidth and
determine the saturation point at which the given topology is no longer able to match increasing
rates of messages entering the network. The second part considers only the end time performance
of each traffic workload as we increase the message injection rates.

Offered Load Analysis: This section evaluates the performance of each network topology as we
increase the traffic injection rate to test how much effective bandwidth each network configuration
is able to utilize before reaching network saturation. We test all 3K node network configurations
including Dragonfly 1D and 2D, single and dual-rail Fat-Tree and Slim Fly. Additionally, Dragonfly
and Slim Fly models are tested using both adaptive and minimal routing. Each of the config-
ured systems is tested using both uniform random and bisection synthetic traffic workloads with
increasing message injection rates going from 10% link speed up to 200% link speed.

Uniform Random Traffic: Starting with uniform random traffic, Figure 62 presents the results
for all network configurations. The overall trends show the networks matching injection bandwidth
up until the network is fully saturated with traffic and has reached its peak effective bandwidth for
the uniform traffic workload. Slim Fly performs as expected achieving just short of 100% and 200%
observed load.

Dragonfly 1D and the single-rail Fat-Tree achieve very similar performance for uniform random
traffic as Slim Fly. Fat-Tree leverages full bisection bandwidth to provide congestion free transfers
up to roughly 98% offered load. Dragonfly 1D matches the performance benefiting from low hop
counts due to the all-to-all connectivity within groups and strong ratio of 15 to 12 for global to
local links per router. The dual-rail Fat-Tree performs as expected, achieving roughly double the
performance of the single-rail version matching offered load up until about 195%.

Dragonfly 2D reaches network saturation at roughly 50% offered load which is roughly half the
performance of the other single-rail configurations. Dragonfly 2D has a higher ratio of local links
to global links (30:8) for each router compared to Dragonfly 1D (15:12) and Slim Fly (13:9). This
results in a larger hop count when sending messages between nodes in different groups as is the
case with uniform random traffic. The end result is a larger network utilization per message and
reaching network congestion at only 50% offered load.

Routing performance shows minimal routing consistently outperforming adaptive by a few per-
cent. Uniform random traffic is naturally distributed across the network and does not focus traffic
along any specific points of congestion. Therefore, selecting a non-minimal path when doing adap-
tive routing results in increased path length with no improvement in congestion. The adaptive
routing algorithms are set to perform minimally when no packets exist on the minimal path port.
However if there exists a non-minimal path port without a packet in it’s occupancy then that non-

114
Approved for Public Release; Distribution Unlimited.

0 50 100 150 200

Offered Load [% link speed]

0

50

100

150

200

O
b
se
rv
e
d
 L
o
a
d
 [
%
 l
in
k
sp
e
e
d
]

Dragonfly-1D [adaptive]

Dragonfly-1D [minimal]

Dragonfly-2D [adaptive]

Dragonfly-2D [minimal]

Fat-Tree Dual [static]

Fat-Tree Single [static]

Slim Fly [adaptive]

Slim Fly [minimal]

(a) Uniform Random Traffic

Figure 62: Observed load of the networks in response to increasing offered load (measure as a
percentage of link speed) for the uniform random synthetic traffic workload.

minimal path will be selected. The selection of non-minimal paths rarely occurs at the lower values
of offered load but when offered loads reach the point at with it pushes each network to its point
of saturation, the increased congestion forces the occasional selection of non-minimal paths and
results in slightly lower observed load for adaptive over minimal routing.

Bisection Traffic: Offered load results for the network configurations are shown in Figure 63.
Again the figure highlights the point at which each network becomes fully saturated with traffic
and no longer able to transfer data at the rate in which the data is injected. In this case, the results
show lower overall performance than that of uniform random as the bisection workload presents a
more adversarial load for Dragonfly and Slim Fly configurations than for Fat-Tree.

The best performing configuration is the Fat-Tree. By design, the Fat-Tree has full bisection
bandwidth so using static routing results in each compute node pairing communicating using unique
path’s in the network. The single-rail and dual-rail Fat-Tree networks observe close to ideal perfor-
mance of 100% and 200% link speed.

The routing comparison shows adaptive largely outperforming minimal routing. Unlike UR traffic,
in which all compute nodes randomly select a new destination before sending a new message, the
bisection traffic pattern sends all messages to the same destination node. For minimal routing,
which selects the same static shortest path for every message, this results in a constant load on one
specific path through the network. The links along the shortest path quickly saturate and minimal
routing suffers as a result. Adaptive routing balances the benefits of shortest path provided by
minimal routing with the benefits of distributing the workload across the network provided by the
non-minimal paths.

115
Approved for Public Release; Distribution Unlimited.

Slim Fly and Dragonfly 1D show similar results for both adaptive and minimal routing. Adaptive
reaches a max observed load of 50% while minimal routing achieves a max observed load of 10%. As
mentioned, minimal routing suffers from the hotspots following the static communication pattern
of the bisection workload. Adaptive routing is able to increase performance by using non-minimal
paths to distribute the workload across the network but the trade off is additional hops and using
additional network bandwidth.

Finally, Dragonfly 2D yields the lowest observed load performance as it reaches saturation at
22% and 5% respectively for adaptive and minimal routing. Similar to the uniform random traffic
pattern, the bisection workload results in a large amount of traffic traversing between groups. The
longer hop counts means the messages are spending more time in the network, starving additional
messages from utilizing available resources.

0 50 100 150 200

Offered Load [% link speed]

0

50

100

150

200

O
b
se
rv
e
d
 L
o
a
d
 [
%
 l
in
k
sp
e
e
d
]

Dragonfly-1D [adaptive]

Dragonfly-1D [minimal]

Dragonfly-2D [adaptive]

Dragonfly-2D [minimal]

Fat-Tree Dual [static]

Fat-Tree Single [static]

Slim Fly [adaptive]

Slim Fly [minimal]

(a) Bisection Traffic

Figure 63: Observed load of the networks in response to increasing offered load (measure as a
percentage of link speed) for the bisection synthetic traffic workload.

End Time Performance: In this section we study the end time performance of each topology
under synthetic workloads. At the end of the day, the most important result from an application
developer’s perspective is the time it takes to complete a given workload. The less time that is spent
performing the execution, the more time that can be put towards additional executions and/or
analysis. Again, testing is done on the Dragonfly 1D, Dragonfly 2D, single and dual-rail Fat-Tree
and Slim Fly 3K node network configurations. The synthetic workloads chosen for testing include
MPI collectives, nearest neighbor traffic, uniform random and bisection traffic. Each workload is
executed with one MPI process per compute node and the data sizes, and patterns are consistent
between the different network systems to maintain a fair comparison. For each workload, a total
of 4,000 messages are sent by each compute node and a message size of 256 bytes is used. The

116
Approved for Public Release; Distribution Unlimited.

0
.2

5

0
.5

0
.7

5 1

1
.2

5

1
.5

1
.7

5 2

Offered Load [% link speed]

0

50000

100000

150000

200000

250000

300000

350000

E
n
d
 T

im
e
 [

n
s]

DF-1D

DF-2D

FT-2

FT-1

SF

(a) Uniform Random

Figure 64: End time performance for all network configurations running uniform random synthetic
workload with increasing offered load.

offered load is increased from 25% link speed to 200% link speed to evaluate network performance
in response to increasing traffic.

Starting with the straightforward uniform random workload, we can see in Figure 64 that the
general response from the network configurations is a reduction in end time as the offered load is
increased. Dragonfly-1D, Slim Fly, and the single-rail Fat-Tree configurations see very similar end
time performance improving up until messages are injected into the network at 100% link speed
and the networks are fully saturated.

The dual-rail Fat-Tree sees continued improvement in end time up until messages are injected
at 200% link speed. In the end, the additional bandwidth provided by the extra rail provides the
dual-rail Fat-Tree networks with a 1.7x speedup in end time over the single-rail networks for uniform
random traffic offered at 200% link speed.

The one exception to the general trend is the Dragonfly-2D which first matches an improved
end time performance going from 25% to 50% offered load but then the trend shifts and end time
worsens at 75% and 100%. Interestingly, at 50% offered load, Dragonfly-2D reaches the saturation
point on the offered load curve seen in Figure 62 of the previous results section. At this point,
Dragonfly-2D is able to benefit from non-minimal paths without the extra hops stealing resources
from other messages. Going above that point, the faster injection rate of 75% link speed means
more messages in the network at any one point in time, creating more congestion, forcing more
non-minimal paths, and translating to even further congestion and packet latencies. The end time
results settle at 100% where Dragonfly-2D is roughly 3x slower than the other topologies.

For the bisection workload running with increasing offered load, Figure 65 shows a more varied
end time performance than was observed for uniform random. As was observed in the offered-load
analysis of Figure 63, the Fat-Tree configurations perform very well with the bisection workload

117
Approved for Public Release; Distribution Unlimited.

resulting in consistent improvements in end time up to 100% offered load for the single-rail Fat-Tree
and up to 200% for the dual-rail Fat-Tree.

0
.2
5

0
.5

0
.7
5 1

1
.2
5

1
.5

1
.7
5 2

Offered Load [% link speed]

0

100000

200000

300000

400000

500000

600000

700000

800000

E
n
d
 T
im
e
 [
n
s]

DF-1D

DF-2D

FT-2

FT-1

SF

(a) Bisection

Figure 65: End time performance for all network configurations running bisection synthetic workload
with increasing offered load.

Performance for non Fat-Tree networks is not as ideal. The bisection workload is most adversarial
for the Dragonfly-2D network as the traffic pattern results in a large amount of inter-group traffic
and therefore larger hop counts and early saturation of the network. Dragonfly-2D ends up 9x
slower at 100% offered load than the best case end times of Fat-Tree. The 1D Dragonfly network
follows the same trend of the 2D Dragonfly with little improvement in end time performance in
response to increasing offered load. However, Dragonfly-1D does observe much better overall end
time reaching a speedup of 2.5x over Dragonfly-2D at 100% offered load.

Slim Fly sees a slight overall improvement in performance over the 1D Dragonfly. Interestingly,
the Slim Fly observes the same dip in performance phenomena observed by Dragonfly-2D for uniform
random traffic. At 50% load Slim Fly reaches the network saturation point where the congestion
avoiding benefits of non-minimal paths outweigh the benefits of the additional hops. Unfortunately,
with increasing offered load, the additional messages in the system create even more congestion
which non-minimal path selection exacerbates by taking longer paths through the network.

Figure 66 presents the results for end time performance of the one, two, and three dimensional
nearest neighbor traffic patterns on the six network configurations. Overall, the workloads follow
expected results with the networks achieving the best end time for the 1D exchange and the worst
performance for the 3D exchange. The 1D nearest neighbor pattern translates to each compute
node in the system communicating with only it’s nearest connected compute nodes. All networks
efficiently handle the simple communication pattern and observe similar increases up to 4x end
time performance at 100% offered load for single-rail configurations and up to 6x increase at 200%
offered load for dual-rail networks.

118
Approved for Public Release; Distribution Unlimited.

0
.2

5

0
.5

0
.7

5 1

1
.2

5

1
.5

1
.7

5 2

Offered Load [% link speed]

0

50000

100000

150000

200000

250000

300000

350000

E
n
d
 T

im
e
 [

n
s]

DF-1D

DF-2D

FT-2

FT-1

SF

(a) 1D Nearest Neighbor

0
.2

5

0
.5

0

0
.7

5

1
.0

0

1
.2

5

1
.5

0

1
.7

5

2
.0

0

Offered Load [% link speed]

0

50000

100000

150000

200000

250000

300000

350000

E
n
d
 T

im
e
 [

n
s]

DF-1D

DF-2D

FT-2

FT-1

SF

(b) 2D Nearest Neighbor

0
.2

5

0
.5

0

0
.7

5

1
.0

0

1
.2

5

1
.5

0

1
.7

5

2
.0

0

Offered Load [% link speed]

0

50000

100000

150000

200000

250000

300000

350000

E
n
d
 T

im
e
 [

n
s]

DF-1D

DF-2D

FT-2

FT-1

SF

(c) 3D Nearest Neighbor

Figure 66: End time performance for all network configurations running 1D, 2D, and 3D nearest
neighbor synthetic workloads with increasing offered load.

Moving to the two dimensional nearest neighbor workload, we continue to see the improved
end time performance from Slim Fly and the Fat-Tree configuration but the Dragonfly networks
observe no improvement going past 50% offered load. It’s important to note that while the second
dimension in the 2DNN workload is a nearest neighbor in the simulated domain, that does not
translate to nearest neighbors in the physical HPC system domain. What we end up with is
compute nodes having two communication pairings with it’s nearest neighbor compute nodes as
well as two new communication pairings with compute nodes +offset and −offset. For the
Dragonfly networks, the second dimension communication pairing results in frequent inter-group
communication. Furthermore, the communication consistently follows along the same inter-group
links causing congestion and pushing the adaptive routing to select more non-minimal paths and
resulting in only a 1.2x improvement in end time performance at 100% offered load. Dragonfly-1D
has a better inter-group connectivity per each router and achieves a best case end time that is
roughly 1.5x times faster than the best case Dragonfly-2D performance.

