
DRAPER MINING AND UNDERSTANDING SOFTWARE ENCLAVES
(MUSE)

THE CHARLES STARK DRAPER LABORATORY, INC.

MARCH 2019

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2019-068

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nations. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2019-068 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

/ S /

Work Unit Manager

 / S /

Technical Advisor, Computing
& Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

STEVEN DRAGER QING WU

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MARCH 2019
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

OCT 2014 – DEC 2018
4. TITLE AND SUBTITLE

DRAPER MINING AND UNDERSTANDING SOFTWARE ENCLAVES
(MUSE)

5a. CONTRACT NUMBER
FA8750-15-C-0242

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
61101E

6. AUTHOR(S)

Paul Ellingwood, Hugh Enxing, Lei Hamilton, Jacob Harer,
Thomas Jost, Louis Kim, Leo Kosta, Marc McConley, Onur Ozdemir,
Chris Reale, Rebecca Russell

5d. PROJECT NUMBER
MUSE

5e. TASK NUMBER
CD

5f. WORK UNIT NUMBER
RA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The Charles Stark Draper Laboratory, Inc.
555 Technology Square
Cambridge, MA 02139

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA DARPA
525 Brooks Road 675 North Randolph St
Rome NY 13441-4505 Arlington, VA 22203-2114

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2019-068
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09
13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes research carried out by The Charles Stark Draper Laboratory, Inc. (Draper) team in the Defense
Advanced Research Projects Agency (DARPA) Mining and Understanding Software Enclaves (MUSE) program under
contract FA8750-15-C-0242. Our focus on the MUSE program was to develop big-data analytics using machine learning
for automatic vulnerability classification and repair. Key technical advancements that we contributed to the MUSE
program included: (1) fast and scalable machine learning-based classifiers to detect patterns in known types of software
vulnerabilities; (2) a generative adversarial network (GAN) to advance the state of the art in automated repair of common
types of software vulnerabilities; and (3) a data ingestion pipeline to scrape, build, and analyze millions of functions from
open-source software to generate training data for learning-based algorithms.

15. SUBJECT TERMS
Cyber security, data analytics, deep learning, machine learning, software vulnerability detection, software vulnerability
repair

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
STEVEN DRAGER

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

94 N/A

i

Contents
LIST OF FIGURES ... iii
LIST OF TABLES ... iv

1. SUMMARY... 1

2. INTRODUCTION ... 2
2.1 Deep Learning Approach ... 2

2.2 Major Program Elements ... 2

2.3 Subcontractors .. 3

3. METHODS, ASSUMPTIONS, AND PROCEDURES .. 3

3.1 System Architecture ... 4

3.2 Training Data Generation (MUSE TA2 and TA3) ... 5

3.2.1 Training Corpus. ... 5

3.2.2 Data Generation Architecture. .. 7

3.2.3 Data Generation System Components. ... 9

3.3 Machine Learning (MUSE TA4) ... 11

3.3.1 Learning System Architecture. ... 12

3.3.2 Training. .. 12

3.3.3 Classification... 20

3.3.4 Repair. ... 28

3.3.5 Program Synthesis. ... 35

4. RESULTS AND DISCUSSION .. 38

4.1 Data .. 38

4.1.1 Data Generation and Ingestion.. 38

4.1.2 Data Extraction. .. 39

4.2 Classification .. 41

4.2.1 Approach to Quantifying Accuracy. ... 41

4.2.2 Training Results. ... 43

4.2.3 Evaluation Results. ... 46

4.2.4 Examples. .. 47

4.3 Repair ... 50

4.3.1 Approach to Quantifying Accuracy. ... 50

4.3.2 Repair Accuracy Results. .. 51

4.3.3 Repair Examples. .. 55

4.4 Program Synthesis .. 58

ii

4.5 Program Evaluations .. 58

4.5.1 Phase 1 Hackathon. ... 59

4.5.2 Phase 2 Evaluation. ... 60

4.5.3 Phase 2 Hackathon. ... 65

4.5.4 Phase 3 Challenge Problem. ... 71

5. CONCLUSIONS ... 75

5.1 Classification .. 75

5.2 Repair ... 75

5.3 Program Synthesis .. 76

5.4 Transition ... 76

5.5 Recommendations for Future Work ... 77

5.5.1 Labeling. ... 77

5.5.2 Classification... 78

5.5.3 Repair GAN. ... 78

5.5.4 Program Synthesis. ... 79

6. REFERENCES .. 80
LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS .. 86

iii

LIST OF FIGURES
Figure 1. Functional Flow of Data Through DeepCode System ... 4
Figure 2. Labeling Performance for Various Types of Training Data ... 6
Figure 3. Graph Database Structure ... 8
Figure 4. DeepCode Data Pipeline... 9
Figure 5. DeepCode Build Process .. 10
Figure 6. Sample Build Dashboard .. 10
Figure 7. Overall Flow of the Training Process ... 12
Figure 8. Flow Diagram of DeepCode’s Classification and Repair Processes 12
Figure 9. CFG and Basic Blocks.. 15
Figure 10. Topological Sorting of Dominator Tree Representation of CFG 16
Figure 11. LSTM Network Used for Build Feature-Based Classification 21
Figure 12. Convolutional Neural Representation Learning for Source Classification 23
Figure 13. t-SNE Visualization of a 10-Dimensional word2vec Embedding of Lexer Tokens .. 24
Figure 14. Block Diagram of GAN Architecture... 31
Figure 15. Block Diagram of Encoder (Left) and Decoder (Right) RNN Cells 32
Figure 16. Block Diagram of Decoder ... 33
Figure 17. Program Synthesis System Overview .. 36
Figure 18. Classifier Comparison on Dataset 1 ... 44
Figure 19. Classifier Comparison on Dataset 2 ... 45
Figure 20. Classification Results on LibTIFF.. 47
Figure 21. Free of Pointer Not at Start of Buffer ... 48
Figure 22. Unexpected Sign Extension .. 49
Figure 23. Buffer Under-Read ... 50
Figure 24. Memory Use After Free.. 55
Figure 25. Buffer Allocation Error .. 55
Figure 26. Socket Array Access Error ... 56
Figure 27. Format Print Error .. 57
Figure 28. Socket Binding Error .. 57
Figure 29. Tainted Loop Bound Associated with Heartbleed Bug .. 59
Figure 30. Untainted Loop Bound Associated with Corrected Code .. 60
Figure 31. Repair Accuracy Dependence .. 63
Figure 32. Repair PCA for Buffer Overflow Templates.. 64
Figure 33. Repair PCA for Injected Templates ... 64
Figure 34. Error Detection Breakdown by Library .. 66
Figure 35. Classification Attempts and Repair Histograms... 67
Figure 36. Error Example: For Loop Conditional Statement ... 67
Figure 37. Error Example: Pointer De-Reference ... 68
Figure 38. Error Example: Array Index .. 69
Figure 39. Error Example: Double Pointer De-Reference .. 70
Figure 40. DeepCode Classifier Comparisons with SA on Juliet Test Suite 72
Figure 41. Classification Demonstration Challenge Problem Example 74
Figure 42. Vulnerabilities Found vs. Labor Hours .. 77
Figure 43. Classification Accuracy vs. Size of Training Dataset .. 78

iv

LIST OF TABLES
Table 1. CWE Statistics of Vulnerabilities Detected in Our Dataset .. 14
Table 2. Base Lexer Specification ... 17
Table 3. Generic Lexer Representation Mapping .. 18
Table 4. Feature Vector Combinations .. 19
Table 5. Selected Constraints ... 37
Table 6. Summary of Training Data .. 39
Table 7. Summary of Benchmark and Challenge Problem Data ... 39
Table 8. Summary of Dataset 1 .. 40
Table 9. Summary of Dataset 2 .. 41
Table 10. Summary of Classification Results on Dataset 1 ... 43
Table 11. Summary of Classification Results on Dataset 2 ... 45
Table 12. Sorting Repair Experiment Results.. 52
Table 13. Grammar Repair Experiment Results .. 53
Table 14. Juliet Test Suite Repair Experiment Results .. 54
Table 15. Constraint Enforcement Success Rate ... 58
Table 16. Classification Test Results on SATE IV by CWE ... 61
Table 17. Repair Accuracy Summary .. 62
Table 18. Classification Demonstration Challenge Problem Results .. 73
Table 19. Readiness for Transition of DeepCode Products ... 76

Approved for Public Release; Distribution Unlimited.
1

1. SUMMARY
This report describes research carried out by
The Charles Stark Draper Laboratory, Inc.
(Draper) team in the Defense Advanced
Research Projects Agency (DARPA) Mining
and Understanding Software Enclaves
(MUSE) program under contract FA8750-15-
C-0242. The Draper team included
subcontractors Paradigm4 and Stanford
University.

Our focus on the MUSE program was to
develop big-data analytics using machine learning for automatic vulnerability classification and
repair. This work encompasses three of the technical areas (TAs) for the MUSE program: TA2
(Artifact Generators), TA3 (Mining Engine), and TA4 (Analytics). Our work under TA2 involved
mining open source code to generate a large quantity of data that we used to train the machine
learning algorithms to classify and repair vulnerabilities. Our work under TA3 involved
representing data in formats most conducive to training the algorithms. Our work under TA4
involved developing advanced algorithms that make optimal use of the available training data. We
demonstrated the performance of our system through benchmarking and participation in program-
wide evaluation events.

Key technical advancements that we contributed to the MUSE program included the following:

• Fast and scalable machine learning-based classifiers to detect patterns in known types of
software vulnerabilities and demonstrated improved detection accuracy (precision and
recall) over multiple open-source static analysis (SA) tools on a synthetic benchmark
dataset.

• A generative adversarial network (GAN) to advance the state of the art in automated repair
of common types of software vulnerabilities. The prior state of the art is sequence-to-
sequence learning that requires labeled bad-good pairs of training data, the availability of
which is extremely limited. The new GAN does not require labeled data pairs, and this
greatly expands the amount of training data that can be made available for this approach.

• A data ingestion pipeline to scrape, build, and analyze millions of functions from open-
source software to generate training data for learning-based algorithms.

The most promising direction for future work in this area would be a focus on expanding the
availability of training data with truth labels, such as those from dynamic analysis tools or mined
from security patches. We demonstrated that larger labeled training sets should provide improved
vulnerability classification accuracy.

Engineering Possibilities
Draper is an independent, not-for-profit corporation, which
means its primary commitment is to the success of customers'
missions rather than to shareholders. For either government
or private sector customers, Draper leverages its deep
experience and innovative thinking to be an effective
engineering research and development partner, designing
solutions or objectively evaluating the ideas or products of
others. Draper will partner with other organizations — from
large for-profit prime contractors, to government agencies, to
university researchers — in a variety of capacities. Services
Draper provides range from concept development through
delivered solution and lifecycle support. Draper's
multidisciplinary teams of engineers and scientists can deliver
useful solutions to even the most critical problems.

Approved for Public Release; Distribution Unlimited.
2

2. INTRODUCTION
Every year, thousands of new security vulnerabilities are reported and catalogued in the Common
Vulnerabilities and Exposures (CVE) database [1]. Annual security-related hardware, software,
and service expenses approach $100 billion worldwide [2]. Automation could substantially reduce
the labor and increase the yield in the process of identifying and repairing such vulnerabilities in
software. Draper’s work under the DARPA MUSE program developed machine learning
approaches for automatic identification and repair of software vulnerabilities.

2.1 Deep Learning Approach

Deep Learning is a subfield of machine learning in Artificial Intelligence (AI) concerned with
algorithms inspired by the structure and function of the brain called biological neural networks.
The term artificial neural networks (ANNs) (and more broadly AI) is used to describe Deep
Learning, as ANNs loosely model the neurons in a biological brain, and the networks are supposed
to imitate the workings of the human brain in processing data and creating patterns and
representations for use in decision making. Draper chose Deep Learning as the technological
foundation for work on the MUSE program because of its ability to learn high-level feature
representations from low-level inputs. This is a critical capability for a system that can learn to
identify patterns that recur in software with security vulnerabilities and generalize those patterns
to identify new vulnerabilities in software that the system hasn’t seen before. Deep Learning has
also demonstrated success in related fields that have similar problems, such as image classification
[3] [4] [5] [6] [7], image caption generation [8] [9], semantic natural language processing (NLP)
[10] [11], and machine translation [12] [13]. Deep Learning has achieved the best performance in
multiple machine learning competitions such as ImageNet [14], Medical Image Computing and
Computer Assisted Intervention (MICCAI) [15], and Go [16].

2.2 Major Program Elements

Major elements of Draper’s developments on the MUSE program included the following:

• Mining open source code to generate a large quantity of training data for the Deep Learning
algorithms. This involved scraping code repositories to get information about code as it
evolved over its revision history, building the code to enable training artifacts to be
extracted, and applying training labels to the code that we derived from a variety of sources.

• Representing data in formats most conducive to training the algorithms. This involved
defining a combination of source and build artifacts to use as features on which to train,
extracting those features from the code, storing data in a variety of database formats best
suited to retrieval for training, careful de-duplication of data to avoid overfitting, and
representing data in vector formats for use by the Deep Learning algorithms.

• Developing advanced algorithms that make optimal use of the available training data. This
involved developing and evaluating a variety of classification and repair algorithms.

• Evaluating performance of the system through benchmarking and participation in program-
wide evaluation events.

Approved for Public Release; Distribution Unlimited.
3

The development occurred over the course of three program phases:

• During Phase 1, we developed and demonstrated the initial classification capability.

• During Phase 2, we refined the classification capability and advanced the state of the art in
repair.

• During Phase 3, we refined the classification and repair capabilities further and evaluated
system performance.

2.3 Subcontractors

The Draper team for the MUSE program included two subcontractors:

• Paradigm4 is the developer of an open-source data analysis and management system that
addresses peta-scale operation through distributed, scalable and in-situ vector and matrix
operation. During Phases 1 and 2 of the MUSE program, Paradigm4 developed a
mathematical data analysis component called SciDB to provide support for efficient,
distributed matrix and graph operations. SciDB was shown to provide substantial speedup for
a central processing unit (CPU) based architecture but was not implemented for a graphics
processing unit (GPU) based architecture. We did not continue this development in Phase 3
because the Draper DeepCode development moved to a GPU-based architecture, which would
not have benefited from the CPU-based improvements that SciDB offered.

• Stanford University focused on Deep Learning, in which very large neural networks are
constructed to learn from labeled and unlabeled data. During Phases 1 and 2 of the MUSE
program, Stanford University performed initial work on sequence-to-sequence learning
algorithms. We did not continue this development in Phase 3 because the Draper DeepCode
development for repair moved away from the sequence-to-sequence approach and in the
direction of developing a GAN model.

3. METHODS, ASSUMPTIONS, AND PROCEDURES
During the course of the MUSE program, Draper developed a data pipeline for training data
generation and machine learning that encompassed TA2, TA3, and TA4 of the MUSE program.
Section 3.1 describes the high-level system architecture for the data pipeline. Section 3.2 describes
the data generation elements of the architecture (TA2 and TA3). Section 3.3 describes the machine
learning elements of the architecture (TA4). We refer to the collection of Draper solutions for the
MUSE program as the DeepCode system.

Approved for Public Release; Distribution Unlimited.
4

3.1 System Architecture

Figure 1 depicts the functional flow of data through the DeepCode system.

Figure 1. Functional Flow of Data Through DeepCode System

Data flow through the system occurs in the following key steps:

1. Scrape: Starting with code from a variety of sources, we scrape over the revision history
of the code repositories to mine for examples of software bugs that we can use to train the
learning algorithms. This step prepares multiple builds over the code revision history.

2. Build: This step builds the scraped source code to generate object code and run SA tools.

3. Generate artifacts: This step generates labels and features to be used for training.

4. Ingest: This step collects labels and features into a common format to enable training.

5. Artifact database: A common artifact database allows us to combine training data from
diverse sources.

Generate
artifactsScrape Build Ingest

Pull Train Run Patch

Artifact Database

Training data sources

Test data
(code under test)

Repaired code
under test

Prepare
builds over
code revision
history

Generate
object code,
run SA tools

Labels and
features for
training

Scrape over revision
history to mine for
bug examples for
training

Get labels and
features into a
common format to
enable training

Convert
labels and
features into
training
vectors

Common database
enables combining
training data from
diverse sources

Generate
network
parameters

Generate
error
detections
and repairs

Approved for Public Release; Distribution Unlimited.
5

6. Pull: This step collects artifacts from multiple sources stored in the database and converts
the labels and features into training vectors. This step also performs functions such as de-
duplication of training data.

7. Train: This step operates on the training vectors to generate network parameters (weights)
for the learning algorithms.

8. Run: This step runs trained networks on code under test to generate error detections and
repairs.

9. Patch: This step produces a repaired version of the code under test.

3.2 Training Data Generation (MUSE TA2 and TA3)

This section describes the training data generation elements of the DeepCode system. Section
3.2.1 describes the training corpus. Section 3.2.2 describes the system architecture that hosts the
training data generation elements. Section 3.2.3 describes key elements of the processing chain
used to generate the training data.

3.2.1 Training Corpus.
A key challenge in the application of machine learning is to get enough labeled data to train the
algorithms. Learning algorithms should have hundreds of thousands of code examples that are
known to have certain types of vulnerabilities, so that they can learn the patterns. Training requires
that we have truth data about code with and without vulnerabilities. We refer to these truth data
as “labels.” Requirements for the labels include the following:

• Volume: Training the networks requires a large number of labels.

• Quality: Labels need to be correct with low false positive rate (FPR).

• Effort: We need to be able to generate labels with reasonable time and labor.

• Diversity: Labels need to cover a wide range of types of errors. The labeled code should
also be representative of the types of code to be classified and repaired.

Over the course of the MUSE program, we tried several label generation approaches as described
below.

• Curated: Some code repositories, such as the source code for the Debian Linux
distribution, provide precise information about which CVEs are corrected in which
revisions of the software. We processed these and used this information to generate labels,
but we were able to generate only a very small number of labels in this way.

• SA-derived: We can use SA to generate large numbers of labels quickly on arbitrary source
code, but the quality of these labels is only as good as the accuracy of the SA tools.

• Manually labeled: It is possible to label code manually, but this is a labor-intensive process
and as such produces very low yield. ManyBugs [17] is an example of a dataset for which
a very limited amount of manually generated label data are available.

Approved for Public Release; Distribution Unlimited.
6

• Artificially injected: We attempted to inject known errors artificially into otherwise good
code to generate synthetic code with known errors. This produces code with good labels
but the diversity of errors represented in such data is very limited.

• Synthetic: There exists synthetic code with and without known vulnerabilities that
provides benchmark data for SA. The best known datasets of this type are the Static
Analysis Tool Exposition (SATE) IV dataset [18] and the Juliet Test Suite [19]. The
National Institute of Standards and Technology (NIST) designed SATE IV to advance
research in SA tools [20]. This dataset was later updated to the Juliet Test Suite for C/C++,
a collection of test cases in the C/C++ language containing examples organized under 118
different Common Weakness Enumeration (CWE) [21] types as compiled by the MITRE
Corporation. These datasets come with high-quality labels but are limited in volume. The
vulnerability examples represented in these datasets are very diverse, but the code
complexity is not representative of real-world code.

• Natural language: We tried various NLP techniques in an attempt to extract labels from
commit messages in revision histories. These approaches did not correlate with the
presence of vulnerabilities better than an ad hoc keyword search.

Figure 2 summarizes the performance of various types of training data relative to the labeling
requirements listed above. This pictorially depicts a relative scale, with green representing the
best performance relative to a given requirement, yellow in the middle, and red representing the
worst performance.

Figure 2. Labeling Performance for Various Types of Training Data

No single dataset satisfies all of the criteria for good training labels. Therefore, we combined data
from several sources into a training corpus, as follows:

• Juliet Test Suite: We used this primarily for the high-quality vulnerability labeling that it
provides.

• MUSE Corpus with SA-derived labels: This is a collection of GitHub projects originally
provided by Leidos and later managed by Two Six Labs. The Draper team uses C and C++

Label Type Volume Quality Effort Diversity

Curated

SA-derived

Manually labeled

Artificially injected

Synthetic

Natural language

Approved for Public Release; Distribution Unlimited.
7

code packages from this dataset. Since these datasets are not labeled in any way, we used
SA to generate labels. We used this primarily to get a large volume of diverse open-source
code with a large number of labels that we could generate automatically.

• Debian Linux distribution with SA-derived labels: We used this as an example of a well-
curated code base to add to the training corpus.

• Debian Linux kernel with SA-derived labels: We used this primarily to expand the
diversity of the training set by including kernel code.

3.2.2 Data Generation Architecture.
Upon corpus selection, the Draper team created a work flow that is based on Buildbot [22], an
open source framework for automating software builds, to build each project in the corpus using a
modified version of strace [23] to capture system calls associated with the build. A modified
version of Clang, a C language family front end of LLVM (formerly known as Low Level Virtual
Machine) [24], is used to perform a shadow build and capture build artifacts such as optimized
intermediate representation (IR), control flow, use-def and def-use chains, loop features, abstract
syntax tree (AST), SA, and more. These artifacts are then stored in graph form in TitanDB [25],
a graph database accessed via TinkerPop [26]. TitanDB in turn resides on top of Cassandra [27],
a distributed database for managing large amounts of structured data across many commodity
servers.

