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1. Introduction 

As autonomy and artificial intelligence (AI) are becoming an increasingly 
important part of future military systems, it is essential to stress the role of the 
human in these systems. AI and the use of intelligent software agent (IA) 
technology (software that performs specific tasks autonomously; Russell and 
Norvig [2009]) are only useful if they are understood in terms of their effect on the 
larger military picture. It is military doctrine that these systems must be supervised 
by human operators who are responsible for their results, in the sense that the risks 
and limitations involved are understood (Department of Defense [DOD] Directive 
3000.09 [2012b]). For example, planning systems with IA components must be 
transparent to the human supervisor who is responsible for its consequences 
(Draper et al. 2018). US Army Research Laboratory (ARL)* scientists are 
investigating IA transparency concepts in various military paradigms (Chen and 
Barnes 2014; Mercado et al. 2016; Chen et al. 2018) that improve human–agent 
trust calibration by minimizing misuse (over-relying on agents) and disuse (under-
relying on agents) (Parasuraman and Riley 1997; Lee and See 2004). The result of 
this experimentation was a generalized model, Situation-Awareness (SA)-based 
Agent Transparency (SAT), which has aided in the development of transparency 
displays for various uses of IA in military systems (Chen et al. 2018; Pynadath et 
al. 2018).  

However, enabling the software to display specific types of information is only part 
of effective interface design. Equally important is the use of visualization 
techniques to enhance an operator’s ability to extract SAT information that is both 
intuitive and rapidly processed for complex military environments (Chen and 
Barnes 2014; Selkowitz et al. 2016; Stowers et al. 2016). Specific visualization 
requirements will depend on the depth of information and time constraints 
necessary to respond to mission parameters (Lee 2012). The following report 
evaluates visualization techniques and principles as building blocks to construct 
transparency interfaces that maximize the amount of critical information with the 
minimal processing overhead to map SAT information to complex military 
situations involving autonomous and human-controlled assets.  

Visualization has two related meanings: to form a mental image or to create a 
representation of a complex process (Merriam Webster 2018). The former is an 

                                                
*The work outlined in this report was performed while the US Army Research Laboratory (ARL) 
was part of the US Army Research, Development, and Engineering Command (RDECOM). As of 
31 January 2019, the organization is now part of the US Army Combat Capabilities Development 
Command (formerly RDECOM) and is called CCDC Army Research Laboratory. 
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internal process whereas the latter is an external representation. The Department of 
the Army (1997) has defined visualization as the following: 

The process whereby the commander develops a clear 
understanding of his current state with relation to the enemy and 
environment, envisions a desired end state which represents mission 
accomplishments, and then subsequently visualizes the sequence of 
events that will move his forces from the current state to the end 
state. 

During the battle of Vicksburg, General Grant, using only maps of the local terrain, 
was able to mentally examine the possible outcomes of various course of actions 
(COAs; Barnes [2003]). Also, scientist use visualization as a tool to image abstract 
processes in terms of concrete examples. Einstein used the example of a man 
walking on a moving train to explicate the concept of relative motion (Fowler 
2007). It is this second meaning of visualization that is the focus of this report (Tsai 
et al. 2001). However, effective computer visualizations not only capture the 
dynamics of a process but also enable humans to create a mental model of the 
process. 

The initial sections of the report review visualization paradigms developed by 
display designers to create intuitive portrayals of complex processes. Next, we 
discuss good-practice display design principles that are the result of research 
findings from a variety of human factors scientists. Finally, we review the findings 
of the two projects that were funded under the recently completed DOD Autonomy 
Research Pilot Initiative (ARPI) that investigated the effects of visualizations and 
transparency for autonomous systems. The purpose of the report is to create a menu 
of visualization concepts and lessons learned to form the basis of the design of a 
transparency interface for systems such as the Next Generation Combat Vehicle .       

2. High-Level Visualization Techniques 

Several visualization techniques have been established for interface design. These 
approaches propose guidelines and identify aspects of design that will be useful for 
operators in environments in a specific problem space (e.g., aircraft cockpit, nuclear 
control room). Rogers (2004) reviewed several theoretical approaches applied in 
human‒computer interface (HCI): ecological approach, activity theory, external 
cognition, distributed cognition, and situated action. The author explains the 
development and application of these theories to HCI as well as alludes to hybrid 
and overarching approaches. This section reviews the principles commonly used in 
interface design and ecological interface design (EID), and elaborates on two 
hybrid approaches: sensemaking and narrative/storytelling. 
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2.1 Ecological Interface Design 

EID is a design framework developed by Rasmussen and Vicente for complex 
human‒system interfaces (Rasmussen and Vicente 1989; Vicente and Rasmussen 
1992; Liu and Stasko 2010). It utilizes cognitive engineering principles to identify 
interface information content and structure to improve problem solving and 
decision making (Vicente 1996). Designs following EID principles should 
accommodate the limitations of human perception‒action skills and should not add 
to the difficulty of tasks. 

EID has been used in various disciplines to improve operator control such as 
aviation, military command and control (C2), and process control. Several studies 
have compared existing interfaces to redesigns using EID and found operator 
benefits such as increases in performance score and time (Lee et al. 2006; Jamieson 
2007). Figure 1 shows a work-domain-based ecological interface for the petro-
chemical industry that was developed by Jamieson (2007). Information was 
grouped into physical, functional, and task content. Increased operator performance 
scores and fault diagnosis were observed from those using the EID interface 
compared to those using the current process display. Bennett et al. (2008) 
developed Representation Aiding Portrayal of Tactical Operations Resources 
(RAPTOR), a military C2 interface for Army tactical operation (Fig. 2). Unit 
characteristics and vehicle properties (e.g., ammunition, types of weapons, speed 
of vehicles, and so on) are embedded on the interface to aid in quick decision 
making. Bennett (2017) further describes RAPTOR components. 
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Fig. 1 Work-domain-based ecological interface (adapted from Jamieson [2007]) 

 

Fig. 2 RAPTOR, a military C2 interface (Bennett 2017) 
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2.2 Sensemaking 

Sensemaking frameworks have been used to understand unfamiliar information 
visualization (Gordin et al. 1994; Ntuen et al. 2010). Sensemaking in visualization 
has been traditionally defined as “the collective application of individual 
‘intuition’—experience-based, subconsciously processed judgment and 
imagination—to identify changes in existing patterns or the emergence of new 
patterns” (Ntuen et al. 2010). There have been models in the domain of HCI and 
information visualization, such as the notional model of a sensemaking loop by 
Pirolli and Card (2005). This model describes intelligence analysis derived from a 
cognitive task analysis of searching external data courses and presenting the 
information to an audience. 

