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1. SUMMARY
This report describes research carried out by 
The Charles Stark Draper Laboratory, Inc. 
(Draper) team in the Defense Advanced 
Research Projects Agency (DARPA) Mining 
and Understanding Software Enclaves 
(MUSE) program under contract FA8750-15-
C-0242.  The Draper team included 
subcontractors Paradigm4 and Stanford 
University. 

Our focus on the MUSE program was to 
develop big-data analytics using machine learning for automatic vulnerability classification and 
repair.  This work encompasses three of the technical areas (TAs) for the MUSE program:  TA2 
(Artifact Generators), TA3 (Mining Engine), and TA4 (Analytics).  Our work under TA2 involved 
mining open source code to generate a large quantity of data that we used to train the machine 
learning algorithms to classify and repair vulnerabilities.  Our work under TA3 involved 
representing data in formats most conducive to training the algorithms.  Our work under TA4 
involved developing advanced algorithms that make optimal use of the available training data.  We 
demonstrated the performance of our system through benchmarking and participation in program-
wide evaluation events. 

Key technical advancements that we contributed to the MUSE program included the following: 

• Fast and scalable machine learning-based classifiers to detect patterns in known types of
software vulnerabilities and demonstrated improved detection accuracy (precision and
recall) over multiple open-source static analysis (SA) tools on a synthetic benchmark
dataset.

• A generative adversarial network (GAN) to advance the state of the art in automated repair
of common types of software vulnerabilities.  The prior state of the art is sequence-to-
sequence learning that requires labeled bad-good pairs of training data, the availability of
which is extremely limited.  The new GAN does not require labeled data pairs, and this
greatly expands the amount of training data that can be made available for this approach.

• A data ingestion pipeline to scrape, build, and analyze millions of functions from open-
source software to generate training data for learning-based algorithms.

The most promising direction for future work in this area would be a focus on expanding the 
availability of training data with truth labels, such as those from dynamic analysis tools or mined 
from security patches.  We demonstrated that larger labeled training sets should provide improved 
vulnerability classification accuracy. 

Engineering Possibilities 
Draper is an independent, not-for-profit corporation, which 
means its primary commitment is to the success of customers' 
missions rather than to shareholders. For either government 
or private sector customers, Draper leverages its deep 
experience and innovative thinking to be an effective 
engineering research and development partner, designing 
solutions or objectively evaluating the ideas or products of 
others. Draper will partner with other organizations — from 
large for-profit prime contractors, to government agencies, to 
university researchers — in a variety of capacities. Services 
Draper provides range from concept development through 
delivered solution and lifecycle support. Draper's 
multidisciplinary teams of engineers and scientists can deliver 
useful solutions to even the most critical problems. 
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2. INTRODUCTION
Every year, thousands of new security vulnerabilities are reported and catalogued in the Common 
Vulnerabilities and Exposures (CVE) database [1].  Annual security-related hardware, software, 
and service expenses approach $100 billion worldwide [2].  Automation could substantially reduce 
the labor and increase the yield in the process of identifying and repairing such vulnerabilities in 
software.  Draper’s work under the DARPA MUSE program developed machine learning 
approaches for automatic identification and repair of software vulnerabilities. 

2.1 Deep Learning Approach 

Deep Learning is a subfield of machine learning in Artificial Intelligence (AI) concerned with 
algorithms inspired by the structure and function of the brain called biological neural networks. 
The term artificial neural networks (ANNs) (and more broadly AI) is used to describe Deep 
Learning, as ANNs loosely model the neurons in a biological brain, and the networks are supposed 
to imitate the workings of the human brain in processing data and creating patterns and 
representations for use in decision making.  Draper chose Deep Learning as the technological 
foundation for work on the MUSE program because of its ability to learn high-level feature 
representations from low-level inputs.  This is a critical capability for a system that can learn to 
identify patterns that recur in software with security vulnerabilities and generalize those patterns 
to identify new vulnerabilities in software that the system hasn’t seen before.  Deep Learning has 
also demonstrated success in related fields that have similar problems, such as image classification 
[3] [4] [5] [6] [7], image caption generation [8] [9], semantic natural language processing (NLP)
[10] [11], and machine translation [12] [13].  Deep Learning has achieved the best performance in
multiple machine learning competitions such as ImageNet [14], Medical Image Computing and
Computer Assisted Intervention (MICCAI) [15], and Go [16].

2.2 Major Program Elements 

Major elements of Draper’s developments on the MUSE program included the following: 

• Mining open source code to generate a large quantity of training data for the Deep Learning
algorithms.  This involved scraping code repositories to get information about code as it
evolved over its revision history, building the code to enable training artifacts to be
extracted, and applying training labels to the code that we derived from a variety of sources.

• Representing data in formats most conducive to training the algorithms.  This involved
defining a combination of source and build artifacts to use as features on which to train,
extracting those features from the code, storing data in a variety of database formats best
suited to retrieval for training, careful de-duplication of data to avoid overfitting, and
representing data in vector formats for use by the Deep Learning algorithms.

• Developing advanced algorithms that make optimal use of the available training data.  This
involved developing and evaluating a variety of classification and repair algorithms.

• Evaluating performance of the system through benchmarking and participation in program-
wide evaluation events.
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The development occurred over the course of three program phases: 

• During Phase 1, we developed and demonstrated the initial classification capability.

• During Phase 2, we refined the classification capability and advanced the state of the art in
repair.

• During Phase 3, we refined the classification and repair capabilities further and evaluated
system performance.

2.3 Subcontractors 

The Draper team for the MUSE program included two subcontractors: 

• Paradigm4 is the developer of an open-source data analysis and management system that
addresses peta-scale operation through distributed, scalable and in-situ vector and matrix
operation.  During Phases 1 and 2 of the MUSE program, Paradigm4 developed a
mathematical data analysis component called SciDB to provide support for efficient,
distributed matrix and graph operations.  SciDB was shown to provide substantial speedup for
a central processing unit (CPU) based architecture but was not implemented for a graphics
processing unit (GPU) based architecture.  We did not continue this development in Phase 3
because the Draper DeepCode development moved to a GPU-based architecture, which would
not have benefited from the CPU-based improvements that SciDB offered.

• Stanford University focused on Deep Learning, in which very large neural networks are
constructed to learn from labeled and unlabeled data.  During Phases 1 and 2 of the MUSE
program, Stanford University performed initial work on sequence-to-sequence learning
algorithms.  We did not continue this development in Phase 3 because the Draper DeepCode
development for repair moved away from the sequence-to-sequence approach and in the
direction of developing a GAN model.

3. METHODS, ASSUMPTIONS, AND PROCEDURES
During the course of the MUSE program, Draper developed a data pipeline for training data 
generation and machine learning that encompassed TA2, TA3, and TA4 of the MUSE program. 
Section 3.1 describes the high-level system architecture for the data pipeline.  Section 3.2 describes 
the data generation elements of the architecture (TA2 and TA3).  Section 3.3 describes the machine 
learning elements of the architecture (TA4).  We refer to the collection of Draper solutions for the 
MUSE program as the DeepCode system. 
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3.1 System Architecture 

Figure 1 depicts the functional flow of data through the DeepCode system. 

Figure 1.  Functional Flow of Data Through DeepCode System 

Data flow through the system occurs in the following key steps: 

1. Scrape:  Starting with code from a variety of sources, we scrape over the revision history
of the code repositories to mine for examples of software bugs that we can use to train the
learning algorithms.  This step prepares multiple builds over the code revision history.

2. Build:  This step builds the scraped source code to generate object code and run SA tools.

3. Generate artifacts:  This step generates labels and features to be used for training.

4. Ingest:  This step collects labels and features into a common format to enable training.

5. Artifact database:  A common artifact database allows us to combine training data from
diverse sources.
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6. Pull:  This step collects artifacts from multiple sources stored in the database and converts 
the labels and features into training vectors.  This step also performs functions such as de-
duplication of training data. 

7. Train:  This step operates on the training vectors to generate network parameters (weights) 
for the learning algorithms. 

8. Run:  This step runs trained networks on code under test to generate error detections and 
repairs. 

9. Patch:  This step produces a repaired version of the code under test. 

3.2 Training Data Generation (MUSE TA2 and TA3) 

This section describes the training data generation elements of the DeepCode system.  Section 
3.2.1 describes the training corpus.  Section 3.2.2 describes the system architecture that hosts the 
training data generation elements.  Section 3.2.3 describes key elements of the processing chain 
used to generate the training data. 

3.2.1 Training Corpus. 
A key challenge in the application of machine learning is to get enough labeled data to train the 
algorithms.  Learning algorithms should have hundreds of thousands of code examples that are 
known to have certain types of vulnerabilities, so that they can learn the patterns.  Training requires 
that we have truth data about code with and without vulnerabilities.  We refer to these truth data 
as “labels.”  Requirements for the labels include the following: 
 

• Volume:  Training the networks requires a large number of labels. 