From this data store, analytical data are migrated into Elasticsearch indexes for use by the machine
learning parts of the system architecture. Because much of our dataset is not initially labeled in
any way, three SA tools are used to generate a form of labeling. These three SA tools are the
Clang Static Analyzer [28], Flawfinder [29], and Cppcheck [30]. While SA produces noisy labels,
the use of multiple SA tools mitigates the effect of this noise on our labeling.

The Draper team constructed a cluster of about 40 low-end Dell R320 servers. We distributed the
entire build infrastructure, graph storage, and analytic storage functions across these servers. Two
servers are responsible for managing Cassandra and TitanDB, and 14 servers house the storage for
the graph database. This graphical database is about 16 TB in size. It stores artifacts described
above for thousands of C/C++ projects. The analytic store is a 7 node Elasticsearch cluster
containing 12.7 billion documents taking up about 3.5 TB. These documents are JavaScript Object
Notation (JSON) files containing detailed information about builds and associated analytics.

Approved for Public Release; Distribution Unlimited.
8

TitanDB is a graph database made up of nodes (or vertices) and edges. Figure 3 depicts the basic
schema of the DeepCode TitanDB graph database structure. The schema starts with a build (as
performed by Buildbot and shadowed by strace-Clang). Additional nodes in the graph include the
package built, the modules that make up the package, the functions that make up each module, and
the basic blocks that make up each function. Each node contains features representing the build
artifacts that are relevant for network training.

Figure 3. Graph Database Structure

Once a build has completed and generated all necessary artifacts, the ingest step ingests the
information into TitanDB/Cassandra and Elasticsearch. Our Elasticsearch indexes include build
step logs (Buildbot allows for several activities to be scheduled as steps in an overall build). The
logs include details about the shadow build, the location of where build artifacts are stored and the
results of other build steps. For example, the SA runs take place at different points in the build
process. Clang SA is run while Clang is performing the build, while Cppcheck and Flawfinder
take place upon completion of the build. All of these results are stored in an Elasticsearch index
that contains all information associated with the build.

Approved for Public Release; Distribution Unlimited.
9

3.2.3 Data Generation System Components.
Figure 4 depicts the high-level system architecture for the DeepCode data pipeline. We describe
each of the TA2 and TA3 elements of the system architecture in detail below.

Figure 4. DeepCode Data Pipeline

Code Harvest
The Code Harvest element of the DeepCode data pipeline performs the scrape and build steps of
the DeepCode functional flow. This can act either on a compressed file containing all source code
associated with a project, or on a bare Git repository. The Draper team mirrored several Git
repositories from GitHub on the aforementioned cluster of servers. In the scrape step, the Code
Harvest element traverses these repositories, building each tag (or commit, depending on
arguments supplied to the builder). The scrape and build steps are managed by a modified version
of Buildbot consisting of a build master (located on one server) and several builders (located across
several servers). Each builder can be a unique environment to get specific projects to build. For
example, the Draper cluster consists of about 30 servers running CentOS, while 5 servers are
running Ubuntu. Figure 5 depicts this build process.

Approved for Public Release; Distribution Unlimited.
10

Figure 5. DeepCode Build Process

The Draper team has created several types of builders, not just in the sense of what environment
in which to run, but also what type of build to perform, such as cmake, make, or genericBash
(where various commands can be issued via a shell). Because the various Git repositories have
various build methodologies, not all builds turn out to be successful. Because there are in fact two
builds, there is a chance that the regular build succeeds while the shadow build fails, as the shadow
build occurs in Clang in LLVM. In these cases, some modules may still succeed in building; but
not all artifacts are extracted. Figure 6 shows an example from a genericBash build for which 218
modules were built, but only 216 were successfully extracted for storage. This illustrates that even
if all modules build, they might not all have artifacts available to be extracted for use by the
machine learning functions.

Figure 6. Sample Build Dashboard

Artifact Extraction
The Artifact Extraction generates a large JSON file that relates build artifacts to packages, builds,
and revisions. This file is suitable for running through the Object Ingest element for ingest into
the TitanDB server.

Approved for Public Release; Distribution Unlimited.
11

Object Ingest
The Object Ingest element is a Java wrapper for interacting with TitanDB. It is made up of
Gremlin/TinkerPop code to create a TitanDB database, create a schema, and create and populate
the vertices and edges based on JSON file generated by the Artifact Extraction element. Along
with graph information concerning each build and package, metadata concerning the Buildbot
build are stored in Elasticsearch. This creates a connection between the analytic store in
Elasticsearch and the graph storage in TitanDB. These metadata consist of all output generated
during each build step such as log output and the overall status of each step.

Relation Integration
The Relation Integration element collects build artifacts from various indices in the Elasticsearch
analytic store into a summary index called a MUSE function index (MFI). The MFI contains all
required information to train the Deep Learning element. This index is pulled using a Python script
to generate a binary pickle file. This file is further processed to filter functions based on usability
(control flow larger than zero, valid SA findings, and so on). The output of the filtered functions
is then split further into three sets for training, validation, and testing. Finally, this output is written
to H5 files used as inputs for the machine learning algorithms.

3.3 Machine Learning (MUSE TA4)

Beyond the traditional tools (such as SA, dynamic analysis, and symbolic execution) that attempt
to uncover common software vulnerabilities, there has been significant recent work on the use of
machine learning for program analysis. The large amounts of open-source code now available
open the opportunity to learn the patterns of software vulnerabilities directly from mined data.
Allamanis et al. [31] provide a comprehensive review of learning from “Big Code.”

In the area of vulnerability detection, Hovsepyan et al. [32] used a support vector machine (SVM)
on the bag of words (BOW) representation of a simple tokenization of Java source code to predict
SA labels, though their work was limited to training and evaluating on a single software repository.
Pang et al. [33] expanded on this work by including n-grams in the feature vectors used with the
SVM classifier. Mou et al. [34] explored the potential of Deep Learning for program analysis by
embedding the nodes of the AST representations of source code and training a tree-based
convolutional neural network (CNN) for simple supervised classification problems. Li et al. [35]
used a recurrent neural network (RNN) trained on code snippets related to library and application
programming interface (API) function calls to detect two types of vulnerabilities related to the
improper usage of those calls.

To our knowledge, no work has been done on using Deep Learning to learn features directly from
source code and from build features extracted from source code in a large natural codebase to
detect and repair a variety of vulnerabilities. The limited datasets (in both size and variety) used
by most of the previous works limit the usefulness of the results and prevent them from taking full
advantage of the power of Deep Learning. Section 3.3.1 describes the high-level system
architecture of our machine learning elements. Section 3.3.2 describes the data processing
procedures to generate features, labels, and to remove duplicate data samples in order to train
machine learning models. Sections 3.3.3 and 3.3.4 describe vulnerability detection algorithms and
repair algorithms in detail. Section 3.3.5 describes exploratory research on program synthesis
approach as a way to generate labeled datasets.

Approved for Public Release; Distribution Unlimited.
12

3.3.1 Learning System Architecture.
The pull step of the DeepCode functional flow generates binary labels (“vulnerable” and “not
vulnerable”), creates feature vectors (build features and source features), and performs data
curation to remove duplicate data samples. Details of labeling, features, and duplicate removal
follow in Section 3.3.2. After these training data are generated, the train step of the DeepCode
functional flow separately trains the classification and repair networks. The run step of the
DeepCode functional flow evaluates the trained networks on benchmark datasets.

Repair networks were trained only on source features while different variations of classifier models
were trained – a model that uses build features only (which we call a “build feature-based
classifier”), and a model that uses source features only (which we call a “source feature-based
classifier”), and a model that uses combined feature sets (which we call a “combined classifier”).
Details of these classifiers and repair networks are covered in Section 3.3.3 and 3.3.4. Figure 7
shows the flow of the training process.

Figure 7. Overall Flow of the Training Process

Once the classifier models and repair networks were trained, we evaluated our model performance
against the held-out portion of training data and against the benchmark dataset. Figure 8 shows
the flow diagram of DeepCode’s classification and repair processes.

Figure 8. Flow Diagram of DeepCode’s Classification and Repair Processes

3.3.2 Training.
Key components of training data generation include labeling, feature vector generation, and data
curation to remove duplicate data samples and data that are otherwise unsuitable for use in training.
We describe each of these components in detail below. Note that each data sample is a function-
level example of C and C++ programs. We chose to analyze software packages at the function
level because it is the lowest level of granularity capturing the overall flow of a subroutine.

Approved for Public Release; Distribution Unlimited.
13

Labeling
Labeling code vulnerabilities at the function level was a significant challenge. The bulk of our
dataset was made up of mined open-source code (namely the MUSE Corpus, the Debian Linux
distribution, and the Debian Linux kernel) without known ground truth. In order to generate labels,
we pursued three approaches: dynamic analysis, commit-message/bug-report tagging, and SA.

Dynamic Analysis: While dynamic analysis is capable of exposing subtle flaws by executing
functions with a wide range of possible inputs, it is extremely resource intensive. Performing a
dynamic analysis using Draper’s internal tool, Vader (version 1.0), on the roughly 400 functions
in a single module of the LibTIFF 3.8.2 package from the ManyBugs dataset took nearly a day of
effort. Therefore, this approach was not realistic for our extremely large dataset.

Commit Message Labeling: Commit-message labeling turned out to be very challenging,
providing low-quality labels. In our tests, both humans and machine learning algorithms were
poor at using commit messages to predict corresponding Travis continuous integration (CI) [36]
build failures or fixes. Motivated by recent work by Zhou et al. [37], we also tried a simple
keyword search looking for commit words like “buggy”, “broken”, “error”, or “fixed” to label
before-and-after pairs of functions, which yielded better results in terms of relevancy. However,
this approach greatly reduced the number of candidate functions that we could label and still
required significant manual inspection, making it inappropriate for our vast dataset.

SA Labeling: As a result, we decided to use three open-source SA tools, Clang [38] [28],
Flawfinder [29], and Cppcheck [30], to generate labels. Each SA tool varies in its scope of search
and detection. For example, Clang’s scope is very broad but also picks up on syntax, programming
style, and other findings which are not likely to result in a vulnerability. Flawfinder’s scope is
geared towards CWE [21] classes and does not focus on other aspects such as style. Cppcheck
checks for memory leaks, mismatching allocation-deallocation, buffer overrun, and others with a
goal of 0% false positives. Therefore, we incorporated multiple SA tools and pruned their outputs
to exclude findings that are not typically associated with security vulnerabilities in an effort to
create robust labels.

We had a team of dedicated security researchers map each SA tool’s finding categories to the
corresponding CWEs and identify which CWEs would likely result in potential security
vulnerabilities. This process allowed us to generate binary labels of “vulnerable” and “not
vulnerable”, depending on the CWE. For example, Clang’s “Out-of-bound array access” finding
was mapped to “CWE-805: Buffer Access with Incorrect Length Value”, an exploitable
vulnerability that can lead to program crashes, so functions with this finding were labeled
“vulnerable.” On the other hand, Cppcheck’s “Unused struct member” finding was mapped to
“CWE-563: Assignment to Variable without Use”, a poor code practice unlikely to cause a security
vulnerability, so corresponding functions were labeled “not vulnerable” even though SA tools
flagged them. Of the 390 total types of findings from the SA tools, 149 were determined to result
in a potential security vulnerability. Roughly 5.1% of our curated, mined C/C++ functions
triggered a vulnerability-related finding. Table 1 shows the statistics of frequent CWEs in these
“vulnerable” functions; the “Frequency (%)” column in this table represents the distribution of
each CWE among functions that had the CWEs listed.

Approved for Public Release; Distribution Unlimited.
14

Table 1. CWE Statistics of Vulnerabilities Detected in Our Dataset

CWE ID CWE Description Frequency (%)

120 Buffer Copy without Checking Size of Input (“Classic Buffer
Overflow”)

29.2%

119 Improper Restriction of Operations within the Bounds of a
Memory Buffer

12.7%

469 Use of Pointer Subtraction to Determine Size 11.8%

476 NULL Pointer Dereference 10.7%

805 Buffer Access with Incorrect Length Value 5.4%

362 Concurrent Execution using Shared Resource with Improper
Synchronization

3.6%

20, 234,
457, etc.

Improper Input Validation, Failure to Handle Missing
Parameter, Use of Uninitialized Variable, etc.

26.5%

The Juliet Test Suite contains synthetic code examples with vulnerabilities from 118 different
CWEs and was originally designed to explore the performance of static and dynamic analysis tools.
While the Juliet Test Suite provides labeled examples of many types of vulnerabilities, it is made
up of synthetic code snippets that do not sufficiently cover the space of natural code to provide an
appropriate training set alone. The functions mined from the MUSE Corpus, Debian Linux
distribution, and Debian Linux kernel appropriately provide a vast dataset of natural code to
augment the Juliet Test Suite.

Program synthesis is another potential approach that could generate a large number of labeled C
programs. Section 3.3.5 describes the approaches we took in this space.

Feature Generation
We extract two types of features as they offer different sources of information. The source features
can provide statistical correlations in how code is written, while build features give inherent
knowledge about the structure or semantics of the language in which the code was built.

Build Features: At the function level, the control flow graph (CFG) of the function is extracted.
The CFG is a graph representation of the different paths a program can take during execution.
Each node is a basic block – a unit of code with no branching behavior. The edges of the graph
connect basic blocks that can flow into each other during execution and occur at control flow
operations. At a high level, this representation is useful for vulnerability detection because models
can potentially learn program execution topologies that are risky. The high-level view of the CFG

Approved for Public Release; Distribution Unlimited.
15

is complemented by features extracted from each basic block within the CFG, so that models can
also learn instruction-level behaviors that are associated with vulnerable code.

Within each basic block, we extract features which define the behavior of the basic block. The
first of these features is the use-def matrix. This matrix tracks, within the basic block, the locations
of instructions where variables are defined (def) and used (use). If a variable is defined at
instruction 𝑖𝑖 and used in instruction 𝑗𝑗, then both the (𝑖𝑖, 𝑗𝑗) and (𝑗𝑗, 𝑖𝑖) entries of the use-def matrix
are set to 1. The second feature extracted for each basic block is the operation code vector (opvec).
LLVM assigns operation codes to instructions in one of nine different categories: conditional,
arrogate, binary, bit binary, conversion, memory address, termination, vector operation, and other.
The opvec for a basic block is a vector that keeps counts of each of these possible classifications.
Figure 9 shows the CFG and corresponding basic blocks of an example code snippet.

Figure 9. CFG and Basic Blocks

The size and content of the build features vary depending on the complexity of the given code
snippet (function), as the CFG, the number of basic blocks, the sizes of use-def matrices, and the
opvecs differ. In order to keep the input feature size manageable, and since it is unlikely for a
single basic block to have a very large number of operations, we fix the size of the use-def matrix
to be 15. Basic blocks with size over 15 are truncated, and basic blocks with size under 15 are
padded with zeroes. Since the use-def matrix is symmetric and the main diagonal entries of the
use-def matrix are equal to zero (a variable cannot be defined and used in the same instruction),
we take the upper-triangular part of the use-def matrix and flatten it to a vector. As a result, a
single use-def matrix can be represented as a vector of length (152 − 15) 2⁄ = 105. Since an
opvec is a vector of length 9, each basic block can be represented as a vector of length 114. The
size of a build feature vector for a function of CFG size 𝑛𝑛 can be represented as 𝑛𝑛2 + 𝑛𝑛 ∗ 114.

Since most classifier algorithms require fixed size input vector, we took a few different approaches
to convert variable-length build feature vectors to fixed size. The most straightforward way was
to average basic block vectors into a single vector of length 114, then to compute the sparsity of
the CFG matrix to represent the n-by-n matrix as a single value. We also added a constant variable
representing the CFG size. As a result, we represented build feature vectors as fixed length vectors

Approved for Public Release; Distribution Unlimited.
16

of length 116. We refer to this representation as the “simplified” build feature vector.

Another approach was to generate the sequence inputs that best capture the control flow of the
basic blocks for the CNN and long-short term memory (LSTM). We first convert the CFG to a
dominator tree, as a tree representation captures most of the control flow. (As evidence of this, we
note that some compiler optimizations use dominator trees for memory usage analysis to find leaks
and identify high memory usage.) After converting the CFG to a dominator tree, we still need to
convert it to a sequence input. Here we use a topological sort. A topological sort is a linear
ordering of the vertices of a graph such that for every directed edge 𝑒𝑒𝑛𝑛𝑛𝑛 from vertex 𝑛𝑛 to vertex 𝑑𝑑,
𝑛𝑛 comes before 𝑑𝑑 in the ordering. This captures the ordering in which the basic blocks in a function
must be performed, thus capturing the control flow of the function.

Figure 10 shows the overall flow from CFG to sequential representation of basic blocks. We first
convert the CFG to a dominator tree; then traverse the tree with topological sorting to generate the
sequence inputs. Some learning approaches require the input sequence lengths to be limited. For
example, LSTM suffers from vanishing or exploding gradients if inputs are too long. Since only
a small fraction of the functions we ingested have CFG size over 200, we fixed the number of basic
blocks to be the first 200 basic blocks in topological ordering.

Figure 10. Topological Sorting of Dominator Tree Representation of CFG

Our “advanced” build features for each function are thus represented by an N-by-K matrix, where
N = 200 is the number of basic blocks (we pad with zeroes for any function with fewer than 200
basic blocks) and K = 114 is the size of the basic block feature vector representation described
above.

Source / Lexer Features: To generate useful features from the raw source code of each function,
we created a custom C/C++ lexer designed to capture the relevant meaning of critical tokens while
minimizing the total token vocabulary size. Standard lexers, designed for actually compiling code,
capture far too much detail that can lead to overfitting in machine learning approaches. Our lexer
was implemented via optimized regular expressions that allow large repositories to be lexed in

Approved for Public Release; Distribution Unlimited.
17

seconds.

All base C/C++ keywords, operators, and separators are included in the lexer vocabulary. Code
that does not affect compilation, such as comments, is stripped out. String, character, and float
literals are lexed to type-specific placeholder tokens. Integer literals are tokenized digit-by-digit,
as these values are frequently relevant to vulnerabilities. Common types and calls, especially ones
that are likely relevant to vulnerabilities, are included. These common types and calls were
discovered by looking at the most common identifiers that occur when lexing our entire dataset.
All tokens that are not recognized by the lexer (such as internal variables) are mapped to generic
indexed identifiers. For example, if the first variable to appear in the function is called foo and the
second to appear is bar, all instances of foo and bar appearing in that function are lexed to id1
and id2, respectively. This identifier indexing is needed for the source repair, as the lexed
representation needs to be able to be inverted back into compilable code.

Table 2 represents our base lexer specification. The maximum base vocabulary size is the sum of
the number of tokens in the base lexer specification (188 tokens in all) and the maximum number
of unique identifiers in any function in the dataset. To bound the vocabulary size, we restrict
attention to functions that have 500 or fewer tokens in the lexed representation. This results in a
maximum base vocabulary size of 298.

Table 2. Base Lexer Specification

Operators and
separators

!, !=, #, %, %=, &, &&, &=, (,), *, **, *=, +, ++, +=, ,, -, --, -
=, ->, ., /, /=, :, ::, ;, <, <<, =, ==, >, >>, ?, [,], ^, {, |, |=, ||, }, ~

Integer literal
digits

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Directives #define, #elif, #else, #endif, #error, #if, #ifdef, #ifndef,
#include, #line, #undef

Calls calloc, cin, cout, defined, dprintk, endl, errmsg, fprintf, free,
fscanf, fwscanf, len, malloc, memcmp, memcpy, memmove,
memset, palloc, printf, printk, realloc, scanf, snprintf, sprintf,
static_cast, strcat, strcmp, strcpy, strlen, strncmp, strncpy,
swscanf

Keywords
and common
macros

assert, auto, break, case, catch, const, continue, default, delete,
do, else, enum, errno, extern, false, for, goto, if, new, register,
return, sizeof, static, std, stderr, struct, switch, this, throw, true,
try, typedef, union, void, volatile, while, EOF, ERROR,
FALSE, NUL, NULL, TRUE

Common
types

bool, char, char_u, double, float, int, int32_t, l_int32, long,
short, signed, size_t, ssize_t, string, u16, u32, u64, u8, uint,
uint16, uint16_t, uint32, uint32_t, uint64, uint64_t, uint8,
uint8_t, unsigned, BOOL, BYTE, DWORD, FILE, PyObject,
QString, UBool, UErrorCode, UINT, UINT16, UINT32,
UINT64, UINT8, U_FAILURE, UnicodeString, WORD

Other literals characters, strings, floats

Approved for Public Release; Distribution Unlimited.
18

Unlike the repair algorithms, our classification algorithms do not require that the lexed
representation be invertible. Thus, to reduce the vocabulary size as much as possible and reduce
overfitting, we map many similar terms onto the same token. Learned embeddings of these
individual tokens would likely distinguish them based on the kind of code they are commonly used
in, so care was taken to build in the desired invariance. Making our lexed representation of code
from different software repositories as standardized as possible empowers transfer learning across
the full dataset.