Slim Fly also observes inter-group communication resulting from the second dimension of com-
munication but minimal routing is effective for this specific communication pattern. Specifically,

119
Approved for Public Release; Distribution Unlimited.

even if Slim Fly is communicating with nearest neighbor compute nodes, the traffic is by design
routed in a way such that the minimal path distributes the traffic across the whole network. In this
way, the network achieves a strong load balance and maintains minimal hop counts.

Finally, with six total messages exchanged each iteration, the 3D nearest neighbor workload
further decreases end time performance for all networks except the Fat-Tree and Dragonfly-1D.

Dragonfly-2D is forced to use already limited inter-group connections to handle the third dimen-
sion of traffic resulting in end-times that do not improve with increasing offered-load and instead
reaches saturation with an offered load of only 25% link speed. For Dragonfly-1D, the addition
of traffic along the third dimension is similar to that of the second dimension. It increases the
inter-group traffic with a new communication pairing pattern following a new offset. The all-to-all
connectivity within a group and large number of inter-group links per router allows the Dragonfly-
1D network to absorb the third dimension traffic using available bandwidth and paths without
increasing congestion along existing communication paths of the first and second dimensions of
traffic. The outcome is an end-time performance curve similar to the 2D nearest neighbor result.

Slim Fly sees mixed results for 3D nearest neighbor. At 75% Slim Fly reaches a point where it
effectively balances the workload across the network alleviating hot spots along the 3D NN paths by
using non-minimal paths and resulting in no added end-time over the 2D nearest neighbor workload.
Beyond 75% Slim Fly becomes over-saturated and the non-minimal paths starve additional messages
from using network resources. The net result is an increase in end-time performance at 100%
offered load that is 1.8x slower than 2D NN performance and only 1.2x faster than Dragonfly-1D
performance for 3D NN.

Both single-rail and dual-rail Fat-Tree continue the same end time performance scaling with 3D
NN as they did with 2D and 1D. Fat-Tree does well with paired communication as each compute
node pairing gets a unique path through the network. A bisection pairing achieves a completely
unique path for each pairing but even with a structured pairing like 3D nearest neighbor, results in
path selections that minimize path sharing and therefore result in the strong performance.

4.4.3.6 CPU Trace Performance

In this study, we run each CPU workload individually to benchmark performance on each of the four
HPC network configurations. The CPU results are collected over the entire workload execution.
Figure 67 shows the results for each network clustered by the application labeled on the x-axis. The
end times for each network within a clustered group are normalized with respect to the worst-case
end time within each clustered group of results.

Here, we compare performance between topologies using application virtual end time and we use
observed link traffic to explain the differences. The applications studied have widely varying end
times, so we normalize each end time to clearly show how much faster each topology is in comparison
to the worst-case performer. The bars within each bar plot are grouped into clusters as indicated
by the x-axis workload labels. Link traffic data is presented in line plots sorted by increasing value.
Each point on a switch traffic plot represents the aggregate traffic transmitted across a global link
over the length of the simulation. In the case of Fat-Tree, global links are those connecting the core
and aggregate level switches. For clarity, markers on switch traffic plots are shown every 50 points.

AMG shows the largest variance in end time between the network topologies. In this case,
Dragonfly-1D is 23% faster than Dragonfly-2D, and best performance is observed on Slim Fly
and Fat-Tree which are 28% faster than Dragonfly-2D. The traffic data presented in Figure 68,

120
Approved for Public Release; Distribution Unlimited.

77%

99%
96%100%

100%
100%

70%

98%
96%

72%

100%
97%

72%

99%
96%

0%

20%

40%

60%

80%

100%

120%

AMG MG CR

No
rm

al
ize

d
En

dt
im

e
[%

]

Dragonfly-1D Dragonfly-2D Fat-Tree Dual Fat-Tree Single Slim Fly

(a) CPU Performance

Figure 67: Simulated end time results for CPU applications running alone on the Dragonfly-1D,
Dragonfly-1D, Fat-Tree, and Slim Fly HPC systems. End times are normalized within a workload
to the slowest performing topology result. Lower is better.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Switch Link ID

0

500

1000

1500

2000

2500

3000

3500

4000

S
w

it
ch

 L
in

k
T
ra

ff
ic

 [
K

B
]

dfly 1D

dfly 2D

ftree1

ftree2

sfly

(a) Switch Traffic

Figure 68: Aggregate global link traffic for Dragonfly-1D, Dragonfly-1D, Fat-Tree, and Slim Fly
running the single-job AMG execution.

shows Dragonfly-2D has a small number of global links that are heavily saturated compared to
the remaining links. High saturation of global links for Dragonfly indicates packets are traversing
deeper into the network, taking additional hops, and increasing chances of congestion. The high
utilization hot spots along the global link effect many compute nodes and result in the slowdown
in run time performance.

Moving on to the remaining CPU workloads, we see MG and CR observe similar performance
across all topologies. Note, MG and CR aren’t as communication intensive as AMG for a couple
reasons. There are fewer processes, data is injected at a lower rate (quantity of data over time),
and the communication patterns of MG and CR send more data directly along the diagonal. The

121
Approved for Public Release; Distribution Unlimited.

combination of these workload characteristics results in less demand on the network than AMG and
leads to all networks being able to finish the MG and CR workloads in roughly the same time when
run individually.

The dual-rail Fat-Tree configuration overall sees little improvement over the single-rail Fat-Tree.
The improvement is roughly 2% on average over the single-rail version. The additional rail provides
little improvement in end time performance because the workloads are mostly latency dependent in
which case additional paths providing additional bandwidth does not improve end-to-end latency
when little congestion is observed.

4.4.3.7 Neuromorphic Trace Performance

We want to say something which motivates the need to study the single job neuromorphic trace
performance and then describe the setup. The neuromorphic results are collected for only one 1ms
tick of execution. Performance results are presented in normalized end time bar plots and sorted
line plots as discussed in the previous experiments.

100%
100%

96%

82%

62%

100%

44%
53%

84%

46%
55%

85%

46% 55%

85%

0%

20%

40%

60%

80%

100%

120%

MNIST CIFAR HF

No
rm

al
ize

d
En

dt
im

e
[%

]

Dragonfly-1D Dragonfly-2D Fat-Tree Dual Fat-Tree Single Slim Fly

(a) Neuro Performance

Figure 69: Simulated end time results for Neuromorphic applications running alone on the
Dragonfly-1D, Dragonfly-1D, Fat-Tree, and Slim Fly HPC systems. End times are normalized
within a workload to the slowest performing topology result. Lower is better.

Overall, the Hopfield workload achieves closer end times across all three HPC network topologies
than the convolutional workloads of CIFAR and MNIST. In this case, Dragonfly-2D execution is
4% slower than Dragonfly-1D and both Fat-Tree and Slim Fly are 15% faster than the worst case
Dragonfly-2D. While the Hopfield workload has more connections and sends more messages than
MNIST and CIFAR, the all-to-all communication pattern helps to evenly distribute the messages
across the entire HPC network and avoid hotspots. In this case, hop counts play a large role in end
time as each extra hop incurs additional router traversal delays resulting in increased end-to-end
message latency for the small 8 byte spike messages. Fat-Tree using static routing and Slim Fly
using adaptive routing both have a max hop count of 6. Dragonfly-1D and Dragonfly-2D have larger
max hop counts of 8 and 12 and end up 11% and 15% slower respectively than Fat-Tree and Slim
Fly.

122
Approved for Public Release; Distribution Unlimited.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Switch Link ID

0

5

10

15

20

25

S
w

it
ch

 L
in

k
T
ra

ff
ic

 [
K

B
]

dfly 1D

dfly 2D

ftree1

ftree2

sfly

(a) Switch Traffic

Figure 70: Aggregate global link traffic for Dragonfly-1D, Dragonfly-1D, Fat-Tree, and Slim Fly
running the single-job MNIST execution.

For MNIST and CIFAR, there is a significant difference in simulation end time between the
HPC topologies as Fat-Tree and Slim Fly outperform worst-case performer Dragonfly-1D by 54%
and Dragonfly-2D outperforms Dragonfly-1D by 18%. The layered connectivity and reduction in
layer size of the convolutional workload focuses communication through a small subset of network
links that can result in adversarial communication for the Dragonfly networks. Figure 70 shows
Dragonfly-1D and 2D have global links that observe up to 2.7x and 2x more traffic than the
worst case global links for Fat-Tree and Slim Fly. In this case, the specific convolutional network of
MNIST translates to an adversarial communication mapping for the Dragonfly network resulting
in adaptive routing moving traffic to global links to distribute the load.

CIFAR results are similar to MNIST with Fat-Tree and Slim Fly finishing in roughly half the time
of Dragonfly-1D but in this case Dragonfly-2D also finishes much quicker at 38% less run time than
Dragonfly-1D. CIFAR has the same number of layers as MNIST but the layers implement different
numbers of connections and placements of connections again resulting in hotspots for Dragonfly-1D.
Interestingly, it does not translate to as severe of hotspots for Dragonfly-2D. Running the Dragonfly
topologies with random allocation of chips to nodes results in performance similar to Fat-Tree and
Slim Fly and confirms the long end time is a result of an adversarial mapping of the convolutional
network to the Dragonfly topologies. In summary, the performance for convolutional neural network
applications can be highly dependent on the specific connections of each application.

4.4.3.8 Neuromorphic-CPU Interference

Neuromorphic processing provides a means of increasing computational power while maintaining
a small power footprint, making it an option for integration in next generation supercomputers
alongside a traditional computing architecture like the CPU. To test the impact of large-scale
hybrid neuromorphic computing, we conducted a series of studies to quantify performance and
interference of such a proposed system.

In this section, we construct theoretical hybrid neuromorphic/CPU HPC systems with a total
of 3,000 nodes and using Dragonfly, Fat-Tree, and Slim Fly interconnect topologies. Each simulated

123
Approved for Public Release; Distribution Unlimited.

compute node consists of one neuromorphic processor representing the equivalent of one TrueNorth
processor as well as one CPU processor. Both processors on a node share one network interface
card.

To study the interference of neuromorphic and traditional CPU workloads running in a hybrid
compute system, we execute the neuromorphic workloads in parallel with the three CPU application
workloads on the four HPC network topologies. Each CPU and neuromorphic workload is mapped
linearly to compute nodes with one CPU and one Neuromorphic MPI process per compute node.
We use the simulation end time to measure the high-level interference.

Measuring interference between the tick synchronized neuromorphic applications and unrestrained
CPU architecture workloads poses a unique challenge. To study the effect of CPU applications
on neuromorphic workloads, the neuromorphic workload is executed in parallel with the CPU
application for the entire length of the CPU application. The longer the CPU workload end time,
the more ticks of the neuromorphic workload are simulated. Since the progression of neuromorphic
workloads is governed by the 1ms tick delay, and not simply by the availability of work, we compute
the end time for the neuromorphic workloads, during multi-job executions, to be the average time
to complete the work within each 1ms tick. This allows us to extract the true effect of the CPU
workloads on the neuromorphic spike generation and sending process within each tick.

Lastly, to compare interference of the multi-job execution results between topologies, we compute
and analyze the slowdown. This is computed as the difference in end time of the application in the
multi-job and single-job executions divided by the single-job end time. We leverage the single-job
CPU and neuromorphic application performance from prior CPU workload results and performance
and interference results are presented in the form of bar clustered bar plots similar to the previous
CPU and neuromorphic workload results.

CPU in Presence of Neuro: Overall, end time performance and interferance results in Fig-
ure 71 show AMG, Multigrid and Crystal Router CPU workloads with little effect from running
in the presence of neuromorphic workloads. Multigrid end time performance closely matches the
trends observed for single-job execution with all four network topolgies finishing within a max of
5% of one another. Of the four neuromorphic workloads, Hopfield creates the most interference for
Multigrid resulting in only 4% and 3% slowdowns for Multigrid.

The CPU workload Crystal Router, on the other hand, shows the largest negative effect observing
up to 16% slower end time running in parallel with CIFAR. Dragonfly-1D sees more slowdown than
others to make it the worst-case performer when running in the presence of MNIST and CIFAR.
The convolutional neural networks present adversarial traffic creating hotspots along critical paths
for Crystal Router. Crystal Router is a highly synchronized workload performing a wait operation
after each send, making it a latency sensitive application. The global link hot spots seen from the
MNIST and CIFAR convolutional NN type applications in Figure 69, force some traffic in CR to
take longer paths through the network to avoid congestion resulting in delays for both Dragonfly
configurations.