• Quality:  Labels need to be correct with low false positive rate (FPR). 

• Effort:  We need to be able to generate labels with reasonable time and labor. 

• Diversity:  Labels need to cover a wide range of types of errors.  The labeled code should 
also be representative of the types of code to be classified and repaired. 

Over the course of the MUSE program, we tried several label generation approaches as described 
below. 
 

• Curated:  Some code repositories, such as the source code for the Debian Linux 
distribution, provide precise information about which CVEs are corrected in which 
revisions of the software.  We processed these and used this information to generate labels, 
but we were able to generate only a very small number of labels in this way. 

• SA-derived:  We can use SA to generate large numbers of labels quickly on arbitrary source 
code, but the quality of these labels is only as good as the accuracy of the SA tools. 

• Manually labeled:  It is possible to label code manually, but this is a labor-intensive process 
and as such produces very low yield.  ManyBugs [17] is an example of a dataset for which 
a very limited amount of manually generated label data are available. 
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• Artificially injected:  We attempted to inject known errors artificially into otherwise good
code to generate synthetic code with known errors.  This produces code with good labels
but the diversity of errors represented in such data is very limited.

• Synthetic:  There exists synthetic code with and without known vulnerabilities that
provides benchmark data for SA.  The best known datasets of this type are the Static
Analysis Tool Exposition (SATE) IV dataset [18] and the Juliet Test Suite [19].  The
National Institute of Standards and Technology (NIST) designed SATE IV to advance
research in SA tools [20].  This dataset was later updated to the Juliet Test Suite for C/C++,
a collection of test cases in the C/C++ language containing examples organized under 118
different Common Weakness Enumeration (CWE) [21] types as compiled by the MITRE
Corporation.  These datasets come with high-quality labels but are limited in volume.  The
vulnerability examples represented in these datasets are very diverse, but the code
complexity is not representative of real-world code.

• Natural language:  We tried various NLP techniques in an attempt to extract labels from
commit messages in revision histories.  These approaches did not correlate with the
presence of vulnerabilities better than an ad hoc keyword search.

Figure 2 summarizes the performance of various types of training data relative to the labeling 
requirements listed above.  This pictorially depicts a relative scale, with green representing the 
best performance relative to a given requirement, yellow in the middle, and red representing the 
worst performance. 

Figure 2.  Labeling Performance for Various Types of Training Data 

No single dataset satisfies all of the criteria for good training labels.  Therefore, we combined data 
from several sources into a training corpus, as follows: 

• Juliet Test Suite:  We used this primarily for the high-quality vulnerability labeling that it
provides.

• MUSE Corpus with SA-derived labels:  This is a collection of GitHub projects originally
provided by Leidos and later managed by Two Six Labs.  The Draper team uses C and C++

Label Type Volume Quality Effort Diversity

Curated

SA-derived

Manually labeled

Artificially injected

Synthetic

Natural language
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code packages from this dataset.  Since these datasets are not labeled in any way, we used 
SA to generate labels.  We used this primarily to get a large volume of diverse open-source 
code with a large number of labels that we could generate automatically. 

• Debian Linux distribution with SA-derived labels:  We used this as an example of a well-
curated code base to add to the training corpus.

• Debian Linux kernel with SA-derived labels:  We used this primarily to expand the
diversity of the training set by including kernel code.

3.2.2 Data Generation Architecture. 
Upon corpus selection, the Draper team created a work flow that is based on Buildbot [22], an 
open source framework for automating software builds, to build each project in the corpus using a 
modified version of strace [23] to capture system calls associated with the build.  A modified 
version of Clang, a C language family front end of LLVM (formerly known as Low Level Virtual 
Machine) [24], is used to perform a shadow build and capture build artifacts such as optimized 
intermediate representation (IR), control flow, use-def and def-use chains, loop features, abstract 
syntax tree (AST), SA, and more.  These artifacts are then stored in graph form in TitanDB [25], 
a graph database accessed via TinkerPop [26].  TitanDB in turn resides on top of Cassandra [27], 
a distributed database for managing large amounts of structured data across many commodity 
servers. 

From this data store, analytical data are migrated into Elasticsearch indexes for use by the machine 
learning parts of the system architecture.  Because much of our dataset is not initially labeled in 
any way, three SA tools are used to generate a form of labeling.  These three SA tools are the 
Clang Static Analyzer [28], Flawfinder [29], and Cppcheck [30].  While SA produces noisy labels, 
the use of multiple SA tools mitigates the effect of this noise on our labeling. 

The Draper team constructed a cluster of about 40 low-end Dell R320 servers.  We distributed the 
entire build infrastructure, graph storage, and analytic storage functions across these servers.  Two 
servers are responsible for managing Cassandra and TitanDB, and 14 servers house the storage for 
the graph database.  This graphical database is about 16 TB in size.  It stores artifacts described 
above for thousands of C/C++ projects.  The analytic store is a 7 node Elasticsearch cluster 
containing 12.7 billion documents taking up about 3.5 TB.  These documents are JavaScript Object 
Notation (JSON) files containing detailed information about builds and associated analytics. 
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TitanDB is a graph database made up of nodes (or vertices) and edges.  Figure 3 depicts the basic 
schema of the DeepCode TitanDB graph database structure.  The schema starts with a build (as 
performed by Buildbot and shadowed by strace-Clang).  Additional nodes in the graph include the 
package built, the modules that make up the package, the functions that make up each module, and 
the basic blocks that make up each function.  Each node contains features representing the build 
artifacts that are relevant for network training. 

Figure 3.  Graph Database Structure 

Once a build has completed and generated all necessary artifacts, the ingest step ingests the 
information into TitanDB/Cassandra and Elasticsearch.  Our Elasticsearch indexes include build 
step logs (Buildbot allows for several activities to be scheduled as steps in an overall build).  The 
logs include details about the shadow build, the location of where build artifacts are stored and the 
results of other build steps.  For example, the SA runs take place at different points in the build 
process.  Clang SA is run while Clang is performing the build, while Cppcheck and Flawfinder 
take place upon completion of the build.  All of these results are stored in an Elasticsearch index 
that contains all information associated with the build. 
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3.2.3 Data Generation System Components. 
Figure 4 depicts the high-level system architecture for the DeepCode data pipeline.  We describe 
each of the TA2 and TA3 elements of the system architecture in detail below. 

Figure 4.  DeepCode Data Pipeline 

Code Harvest 
The Code Harvest element of the DeepCode data pipeline performs the scrape and build steps of 
the DeepCode functional flow.  This can act either on a compressed file containing all source code 
associated with a project, or on a bare Git repository.  The Draper team mirrored several Git 
repositories from GitHub on the aforementioned cluster of servers.  In the scrape step, the Code 
Harvest element traverses these repositories, building each tag (or commit, depending on 
arguments supplied to the builder).  The scrape and build steps are managed by a modified version 
of Buildbot consisting of a build master (located on one server) and several builders (located across 
several servers).  Each builder can be a unique environment to get specific projects to build.  For 
example, the Draper cluster consists of about 30 servers running CentOS, while 5 servers are 
running Ubuntu.  Figure 5 depicts this build process. 
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Figure 5.  DeepCode Build Process 

The Draper team has created several types of builders, not just in the sense of what environment 
in which to run, but also what type of build to perform, such as cmake, make, or genericBash 
(where various commands can be issued via a shell).  Because the various Git repositories have 
various build methodologies, not all builds turn out to be successful.  Because there are in fact two 
builds, there is a chance that the regular build succeeds while the shadow build fails, as the shadow 
build occurs in Clang in LLVM.  In these cases, some modules may still succeed in building; but 
not all artifacts are extracted.  Figure 6 shows an example from a genericBash build for which 218 
modules were built, but only 216 were successfully extracted for storage.  This illustrates that even 
if all modules build, they might not all have artifacts available to be extracted for use by the 
machine learning functions. 

Figure 6.  Sample Build Dashboard 

Artifact Extraction 
The Artifact Extraction generates a large JSON file that relates build artifacts to packages, builds, 
and revisions.  This file is suitable for running through the Object Ingest element for ingest into 
the TitanDB server. 
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Object Ingest 
The Object Ingest element is a Java wrapper for interacting with TitanDB.  It is made up of 
Gremlin/TinkerPop code to create a TitanDB database, create a schema, and create and populate 
the vertices and edges based on JSON file generated by the Artifact Extraction element.  Along 
with graph information concerning each build and package, metadata concerning the Buildbot 
build are stored in Elasticsearch.  This creates a connection between the analytic store in 
Elasticsearch and the graph storage in TitanDB.  These metadata consist of all output generated 
during each build step such as log output and the overall status of each step. 
 