For this generic representation, all identifiers are mapped onto the same identifier placeholder
tokens instead of being indexed. This reduces the maximum vocabulary size down from 298 to
188. Additionally, we mapped some tokens (particularly types and function calls) with identical
or nearly identical meanings onto the same token. This helps ensure that similar C and C++ code,
or similar code using different common libraries, still have similar representations. For example,
u32, uint32_t, UINT32, uint32, and DWORD are all lexed as the same generic token representing
32-bit unsigned data types. This generic representation is able to reduce the vocabulary size to
only 156 tokens. Table 3 summarizes generic lexer representation mapping.

Table 3. Generic Lexer Representation Mapping

From To
UINT uint

u8, UINT8, uint8_t, char_u, BYTE uint8
u16, UINT16, uint16_t, WORD uint16
u32, UINT32, uint32_t DWORD uint32

u64, UINT64, uint64_t uint64
l_int32, int32_t long

UBool bool
BOOL int
TRUE 0
FALSE 1
ssize_t size_t
palloc malloc

QString UnicodeString
U_FAILURE, PyObject, errmsg id

dprintk, printk printf
UErrorCode enum

Combined Feature Sets: Since the source and build features can capture different aspects of our
input data, we created combined features sets to explore how these features can be used together
for improved classification performance. The most straightforward way of combining the feature
sets is by simply concatenating the “simplified” build feature vector and lexed feature vector of
the source code. For each feature type, we also learn neural feature representations using CNN or

Approved for Public Release; Distribution Unlimited.
19

RNN. This allowed us to create many different combinations of source and build features by
taking one feature vector from each column of options listed in Table 4.

Table 4. Feature Vector Combinations

Build Feature Vector Options Source Feature Vector Options
• “Simplified” build feature vector
• CNN learned build feature vector
• RNN learned build feature vector

• CNN learned source feature vector
• RNN learned source feature vector
• BOW representation of lexed source feature

vector

Data Curation – Filtering and Duplicate Removal
Data curation/preprocessing is a very important part of the machine learning process as having
erroneous data samples, data samples with many missing feature values, or duplicate data samples
can interfere with properly training good machine learning models. We perform filtering and
duplicate removal as the main data curation processes.

During the filtering process, we filtered out functions that were missing source code caused by
data extraction failure (since our Cassandra query stops at the first dependency, the source codes
related to the functions in deeper dependency are not extracted), functions that were unreasonably
long (lexed representation length over 500) or short (lexed representation length less than 2), and
functions where our custom lexer failed to generate a lexed representation from the source code
(when non-standard characters, commonly “@” and “$”, are used in identifiers).

A subsequent critical step of our data preparation is the removal of potential duplicate functions.
Open-source repositories often have functions duplicated across different packages. Such
duplication can artificially inflate performance metrics and conceal overfitting, as training data can
leak into test sets. Likewise, there are many functions that are near duplicates, containing trivial
changes in source code that do not significantly affect the execution of the function. These near
duplicates are challenging to remove, as they can often appear in very different code repositories
and can look quite different at the raw source level.

To protect against these issues, we performed an extremely strict duplicate removal process. We
removed any function with a duplicated lexed representation of its source code (source / lexer
features) or a duplicate build feature vector. Two functions with identical instruction-level
behaviors or functionality are likely to have both similar lexed representations and highly
correlated vulnerability status. For our datasets, the functions remaining after the data curation
processes (filtering and duplicate removal) were about 10% of the total number of functions
(details are provided in Section 4.1.2). Our strict duplicate removal process filters out a significant
amount of data and results in diminishing returns with each new dataset, as the likelihood of
duplicates increases with the size of the dataset. Therefore, this approach provides the most
conservative performance results, closely estimating how well our tool performs against code it
has never seen before.

3.3.3 Classification.
We train separate classifiers that use varying amounts of information: build feature-based
classifiers that operate on build features, source feature-based classifiers that work with
sourcefeatures, and combined classifiers that utilize both build and source features. By
pursuing all of these approaches, we allow the possibility of ultimately fusing multiple
models to increase detection performance. Each of our classification models produces a
continuous output between 0 and 1 that we can threshold to obtain a binary prediction
indicating a bad (“vulnerable”) or good (“not vulnerable”) function. We tuned and selected
models based on the highest validation Matthews Correlation Coefficient (MCC), a
classification metric insensitive to class imbalance, which is described in further detail in
Section 4.2.1. Each of our primary classifier approaches are described in detail below.

Approved for Public Release; Distribution Unlimited.
20

Build Feature-Based Classifiers
In addition to traditional machine learning algorithms such as random forest (RF), we explored
two Deep Learning network architectures for “advanced” build feature representations:
RNN (specifically the LSTM network) and CNN. Both networks are commonly used in
several application domains including sentiment analysis [39] [40] [41], photo tagging
and image classification [3] [4] [5] [6] [7] [42], machine translation and correction [43] [44]
[45] [46], and autonomous vehicles [47].

RNN Using LSTM Network: Figure 11 illustrates our LSTM approach to build feature-based
classification. The inputs are the “advanced” build features for each function represented in an
𝑁𝑁 × 𝐾𝐾 matrix, where 𝑁𝑁 is the number of basic blocks in topological sorted ordering and 𝐾𝐾
is the feature vector representation of the basic block. Recall from Section 3.3.2 that we use 𝑁𝑁
= 200 and 𝐾𝐾 = 114. This input matrix is fed into a multi-layer LSTM, and the hidden state
from the last hidden layer outputs whether the function is vulnerable or not.

Figure 11. LSTM Network Used for Build Feature-Based Classification

Using RNNs allows for the capture of longer control flow dependencies in a function. RNNs take
not only the current input into consideration but also what it has learned from the inputs previously

Approved for Public Release; Distribution Unlimited.
21

Approved for Public Release; Distribution Unlimited.
22

through hidden states, and thus works well for sequence inputs. Vanilla RNNs often suffer from
the vanishing gradient or exploding gradient problems, but LSTM enables RNNs to remember
their inputs over a long period of time, because LSTM contain their information in a memory cell.
Our “advanced” build feature representation is fed into a two-layer LSTM with hidden state size
of 200, and the output from the last hidden layer at the length 𝑁𝑁 = 200 is fed into a classification
layer. The classifier uses a softmax (normalized exponential) output [48] to make predictions
between 0 and 1 for the two classes (not vulnerable or vulnerable). Since it is a binary
classification problem, logarithmic (cross-entropy) loss is used as the loss function, but
penalized/weighted more heavily on the vulnerable class due to the imbalanced class problem with
vulnerable functions being only a small percentage of the total dataset. To train the network, we
use the Adam optimizer [49], a variant of the stochastic gradient descent algorithm, with a learning
rate 1e-3, dropout 0.8, and batch size 128. In addition, we experimented with bi-directional LSTM
instead of LSTM as well as average pooling all hidden layers instead of just output from last hidden
layer – these achieve similar performance.

CNN: CNNs can capture correlation in the near neighbors by applying convolutional filters over
data. They have shown lots of amazing results in computer vision, and they have also been applied
in audio classification with good results [50]. We use 𝑛𝑛 convolutional filters with shape 𝑚𝑚 × 𝐾𝐾.
The filter size 𝑚𝑚 determines the number of sequential basic blocks that are considered together
and we found that a filter size of 𝑚𝑚 = 4 effectively captures the correlation of the neighbor basic
blocks. A total number of 𝑛𝑛 = 512 filters was used to achieve best classification results. The
convolutions were followed by batch normalization (which records data statistics to keep layer
outputs appropriately normalized) and followed by the rectified linear unit (ReLU) non-linearity
layer. After that, convolutional features are downsampled by applying a maximum filter along a
given dimension via an operation known as maxpooling. This is further followed by two fully
connected dense layers, where each layer’s output is a linear combination of the values from the
previous layer, plus a non-linearity, which applies dimension reduction. We also apply dropout to
the fully connected layers, where some fraction of connections are randomly dropped out in each
training step, thus preventing the network from overfitting. We used 50% dropout on the
maxpooled feature representation connections to the first hidden layer when training. We found
that using two hidden layers of size 64 and 16 (the number of hidden states per layer) before the
final 2-dimensional output gave the best classification performance. Just like LSTM, a softmax
function is applied to these outputs to generate interpretable “probabilities” of each function being
vulnerable or not vulnerable.

Network Training: Both LSTM and CNN networks were trained with the Adam optimizer with
batch size 128 and learning rate of 1e-3. We trained each network by minimizing the cross-entropy
loss of the outputs with respect to the true vulnerability label. Since the dataset was strongly
unbalanced, vulnerable functions were weighted more heavily in the loss function. This weight is
one of the many hyper-parameters that needed to be tuned to get the best performance.

Source Feature-Based Classifiers
Since source code shares some commonalities with writing and work done for programming
languages is more limited, we build off approaches developed for NLP [41]. We leverage feature-
extraction approaches similar to those used for sentence sentiment classification with CNNs and
RNNs for function-level source vulnerability classification.

Approved for Public Release; Distribution Unlimited.
23

Figure 12 illustrates our convolutional neural representation-learning approach to source code
classification. This approach combines the neural feature representations of lexed function source
code with RF, a powerful ensemble classifier. Input source code is lexed into a token sequence of
variable length 𝒍𝒍, embedded into a 𝒍𝒍 × 𝒌𝒌 representation, filtered by 𝒏𝒏 convolutions of size 𝒎𝒎 × 𝒌𝒌,
and maxpooled along the sequence length to a feature vector of fixed size 𝒏𝒏. The embedding and
convolutional filters are learned by weighted cross entropy loss from fully connected classification
layers. The learned 𝒏𝒏-dimensional feature vector is used as input to an RF classifier, which
improves performance compared to the neural network classifier alone.

Figure 12. Convolutional Neural Representation Learning for Source Classification

Our neural representation-learning approach to source feature-based classification contains the
following key steps:

1. Embedding: The tokens making up the lexed functions are first embedded into a fixed 𝑘𝑘-
dimensional representation (limited to range [-1, 1]) that is learned during classification
training via backpropagation to a linear transformation of a one-hot embedding. We also
tried a fixed one-hot embedding, but this approach overfit more, resulting in lower MCC.
As our vocabulary size is much smaller than those of natural languages, we were able to
use a much smaller embedding than is typical in NLP applications. Our experiments found
that 𝑘𝑘 = 13 performed the best for supervised embedding sizes, balancing the
expressiveness of the embedding against overfitting, while typical NLP applications use
embedding sizes between 300 and 500.

a. Embedding initialization: Several unsupervised word2vec approaches [51] trained
on a much larger unlabeled dataset were explored for seeding this embedding. A
word2vec model learns a vector representation of “words” (in our case, tokens) by
predicting which word occurs based on surrounding words. Thus, words that are
used in similar ways occur near each other by Euclidean distance in the
representation. This learned embedding did seem to take on significant meaning
for our lexer tokens and is shown by a t-distributed stochastic neighbor embedding

Approved for Public Release; Distribution Unlimited.
24

(t-SNE) visualization in Figure 13. Unfortunately, seeding the embedding used by
the classifier with this learned embedding yielded minimal improvement in
classification performance over randomly-initialized directly-learned embeddings.
It is likely that the most important latent variables for vulnerability detection are
significantly different from the most important ones for function reconstruction and
since we were limited to a relatively small embedding dimension size, there ended
up not being much overlap.

Figure 13. t-SNE Visualization of a 10-Dimensional word2vec Embedding of Lexer Tokens

b. Embedding regularization: Even though our dataset is very large, overfitting was
a major problem for our most powerful network architectures. When training
neural networks on images, it is common to perform data augmentation (such as
random cropping, rotations, or color adjustments) to prevent overfitting, but this is
not possible with our data modality. Instead, we found that adding a small amount
of random Gaussian noise 𝒩𝒩(𝜇𝜇 = 0,𝜎𝜎2 = 0.01) to each embedded representation
substantially improved resistance to overfitting and was much more effective than
other more common regularization techniques such as weight decay.

2. Feature extraction: We explored both CNNs and RNNs for feature extraction from the
embedded source representations.

a. Convolutional feature extraction: Neural network convolutions are a powerful way
of learning effective convolutional filter operations over data and have been

Approved for Public Release; Distribution Unlimited.
25

extremely successful in computer vision. We took inspiration from Kim’s work
[41], which showed that learned convolutions could be very effective feature
extractors for natural language classification problems. We use 𝑛𝑛 convolutional
filters with shape 𝑚𝑚 × 𝑘𝑘, so each filter spans the full space of the token embedding.
The filter size 𝑚𝑚 determines the number of sequential tokens that are considered
together and we found that a fairly large filter size of 𝑚𝑚 = 9 maximized MCC
during hyperparameter tuning. This size effectively represents the smallest token
length of critical code snippets that can be considered separately. A total number
of 𝑛𝑛 = 512 filters, corresponding to the number of code snippet classes detected,
maximized MCC during hyperparameter tuning. As with the build feature-based
CNN, the convolutions were followed by batch normalization and ReLU non-
linearity.

b. Recurrent feature extraction: We also explored using RNNs for feature extraction
to allow longer token-dependencies to be captured. RNNs process sequences step
by step, using information from previous steps, and thus operate like learned finite
state machines and can handle arbitrarily long sequences. Our embedded
representation is fed into a multi-layer RNN and the output at each step in the length
𝑙𝑙 sequence is concatenated. We used two-layer Gated Recurrent Unit RNNs with
hidden state size of 256, though LSTM RNNs performed equally well. Both of
these RNN architectures have a notion of both state and memory that make them
more effective for long sequences.

3. Pooling: As the length of C/C++ functions found in the wild can vary dramatically, both
the convolutional and recurrent features are maxpooled (keeping the largest values) along
the sequence length 𝑙𝑙 in order to generate a fixed-size (𝑛𝑛 or 𝑛𝑛′, respectively) representation,
as was done for the build feature-based RNN and CNN. In this architecture, the feature
extraction layers should learn to identify different signals of vulnerability and thus the
presence of any of these along the sequence is important.

4. Dense classification layers: The feature extraction layers are followed by a fully connected
classifier, where each value in a layer is a linear combination of the values in the previous
layer, plus a non-linearity. We once again used 50% dropout on the maxpooled feature
representation connections to the first hidden layer when training as well as two hidden
layers of sizes 64 and 16 before the final softmax output to generate interpretable
“probabilities” of each function being vulnerable or not vulnerable.

5. Network training: As with the build feature-based networks, the source feature-based
networks were trained using the Adam optimizer and a class-weighted cross-entropy loss
function. For data batching convenience, we trained only on functions with token length
10 ≤ ℓ ≤ 500 zero-padded to the maximum length of 500. Both the convolutional and
recurrent networks were trained with batch size 128 (which allowed every minimization
step to include some vulnerable functions) and learning rates of 5e-4 and 1e-4, respectively.

Approved for Public Release; Distribution Unlimited.
26

6. Ensemble learning on neural representations: While the neural network approaches
automatically build their own features, their classification performance on our full dataset
was suboptimal. We found that using the neural features (outputs from the sequence-
maxpooled convolution layer in the CNN and sequence-maxpooled output states in the
RNN) as inputs to a powerful ensemble classifier such as RF or extremely randomized
trees yielded the best results on our full dataset. These classifiers are both based on
decision trees, which learn the best combinations of univariate decision boundaries to
separate our two data classes. The ensemble variations of these take advantage of the
observation that populations of randomized weak classifiers are usually superior to a single
strong classifier. Optimizing the neural features and ensemble classifier separately also
makes it more convenient to retrain a classifier quickly on new sets of features or
combinations of features. Our most effective ensemble classifiers used an RF with 300
trees and a minimum of 7 data samples per split.

7. Error localization using backpropagation and class activation mapping: The source
feature-based classification has an advantage over the build feature-based classifications
in that the data format is inherently more understandable to humans. However, discovering
why neural networks make the decisions they do from these features is a challenge. We
explored several ways of determining which tokens in an input function were most
important to a classification result, inspired by approaches used in the computer vision
domain. First, we tried guided backpropagation [52], where the derivatives with respect to
the outputs are backpropagated all of the way to the initial one-hot vector inputs. While
this provides a very fine-grained way of visualizing the impact each token has on the
output, the visualization of the magnitude of these derivatives tends to be difficult to
interpret. More successful was using an approach similar to class activation mapping [53],
where the gradients are merely backpropagated to the output of the convolutional layers
(right before the maxpooling operation.) Then, each feature earns a weight based on how
much it contributes to the final result and the contribution of each feature is summed for
every position along the sequence, weighted by these amounts. This is then deconvolved
onto the initial sequence positions. Section 4.2.4 shows some examples of error
localization using the class activation mapping. This technique produces a rough “heat
map” of the main output class, as shown in the figures in Section 4.2.4. While this is
“blurrier” than backpropagation all of the way to the input vectors (i.e., the position is
smeared via a convolutional filter), it results in somewhat more interpretable visualizations.
Visualizations such as this can help localize the origin of a vulnerability and can make the
tool more helpful to developers.

Combined Classifier(s)
Since the source and build features can capture different aspects of our input data, it is interesting
to explore how these features can be used together for more effective and robust classifiers. If our
learned classifiers can be interpreted as detecting signals of vulnerabilities in their respective
feature sets, the classifier having access to another view of the same data could significantly
improve its ability to detect vulnerabilities.

The most straightforward way of learning on both sets of features is by simply concatenating
unordered feature representations. For the build features, this is the “simplified” feature vector.
For the source features, this is the learned neural feature representation, from either the CNN or

Approved for Public Release; Distribution Unlimited.
27

RNN classifier. Both of these sets of features were used effectively individually with the RF
classifier and thus it is reasonable to use the RF classifier trained on the combined set of features.

While the classifier has access to more information, it is not guaranteed that the RF classifier
trained on the combined feature set is significantly better than one trained on the individual feature
representations. If both feature sets contain overwhelmingly redundant information, improvement
is likely to be minimal, and the risk of overfitting the data increases. Likewise, if classification
with one feature set is much better than classification from the other, the benefit is not likely to
outweigh the cost of increasing the dimensionality of the classification problem.

Ensemble Approaches
Ensembling is the approach of combining the outputs of multiple different classifiers to boost the
performance. The goal is to obtain improved performance over individual classifiers. This is best
achieved when individual classifiers are statistically independent, i.e., they make independent
errors. To combine the strengths of different classification approaches we developed, we
investigated various ensembling approaches:

• Convex combination of normalized (probability) scores (also known as linear opinion
pool): This is the simplest and the most effective ensembling approach for our problem,
where the final (ensembling) score is computed as the weighted average of individual
classifier scores:

 𝑃𝑃𝑓𝑓 = 𝑤𝑤1𝑃𝑃1 + ⋯+ 𝑤𝑤𝑁𝑁𝑃𝑃𝑁𝑁, (1)

where ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 = 1, 𝑃𝑃𝑓𝑓 is the final classification score, 𝑃𝑃𝑖𝑖 is the score of classifier 𝑖𝑖, and
𝑁𝑁 is the number of classifiers to be ensembled.

• Logistic regression: This is similar to the convex combination approach except that
the weights do not have to sum to 1, and the final weighted score is passed through a
logistic function to ensure that 0 ≤ 𝑃𝑃𝑓𝑓 ≤ 1:

 𝑃𝑃𝑓𝑓 = 1 �1 + 𝑒𝑒−(𝑤𝑤1𝑃𝑃1+⋯+𝑤𝑤𝑁𝑁𝑃𝑃𝑁𝑁)�⁄ (2)

• Copula-based ensembling: This approach is inspired by [54], where we develop a
generative model by using copula functions to fit a joint probability distribution
function to the different classifier probabilities under each class. This is achieved by
using a maximum likelihood approach combined with kernel density estimation. Then
we invoke Bayes’ Theorem to compute the posterior probability of each class. Specifics
of this approach are outlined in [54]. Although this approach may improve the
performance over other ensembling approaches, it works best when there are only two
classifiers to be ensembled. When there are more than two classifiers, this approach is
computationally very expensive to implement which requires several approximations
such as vine copulas.

In all of the ensembling approaches that we adopted, we held out 2% of total samples as an
ensemble set to train the ensemble models. More specifically, we train each individual classifier
using the training set (78% of total samples). Then we compute classifier scores on the ensemble

Approved for Public Release; Distribution Unlimited.
28

set samples and use these probabilities along with the ground truth labels to optimize as follows:

• For convex combination, we find the optimal weights using a simple grid search.

• For logistic regression, we find the optimal weights using standard gradient descent.

• For copula-based ensembling, we find the best fitted copula functions using a maximum
likelihood approach.

3.3.4 Repair.
We describe repair approaches that take “vulnerable” source code and output the repaired (“not
vulnerable”) source code. We first describe the state-of-the-art method known as the sequence-
to-sequence approach, then provide details of our new GAN approach, that addresses the main
constraint of the sequence-to-sequence approach. We also discuss a variation of the GAN
approach called cycle-GAN.

Sequence-to-Sequence
The problem of repair of source code shares many similarities to the problem of grammar
correction in NLP, in which a grammatically incorrect sentence is translated into a correct one. In
our case, bad (“vulnerable”) source code takes the place of an incorrect sentence and is repaired
into good (“not vulnerable”) source code.