Finally, the AMG CPU workload shows some interesting results with Dragonfly-2D improving
performance in the presence of all three neuromorphic workloads while the other network topologies
see up to 2% slowdown. Dragonfly-2D sees improved performance benefiting from additional traffic
on the network to increase network utilization and decrease congestion on global links. Switch
traffic for the AMG workload running in the presence of MNIST is presented in Figure 72 and
shows a small decrease in traffic for all Dragonfly-2D global links. Most notably, the max link
traffic decreased by roughly 30% compared to the max link traffic observed in the single-job AMG

124
Approved for Public Release; Distribution Unlimited.

85
%

85
%

88
% 96

%

98
%

95
%

96
% 10
0%

91
%10

0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

88
% 10

0%

79
%

78
% 82
%

98
%

99
%

10
0%

89
%

88
% 92

%

79
%

78
% 82
%

97
%

97
%

95
%

88
%

87
% 91
%

0%

20%

40%

60%

80%

100%

120%

AMG in pres. of
MNIST

AMG in pres. of
CIFAR

AMG in pres. of
HF

MG in pres. of
MNIST

MG in pres. of
CIFAR

MG in pres. of
HF

CR in pres. of
MNIST

CR in pres. of
CIFAR

CR in pres. of
HF

No
rm

al
ize

d
En

dt
im

e
[%

]
Dragonfly-1D Dragonfly-2D Fat-Tree Single Slim Fly

(a) CPU Job Performance (in presence of Neuro)

0% 1% 2% 0% 1% 0%

9%

16%

0%

-9% -8%
-10%

2% 2%
4%

8%

2%
5%

0% 0%
2%

0% 0%
3%

0% 0% 0%1% 0% 1% 0% 0% 0% 0% 0% 0%

-15%

-10%

-5%

0%

5%

10%

15%

20%

AMG in pres. of
MNIST

AMG in pres. of
CIFAR

AMG in pres. of
HF

MG in pres. of
MNIST

MG in pres. of
CIFAR

MG in pres. of
HF

CR in pres. of
MNIST

CR in pres. of
CIFAR

CR in pres. of
HF

Sl
ow

do
w

n
[%

]

(b) CPU Job Interference (in presence of Neuro)

Figure 71: The top subfigure presents simulated end time results for the CPU applications when
running in the presence of neuromorphic applications on the Dragonfly-1D, Dragonfly-1D, Fat-
Tree, and Slim Fly HPC systems. End times are normalized within each workload pairing to the
slowest performing topology result. The bottom subfigure presents the net slowdown in end time
performance for CPU workloads when running in the presence of neuromorphic workloads. In both
subfigures, lower is better.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Switch Link ID

0

500

1000

1500

2000

2500

3000

3500

4000

S
w

it
ch

 L
in

k
T
ra

ff
ic

 [
K

B
]

dfly 1D

dfly 2D

ftree

sfly

(a) Switch Traffic

Figure 72: Aggregate global link traffic for Dragonfly-1D, Dragonfly-1D, Fat-Tree, and Slim Fly
running the hybrid AMG-MNIST execution.

125
Approved for Public Release; Distribution Unlimited.

execution.
Neuromorphic in Presence of CPU: The results for neuromorphic application end time per-

formance and interference in the presence of CPU workloads is presented in Figure 73. Overall,
Neuromorphic workloads are highly susceptible to network interference from CPU workloads. Both
Dragonfly-1D and Dragonfly-2D observe severe slowdowns for the convolutional NN workloads of
MNIST and CIFAR when running in the presence of Multigrid and Crystal Router. Both Multi-
grid and Crystal Router have a large portion of their communication along the diagonal and that
consistent nearest neighbor pattern can saturate local links. Adaptive routing, in response, pushes
the traffic further into the network to global links to minimize congestion and resulting in overlap
with the global link hotspots for the convolutional workloads. Fat-Tree, using static routing always
take the same shortest path regardless of congestion. Adaptive routing for Slim Fly performs better
largely because of the smaller hop counts for minimal and nonminimal paths as well as the ability of
minimal routing to naturally distribute the workload throughout the network to utilize all available
resources.

10
0%

16
%

81
%

10
0%

24
%

10
0%

83
% 91

%

90
%

70
%

10
0%

10
0%

64
%

10
0%

17
%

10
0%

10
0%

10
0%

36
%

8% 5%

71
%

15
%

8%

83
%

97
%

90
%

36
%

8% 5%

77
%

14
%

8%

83
% 90

%

80
%

0%

20%

40%

60%

80%

100%

120%

MNIST in pres. of
AMG

MNIST in pres. of
MG

MNIST in pres. of
CR

CIFAR in pres. of
AMG

CIFAR in pres. of
MG

CIFAR in pres. of
CR

HF in pres. of
AMG

HF in pres. of
MG

HF in pres. of
CR

No
rm

al
ize

d
En

dt
im

e
[%

]

Dragonfly-1D Dragonfly-2D Fat-Tree Single Slim Fly

(a) Neuro Job Performance (in presence of CPU)

27
%

24
%

0%

21
%

12
%

9%

28
%

15
%

28
%

20
%

0%

60
%

13
%

47
%

27
%

1%

74
%

13
%

37
%

13
%

0%

10%
20%

30%
40%

50%

60%
70%

80%

MNIST in pres.
of AMG

CIFAR in pres.
of AMG

HF in pres. of
AMG

HF in pres. of
MG

HF in pres. of
CR

Sl
ow

do
w

n
[%

]

(b) Neuro Job Interference (in pres. of CPU)
[Mild Cases]

26
%

63
5%

26
%

64
0%

85
6% 10

06
%

74
4%

97
%

46
%

2% 46
%

2%34
%

1% 35
%

1%
0%

200%

400%

600%

800%

1000%

1200%

MNIST in pres.
of MG

MNIST in pres.
of CR

CIFAR in pres.
of MG

CIFAR in pres.
of CR

Sl
ow

do
w

n
[%

]

(c) Interference (Neuro in pres. of CPU)
[Severe Cases]

Figure 73: The top subfigure presents simulated end time results for neuromorphic applications when
running in the presence of CPU applications on the Dragonfly-1D, Dragonfly-1D, Fat-Tree, and Slim
Fly HPC systems. End times are normalized within each workload pairing to the slowest performing
topology result. The bottom subfigures present the net slowdown in end time performance for
neuromorphic workloads when running in the presence of CPU workloads. In all subfigures, lower
is better.

The Hopfield neuromorphic workload observes the least amount of slowdown running in the
presence of CPU workloads. The average slowdown for Hopfield across all topologies and CPU

126
Approved for Public Release; Distribution Unlimited.

workloads is 21% compared to 148% and 220% for CIFAR and MNIST. Additionally, end times are
consistently close between the topologies for Hopfield further indicating the all-to-all communication
pattern is equally adversarial for all topologies and with distributed communication that isn’t readily
susceptible to traditional CPU workloads.

Neuromorphic workload performance also varies widely between the tested network topologies.
On average, Slim Fly, Fat-Tree, Dragonfly-1D, and Dragonfly-2D are 45%, 46%, 76%, and 83%
respectively faster than the worst case performing topology in each hybrid workload configuration.
While the Dragonfly configurations many times have the worst-case end times, we do believe the
causes (namely link traffic hot spots) can be significantly reduced and possibly even alleviated with
approaches to better balance the communication workloads such as minimal path bias, an adaptive
threshold, or randomly mapping processes to compute nodes.

4.4.3.9 Topology Performance Summary

Up to this point, multiple studies have been conducted individually to test and understand run time
performance of the Dragonfly, Fat-Tree and Slim Fly topologies under different traffic workloads and
run conditions. This section summarizes those results into a set of workload performance scores to
provide an overall performance comparison for the different HPC topologies. The workloads taken
into consideration are single-job executions of synthetic traffic, CPU trace, and neuromorphic trace
workloads. The results are those generated from the 3K node system configurations of Dragonfly-
1D, Dragonfly-2D, single-rail and dual-rail Fat-Tree and Slim Fly.

The simulation end time is collected from each execution and normalized with respect to the worst-
case performer within each workload. The result is a score for each topology that is comparable
within the given workload and on the same scale as the other workloads. The score ranges from 1
to 100 indicating how each topology performed as a percentage of the worst-case topology. Clearly,
smaller values are better (indicating the workload finished in only X% of the time required for the
worst-case result) with 100 indicating that result is the worst-case for the given workload. For
example, if the score is a 78% for the bisection workload, then that topology finished the workload
22% faster than the slowest topology end-time. Each network topology score within a workload is
directly comparable.

To generate average scores across multiple workloads, and even workload types, we use the
geometric mean to find a single “figure of merit.” A geometric mean uses a product of values
(instead of the sum of values used in the traditional arithmetic mean) to effectively remove the bias
of workloads that have more traffic and take longer to complete on average than other workloads
which would place an unfair influence on the workloads with higher end times.

For a fair comparison between the single-rail and dual-rail configurations, synthetic workload
results are only considered for offered loads equal to or less than 100% link speed. In that case the
synthetic score for each topology is the average normalized end time averaged over the 25%, 50%,
75%, and 100% injection load cases. Again, when we take the “average,” we use the geometric
mean to remove end time bias.

The summarized performance for each topology is computed individually for synthetic, CPU,
and neuromorphic workload categories as well as across all workloads. The results are labeled
accordingly as “Synthetic”, “CPU”, “Neuro” and “All” and are presented in Figure 74. Starting
with the summarized results for the synthetic workloads, it’s clear Dragonfly-2D is consistently the
worst-case performing topology with an average normalized end time close to 100. Of the remaining

127
Approved for Public Release; Distribution Unlimited.

73
%

90
% 99

%

82
%

98
%

10
0%

80
%

94
%

59
%

87
%

58
% 64

%

61
%

89
%

60
% 66

%

65
%

88
%

60
% 68

%

0%

10%
20%

30%
40%

50%

60%
70%

80%
90%

100%

Synthetic CPU Neuro All

No
rm

al
ize

d
En

d
Ti

m
e

DF-1D DF-2D FT-2 FT-1 SF

(a)

Figure 74: Normalized end time results for each topology averaged over each workload category
including synthetic, CPU and neuromorphic workloads. Additionally a fourth summary is provided
averaging normalized end time across ”all” workloads.

single-rail networks, the Fat-Tree achieves the best performance for synthetic workloads roughly
39% faster than the worst-case topology while Slim Fly and Dragonfly-1D are 35% and 27% faster
respectively than worst-case. While the dual-rail configured Fat-Tree network provides twice the
network bandwidth and additional path diversity, the added benefits do not translate to substantial
performance improvement for the synthetic workloads. On average, the dual-rail Fat-Tree achieves
normalized end times are 41% and 42% faster respectively than worst-case. However, it’s important
to note that, for a fair comparison, the synthetic results only consider message injection rates up
to 100% link speed which limits the benefit of doubled bandwidth of the dual-rail networks. The
improvements of dual-rail Fat-Tree over the single-rail networks observed here are strictly a result
of the increased path diversity. Considering message injection rates above 100% link speed will only
add more separation between the dual-rail and single-rail network performance.

The summarized CPU workload results show much less variance between the different network
configurations. Dragonfly-2D again sees the lowest normalized end time on average but it’s not as
far behind the other networks as was the case for the synthetic workloads. In fact, the next closest
in end time is the Dragonfly-1D at 10% faster, and the fastest end time is observed by the dual-rail
Fat-Tree topology at 13% faster than the worst-case topology. The relatively close set of end time
performance results shows the tested CPU workloads, when run as single job executions, do not
necessarily contain traffic patterns or other characteristics that are especially adversarial for any
one network over the others.

Overall, the neuromorphic workloads presented a traffic pattern that was highly latency sensitive.
The densely connected neuron layers communicating via very small 8B messages translated to a
workload that was very susceptible to longer path lengths. Both Dragonfly networks attempted to
redistribute the dense communication across the network resulting in excessive end-to-end latencies
for the small messages and low end time performance. Overall, the end time performance summa-
rized over all neuromorphic workloads show Dragonfly-1D with the lowest performance achieving

128
Approved for Public Release; Distribution Unlimited.

around 98% of worst-case and Dragonfly-2D at 80% of worst-case end time. Slim Fly and single-rail
Fat-Tree provided lower path length routing resulting in improved performance taking only 60%
of worst-case end time. The dual-rail Fat-Tree network provides marginal improvement over the
single-rail Fat-Tree because the neuromorphic workloads do not have enough substantial traffic to
exploit the additional bandwidth and extra path diversity.

Finally, the average performance across all synthetic, CPU, and neuromorphic workloads, re-
iterates similar topology performance trends observed within each workload category. The two
Dragonfly configurations observe end times on average that are at least 20% slower than Fat-Tree
and Slim Fly. The Fat-Tree network achieves the best average end time performance among all
single-rail configurations, only a few percent faster than the Slim Fly. As noted earlier, the dual-
rail Fat-Tree network provides little improvement in average end time, failing to justify the added
increase in bandwidth and path diversity provided by the additional rail.