Relation Integration 
The Relation Integration element collects build artifacts from various indices in the Elasticsearch 
analytic store into a summary index called a MUSE function index (MFI).  The MFI contains all 
required information to train the Deep Learning element.  This index is pulled using a Python script 
to generate a binary pickle file.  This file is further processed to filter functions based on usability 
(control flow larger than zero, valid SA findings, and so on).  The output of the filtered functions 
is then split further into three sets for training, validation, and testing.  Finally, this output is written 
to H5 files used as inputs for the machine learning algorithms. 

3.3 Machine Learning (MUSE TA4) 

Beyond the traditional tools (such as SA, dynamic analysis, and symbolic execution) that attempt 
to uncover common software vulnerabilities, there has been significant recent work on the use of 
machine learning for program analysis.  The large amounts of open-source code now available 
open the opportunity to learn the patterns of software vulnerabilities directly from mined data.  
Allamanis et al. [31] provide a comprehensive review of learning from “Big Code.” 
 
In the area of vulnerability detection, Hovsepyan et al. [32] used a support vector machine (SVM) 
on the bag of words (BOW) representation of a simple tokenization of Java source code to predict 
SA labels, though their work was limited to training and evaluating on a single software repository.  
Pang et al. [33] expanded on this work by including n-grams in the feature vectors used with the 
SVM classifier.  Mou et al. [34] explored the potential of Deep Learning for program analysis by 
embedding the nodes of the AST representations of source code and training a tree-based 
convolutional neural network (CNN) for simple supervised classification problems.  Li et al. [35] 
used a recurrent neural network (RNN) trained on code snippets related to library and application 
programming interface (API) function calls to detect two types of vulnerabilities related to the 
improper usage of those calls. 
 
To our knowledge, no work has been done on using Deep Learning to learn features directly from 
source code and from build features extracted from source code in a large natural codebase to 
detect and repair a variety of vulnerabilities.  The limited datasets (in both size and variety) used 
by most of the previous works limit the usefulness of the results and prevent them from taking full 
advantage of the power of Deep Learning.  Section 3.3.1 describes the high-level system 
architecture of our machine learning elements.  Section 3.3.2 describes the data processing 
procedures to generate features, labels, and to remove duplicate data samples in order to train 
machine learning models.  Sections 3.3.3 and 3.3.4 describe vulnerability detection algorithms and 
repair algorithms in detail.  Section 3.3.5 describes exploratory research on program synthesis 
approach as a way to generate labeled datasets. 
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3.3.1 Learning System Architecture. 
The pull step of the DeepCode functional flow generates binary labels (“vulnerable” and “not 
vulnerable”), creates feature vectors (build features and source features), and performs data 
curation to remove duplicate data samples.  Details of labeling, features, and duplicate removal 
follow in Section 3.3.2.  After these training data are generated, the train step of the DeepCode 
functional flow separately trains the classification and repair networks.  The run step of the 
DeepCode functional flow evaluates the trained networks on benchmark datasets.  

Repair networks were trained only on source features while different variations of classifier models 
were trained – a model that uses build features only (which we call a “build feature-based 
classifier”), and a model that uses source features only (which we call a “source feature-based 
classifier”), and a model that uses combined feature sets (which we call a “combined classifier”).  
Details of these classifiers and repair networks are covered in Section 3.3.3 and 3.3.4.  Figure 7 
shows the flow of the training process. 

Figure 7.  Overall Flow of the Training Process 

Once the classifier models and repair networks were trained, we evaluated our model performance 
against the held-out portion of training data and against the benchmark dataset.  Figure 8 shows 
the flow diagram of DeepCode’s classification and repair processes. 

Figure 8.  Flow Diagram of DeepCode’s Classification and Repair Processes 

3.3.2 Training. 
Key components of training data generation include labeling, feature vector generation, and data 
curation to remove duplicate data samples and data that are otherwise unsuitable for use in training. 
We describe each of these components in detail below.  Note that each data sample is a function-
level example of C and C++ programs.  We chose to analyze software packages at the function 
level because it is the lowest level of granularity capturing the overall flow of a subroutine. 
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Labeling 
Labeling code vulnerabilities at the function level was a significant challenge.  The bulk of our 
dataset was made up of mined open-source code (namely the MUSE Corpus, the Debian Linux 
distribution, and the Debian Linux kernel) without known ground truth.  In order to generate labels, 
we pursued three approaches:  dynamic analysis, commit-message/bug-report tagging, and SA. 

Dynamic Analysis:  While dynamic analysis is capable of exposing subtle flaws by executing 
functions with a wide range of possible inputs, it is extremely resource intensive. Performing a 
dynamic analysis using Draper’s internal tool, Vader (version 1.0), on the roughly 400 functions 
in a single module of the LibTIFF 3.8.2 package from the ManyBugs dataset took nearly a day of 
effort. Therefore, this approach was not realistic for our extremely large dataset. 

Commit Message Labeling:  Commit-message labeling turned out to be very challenging, 
providing low-quality labels.  In our tests, both humans and machine learning algorithms were 
poor at using commit messages to predict corresponding Travis continuous integration (CI) [36] 
build failures or fixes.  Motivated by recent work by Zhou et al. [37], we also tried a simple 
keyword search looking for commit words like “buggy”, “broken”, “error”, or “fixed” to label 
before-and-after pairs of functions, which yielded better results in terms of relevancy.  However, 
this approach greatly reduced the number of candidate functions that we could label and still 
required significant manual inspection, making it inappropriate for our vast dataset. 

SA Labeling:  As a result, we decided to use three open-source SA tools, Clang [38] [28], 
Flawfinder [29], and Cppcheck [30], to generate labels.  Each SA tool varies in its scope of search 
and detection.  For example, Clang’s scope is very broad but also picks up on syntax, programming 
style, and other findings which are not likely to result in a vulnerability.  Flawfinder’s scope is 
geared towards CWE [21] classes and does not focus on other aspects such as style.  Cppcheck 
checks for memory leaks, mismatching allocation-deallocation, buffer overrun, and others with a 
goal of 0% false positives.  Therefore, we incorporated multiple SA tools and pruned their outputs 
to exclude findings that are not typically associated with security vulnerabilities in an effort to 
create robust labels. 

We had a team of dedicated security researchers map each SA tool’s finding categories to the 
corresponding CWEs and identify which CWEs would likely result in potential security 
vulnerabilities.  This process allowed us to generate binary labels of “vulnerable” and “not 
vulnerable”, depending on the CWE.  For example, Clang’s “Out-of-bound array access” finding 
was mapped to “CWE-805: Buffer Access with Incorrect Length Value”, an exploitable 
vulnerability that can lead to program crashes, so functions with this finding were labeled 
“vulnerable.”  On the other hand, Cppcheck’s “Unused struct member” finding was mapped to 
“CWE-563: Assignment to Variable without Use”, a poor code practice unlikely to cause a security 
vulnerability, so corresponding functions were labeled “not vulnerable” even though SA tools 
flagged them.  Of the 390 total types of findings from the SA tools, 149 were determined to result 
in a potential security vulnerability.  Roughly 5.1% of our curated, mined C/C++ functions 
triggered a vulnerability-related finding.  Table 1 shows the statistics of frequent CWEs in these 
“vulnerable” functions; the “Frequency (%)” column in this table represents the distribution of 
each CWE among functions that had the CWEs listed. 
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Table 1.  CWE Statistics of Vulnerabilities Detected in Our Dataset 

CWE ID CWE Description Frequency (%) 

120 Buffer Copy without Checking Size of Input (“Classic Buffer 
Overflow”) 

29.2% 

119 Improper Restriction of Operations within the Bounds of a 
Memory Buffer 

12.7% 

469 Use of Pointer Subtraction to Determine Size 11.8% 

476 NULL Pointer Dereference 10.7% 

805 Buffer Access with Incorrect Length Value 5.4% 

362 Concurrent Execution using Shared Resource with Improper 
Synchronization 

3.6% 

20, 234, 
457, etc. 

Improper Input Validation, Failure to Handle Missing 
Parameter, Use of Uninitialized Variable, etc. 

26.5% 

The Juliet Test Suite contains synthetic code examples with vulnerabilities from 118 different 
CWEs and was originally designed to explore the performance of static and dynamic analysis tools.  
While the Juliet Test Suite provides labeled examples of many types of vulnerabilities, it is made 
up of synthetic code snippets that do not sufficiently cover the space of natural code to provide an 
appropriate training set alone.  The functions mined from the MUSE Corpus, Debian Linux 
distribution, and Debian Linux kernel appropriately provide a vast dataset of natural code to 
augment the Juliet Test Suite. 

Program synthesis is another potential approach that could generate a large number of labeled C 
programs.  Section 3.3.5 describes the approaches we took in this space. 