Sequence-to-sequence systems have recently achieved the state-of-the-art performance on
language translation and correction tasks [43] [44] [45] [46]. These models use an encoder-
decoder approach to transform an input sequence 𝒙𝒙 = (𝑥𝑥0, … , 𝑥𝑥𝑇𝑇) into an output sequence 𝒚𝒚 =
(𝑦𝑦0, … ,𝑦𝑦𝑇𝑇′), e.g., translating a sequence of words forming a sentence in English to one in German.

However, by far the most common method of training sequence-to-sequence systems is to use
labeled pairs of examples to compare the likelihood of network output to a desired version,
necessitating a one-to-one mapping between input and desired output data. During Phase 2 of the
MUSE program it became clear that the number of labeled paired examples we could obtain in a
reasonable time frame was so limited as to make this approach intractable for code vulnerability
repair. This led us to develop the new GAN approach.

Generative Adversarial Network (GAN)
Our GAN approach to repair allows us to train without paired examples. GANs are generative
models that were originally developed to generate realistic images, 𝑦𝑦, from random noise vectors,
𝑧𝑧 [55]. GANs find a mapping 𝐺𝐺: 𝑧𝑧 → 𝑦𝑦 by framing the learning problem as a two player minimax
game between a generator 𝐺𝐺(∙) and a discriminator 𝐷𝐷(∙), where the generator learns to generate
realistic looking data samples by minimizing the performance of a discriminator whose goal is to
maximize its own performance on discriminating between generated and real samples.

We employ a traditional sequence-to-sequence model as the generator and replace the typical
negative likelihood loss with the gradient stemming from the loss of an adversarial discriminator.
The discriminator is trained to distinguish between outputs generated by the sequence-to-sequence
model and real examples of desired output, and so its loss serves as a proxy for the discrepancy
between the generated and real distributions.

Approved for Public Release; Distribution Unlimited.
29

This problem has three main difficulties. First, sampling from the output of sequence-to-sequence
systems, in order to produce discrete outputs, is non-differentiable. We address this problem by
using a discriminator which operates directly on the expected (soft) outputs of the sequence-to-
sequence system during training. Second, adversarial training does not guarantee that the
generated code corresponds to the input bad code (i.e., the generator is trained to match
distributions, not samples). To enforce the generator to generate useful repairs, (i.e., generated
code is a repaired version of input bad code), we condition our sequence-to-sequence generator on
the input x by incorporating two novel generator loss functions. Third, the domains we consider
are not bijective, i.e., a bad code can have more than one repair or a good code can be broken in
more than one way. The regularizers we use still work in this case.

GANs were first introduced by Goodfellow et al. [56] to learn a generative model of natural
images. Since then, many variants of GANs have been created and applied to the image domain
[57] [58] [59] [60] [61]. GANs have generally focused on images due to the abundance of data
and their continuous nature. Applying GANs to discrete data (e.g., text) poses technically
challenging issues not present in the continuous case (e.g., propagating gradients through discrete
values). One successful approach is that of Yu et al. [62], which treats the output of the
discriminator as a reward in a reinforcement learning setting. This allows the sampling of outputs
from the generator since gradients do not need to be passed back through the discriminator.
However, since a reward is provided for the entire sequence, gradients computed for the generator
do not provide information on which parts of the output sequence the discriminator thinks is
incorrect, resulting in long convergence times. Several other approaches have had success with
directly applying an adversarial discriminator to the output of a sequence generator with likelihood
output. Zhang et al. [63] replace the traditional GAN loss in the discriminator with a maximum
mean discrepancy (MMD) metric in order to stabilize GAN training. Both Press et al. [64] and
Rajeswar et al. [65] are able to generate fairly realistic looking sentences of modest length using
Wasserstein GAN [58], which is the approach we adopt in our work.

Work has also been done on how to condition a GAN’s generator on an input sequence x instead
of a random variable. This can easily be performed when paired data are available, by providing
the discriminator with both x and y, thereby formulating the problem as in the conditional approach
of Mirza and Osindero [66] [67]. This approach, however, is clearly more difficult when pairs are
not available. One approach is to enforce conditionality through the use of dual generator pairs
which translate between domains in opposite directions. Gomez et al. apply the cycle GAN [68]
approach to cipher cracking [69]. They train two generators, one to take raw text and produce
ciphered text, and the other to undo the cipher. Having two generators allows Gomez et al. to
encrypt raw data using the first generator, then decrypt the data with the other, ensuring
conditionality by adding a loss function which compares this doubly translated output with the
original raw input. Lample et al. [70] adopt a somewhat similar approach for neural machine
translation. They translate using two encoder/decoder pairs which convert from a given language
to a latent representation and back respectively. They then use an adversarial loss to ensure that
the latent representations are the same between both languages, thus allowing translation by
encoding from one language and then decoding into the second. For conditionality they adopt a
similar approach to Gomez et al. by fully translating a sentence from one language to another,
translating it back, and then comparing the original sentence to the produced double translation.

Approved for Public Release; Distribution Unlimited.
30

The approaches of both Gomez et al. and Lample et al. rely on the ability to transform a sentence
across domains in both directions. This makes sense in many translation spaces as there are a
finite number of reasonable ways to transform a sentence in one language to a correct one in the
other. This allows for a network which finds a single mapping from every point in one domain to
a single point in the other domain, to still cover the majority of translations. Unfortunately, in a
sequence correction task such as our problem, one domain contains all correct sequences, while
the other contains everything not in the correct domain. Therefore, the mapping from correct to
incorrect is not one-to-one, it is one to many. A single mapping discovered by a network would
fail to elaborate the space of all bad functions, thus enforcing conditionality only on the relatively
small set of bad functions it covers. As such we enforce conditionality using a self-regularization
term on the generator, similar in nature to the one used by Shrivastava et al. [71] in which they
generate realistic looking images from simulated ones.

We should note that our problem here is different from the original GAN problem in that our goal
is to find a mapping between two discrete valued domains, namely between a given bad code (or
source) domain 𝑋𝑋 and a good code (or target) domain 𝑌𝑌 by using unpaired training samples {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑁𝑁
and {𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑀𝑀 , where 𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋 and 𝑦𝑦𝑖𝑖 ∈ 𝑌𝑌.

The original GAN loss of Goodfellow et al. [55] is expressed as

𝐿𝐿𝐺𝐺𝐺𝐺𝑁𝑁(𝐷𝐷,𝐺𝐺) = 𝐸𝐸𝑦𝑦~𝑃𝑃(𝑦𝑦)[log𝐷𝐷(𝑦𝑦)] + 𝐸𝐸𝑥𝑥~𝑃𝑃(𝑥𝑥)[log(1 − 𝐷𝐷(𝐺𝐺(𝑥𝑥)))] (3)

where the optimal generator is 𝐺𝐺∗ = arg𝑚𝑚𝑖𝑖𝑛𝑛𝐺𝐺𝑚𝑚𝑚𝑚𝑥𝑥𝐷𝐷 𝐿𝐿𝐺𝐺𝐺𝐺𝑁𝑁(𝐷𝐷,𝐺𝐺). It is well known that this loss
can be unstable when the support of the distributions of generated and real samples do not overlap
[57]. This causes the discriminator to provide zero gradients. Further, this standard loss function
can lead to mode collapse, where the resulting samples come from a single mode of the real data
distribution. To alleviate these problems, Arjovsky et al. [58] proposed the Wasserstein
Generative Adversarial Network (WGAN) loss which instead uses the Wasserstein-1 or Earth
Movers (EM) distance between generated and real data samples in the discriminator. EM distance
is relatively straightforward to estimate using the following easily computable loss function:

𝐿𝐿𝑊𝑊𝐺𝐺𝐺𝐺𝑁𝑁(𝐷𝐷,𝐺𝐺) = 𝐸𝐸𝑦𝑦~𝑃𝑃(𝑦𝑦)[𝐷𝐷(𝑦𝑦)]− 𝐸𝐸𝑥𝑥~𝑃𝑃(𝑥𝑥)[𝐷𝐷(𝐺𝐺(𝑥𝑥))] (4)

We use WGAN in our model as it leads to more stable training.

In the context of source code repair, or more generally sequence correction, we need to constrain
our generated samples 𝐺𝐺(𝑥𝑥) to be corrected versions of 𝑥𝑥. Therefore, we have the following two
requirements: (1) correct sequences should remain unchanged when passed through the generator;
and (2) repaired sequences should be close to the original corresponding incorrect input sequences.

We explore two regularizers to address these requirements. As our first regularizer, in addition to
GAN training, we train our generator as an auto encoder (AE) on data sampled from correct
sequences. This directly enforces item (1), while indirectly enforcing item (2) since the AE loss
encourages subsequences which are correct to remain unchanged. The AE regularizer is given as

Approved for Public Release; Distribution Unlimited.
31

𝐿𝐿𝐺𝐺𝐴𝐴𝑇𝑇𝐴𝐴(𝐺𝐺) = 𝐸𝐸𝑥𝑥~𝑃𝑃(𝑥𝑥)[−𝑥𝑥 log𝐺𝐺(𝑥𝑥)] (5)

As our second regularizer, we enforce that the frequency of each token in the generated output
remains close to the frequency of the input tokens. This enforces item (2) with the exception that
it may allow changes in the order of the sequence, e.g., arbitrary reordering does not increase this
loss. However, the GAN loss alleviates this issue since arbitrary reordering produces incorrect
sequences which differ heavily from 𝑃𝑃(𝒚𝒚). Our second regularizer is given as

𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐺𝐺) = 𝐸𝐸𝑥𝑥~𝑃𝑃(𝑥𝑥)[∑ ‖freq(𝑥𝑥, 𝑖𝑖) − freq(𝐺𝐺(𝑥𝑥), 𝑖𝑖)‖22𝑛𝑛
𝑖𝑖=0] (6)

where 𝑛𝑛 is the size of the vocabulary and freq(𝑥𝑥, 𝑖𝑖) is the frequency of the i-th token in 𝑥𝑥.

A block diagram for the GAN architecture we use is shown in Figure 14. The network is provided
with samples of vulnerable code (𝑥𝑥) and good code (𝑦𝑦). Note, these samples are independent and
do not have to be drawn from pairs of vulnerable and correpondingly repaired code. The
vulnerable code samples are provided as input to the generator, which uses an encoder and decoder
approach to generate an output sequence 𝐺𝐺(𝑥𝑥). Note that the generator architecture here is
identical to a traditional sequence-to-sequence model. The generated code (𝐺𝐺(𝑥𝑥)) and good code
(𝑦𝑦) are then fed into the discriminator. One variant of our GAN approach uses curriculum learning,
in which we clip the generated and good sequences (𝑦𝑦 and 𝑔𝑔𝑥𝑥, respectively) to a specific length
determined by the current curriculum. This behavior is controlled by a curriculum controller
module, shown as orange as the “Cur Controller” block.

Figure 14. Block Diagram of GAN Architecture

Approved for Public Release; Distribution Unlimited.
32

Both the encoder and decoder of the generator consist of multiple RNN layers with LSTM hidden
states. These RNN layers form a “cell” which for both encoder and decoder takes an input at step
𝑡𝑡 and its own state from the previous step 𝑡𝑡 − 1 to produce an output for step 𝑡𝑡, and are shown in
Figure 15. Tokenized vulnerable code is used as the input to the encoder with input 𝑥𝑥𝑡𝑡 being the
t’th token. The decoder then generates an output sequence 𝐺𝐺(𝑥𝑥) one token at a time, with the input
to decoder step 𝑡𝑡 being the generated token from step 𝑡𝑡 − 1. In addition to RNN layers our decoder
also uses a scaled dot product attention mechanism [72] to look back across all encoder outputs,
allowing easier passing of information from the encoder to decoder.

Figure 15. Block Diagram of Encoder (Left) and Decoder (Right) RNN Cells

The discriminator in our network is a simple sequence classification network consisting of a
convolution layer, a temporal max pooling layer and two fully connected layers. This is shown in
Figure 16. Inputs are passed through the convolution layer, which finds patterns across multiple
time steps. The outputs from the convolution are then passed through a temporal max pool in
order to convert them to a fixed length vector. Finally, these outputs are processed by the fully
connected layers to produce a single output, which is used in the computation of the WGAN loss
described above (𝐷𝐷(𝑦𝑦) and 𝐷𝐷(𝐺𝐺(𝑥𝑥)) for good and generated inputs respectively).

Approved for Public Release; Distribution Unlimited.
33

Figure 16. Block Diagram of Decoder

We have two different regularized loss models given as

𝐿𝐿(𝐷𝐷,𝐺𝐺) = 𝐿𝐿𝑊𝑊𝐺𝐺𝐺𝐺𝑁𝑁(𝐷𝐷,𝐺𝐺) + 𝜆𝜆𝐿𝐿𝐺𝐺𝐴𝐴𝑇𝑇𝐴𝐴(𝐺𝐺) (7)
𝐿𝐿(𝐷𝐷,𝐺𝐺) = 𝐿𝐿𝑊𝑊𝐺𝐺𝐺𝐺𝑁𝑁(𝐷𝐷,𝐺𝐺) + 𝜆𝜆𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐺𝐺) (8)

We also experimented with the unregularized base loss model where we set 𝜆𝜆 = 0.

We rely heavily on pre-training to give our GAN a good starting point. Our generators are pre-
trained as de-noising AEs on the desired data [73]. Specifically, we train the generator with the
loss function:

𝐿𝐿𝐺𝐺𝐴𝐴𝑇𝑇𝐴𝐴_𝑃𝑃𝐹𝐹𝐹𝐹(𝐺𝐺) = 𝐸𝐸𝑦𝑦~𝑃𝑃(𝑦𝑦)[−𝑦𝑦 log𝐺𝐺(𝑦𝑦�)], (9)

where 𝑦𝑦� is the noisy version of the input created by dropping tokens in 𝑦𝑦 with probability 0.2 and
randomly inserting and deleting 𝑛𝑛 tokens, where 𝑛𝑛 is 0.03 times the sequence length. These
numbers were selected based on hyperparameter tuning.

Likelihood-based methods for training sequence-to-sequence networks often utilize teacher
forcing during training, where the input to the decoder is forced to be the desired value regardless
of what was generated at the previous time step [74]. This allows stable training of very long
sequence lengths even at the start of training. Adversarial methods cannot use teacher forcing
since the desired sequence is unknown, and must therefore always pass a sample of 𝑠𝑠𝑡𝑡−1 as the
input to time 𝑡𝑡. This can lead to unstable training since errors early in the output propagate
forward, potentially creating meaningless phrases in the latter parts of the sequence. To avoid this
problem, we adopt a curriculum learning strategy in which we incrementally increase the length
of produced sequences throughout training. Instead of selecting subsets of the data for curriculum
training, we clip all sequences to have a predefined maximum length for each curriculum step.
Although this approach relies on the discriminator being able to handle incomplete sentences, it
does not degrade the performance as long as the discriminator is briefly retrained after each
curriculum update.

Approved for Public Release; Distribution Unlimited.
34

Hyperparameter Tuning
We first train our generator as a denoising AE, for which we use the Adam optimizer with a
learning rate of 1e-4. The same pre-trained network is used to initialize the generator for all GAN
and sequence-to-sequence networks.

GAN networks are trained using the root mean square propagation (RMSProp) optimization
algorithm. Learning rates are initialized to 5e-4 for the discriminator and 1e-5 for the generator.
We train the discriminator 15 times for every generator update. Sequence-to-sequence models are
trained using the Adam optimizer with a learning rate of 1e-4. We experimented extensively with
varying the learning rate but found that increasing the discriminator learning rate caused its
accuracy to decrease. Increasing the generator learning rate causes it to update too quickly for the
discriminator, meaning the discriminator does not remain close to optimal and therefore gradients
through it are not reliable. To ensure that the discriminator starts close to optimal, we initialize it
by training it alone for the first 10 epochs. The generator’s learning rate is decayed by a factor of
0.9 every 10 epochs. In systems with curriculum learning, this decay is only done after the
curriculum is completed.

GAN training uses the original clipped version of Wasserstein GAN with a clipping threshold of
0.05. We also experimented heavily with this threshold, and found that a lower threshold led to
low discriminator accuracy, and a higher threshold led to the discriminator providing poor
gradients to the generator.

Our curriculum clips each sequence to a given length. We step up the curriculum length either
when the discriminator accuracy falls below 55% or after 40 epochs, whichever comes first.

For the sorting and grammar experiments, the curriculum starts at 5 and is increased by 2 each
step. For the Juliet Test Suite experiment, the curriculum starts at 75 and is increased by 5 each
step.

Cycle-GAN
Another method we experimented with to ensure that the generator outputs correct versions of the
specific input functions (rather than arbitrary correct functions) is cycle-consistency (also known
as cycle-GAN) [75]. In this method, we train two generators: the original generator that is used to
fix vulnerable code and an additional generator that introduces vulnerabilities into code. Cycle-
consistency is the property that if a correct function is fed through the new generator (to introduce
a bug) and then through the original generator (to repair the bug), the output should be equivalent
to the initial data. We enforce this through a cycle-consistency loss function which measures how
different a data sample is from the output after feeding it through the two generators sequentially.
Specifically, we minimize the following,

𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹 = ‖𝐸𝐸(𝑦𝑦) − 𝐸𝐸(𝐺𝐺1(𝐺𝐺2(𝑦𝑦, 𝑧𝑧)))‖22 (10)

Here 𝐺𝐺1 is the repair GAN, 𝐺𝐺2 is the new GAN that creates vulnerabilities, 𝑦𝑦 is a correct data
sample, 𝑧𝑧 is a random vector that allows 𝐺𝐺2 operate stochastically (since the mapping from correct
to vulnerable code is one to many), and 𝐸𝐸 is a function that encodes samples in a space in which
the distance between two samples corresponds approximately to how different they are. In our

Approved for Public Release; Distribution Unlimited.
35

experiments, we set 𝐸𝐸 to be the encoder part of the encoder/decoder AE used to initialize the repair
GAN.

3.3.5 Program Synthesis.
The limited availability of labeled datasets is one of the main challenges for machine learning for
vulnerability detection and repair. Since substantial time and investment are needed to compile a
corpus of labeled functions at the scale required for machine learning, we explored an alternative
approach to generate labeled datasets. We created a model that allows us to generate an arbitrary
number of C functions that are known to obey some set of user-provided constraints, such as either
containing or not containing a security vulnerability.

To build this model, we implemented a grammar variational auto encoder (VAE) similar to that
designed by Kusner et al. [76]. The grammar VAE is a generative model that guarantees the
syntactic validity of the output if the input can be expressed as a parse tree according to a specified
grammar. It does not, in general, guarantee semantic validity, but it has been shown that grammar
VAEs are particularly good at learning semantics because they do not need to learn any syntax.

We define syntactic and semantic validity as follows: a function string is syntactically valid if a
parse operation succeeds in producing a corresponding AST without error, and a function string is
semantically valid if it is syntactically valid and a compile operation succeeds in producing a
corresponding binary file without error (we allow warnings in order to reduce the problem size).
We use pycparser [77] for parsing and the GNU C Compiler (GCC) [78] for compilation. The
grammar VAE attempts to learn a latent representation of input sequences and to reconstruct inputs
from their latent vectors.

Figure 17 depicts the grammar VAE subsystem. The input sequence accepted by the grammar
VAE, shown as the output of Step 3 in Figure 17, must correspond to a sequence of production
rules in some grammar. In our grammar VAE, each function is: parsed into an AST (Step 1),
which is then optimized to reduce the number of production rules in the vocabulary (Step 2);
transformed into a sequence of production rules through a preorder traversal of the AST and
changed into a sequence of one-hot vectors, where each index represents the production rule’s
index in the vocabulary (Step 3); and fed into the grammar VAE for encoding. The encoder
produces a latent vector that represents the function. The decoder performs the inverse operation
and outputs a sequence of production rules that correspond with a function similar to (ideally the
same as) the input function. The entire decode process encompasses Steps 4 through 7, and
includes the first two optional constraint enforcement points. We use 50 production rules as the
shape of both input and output layers, which corresponds to functions approximately 2 to 10 lines
in length. From the production rules, we can reconstruct the AST (Step 8), deoptimize the AST to
remove any custom production rules that cannot be handled by pycparser (Step 9), and then use
the pycparser API to generate the C code from the AST (Step 10). If the user chooses to inject
vulnerabilities, this will occur in Step 11, after the code has been regenerated. The latent space
forms the basis of the generative model: new functions that are similar to those on which the
network was trained can be found by sampling arbitrary vectors from the latent space and passing
them through the decoder.

Approved for Public Release; Distribution Unlimited.
36

Figure 17. Program Synthesis System Overview

Early in the development of this model, we encountered a problem. The grammar VAE of Kusner
et al. [76] was designed to handle a context-free grammar, but the language accepted by our parser
is context-sensitive. In other words, the meaning of a symbol in the grammar (a node in the AST)
cannot be determined independently, but must take into account the symbols around it. This poses
a problem because we cannot reconstruct the AST properly after the decode step without
incorporating context into the grammar, and thus there is no guarantee that functions output by

Approved for Public Release; Distribution Unlimited.
37

this network are syntactically valid. Such a guarantee is important because every invalid function
must be discarded from the final dataset, and this can be computationally expensive. To address
this problem, we add one step of backward-looking context (i.e., each rule has information about
its predecessor rule) into the production rules when we get the rules from the traversal of the AST.
This solves our first problem, but it causes an explosive increase in our vocabulary size. We reduce
the vocabulary size by only taking the production rules found in 100 randomly selected functions
in the dataset. After taking steps to make rules more generic by replacing literal values and
identifier names, we find 234 rules, which is more than three times the number in the grammar
used by Kusner et al. [76]. We do not capture most of the language of syntactically valid C
functions with this small vocabulary. However, we find it sufficient to describe many of the basic
constructs in which we are interested.