4.4.3.10 Topology Cost Analysis

Performance is typically one part of a larger equation when determining best fit interconnects for
an HPC system. Another important part from a deployment perspective is cost. Money spent on
interconnecting nodes, translates to less money spent on larger quantities of compute nodes or more
computationally powerful compute nodes. In an ideal world, an HPC interconnection network would
consist of one layer of all-to-all connections between compute nodes but besides being unfeasible
to realize with today’s hardware such a system would be cost prohibitive. An attractive HPC
interconnect isn’t one that simply allocates more hardware resources. It’s the HPC interconnect
that can achieve the best performance (above some desired lower bound) for a given dollar amount.
In this section a cost comparison is provided to show how optimal each configuration is in terms of
performance per dollar.

In this study, cost is computed taking into account the total number of links and network switches.
Rack hardware, filesystems, and other HPC components are not included in the cost calculation.
For simplicity, we assume all links to be copper cables while in practice, vendors typically deploy
a mixture of copper and optical cables depending on the given topology and physical length of
the cables between nodes in racks. The cost per link is based on the Mellanox MCP1600 copper
cable supporting up to Infiniband EDR 100Gb/s link speeds which costs $134.00 [5]. The cost
for switches is based off of the Mellanox MSB7800 Infiniband EDR 36 port switch which costs
$25, 633 [6]. Dragonfly-2D is constructed using 48 port switches but unfortunately, Mellanox does
not provide pricing for such a switch with 48 ports and rated for EDR link speeds. Therefore, the
cost of a 48 port switch is extrapolated from the cost per port of the Mellanox 36 port switch. The
final cost of the 48 port switch comes to $34, 177.33.

Table 14 presents the associated costs for the Dragonfly-1D, Dragonfly-2D, single-rail Fat-Tree,
dual-rail Fat-Tree and Slim Fly 3K node systems. Within the rows, the lowest value is colored green
and the largest value is colored red to highlight the two extremes for the given metric. Overall, the
Slim Fly is the network configuration with the lowest total cost resulting from it’s low number of
routers and links. In comparison, Slim Fly is 17%, 29%, 64% and 66% cheaper to construct than
Dragonfly-1D, single-rail Fat-Tree, dual-rail Fat-Tree, and Dragonfly-2D respectively.

Taking it a step further, Table 15 presents a combined performance per dollar metric for each of
the six tested networks. The table values describe how much speedup (measured in percent) the
given topology achieves over the worst-case performing topology per every $1M spent. The score is

129
Approved for Public Release; Distribution Unlimited.

Table 14: Network cost comparison.

Metric DF-1D DF-2D FT-1 FT-2 SF
Links 8,600 11,424 9,720 19,440 6,253
Routers 400 768 468 936 338
Router Radix 36 48 36 36 36
$ Per Link $134 $134 $134 $134 $134
$ Per Router $25,633 $34,177 $25,633 $25,633 $25,633
Link Total $ $1,152K $1,531K $1,302K $2,605K $838K
Router Total $ $10.3M $26.2M $12.0M $24.0M $8.7M
Total $ $11.4M $27.8M $13.3M $26.6M $9.5M

Table 15: Speedup per $1M.

Network Synthetic CPU Neuro All
DF-1D 2.3 0.9 0.1 1.6
DF-2D 0.1 0.0 0.7 0.2
FT-1 2.9 0.9 3.0 2.6
FT-2 1.5 0.5 1.5 1.3
SF 3.7 1.3 4.2 3.3

computed by first taking the performance scores provided in the performance summary Figure 74
and subtracting them from 100 to get the speedup achieved by each topology over the worst-case
performing topology. Then the calculated speedup value is divided by the total cost of the network
to arrive at a speedup per $1M value. The “Synthetic”, “CPU”, “Neuro”, and “All” columns
indicate the performance per dollar calculation is computed with respect to tested synthetic, CPU,
neuro, or all workload results. The Slim Fly, for example, achieves the highest value of 3.3 for
the category of “All” workloads indicating that the Slim Fly is 3.3% faster (on average across the
tested synthetic, CPU, and neuro workloads) than the worst case topology for every $1M spent.
Dragonfly-2D, with the lowest value of 0.2 indicates it was many times the worst-case performing
topology across all the workloads and only achieves 0.2% speedup over the worst-case performing
topology per every $1M spent.

Overall, The Slim Fly topology proves to have the best performance per dollar across all work-
loads. The topology with the closest performance per dollar result is the single-rail Fat-Tree which
many times achieves faster end times than Slim Fly but the performance difference is not enough
to offset the 30% extra cost over the Slim Fly configuration.

This performance per dollar calculation provides a good single value measure important for
deciding between available network configurations. It’s important to note this is by no means an
end-all value. Other network qualities not accounted for but also important to consider for next
generation systems are the ability to scale to larger node counts and the resiliency to hardware
failures. Each of these network characteristics can effect the preferred topology selection.

4.5 Classification of AFRL Data Using IBM TrueNorth & NeMo

The first test involved the accuracy of the NeMo importing system. In this test, we took the EEDN
trained network and imported it into NeMo. For each neuron in the simulation, we saved it’s

130
Approved for Public Release; Distribution Unlimited.

Table 16: MNIST Data Set: NeMo vs. NSCS Spike Counts .

NeMo Spikes NSCS Spikes Spikes Not in NeMo Spikes Not in NSCS
MNIST 564,532 490,790 0 73,742
MNIST - Filtered 490,790 490,790 0 0

connected components to a file. We then ran the NSCS simulation, and output all neuron activity.
From that file, we took all active connections between neurons, and produced an edge connection
table.

Comparing these two files shows that the NeMo importer was able to extract the model infor-
mation from NSCS. Reviewing these model files revealed that there were some inconsistencies in
NeMo compared to the NSCS spike record file. We found that there were cores included in the
configuration file that had connections to many cores in the model which NeMo read in, that the
NSCS spike records did not represent. For example, NeMo found a neurosynaptic core with ID -1,
that was at the center of 512 different cores. In NSCS, this core was not active. Further examination
revealed that these cores were defined in the EEDN model file, but were not used by the NSCS
simulation. These cores are used by the TrueNorth system as a monitoring layer, providing links for
debugging and visualization when running the model. Given that the cores do not connect to other
cores (they are strictly sinks in the network), they do not affect the output of the simulation in
either NeMo or NSCS, save for counting the number of spikes produced by the simulation. Further
work is warranted, however, as we should completely rule out any effects these cores may have on
the underlying simulation.

Next, we looked at the full spike data from each of these runs. For these runs, we generated a list
of spikes that took place during a run through the MNIST and AFRL networks. We then produced
a table that shows the total number of missing spikes and extra spikes produced by NeMo. Here,
we noticed a few interesting things. First, in the MNIST run, NeMo reproduced all NSCS reported
spikes. However, NeMo also produced extra spike communications. Based on the examination of
NeMo’s parsing of the EEDN data, we realized that NeMo was generating spikes for the previously
mentioned monitoring cores. To resolve this, we filtered spikes with a destination core matching
those of the monitoring cores. Once done, NeMo’s spike output matched the NSCS simulation’s
spike data. Further investigation is still warranted however, as these spikes could represent some
inconsistency in the NeMo simulation. The aggregate results of these spikes are shown in table 16.

We then took a look at a TrueNorth model trained using AFRL supplied MSTAR data. To
produce these comparison results, we looked at the output layers of the network, and counted
spikes going to each output over the simulation time. This allowed us to compare classification
accuracy between the NeMo simulator and the NSCS simulator. The results of this comparison are
shown in table 17. Comparing the output spikes with the NeMo output showed a perfect match.
Further work is needed, as a detailed comparison with the TrueNorth hardware would provide
greater details on NeMo’s performance as a neurosynaptic hardware simulation model.

We then took a look at a TrueNorth model trained using AFRL supplied data. To produce these
comparison results, we looked at the output layers of the network, and counted spikes going to
each output over the simulation time. This allowed us to compare classification accuracy between
the NeMo simulator and the NSCS simulator. The results of this comparison are shown in table
17. Comparing the output spikes with the NeMo output showed a perfect match. Further work is
needed, as a detailed comparison with the TrueNorth hardware would provide greater details on

131
Approved for Public Release; Distribution Unlimited.

Table 17: AFRL MSTAR Data Set: NeMo vs. NSCS neuromorphic Output Core Spike Counts.

Output Core NSCS Spikes NeMo Spikes
-63 3812 3812
-62 4604 4604
-61 4608 4608
-60 4604 4604
-59 4176 4176
-58 4608 4608
-57 4608 4608
-56 4608 4608
-55 4320 4320
-54 4608 4608
-53 4608 4608
-52 4608 4608
-51 4320 4320
-50 4608 4608
-49 4608 4608
-48 4604 4604
-47 4176 4176
-46 4608 4608
-45 4608 4608
-44 4608 4608
-43 4316 4316
-42 4604 4604
-41 4608 4608
-40 4608 4608
-39 4320 4320
-38 4608 4608
-37 4608 4608
-36 4608 4608
-35 4464 4464
-34 4608 4608
-33 4608 4608
-32 4608 4608

132
Approved for Public Release; Distribution Unlimited.

NeMo’s performance as a neurosynaptic hardware simulation model.

5 CONCLUSIONS

5.1 NeMo: A Massively Parallel Neuromorphic Simulator

The main contributions of this core research thrust (CRT) are:

1. NeMo: A PDES neuromorphic hardware simulation model: Development of a mas-
sively parallel discrete event simulation based neuromorphic hardware modeling tool. This
simulator allows for massive scale simulations of both existing and novel neuromorphic hard-
ware. Shown to have neuron model level accuracy, the simulator can be used to explore the
hardware design space of neuromorphic processor designs. The model is shown to be ex-
tremely powerful; scaling up to billions of neurons while simulating even larger numbers of
spike events.

2. NeMo-SS : An improved neuromorphic hardware simulation model: Further work
was done in an attempt to optimize the original NeMo neuromorphic simulation model. While
the first design showed promising results, the underlying model was memory bound. In this
section, work done to optimize the simulation model is discussed, along with new performance
benchmarks and a comparison of results with the original NeMo design.

3. Neuromorphic hardware simulation integration with CODES In order to explore
the effects of neuromorphic hardware on next-generation HPC systems, we explored ways
to simulate a hybrid HPC system. This hypothetical system would contain neuromorphic
hardware working as an accelerator processor alongside traditional CPUs within each node of
the system. Here, we present work that allows NeMo to expand a neuromorphic simulation
from a single processor to multiple “virtual” processors. We added further features NeMo
that allows for the capture of neuromorphic network activity. Using these new features, we
developed a toolchain that allows NeMo to generate neuromorphic hardware network traffic
traces that can integrate into the CODES HPC network simulation tool. We then discuss the
techniques used to create these virtual network traces as well as some avenues for future work
and validation.

5.2 Classification of Supercomputer Failures Using TrueNorth

In this CRT, We set out to explore the possibility of using a neuromorphic computing approach to
classify node failures on supercomputers. Furthermore, we compared this approach to five other
machine learning and deep learning approaches. We demonstrated that the neuromorphic com-
puting approach outperforms all the other machine learning and deep learning approaches for our
application. Moreover, we also showed that all the techniques used in this work do a good job of
classifying node failures. We used the IBM Blue Gene/L (BG/L) dataset, which consisted of RAS
logs spanning over a year of the machine’s operational lifetime. We used Python (TensorFlow and
Scikit-Learn) and MATLAB (IBM’s EEDN framework) to run our ML and DL techniques.

The bigger picture that we are trying to paint is to design the next generation of supercomputers
that will have a Neuromorphic Processing Unit (NPU) on every node of the supercomputer. In this

133
Approved for Public Release; Distribution Unlimited.

setting, our paper sheds light on classifying node-level failures on such supercomputers. As part of
our future work, we would like to put the neuromorphic computing approach in a live setting where
failure data is read as a live stream of data. Another aspect that we would like to incorporate is to
use more complex SNN architectures running on TrueNorth to see if they deliver better results.

Also, in this paper, we have established that node failures can be classified using ML/DL tech-
niques. We would also like to get an estimate of how far into the future can we predict these failures.
Furthermore, KNN (K = 3) seems to be the best machine learning technique for the task solely
from an accuracy stand point but it suffers from some inherent drawbacks. It would be interesting
to see how some of the variants of KNN that tackle its inherent drawbacks compare to the other
techniques used in the paper. Moreover, in line with designing next generation neuromorphic su-
percomputers, we would like to explore other applications that could potentially be running on the
NPUs.

Through the results in this core research thrust, we have successfully demonstrated that node
failures on supercomputers can be modeled and classified using machine learning and deep learning
techniques, some of which can also be deployed on neuromorphic hardware.