Feature Generation 
We extract two types of features as they offer different sources of information. The source features 
can provide statistical correlations in how code is written, while build features give inherent 
knowledge about the structure or semantics of the language in which the code was built. 

Build Features: At the function level, the control flow graph (CFG) of the function is extracted.  
The CFG is a graph representation of the different paths a program can take during execution. 
Each node is a basic block – a unit of code with no branching behavior.  The edges of the graph 
connect basic blocks that can flow into each other during execution and occur at control flow 
operations.  At a high level, this representation is useful for vulnerability detection because models 
can potentially learn program execution topologies that are risky.  The high-level view of the CFG 
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is complemented by features extracted from each basic block within the CFG, so that models can 
also learn instruction-level behaviors that are associated with vulnerable code. 

Within each basic block, we extract features which define the behavior of the basic block.  The 
first of these features is the use-def matrix.  This matrix tracks, within the basic block, the locations 
of instructions where variables are defined (def) and used (use). If a variable is defined at 
instruction 𝑖𝑖 and used in instruction 𝑗𝑗, then both the (𝑖𝑖, 𝑗𝑗) and (𝑗𝑗, 𝑖𝑖) entries of the use-def matrix 
are set to 1.  The second feature extracted for each basic block is the operation code vector (opvec). 
LLVM assigns operation codes to instructions in one of nine different categories: conditional, 
arrogate, binary, bit binary, conversion, memory address, termination, vector operation, and other. 
The opvec for a basic block is a vector that keeps counts of each of these possible classifications.  
Figure 9 shows the CFG and corresponding basic blocks of an example code snippet. 

Figure 9.  CFG and Basic Blocks 

The size and content of the build features vary depending on the complexity of the given code 
snippet (function), as the CFG, the number of basic blocks, the sizes of use-def matrices, and the 
opvecs differ.  In order to keep the input feature size manageable, and since it is unlikely for a 
single basic block to have a very large number of operations, we fix the size of the use-def matrix 
to be 15.  Basic blocks with size over 15 are truncated, and basic blocks with size under 15 are 
padded with zeroes.  Since the use-def matrix is symmetric and the main diagonal entries of the 
use-def matrix are equal to zero (a variable cannot be defined and used in the same instruction), 
we take the upper-triangular part of the use-def matrix and flatten it to a vector.  As a result, a 
single use-def matrix can be represented as a vector of length (152 − 15) 2⁄ = 105.  Since an 
opvec is a vector of length 9, each basic block can be represented as a vector of length 114.  The 
size of a build feature vector for a function of CFG size 𝑛𝑛 can be represented as 𝑛𝑛2 + 𝑛𝑛 ∗ 114.  

Since most classifier algorithms require fixed size input vector, we took a few different approaches 
to convert variable-length build feature vectors to fixed size.  The most straightforward way was 
to average basic block vectors into a single vector of length 114, then to compute the sparsity of 
the CFG matrix to represent the n-by-n matrix as a single value.  We also added a constant variable 
representing the CFG size.  As a result, we represented build feature vectors as fixed length vectors 
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of length 116.  We refer to this representation as the “simplified” build feature vector. 

Another approach was to generate the sequence inputs that best capture the control flow of the 
basic blocks for the CNN and long-short term memory (LSTM).  We first convert the CFG to a 
dominator tree, as a tree representation captures most of the control flow.  (As evidence of this, we 
note that some compiler optimizations use dominator trees for memory usage analysis to find leaks 
and identify high memory usage.)  After converting the CFG to a dominator tree, we still need to 
convert it to a sequence input.  Here we use a topological sort.  A topological sort is a linear 
ordering of the vertices of a graph such that for every directed edge 𝑒𝑒𝑛𝑛𝑛𝑛 from vertex 𝑛𝑛 to vertex 𝑑𝑑, 
𝑛𝑛 comes before 𝑑𝑑 in the ordering.  This captures the ordering in which the basic blocks in a function 
must be performed, thus capturing the control flow of the function. 

Figure 10 shows the overall flow from CFG to sequential representation of basic blocks.  We first 
convert the CFG to a dominator tree; then traverse the tree with topological sorting to generate the 
sequence inputs.  Some learning approaches require the input sequence lengths to be limited.  For 
example, LSTM suffers from vanishing or exploding gradients if inputs are too long.  Since only 
a small fraction of the functions we ingested have CFG size over 200, we fixed the number of basic 
blocks to be the first 200 basic blocks in topological ordering.   

Figure 10.  Topological Sorting of Dominator Tree Representation of CFG 

Our “advanced” build features for each function are thus represented by an N-by-K matrix, where 
N = 200 is the number of basic blocks (we pad with zeroes for any function with fewer than 200 
basic blocks) and K = 114 is the size of the basic block feature vector representation described 
above. 

Source / Lexer Features: To generate useful features from the raw source code of each function, 
we created a custom C/C++ lexer designed to capture the relevant meaning of critical tokens while 
minimizing the total token vocabulary size.  Standard lexers, designed for actually compiling code, 
capture far too much detail that can lead to overfitting in machine learning approaches.  Our lexer 
was implemented via optimized regular expressions that allow large repositories to be lexed in 
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seconds. 
 
All base C/C++ keywords, operators, and separators are included in the lexer vocabulary. Code 
that does not affect compilation, such as comments, is stripped out.  String, character, and float 
literals are lexed to type-specific placeholder tokens.  Integer literals are tokenized digit-by-digit, 
as these values are frequently relevant to vulnerabilities.  Common types and calls, especially ones 
that are likely relevant to vulnerabilities, are included. These common types and calls were 
discovered by looking at the most common identifiers that occur when lexing our entire dataset.  
All tokens that are not recognized by the lexer (such as internal variables) are mapped to generic 
indexed identifiers.  For example, if the first variable to appear in the function is called foo and the 
second to appear is bar, all instances of foo and bar appearing in that function are lexed to id1 
and id2, respectively.  This identifier indexing is needed for the source repair, as the lexed 
representation needs to be able to be inverted back into compilable code. 
 
Table 2 represents our base lexer specification.  The maximum base vocabulary size is the sum of 
the number of tokens in the base lexer specification (188 tokens in all) and the maximum number 
of unique identifiers in any function in the dataset.  To bound the vocabulary size, we restrict 
attention to functions that have 500 or fewer tokens in the lexed representation.  This results in a 
maximum base vocabulary size of 298. 
 
 

Table 2.  Base Lexer Specification 

Operators and 
separators 

!, !=, #, %, %=, &, &&, &=, (, ), *, **, *=, +, ++, +=, ,, -, --, -
=, ->, ., /, /=, :, ::, ;, <, <<, =, ==, >, >>, ?, [, ], ^, {, |, |=, ||, }, ~ 

Integer literal 
digits 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9 

Directives #define, #elif, #else, #endif, #error, #if, #ifdef, #ifndef, 
#include, #line, #undef 

Calls calloc, cin, cout, defined, dprintk, endl, errmsg, fprintf, free, 
fscanf, fwscanf, len, malloc, memcmp, memcpy, memmove, 
memset, palloc, printf, printk, realloc, scanf, snprintf, sprintf, 
static_cast, strcat, strcmp, strcpy, strlen, strncmp, strncpy, 
swscanf 

Keywords 
and common 
macros 

assert, auto, break, case, catch, const, continue, default, delete, 
do, else, enum, errno, extern, false, for, goto, if, new, register, 
return, sizeof, static, std, stderr, struct, switch, this, throw, true, 
try, typedef, union, void, volatile, while, EOF, ERROR, 
FALSE, NUL, NULL, TRUE 

Common 
types 

bool, char, char_u, double, float, int, int32_t, l_int32, long, 
short, signed, size_t, ssize_t, string, u16, u32, u64, u8, uint, 
uint16, uint16_t, uint32, uint32_t, uint64, uint64_t, uint8, 
uint8_t, unsigned, BOOL, BYTE, DWORD, FILE, PyObject, 
QString, UBool, UErrorCode, UINT, UINT16, UINT32, 
UINT64, UINT8, U_FAILURE, UnicodeString, WORD 

Other literals characters, strings, floats 



Approved for Public Release; Distribution Unlimited. 
18 

Unlike the repair algorithms, our classification algorithms do not require that the lexed 
representation be invertible.  Thus, to reduce the vocabulary size as much as possible and reduce 
overfitting, we map many similar terms onto the same token.  Learned embeddings of these 
individual tokens would likely distinguish them based on the kind of code they are commonly used 
in, so care was taken to build in the desired invariance.  Making our lexed representation of code 
from different software repositories as standardized as possible empowers transfer learning across 
the full dataset. 