There is one additional problem. Because our training dataset, contains few functions that use
only these production rules, our training dataset is now too small. Our solution to this was to create
a dataset of randomly generated functions that only use the production rules found in the
vocabulary. We generate functions by selecting production rules at random (masking out all
invalid transitions based on the grammar, just like in the decoder) until we have a complete
function. If we reach 50 production rules without completing the function, then we retry. We can
now create a training dataset that is sufficiently large for our purposes. The randomly generated
dataset is not ideal for training the grammar VAE, but the functions that our model outputs are still
useful for training the DeepCode classifiers for two main reasons. First, we only used production
rules found in our training dataset, so output functions share many syntactic properties with the
original functions. Second, our output functions provide more training examples of the most
common vulnerabilities found in our training dataset, and thus may improve our classifier
performance.

Table 5. Selected Constraints

Constraint Category
Return Type Modifier Disallow

Argument Number Modifier Disallow
Argument Type Modifier Disallow

No Loops Disallow
Contains Loop Include

Semantically Valid Repair
Contains Buffer Overflow Repair

The final major aspect of our model is the ability to impose constraints on generated functions.
Table 5 shows some of the constraints that we consider. Constraints fall into 3 categories: disallow,
include, and repair. “Disallow” constraints can be expressed as masking operations on the
vocabulary. For example, if we want to force a function to return a certain type, we can simply
mark as invalid any rules that result in a different return type. “Include” constraints are more
difficult to enforce. First, during the decode step we disallow any rules that result in the function
ending before the desired property is included. Second, if the function does not have the desired
property, we sort the production rules in the function completion operation to prioritize the rules
that produce the desired property. (For example, if we want the function to contain a loop, then

Approved for Public Release; Distribution Unlimited.
38

all the rules resulting in a loop are prioritized.) “Repair” constraints are handled entirely after the
function decode step. This is the most complicated and diverse class of constraints, and each repair
constraint requires its own logic that acts directly on either the production rules (as in the semantic
repair constraint) or the reconstructed source code (as in the vulnerability injection constraint).

The entire decode and constraint enforcement operation is deterministic. Although randomness
would allow us to achieve constraint enforcement by repeatedly decoding the latent vector until
the output function meets all of the user-specified constraints, this is not a satisfactory solution.
This approach could work if the user supplies only a small number of constraints to enforce, but it
may take many iterations of decoding to find a satisfactory function if many constraints are given
simultaneously. Furthermore, it may be the case that no such latent vector exists that produces the
function in question, so the model would spend an unbounded amount of time searching. Our
solution scales well, demonstrates rigor, and overcomes the aforementioned problem.

4. RESULTS AND DISCUSSION
This section provides the results of evaluations of the developments described in Section 3.
Section 4.1 provides details of datasets that we generated and used for the development of
classification and repair tools. Section 4.2 provides evaluation results for the newly developed
classification technology. Section 4.3 provides evaluation results for the newly developed repair
technology. Section 4.4 presents results of the program synthesis investigation. Section 4.5
summarizes results from program evaluations and hackathons.

4.1 Data

4.1.1 Data Generation and Ingestion.
Table 6 presents metrics on training data extracted in order to train the machine learning
algorithms. The definitions of the data presented in the columns in Table 6 are as follows:

• “Total Functions” is the total number of functions built and extracted from the dataset.

• “CFG > 0x0” is the total number of these functions that have a non-zero CFG size. (Many
functions that are defined by macros in header files are reported as having a CFG size of
zero.)

• “Functions Pulled” is the total number of these functions kept during the pull step.

• “Valid Build” is the total number of these functions for which a valid build identifier is
available in the database to link back to source code.

• “Found Source” is the total number of these functions for which source code is available
in the database.

• “Labeling” indicates whether only SA labels are available or whether truth labels are also
available.

Approved for Public Release; Distribution Unlimited.
39

Table 6. Summary of Training Data

Project Total CFG Functions Valid Found
Labeling

Functions > 0x0 Pulled Build Source

SATE IV 417,311 83,922 83,922 83,222 82,765 SA + truth
MUSE Corpus 11,426,565 3,013,190 2,847,950 2,596,967 1,142,150 SA
Juliet Test Suite 651,812 121,904 121,904 121,353 100,863 SA + truth
Debian Packages 41,075,788 10,736,998 10,736,998 6,926,830 3,346,313 SA
Debian Kernel 778,644 246,684 246,684 244,582 191,754 SA

Table 7 presents metrics on benchmark data extracted in order to evaluate performance of the
machine learning algorithms. ManyBugs is a special dataset that has labeled data. Table 7 also
presents metrics on data generation for two challenge problem datasets: PureOS [79] and LibTIFF
version 3.8.2.

Table 7. Summary of Benchmark and Challenge Problem Data

Project Total CFG Functions Valid Found
Labeling

Functions > 0x0 Pulled Build Source
ManyBugs 478,311 109,379 109,379 90,849 67,653 SA + truth

PureOS 861,003 269,593 269,593 266,348 203,477 SA
LibTIFF 3.8.2 2,059 694 694 594 545 SA

4.1.2 Data Extraction.
As described in section 3.3, data extraction during the pull step of the DeepCode functional flow
performed necessary processing to clean the data queried from Elasticsearch and to transform to
formats required by our machine learning models. This included creating binary labels (“not
vulnerable”/“good” and “vulnerable”/“bad”) and feature vectors, and filtering out the data samples
that were missing features, were unreasonably long or short, or were considered duplicates. We
generated two datasets, which we refer to as Dataset 1 and Dataset 2. Dataset 1 is the initial dataset
with labels generated using Clang static analyzer only. Subsequently, Dataset 2 was generated
during Phase 3 of the program to improve some of the shortcomings of Dataset 1 including using
multiple static analyzers to generate labels and incorporating additional kernel codes. Details of
the datasets are explained below.

Table 8 summarizes the initial dataset that we used for the development. The “Total” row
represents the total number of functions extracted during the pull process. The “Filtered” row

Approved for Public Release; Distribution Unlimited.
40

represents the total number of functions filtered out during the data curation process. The “No
source extracted” row represents the number of functions filtered out because our database does
not contain source code for them. The “Lexer size out of bounds” row represents the number of
functions filtered out because the functions were unreasonably long or short, or our custom lexer
failed to generate a lexed representation from the source code. The “Duplicates” row represents
the number of functions removed because they were considered duplicates by having identical
build or source features. The “Kept” row represents the number of functions remaining after the
filtering process, with the “Not vulnerable” and “Vulnerable” rows representing the number
functions with and without vulnerabilities, respectively. The numbers for the combined corpus do
not always add up to the sum of the numbers for the individual corpora because of duplicate
rejection across corpora.

Table 8. Summary of Dataset 1

CORPUS NAME: SATE IV MUSE DEBIAN COMBINED

Total 83,222 2,805,962 6,731,561 9,620,835

Filtered (% of total) 75,827 (91.1%) 2,472,686 (88.1%) 6,121,012 (90.9%) 8,724,364 (90.7%)

 No source extracted 457 1,668,515 4,420,999 6,089,971

 Lexer size out of bounds 5,020 195,265 371,464 571,749

 Duplicates 70,350 608,906 1,328,549 2,062,644

Kept (% of total) 7,395 (8.9%) 333,276 (11.9%) 610,639 (9.1%) 896,471 (9.3%)

 Not vulnerable (% of kept) 3,808 (51.5%) 321,045 (96.3%) 590,565 (96.7%) 862,419 (96.2%)

 Vulnerable (% of kept) 3,587 (48.5%) 12,231 (3.7%) 20,074 (3.3%) 34,052 (3.8%)

One metric that stands out is that about 90% of the available functions are filtered out. Most of
these are because no source was extracted, with the next highest contributor being rejection of
duplicate functions. Source is not extracted for most function objects because many functions are
defined in header files, and the data extraction process does not traverse dependencies to pull all
source code. Because these header files are included by many source files, each such function
produces a large number of duplicate function objects in the database. Therefore, the amount of
data discarded due to this filtering step is not nearly as great as the metrics make it appear.

Note that the functions kept were randomly split into 78% training, 10% validation, 2% ensemble,
and 10% test sets for model development. The training dataset was used to train the models. The
validate dataset was used for hyperparameter tuning of the trained models. The ensemble dataset
was used to develop ensemble models. The test dataset was used to evaluate the performance of
the fully tuned models.

During Phase 3 of the program, we expanded the dataset with the following updates:

Approved for Public Release; Distribution Unlimited.
41

• Updated the SATE IV data to the newer Juliet Test Suite Version 1.3, which includes
more functions and vulnerabilities

• Added about 3 million additional functions from Debian Linux distribution packages

• Added the Debian Linux kernel, consisting of over 200,000 functions

• Used two additional SA tools, Cppcheck and Flawfinder, in order to generate more
robust labels

Table 9 summarizes the expanded dataset, where the labels for the functions from MUSE and
Debian corpora were generated using the findings from the three SA tools.

Table 9. Summary of Dataset 2

CORPUS NAME: JULIET MUSE DEBIAN COMBINED

Total 121,353 2,806,469 9,532,081 12,459,903

Filtered (% of total) 109,272 (90.1%) 2,426,088 (86.5%) 8,576,398 (90.0%) 11,185,661 (89.8%)

 No source extracted 20,490 1,671,685 6,132,024 7,824,199

 Lexer size out of bounds 91 92,275 244,559 336,925

 Duplicates 88,771 662,128 2,199,815 3,024,537

Kept (% of total) 12,001 (9.9%) 380,381 (13.5%) 955,683 (10.0%) 1,274,242 (10.2%)

 Not vulnerable (% of kept) 6,559 (54.6%) 364,306 (95.8%) 907,186 (94.9%) 1,207,396 (94.8%)

 Vulnerable (% of kept) 5,442 (45.4%) 16,075 (4.2%) 48,497 (5.1%) 66,846 (5.2%)

Dataset 2 offers several potential improvements over Dataset 1. The additional function examples
improve the ability of our models to learn the patterns that help them distinguish vulnerable
functions. Inclusion of the Debian kernel functions (as distinct from ordinary package functions)
exposes our models to learn from the wider variety of code samples, allowing our models to
generalize to other kernel code. Generating labels using the three SA tools instead of one creates
more reliable and robust labels.

4.2 Classification

This section presents evaluation results for classification. Section 4.2.1 presents the approach we
took to quantifying classification accuracy. Section 4.2.2 presents the accuracy results based on
validation using held-out examples from the training corpus. Section 4.2.3 presents results based
on evaluation of independent datasets. Section 4.2.4 showcases selected classification examples.

4.2.1 Approach to Quantifying Accuracy.
We chose to evaluate our classifiers with several different metrics that can capture different aspects
of classifier quality. Each of our classification approaches produces a score as an output and binary
classifications are made based on these scores surpassing some threshold 𝑇𝑇 between 0 and 1.

Approved for Public Release; Distribution Unlimited.
42

Given a labeled evaluation dataset, we produce for each classifier the count of true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN), where TP + TN + FP + FN
must equal the total number of functions in the dataset for all threshold values 𝑇𝑇. Area under curve
(AUC) metrics evaluate the quality of a classifier over the full range of 𝑇𝑇 by integrating over a
tradeoff curve, and thus capture the classification quality for a range of applications.

Receiver Operating Characteristic (ROC) Curve
The ROC curve is produced by plotting the true positive rate (TPR), TP/(TP + FN), versus the
FPR, FP/(FP + TN), while varying the discrimination threshold of the classifier. We include the
ROC AUC (which ranges from 0 to 1) as one of our metrics since it is a standard metric for binary
classifiers. The ROC curve is good for quickly seeing how a classifier compares to a random
classifier, as a random classifier always falls along the diagonal of the plot (0.5 AUC.) This metric
is primarily useful for evaluation datasets with relatively little class imbalance, such as the Juliet
Test Suite. However, for evaluation datasets with strong class imbalances, like our main test
dataset, this metric should be used with caution since TN is very large compared to all of the other
counts, making the FPR very small for most plausible threshold values. In effect, for our class-
imbalanced dataset, the ROC AUC is weighted heavily towards scenarios in which a very large
number of FP is acceptable.

Precision-Recall (PR) Curve
While the ROC curve provides accepted metrics for classification accuracy analysis, in the case of
software vulnerability detection the metric produces optimistic estimates because the data are
highly imbalanced (the number of functions with vulnerabilities is significantly lower than the
number of functions without vulnerabilities). Therefore, we also evaluated other metrics that give
a more accurate assessment of how classification error statistics would translate into a user’s
experience using the classifiers to detect vulnerabilities in their code.

The PR curve is more appropriate for imbalanced evaluation data, since it plots the precision,
TP/(TP + FP), against the TPR (which is equivalent to recall). In effect, it shows the direct
tradeoff between FN and FP as the threshold is varied. A random classifier PR curve looks like a
horizontal line at a precision equal to the fraction of the evaluation data that is positive. For
example, for a dataset in which 5% of the functions are vulnerable, a random classifier PR curve
would be a horizontal line at a precision of 5% (and AUC for the random classifier would therefore
be 0.05 in this example). The PR AUC is probably the most useful general-purpose metric for
classifier selection on our dataset, though its value still depends on the class imbalance of the
evaluation dataset.

Matthews Correlation Coefficient
The MCC is our primary fixed-threshold metric. It is calculated by:

MCC = (TP × TN − FP × FN)/�(TP + FP)(TP + FN)(TN + FP)(TN + FN) (11)

MCC is effectively a correlation coefficient between our predictions and the true values. Thus,
the MCC can range from -1 (perfect anticorrelation) to 1 (perfect correlation), and a random
classifier will have an MCC of 0. The MCC metric has a major advantage over the more common
accuracy (TP + TN)/(TP + TN + FP + FN) and 𝐹𝐹1 score (the harmonic mean of precision and

Approved for Public Release; Distribution Unlimited.
43

recall) metrics in that it is invariant to class imbalance. Thus, the MCC can be directly compared
between evaluating on a balanced dataset and an imbalanced dataset. For most of our classification
models, model parameters and checkpoints were determined based on the highest MCC. The
threshold for the test MCC for each classifier is determined by finding the threshold that maximizes
the MCC on the validation data. This is the “optimal threshold” in the sense that it maximizes the
correlation between the validation predictions and the labels.

4.2.2 Training Results.
As described previously in Section 3.3.3, we investigated various different approaches for each
classifier type. For build feature-based classifiers, we investigated RF using simplified features,
CNN with advanced features, one-layer LSTM with advanced features, and two-layer LSTM with
advanced features. For source feature-based classifiers, we investigated RF and extra-trees using
the BOW representation of lexed source, CNN and RNN each with lexed source and embedded
lexed source, and RF with CNN and RNN learned-feature representation of lexed source.

Two-layer LSTM performed best among the build feature-based classifiers, RF with CNN learned-
feature representation of lexed source performed best among the source feature-based classifiers,
and RF with simplified features and CNN learned-feature representation of lexed source performed
best among the combined classifiers.

Table 10 compares the performance metrics of the best-performing classifiers on Dataset 1, and
Figure 18 shows the ROC curve and PR curve comparisons. The source feature-based classifier
offers an advantage over the build feature-based classifier in all three metrics, and the combined
model performs better than either model does individually, illustrating that the build features
provide useful information that source code itself does not provide. Finally, ensemble model using
the linear opinion pool approach to ensemble all three models further improves the performance.
This analysis illustrates the accuracy with which the classifiers predict the training labels. Since
we do not have ground truth for most of the functions in this dataset, this mostly evaluates the
ability of the classifiers to predict SA labels.

Table 10. Summary of Classification Results on Dataset 1
MODEL ROC AUC PR AUC MCC THRESHOLD

Build feature-based 0.801 0.361 0.413 0.530

Source feature-based 0.863 0.473 0.482 0.298

Combined 0.865 0.491 0.506 0.255

Ensemble 0.877 0.505 0.515 0.260

Approved for Public Release; Distribution Unlimited.
44

Figure 18. Classifier Comparison on Dataset 1

Black dashed line:
random classifier

Black dashed line:
random classifier

Table 11 and Figure 19 show the performance comparison of the three types of classification
models on Dataset 2. The source feature-based classifier offers an advantage over the build
feature-based classifier in all three metrics, and the combined model performs better than either
model does individually, illustrating that the build features provide useful information that source
code itself does not provide. From Figure 19 we observe that there is no point on the curve where
the source feature-based or build feature-based classifier performs better than the combined
classifier, indicating that the ensemble approach will not improve performance. Therefore, the
ensemble classifier was omitted for Dataset 2.

Table 11. Summary of Classification Results on Dataset 2
MODEL ROC AUC PR AUC MCC THRESHOLD

Build feature-based 0.768 0.263 0.274 0.256

Source feature-based 0.895 0.490 0.455 0.231

Combined 0.896 0.512 0.474 0.201

 Figure 19. Classifier Comparison on Dataset 2

The build feature-based classifier gives lower prediction accuracy on Dataset 2 than it does on
Dataset 1. We conclude that the build features are less effective for predicting SA labels from the
two SA tools that were added for Dataset 2 (Flawfinder and Cppcheck) than for those from the
original SA tool from Dataset 1 (Clang). Unlike Clang, Flawfinder and Cppcheck use
analysis rules that operate directly on a program’s source code that may be difficult to detect
from build artifacts. As our source features come directly from the lexed source code, the
classifiers with access to these should more easily learn to recognize the patterns that result in
Flawfinder and Cppcheck findings.

Approved for Public Release; Distribution Unlimited.
45

Black dashed line:
random classifier

Black dashed line:
random classifier

Approved for Public Release; Distribution Unlimited.
46

4.2.3 Evaluation Results.
Evaluation of classification accuracy is complicated by a lack of available benchmark datasets that
represent real-world software (as opposed to the synthetic examples of the Juliet Test Suite),
include examples of software bugs that are typical of software vulnerabilities (as opposed to
algorithm bugs that would produce incorrect output but would not expose vulnerabilities), and
provide truth data for evaluation.

For our accuracy assessment challenge problem, we ran the DeepCode classifiers on code from
the Juliet Test Suite and demonstrated better accuracy than three SA tools. Section 4.5.4 presents
those results.

To evaluate accuracy against more realistic software, we first ran the Vader dynamic analysis tool
against functions in a specific version of the LibTIFF package that were deemed by a team of
Draper cybersecurity experts to be most likely to contain security vulnerabilities. This exercise
uncovered vulnerabilities in three functions. This is not a large enough sample size for a statistical
analysis, but we were able to run the DeepCode classifiers on the same LibTIFF package and
determine classification scores. We then determined where the three known vulnerable functions
ranked relative to the other functions in LibTIFF according to classification scores on a percentile
basis, with the 100th percentile indicating the function scored as being most likely to be vulnerable
and the 0th percentile indicating the function scored as being least likely to be vulnerable.

Approved for Public Release; Distribution Unlimited.
47

Figure 20 shows the results for three DeepCode classifier versions. All three functions known to
be vulnerable scored in the upper 40% of results. We would expect a random result to be
distributed with a mean about the 50th percentile, so these results are better than random,
representing a good comparison relative to an independent vulnerability assessment. It should
further be noted that dynamic analysis requires orders of magnitude more processing time than the
DeepCode classifiers.

Figure 20. Classification Results on LibTIFF

4.2.4 Examples.
In this section, we provide selected examples of error localization using the class activation
mapping technique described in Section 3.3.3.

90th percentile

80th percentile

70th percentile

60th percentile

50th percentile

40th percentile

30th percentile

20th percentile

10th percentile

Build
features

Source
features

Combined
features

Classified by
DeepCode
as having

lowest
likelihood of
vulnerability

Classified by
DeepCode
as having
highest

likelihood of
vulnerability

Approved for Public Release; Distribution Unlimited.
48

Figure 21 shows the error localization highlighting the relevant code block with a potential
vulnerability, in which incrementing the pointer in the for loop cause memory to be freed using a
pointer that is not at the start of the buffer.

Figure 21. Free of Pointer Not at Start of Buffer

Approved for Public Release; Distribution Unlimited.
49

Figure 22 shows the error localization highlighting the strncpy function use with a potential
vulnerability in which unexpected sign extension of the variable data exceeds the boundaries of
the dest array for the strncpy operation. The error localization also highlighted another relevant
code block with a potential weakness where the fscanf function is used instead of scanf to read
data from console input.

Figure 22. Unexpected Sign Extension

Approved for Public Release; Distribution Unlimited.
50

Figure 23 shows the error localization highlighting the relevant code block with a potential
vulnerability where the pointer references a memory location prior to the targeted buffer.

Figure 23. Buffer Under-Read

4.3 Repair

This section presents evaluation results for repair. Section 4.3.1 presents the approach we took to
quantifying repair accuracy. Section 4.3.2 presents accuracy results for several repair experiments.
Section 4.3.3 showcases selected repair examples.