5.3 Durango – A Hybrid System Performance Modeling Framework

In this core research thrust (CRT), we introduce a new performance analysis tool called Durango that
integrates the analytical performance modeling capabilities of the Aspen domain specific language
with the efficient, massively parallel network simulation capabilities of CODES. Aspen has been
extended to enable communication pattern specification. The efficacy of Durango is demonstrated
as a new approach to the performance modeling of extreme-scale systems in two ways:

• Comparing the Aspen generated communication patterns with real application network com-
munications via traces that are run through the CODES packet-level network simulation
framework. Durango shows strong agreement with the real application trace data for key
network performance statistics.

• Performing a scaling study of Durango’s direct integration approach that links Aspen with
CODES as part of the running network simulation model. Here, Aspen generates the
application-level computation timing events, which in turn drive the start of a network com-
munication phase. Results show that Durango’s performance scales well when executing both
torus and dragonfly network models on up to 4K Blue Gene/Q nodes using 32K MPI ranks.

We plan to extend Durango’s capabilities by enabling Aspen to drive both the compute kernel
timing and the network communication patterns for key supercomputing applications. This exten-
sion will enable end-to-end performance prediction capabilities for current and future extreme-scale
systems.

5.4 HPC Network Models

Understanding methods to improve network performance for existing and new network topologies is
important to the effectiveness of future HPC systems. Focusing on understanding and quantifying
HPC network performance, in this thesis, we extended the CODES system simulation framework
to support Slim Fly and multi-rail pruned fat-tree networks as well as replay novel neuromorphic

134
Approved for Public Release; Distribution Unlimited.

computing application workloads. The Slim Fly and Fat-Tree additions have been validated with
published results and the Fat-Tree model has been additionally validated with a real hardware sys-
tem. We presented simulation results: (1) benchmarking the discrete-event simulation performance
at scale (2) comparing the performance benefits of additional rails in the Fat-Tree network, (3)
studying the effect of routing on CPU application end times in large-scale Slim Fly Networks, and
(4) testing equally provisioned Dragonfly, Fat-Tree and Slim Fly networks under synthetically gener-
ated workloads as well as real CPU and novel neuromorphic computing application trace workloads
to provide a fair comparison of expected performance.

In the Fat-Tree multi-rail investigation, we found observed network bandwidth performance across
all studies shows high dependency on the communication pattern. We have found that applications,
such as Multigrid with communication patterns that inject large quantities of small messages into
the network at high rates, yield an increase of up to 7.3× in observed bandwidth when going from
one to eight rails. In a fair comparison study, we showed that a dual-rail network matches and even
exceeds observed bandwidth by up to 17% over a similar single-rail network with twice the link
speed. In the job allocation study, we demonstrated strong application independent performance
from the cluster policy and best overall speedup of 1.6× for Multigrid using the contiguous policy.
Finally, we observed a general decreasing trend in application network performance on the dual-rail
fat-tree system in response to increasing numbers of trace processes mapped to nodes. However, our
results also suggest that positive performance is achievable when increasing the number of processes
per node results in applications that can be isolated in the system, resulting in lower link traversal
counts and lower network interference.

The CODES-ROSS discrete-event simulation framework was tested and found to provide im-
provement in run times under balanced workloads. Using the Slim Fly model, we have shown linear
scaling in execution up to 128 MPI ranks on the CCI RSA Intel cluster, achieving a peak event rate
of 43 million events per second with 543 million total events processed for the 74K-node slim fly
model. The million-node model achieves 36 million events per second processing 7 billion events.

Evaluation studies were presented to compare slim fly network response to real communica-
tion workloads from Crystal Router and Multigrid applications using minimal, non-minimal, and
adaptive routing algorithms. Overall, non-minimal achieves the best observed bandwidth for both
applications. While minimal routing significantly lowers the average hop count when compared to
minimal and even adaptive, it results in a consolidation of network traffic through specific paths in
the slim fly network resulting in higher packet latencies. In terms of application end times, minimal
routing provides results only marginally slower than non-minimal and adaptive routing making the
argument that minimal routing is sufficient and the excess system utilization of non-minimal routing
and complex implementation of adaptive routing can be avoided.

Finally, new simulation workflow has been presented allowing exploration of real, extreme-scale
neuromorphic workloads and their interference with traditional CPU workloads when executed on
a hybrid HPC system. We studied single-job and multi-job executions analyzing performance of
systems configured with Dragonfly, Fat-Tree and Slim Fly network topologies.

Neuromorphic workloads representing convolutional neural network and Hopfield network appli-
cations pose little effect on traditional CPU applications when running in parallel in a multi-job
hybrid HPC environment. In the worst-case, the Crystal Router CPU workload observed 16% slower
end time performance. Furthermore, performance for the Dragonfly-1D, Dragonfly-2D, Fat-Tree,
and Slim Fly topologies matched the trends of the single-job CPU end times with Fat-Tree and
Slim Fly finishing faster than the Dragonfly configurations with some instances where Dragonfly-1D

135
Approved for Public Release; Distribution Unlimited.

matched Fat-Tree and Slim Fly’s performance.
The neuromorphic workloads, on the other hand, are largely susceptible to the network workloads

generated by the traditional CPU applications. Convolutional NN workloads MNIST and CIFAR
have been shown to observe up to 10x slowdown in end time running in parallel with CPU workloads.
Slim Fly and Fat-Tree are roughly 40% faster on average than Dragonfly-1D and Dragonfly-2D for
neuromorphic workloads in the presence of CPU workloads. However the Dragonfly configurations
may still achieve the performance of Fat-Tree and Slim Fly with approaches such as minimal path
bias, adaptive thresholds, or randomly mapping processes to compute nodes.

Future directions for this work include investigating performance of larger network configurations
of around 60,000 nodes, closer to the expected node counts of anticipated Argonne National Lab-
oratory Aurora exascale machine. Analysis of the exascale machine could also be performed using
a more diverse set of applications of varying heterogeneity such as combined CPU-GPU workloads
as well as multi-job workloads consisting of tens of applications running in parallel to study overall
system congestion and utilization under traditional HPC run time and scheduling environments.
From the neuromorphic perspective, applications workloads need to be expanded to cover a more
realistic large-scale neuromorphic application. The current approach scales a real application with
a small number of inputs and outputs. A realistic large-scale neuromorphic application will con-
ceivably have a much larger input size taking in one large input as apposed to many replicated
small inputs.

5.5 Classification of AFRL Data Using TrueNorth & NeMo

For both the MNIST benchmark and MSTAR datasets, NeMo demonstrated a very high degree of
per spike accuracy when compared with the IBM NSCS simulator. In the case of MSTAR, we ob-
served no differences inference accuracy or in total spike counts from the output layer neuromorphic
cores.

References

[1] Alcf aurora 2021 early science program: Data and learning call for proposals. (Accessed on:
Nov. 3, 2018).

[2] Cori computational system. (Accessed on: Nov. 3, 2018).

[3] Edison computational system. (Accessed on: Nov. 3, 2018).

[4] Hydrodynamics Challenge Problem, Lawrence Livermore National Laboratory. Technical
Report LLNL-TR-490254.

[5] Mellanox mcp1600-e003 passive copper cable. (Accessed on: Nov. 3, 2018).

[6] Mellanox msb7800-es2f switch-ib 2. (Accessed on: Nov. 3, 2018).

[7] Mpptest - measuring mpi performance. (Accessed on: Nov. 3, 2018).

[8] Theta computational system. (Accessed on: Nov. 3, 2018).

136
Approved for Public Release; Distribution Unlimited.

[9] Mellanox OFED for Linux User Manual Rev. 2.0-3.0.0, August 2013. (Accessed on: Nov. 3,
2018).

[10] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[11] Jemal H Abawajy. Fault-tolerant scheduling policy for grid computing systems. In Parallel and
Distributed Processing Symposium, 2004. Proceedings. 18th International, page 238. IEEE,
2004.

[12] Yaser S Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning from data, vol-
ume 4. AMLBook New York, NY, USA:, 2012.

[13] Bilge Acun et al. Preliminary evaluation of a parallel trace replay tool for hpc network
simulations. In Sascha Hunold, Alexandru Costan, Domingo Gimnez, Alexandru Iosup, Laura
Ricci, Mara Engracia Gmez Requena, Vittorio Scarano, Ana Lucia Varbanescu, Stephen L.
Scott, Stefan Lankes, Josef Weidendorfer, and Michael Alexander, editors, Euro-Par 2015:
Parallel Processing Workshops, volume 9523 of Lecture Notes in Computer Science, pages
417–429. Springer Int. Publishing, 2015.

[14] Jung Ho Ahn, Nathan Binkert, Al Davis, Moray McLaren, and Robert S. Schreiber. Hyperx:
Topology, routing, and packaging of efficient large-scale networks. In Proc. of the Conf. on
High Performance Computing Networking, Storage and Analysis, SC ’09, pages 41:1–41:11,
New York, NY, USA, 2009. ACM.

[15] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam,
Y. Nakamura, P. Datta, G. J. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar,
W. P. Risk, B. Jackson, and D. S. Modha. Truenorth: Design and tool flow of a 65 mw 1
million neuron programmable neurosynaptic chip. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 34(10):1537–1557, Oct 2015.

[16] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul
Merolla, Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, et al. Truenorth:
Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(10):1537–
1557, 2015.

[17] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commodity data
center network architecture. In Proc. of the ACM SIGCOMM 2008 Conf. on Data Commu-
nication, SIGCOMM ’08, pages 63–74, New York, NY, USA, 2008. ACM.

137
Approved for Public Release; Distribution Unlimited.

[18] Mahmoud Al-Nsour and Hoda S Abdel-Aty-Zohdy. Implementation of programmable digital
sigmoid function circuit for neuro-computing. In mwscas, page 571. IEEE, 1998.

[19] S. R. Alam et al. Cray xt4: an early evaluation for petascale scientific simulation. In SC ’07:
Proc. of the 2007 ACM/IEEE Conf. on Supercomputing, pages 1–12, Nov 2007.

[20] Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser, and Chris Scheiman. Loggp: Incor-
porating long messages into the logp model—one step closer towards a realistic model
for parallel computation. In Proc. of the Seventh Annu. ACM Symp. on Parallel Algorithms
and Architectures, SPAA ’95, pages 95–105, New York, NY, USA, 1995. ACM.

[21] A. Amir, P. Datta, W. P. Risk, A. S. Cassidy, J. A. Kusnitz, S. K. Esser, A. Andreopoulos,
T. M. Wong, M. Flickner, R. Alvarez-Icaza, E. McQuinn, B. Shaw, N. Pass, and D. S. Modha.
Cognitive computing programming paradigm: A corelet language for composing networks
of neurosynaptic cores. In The 2013 International Joint Conference on Neural Networks
(IJCNN), pages 1–10, Aug 2013.

[22] S. Azizian, K. Fathi, B. Mashoufi, and F. Derogarian. Implementation of a programmable
neuron in 0.35m cmos process for multi-layer ann applications. In 2011 IEEE EUROCON -
International Conference on Computer as a Tool, pages 1–4, April 2011.

[23] Soheil Bahrampour, Naveen Ramakrishnan, Lukas Schott, and Mohak Shah. Comparative
Study of Caffe, Neon, Theano, and Torch for Deep Learning. CoRR abs/1511.06435, 2015.

[24] P. D. Barnes, C. D. Carothers, D. R. Jefferson, and J. M. LaPre. Warp speed: executing time
warp on 1,966,080 cores. In Proc. of the 2013 ACM SIGSIM Conf. on Principles of Advanced
Discrete Simulation (PADS), pages 327–336, May 2013.

[25] Peter D. Barnes, Jr., Christopher D. Carothers, David R. Jefferson, and Justin M. LaPre.
Warp speed: Executing time warp on 1,966,080 cores. In Proc. of the 1st ACM SIGSIM
Conf. on Principles of Advanced Discrete Simulation, SIGSIM PADS ’13, pages 327–336,
New York, NY, USA, 2013. ACM.

[26] K Basterretxea, JM Tarela, and I Del Campo. Approximation of sigmoid function and the
derivative for hardware implementation of artificial neurons. IEE Proceedings-Circuits, De-
vices and Systems, 151(1):18–24, 2004.

[27] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello, Naoya
Maruyama, and Satoshi Matsuoka. Fti: high performance fault tolerance interface for hybrid
systems. In Proceedings of 2011 international conference for high performance computing,
networking, storage and analysis, page 32. ACM, 2011.

[28] Yoshua Bengio et al. Learning deep architectures for ai. Foundations and trends R© in Machine
Learning, 2(1):1–127, 2009.

[29] B. V. Benjamin et al. Neurogrid: A mixed-analog-digital multichip system for large-scale
neural simulations. Proc. of the IEEE, 102(5):699–716, May 2014.