For this generic representation, all identifiers are mapped onto the same identifier placeholder 
tokens instead of being indexed.  This reduces the maximum vocabulary size down from 298 to 
188. Additionally, we mapped some tokens (particularly types and function calls) with identical
or nearly identical meanings onto the same token.  This helps ensure that similar C and C++ code,
or similar code using different common libraries, still have similar representations.  For example,
u32, uint32_t, UINT32, uint32, and DWORD are all lexed as the same generic token representing
32-bit unsigned data types.  This generic representation is able to reduce the vocabulary size to
only 156 tokens.  Table 3 summarizes generic lexer representation mapping.

Table 3.  Generic Lexer Representation Mapping 

From To 
UINT uint 

u8, UINT8, uint8_t, char_u, BYTE uint8 
u16, UINT16, uint16_t, WORD uint16 
u32, UINT32, uint32_t DWORD uint32 

u64, UINT64, uint64_t uint64 
l_int32, int32_t long 

UBool bool 
BOOL int 
TRUE 0 
FALSE 1 
ssize_t size_t 
palloc malloc 

QString UnicodeString 
U_FAILURE, PyObject, errmsg id 

dprintk, printk printf 
UErrorCode enum 

Combined Feature Sets: Since the source and build features can capture different aspects of our 
input data, we created combined features sets to explore how these features can be used together 
for improved classification performance.  The most straightforward way of combining the feature 
sets is by simply concatenating the “simplified” build feature vector and lexed feature vector of 
the source code.  For each feature type, we also learn neural feature representations using CNN or 
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RNN.  This allowed us to create many different combinations of source and build features by 
taking one feature vector from each column of options listed in Table 4. 

Table 4.  Feature Vector Combinations 

Build Feature Vector Options Source Feature Vector Options 
• “Simplified” build feature vector
• CNN learned build feature vector
• RNN learned build feature vector

• CNN learned source feature vector
• RNN learned source feature vector
• BOW representation of lexed source feature

vector



Data Curation – Filtering and Duplicate Removal 
Data curation/preprocessing is a very important part of the machine learning process as having 
erroneous data samples, data samples with many missing feature values, or duplicate data samples 
can interfere with properly training good machine learning models.  We perform filtering and 
duplicate removal as the main  data curation processes. 

During the filtering process, we filtered out functions that were missing source code caused by 
data extraction failure (since our Cassandra query stops at the first dependency, the source codes 
related to the functions in deeper dependency are not extracted), functions that were unreasonably 
long (lexed representation length over 500) or short (lexed representation length less than 2), and 
functions where our custom lexer failed to generate a lexed representation from the source code 
(when non-standard characters, commonly “@” and “$”, are used in identifiers). 

A subsequent critical step of our data preparation is the removal of potential duplicate functions. 
Open-source repositories often have functions duplicated across different packages.  Such 
duplication can artificially inflate performance metrics and conceal overfitting, as training data can 
leak into test sets.  Likewise, there are many functions that are near duplicates, containing trivial 
changes in source code that do not significantly affect the execution of the function.  These near 
duplicates are challenging to remove, as they can often appear in very different code repositories 
and can look quite different at the raw source level. 

To protect against these issues, we performed an extremely strict duplicate removal process.  We 
removed any function with a duplicated lexed representation of its source code (source / lexer 
features) or a duplicate build feature vector.  Two functions with identical instruction-level 
behaviors or functionality are likely to have both similar lexed representations and highly 
correlated vulnerability status.  For our datasets, the functions remaining after the data curation 
processes (filtering and duplicate removal) were about 10% of the total number of functions 
(details are provided in Section 4.1.2).  Our strict duplicate removal process filters out a significant 
amount of data and results in diminishing returns with each new dataset, as the likelihood of 
duplicates increases with the size of the dataset.  Therefore, this approach provides the most 
conservative performance results, closely estimating how well our tool performs against code it 
has never seen before. 

3.3.3 Classification. 
We train separate classifiers that use varying amounts of information:  build feature-based 
classifiers that operate on build features, source feature-based classifiers that work with 
sourcefeatures, and combined classifiers that utilize both build and source features.  By 
pursuing all of these approaches, we allow the possibility of ultimately fusing multiple 
models to increase detection performance.  Each of our classification models produces a 
continuous output between 0 and 1 that we can threshold to obtain a binary prediction 
indicating a bad (“vulnerable”) or good (“not vulnerable”) function.  We tuned and selected 
models based on the highest validation Matthews Correlation Coefficient (MCC), a 
classification metric insensitive to class imbalance, which is described in further detail in 
Section 4.2.1.  Each of our primary classifier approaches are described in detail below. 
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Build Feature-Based Classifiers 
In addition to traditional machine learning algorithms such as random forest (RF), we explored 
two Deep Learning network architectures for “advanced” build feature representations:  
RNN (specifically the LSTM network) and CNN.  Both networks are commonly used in 
several application domains including sentiment analysis [39] [40] [41], photo tagging 
and image classification [3] [4] [5] [6] [7] [42], machine translation and correction [43] [44] 
[45] [46], and autonomous vehicles [47]. 

RNN Using LSTM Network:  Figure 11 illustrates our LSTM approach to build feature-based 
classification.  The inputs are the “advanced” build features for each function represented in an 
𝑁𝑁  × 𝐾𝐾  matrix, where 𝑁𝑁  is the number of basic blocks in topological sorted ordering and 𝐾𝐾  
is the feature vector representation of the basic block.  Recall from Section 3.3.2 that we use 𝑁𝑁  
= 200 and 𝐾𝐾  = 114.  This input matrix is fed into a multi-layer LSTM, and the hidden state 
from the last hidden layer outputs whether the function is vulnerable or not. 

Figure 11.  LSTM Network Used for Build Feature-Based Classification 

Using RNNs allows for the capture of longer control flow dependencies in a function.  RNNs take 
not only the current input into consideration but also what it has learned from the inputs previously
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through hidden states, and thus works well for sequence inputs.  Vanilla RNNs often suffer from 
the vanishing gradient or exploding gradient problems, but LSTM enables RNNs to remember 
their inputs over a long period of time, because LSTM contain their information in a memory cell.  
Our “advanced” build feature representation is fed into a two-layer LSTM with hidden state size 
of 200, and the output from the last hidden layer at the length 𝑁𝑁 = 200 is fed into a classification 
layer.  The classifier uses a softmax (normalized exponential) output [48] to make predictions 
between 0 and 1 for the two classes (not vulnerable or vulnerable).  Since it is a binary 
classification problem, logarithmic (cross-entropy) loss is used as the loss function, but 
penalized/weighted more heavily on the vulnerable class due to the imbalanced class problem with 
vulnerable functions being only a small percentage of the total dataset.  To train the network, we 
use the Adam optimizer [49], a variant of the stochastic gradient descent algorithm, with a learning 
rate 1e-3, dropout 0.8, and batch size 128.  In addition, we experimented with bi-directional LSTM 
instead of LSTM as well as average pooling all hidden layers instead of just output from last hidden 
layer – these achieve similar performance. 

CNN:  CNNs can capture correlation in the near neighbors by applying convolutional filters over 
data.  They have shown lots of amazing results in computer vision, and they have also been applied 
in audio classification with good results [50].  We use 𝑛𝑛 convolutional filters with shape 𝑚𝑚 × 𝐾𝐾.  
The filter size 𝑚𝑚 determines the number of sequential basic blocks that are considered together 
and we found that a filter size of 𝑚𝑚 = 4 effectively captures the correlation of the neighbor basic 
blocks.  A total number of 𝑛𝑛 = 512 filters was used to achieve best classification results.  The 
convolutions were followed by batch normalization (which records data statistics to keep layer 
outputs appropriately normalized) and followed by the rectified linear unit (ReLU) non-linearity 
layer.  After that, convolutional features are downsampled by applying a maximum filter along a 
given dimension via an operation known as maxpooling.  This is further followed by two fully 
connected dense layers, where each layer’s output is a linear combination of the values from the 
previous layer, plus a non-linearity, which applies dimension reduction.  We also apply dropout to 
the fully connected layers, where some fraction of connections are randomly dropped out in each 
training step, thus preventing the network from overfitting.  We used 50% dropout on the 
maxpooled feature representation connections to the first hidden layer when training.  We found 
that using two hidden layers of size 64 and 16 (the number of hidden states per layer) before the 
final 2-dimensional output gave the best classification performance.  Just like LSTM, a softmax 
function is applied to these outputs to generate interpretable “probabilities” of each function being 
vulnerable or not vulnerable. 

Network Training:  Both LSTM and CNN networks were trained with the Adam optimizer with 
batch size 128 and learning rate of 1e-3.  We trained each network by minimizing the cross-entropy 
loss of the outputs with respect to the true vulnerability label.  Since the dataset was strongly 
unbalanced, vulnerable functions were weighted more heavily in the loss function.  This weight is 
one of the many hyper-parameters that needed to be tuned to get the best performance.   