4.3.1 Approach to Quantifying Accuracy.
While our GAN approach does not require paired examples to train, we focus our experiments on
datasets with paired examples so that we can meaningfully evaluate the performance of our
approach. These datasets also allow direct comparison to sequence-to-sequence networks, and we
can use their performance as a benchmark for comparison with our GAN approach.

We use the Bilingual Evaluation Understudy (BLEU) score [80], which is one of the most
commonly used evaluation metrics for machine translation problems, as the main evaluation metric
for the repair performance. The BLEU score compares n-grams (we use n of 4, which we refer to

Approved for Public Release; Distribution Unlimited.
51

as BLEU-4) of the repaired function’s sequence tokens with the n-grams of the sequence tokens
of the desired good version and count the number of matches. This metric is more robust to simple
insertion and deletion changes that may be over-penalized by “Sequence Accuracy” that compares
the entire sequence of tokens.

In addition to BLEU score, we use sequence accuracy, order accuracy, or grammar accuracy
depending on the experiments and contexts of the datasets. The next section includes details of
these additional metrics when discussing each of the experiments.

4.3.2 Repair Accuracy Results.
We evaluated our GAN approach using three experiments: repair of sequences of sorted numbers,
repair of sentences in a context-free grammar, and repair of vulnerabilities in C and C++ code.
The first two of these involve hand-curated datasets and are intended to highlight the benefits of
our GAN approach to address the domain mapping problem. The third evaluates repair
performance in the problem domain of interest.

Sorting Experiment
To show the necessity of enforcing accurate domain mapping, we conduct an experiment for which
the repair task is to sort the input into ascending order. We generate sequences of 20 randomly
selected integers (without replacement) between 0 and 50 in ascending order. We then inject errors
by swapping n selected tokens which are next to each other, where n is a (rounded) Gaussian
random variable with mean 8 and standard deviation 4. The task is to sort the sequence back into
its original ascending order given the error-injected sequence. This scheme of data generation
allows us to maintain pairs of good (before error injection) and bad (after error injection) data, and
to compute the “sequence accuracy” with which our GAN is able to restore the good sequences
from the bad. To assess our domain mapping approach and evaluate the usefulness of our self-
regularizer loss functions, we also compute the percentage of sequences which have valid
orderings but not necessarily valid domain mappings, which we refer to as “order accuracy”.

We use identical networks for the generator in our GAN model and the sequence-to-sequence
baseline. The generator RNNs contain 3 layers of 512 hidden states each. The discriminator
convolutional layer has 3 filter sizes (3, 7, and 11 hidden states) and 300 filters for each size,
leading to a total of 900 filters. The fully connected layer for the discriminator output consists of
two layers (the first with 512 hidden states and the second with a single hidden state). Networks
are trained for 200 epochs. The curriculum starts at 5 and is increased by 2 each step.

Approved for Public Release; Distribution Unlimited.
52

Table 12 presents the sorting repair experiment results. In Table 12, “Cur” refers to experiments
using curriculum learning, while “Auto”, “Freq”, and “Cycle” are those using 𝐿𝐿𝐺𝐺𝐴𝐴𝑇𝑇𝐴𝐴, 𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, and
𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹, respectively. The base GAN easily learns to generate sequences with valid ordering,
without necessarily paying attention to the input sequence. This leads to high order accuracy, but
low sequence accuracy. However, adding Auto or Freq loss regularizers significantly improves
the sequence accuracy, which shows that these losses effectively enforce the correct mapping
between the source and target domains.

Table 12. Sorting Repair Experiment Results

Model Configuration Sequence Accuracy Order Accuracy
Sequence-to-sequence Base 99.7 99.8

Base + Cur 99.7 99.8
GAN Base 82.8 96.9

Base + Auto 98.9 99.6
Base + Freq 99.3 99.7
Base + Cur 81.5 98.0
Base + Cur + Auto 96.2 98.0
Base + Cur + Freq 98.2 99.1
Base + Cur + Cycle 91.0 97.8

Grammar Experiment
For our second experiment, we generate data from a simple context-free grammar similar to that
used by Rajeswar et al. [65]. Our good data are selected randomly from the set of all sequences
which satisfy the grammar and are less than length 20. We then inject errors into each sequence,
where the number of errors is chosen as a Gaussian random variable (zero thresholded and
rounded) with mean 5 and standard deviation 2. Each error is then randomly chosen to be either a
deletion of a random token, insertion of a random token, or swap of two random tokens.

The network is tasked with generating the original sequence from the error injected one. This task
better models real data than the sorting task above, because each generated token must follow the
grammar and is therefore conditioned on all previous tokens.

We use identical networks for the generator in our GAN model and the sequence-to-sequence
baseline. The generator RNNs contain 3 layers of 512 hidden states each. The discriminator
convolutional layer has 3 filter sizes (3, 7, and 11 hidden states) and 300 filters for each size,
leading to a total of 900 filters. The fully connected layer for the discriminator output consists of
two layers (the first with 512 hidden states and the second with a single hidden state). Networks
are trained for 400 epochs. The curriculum starts at 5 and is increased by 2 each step.

Approved for Public Release; Distribution Unlimited.
53

Table 13 presents the grammar repair experiment results. These results show that our GAN
approach is able to achieve high grammar accuracy, in terms of generating correct sequences that
fit the context-free grammar. Notably, all of our methods preform reasonably well on this task,
which shows that the GAN approach is able to correctly map a bad distribution to a good
distribution.

Table 13. Grammar Repair Experiment Results

Model Configuration Grammar Accuracy
Sequence-to-sequence Base 99.3

Base + Cur 98.9
GAN Base 98.0

Base + Auto 96.5
Base + Freq 97.5
Base + Cur 98.9
Base + Cur + Auto 97.8
Base + Cur + Freq 96.3
Base + Cur + Cycle 98.3

Juliet Test Suite
We tested our GAN model on the Juliet Test Suite. We use identical networks for the generator
in our GAN model and the sequence-to-sequence baseline. The generator RNNs contain 4 layers
of 512 hidden states each. The discriminator convolutional layer has 3 filter sizes (3, 7, and 11
hidden states) and 300 filters for each size, leading to a total of 900 filters. The fully connected
layer for the discriminator output consists of two layers (the first with 512 hidden states and the
second with a single hidden state). Networks are trained for 1000 epochs. The curriculum starts
at 75 and is increased by 5 each step.

Approved for Public Release; Distribution Unlimited.
54

Table 14 presents the Juliet Test Suite experiment results. Our GAN approach achieves
progressively better results when we add (a) curriculum training, and (b) either 𝐿𝐿𝐺𝐺𝐴𝐴𝑇𝑇𝐴𝐴 or 𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
regularization loss. The Base+Cur+Freq model proves to be the best among different GAN
models, and performs reasonably close to the sequence-to-sequence baseline (which is the upper
performance bound in this experiment because it is trained using paired training examples). Code
examples where our GAN makes correct repairs are provided in Section 4.2.3. Non-curriculum
tests with 𝐿𝐿𝐺𝐺𝐴𝐴𝑇𝑇𝐴𝐴 or 𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 regularization losses were not included in one-line testing because they
were already shown in multi-line testing to have poorer performance than the curriculum-based
approaches.

Table 14. Juliet Test Suite Repair Experiment Results

Model Configuration One-Line Multi-Line
Sequence-to-sequence Base .997 .963

Base + Cur .997 .964
GAN Base .873 .842

Base + Auto .857
Base + Freq .862
Base + Cur .904 .883
Base + Cur + Auto .956 .899
Base + Cur + Freq .962 .903
Base + Cur + Cycle .918 .831

We note that the sequence-to-sequence baseline has higher accuracy metrics than the GAN
approach for these experiments. These are experiments involving simple repairs of very simple
synthetic code. We relied on such data for repair accuracy assessment because we needed paired
examples with ground truth data in order to do the analysis for the accuracy assessment. We expect
the real power of the GAN approach to come with repair problems involving more complex code,
but we lacked the benchmark dataset necessary for such an evaluation.

Approved for Public Release; Distribution Unlimited.
55

4.3.3 Repair Examples.
The figures in this section show selected GAN repair examples.

Figure 24 shows an error where the memory is used after it is freed. Our GAN repairs it correctly
by removing the piece of code that frees the memory.

Figure 24. Memory Use After Free

Figure 25 shows a function that has a buffer allocated which is too small for the resulting data
write. Our GAN repairs it by increasing the amount of memory allocated to the buffer.

Figure 25. Buffer Allocation Error

Approved for Public Release; Distribution Unlimited.
56

Figure 26 shows a function that reads the index of an array access from a socket and returns the
memory at the index. The vulnerable function only checks the lower bound on the array size. Our
GAN repairs it by adding an additional check on the upper bound.

Figure 26. Socket Array Access Error

Approved for Public Release; Distribution Unlimited.
57

Figure 27 shows a function that calls sprint to print out two strings, but only provides the first
string to print. Our GAN repairs it by providing a second string.

Figure 27. Format Print Error

Figure 28 shows a function that attempts to accept a socket and use it before it has bound it. Our
GAN approach repairs the function by reordering the bind, listen, and accept into the correct order.

Figure 28. Socket Binding Error

Approved for Public Release; Distribution Unlimited.
58

4.4 Program Synthesis

Here we describe some of the preliminary results of our work in program synthesis.

Our first experiment tested our ability to reconstruct functions from the sequences of production
rules output by our grammar VAE. We reconstructed over 500,000 functions and found that all
of them were syntactically valid. This is an improvement over the work of Kusner et al. [76] in
two ways: (1) we guarantee syntactic validity even when the neural network outputs only a partial
sequence (the neural network can only predict the first 50 production rules in the sequence, but
this does not always correspond with a complete function); and (2) we successfully demonstrate
that the grammar VAE architecture can handle a context-sensitive grammar, rather than a simple
context-free grammar.

In our second experiment, we trained the grammar VAE on functions from our training corpus so
that the model could learn a latent space representative of the kinds of functions found in our
classifier and repair datasets. We found that our network architecture is comparable to that of
Kusner et al. [76], but our vocabulary is more than three times as large. We tuned the model to
minimize validation loss (a combination of cross-entropy loss and Kullback-Leibler divergence).
We reviewed 1,000 randomly selected functions from the training dataset and verified that all
1,000 of these were parsed correctly.

In our third experiment, we demonstrate our ability to impose constraints on generated functions
in a reliable and efficient manner. Table 15 shows these results. Our experiments have shown
that we can enforce constraints with a 100% success rate without significant overhead. We can
enforce the semantic validity constraint with a 99.97% success rate.

Table 15. Constraint Enforcement Success Rate

Constraint Success Rate
Return Type Modifier 100%

Argument Number Modifier 100%
Argument Type Modifier 100%

No Loops 100%
Contains Loop 100%

Semantically Valid 99.97%

We anticipate one potential problem in our approach. While this approach can guarantee that a
function has a vulnerability, it cannot guarantee that a function does not have a vulnerability. This
could result in noisy labels for the negative (non-buggy) functions, but we anticipate that the
number of mislabeled functions would be small.

4.5 Program Evaluations

Over the course of the three MUSE program phases, Draper supported program-wide evaluation
events and hackathons hosted during the demonstration workshops. The sections that follow

Approved for Public Release; Distribution Unlimited.
59

describe Draper’s results from these events.

4.5.1 Phase 1 Hackathon.
Draper participated in a hackathon sponsored by DARPA at the end of Phase 1 of the MUSE
program, concurrent with the Phase 1 Demonstration Workshop in February 2016. Draper’s goal
for this hackathon was to uncover vulnerabilities in the SATE IV dataset.

During the course of the hackathon, the Draper DeepCode classifier successfully identified the
Heartbleed Bug [81] associated with the OpenSSL cryptographic software library. Figure 29
shows the example of the vulnerability identified in this case. The memcpy at line 1487 is an
implicit loop with a loop bound identified by a variable (payload). Neither this variable nor any
of its ancestors is involved in a compare instruction. We verified that the Draper DeepCode
classifier correctly assigned this function an “untaint” value of 0, indicating a loop variable that
was not untainted (compared before use).

Figure 29. Tainted Loop Bound Associated with Heartbleed Bug

1464 n2s(p, payload);
1465 pl = p;
1466
1467 if (s->msg_callback)
1468 s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,
1469 &s->s3->rrec.data[0], s->s3->rrec.length,
1470 s, s->msg_callback_arg);
1471
1472 if (hbtype == TLS1_HB_REQUEST)
1473 {
1474 unsigned char *buffer, *bp;
1475 int r;
1476
1477 /* Allocate memory for the response, size is 1 byte
1478 * message type, plus 2 bytes payload length, plus
1479 * payload, plus padding
1480 */
1481 buffer = OPENSSL_malloc(1 + 2 + payload + padding);
1482 bp = buffer;
1483
1484 /* Enter response type, length and copy payload */
1485 *bp++ = TLS1_HB_RESPONSE;
1486 s2n(payload, bp);
1487 memcpy(bp, pl, payload);

Approved for Public Release; Distribution Unlimited.
60

Figure 30 shows the corrected version of this code with the correct untaint operation. Here, the
payload variable is involved in the assignment to write_length at line 1479. Then write_length
is involved in the comparison at line 1484. We verified that the Draper DeepCode classifier
correctly assigned this function an “untaint” value of 1, indicating a loop variable that was
untainted (compared before use).

Figure 30. Untainted Loop Bound Associated with Corrected Code

4.5.2 Phase 2 Evaluation.
During Phase 2, Draper provided a remote interface and documentation for Leidos to conduct an
independent evaluation of the DeepCode classification and repair tools. Leidos conducted this
evaluation and reported at the Phase 2 Demonstration Workshop that Draper had met our
evaluation criteria.

We evaluated classification accuracy using data held out from training (that is, not used in the
training set) from the SATE IV dataset. We used SATE IV for the evaluation because this dataset
comes with truth data to enable accuracy analysis. Table 16 indicates the accuracy with which
DeepCode identified errors associated with different CWEs. Blank rows in Table 16 correspond
to CWEs which were present in the training set but did not have enough statistics to be present in
the test set.

1479 unsigned int write_length = 1 /* heartbeat type */ +
1480 2 /* heartbeat length */ +
1481 payload + padding;
1482 int r;
1483
1484 if (write_length > SSL3_RT_MAX_PLAIN_LENGTH)
1485 return 0;
1486
1487 /* Allocate memory for the response, size is 1 byte
1488 * message type, plus 2 bytes payload length, plus
1489 * payload, plus padding
1490 */
1491 buffer = OPENSSL_malloc(write_length);
1492 bp = buffer;
1493
1494 /* Enter response type, length and copy payload */
1495 *bp++ = TLS1_HB_RESPONSE;
1496 s2n(payload, bp);
1497 memcpy(bp, pl, payload);

Approved for Public Release; Distribution Unlimited.
61

Table 16. Classification Test Results on SATE IV by CWE
CWE Accuracy %
CWE15_External_Control_of_System_or_Configuration_Setting
CWE114_Process_Control 2/2 100%
CWE121_Stack_Based_Buffer_Overflow 88/90 98%
CWE122_Heap_Based_Buffer_Overflow 115/115 100%
CWE123_Write_What_Where_Condition 2/2 100%
CWE124_Buffer_Underwrite 70/70 100%
CWE126_Buffer_Overread 1/1 100%
CWE127_Buffer_Underread 75/75 100%
CWE129_Improper_Validation_Of_Array_Index 22/22 100%
CWE131_Incorrect_Calculation_Of_Buffer_Size 24/24 100%
CWE134_Uncontrolled_Format_String 16/20 100%
CWE135_Incorrect_Calculation_Of_Multibyte_String_Length 1/1 100%
CWE170_Improper_Null_Termination 8/8 100%
CWE187_Partial_Comparison 15/15 100%
CWE190_Integer_Overflow 31/31 100%
CWE191_Integer_Underflow 14/14 100%
CWE193_Off_by_One_Error 5/6 83%
CWE194_Unexpected_Sign_Extension 9/9 100%
CWE195_Signed_To_Unsigned_Conversion 15/15 100%
CWE196_Unsigned_To_Signed_Conversion_Error 2/2 100%
CWE197_Numeric_Truncation_Error 9/9 100%
CWE242_Use_of_Inherently_Dangerous_Function 2/2 100%
CWE252_Unchecked_Return_Value
CWE253_Incorrect_Check_of_Function_Return_Value 34/35 97%
CWE369_Divide_By_Zero 8/9 89%
CWE374_Passing_Mutable_Objects_to_Untrusted_Method 2/2 100%
CWE390_Error_Without_Action 36/38 95%
CWE401_Memory_Leak 38/42 90%
CWE415_Double_Free 49/50 98%
CWE416_Use_After_Free 45/50 90%
CWE457_Use_of_Uninitialized_Variable 29/29 100%
CWE459_Incomplete_Cleanup
CWE467_Use_of_sizeof_on_Pointer_Type 5/6 83%
CWE468_Incorrect_Pointer_Scaling
CWE469_Use_Of_Pointer_Subtraction_To_Determine_Size 7/10 70%
CWE476_NULL_Pointer_Dereference 4/6 67%
CWE480_Use_of_Incorrect_Operator
CWE481_Assigning_instead_of_Comparing 2/2 100%
CWE482_Comparing_instead_of_Assigning
CWE562_Return_Of_Stack_Variable_Address
CWE587_Assignment_Of_Fixed_Address_To_Pointer
CWE588_Attempt_To_Access_Child_Of_A_Non_Structure_Pointer
CWE590_Free_Of_Invalid_Pointer_Not_On_The_Heap 43/45 96%
CWE606_Unchecked_Loop_Condition
CWE680_Integer_Overflow_To_Buffer_Overflow 7/7 100%
CWE690_NULL_Deref_from_Return
CWE761_Free_Pointer_Not_At_Start_Of_Buffer 2/2 100%
Overall 837/866 97%

Approved for Public Release; Distribution Unlimited.
62

To evaluate repair we constructed several datasets as follows:

• Synthesize extremely simple fix examples from templates, focusing specifically on buffer
overflows.

• Inject simple buffer overflow examples into real functions.

• Gather bad-good function pairs from the SATE IV dataset.

During Phase 2 we were in the early stages of developing the repair capability; therefore, we
focused on single-line repairs for simplicity in the Phase 2 evaluation. Table 17 summarizes results
on test sets for the different datasets described above. “Localization %” is the percentage of
examples in which the correct line to fix was identified. “Repair %” is the percentage of examples
in which the new line was generated entirely correctly. The validation and test sets were a 50/50
split between bad-good pairs and good-good pairs. Therefore, some of the accuracy in Table 17
is due to the network correctly recognizing a good function that does not need to be repaired, while
part comes from fixes being generated successfully.

Table 17. Repair Accuracy Summary

Evaluation Dataset Localization % Repair %
Basic templates 99.99% 99.99%
Injected templates 96.9% 75.9%
SATE IV (overflows only) 100% 100%
SATE IV (expanded bug set) 98.5% 96.7%

We can think of these datasets along two axes – repair complexity and number of bug variants.
While the SATE IV dataset has relatively simple functions as examples, we were able to test across
a wide variety of bug variants. The injected templates were more complex because they were
injected into real code, but they covered a smaller breadth of bugs.

Approved for Public Release; Distribution Unlimited.
63

Figure 31 depicts accuracy relative to these two metrics.

Figure 31. Repair Accuracy Dependence

One way of visualizing what the network has learned is to do a principal component analysis (PCA)
of the encoding layer to see how it is separating examples. Figure 32 shows an example from our
simplest set of buffer overflow templates. We can see three clusters, corresponding to the three
templates from which we generated our dataset. The reason the network was able to perform so
well is that it essentially memorized the templates.

Approved for Public Release; Distribution Unlimited.
64

Figure 32. Repair PCA for Buffer Overflow Templates

On the more realistic dataset of templates injected into real functions, the network still shows an
ability to separate the templates. However, the clustering is not as tight as seen previously because
of the additional variation in the data. Figure 33 shows the PCA mapping of that network’s
encoding.

Figure 33. Repair PCA for Injected Templates

In this dataset, the aggregate performance was strongly dependent on the different templates we

Approved for Public Release; Distribution Unlimited.
65

injected. One template, a bug where memcpy was used to copy too large a source array into a
smaller destination array, showed very good repair performance, close to 95%. The other template,
where the integer limit on a for loop was larger than an array that was indexed within the loop,
showed worse performance, with only 52% accuracy. This is because in the second case, the
network had to memorize the exact size of the array in order to generate a correct repair. While
the network was able to correctly identify the line to be repaired most of the time, it did not
sufficiently remember the integer value needed for a completely correct fix. In the memcpy case,
only the correct ordering of the source and destination was necessary to generate the repair.

4.5.3 Phase 2 Hackathon.
Draper participated in a hackathon sponsored by DARPA at the end of Phase 2 of the MUSE
program, concurrent with the Phase 2 Demonstration Workshop in May 2017. Draper’s goal for
this hackathon was to uncover vulnerabilities that had been injected into the Ardupilot C/C++ code
by the system evaluator (Leidos). Since we had a build-feature-based classifier prepared for the
Phase 2 hackathon, we analyzed the subset of functions from Ardupilot from which we were able
to extract build features during the course of the hackathon.