Another model is the Klein et al. (2006) Data/Frame Theory. This model  
(Fig. 3) uses frames, or a person’s internal mental structure of making sense of 
events. People use seven sensemaking events to refine an existing frame or create 
a better frame (i.e., re-frame). Moreover, Klein and colleagues expanded this model 
to the Flexecution model, which explores the paradigm for goal planning and re-
planning (Klein 2007a, 2007b). The Flexecution model emphases the importance 
of adjusting and changing goals based on experiences obtained from executions  
(Fig. 4). The model shows the importance of goal planning and accommodating 
goal conflicts and changing priorities. These frameworks and models have been 
applied to information visualization.  

 

 

Fig. 3 Data/Frame Theory (Klein et al. 2006) 
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Fig. 4 Flexecution model (Klein 2007b) 

Visualization models for sensemaking have also focused on information 
visualization. Liu and Stasko (2010) examined the relationship of mental models 
and external visualization. In their InfoVis model, external visualizations are 
internalized as mental models and this dynamic relationship can be used for 
external anchoring, information foraging, and cognitive offloading (Liu and Stasko 
2010). Additionally, Lee et al. (2016) developed the Novices Information 
Visualization Sensemaking (NOVIS; Fig. 5) model, which uses five sensemaking 
actives to describe novices’ sensemaking of interpreting an unfamiliar 
visualization, such as parallel-coordinate plots and treemaps. Results from this 
model can provide insight on how humans conduct sensemaking and cognitive 
activities, and could be expanded to understand visual literacy of novices. 
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Fig. 5 NOVIS model (Lee et al. 2016) 

Sensemaking models have been developed specifically for the military context. 
Sensemaking of visualizations in this domain is “the mental process of a 
commander achieving a clear understanding of the military force’s current state 
with relation to the enemy and environment” (Ntuen et al. 2010). This framework 
has been implemented in visualization technology to improve recognition and 
understanding of information systems. For a military C2 decision-making context, 
Ntuen (2008) developed the Sensemaking Support System (S3). This visualization 
tool aims to increase collaborative sensemaking by sharing tacit knowledge, 
supporting a common operating picture, and allowing teams to visualize other team 
members’ perspectives. 

Results from an experiment conducted by Ntuen (2008) found that S3 model 
provides a groundwork for supporting operational visualization. Users were asked 
to rate the effectiveness of S3 on how it helped in sensemaking, SA, and situation 
understanding. It was found that the relationship of S3 perception rating to 
sensemaking cognitive measures was highly significant. A follow-up study applied 
S3 in the Aggie Visualization Architecture for Learning to Anticipate Novel 
Cognitive Human Task Environments (AVALANCHE) visualization interface to 
test visualization and sensemaking support, and it was found that groups that used 
the S3 aid improved in planning time, increased mean plan outcome accuracy, and 
reduced unnecessary information seeking. 
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2.3 Narrative/Storytelling 

Storytelling has been a key form of communication for human civilization, and 
narrative visualization has been identified to aid information visualization (Segel 
and Heer 2010). This framework is centered around telling a story with data to 
increase the communication dimensions of information (Hullman and Diakopoulos 
2011). Just as in fictional stories, narrative visualization builds the picture, animates 
the events, and ends with a conflict and ambiguity resolution (Gershon and Page 
2001). This technique parallels storytelling by having narrative components such 
as genre and rhetoric. 

Hullman and Diakopoulos (2011) summarized visualization rhetoric techniques of 
narrative visualizations (Table 1). These techniques focus on editorial layers to 
convey meaning on data, visual representation, textual annotation, and interactivity. 
These methods of rhetorical manipulation of information can be effective tools in 
information visualization. 

Table 1 Narrative visualization techniques (from Hullman and Diakopoulos [2011]) 

Rhetoric Components 
Information access • Determining data representation 

• Omission techniques to frame data 
Provenance • Citing and/or linking data sources, additional references 

• Annotating exceptions and corrections 
• Representing uncertainty 

Mapping • Manipulation of information presentation by data-to-visual transfer 
function—constraints that determine how information will be 
translated to visual feature 

• Obscuring to reduce noise 
• Visual metaphor and metonymy 

Linguistic-based • Typographic emphases (e.g., font bolding or italicizing) 
• Irony and rhetorical questions 
• Analogies using similarity and contrasts 
• Individualization 

Procedural • Expression of meaning through rule-based representations and 
interactive functions 

• Anchoring to shift user attention 
 

In an example C2 situation by Gershon and Page (2001), a narration is played while 
supplemented with visuals to describe the scenario in which a friendly school with 
children trapped inside is surrounded by the enemy. The audience’s attention is 
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focused and information within the story is portrayed when features such as 
zooming and highlighting are used. 

These visualization approaches are used in interface design to effectively relay 
information to users. These higher-level techniques review the many methods that 
can be taken to create a good design and aid in the performance of users. In addition 
to these techniques, visualization principles have been developed that can be 
applied to create an effective interface.  

2.4 Visualization Principles 

Visualization recommendations have been made in the field of cognitive 
psychology considering human visual information processing. Books have been 
written on recommendations of data visualization and presentation such as The 
Visual Display of Quantitative Information by Tufte (1983) and Semiology of 
Graphs by Bertin (1983). The authors of these books focus on how to format graphs 
and create effective designs considering memory-capacity limitations and long-
term memory processing. For example, Tufte recommends maximizing the data/ink 
ratio by embedding as much information as possible. Perceptual grouping should 
follow the Gestalt Laws of Organization and explanations are incorporated in the 
texts. Kosslyn (1985) reviewed the aforementioned and three additional 
visualization works based on human information-processing properties and their 
recommendations. These texts are known to be seminal work in the visualization 
field and have been incorporated in the principles and guidelines for interface 
design. 

Thirteen principles of display design were proposed by Wickens et al. (2014)  
(Table 2). These principles serve as best practices while designing an interface and 
have been utilized in many industries. For example, dos Santos et al. (2008) 
incorporated the principles to propose a new system interface design for a nuclear 
power plant control room display interface (Fig. 6). Features such as the redesign 
of graphic links to increase discriminability and the repositioning of navigation 
buttons to minimize information access cost were implemented to increase 
usability. Additionally, Cooper and Goodrich (2006) developed an interface to 
support navigation and control of unmanned aerial vehicles (UAVs; Fig. 7). The 
authors considered the interface’s goal of supporting the primary task of the 
operator by minimizing information access cost and developing alternative views 
utilizing the principle of moving parts for the navigation assistance of the current 
state and commanded state of the UAV. 
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Table 2 Thirteen principles of display design (from Wickens et al. [2014]) 

Principle Explanation 
Make displays legible (or 
audible) 

Optimize properties relating to issues such as contrast, 
visual angle, illumination, noise, masking, etc. 