138
Approved for Public Release; Distribution Unlimited.

[30] M. Besta and T. Hoefler. Slim fly: A cost effective low-diameter network topology. In Proc.
of the Int. Conf. for High Performance Comput., Networking, Storage and Anal. (SC), pages
348–359, 2014.

[31] M. Besta and T. Hoefler. Slim Fly: A Cost Effective Low-Diameter Network Topology. Nov.
2014. Proc. of the Int. Conf. on High Performance Computing, Networking, Storage and
Analysis (SC14).

[32] Maciej Besta and Torsten Hoefler. Slim fly: A cost effective low-diameter network topology. In
Proc. of the Int. Conf. for High Performance Computing, Networking, Storage and Analysis,
SC ’14, pages 348–359, Piscataway, NJ, USA, 2014. IEEE Press.

[33] Julian A Bragg, Edgar A Brown, Paul Hasler, and Stephen P DeWeerth. A silicon model of
an adapting motoneuron. In Circuits and Systems, 2002. ISCAS 2002. IEEE International
Symposium on, volume 4, pages IV–IV. IEEE, 2002.

[34] Aaron Brown and David A Patterson. Embracing failure: A case for recovery-oriented com-
puting (roc). In High Performance Transaction Processing Symposium, volume 10, pages 3–8,
2001.

[35] Christopher D. Carothers, David Bauer, and Shawn Pearce. Ross: A high-performance, low
memory, modular time warp system. In Proc. of the Fourteenth Workshop on Parallel and
Distributed Simulation, PADS ’00, pages 53–60, Washington, DC, USA, 2000. IEEE Computer
Society.

[36] Christopher D Carothers, David Bauer, and Shawn Pearce. Ross: A high-performance,
low-memory, modular time warp system. Journal of Parallel and Distributed Computing,
62(11):1648–1669, 2002.

[37] Christopher D. Carothers, Kalyan S. Perumalla, and Richard M. Fujimoto. Efficient optimistic
parallel simulations using reverse computation. ACM Trans. Model. Comput. Simul., 9(3):224–
253, July 1999.

[38] S Carrillo et al. Hierarchical Network-on-Chip and Traffic Compression for Spiking Neu-
ral Network Implementations. In 2012 Sixth IEEE/ACM Int. Symp. on Networks-on-Chip
(NoCS), pages 83–90. IEEE, 2012.

[39] Snaider Carrillo et al. Scalable Hierarchical Network-on-Chip Architecture for Spiking Neural
Network Hardware Implementations. IEEE Transactions on Parallel and Distributed Systems,
24(12):2451–2461, 2013.

[40] A. S. Cassidy, P. Merolla, J. V. Arthur, S. K. Esser, B. Jackson, R. Alvarez-Icaza, P. Datta,
J. Sawada, T. M. Wong, V. Feldman, A. Amir, D. B. D. Rubin, F. Akopyan, E. McQuinn,
W. P. Risk, and D. S. Modha. Cognitive computing building block: A versatile and efficient
digital neuron model for neurosynaptic cores. In The 2013 International Joint Conference on
Neural Networks (IJCNN), pages 1–10, Aug 2013.

139
Approved for Public Release; Distribution Unlimited.

[41] Andrew S Cassidy, Rodrigo Alvarez-Icaza, and Others. Real-time Scalable Cortical Comput-
ing at 46 Giga-synaptic OPS/Watt with 100x Speedup in Time-to-solution and 100,000x
Reduction in Energy-to-solution. In International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 27–38, Piscataway, NJ, USA, 2014. IEEE
Press.

[42] Andrew S Cassidy, Paul Merolla, John V Arthur, Steve K Esser, Bryan Jackson, Rodrigo
Alvarez-Icaza, Pallab Datta, Jun Sawada, Theodore M Wong, Vitaly Feldman, et al. Cognitive
computing building block: A versatile and efficient digital neuron model for neurosynaptic
cores. In Neural Networks (IJCNN), The 2013 International Joint Conference on, pages 1–10.
IEEE, 2013.

[43] Dong Chen, Noel A. Eisley, Philip Heidelberger, Robert M. Senger, Yutaka Sugawara, Sameer
Kumar, Valentina Salapura, David L. Satterfield, Burkhard Steinmacher-Burow, and Jeffrey J.
Parker. The ibm blue gene/q interconnection network and message unit. In Proceedings of
2011 International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’11, pages 26:1–26:10, New York, NY, USA, 2011. ACM.

[44] Dong Chen, Philip Heidelberger, Craig Stunkel, and Yutaka Sugawara. An Evaluation of
Network Architectures for Next Generation Supercomputers. In Proc. of the 7th Int. Workshop
on Performance Modeling, Benchmarking, and Simulation of High Performance Computing
Systems, PMBS ’16, pages 2:11–2:21, New York, NY, USA, 2016. ACM.

[45] Zizhong Chen, Graham E Fagg, Edgar Gabriel, Julien Langou, Thara Angskun, George
Bosilca, and Jack Dongarra. Fault tolerant high performance computing by a coding ap-
proach. In Proceedings of the tenth ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 213–223. ACM, 2005.

[46] George Chrysos. Intel R© Xeon PhiTM coprocessor-the architecture. Intel Whitepaper, 2014.

[47] Co-design at Lawrence Livermore National Laboratory . Algebraic Multigrid Solver (AMG).
(Accessed on: Nov. 3, 2018).

[48] Salvador Coll, Eitan Frachtenberg, Fabrizio Petrini, Adolfy Hoisie, and Leonid Gurvits. Using
multirail networks in high-performance clusters. Concurrency and Computation: Practice and
Experience, 15(7-8):625–651, 2003.

[49] W. J. Dally and B. P. Towles. Principles and Practices of Interconnection Networks. Burling-
ton, MA, USA: Morgan Kaufmann, January 2004.

[50] William Dally and Brian Towles. Principles and Practices of Interconnection Networks. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[51] W.J. Dally. Virtual-channel flow control. Parallel and Distributed Systems, IEEE Transactions
on, 3(2):194–205, Mar 1992.

[52] Prasanna Date, James A Hendler, and Christopher D Carothers. Design index for deep neural
networks. Procedia Computer Science, 88:131–138, 2016.

140
Approved for Public Release; Distribution Unlimited.

[53] M. Davies et al. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE
Micro, 38(1):82–99, Jan. 2018.

[54] Department of Energy. AMR Box Lib. (Accessed on: Nov. 3, 2018).

[55] Department of Energy. Design Forward - Exascale Initiative. (Accessed on: Nov. 3, 2018).

[56] Jens Domke, Torsten Hoefler, and Satoshi Matsuoka. Fail-in-place Network Design: Inter-
action Between Topology, Routing Algorithm and Failures. In Proc. of the Int. Conf. for
High Performance Computing, Networking, Storage and Analysis, SC ’14, pages 597–608,
Piscataway, NJ, USA, 2014. IEEE Press.

[57] Ifeanyi P Egwutuoha, David Levy, Bran Selic, and Shiping Chen. A survey of fault toler-
ance mechanisms and checkpoint/restart implementations for high performance computing
systems. The Journal of Supercomputing, 65(3):1302–1326, 2013.

[58] Bard Ermentrout. Neural networks as spatio-temporal pattern-forming systems. Reports on
progress in physics, 61(4):353, 1998.

[59] S K Esser, A Andreopoulos, and Others. Cognitive computing systems: Algorithms and
applications for networks of neurosynaptic cores. In The 2013 International Joint Conference
on Neural Networks, pages 1–10. IEEE, August 2013.

[60] Steve K Esser, Rathinakumar Appuswamy, Paul Merolla, John V. Arthur, and Dharmendra S
Modha. Backpropagation for energy-efficient neuromorphic computing. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems 28, pages 1117–1125. Curran Associates, Inc., 2015.

[61] Steven K Esser, Paul A Merolla, John V Arthur, Andrew S Cassidy, Rathinakumar Ap-
puswamy, Alexander Andreopoulos, David J Berg, Jeffrey L McKinstry, Timothy Melano,
Davis R Barch, et al. Convolutional networks for fast, energy-efficient neuromorphic comput-
ing. Proceedings of the National Academy of Sciences, page 201604850, 2016.

[62] Greg Faanes, Abdulla Bataineh, Duncan Roweth, Tom Court, Edwin Froese, Bob Alverson,
Tim Johnson, Joe Kopnick, Mike Higgins, and James Reinhard. Cray cascade: A scalable
hpc system based on a dragonfly network. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, SC ’12, pages 103:1–103:9,
Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[63] Graham E Fagg, Edgar Gabriel, Zizhong Chen, Thara Angskun, George Bosilca, Jelena
Pjesivac-Grbovic, and Jack J Dongarra. Process fault tolerance: Semantics, design and ap-
plications for high performance computing. The International Journal of High Performance
Computing Applications, 19(4):465–477, 2005.

[64] F. Ferrari. System-on-a-chip verification methodology and techniques. IEEE Circuits and
Devices Magazine, 18(6):39–39, Nov 2002.

141
Approved for Public Release; Distribution Unlimited.

[65] David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt Ferreira, and Ron
Brightwell. Detection and correction of silent data corruption for large-scale high-performance
computing. In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, page 78. IEEE Computer Society Press, 2012.

[66] Jose Flich et al. A Survey and Evaluation of Topology-Agnostic Deterministic Routing Algo-
rithms. IEEE Trans. Parallel Distrib. Syst., 23(3):405–425, March 2012.

[67] Richard M Fujimoto and Maria Hybinette. Computing global virtual time in shared-memory
multiprocessors. ACM Transactions on Modeling and Computer Simulation, 7(4):425–446,
October 1997.

[68] I. Fujiwara, M. Koibuchi, H. Matsutani, and H. Casanova. Skywalk: A topology for hpc
networks with low-delay switches. In 2014 IEEE 28th Int. Parallel and Distributed Processing
Symp., pages 263–272, May 2014.

[69] Ana Gainaru and Franck Cappello. Errors and faults. In Fault-Tolerance Techniques for
High-Performance Computing, pages 89–144. Springer, 2015.

[70] Michael R Garey, David S. Johnson, and Larry Stockmeyer. Some simplified np-complete
graph problems. Theoretical computer science, 1(3):237–267, 1976.

[71] Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons, populations,
plasticity. Cambridge university press, 2002.

[72] SAMANWOY GHOSH-DASTIDAR and HOJJAT ADELI. SPIKING NEURAL NET-
WORKS. International Journal of Neural Systems, 19(04):295–308, August 2009.

[73] M Grattarola, M Bove, S Martinoia, and G Massobrio. Silicon neuron simulation with spice:
tool for neurobiology and neural networks. Medical and Biological Engineering and Computing,
33(4):533–536, 1995.

[74] William Gropp and Ewing Lusk. Reproducible measurements of mpi performance charac-
teristics. In Jack Dongarra, Emilio Luque, and Tomàs Margalef, editors, Recent Advances
in Parallel Virtual Machine and Message Passing Interface, pages 11–18, Berlin, Heidelberg,
1999. Springer Berlin Heidelberg.

[75] J. P. Grossman, B. Towles, J. A. Bank, and D. E. Shaw. The role of cascade, a cycle-based
simulation infrastructure, in designing the anton special-purpose supercomputers. In 2013
50th ACM/EDAC/IEEE Design Automation Conf. (DAC), pages 1–9, May 2013.

[76] T. Groves et al. (sai) stalled, active and idle: Characterizing power and performance of large-
scale dragonfly networks. In 2016 IEEE Int. Conf. on Cluster Computing (CLUSTER), pages
50–59, Sept 2016.

[77] Thomas J Hacker, Fabian Romero, and Christopher D Carothers. An analysis of clustered
failures on large supercomputing systems. Journal of Parallel and Distributed Computing,
69(7):652–665, 2009.

142
Approved for Public Release; Distribution Unlimited.

[78] Paul R. Hafner. Geometric realisation of the graphs of mckay-miller-siran. Journal of Com-
binatorial Theory, Series B, 90(2):223–232, 2004.

[79] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Sugavanam, P. Coteus,
P. Heidelberger, M. Blumrich, R. Wisniewski, a. gara, G. Chiu, P. Boyle, N. Chist, and
C. Kim. The ibm blue gene/q compute chip. IEEE Micro, 32(2):48–60, March 2012.

[80] Jennifer Hasler and Bo Marr. Finding a roadmap to achieve large neuromorphic hardware
systems. Frontiers in neuroscience, 7, 2013.

[81] Jennifer Hasler and Harry Bo Marr. Finding a roadmap to achieve large neuromorphic hard-
ware systems. Frontiers in Neuroscience, 7:118, 2013.

[82] T. Hatazaki. Tsubame-2 - a 2.4 PFLOPS peak performance system. In 2011 Optical Fiber
Communication Conf. and Exhibition/National Fiber Optic Engineers Conf. (OFC/NFOEC),
pages 1–3, Mar. 2011.