Source Feature-Based Classifiers 
Since source code shares some commonalities with writing and work done for programming 
languages is more limited, we build off approaches developed for NLP [41].  We leverage feature-
extraction approaches similar to those used for sentence sentiment classification with CNNs and 
RNNs for function-level source vulnerability classification. 
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Figure 12 illustrates our convolutional neural representation-learning approach to source code 
classification.  This approach combines the neural feature representations of lexed function source 
code with RF, a powerful ensemble classifier.  Input source code is lexed into a token sequence of 
variable length 𝒍𝒍, embedded into a 𝒍𝒍 × 𝒌𝒌 representation, filtered by 𝒏𝒏 convolutions of size 𝒎𝒎 × 𝒌𝒌, 
and maxpooled along the sequence length to a feature vector of fixed size 𝒏𝒏.  The embedding and 
convolutional filters are learned by weighted cross entropy loss from fully connected classification 
layers.  The learned 𝒏𝒏-dimensional feature vector is used as input to an RF classifier, which 
improves performance compared to the neural network classifier alone. 
 
 

 
Figure 12.  Convolutional Neural Representation Learning for Source Classification 

 
 
Our neural representation-learning approach to source feature-based classification contains the 
following key steps: 
 

1. Embedding:  The tokens making up the lexed functions are first embedded into a fixed 𝑘𝑘-
dimensional representation (limited to range [-1, 1]) that is learned during classification 
training via backpropagation to a linear transformation of a one-hot embedding.  We also 
tried a fixed one-hot embedding, but this approach overfit more, resulting in lower MCC.  
As our vocabulary size is much smaller than those of natural languages, we were able to 
use a much smaller embedding than is typical in NLP applications.  Our experiments found 
that 𝑘𝑘 = 13 performed the best for supervised embedding sizes, balancing the 
expressiveness of the embedding against overfitting, while typical NLP applications use 
embedding sizes between 300 and 500. 

a. Embedding initialization:  Several unsupervised word2vec approaches [51] trained 
on a much larger unlabeled dataset were explored for seeding this embedding.  A 
word2vec model learns a vector representation of “words” (in our case, tokens) by 
predicting which word occurs based on surrounding words.  Thus, words that are 
used in similar ways occur near each other by Euclidean distance in the 
representation.  This learned embedding did seem to take on significant meaning 
for our lexer tokens and is shown by a t-distributed stochastic neighbor embedding 
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(t-SNE) visualization in Figure 13.  Unfortunately, seeding the embedding used by 
the classifier with this learned embedding yielded minimal improvement in 
classification performance over randomly-initialized directly-learned embeddings. 
It is likely that the most important latent variables for vulnerability detection are 
significantly different from the most important ones for function reconstruction and 
since we were limited to a relatively small embedding dimension size, there ended 
up not being much overlap. 

Figure 13.  t-SNE Visualization of a 10-Dimensional word2vec Embedding of Lexer Tokens 

b. Embedding regularization:  Even though our dataset is very large, overfitting was
a major problem for our most powerful network architectures.  When training
neural networks on images, it is common to perform data augmentation (such as
random cropping, rotations, or color adjustments) to prevent overfitting, but this is
not possible with our data modality.  Instead, we found that adding a small amount
of random Gaussian noise 𝒩𝒩(𝜇𝜇 = 0,𝜎𝜎2 = 0.01) to each embedded representation
substantially improved resistance to overfitting and was much more effective than
other more common regularization techniques such as weight decay.

2. Feature extraction:  We explored both CNNs and RNNs for feature extraction from the
embedded source representations.

a. Convolutional feature extraction:  Neural network convolutions are a powerful way
of learning effective convolutional filter operations over data and have been
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extremely successful in computer vision.  We took inspiration from Kim’s work 
[41], which showed that learned convolutions could be very effective feature 
extractors for natural language classification problems.  We use 𝑛𝑛 convolutional 
filters with shape 𝑚𝑚 × 𝑘𝑘, so each filter spans the full space of the token embedding.  
The filter size 𝑚𝑚 determines the number of sequential tokens that are considered 
together and we found that a fairly large filter size of 𝑚𝑚 = 9 maximized MCC 
during hyperparameter tuning.  This size effectively represents the smallest token 
length of critical code snippets that can be considered separately.  A total number 
of 𝑛𝑛 = 512 filters, corresponding to the number of code snippet classes detected, 
maximized MCC during hyperparameter tuning.  As with the build feature-based 
CNN, the convolutions were followed by batch normalization and ReLU non-
linearity. 

b. Recurrent feature extraction:  We also explored using RNNs for feature extraction 
to allow longer token-dependencies to be captured.  RNNs process sequences step 
by step, using information from previous steps, and thus operate like learned finite 
state machines and can handle arbitrarily long sequences.  Our embedded 
representation is fed into a multi-layer RNN and the output at each step in the length 
𝑙𝑙 sequence is concatenated.  We used two-layer Gated Recurrent Unit RNNs with 
hidden state size of 256, though LSTM RNNs performed equally well.  Both of 
these RNN architectures have a notion of both state and memory that make them 
more effective for long sequences. 

3. Pooling:  As the length of C/C++ functions found in the wild can vary dramatically, both 
the convolutional and recurrent features are maxpooled (keeping the largest values) along 
the sequence length 𝑙𝑙 in order to generate a fixed-size (𝑛𝑛 or 𝑛𝑛′, respectively) representation, 
as was done for the build feature-based RNN and CNN.  In this architecture, the feature 
extraction layers should learn to identify different signals of vulnerability and thus the 
presence of any of these along the sequence is important. 

4. Dense classification layers:  The feature extraction layers are followed by a fully connected 
classifier, where each value in a layer is a linear combination of the values in the previous 
layer, plus a non-linearity.  We once again used 50% dropout on the maxpooled feature 
representation connections to the first hidden layer when training as well as two hidden 
layers of sizes 64 and 16 before the final softmax output to generate interpretable 
“probabilities” of each function being vulnerable or not vulnerable. 

5. Network training:  As with the build feature-based networks, the source feature-based 
networks were trained using the Adam optimizer and a class-weighted cross-entropy loss 
function. For data batching convenience, we trained only on functions with token length 
10 ≤ ℓ ≤ 500 zero-padded to the maximum length of 500.  Both the convolutional and 
recurrent networks were trained with batch size 128 (which allowed every minimization 
step to include some vulnerable functions) and learning rates of 5e-4 and 1e-4, respectively. 
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6. Ensemble learning on neural representations:  While the neural network approaches
automatically build their own features, their classification performance on our full dataset
was suboptimal.  We found that using the neural features (outputs from the sequence-
maxpooled convolution layer in the CNN and sequence-maxpooled output states in the
RNN) as inputs to a powerful ensemble classifier such as RF or extremely randomized
trees yielded the best results on our full dataset.  These classifiers are both based on
decision trees, which learn the best combinations of univariate decision boundaries to
separate our two data classes.  The ensemble variations of these take advantage of the
observation that populations of randomized weak classifiers are usually superior to a single
strong classifier.  Optimizing the neural features and ensemble classifier separately also
makes it more convenient to retrain a classifier quickly on new sets of features or
combinations of features.  Our most effective ensemble classifiers used an RF with 300
trees and a minimum of 7 data samples per split.

7. Error localization using backpropagation and class activation mapping:  The source
feature-based classification has an advantage over the build feature-based classifications
in that the data format is inherently more understandable to humans. However, discovering
why neural networks make the decisions they do from these features is a challenge.  We
explored several ways of determining which tokens in an input function were most
important to a classification result, inspired by approaches used in the computer vision
domain. First, we tried guided backpropagation [52], where the derivatives with respect to
the outputs are backpropagated all of the way to the initial one-hot vector inputs. While
this provides a very fine-grained way of visualizing the impact each token has on the
output, the visualization of the magnitude of these derivatives tends to be difficult to
interpret. More successful was using an approach similar to class activation mapping [53],
where the gradients are merely backpropagated to the output of the convolutional layers
(right before the maxpooling operation.) Then, each feature earns a weight based on how
much it contributes to the final result and the contribution of each feature is summed for
every position along the sequence, weighted by these amounts.  This is then deconvolved
onto the initial sequence positions.  Section 4.2.4 shows some examples of error
localization using the class activation mapping.  This technique produces a rough “heat
map” of the main output class, as shown in the figures in Section 4.2.4.  While this is
“blurrier” than backpropagation all of the way to the input vectors (i.e., the position is
smeared via a convolutional filter), it results in somewhat more interpretable visualizations.
Visualizations such as this can help localize the origin of a vulnerability and can make the
tool more helpful to developers.

Combined Classifier(s) 
Since the source and build features can capture different aspects of our input data, it is interesting 
to explore how these features can be used together for more effective and robust classifiers.  If our 
learned classifiers can be interpreted as detecting signals of vulnerabilities in their respective 
feature sets, the classifier having access to another view of the same data could significantly 
improve its ability to detect vulnerabilities. 