Avoid absolute judgement limits Use discrete color changes instead of gradual 

Top-down processing Physical evidence must be presented to guarantee that 
something that is contrary to expectations is interpreted 

Redundancy gain Traffic light: position and due are redundant 
Discriminability Similarity causes confusion: use discriminable elements 

Principle of pictorial realism Display should look like (i.e., be a picture of) the variable 
that it represents 

Principle of moving part 

Moving element(s) of any display of dynamic information 
should move in a spatial pattern and direction that is 
compatible with the user’s mental model of how the 
represented element actually moves in the physical system 

Minimizing information access 
cost 

Minimize the net cost of “moving” selective attention from 
one display location to another to access information by 
keeping frequently accessed sources in a location in which 
the cost of traveling between them is small 

Proximity compatibility 
principle 

Two or more sources of information are related to the 
same task and must be mentally integrated to complete the 
task (e.g., plant layout must be related to the warning 
indicator meanings). Good display design should provide 
the two sources with close display proximity so that their 
information access cost will be low. Close proximity can 
also be obtained by displaying them in a common color, 
by linking them together with lines or by configuring them 
in a pattern 

Principle of multiple resources Presenting visual and auditory information concurrently 
rather than presenting all information visually or auditorily 

Replace memory with visual 
information 

People ought not to be required to retain important 
information solely in working memory or retrieve it from 
long-term memory. Visual echo of a phone number, 
checklist. 

Principle of predictive aiding 

Proactive behavior is usually more effective than reactive, 
it stands to reason that displays that can explicitly predict 
what will happen are generally quite effective in 
supporting human performance. A predictive display 
removed a resource-demanding cognitive task and replaces 
it with a similar perceptual one.  

Principle of consistency 

Displays should be designed in a manner that is consistent 
with other displays that the user may be perceiving 
concurrently (e.g., a user alternating between two 
computer systems) or may have perceived in the recent 
past. Color coding should be consistent across a set of 
displays so that red always means the same thing. A set of 
different display panels should be consistently organized, 
thus reducing information access cost each time a new set 
is encountered. 
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Fig. 6 System interface for a nuclear power plant control room display interface 
(proposed by dos Santos et al. [2008]) 

 

 

 

Fig. 7 Interface to support navigation and control of UAVs (designed by Cooper and 
Goodrich [2006]) 

Other design guidelines and texts exist such as those proposed by Hancock and 
Szalma (2003) and Endsley (2011). The former proposed guidelines for situations 
where operators are under time and task pressure. Recommendations relate to 
Wickens’ principles such as designing to minimize information dispersal and the 
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use of top-down processing design methods (Hancock and Szalma 2003). Literature 
has been written to aid in design such as Designing for Situation Awareness: An 
Approach to User-Centered Design by Endsley (2011). This work reviews SA-
oriented design across domains and highlights the underlying principles through 
examples of how to support each SA level. Displays utilizing the principles will aid 
in increasing transparency of systems and improve the decision making of 
operators. 

3. Visualization Applications to SAT 

Visualizations extend the human’s ability to understand complexity, whereas IAs 
extend the ability of humans to operate safely in complex environments. IAs are 
specialized software that perform specific functions with some degree of autonomy 
and can respond to changes in the agent’s environment. Human‒agent teams 
combine the software capabilities of the IA with the greater flexibility and 
metaknowledge of its human partner (Chen and Barnes 2014). However, the 
efficacy of the agent depends on the ability of the human to understand its output. 
IA transparency permits the human to know when to trust the agent’s suggested 
COAs and when to intervene. Lee and See (2004) and Lee (2012) suggest that 
transparency depends on understanding the agent’s COAs, purpose, process, and 
performance with the caveat that too much or the wrong type of information is 
counterproductive.  

Chen and colleagues (Chen et al. 2014, 2018) developed a model of transparency 
based on the operator’s SA (Endsley 2004, 2015) of the IA’s plan, its reasoning, 
and its expected outcome. The SAT (Fig. 8) model posits three levels of information 
related to 1) perception of the agent’s plan, 2) comprehension of the agent’s logic, 
and 3) projection of the plan to predict likely outcomes (Chen et al. 2014). The 
model successfully predicted both SA and performance improvements as a function 
of increasing SAT levels and their visualizations for three different paradigms: 
RoboLeader, Intelligent Multi-UxV Planner with Adaptive Collaborative/Control 
Technologies (IMPACT), and Autonomous Squad Member (ASM; Mercado et al. 
2015; Wright et al. 2016; Stowers et al. 2017). The results also showed the 
importance of uncertainty information for Level 3 on the IMPACT planning task 
(Stowers et al. 2017), but less so in the ASM small robot support paradigm 
(Selkowitz et al. 2017). One of the general conclusions is that that the static model 
represented by Fig. 1 needs to be expanded to include Lyons and colleagues’ 
multidimensional model that stresses the importance of the effects of humans and 
teaming on the IA and not solely on the impact of agent transparency on human 
decisions (Lyons and Havig 2014; Lyons et al. 2017; Chen et al. 2018). The latter 
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finding strongly implies the importance of bidirectional understanding and 
communications.   

 

Fig. 8 Original SAT model (adapted from Chen et al. [2014]) 

Increasing transparency of human‒agent systems are critical for operations in many 
disciplines. The following section identify displays that are supported by each SAT 
level. As mentioned, the SAT model (Chen et al. 2018) assumes that the IA has a 
world model representing its basic plan (L1), the rationale for the plan (L2), and 
the plan’s expected outcomes (L3). 

3.1 SAT Level 1: Purpose, Desire (Goal Selection), Process, 
Intentions (Planning/Execution), Progress, and Performance 

SAT L1 is supported by components of the interface that is displaying the current 
state of an IA or purpose. The current system state is displayed in the darker color 
as well as the UAV health status bar on the top left (Marusich et al. 2014). Figure 
9 shows an interface developed for military C2 to test how information presentation 
affects decision-making performance. This display shows the status of platoons 
(returning in red or moving in yellow) to base and the task completion progress of 
capturing high-value targets (HVTs). The lines on the map show the planned path 
of the UAVs and the current status and progress of each platoon is identified on the 
modules above the map. In addition, spot reports communicate information about 
the units while intelligence updates present the location of the HVTs, which aid in 
operator planning and intermediate goal planning.  
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Fig. 9 UAV status and health state (Marusich et al. 2014) 

Furthermore, the RAPTOR interface (Fig. 9) aids SAT L1 by allowing for user 
selection of display properties and easy access to control icons. The control buttons 
are along the display as well use intuitive indicators such as the control slider to 
control replay of display elements. The resource displays grouped on the right 
organizes the presented combat information and groups information for those 
referencing as friendly and enemy combat. The importance of the primary slot 
display, which communicates the overall information of the battalion, is 
emphasized and contrasts from the secondary display due to its larger size and 
contrasting yellow background. 