[83] Almoatazbellah M Hegab, Noha M Salem, Ahmed G Radwan, and Leon Chua. Neuron model
with simplified memristive ionic channels. International Journal of Bifurcation and Chaos,
25(06):1530017, 2015.

[84] Van Emden Henson and Ulrike Meier Yang. Boomeramg: A parallel algebraic multigrid solver
and preconditioner. Applied Numerical Mathematics, 41(1):155 – 177, 2002. Developments
and Trends in Iterative Methods for Large Systems of Equations - in memorium Rudiger
Weiss.

[85] J J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proc. of the National Academy of Sciences, 79(8):2554–2558, 1982.

[86] Eric Hunsberger and Chris Eliasmith. Spiking deep networks with lif neurons, 2015.

[87] E. M. Izhikevich. Which model to use for cortical spiking neurons? IEEE Transactions on
Neural Networks, 15(5):1063–1070, Sept 2004.

[88] E M Izhikevich. Hybrid spiking models. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 368(1930):5061–5070, October 2010.

[89] Eugene M. Izhikevich. Resonate-and-fire neurons. Neural Networks, 14(6–7):883 – 894, 2001.

[90] Nikhil Jain, Abhinav Bhatele, Sam White, Todd Gamblin, and Laxmikant V. Kale. Evaluating
HPC Networks via Simulation of Parallel Workloads. In Proc. of the Int. Conf. for High
Performance Computing, Networking, Storage and Analysis, SC ’16 (to appear), 2016.

[91] Nikhil Jain et al. Predicting the performance impact of different fat-tree configurations. In
Proc. of the Int. Conf. for High Performance Computing, Networking, Storage and Analysis,
SC ’17, pages 50:1–50:13, New York, NY, USA, 2017. ACM.

[92] S Jeyanthi and M Subadra. Implementation of single neuron using various activation functions
with fpga. In Advanced Communication Control and Computing Technologies (ICACCCT),
2014 International Conference on, pages 1126–1131. IEEE, 2014.

143
Approved for Public Release; Distribution Unlimited.

[93] Ian Karlin, Abhinav Bhatele, Jeff Keasler, Bradford L. Chamberlain, Jonathan Cohen,
Zachary DeVito, Riyaz Haque, Dan Laney, Edward Luke, Felix Wang, David Richards, Martin
Schulz, and Charles Still. Exploring traditional and emerging parallel programming models
using a proxy application. In 27th IEEE International Parallel & Distributed Processing
Symposium (IEEE IPDPS 2013), Boston, USA, May 2013.

[94] Nikola K Kasabov. Neucube: A spiking neural network architecture for mapping, learning
and understanding of spatio-temporal brain data. Neural Networks, 52:62–76, 2014.

[95] G. Kathareios, C. Minkenberg, B. Prisacari, G. Rodriguez, and T. Hoefler. Cost-effective
diameter-two topologies: Analysis and evaluation. Nov. 2015. Accepted at IEEE/ACM Int.
Conf. on High Performance Computing, Networking, Storage and Analysis (SC15).

[96] Rafid Ahmed Khalil et al. Fpga implementation of artificial neurons: Comparison study. In
Information and Communication Technologies: From Theory to Applications, 2008. ICTTA
2008. 3rd International Conference on, pages 1–6. IEEE, 2008.

[97] M. M. Khan et al. Spinnaker: Mapping neural networks onto a massively-parallel chip mul-
tiprocessor. In 2008 IEEE Int. Joint Conf. on Neural Networks (IEEE World Congress on
Computational Intelligence), pages 2849–2856, June 2008.

[98] John Kim, Wiliam J Dally, Steve Scott, and Dennis Abts. Technology-driven, highly-scalable
dragonfly topology. In ACM SIGARCH Computer Architecture News, volume 36, pages 77–88.
IEEE Computer Society, 2008.

[99] John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts. Technology-driven, highly-scalable
dragonfly topology. SIGARCH Comput. Archit. News, 36(3):77–88, June 2008.

[100] M. Koibuchi, H. Matsutani, H. Amano, D. F. Hsu, and H. Casanova. A case for random short-
cut topologies for hpc interconnects. In 2012 39th Annu. Int. Symp. on Computer Architecture
(ISCA), pages 177–188, June 2012.

[101] Stefanos Kollias and Andreas Stafylopatis. In Ioannis Pitas, editor, Parallel Algorithms, chap-
ter Parallel Implementations of the Backpropagation Learning Algorithm Based on Network
Topology, pages 233–258. John Wiley & Sons, Inc., New York, NY, USA, 1993.

[102] Sotiris B Kotsiantis, Ioannis D Zaharakis, and Panayiotis E Pintelas. Machine learning: a
review of classification and combining techniques. Artificial Intelligence Review, 26(3):159–
190, 2006.

[103] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
2009.

[104] N. T. Kung and R. Morris. Credit-based flow control for atm networks. IEEE Network,
9(2):40–48, Mar. 1995.

[105] Brett Lantz. Machine learning with R. Packt Publishing Ltd, 2013.

144
Approved for Public Release; Distribution Unlimited.

[106] Justin M LaPre, Christopher D Carothers, Kenneth D Renard, and Dale R Shires. Ultra large-
scale wireless network models using massively parallel discrete-event simulation. Transactions
of The Society for Modeling and Simulation Int., October 2012.

[107] Lawrence Livermore National Laboratory. Sierra Advanced Technology System. http://

computation.llnl.gov/computers/sierra-advanced-technology-system. (Accessed on:
Nov. 3, 2018).

[108] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[109] Seyong Lee, Jeremy S. Meredith, and Jeffrey S. Vetter. COMPASS: A framework for auto-
mated performance modeling and prediction. In Proceedings of the 29th ACM on International
Conference on Supercomputing, pages 405–414, Newport Beach, California, USA, 2015. ACM.

[110] Seyong Lee and Jeffrey S Vetter. OpenARC: extensible openACC compiler framework for
directive-based accelerator programming study. In Proceedings of the First Workshop on
Accelerator Programming using Directives (with SC14), pages 1–11, New Orleans, 2014. IEEE
Press.

[111] Charles E. Leiserson et al. The network architecture of the Connection Machine CM-5. In
SPAA ’92: Proc. of the 4th Annu. ACM Symp. on Parallel Algorithms and Architectures,
pages 272–285, New York, NY, USA, 1992. ACM.

[112] Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra Sahoo. Failure prediction in
ibm bluegene/l event logs. In Data Mining, 2007. ICDM 2007. Seventh IEEE International
Conference on, pages 583–588. IEEE, 2007.

[113] Ning Liu, Adnan Haider, Xian-He Sun, and Dong Jin. Fattreesim: Modeling large-scale fat-
tree networks for hpc systems and data centers using parallel and discrete event simulation. In
Proc. of the 3rd ACM SIGSIM Conf. on Principles of Advanced Discrete Simulation, SIGSIM
PADS ’15, pages 199–210, New York, NY, USA, 2015. ACM.

[114] C. J. Lobb, Z. Chao, R. M. Fujimoto, and S. M. Potter. Parallel event-driven neural network
simulations using the hodgkin-huxley neuron model. In Workshop on Principles of Advanced
and Distributed Simulation, PADS 2005, pages 16–25, June 2005.

[115] Qingyun Ma, Mohammad Rafiqul Haider, Vinaya Lal Shrestha, and Yehia Massoud. Bursting
hodgkin–huxley model-based ultra-low-power neuromimetic silicon neuron. Analog Integrated
Circuits and Signal Processing, 73(1):329–337, 2012.

[116] Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659–1671, 1997.

[117] Brad McCredie. Openpower and the roadmap ahead, 2016. (Accessed on: Nov. 3, 2018).

[118] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[119] Brendan D McKay, Mirka Miller, and Jozef Siran. A note on large graphs of diameter two and
given maximum degree. Journal of Combinatorial Theory, Series B, 74(1):110 – 118, 1998.

145
Approved for Public Release; Distribution Unlimited.

[120] K. Meier. A mixed-signal universal neuromorphic computing system. In 2015 IEEE Int.
Electron Devices Meeting (IEDM), pages 4.6.1–4.6.4, Dec 2015.

[121] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S. Modha. A digital
neurosynaptic core using embedded crossbar memory with 45pj per spike in 45nm. In IEEE
Conference on Custom Integrated Circuits, CICC ’11, pages 1–4, Sept 2011.

[122] Paul A. Merolla et al. A million spiking-neuron integrated circuit with a scalable communi-
cation network and interface. Science, 345(6197):668–673, 2014.

[123] Miller, Mirka, Siran, and Jozef. Moore graphs and beyond: a survey of the degree/diameter
problem. The Electronic Journal of Combinatorics [electronic only], DS14:61 p., electronic
only–61 p., electronic only, 2005.

[124] Cyriel Minkenberg and Germán Rodriguez. Trace-driven co-simulation of high-performance
computing systems using omnet++. In Proc. of the 2Nd Int. Conf. on Simulation Tools and
Techniques, Simutools ’09, pages 65:1–65:8, ICST, Brussels, Belgium, Belgium, 2009. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).

[125] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns. Modeling a million-node dragonfly
network using massively parallel discrete-event simulation. In High Performance Comput.,
Networking, Storage and Anal. (SCC) SC Companion, pages 366–376, 2012.

[126] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns. A case study in using massively par-
allel simulation for extreme-scale torus network codesign. In Proc. of the 2nd ACM SIGSIM/-
PADS Conf. on Principles of Advanced Discrete Simulation, pages 27–38, 2014.

[127] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns. Enabling parallel simulation of
large-scale hpc network systems. IEEE Transactions on Parallel and Distributed Systems,
28(1):87–100, Jan 2017.

[128] Misbah Mubarak, Christopher D. Carothers, Robert Ross, and Philip Carns. Modeling a
million-node dragonfly network using massively parallel discrete-event simulation. In Proc. of
the 2012 SC Companion: High Performance Computing, Networking Storage and Analysis,
SCC ’12, pages 366–376, Washington, DC, USA, 2012. IEEE Computer Society.

[129] Misbah Mubarak, Christopher D. Carothers, Robert B. Ross, and Philip Carns. A case study
in using massively parallel simulation for extreme-scale torus network codesign. In Proc. of
the 2Nd ACM SIGSIM Conf. on Principles of Advanced Discrete Simulation, SIGSIM PADS
’14, pages 27–38, New York, NY, USA, 2014. ACM.

[130] Misbah Mubarak, Christopher D. Carothers, Robert B. Ross, and Philip Carns. Enabling
Parallel Simulation of Large-Scale HPC Network Systems. In IEEE Transactions on Parallel
and Distributed Systems. IEEE, 2016.

[131] Misbah Mubarak et al. Quantifying i/o and communication traffic interference on dragonfly
networks equipped with burst buffers. In Cluster Computing (CLUSTER), 2017 IEEE Int.
Conf. on, pages 204–215. IEEE, 2017.

146
Approved for Public Release; Distribution Unlimited.

[132] David M. Nicol. The cost of conservative synchronization in parallel discrete event simulations.
J. ACM, 40(2):304–333, April 1993.

[133] Oak Ridge National Laboratory. Summit, Oak Ridge’s next High Performance Supercomputer .
https://www.olcf.ornl.gov/summit/. (Accessed on: Nov. 3, 2018).

[134] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson, D. R. Lester,
A. D. Brown, and S. B. Furber. Spinnaker: A 1-w 18-core system-on-chip for massively-
parallel neural network simulation. IEEE Journal of Solid-State Circuits, 48(8):1943–1953,
Aug 2013.

[135] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[136] F. Petrini and M. Vanneschi. k-ary n-trees: high performance networks for massively parallel
architectures. In Proc. of the 11th Int. Parallel Processing Symp., pages 87–93, April 1997.

[137] Fabrizio Petrini and Marco Vanneschi. k-ary n-trees: High performance networks for massively
parallel architectures. In Parallel Processing Symp., 1997. Proc.., 11th Int., pages 87–93.
IEEE, 1997.

[138] Mark Plagge, Christopher D. Carothers, and Elsa Gonsiorowski. Nemo: A massively parallel
discrete-event simulation model for neuromorphic architectures. In Proceedings of the 2016
Annual ACM Conference on SIGSIM Principles of Advanced Discrete Simulation, SIGSIM-
PADS ’16, pages 233–244, New York, NY, USA, 2016. ACM.

[139] Mark Plagge, Christopher D. Carothers, and Elsa Gonsiorowski. Nemo: A massively parallel
discrete-event simulation model for neuromorphic architectures. In Proc. of the 2016 Annu.
ACM Conf. on SIGSIM Principles of Advanced Discrete Simulation, SIGSIM-PADS ’16, pages
233–244, New York, NY, USA, 2016. ACM.