The most straightforward way of learning on both sets of features is by simply concatenating 
unordered feature representations.  For the build features, this is the “simplified” feature vector.  
For the source features, this is the learned neural feature representation, from either the CNN or 
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RNN classifier.  Both of these sets of features were used effectively individually with the RF 
classifier and thus it is reasonable to use the RF classifier trained on the combined set of features. 
 
While the classifier has access to more information, it is not guaranteed that the RF classifier 
trained on the combined feature set is significantly better than one trained on the individual feature 
representations.  If both feature sets contain overwhelmingly redundant information, improvement 
is likely to be minimal, and the risk of overfitting the data increases.  Likewise, if classification 
with one feature set is much better than classification from the other, the benefit is not likely to 
outweigh the cost of increasing the dimensionality of the classification problem. 
 
Ensemble Approaches 
Ensembling is the approach of combining the outputs of multiple different classifiers to boost the 
performance.  The goal is to obtain improved performance over individual classifiers.  This is best 
achieved when individual classifiers are statistically independent, i.e., they make independent 
errors.  To combine the strengths of different classification approaches we developed, we 
investigated various ensembling approaches: 
 

• Convex combination of normalized (probability) scores (also known as linear opinion 
pool):  This is the simplest and the most effective ensembling approach for our problem, 
where the final (ensembling) score is computed as the weighted average of individual 
classifier scores: 

 
 𝑃𝑃𝑓𝑓 =  𝑤𝑤1𝑃𝑃1 + ⋯+ 𝑤𝑤𝑁𝑁𝑃𝑃𝑁𝑁, (1) 
 

where ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 = 1, 𝑃𝑃𝑓𝑓 is the final classification score, 𝑃𝑃𝑖𝑖 is the score of classifier 𝑖𝑖, and 
𝑁𝑁 is the number of classifiers to be ensembled. 

• Logistic regression:  This is similar to the convex combination approach except that 
the weights do not have to sum to 1, and the final weighted score is passed through a 
logistic function to ensure that 0 ≤ 𝑃𝑃𝑓𝑓 ≤ 1: 

 
 𝑃𝑃𝑓𝑓 = 1 �1 + 𝑒𝑒−(𝑤𝑤1𝑃𝑃1+⋯+𝑤𝑤𝑁𝑁𝑃𝑃𝑁𝑁)�⁄   (2) 
 

• Copula-based ensembling:  This approach is inspired by [54], where we develop a 
generative model by using copula functions to fit a joint probability distribution 
function to the different classifier probabilities under each class. This is achieved by 
using a maximum likelihood approach combined with kernel density estimation. Then 
we invoke Bayes’ Theorem to compute the posterior probability of each class. Specifics 
of this approach are outlined in [54]. Although this approach may improve the 
performance over other ensembling approaches, it works best when there are only two 
classifiers to be ensembled. When there are more than two classifiers, this approach is 
computationally very expensive to implement which requires several approximations 
such as vine copulas. 

In all of the ensembling approaches that we adopted, we held out 2% of total samples as an 
ensemble set to train the ensemble models.  More specifically, we train each individual classifier 
using the training set (78% of total samples).  Then we compute classifier scores on the ensemble 
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set samples and use these probabilities along with the ground truth labels to optimize as follows: 

• For convex combination, we find the optimal weights using a simple grid search.

• For logistic regression, we find the optimal weights using standard gradient descent.

• For copula-based ensembling, we find the best fitted copula functions using a maximum
likelihood approach.

3.3.4 Repair. 
We describe repair approaches that take “vulnerable” source code and output the repaired (“not 
vulnerable”) source code.  We first describe the state-of-the-art method known as the sequence-
to-sequence approach, then provide details of our new GAN approach, that addresses the main 
constraint of the sequence-to-sequence approach.  We also discuss a variation of the GAN 
approach called cycle-GAN. 

Sequence-to-Sequence 
The problem of repair of source code shares many similarities to the problem of grammar 
correction in NLP, in which a grammatically incorrect sentence is translated into a correct one.  In 
our case, bad (“vulnerable”) source code takes the place of an incorrect sentence and is repaired 
into good (“not vulnerable”) source code. 

Sequence-to-sequence systems have recently achieved the state-of-the-art performance on 
language translation and correction tasks [43] [44] [45] [46].  These models use an encoder-
decoder approach to transform an input sequence 𝒙𝒙 = (𝑥𝑥0, … , 𝑥𝑥𝑇𝑇 ) into an output sequence 𝒚𝒚 =
(𝑦𝑦0, … ,𝑦𝑦𝑇𝑇′  ), e.g., translating a sequence of words forming a sentence in English to one in German. 

However, by far the most common method of training sequence-to-sequence systems is to use 
labeled pairs of examples to compare the likelihood of network output to a desired version, 
necessitating a one-to-one mapping between input and desired output data.  During Phase 2 of the 
MUSE program it became clear that the number of labeled paired examples we could obtain in a 
reasonable time frame was so limited as to make this approach intractable for code vulnerability 
repair.  This led us to develop the new GAN approach. 

Generative Adversarial Network (GAN) 
Our GAN approach to repair allows us to train without paired examples.  GANs are generative 
models that were originally developed to generate realistic images, 𝑦𝑦, from random noise vectors, 
𝑧𝑧 [55].  GANs find a mapping 𝐺𝐺: 𝑧𝑧 → 𝑦𝑦 by framing the learning problem as a two player minimax 
game between a generator 𝐺𝐺(∙) and a discriminator 𝐷𝐷(∙), where the generator learns to generate 
realistic looking data samples by minimizing the performance of a discriminator whose goal is to 
maximize its own performance on discriminating between generated and real samples. 

We employ a traditional sequence-to-sequence model as the generator and replace the typical 
negative likelihood loss with the gradient stemming from the loss of an adversarial discriminator. 
The discriminator is trained to distinguish between outputs generated by the sequence-to-sequence 
model and real examples of desired output, and so its loss serves as a proxy for the discrepancy 
between the generated and real distributions. 
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This problem has three main difficulties.  First, sampling from the output of sequence-to-sequence 
systems, in order to produce discrete outputs, is non-differentiable.  We address this problem by 
using a discriminator which operates directly on the expected (soft) outputs of the sequence-to-
sequence system during training.  Second, adversarial training does not guarantee that the 
generated code corresponds to the input bad code (i.e., the generator is trained to match 
distributions, not samples).  To enforce the generator to generate useful repairs, (i.e., generated 
code is a repaired version of input bad code), we condition our sequence-to-sequence generator on 
the input x by incorporating two novel generator loss functions.  Third, the domains we consider 
are not bijective, i.e., a bad code can have more than one repair or a good code can be broken in 
more than one way.  The regularizers we use still work in this case. 

GANs were first introduced by Goodfellow et al. [56] to learn a generative model of natural 
images.  Since then, many variants of GANs have been created and applied to the image domain 
[57] [58] [59] [60] [61].  GANs have generally focused on images due to the abundance of data
and their continuous nature.  Applying GANs to discrete data (e.g., text) poses technically
challenging issues not present in the continuous case (e.g., propagating gradients through discrete
values).  One successful approach is that of Yu et al. [62], which treats the output of the
discriminator as a reward in a reinforcement learning setting. This allows the sampling of outputs
from the generator since gradients do not need to be passed back through the discriminator.
However, since a reward is provided for the entire sequence, gradients computed for the generator
do not provide information on which parts of the output sequence the discriminator thinks is
incorrect, resulting in long convergence times.  Several other approaches have had success with
directly applying an adversarial discriminator to the output of a sequence generator with likelihood
output.  Zhang et al. [63] replace the traditional GAN loss in the discriminator with a maximum
mean discrepancy (MMD) metric in order to stabilize GAN training.  Both Press et al. [64] and
Rajeswar et al. [65] are able to generate fairly realistic looking sentences of modest length using
Wasserstein GAN [58], which is the approach we adopt in our work.