3.2 SAT Level 2: Reasoning Process (Belief/Purpose), 
Environmental, and Constraints/Affordances 

Communication of SAT L2 components by an IA is critical to understanding its 
actions. Constraints in the environment may hinder the completion of a goal and 
may alter the actions of the IA. For example, a phone navigation application may 
suggest alternative routes if it has calculated that there is a constraint (e.g., a traffic 
accident) on the current path. Typically, the navigation will state that there has been 
a slowdown and suggest an alternative, faster route. This verbalization of the 
reasoning aids the driver’s understanding of the change in route; however, the 
internal tradeoff of an IA is typically a black box analysis and only the results are 
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told to the operator. This readjustment in the reasoning process should be 
communicated. 

Tradeoffs are critical to consider for decision making. Tradeoffs are often 
visualized by the Pareto frontier in multi-objective optimization in economics and 
systems engineering. The frontier describes the set of the most optimum points 
where the allocation of resources (µ1 and µ2) cannot be relocated without negatively 
shifting the preference of at least one resource (Fig. 10). Mattson and Messac 
(2005) developed a GUI to visualize the frontier in an interface format where a user 
can visualize the relative goodness of three different concepts (Fig. 11). Sliders on 
the interface are moved between the best and worst for a specific design objective 
and results from the changes are updated. The GUI aids in informed decision 
making of applications such as finding the optimum weight/size ratios for package 
shipping costs. 

 

Fig. 10 Pareto frontier (from Mattson and Messac [2005]) 

 

 

Fig. 11 Pareto frontier GUI (from Mattson and Messac [2005]) 
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Different GUIs have been used for visualizing tradeoffs. Shaikh and Goodrich 
(2017) developed an interface that parallels a color palette. The interface, named 
the adverb palette, has several designs to visualize tradeoffs within a robot path-
planning application. Each interface has two components: a map and command 
interface, which allows a user to balance different priorities or objectives, or 
“adverbs”. For this application, the colors red, green, and blue signified the adverbs 
“Quickly”, “Stealthily”, and “Safely”, respectively. Three initial interfaces were 
developed: palette (Fig. 12), sliders (Fig. 13), prism (Fig. 14), and waypoints  
(Fig. 15). 

 

Fig. 12 Palette interface (Shaikh and Goodrich 2017) 

 

 

Fig. 13 Slider interface (Shaikh and Goodrich 2017) 
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Fig. 14 Prism interface (Shaikh and Goodrich 2017) 

 

Fig. 15 Waypoint interface (Shaikh and Goodrich 2017) 

Each interface is designed so that the user alters the controls to create tradeoffs of 
the different adverb. In the palette display, users drop the color of the adverb into 
the white space to create a “paint dab” that can be blended with other adverbs. This 
palette also summarizes the priorities in the pie graph. In the slider interface, the 
slider can be continuously shifted to see real-time updating tradeoffs. The interface 
maintains a maximum of 100 units and the sliders will automatically shift to 
maintain this maximum as the user alters one adverb. The prism interface is used 
by hovering over different areas of the prism. Each corresponding point is related 
to an associated path that considers proportional weights of the adverbs. Lastly, the 
wayfinding interface is different than the others in that the user will specify the path 
on the map and the interface will show how the user-created path compares to the 
best and worst possible options of the specific adverb. The authors conducted a user 
preference study and found that the palette interface was the most appealing and 
easiest to use. The waypoint interface was found to be the opposite.  
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Visualizing tradeoffs with affordances and constraints helps aid in the increase of 
transparency of an IA’s reasoning. Traditionally, an affordance is an ecological 
property that describes the relationship between the environment and an agent (i.e., 
an affordance in the environment is what it offers for possible alternatives [St 
Amant 1999]). For example, affordances in user interface design are properties that 
allow for action execution such as icon selection. St Amant (1999) described 
execution affordances such as icon size, sticky icons, haptic feedback, capture 
effect, and area cursors. These guidelines are related to Wickens’ (2014) principles 
described previously to improve GUIs. 

3.3 SAT Level 3: Projection to Future/End State, Potential 
Limitations, History of Performance, Uncertainty, and 
Likelihood of Error 

SAT L3 factors communicate to the operator the expected outcomes. This includes 
projections of the future or end states with the underlying potential limitations and 
history of performance. Potential limitations, uncertainty, and likelihood of error 
are especially critical to communicate in L3 and are discussed further in  
Section 3.4. 

Resource depletion is often the source of potential limitation in completing a goal 
in military C2 settings. Specifically, for route planning and wayfinding, energy 
levels of IAs often limit the amount of time in the field. In a supervisory control 
scenario of UAV swarms developed by Fuchs et al. (2014), the authors incorporated 
a battery state of charge component (Fig. 16). The figure on the left depicts area 
coverage of a UAV: the dark shade along the flight trajectory represents area 
already covered while light shaded indicates areas yet to be covered. Areas where 
the UAV cannot cover due to low battery level are not shaded. To compliment this, 
a red line is shown in the unshaded area to depict the depleted battery level (i.e., 
the UAV cannot reach the waypoint), while the yellow line represents the low 
battery level warning (i.e., the UAV can reach the waypoint but does not have 
enough energy to return to the ground station). Additionally, the state-of-charge 
indicator (Fig. 16) shows the energy levels of the UAVs. The height of the indicator 
ranges from 0%–100% energy and the green color represents a good energy level. 
In the figure, UAV 1 has enough energy reach waypoint 7 while UAV 2 does not, 
as shown by the red coloring below the 0% marker line. These visuals of energy 
management provide insight to the user of the potential limitations of completing a 
waypoint navigation task. 
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Fig. 16 Battery state of charge module (Fuchs et al. 2014) 

Figure 17 shows an example of history of performance and predictive views from 
Piringer et al. (2012). 

 

Fig. 17 Example history of performance and prediction views (from Fig. 2 in Piringer et al. 
2012) 
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3.4 Uncertainty 

Going beyond Endsley’s (1995, 2015) original conception of SA; the SAT model 
posits that IA uncertainty should be represented as part of L3 as well. Uncertainty 
transparency has proven to be important because empirical evidence indicates that 
uncertainty information has a positive effect on performance. If operators know the 
IA constraints as well as its predicted outcomes, humans are better able to anticipate 
problems and adopt more flexible strategies (Bass et al. 2013; Helldin and Falkman 
2011; Mercado et al. 2016; Stowers et al. 2017; Chen et al. 2018).  

However, uncertainty is a difficult concept for humans to grasp. Instead of using 
normative methods to compute uncertainty, humans depend on simple heuristics 
based on well-established cognitive biases such as loss aversion, stereotypes, and 
the salience of unimportant cues (Kahneman 2003). In order to simplify the 
problem space, humans tend to under count the number of possible outcomes and 
assume equal probability when more complex distributions are appropriate 
(Johnson-Laird et al. 1999). Kahneman argues that humans are not irrational but 
rather they are time constrained; they make quick decisions that may be erroneous 
rather than derive normative solutions which (even if they were able to calculate 
them) would take too long to be practical (Kahneman and Klein 2009). As humans 
were evolving, speed‒accuracy tradeoffs favored speed. 