[140] Robert Preissl, Theodore M. Wong, Pallab Datta, Myron Flickner, Raghavendra Singh,
Steven K. Esser, William P. Risk, Horst D. Simon, and Dharmendra S. Modha. Compass: A
scalable simulator for an architecture for cognitive computing. In Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage and Analysis, SC
’12, pages 54:1–54:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[141] Kenneth L Rice, Mohammad A Bhuiyan, Tarek M Taha, Christopher N Vutsinas, and
Melissa C Smith. Fpga implementation of izhikevich spiking neural networks for charac-
ter recognition. In 2009 International Conference on Reconfigurable Computing and FPGAs,
pages 451–456. IEEE, 2009.

[142] Arun Rodrigues et al. The structural simulation toolkit. SIGMETRICS Perform. Eval. Rev.,
38(4):37–42, Mar. 2011.

[143] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533, 1986.

147
Approved for Public Release; Distribution Unlimited.

[144] Sandia National Labs. SST DUMPI trace library . (Accessed on: Nov. 3, 2018).

[145] Jun Sawada, Filipp Akopyan, Andrew S Cassidy, Brian Taba, Michael V Debole, Pallab
Datta, Rodrigo Alvarez-Icaza, Arnon Amir, John V Arthur, Alexander Andreopoulos, et al.
Truenorth ecosystem for brain-inspired computing: scalable systems, software, and applica-
tions. In High Performance Computing, Networking, Storage and Analysis, SC16: Interna-
tional Conference for, pages 130–141. IEEE, 2016.

[146] Jürgen Schmidhuber. Deep Learning in Neural Networks: An Overview. Neural Networks,
61:85–117, March 2014.

[147] Bianca Schroeder and Garth Gibson. A large-scale study of failures in high-performance
computing systems. IEEE Transactions on Dependable and Secure Computing, 7(4):337–350,
2010.

[148] Bianca Schroeder and Garth A Gibson. Understanding failures in petascale computers. In
Journal of Physics: Conference Series, volume 78, page 012022. IOP Publishing, 2007.

[149] Catherine D Schuman, Thomas E Potok, Robert M Patton, J Douglas Birdwell, Mark E
Dean, Garrett S Rose, and James S Plank. A Survey of Neuromorphic Computing and
Neural Networks in Hardware. arXiv.org, May 2017.

[150] Jaewook Shin et al. Speeding up nek5000 with autotuning and specialization. In Proc. of the
24th ACM Int. Conf. for Supercomputing, pages 253–262. ACM, 2010.

[151] J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, and D. Mavriplis.
Cfd vision 2030 study: A path to revolutionary computational aerosciences. Technical Report
NASA/CR-2014-21878, NASA, March 2014.

[152] Shane Snyder et al. A case for epidemic fault detection and group membership in hpc storage
systems. In Stephen A. Jarvis, Steven A. Wright, and Simon D. Hammond, editors, High
Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation,
volume 8966 of Lecture Notes in Computer Science, pages 237–248. Springer Int. Publishing,
2015.

[153] Shane Snyder et al. Techniques for Modeling Large-scale HPC I/O Workloads. In Proc.
of the 6th Int. Workshop on Performance Modeling, Benchmarking, and Simulation of High
Performance Computing Systems, PMBS ’15, pages 5:1–5:11, New York, NY, USA, 2015.
ACM.

[154] K. L. Spafford and J. S. Vetter. Aspen: A domain specific language for performance modeling.
In SC12: International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 1–11, Salt Lake City, 2012.

[155] RB Stein, Ao S French, and AV Holden. The frequency response, coherence, and information
capacity of two neuronal models. Biophysical journal, 12(3):295–322, 1972.

[156] Doron Tal and Eric L. Schwartz. Computing with the leaky integrate-and-fire neuron: Loga-
rithmic computation and multiplication. Neural Computation, 9(2):305–318, 1997.

148
Approved for Public Release; Distribution Unlimited.

[157] G. Urgese, F. Barchi, E. Macii, and A. Acquaviva. Optimizing network traffic for spiking
neural network simulations on densely interconnected many-core neuromorphic platforms.
IEEE Transactions on Emerging Topics in Computing, PP(99):1–1, 2017.

[158] L. G. Valiant. A scheme for fast parallel communication. SIAM Journal on Computing,
11(2):350–361, 1982.

[159] András Varga and Rudolf Hornig. An overview of the omnet++ simulation environment. In
Proc. of the 1st Int. Conf. on Simulation Tools and Techniques for Communications, Net-
works and Systems & Workshops, Simutools ’08, pages 60:1–60:10, ICST, Brussels, Belgium,
Belgium, 2008. ICST (Institute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering).

[160] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural networks for matlab. In Proceeding
of the ACM Int. Conf. on Multimedia, 2015.

[161] Jeffrey S Vetter and Jeremy S Meredith. Synthetic program analysis with aspen. In Proceed-
ings of the 3rd International Conference on Exascale Applications and Software, pages 1–6.
University of Edinburgh, 2015.

[162] Sying-Jyan Wang. Load-balancing in multistage interconnection networks under multiple-pass
routing. Journal of Parallel and Distributed Computing, 36(2):189 – 194, 1996.

[163] Ke Wen et al. Flexfly: Enabling a reconfigurable dragonfly through silicon photonics. In
Proc. of the Int. Conf. for High Performance Computing, Networking, Storage and Analysis,
SC ’16, pages 15:1–15:12, Piscataway, NJ, USA, 2016. IEEE Press.

[164] S Williams, A Waterman, and D Patterson. Roofline: an insightful visual performance model
for multicore architectures. Communications of the ACM, 52(4):65–76, 2009.

[165] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[166] N. Wolfe et al. Preliminary performance analysis of multi-rail fat-tree networks. In 2017 17th
IEEE/ACM Int. Symp. on Cluster, Cloud and Grid Computing (CCGRID), pages 258–261,
May 2017.

[167] Noah Wolfe, Misbah Mubarak, Christopher D. Carothers, Robert B. Ross, and Philip H.
Carns. Modeling large-scale slim fly networks using parallel discrete-event simulation. ACM
Trans. Model. Comput. Simul., 28(4):29:1–29:25, August 2018.

[168] Xu Yang, John Jenkins, Misbah Mubarak, Robert Ross, and Zhiling Lan. Watch out for
the bully! job interference study on dragonfly networks. In Proc. of the Int. Conf. for High
Performance Computing, Networking, Storage and Analysis (SC), 2016.

[169] Li Yu, Ziming Zheng, Zhiling Lan, and Susan Coghlan. Practical online failure prediction for
blue gene/p: Period-based vs event-driven. In Dependable Systems and Networks Workshops
(DSN-W), 2011 IEEE/IFIP 41st International Conference on, pages 259–264. IEEE, 2011.

149
Approved for Public Release; Distribution Unlimited.

[170] Eitan Zahavi, Gregory Johnson, Darren J. Kerbyson, and Michael Lang. Optimized InfiniBand
fat-tree routing for shift all-to-all communication patterns. Concurr. Comput. : Pract. Exper.,
22(2):217–231, February 2010.

[171] Mohammed J. Zaki, Christopher D. Carothers, and Boleslaw K. Szymanski. Vogue: A variable
order hidden markov model with duration based on frequent sequence mining. ACM Trans.
Knowl. Discov. Data, 4(1):5:1–5:31, January 2010.

[172] Ziming Zheng and Zhiling Lan. Reliability-aware scalability models for high performance
computing. In Cluster Computing and Workshops, 2009. CLUSTER’09. IEEE International
Conference on, pages 1–9. IEEE, 2009.

[173] Ziming Zheng, Li Yu, Wei Tang, Zhiling Lan, Rinku Gupta, Narayan Desai, Susan Coghlan,
and Daniel Buettner. Co-analysis of ras log and job log on blue gene/p. In Parallel &
Distributed Processing Symposium (IPDPS), 2011 IEEE International, pages 840–851. IEEE,
2011.

150
Approved for Public Release; Distribution Unlimited.

A Publications

The following is the list of publications published as part of this research project.

1. P. Date, C. D. Carothers, J. Hendler and M. Magdon-Ismail, “Efficient Classification of Su-
percomputer Failures using Neuromorphic Computing”, To appear in Proceedings of the 2018
IEEE Symposium Series on Computational Intelligence (SSCI), November 18–21, Bengaluru,
India, 2018.

2. N Wolfe, M. Plagge, M. Mubarak, C D. Carothers, R. B. Ross. “Evaluating the Impact
of Spiking Neural Network Traffic on Extreme-Scale Hybrid Systems”, In Proceedings of the
9th International Workshop on Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS 2018) as part of Supercomputing (SC’18). Dallas,
Texas, November 2018.

3. N. Wolfe, M. Mubarak, C. D. Carothers, R. B Ross, P. Carns, “Modeling Large-Scale Slim Fly
Networks Using Parallel Discrete-Event Simulation”, In ACM Transactions on Modeling and
Computing Simulation, part of Special Issue on Best of 2016 ACM-SIGSIM-PADS Conference,
Volume 28 Issue 4, page 29:1–29:25, October 2018.

4. M. Plagge, C. D. Carothers, E. Gonsiorowski and N. McGlohon, “NeMo: A Massively Parallel
Discrete-Event Simulation Model for Neuromorphic Architectures”, In ACM Transactions on
Modeling and Computing Simulation, part of Special Issue on Best of 2016 ACM-SIGSIM-
PADS Conference, pages 30:1–30:25, October 2018.

5. C. D. Carothers, J. S. Meredith, M. P. Blanco, J. Vetter, M. Mubarak, J. LaPre and S.
Moore, “Durango: Scalable Synthetic Workload Generation for Extreme-Scale Application
Performance Modeling and Simulation”, In Proceedings of the 2017 ACM SIGSIM-PADS
Conference, pages 97–108, Singapore, May 24–26, 2017.

6. N. Wolfe, M. Mubarak, N. Jain, J. Domke, A. Bhatele, C. D. Carothers and R. B. Ross,
“Methods for Effective Utilization of Multi-Rail Fat-Tree Interconnects”, In Proceedings of the
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid).
Madrid, Spain, May 14-17, 2017.

7. P. Date, J. A. Hendler and C. D. Carothers, “Design Index for Deep Neural Networks”,
In Proceedings of the 2016 Annual International Conference on Biologically Inspired Cog-
nitive Architectures (BICA 2016), New York, New York, July 16-19, 2016. http://www.

sciencedirect.com/science/article/pii/S1877050916316726.

8. M. Plagge, C. D. Carothers and E. Gonsiorowski, “NeMo: A Massively Parallel Discrete-
Event Simulation Model for Neuromorphic Architectures”, In Proceedings of the 2016 ACM
SIGSIM-PADS Conference, May 15-18, 2016, Banif, Alberta Canada.

9. N. Wolfe, C. D. Carothers, M. Mubarak, R. B. Ross and P. Carns, “Modeling a Million-
Node Slim Fly Network using Parallel Discrete Event Simulation”, In Proceedings of the 2016
ACM SIGSIM-PADS Conference, May 15-18, 2016, Banif, Alberta Canada.

151
Approved for Public Release; Distribution Unlimited.

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

The following is the list of symbols, abbrevations and acronyms used in this report.

• AVL Tree: A self-balancing search tree used by ROSS.

• AFRL: Air Force Research Laboratory.

• Aspen: analytic performance modeling language developed at ORNL

• Compass: IBM’s original massively parallel simulator for the TrueNorth processor.

• CODES: Co-design of extreme-scale systems simulation system.

• DOE: Department of Energy.

• Durango: a hybrid system performance modeling framework built using Aspen and CODES.

• fps: Frames-per-second.

• GVT: Global Virtual Time - which is a time computed and used by ROSS to determine
which events can be safely garbage collected as part of optimitic event processing.

• HPC: High-Performance Computing.

• LIF: Leak Integrate and Fire neuron model.

• LP: Logical Process - a base simulation modeling entity used by ROSS.

• MNIST: A hand writting image classification benchmark developed at NIST.

• MPI: Message-Passing Interface. A standard used in the development of massively parallel
software systems.

• MSTAR: Moving and Stationary Target Acquisition and Recognition (MSTAR) data is a
SAR image data-set of military hardware.

• mW: milli-watts - a measure of power comsumption.

• NeMo: A massively parallel neuromorphic processor simulator design using ROSS.

• NIST: National Institute of Standards and Technology.

• NSCS: 2nd generation simulator for IBM TrueNorth processor.

• LLNL: Lawrence Livermore National Laboratory.

• LULESH: DOE mini-application used in system performance modeling and bechmarking.

• ORNL: Oak Ridge National Laboratory.

• PDES: Parallel discrete-event simulation.

152
Approved for Public Release; Distribution Unlimited.

• ROSS: Rensselaer Optimistic Simulation System.

• SAR: synthetic apeture radar.

• TNLIF: LIF neuron model implemented on TrueNorth.

• TrueNorth: neuromorphic processor designed and built by IBM.

153
Approved for Public Release; Distribution Unlimited.