We applied 3 different classifier models that we had previously trained in preparation for the
hackathon: AE, RF, and RNN. We also combined individual models together to create new
classification scores. We tested these models on 1,239 functions from Ardupilot that our pipeline
ingested. Since we did not know ground truth for this test, we could not compute accuracy metrics.
Instead, we reviewed functions that the classifiers identified as having a high probability of error
and looked for issues in those functions.

Approved for Public Release; Distribution Unlimited.
66

Of the 1,239 functions analyzed, 127 of these had an ensemble score greater than 80%. Of these,
we labeled 36 as especially suspect. Many of these were not necessarily vulnerabilities in and of
themselves, but we identified some edge cases that could be triggered. Figure 34 shows the
breakdown of the high-scoring examples by library, and we provide some detailed examples later
in this section.

Figure 34. Error Detection Breakdown by Library

We also tried 3 different repair models that we had previously trained on the following data:

1. Hand-crafted bug templates injected into real code

2. SATE IV data only

3. SATE IV templates injected into real code

We found that the bugs we detected could not be patched with the types of patches in the training
sets, but it was still useful to keep track of repair attempts as an additional measure of bug
localization. Functions that had a repair attempted sometimes had higher classification scores as
well. Out of the 36 verified high-scoring functions, 5 also had a repair attempt.

Approved for Public Release; Distribution Unlimited.
67

Figure 35 shows histograms of classification score and repair attempts for the three types of
classifier (AE, RF, and RNN) and an ensemble classifier.

Figure 35. Classification Attempts and Repair Histograms

Figure 36 shows an example of a function tagged by the DeepCode classifiers. Note that the for
loop highlighted in orange has an incorrect conditional statement (“length” should be “ofs <
length”).

Figure 36. Error Example: For Loop Conditional Statement

void StorageManager::erase(void){
uint8_t blk[16];
memset(blk, 0, sizeof(blk));
for (uint8_t i=0; i<STORAGE_NUM_AREAS; i++) {

const StorageManager::StorageArea &area = StorageManager::layout[i];
uint16_t length = pgm_read_word(&area.length);
uint16_t offset = pgm_read_word(&area.offset);
for (uint8_t ofs=0; length; ofs += sizeof(blk)) {

uint8_t n = 16;
if (ofs + n > length) {

n = length - ofs;
}
hal.storage->write_block(offset + ofs, blk, n);

}
}

}

Approved for Public Release; Distribution Unlimited.
68

Figure 37 shows an example of a function tagged by the DeepCode classifiers that may or may not
be erroneous depending on how the function is used and its relationship to other software in the
ecosystem. Note that in the operations highlighted in orange, a pointer is set and dereferenced
without checking the size of the array to which the pointer points.

Figure 37. Error Example: Pointer De-Reference

uint32_t AP_GPS_NMEA::_parse_decimal_100()
{

char *p = _term;
uint32_t ret = 100UL * atol(p);
while (isdigit(*p))

++p;
if (*p == '.') {

if (isdigit(p[1])) {
ret += 10 * DIGIT_TO_VAL(p[1]);
if (isdigit(p[2]))

ret += DIGIT_TO_VAL(p[2]);
}

}
return ret;

}

Approved for Public Release; Distribution Unlimited.
69

Figure 38 shows an example of a function tagged by the DeepCode classifiers in which an element
of an array is referenced based on an input parameter to the function, without checking whether
the parameter is within the bounds of the array. It is possible that this is checked before the
function is called, but if the function is used without such a check, this could lead to errors.

Figure 38. Error Example: Array Index

void AP_Compass_Backend::correct_field(Vector3f &mag, uint8_t i){
Compass::mag_state &state = _compass._state[i];

if (state.diagonals.get().is_zero()) {
state.diagonals.set(Vector3f(1.0f,1.0f,1.0f));

}

const Vector3f &offsets = state.offset.get();
const Vector3f &diagonals = state.diagonals.get();
const Vector3f &offdiagonals = state.offdiagonals.get();
const Vector3f &mot = state.motor_compensation.get();

/*
* note that _motor_offset[] is kept even if compensation is not
* being applied so it can be logged correctly
*/
mag += offsets; …

Approved for Public Release; Distribution Unlimited.
70

Figure 39 shows an example of a double pointer that is de-referenced and used in a loop without
validity checks. Again, it is possible that everything is checked before the function is called, or
that the input is constructed in a way that guarantees this to work, but if the function is used
differently, this could lead to errors.

Figure 39. Error Example: Double Pointer De-Reference

By running the DeepCode classifiers on the sample code from this hackathon, we were able to
identify situations in the code where many assumptions were made about global buffers, pointers,
and the like. While not necessarily vulnerabilities in and of themselves, they could pose potential
pitfalls for a novice writing code in this environment, which could possibly lead to vulnerabilities
being introduced.

At the time of the Phase 2 hackathon, we had only build-feature-based classifiers available that
required the code to build in order to analyze it. Difficulties building the code in the environment
of the DeepCode data pipeline made the analysis less efficient and comprehensive than it could
have been. We took this as a lesson learned that led us to develop source-feature-based classifiers
in Phase 3.

We also found that we needed to expand the training data substantially for our repair network. We
also took this as a lesson learned that led us to develop the GAN for repair in Phase 3.

static char *dequote_value(const char *varname, char *varval)
{
const char **dqnam;
char *dqval = varval;
int len;

if (dqval)
{
/* Check if the variable name is in the list of strings to be

dequoated */

for (dqnam = dequote_list; *dqnam; dqnam++)
{
if (strcmp(*dqnam, varname) == 0)
{
break;

}
}

Approved for Public Release; Distribution Unlimited.
71

4.5.4 Phase 3 Challenge Problem.
For Phase 3 we had two challenge problems: one to support an analysis goal and one to support a
demonstration goal. This section describes the challenge problems and our results relative to these
challenge problems.

Challenge Problem 1 (Analysis Goal)
Challenge problem 1 was to demonstrate our ability to identify and repair C and C++ functions in
one or more open-source benchmark datasets that have security vulnerabilities. The main
challenge for this goal lay in finding a dataset with sufficient truth data to serve as a benchmark
for evaluation. We investigated ManyBugs [17], Google OSS-Fuzz [82], Codeflaws [83], and the
Juliet Test Suite [19] as possible benchmark datasets. ManyBugs provides differences before and
after fixes in open-source software with enough information to determine the functions that
changed, but with only a small number of security vulnerabilities for testing. Google OSS-Fuzz
provides truth data for about 2000 security vulnerabilities but lacks resolution at the function level,
which we needed for evaluation. Codeflaws provides truth data for over 7000 software bugs, but
most of these are algorithmic issues that would not translate to security vulnerabilities. The Juliet
Test Suite has the best truth data about vulnerabilities, so we used the Juliet Test Suite for this
evaluation. Since some code from the Juliet Test Suite was also in the training corpus, we were
very careful to hold out examples for the evaluation that we did not include in the training data.

The current state of practice consists of SA, which provides a fast analysis of software to look for
known issues, and dynamic analysis, which is more flexible but takes orders of magnitude more
time. Learning-based algorithms show promise to generalize better while taking similar (or even
less) time than SA. In addressing our Phase 3 accuracy assessment challenge problem, we
compared DeepCode vulnerability detection against a number of SA tools using held-out functions
from the Juliet Test Suite. Figure 40 demonstrates that our machine learning approaches
outperformed the SA tools in this comparison. We also determined that our pre-trained source-
feature-based classifier takes about an order of magnitude less run time than the Clang SA because
the source-feature-based classifier does not have to build the software first. DeepCode classifiers
that use build features take about the same amount of time as the Clang SA because they need to
run Clang to do the builds first.

Approved for Public Release; Distribution Unlimited.
72

Figure 40. DeepCode Classifier Comparisons with SA on Juliet Test Suite

Challenge Problem 2 (Demonstration Goal)
Challenge problem 2 was to identify and repair previously undiscovered security vulnerabilities in
one or more open-source C / C++ software packages in widespread use. We chose the PureOS
kernel as the code-under-test for this challenge problem due to its importance as a privacy-centric
Linux distribution. Our initial attempts to apply DeepCode classifiers to this kernel software
showed much lower accuracy than we obtained against other application software. Our hypothesis
for this result was that the training corpus did not contain examples similar enough to kernel
software from which the classifiers could learn patterns. As a result, we augmented the training
corpus with examples from the Debian Linux kernel.

After augmenting the training corpus with Debian kernel code examples, we ran again the
DeepCode classifier against the PureOS kernel code. We selected a threshold of 0.80 and
identified 35 functions from the PureOS kernel code with classification scores above threshold
(indicating that DeepCode ranked these 35 functions as having the highest likelihood of having
vulnerabilities). We then asked an internal team of cybersecurity experts at Draper to inspect these
35 functions manually to determine how many were vulnerable. The cybersecurity expert team
found that 17 of the 35 functions (about half) had vulnerabilities. By contrast, we would not expect
35 randomly selected functions to include vulnerabilities in nearly half of those functions. Table
18 provides the details of the DeepCode rankings and the manual inspection findings.

Dashed line =
random chance

Best
possible Dashed line =

random chance

Best
possible

Approved for Public Release; Distribution Unlimited.
73

Table 18. Classification Demonstration Challenge Problem Results
File Score Manual inspection finding Line number
scripts/pnmtologo.c 0.94 none
scripts/kallsyms.c 0.92 none
drivers/infiniband/core/cma.c 0.89 memcpy 1676
kernel/debug/kdb/kdb_main.c 0.89 sprintf 2615
drivers/gpu/drm/radeon/mkregtable.c 0.88 none
drivers/net/wireless/brcm80211/brcmsmac/main.c 0.88 none
init/do_mounts.c 0.87 none
scripts/asn1_compiler.c 0.86 atoi usage … ; ' 'buffer' allocated but never free'd 557;576
drivers/net/usb/sr9800.c 0.85 none
drivers/net/ethernet/mellanox/mlx4/en_rx.c 0.84 none
scripts/mod/file2alias.c 0.84 sprintf 693

arch/x86/boot/compressed/mkpiggy.c 0.84

p: ilen is signed but treated as unsigned in print
@L37@L67@L83 || fopen doesn’t check for

symlink @L51 || atoi doesn’t have error handle,
input must be str that can be converted to signed

int, is deprecated, use strtol
drivers/staging/lustre/lustre/obdclass/cl_lock.c 0.84 none
drivers/connector/cn_proc.c 0.84 cn_proc_event_id is not declared in func scope 181
drivers/connector/cn_proc.c 0.84 none
drivers/connector/cn_proc.c 0.84 cn_proc_event_id is not declared in func scope 265
drivers/connector/cn_proc.c 0.84 cn_proc_event_id is not declared in func scope 292
drivers/ata/ahci.c 0.83 none
drivers/message/fusion/mptbase.c 0.83 none
drivers/connector/cn_proc.c 0.83 none
drivers/mfd/rtsx_pcr.c 0.83 memcpy
mm/memcontrol.c 0.82 memcpy 3713
arch/x86/tools/relocs_common.c 0.82 none
arch/x86/pci/i386.c 0.82 the value of 'dev' is not checked for null 314
sound/pci/mixart/mixart.c 0.82 strcpy, sprintf 990
sound/pci/mixart/mixart.c 0.82 strcpy, sprintf 1023
drivers/gpu/drm/i2c/adv7511.c 0.81 none
net/mac80211/wpa.c 0.81 memcpy 559
scripts/mod/mk_elfconfig.c 0.81 none
scripts/mod/file2alias.c 0.81 sprintf 796
Documentation/spi/spidev_fdx.c 0.80 none
sound/usb/mixer_quirks.c 0.80 none
drivers/gpu/drm/radeon/mkregtable.c 0.80 none
drivers/net/wireless/brcm80211/brcmsmac/main.c 0.80 memcpy 1908

scripts/mod/modpost.c 0.80
sprintf possible overwriting other struct member,

or even outside of struct data 2464

Approved for Public Release; Distribution Unlimited.
74

Figure 41 shows a selected example of one of the vulnerabilities identified by DeepCode. This is
an example of CWE-120 (buffer copy without checking size of input). In this example, we also
see the result of using backpropagation to isolate the location of the bug. In this case,
backpropagation automatically highlighted the portions of the code that contributed to the
vulnerability finding. This highlights backpropagation as a valuable tool for a user to isolate issues
quickly that DeepCode finds.

Figure 41. Classification Demonstration Challenge Problem Example

For the repair portion of the demonstration challenge problem, we attempted repairs on the errors
we identified in the LibTIFF and PureOS software. The results of these repair attempts did not
work out as well as we hoped. Some repair attempts produced compilable code, but others did
not, and the repair attempts that compiled still didn’t make sense upon manual inspection. We
reviewed the results and identified reasons for this performance. In these more realistic code
examples (unlike the synthetic SATE IV examples), a one-to-many relationship exists between a
given vulnerable function and several possible repairs. GAN training breaks down when the
generator produces several possible repairs with similar probability.

The typical sequence-to-sequence network outputs the probability of an output sequence given a
particular input sequence. This allows us to obtain the most probable repair candidates using an
approach like beam search. We pass these probability outputs as one input to the GAN
discriminator and real samples as another. GAN training then attempts to minimize the distance
between the distribution of generator outputs and the real samples. Specifically, we use a WGAN,
which attempts to minimize the Wasserstein-1 or EM distance. Unfortunately, it turns out that

Approved for Public Release; Distribution Unlimited.
75

minimizing the Wasserstein-1 distance between these probabilistic generator outputs and the real
samples does not minimize the distance between samples from the generator output and the real
samples (which is what we want). This does occur for cross-entropy loss (used by sequence-to-
sequence), but not for many other distance metrics. This means our method may produce some
good samples, but will likely struggle when there are several possible repairs with relatively equal
probability, which is more likely for real data than for synthetic data like SATE IV.

5. CONCLUSIONS
During the course of the DARPA MUSE program, Draper advanced the state of the art in automatic
detection and repair of security vulnerabilities in software. In the sections that follow, we
summarize these contributions, discuss the readiness of the technology for transition, and provide
recommendations for future work in this area.

5.1 Classification

We have developed a fast and scalable vulnerability detection tool based on machine learning for
the detection of bugs that can lead to security vulnerabilities in C/C++ code. We have shown that
machine learning is able to effectively learn to detect vulnerability labels at the function level. In
particular, Deep Learning is a powerful way of generating high-level features for vulnerability
detection from both source code and build artifacts. When learning directly on lexed source code,
Deep Learning approaches were able to learn the vulnerability labels from three different SA tools
well. Deep Learning on build features was similarly effective for build feature-based vulnerability
labels, but weaker on the labels from the two source-based SA tools. The most effective approach
for detecting build-based SA labels was achieved by training the classifier on a combined set of
simplified build features and source features derived through neural network classification
training.

We also evaluated the ability of the DeepCode classifiers to find true vulnerabilities in software
(as distinct from predicting SA labels). This was more difficult to quantify due to the limited
availability of benchmark datasets that provide ground truth for evaluation. We were able to
quantify accuracy with which we predicted ground truth labels for the Juliet Test Suite, and we
showed that the DeepCode classifiers were more accurate than the three SA tools that we also
evaluated. We also showed that vulnerabilities identified by the Vader dynamic analysis tool also
scored highly for likelihood of vulnerability when analyzed by the DeepCode classifiers.

5.2 Repair

We have developed a GAN-based approach to train a system for software vulnerability repair. We
demonstrated that our new approach is an effective technique for repairing software vulnerabilities,
performing close to the state-of-the-art sequence-to-sequence approaches that require labeled
pairs.

One of the main challenges of code repair is the lack of paired training data (i.e., having training
data consisting of corresponding vulnerable and repaired functions). In our comparisons between
the GAN-based and sequence-to-sequence approaches, the sequence-to-sequence approach
achieved higher accuracy metrics (BLEU scores), but this was for an evaluation on synthetic data,
for which we already had labeled pairs available for training.

Approved for Public Release; Distribution Unlimited.
76

Given the training challenge and the results of our work, GANs (and generative models in general)
represent the most promising path towards automatic code repair due to two important attributes.
First, they harness the power of neural networks, which have been shown to provide state-of-the-
art results on a variety of machine learning problems. Second, they can be trained on exclusively
unpaired training data. This is crucial for real-world scenarios where paired training data is scarce
if not non-existent.

5.3 Program Synthesis

Our program synthesis work provided a proof of concept that satisfactory performance could be
obtained for generation of training examples. Kusner et al. [76] previously showed that the
grammar VAE is a powerful generative model for grammar-based constructs that can achieve
excellent performance on the sequence learning task. We showed that it could be applied to the
domain of program synthesis.

5.4 Transition

Table 19 lists products and potential products of Draper’s developments under the DARPA MUSE
program and summarizes the readiness of each product for transition.

Table 19. Readiness for Transition of DeepCode Products

Product Readiness for Transition
Portable error detection engine based on
pre-trained networks

Mature. Docker image enables portability. More /
better training data will improve accuracy. Would
benefit from additional user interface design effort.

Full pipeline for “power users” that have
substantial compute resources and
datasets that they would like to train on

Mature. Docker image enables portability. More
development needed to transition the training
engine.

Automatic code repair engine Docker image possible with modest additional
development. Ongoing research needed to improve
performance.

Tool to prioritize the effort required to
find security vulnerabilities through
code reviews

Mature. Docker image enables portability. FP are
less of a concern for this use case because it still
saves time and money over exhaustive code
reviews.

Continuous integration (CI) tool to look
for new errors as code is updated

Not currently developed, but would be possible
with additional user interface and integration work.
Would require careful management of FP.

Ongoing machine learning research for
automatic error detection and repair

Best return would come from ongoing research into
more / better labeled training data.

One of the products that is closest to readiness for transition is a tool to prioritize the effort required
to find security vulnerabilities through code reviews. We see this as a particularly attractive

Approved for Public Release; Distribution Unlimited.
77

application because this is a relatively mature application for DeepCode and because it can produce
high value to users with the accuracy levels that we have already demonstrated under the MUSE
program.

Figure 42 demonstrates how our classification accuracy metrics presented earlier in this report
would translate into a user’s experience using DeepCode as a code review prioritization tool. This
analysis assumed a fictitious 10,000-lines-of-code program with typical industry-standard error
discovery rates. The DeepCode classifiers provide a score that would allow a user to prioritize
reviewing the highest-scoring findings first to find many vulnerabilities in a short time, thereby
substantially reducing labor hours vs. code review alone. In this example, about 80% of the
vulnerabilities that would normally be found through code review could be found in about 20% of
the time that would be required for an exhaustive review of the code.

Figure 42. Vulnerabilities Found vs. Labor Hours

5.5 Recommendations for Future Work

5.5.1 Labeling.
Future work should focus on improved labels, such as those from dynamic analysis tools or mined
from security patches. This would allow scores produced from the machine learning models to be
more complementary with SA tools.

0

10

20

30

40

50

60

0.0 10.0 20.0 30.0 40.0 50.0 60.0

Vu
ln

er
ab

ili
tie

s F
ou

nd

Labor Hours

Vulnerabilites Found vs. Labor Hours

Code review MUSE

Figure 43 shows the current DeepCode classifier accuracy trend relative to the size of the training
corpus. This shows that accuracy is still increasing as a function of training corpus size, meaning
that we expect that there are significant accuracy improvements still available to be achieved
through substantial increases in the amount of training data.

Figure 43. Classification Accuracy vs. Size of Training Dataset

5.5.2 Classification.
We posed the vulnerability detection as a binary classification problem indicating whether a given
function contains at least one of the several vulnerabilities or not. Future work could develop
multi-label classification approaches to specify the type of vulnerability to provide users more
detailed code review experience.

5.5.3 Repair GAN.
Our initial GAN attempts have been very successful, but current performance is limited by two
main issues. The first issue is that the discriminator has difficulty distinguishing valid repairs from
invalid ones, which it needs to do in order to provide good instruction for the generator. The
second issue is that the real data are samples from a distribution, whereas the desired generator
output is an estimate of the distribution itself. This drives errors in GAN training when there are
several possible repairs with relatively equal probability.

Both of these issues may be addressed by using an appropriate embedding on the input to the
discriminator. This would serve as a continuous relaxation for the discrete samples in the real
data, as well as allow for easier approximation of these samples by the generator. To this end we
are experimenting with techniques from graph embedding in order to generate linear embeddings
for our data which preserve interesting features. For example, one such embedding minimizes the
distance in the embedded space between tokens which often appear adjacent to one another in the
code.

Approved for Public Release; Distribution Unlimited.
78

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

 100 1,000 10,000 100,000 1,000,000

Ar
ea

 u
nd

er
 p

re
ci

sio
n-

re
ca

ll
cu

rv
e

Number of unique functions in training set

Accuracy vs. Size of Training Data Set

As a second approach towards solving the difference in distribution problem, we are looking at the
inclusion of noise at the input of the generator’s decoder, similar to how traditional GANs work.
This removes the necessity for the discriminator to estimate the probability distribution and instead
allows it to approximate samples from the distribution, thus providing the discriminator with far
more similarity between generated and real inputs. However, this approach does have the issue
that outputs from the generator are not dependent upon this noise vector, and as such it is difficult
to determine which generated repairs are the most probable. We believe we may be able to rectify
this by using transfer learning to train a new GAN which does not require noise from one that does.