Visualizing uncertainty requires techniques that reflect normative prescriptions but 
are intuitive to humans (Spiegelhalter 2011). Using quantitative methods such as 
probabilities may not be appropriate by themselves; their values may be unknown, 
volatile, or easily misinterpreted. Humans are poor at interpreting extreme values—
they tend to under weigh changes at the extreme ends of the scale (Gonzales and 
Wu 1999; Kahneman and Tversky 1979). For example, if probabilities are in the 
middle of the scale (p=0.55 and 0.50), then the odds they represent are fairly stable 
(1.22 to 1, compared to 1 to 1). At the end of the scale (p=0.99 and p=0.95), the 
odds (and associated risk) change dramatically (99 to 1 compared to 19 to 1). Also, 
what a probability represents can be unclear. For medical diagnosis, probabilities 
of a test result are often misinterpreted (false positives) because the probabilities of 
the test do not take into account the rarity of the disease (i.e., prior probability). 

Even for moderate values, humans were no better at making decisions (and were 
sometimes worse) if given numerical probabilities than if given verbal descriptions 
(such as likely or somewhat likely) (Bisantz et al. 2011; Budescu and Wallsten 
1990; Erev and Cohen 1990). Bisantz (2013) concluded that humans partition 
uncertainties into a discrete number of membership categories (either verbal or 
graphical) mirroring human limitations in processing continuous scales. Bisantz’s 
results indicate that humans are particularly efficient at visualizing uncertainty as 
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relationships using graphical techniques such as color-coding, shading, 
transparency, and so on. Also, graphical representations have processing 
advantages, heat maps portraying abstract or geographical relationships can be used 
to direct selective attention to high probabilities areas with minimum cognitive 
overhead (Treisman and Gelade 1980). More specific information (including 
uncertainty) can be encoded in glyphs or icons showing multi-attributes features of 
discrete elements of the tasking environment (Calhoun et al. 2017, Selkowitz et al. 
2017; Stowers et al. 2017). Stowers et al.’s (2017) results indicated that coding 
outcomes as uncertain without assigning a value was useful especially if the reason 
for the uncertainty could be articulated (e.g., the condition of the road near the east 
gate is unknown). There are situations (e.g., severe time constraints) when coding 
uncertainty may not be that useful, but, in general, if the coding scheme is accurate 
and intuitive, uncertainty is an important dimension of the battlespace or any 
complex real-world environment.    

Finger and Bisantz (2002) studied the graphical formats of uncertainty in decision 
making. The task was to identify if an icon represented a hostile (skull with 
crossbones) or friendly (dove). Uncertainty of the classification was represented in 
three ways: 1) degraded icons with probabilities, 2) nondegraded icons with 
probabilities, and 3) degraded icons only (Fig. 18). It was found that operators using 
displays with only degraded icons performed better in identifying an icon than those 
with probability supplements. This study showed that situational uncertainty can be 
portrayed through degraded images. 

 

Fig. 18 Uncertainty classification (from Finger and Bisantz [2002]) 

Additionally, using icons and glyphs to represent uncertainty have been studied 
extensively in representing geodata. MacEachren et al. have performed studies and 
reviews of this field and have defined nine types of uncertainty as shown in Table 3 
(MacEachren et al. 2012; Kinkeldey et al. 2017). Others have explored uncertainty 
visualization on geographic systems for domains such as meteorology or 
coordination of emergency response during natural disasters. Pfautz et al. (2005) 
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explored the depiction of fire spread with uncertainty using graphical elements such 
as transparency or saturation. Other methods presented are using icon sizes, color, 
and hues to portray certainty. 

Table 3 Components of information with uncertainty types (from MacEachren et al. [2012]) 

 
 
Riveiro et al. (2014a) developed a prototype interface for air traffic control threat 
identification (Fig. 19). Uncertainty associated with position is marked with red 
circles, while sensor data value uncertainty is represented by the thickness of the 
yellow line (Fig. 20). It was found that the uncertainty visualization aided improved 
performance: users using the uncertainty incorporated displays needed significantly 
fewer attempts to make a final identification than those who did not. 
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Fig. 19 Threat identification prototype interface (from Riveiro et al. [2014a]) 

 

 

Fig. 20 Uncertainty associated with sensor value, position, and track quality (Riveiro et al. 
2014a) 

Likelihood or probability of error is associated uncertainty. In the previous 
navigation example, an application will often display the estimated time of arrival. 
This final number is calculated from an algorithm based on underlying assumptions 
of road conditions, speed limits, and so on. However, there is a likelihood of error 
that is often embedded within this system that is not visible to the user. For example, 
in air navigation, required time of arrival (RTA) error is often displayed. In work 
by Schmidt (2012), an interface was created to display error in RTA: a time box 
around the aircraft was colored blue if early and magenta if late (Fig. 21). The study 
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explored using graphic or text information to communicate the temporal 
information and it was found that the use of graphic displays led to slightly higher 
performance. Moreover, Riveiro et al. (2014b) explored incorporating a system 
suggested identity of an object (e.g., friendly or hostile) and its likelihood value in 
their prototype (Fig. 22). Likelihood was displayed through graphical 
representation of probability and it was found that operators trusted the decision-
aid system more than the system without likelihood estimates 

 

Fig. 21 RTA error display (in Schmidt [2012]) 

 

Fig. 22 Likelihood of identity suggested by the system (Riveiro et al. 2014b) 

4. Applications to ASM/IMPACT 

Chen and colleagues (2018) have conducted several experiments embedded in three 
diverse paradigms. We discuss the relationship of the SAT model to the reviewed 
experiments but focus on the variety of visualization concepts and their rationale. 
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This will enable us to compare various techniques and their utility under a variety 
of different conditions  

 A fairly obvious design principle is that the visualizations must reflect the 
ecological constraints of the mission environments in which they were designed to 
operate (Jamieson 2007). However, there is no perfect solution to any mission 
environment. All effective visualizations share the qualities of good display design: 
clarity, completeness, conciseness, and intuitiveness as well ecological validity 
(Tufte et al. 1998; Wickens et al. 2000; Barnes 2003). Two of the paradigms 
(IMPACT and ASM) were part of the ARPI (DOD 2012a) and as such represented 
IA prototypes created in Air Force, Navy, and Army laboratories that were 
informed by insights developed through collaborating with active duty personnel 
(Pettitt et al. 2017). However, because these experiments were conducted using 
university participants, it was necessary to simplify the interfaces to reflect the 
inexperience of the participants while capturing the gist of the ASM and IMPACT 
paradigms. 

4.1 IMPACT 

The IMPACT paradigm includes IAs, planning algorithms, and machine learning 
algorithms that can monitor the progress of ground, aerial, and sea unmanned 
vehicles (UVs) that are protecting a littoral military installation (Draper et al. 2018). 
The human operator has versatile planning options ranging from manual planning 
tools to having an IA function that can autonomously choose the best plan and 
optimal composition of UVs to conduct the plan (after receiving general mission 
guidance in the form of programmed plays (Calhoun et al. 2018). In two human-in-
loop simulation experiments (Mercado et al. 2016; Stowers et al. 2016), the IA 
chooses plan A as the best solution and plan B as the alternative (slightly less good 
solution). During a 2-min planning trial, the operator is alerted to changes in the 
environment (not known to the IA) based on intelligence reports, sea state, weather 
reports, road conditions, and so on, which switched the best solution from A to B 
in 3/8ths of the trials. The independent variables were transparency conditions as 
per Fig. 1 for both experiments (EXP 1: L1, L1+2, L1+2+3 and EXP 2: L1+2, 
L1+2+3 and L1+2+3+U). Counterbalancing ensured that the mission alerts were 
seen equally often over transparency conditions during both experiments. The 
simulation interface for Mercado et al.’s (2016) experiment (Fig. 23) consisted of 
the right-hand display portraying the transparency condition for that trial by 
comparing option A and B’s transparency information. The left-hand side showed 
miscellaneous mission information including alerts that were the same for both 
options.  
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Fig. 23 Simulation information and visualization for plan A and B in Exp 1 (Mercado et al. 
2016) 

In both experiments, increasing transparency information improved performance. 
In experiment 1, L1+2+3 included uncertainty coding (translucence) concerning 
one of the end states (e.g., faster unmanned aerial systems not certain because of 
possible wind), which had a minimal effect on performance compared to adding 
only reasoning information (i.e., L1< L1+2 = L1+2+3) but surprisingly adding L3 
improved subjective trust. The critical features for IA reasoning were coded on a 
sprocket (sectional areas of a pie chart showing the relative importance of sensor 
coverage, UV speed, and UV capability for planning). As Fig. 24 indicates, the pie 
charts were displayed vertically requiring the participant to compare the features 
serially. Also, it was noted after the experiment that participants made scant use of 
the map portion of the display, resulting in wasted space. 
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Fig. 24 IMPACT display 

As Fig. 25 indicates, the visualization changes to the second experiment (Stowers 
et al. 2017) included 1) creating two conditions L1+2+3 and L1+2+3(U) to de-
conflict prediction and uncertainty, 2) specifying the rationale for uncertainty in 
L1+2+3+U using yellow text, 3) coding the expected outcomes each mission 
objective (e.g., asset speed) by showing the relative heights of each of the plan 
options (A and B) on the same expected outcome bar graph, whereas the relative 
importance of each mission objective was shown by their ranking of left to right 
(Calhoun et al. 2018), and 4) adding additional information on the map to increase 
its salience. Specifically, there are three key modules or tiles in the display: a Plan 
Maps tile, a Projected Plan Success tile, and a Plan Specifications tile (Fig. 25).  
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Fig. 25 Improved transparency visualization for IMPACT experiment: direct comparison 
of plan options A and B (adapted from Calhoun et al. [2017]), a more concise format, and 
uncertainty information in the text box 

4.1.1 Plan Maps 

The interface presents two maps, one for each plan the IA suggests to the operator. 
SAT L1 information includes the IA’s recommended plans and information about 
the UxV associated with these plans. SAT L2 information (reasoning) was 
displayed by the size of UxVs, with larger UxVs being faster. SAT L3 projection 
information was displayed as an icon attached to each UxV to depict the number of 
time units it was from its goal location. SAT L3 uncertainty information was 
displayed through changes in opacity of the UxVs themselves, where less opaque 
vehicles were considered to have uncertain capabilities or time projections.  

4.1.2 Projected Plan Success 

The plan comparison tool, based on a design developed by US Air Force 
researchers (Calhoun et al. 2018), adds additional SAT L2 and L3 information. This 
graphic shows the evaluation of both plans (A and B) on four different parameters: 
time, coverage, fuel endurance, and general capability. Circles representing each 
plan slide up and down scales corresponding to each parameter. Plan acceptability 
is rated on this sliding scale; the higher a circle is on the scale, the more acceptable 
the plan is for meeting that parameter. L2 information is conveyed through showing 
how heavily the IA is weighing each parameter as a representation of the IA’s 
recommended plan and reasoning. This is done by ordering the parameters from 
left to right, with decreasing widths for less important ones. L3 projection 
information is conveyed by showing the projected plan success of each plan for all 
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four parameters. Finally, SAT L3 uncertainty was represented with hollow circles 
instead of filled ones. 

4.1.3 Plan Specifications 

The Plan Specifications tile provides further information on the Plan Maps and 
Projected Plan Success tiles. For example, a detailed explanation of the reasoning 
process (constraints and/or affordances considered by the IA); projection 
statements to indicate the predicted outcomes of the plans; and uncertainty 
statements specifying 1) the IA was uncertain about certain aspects of the tasking 
environment and 2) the IA was making an assumption to deal with it were provided. 

The main finding of the second experiment was improved performance for the 
uncertainty condition, L1+2+3(U). However, there was also improvement in the 
visualization techniques used including grouping similar functionality using the 
perceptual compatible principle (Wickens et al. 2000).  Also uncertainty coding of 
a planning option was indicted by the white circle around options on the bar graph, 
which was located at the same visual level as the yellow text describing the cause 
of the uncertainty thus creating visual momentum between the icon and its 
descriptor (Hall et al. 2012). This suggests the importance of not only the type of 
SAT information displayed but also the importance of the visualization techniques 
depicting the information (Calhoun et al. 2018).  

The IMPACT interface was redesigned to displayed uncertainty information 
through mission metrics, widget, and text (plan specifications). The presentation of 
uncertainty and prioritized factors of the mission were displayed through the three 
mediums, and the plan specifications provided the reasoning for the IA’s 
recommended plan. Though this information provides transparency to the operator, 
the level of information may detrimentally affect the decision maker’s performance. 

4.2 ASM 

While IMPACT’s paradigm focused on deciding between plays using multiple IAs, 
the ASM paradigm focused on an operator monitoring an autonomous ground-
based vehicle accompanying a squad of Soldiers (Boyce et al. 2015). The 
particulars of ASM were quite different, reflecting missions with severe time 
constraints. The ASM was a small autonomous robot (IA) whose mission was to 
improve an infantry squad’s SA as well provide logistic support for the individual 
Soldiers. The ASM’s visualizations were designed to be status at a glance, 
reflecting both the ever-present possibility of being under attack and the workload 
demands of the infantry squad. In the first human-in-loop simulation experiment 
(Boyce et al. 2015), the operator monitored one of three different interfaces 



 

Approved for public release; distribution is unlimited. 
30 

showing the ASM moving along a series of waypoints to an end point; one interface 
only displays Current Status, another adds Reasoning, and a third also includes 
Projection and Uncertainty.  