5.5.4 Program Synthesis.
One area for future work in program synthesis is to expand the semantic content of generated
functions. Examples of additional types of training data we might wish to generate include
functions with nested loops, recursive functions, functions with return value constraints (say, only
positive integers), or functions that exhibit simple semantic qualities such as not having statements
after a return. We have designed an extensible framework in which constraints could be
implemented with relative ease.

Opportunities to improve our semantic repair constraint include more meaningful variable names,
better capture of the original user intent, and warnings during semantic repair. Even semantically
valid code can produce warnings at compile time, and repaired code quality would be significantly
improved by also resolving issues that produce warnings.

Our next suggested area for future work is to improve the vocabulary. The expressiveness of the
current vocabulary is limited by the need to include context to the production rules to determine
whether certain rules are valid additions to the function’s current rule sequence during the decode
step. It may be possible to reduce or eliminate this need for context by developing an inference
algorithm to perform these functions. This is complicated by the desire for a guarantee that all
decoded functions are syntactically valid, but it might be possible to relax that restriction (allowing
function decoding to produce invalid functions some small fraction of the time) and develop an
approach that eliminates the need for context. This would significantly decrease the number of
production rules needed to produce the same range of functions. This would enable adding more
rules to the vocabulary by using more functions as input (allowing greater variety in generated
functions) or including more semantic information, such as variable names and constant values
(allowing the VAE to learn more semantic information).

The grammar VAE guarantees that all output sequences are syntactically valid by virtue of the
associated context-free grammar. However, it makes no such guarantee when using a context-
sensitive grammar. Extensive testing of our model supports the conclusion that all output
sequences are syntactically valid, but there is no guarantee based on formal theory. The same is
true for the semantically valid constraint. Future implementations of a grammar VAE in a context-
sensitive environment would be improved by finding ways to make guarantees about syntactic and
semantic validity.

Approved for Public Release; Distribution Unlimited.
79

Approved for Public Release; Distribution Unlimited.
80

6. REFERENCES

[1] The MITRE Corporation, "CVE - Common Vulnerabilities and Exposures (CVE)," 29 May
2018. [Online]. Available: https://cve.mitre.org/. [Accessed 8 June 2018].

[2] Business Wire, "Worldwide Revenue for Security Technology Forecast to Surpass $100
Billion in 2020, According to the New IDC Worldwide Semiannual Security Spending
Guide," 12 October 2016. [Online]. Available:
https://www.businesswire.com/news/home/20161012005102/en/Worldwide-Revenue-
Security-Technology-Forecast-Surpass-100. [Accessed 8 June 2018].

[3] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification with Deep
Convolutional Neural Networks," in Advances in Neural Information Processing Systems
25, 2012.

[4] M. D. Zeiler and R. Fergus, "Visualizing and Understanding Convolutional Networks," 28
November 2013. [Online]. Available: https://arxiv.org/abs/1311.2901. [Accessed 11 June
2018].

[5] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale
Image Recognition," 10 April 2015. [Online]. Available: https://arxiv.org/abs/1409.1556.
[Accessed 11 June 2018].

[6] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke
and A. Rabinovich, "Going Deeper with Convolutions," 2015. [Online]. Available:
https://www.cv-
foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_201
5_CVPR_paper.pdf. [Accessed 11 June 2018].

[7] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 10
December 2015. [Online]. Available: https://arxiv.org/abs/1512.03385. [Accessed 11 June
2018].

[8] K. Xu, J. L. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. S. Zemel and Y.
Bengio, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attentino,"
in Proceedings of the 32nd International Conference on Machine Learning, Lille, France,
2016.

[9] O. Vinyals, A. Toshev, S. Bengio and D. Erhan, "Show and Tell: A Neural Image Caption
Generator," 2015. [Online]. Available: https://www.cv-
foundation.org/openaccess/content_cvpr_2015/app/2A_101.pdf. [Accessed 11 June 2018].

[10] R. Collobert and J. Weston, "A unified architecture for natural language processing: deep
neural networks with multitask learning," in ICML '08 Proceedings of the 25th international
conference on Machine learning , Helsinki, 2008.

[11] R. Socher, C. C.-Y. Lin, A. Y. Ng and C. D. Manning, "Parsing Natural Scenes and Natural
Language with Recursive Neural Networks," in Proceedings of the 28th International
Conference on Machine Learning, Bellevue, WA, 2011.

[12] D. Bahdanau, K. Cho and Y. Bengio, "Neural Machine Translation by Jointly Learning to
Align and Translate," 19 May 2016. [Online]. Available: https://arxiv.org/abs/1409.0473.
[Accessed 11 June 2018].

[13] I. Sutskever, O. Vinyals and Q. V. Le, "Sequence to Sequence Learning with Neural

Approved for Public Release; Distribution Unlimited.
81

Networks," in Advances in Neural Information Processing Systems 27, 2014.
[14] Stanford Vision Lab, "ImageNet Large Scale Visual Recognition Challenge (ILSVRC),"

2015. [Online]. Available: http://www.image-net.org/challenges/LSVRC/. [Accessed 11
June 2018].

[15] The Medical Image Computing and Computer Assisted Intervention Society, "EndoVis,"
2018. [Online]. Available: https://endovis.grand-challenge.org/. [Accessed 11 June 2018].

[16] DeepMind Technologies Limited, "AlphaGo," 2018. [Online]. Available:
https://deepmind.com/research/alphago/. [Accessed 11 June 2018].

[17] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu, S. Forrest and W. Weimer,
"The ManyBugs and IntroClass Benchmarks for Automated Repair of C Programs," IEEE
Transactions on Software Engineering, vol. 41, no. 12, 2015.

[18] National Institute of Standards and Technology, "SATE IV," [Online]. Available:
https://samate.nist.gov/SATE4.html. [Accessed 12 June 2018].

[19] National Institute of Standards and Technology, "Software Assurance Reference Dataset,"
November 2017. [Online]. Available: https://samate.nist.gov/SRD/testsuite.php. [Accessed
12 June 2018].

[20] "National Institute of Standards and Technology," [Online]. Available:
https://www.nist.gov/. [Accessed 14 July 2018].

[21] The MITRE Corporation, "Common Weakness Enumeration," 3 April 2018. [Online].
Available: https://cwe.mitre.org/data/index.html. [Accessed 20 July 2018].

[22] "Buildbot main page," [Online]. Available: https://buildbot.net/. [Accessed 14 July 2018].
[23] "strace," [Online]. Available: https://strace.io/. [Accessed 20 July 2018].
[24] "The LLVM Compiler Infrastructure," [Online]. Available: http://llvm.org/. [Accessed 20

July 2018].
[25] "TITAN Distributed Graph Database," [Online]. Available: http://titan.thinkaurelius.com/.

[Accessed 20 July 2018].
[26] K. Yim , "TinkerPop3 Documentation," [Online]. Available:

http://tinkerpop.apache.org/docs/3.3.3/reference/. [Accessed 20 July 2018].
[27] The Apache Software Foundation, "Apache Cassandra," 2016. [Online]. Available:

http://cassandra.apache.org/. [Accessed 30 July 2018].
[28] "Clang Static Analyzer," [Online]. Available: https://clang-analyzer.llvm.org/. [Accessed

20 July 2018].
[29] D. A. Wheeler, "Flawfinder," [Online]. Available: https://www.dwheeler.com/flawfinder/.

[Accessed 20 July 2018].
[30] "Cppcheck - A tool for static C/C++ code analysis," [Online]. Available:

http://cppcheck.sourceforge.net/. [Accessed 20 July 2018].
[31] M. Allamanis, E. T. Barr, P. Devanbu and C. Sutton, "A Survey of Machine Learning for

Big Code and Naturalness," arXiv, 2017.
[32] A. Hovsepyan, R. Scandarlato, W. Joosen and J. Walden, "Software vulnerability prediction

using text analysis techniques," in 4th International Workshop on Security Measurements
and Metrics, 2012.

[33] Y. Pang, X. Xue and A. S. Namin, "Predicting vulnerable software components through n-

Approved for Public Release; Distribution Unlimited.
82

gram analysis and statistical feature selection," in 14th International Conference on
Machine Learning and Applications (ICMLA), 2015.

[34] L. Mou, G. Li, Z. Jin, L. Zhang and T. Wang, "TBCNN: A Tree-Based Convolutional Neural
Network for Programming Language Processing," CoRR, vol. abs/1409.5718, 2014.

[35] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng and Y. Zhong, CoRR, vol.
abs/1801.01681, 2018.

[36] "Travis CI," [Online]. Available: https://travis-ci.org/. [Accessed 15 November 2017].
[37] Y. Zhou and A. Sharma, "Automated identification of security issues from commit messages

and bug reports," in 11th Joint Meeting on Foundations of Software Engineering, 2017.
[38] Z. Xu, T. Kremenek and J. Zhang, "A memory model for static analysis of C programs," in

4th International Conference Leveraging Applications of Formal Methods, Verification,
and Validation, 2010.

[39] X. Zhang, J. Zhao and Y. LeCun, "Character-level Convolutional Networks for Text
Classification," in Advances in Neural Information Processing Systems, 2015.

[40] C. N. d. Santos and M. Gatti, "Deep convolutional neural networks for sentiment analysis
of short texts," in International Conference on Computational Linguistics, 2014.

[41] Y. Kim, " Convolutional Neural Networks for Sentence Classification," in Empirical
Methods in Natural Language Processing, 2014.

[42] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus and Y. LeCun, "OverFeat:
Integrated Recognition, Localization and Detection using Convolutional Networks," 2014.
[Online]. Available: https://arxiv.org/abs/1312.6229.

[43] J. Ji, Q. Wang, K. Toutanova, Y. Gong, S. Truong and J. Gao, "A Nested Attention Neural
Hybrid Model for Grammatical Error Correction," Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 753-762, 2017.

[44] Z. Yuan and T. Briscoe, "Grammatical error correction using neural machine translation,"
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL HLT), 2016.

[45] A. Schmaltz, Y. Kim, A. M. Rush and S. M. Shieber, "Adapting Sequence Models for
Sentence Correction," Empirical Methods in Natural Language Processing (EMNLP),
2017.

[46] Z. Xie, A. Avati, N. Arivazhagan, D. Jurafsky and A. Y. Ng, "Neural Language Correction
with Character-Based Attention," arXiv:1603.09727, 3 2016.

[47] C. Chen, A. Seff, A. Kornhauser and J. Xiao, "DeepDriving: Learning Affordance for Direct
Perception in Autonomous Driving," in The IEEE International Conference on Computer
Vission (ICCV), 2015.

[48] C. M. Bishop, Pattern Recognition and Machine Learning, New York: Springer, 2006.
[49] D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," in 3rd

International Conference for Learning Representations, San Diego, 2015.
[50] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen, C. Moore, M. Plakal,

D. Platt, R. Saurous, B. Seybold, M. Slaney, R. Weiss and K. Wilson, "CNN Architectures
for Large-Scale Audio Classification," in International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2017.

Approved for Public Release; Distribution Unlimited.
83

[51] T. Mikolov, I. Sutskever, K. Chen and G. Corrado, "Distributed representations of words
and phrases and their compositionality," in Advances in Neural Information Processing
Systems, 2013.

[52] J. T. Springenberg, A. Dosovitskiy, T. Brox and M. Riedmiller, "Striving for simplicity: The
all convolutional net," in International Conference on Learning Representations, 2015.

[53] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva and A. Torralba, "Learning deep features for
discriminative localization," in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition.

[54] O. Ozdemir, T. Allen, S. Choi, T. Wimalajeewa and P. K. Varshney, Copula base classifier
fusion under statistical dependence, in press.: IEEE Trans. Pattern Analysis and Machine
Intelligence, 2017.

[55] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville and Y. Bengio, "Generative Adversarial Networks," Neural Information
Processing Systems (NIPS), 6 2014.

[56] I. J. Goodfellow, O. Vinyals and A. M. Saxe, "Qualitatively characterizing neural network
optimization problems," International Conference on Learning Representations (ICLR),
2015.

[57] M. Arjovsky and L. Bottou, "Towards Principled Methods for Training Generative
Adversarial Networks," International Conference on Learning Representations (ICLR),
2017.

[58] M. Arjovsky, S. Chintala and L. Bottou, "Wasserstein Generative Adversarial Networks,"
International Conference on Machine Learning (ICML), 2017.

[59] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever and P. Abbeel, "Infogan:
Interpretable representation learning by information maximizing generative adversarial
nets," Neural Information Processing Systems (NIPS), 2016.

[60] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta and A. A. Bharath,
"Generative Adversarial Networks: An Overview," IEEE Signal Processing Magazine, vol.
35, pp. 53-65, 2018.

[61] A. Radford, L. Metz and S. Chintala, "Unsupervised representation learning with deep
convolutional generative adversarial networks," International Conference on Learning
Representations (ICLR), 2016.

[62] L. Yu, W. Zhang, J. Wang and Y. Yu, "SeqGAN: Sequence Generative Adversarial Nets
with Policy Gradient," Association for the Advancement of Artifical Intelligence (AAAI),
2017.

[63] Y. Zhang, Z. Gan, K. Fan, Z. Chen, R. Henao, D. Shen and L. Carin, "Adversarial Feature
Matching for Text Generation.," International Conference on Machine Learning (ICML),
2017.

[64] O. Press, A. Bar, B. Bogin, J. Berant and L. Wolf, "Language Generation with Recurrent
Generative Adversarial Networks without Pre-training," 1st Workshop on Subword and
Character Level Models in NLP (SCLeM), 2017.

[65] S. Rajeswar, S. Subramanian, F. Dutil, C. Pal and A. Courville, "Adversarial Generation of
Natural Language," 2nd Workshop on Representation Learning for NLP (RepL4NLP), 2017.

[66] M. Mirza and S. Osindero, "Conditional Generative Adversarial Nets," arXiv:1411.1784,

Approved for Public Release; Distribution Unlimited.
84

11 2014.
[67] Z. Yang, W. Chen, F. Wang and B. Xu, "Improving Neural Machine Translation with

Conditional Sequence Generative Adversarial Nets.," North American Chapter of the
Association for Computational Linguistics (NAACL), 2018.

[68] J.-Y. Zhu, T. Park, P. Isola and A. A. Efros, "Unpaired Image-to-Image Translation using
Cycle-Consistent Adversarial Networks.," International Conference on Computer Vision
(ICCV), 2017.

[69] A. N. Gomez, S. Huang, I. Zhang, B. M. Li, M. Osama and L. Kaiser, "Unsupervised Cipher
Cracking Using Discrete GANs," International Conference on Learning Representations
(ICLR), 2018.

[70] G. Lample, L. Denoyer and M. Ranzato, "Unsupervised Machine Translation Using
Monolingual Corpora Only," International Conference on Learning Representations
(ICLR), 2018.

[71] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang and R. Webb, "Learning from
Simulated and Unsupervised Images through Adversarial Training.," Computer Vision and
Pattern Recognition (CVPR), 2017.

[72] M.-T. Luong, H. Pham and C. D. Manning, "Effective Approaches to Attention-based
Neural Machine Translation," Empirical Methods in Natural Language Processing
(EMNLP), 2015.

[73] P. Vincent, H. Larochelle, Y. Bengio and P.-A. Manzagol, "Extracting and composing
robust features with denoising autoencoders.," International Conference on Machine
Learning (ICML), 2008.

[74] R. J. Williams and D. Zipser, "A Learning Algorithm for Continually Running Fully
Recurrent Neural Networks.," Neural Computation, 1989.

[75] J.-Y. Zhu, T. Park, P. Isola and A. A. Efros, "Unpaired Image-to-Image Translation using
Cycle-Consistent Adversarial Networks," in International Conference on Computer Vision
and Pattern Recognition (CVPR), Honolulu, HI, 2017.

[76] M. J. Kusner, B. Paige and J. Hernandez-Lobato, "Grammar Variational Autoencoder,"
arXiv, 2017.

[77] GitHub, Inc., "eliben / pycparser," 2018. [Online]. Available:
https://github.com/eliben/pycparser. [Accessed 5 August 2018].

[78] Free Software Foundation, Inc., "GCC, the GNU C Compiler," 30 July 2018. [Online].
Available: https://gcc.gnu.org. [Accessed 5 August 2018].

[79] Purism, "PureOS," [Online]. Available: https://pureos.net/. [Accessed 20 July 2018].
[80] K. Papineni, S. Roukos, T. Ward and W.-J. Zhu, "BLEU: a Moethod for Automatic

Evaluation of Machine Translation," in Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics (ACL), 2002.

[81] Synopsys, Inc., "Heartbleed Bug," 2017. [Online]. Available: http://heartbleed.com/.
[Accessed 13 July 2018].

[82] Google, "OSS-Fuzz," GitHub, Inc., 2018. [Online]. Available:
https://github.com/google/oss-fuzz. [Accessed 13 July 2018].

[83] S. H. Tan, J. Yi, S. Mechtaev and A. Roychoudhury, "Codeflaws: A Programming

Approved for Public Release; Distribution Unlimited.
85

Competition Benchmark for Evaluating Automated Program Repair Tools," in 2017
IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C),
2017.

Approved for Public Release; Distribution Unlimited.
86

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

AE auto encoder

AI artificial intelligence

ANN artificial neural network

API application programming interface

AST abstract syntax tree

AUC area under curve

BLEU Bilingual Evaluation Understudy

BOW bag of words

CFG control flow graph

CI continuous integration

CNN convolutional neural network

CPU central processing unit

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

DARPA Defense Advanced Research Projects Agency

Draper The Charles Stark Draper Laboratory, Inc.

EM earth movers

FN false negatives

FP false positives

FPR false positive rate

GAN generative adversarial network

GCC GNU C Compiler

GPU graphics processing unit

IR intermediate representation

JSON JavaScript Object Notation

LLVM formerly known as Low Level Virtual Machine

LSTM long-short term memory

Approved for Public Release; Distribution Unlimited.
87

MCC Matthews Correlation Coefficient

MFI MUSE function index

MICCAI Medical Image Computing and Computer Assisted Intervention

MMD maximum mean discrepancy

MUSE Mining and Understanding Software Enclaves

NIST National Institute of Standards and Technology

NLP natural language processing

PCA principal component analysis

PR precision-recall

ReLU rectified linear unit

RF random forest

RMSProp root mean square propagation

RNN recurrent neural network

ROC receiver operating characteristic

SA static analysis

SATE Static Analysis Tool Exposition

SVM support vector machine

t-SNE t-distributed stochastic neighbor embedding

TA technical area

TN true negatives

TP true positives

TPR true positive rate

VAE variational auto encoder

WGAN Wasserstein Generative Adversarial Network

	LIST OF FIGURES
	LIST OF TABLES
	1. SUMMARY
	2. INTRODUCTION
	2.1 Deep Learning Approach
	2.2 Major Program Elements
	2.3 Subcontractors

	3. METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1 System Architecture
	3.2 Training Data Generation (MUSE TA2 and TA3)
	3.2.1 Training Corpus.
	3.2.2 Data Generation Architecture.
	3.2.3 Data Generation System Components.
	Code Harvest
	Artifact Extraction
	Object Ingest
	Relation Integration

	3.3 Machine Learning (MUSE TA4)
	3.3.1 Learning System Architecture.
	3.3.2 Training.
	Labeling
	Feature Generation
	Data Curation – Filtering and Duplicate Removal

	3.3.3 Classification.
	Build Feature-Based Classifiers
	Source Feature-Based Classifiers
	Combined Classifier(s)
	Ensemble Approaches

	3.3.4 Repair.
	Sequence-to-Sequence
	Generative Adversarial Network (GAN)
	Hyperparameter Tuning
	Cycle-GAN

	3.3.5 Program Synthesis.

	4. RESULTS AND DISCUSSION
	4.1 Data
	4.1.1 Data Generation and Ingestion.
	4.1.2 Data Extraction.

	4.2 Classification
	4.2.1 Approach to Quantifying Accuracy.
	Receiver Operating Characteristic (ROC) Curve
	Precision-Recall (PR) Curve
	Matthews Correlation Coefficient

	4.2.2 Training Results.
	4.2.3 Evaluation Results.
	4.2.4 Examples.

	4.3 Repair
	4.3.1 Approach to Quantifying Accuracy.
	4.3.2 Repair Accuracy Results.
	Sorting Experiment
	Grammar Experiment
	Juliet Test Suite

	4.3.3 Repair Examples.

	4.4 Program Synthesis
	4.5 Program Evaluations
	4.5.1 Phase 1 Hackathon.
	4.5.2 Phase 2 Evaluation.
	4.5.3 Phase 2 Hackathon.
	4.5.4 Phase 3 Challenge Problem.
	Challenge Problem 1 (Analysis Goal)
	Challenge Problem 2 (Demonstration Goal)

	5. CONCLUSIONS
	5.1 Classification
	5.2 Repair
	5.3 Program Synthesis
	5.4 Transition
	5.5 Recommendations for Future Work
	5.5.1 Labeling.
	5.5.2 Classification.
	5.5.3 Repair GAN.
	5.5.4 Program Synthesis.

	6. REFERENCES
	LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