4.2.1 Current Status 

In one condition, the operator monitored an interface that included the Current 
Status module, which operationalized the constraints of the robotic platform (e.g., 
sensor functionality, fuel constraints) and described their status as either good 
(displaying a green background), medium (displaying a yellow background), or 
poor (displaying a red background). This module is displayed in Fig. 26.  

 

Fig. 26 ASM experiment 1 interface: current status module 

4.2.2 Reasoning 

In another condition, the operator monitored an interface that included the Current 
Status module and environmental constraints (i.e., enemy/supporting fire, rough/ 
easy terrain, and communication jammed/extended). These constraints were 
depicted using icons disseminated through the map, each surrounded by a ring to 
depict the area of effect and whether that field would hamper the ASM’s resources 
(i.e., an icon surrounded by a red ring) or not (i.e., an icon surrounded by a green 
ring). Furthermore, each ring is interspersed with shapes, each of which correspond 
to the icon and the environmental constraint it represents. These rings are depicted 
in Fig. 27. 
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Fig. 27 ASM experiment 1 interface: environmental constraints that influence agent 
reasoning 

4.2.3 Projection and Uncertainty 

The last condition adds a Projected Status module at the top-right of the screen, 
similar to the Current Status module, except it describes the ASM’s predicted 
resource loss. Like the Current Status module, it describes the constraints of the 
robotic platform, but projects that no resources are loss (displaying a green 
background), some resources may be lost in the future (displaying a yellow 
background), or many resources will be lost (displaying a red background). 
Furthermore, this module represents the ASM’s uncertainty regarding the 
environmental constraint, with a semi-opaque background suggesting that 
resources may not be hampered or may only be somewhat hampered. Additionally, 
in this condition, any areas where the ASM is uncertain of the environmental 
constraints are represented by semi-opaque rings around the area. An example of 
all these modules displayed together is depicted in Fig. 28.  
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Fig. 28 ASM experiment 1 interface, including current status, reasoning, and 
projection/uncertainty 

The first-year ASM study used a between-subjects design to explore the effect of 
varying levels of transparency (Level 1, Level 1+2, or Levels 1+2+3) on operator 
SA, trust, and perceived workload.  

This experiment tested the effect of display design to convey environment and IA 
information in a simulation-based unmanned ground vehicle monitoring task. 
While there were no major differences in SA or workload, there were some findings 
with regard to trust. Participants who saw current status and reasoning information 
(L 1+2) had higher trust in the ASM than those who only saw current status (L 1) 
or current status, reasoning, and projected outcomes (L 1+2+3). This suggests that 
a providing a justification for its actions and resource loss made an agent more 
trustworthy, but that advantage was lost due to providing projecting outcomes and 
uncertainty information. Visualizations for projected outcomes and uncertainty 
were presented together, but people act in a variety of ways to mitigate uncertainty, 
so conflating the two may have obscured some fine differences between the two 
(Endsley and Jones 2016). The follow-up study sought to detangle these two factors 
to ascertain a finer understanding of the response to information supporting 
transparency in an agent interface.   

Using information from the first-year study and the development of the agent 
architecture that the study simulated, the second year ASM study redesigned the 
interface. Figure 29 shows the possible information states for the subsequent ASM 
display. The icons were integrated using EID principles (Vincente and Rasmussen 
1990; Bennett et al. 2008) generating scenes using intuitive icons depicting the 
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ongoing mission including the current plan (L1: the how), motivators (L2: the why), 
projections (L3: the immediate future) and uncertainty coding (U). Compared to 
the IMPACT visualization; the scenario representation was simplified in order to 
create an easily understood pictorial narrative (Warner and Burnstein 1996; Barnes 
et al. 2006). Again, this reflected the difference in ecological requirements between 
IMPACT and ASM missions: extensive functionality required for base defense, 
immediate solutions required for squad support.      

 

Fig. 29 Display for the ASM with annotations 

The ASM interface used an “at-a-glance” module to promote transparency for each 
level of the SAT model. The red square aside the predicted outcomes icon is the 
amount of resources that will be consumed/lost. For L3 “predicted outcomes”, 
uncertainty was displayed by non-opaque squares to represent the possibility of 
using the level of resource (e.g., with one opaque square and one non-opaque square 
next to a battery symbol, it represented that it is certain to lose one level of energy 
but there is the possibility of losing a second level). Although this module can be 
used to quickly interpret the status of the ASM, additional EID and usability 
principles can be applied for improvements. 

The “at-a-glance” dashboard display usability can be increased by displaying the 
status of goals and motivation, and allowing users to access underlying logic. The 
representation of the current motivation does not allow for the interpretations of the 
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purpose or the weight of different goals: users cannot see the reasoning process and 
prioritization that the system made. If this information can be displayed upon user 
request, there will be better transparency and understanding of the agent’s actions. 
Additionally, usability heuristics could be implemented. Using the guidelines of 
helping users recognize and diagnose errors as well as increasing flexibility and 
efficiency of use can allow users to better interact with the ASM interface (Nielsen 
2006). 

Using the updated ASM interface, the second year experiment investigated four 
transparency conditions, similar to the IMPACT paradigm (Selkowitz et al. 2016, 
2017). The independent variable in the experiment was be level of SAT model 
information displayed (L1, L1+L2, L1+L2+L3, L1+L2+L3+U). The lowest 
transparency condition, L1, depicted the current goal using the “at-a-glance” 
module (Fig. 30). The next condition, L1+L2, depicted the current goal and top 
motivator in the “at-a-glance” module. The following condition, L1+L2+L3 
depicted the current goal, the top motivator, and the projected outcome in the “at-
a-glance” module. Finally, L1+L2+L3+U depicted the current goal, the top 
motivator, the projected outcome, and the uncertainty of those projected outcomes 
in the “at-a-glance” module; this condition also represented area uncertainty around 
events by surrounding them with either opaque or non-opaque fields. This approach 
singled out uncertainty for examination allowing researchers to determine if 
displaying “uncertainty information” and different levels of the “transparency 
information” (based on the SAT model) would affect operator trust in the agent, 
workload, and SA. During the experiment, participants monitored the progress of 
an autonomous robotic agent and its simulated human squad members through a 
simulated environment.  

 

Fig. 30 A comparison of the four interfaces presented to participants in the second-year 
ASM study (Selkowitz et al. 2017) 

Unlike the first-year ASM study, a within-subjects design was employed to 
compare the four transparency conditions; the study found that “transparency 
information” influenced SA and trust in the robot, but did not seem to influence 
workload (Fig. 31). Specifically, when participants worked with a display 
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supporting L1+L2+L3, they showed higher SA than when they worked with a 
display supporting L1 or L1+L2. Similar differences in SA were not found when 
participants worked with a display that supported L1+L2+L3+U. Trust followed a 
similar arc. Working with a L1+L2+L3 interface resulted in significantly higher 
trust in the ASM than working with a L1 or L1+L2 interface, but working with a 
L1+L2+L3+U interface did not. The “transparency information” displayed in the 
interface did not seem to affect participants’ subjective workload, which 
corresponds with findings from the IMPACT suite of studies (Mercado et al. 2015, 
2016). These findings suggest that the addition of uncertainty information in an 
interface may allow participants to calibrate their trust in the ASM—which is 
important when it comes to appropriate reliance—without unnecessarily adding to 
workload (Lee and See 2004; Chen and Barnes 2014). The addition of uncertainty 
information to the interface seemed to result in a loss of the gains from displaying 
information pertaining to SAT L1, L2, and L3. The implications of these findings 
suggest that conveying uncertainty can have mixed responses, and thus should be 
used carefully and in very specific situations where trust and appropriate reliance 
are vital to the success of the mission.  

 

Fig. 31 Display for ASM year-3 study. “In-depth” transparency information was added, 
showing the robot’s underlying logic for its goal, reasoning, and projected outcomes, 
respectively (Wright et al. [in progress]). 

The third-year ASM study explored how agent transparency interacted with agent 
reliability to influence operator behavior and attributions of the robot (Wright et al. 
in progress). In the high-transparency scenarios, the robot would also explain the 
underlying logic behind its goal, reasoning, and projected outcomes by adding a 
secondary “at-a-glance” display below the original, in which displayed the 
underlying logic for each factor (goal, reasoning, projected outcome). The 
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underlying logic factors could be related to either what the robot perceived in the 
environment (e.g., squad lying down, detecting loud noises) or an internal factor 
(e.g., energy consumption, preserving mechanical integrity). In the unreliable 
conditions, the robot would occasionally misinterpret the squad’s behavior for a 
similar action (e.g., the squad gets on the ground to crawl under an obstacle, but the 
robot misinterprets this as a response to incoming fire, that is, hitting the deck). The 
robot would then respond to the wrong situation (e.g., instead of going around the 
obstacle the robot would begin evasive actions).  

In this within-subjects design, the transparency of the robot nor the reliability 
affected participant performance, workload, SAT L1, or SAT L2 scores. While 
these findings agree with earlier results that indicate increased transparency does 
not increase perceived workload, in this instance, the task required very low effort, 
which most likely contributed to the lack of differences in task performance, 
workload, and SA. However, the reliability of the agent had a negative impact on 
the participant’s trust in the agent, their perceptions of the agent and, interestingly, 
their confidence in their own ability to assess the robot’s reliability. Agent’s 
perceived errors had a profound and lasting effect on the human teammates’ 
perception of the agent’s reliability, causing the human to rate the agent as less 
reliable even when it did not commit any errors. This effect appeared to diminish 
as the agent continued to display reliable behavior. Agent error also resulted in 
participants’ reduced confidence in their assessment of the agent’s reliability, 
regardless of the agent’s continued error-free behavior, and this effect was 
persistent over time. These findings could have important implications for 
continued use of automated systems when the user is aware of system errors. 

5. Summary and Conclusion 

Various visualization techniques were reviewed. Successful techniques depend on 
re-creating the external reality of the environment in ways amenable to the human’s 
mental representation of the processes involved such as sensemaking and narrative 
formats. Narration, for example, has been the principal means of imparting 
information since the time of pre-literate societies. Whereas certain display 
guidelines such as the 13 principles discussed by Wickens et al. (2010) should be 
considered for every visualization design, there is great deal of latitude concerning 
a specific design. The general requirement is that it reflect the constraints of the 
operator in the intended environment. For example, in the ASM environment, not 
only was the SAT narrative format successful but its simplicity of form was 
essential because of the importance of status-at-a-glance information. Because of 
the importance of making rapid decisions for the ASM operator, uncertainty 
information was not particularly valuable. In the IMPACT planning environment, 
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by contrast, details of the ecological interface were important for transparency and 
the inclusion of uncertainty information alerted the operator to the agent’s 
processing limitations.  

6. Additional Resources 

The following are good resources on this topic: 

• DOT/FAA/AM-01/17. Human factors design guidelines for multifunction 
displays. https://www.faa.gov/data_research/research/med_humanfacs/ 
oamtechreports/2000s/media/0117.pdf. 

• DOT/FAA/TC-07/11. Human factors criteria for displays: a human factors 
design standard update of chapter 5. 
http://hf.tc.faa.gov/hfds/download-hfds/hfds_pdfs/dot_faa_tc_07_11.pdf. 

• Using color in information display graphics. NASA; n.d. 
https://colorusage.arc.nasa.gov/. 

• ANSI/AAMI HE75:2009/(R)2013. Human factors engineering—design of 
medical devices. Arlington (VA): Association for the Advancement of 
Medical Instrumentation; 2013. 

• ISO/IEC. 9241. Ergonomics of human system interaction. 
https://www.iso.org/standard/52075.html. 

• O’Hara JM. Advanced human–system interface design review guideline. 
General evaluation model, technical development, and guideline 
description. Washington (DC): Nuclear Regulatory Commission (US); 
1994. Report No.: NUREG/CR--5908-Vol. 1; BNL-NUREG--52333-Vol. 
1. 

• Bowser SE, Adams SM. Emerging human–computer interface (HCI) design 
guidelines for graphical user interface (GUI). Richland (WA): Pacific 
Northwest Lab; 1993. Report No.: PNL-SA--22009; CONF-9310100—7. 
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AI artificial intelligence 

ARL Army Research Laboratory 

ARPI Autonomy Research Pilot Initiative 

ASM Autonomous Squad Member 

AVALANCHE Aggie Visualization Architecture for Learning to Anticipate 
Novel Cognitive Human Task Environments 

C2 command and control 

COA course of action 

DOD Department of Defense 

EID ecological interface design 

EXP experiment 

GUI graphical user interface 

HCI human‒computer interface 

HVT high-value target 

IA intelligent agents 

IMPACT Intelligent Multi-UxV Planner with Adaptive Collaborative/ 
Control Technologies 

L1 IA has a world model representing its basic plan: the how  

L2 IA has a world model as the rationale for the plan: the why 

L3 IA has a world model for the plan’s expected outcomes: the 
immediate future 

NOVIS Novices Information Visualization Sensemaking 

RAPTOR Representation Aiding Portrayal of Tactical Operations 
Resources 

RTA required time of arrival 

S3 Sensemaking Support System 

SA situation awareness  
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SAT Situation-Awareness-based Agent Transparency 

U uncertainty coding 

UAV unmanned aerial vehicle 

UV unmanned vehicle 
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