Work has also been done on how to condition a GAN’s generator on an input sequence x instead 
of a random variable.  This can easily be performed when paired data are available, by providing 
the discriminator with both x and y, thereby formulating the problem as in the conditional approach 
of Mirza and Osindero [66] [67].  This approach, however, is clearly more difficult when pairs are 
not available.  One approach is to enforce conditionality through the use of dual generator pairs 
which translate between domains in opposite directions.  Gomez et al. apply the cycle GAN [68] 
approach to cipher cracking [69].  They train two generators, one to take raw text and produce 
ciphered text, and the other to undo the cipher.  Having two generators allows Gomez et al. to 
encrypt raw data using the first generator, then decrypt the data with the other, ensuring 
conditionality by adding a loss function which compares this doubly translated output with the 
original raw input. Lample et al. [70] adopt a somewhat similar approach for neural machine 
translation.  They translate using two encoder/decoder pairs which convert from a given language 
to a latent representation and back respectively.  They then use an adversarial loss to ensure that 
the latent representations are the same between both languages, thus allowing translation by 
encoding from one language and then decoding into the second.  For conditionality they adopt a 
similar approach to Gomez et al. by fully translating a sentence from one language to another, 
translating it back, and then comparing the original sentence to the produced double translation. 
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The approaches of both Gomez et al. and Lample et al. rely on the ability to transform a sentence 
across domains in both directions.  This makes sense in many translation spaces as there are a 
finite number of reasonable ways to transform a sentence in one language to a correct one in the 
other.  This allows for a network which finds a single mapping from every point in one domain to 
a single point in the other domain, to still cover the majority of translations.  Unfortunately, in a 
sequence correction task such as our problem, one domain contains all correct sequences, while 
the other contains everything not in the correct domain.  Therefore, the mapping from correct to 
incorrect is not one-to-one, it is one to many.  A single mapping discovered by a network would 
fail to elaborate the space of all bad functions, thus enforcing conditionality only on the relatively 
small set of bad functions it covers.  As such we enforce conditionality using a self-regularization 
term on the generator, similar in nature to the one used by Shrivastava et al. [71] in which they 
generate realistic looking images from simulated ones. 

We should note that our problem here is different from the original GAN problem in that our goal 
is to find a mapping between two discrete valued domains, namely between a given bad code (or 
source) domain 𝑋𝑋 and a good code (or target) domain 𝑌𝑌 by using unpaired training samples {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑁𝑁  
and {𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑀𝑀 , where 𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋 and 𝑦𝑦𝑖𝑖 ∈ 𝑌𝑌. 

The original GAN loss of Goodfellow et al. [55] is expressed as 

𝐿𝐿𝐺𝐺𝐺𝐺𝑁𝑁(𝐷𝐷,𝐺𝐺) = 𝐸𝐸𝑦𝑦~𝑃𝑃(𝑦𝑦)[log𝐷𝐷(𝑦𝑦)] + 𝐸𝐸𝑥𝑥~𝑃𝑃(𝑥𝑥)[log(1 − 𝐷𝐷(𝐺𝐺(𝑥𝑥)))] (3) 

where the optimal generator is 𝐺𝐺∗ = arg𝑚𝑚𝑖𝑖𝑛𝑛𝐺𝐺𝑚𝑚𝑚𝑚𝑥𝑥𝐷𝐷 𝐿𝐿𝐺𝐺𝐺𝐺𝑁𝑁(𝐷𝐷,𝐺𝐺). It is well known that this loss 
can be unstable when the support of the distributions of generated and real samples do not overlap 
[57].  This causes the discriminator to provide zero gradients.  Further, this standard loss function 
can lead to mode collapse, where the resulting samples come from a single mode of the real data 
distribution.  To alleviate these problems, Arjovsky et al. [58] proposed the Wasserstein 
Generative Adversarial Network (WGAN) loss which instead uses the Wasserstein-1 or Earth 
Movers (EM) distance between generated and real data samples in the discriminator.  EM distance 
is relatively straightforward to estimate using the following easily computable loss function: 

𝐿𝐿𝑊𝑊𝐺𝐺𝐺𝐺𝑁𝑁(𝐷𝐷,𝐺𝐺) = 𝐸𝐸𝑦𝑦~𝑃𝑃(𝑦𝑦)[𝐷𝐷(𝑦𝑦)]− 𝐸𝐸𝑥𝑥~𝑃𝑃(𝑥𝑥)[𝐷𝐷(𝐺𝐺(𝑥𝑥))] (4) 

We use WGAN in our model as it leads to more stable training. 

In the context of source code repair, or more generally sequence correction, we need to constrain 
our generated samples 𝐺𝐺(𝑥𝑥) to be corrected versions of 𝑥𝑥. Therefore, we have the following two 
requirements: (1) correct sequences should remain unchanged when passed through the generator; 
and (2) repaired sequences should be close to the original corresponding incorrect input sequences. 

We explore two regularizers to address these requirements.  As our first regularizer, in addition to 
GAN training, we train our generator as an auto encoder (AE) on data sampled from correct 
sequences.  This directly enforces item (1), while indirectly enforcing item (2) since the AE loss 
encourages subsequences which are correct to remain unchanged.  The AE regularizer is given as 
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𝐿𝐿𝐺𝐺𝐴𝐴𝑇𝑇𝐴𝐴(𝐺𝐺) = 𝐸𝐸𝑥𝑥~𝑃𝑃(𝑥𝑥)[−𝑥𝑥 log𝐺𝐺(𝑥𝑥)] (5) 

As our second regularizer, we enforce that the frequency of each token in the generated output 
remains close to the frequency of the input tokens.  This enforces item (2) with the exception that 
it may allow changes in the order of the sequence, e.g., arbitrary reordering does not increase this 
loss.  However, the GAN loss alleviates this issue since arbitrary reordering produces incorrect 
sequences which differ heavily from 𝑃𝑃(𝒚𝒚).  Our second regularizer is given as 

𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐺𝐺) = 𝐸𝐸𝑥𝑥~𝑃𝑃(𝑥𝑥)[∑ ‖freq(𝑥𝑥, 𝑖𝑖) − freq(𝐺𝐺(𝑥𝑥), 𝑖𝑖)‖22𝑛𝑛
𝑖𝑖=0 ] (6) 

where 𝑛𝑛 is the size of the vocabulary and freq(𝑥𝑥, 𝑖𝑖) is the frequency of the i-th token in 𝑥𝑥. 

A block diagram for the GAN architecture we use is shown in Figure 14.  The network is provided 
with samples of vulnerable code (𝑥𝑥) and good code (𝑦𝑦).  Note, these samples are independent and 
do not have to be drawn from pairs of vulnerable and correpondingly repaired code.  The 
vulnerable code samples are provided as input to the generator, which uses an encoder and decoder 
approach to generate an output sequence 𝐺𝐺(𝑥𝑥).  Note that the generator architecture here is 
identical to a traditional sequence-to-sequence model.  The generated code (𝐺𝐺(𝑥𝑥)) and good code 
(𝑦𝑦) are then fed into the discriminator.  One variant of our GAN approach uses curriculum learning, 
in which we clip the generated and good sequences (𝑦𝑦 and 𝑔𝑔𝑥𝑥, respectively) to a specific length 
determined by the current curriculum.  This behavior is controlled by a curriculum controller 
module, shown as orange as the “Cur Controller” block. 

Figure 14.  Block Diagram of GAN Architecture 
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Both the encoder and decoder of the generator consist of multiple RNN layers with LSTM hidden 
states.  These RNN layers form a “cell” which for both encoder and decoder takes an input at step 
𝑡𝑡 and its own state from the previous step 𝑡𝑡 − 1 to produce an output for step 𝑡𝑡, and are shown in 
Figure 15.  Tokenized vulnerable code is used as the input to the encoder with input 𝑥𝑥𝑡𝑡  being the 
t’th token.  The decoder then generates an output sequence 𝐺𝐺(𝑥𝑥) one token at a time, with the input 
to decoder step 𝑡𝑡 being the generated token from step 𝑡𝑡 − 1.  In addition to RNN layers our decoder 
also uses a scaled dot product attention mechanism [72] to look back across all encoder outputs, 
allowing easier passing of information from the encoder to decoder. 

Figure 15.  Block Diagram of Encoder (Left) and Decoder (Right) RNN Cells 

The discriminator in our network is a simple sequence classification network consisting of a 
convolution layer, a temporal max pooling layer and two fully connected layers. This is shown in 
Figure 16.  Inputs are passed through the convolution layer, which finds patterns across multiple 
time steps.  The outputs from the convolution are then passed through a temporal max pool in 
order to convert them to a fixed length vector.  Finally, these outputs are processed by the fully 
connected layers to produce a single output, which is used in the computation of the WGAN loss 
described above (𝐷𝐷(𝑦𝑦) and 𝐷𝐷(𝐺𝐺(𝑥𝑥)) for good and generated inputs respectively). 
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Figure 16.  Block Diagram of Decoder 

We have two different regularized loss models given as 

𝐿𝐿(𝐷𝐷,𝐺𝐺) =  𝐿𝐿𝑊𝑊𝐺𝐺𝐺𝐺𝑁𝑁(𝐷𝐷,𝐺𝐺) + 𝜆𝜆𝐿𝐿𝐺𝐺𝐴𝐴𝑇𝑇𝐴𝐴(𝐺𝐺) (7) 
𝐿𝐿(𝐷𝐷,𝐺𝐺) =  𝐿𝐿𝑊𝑊𝐺𝐺𝐺𝐺𝑁𝑁(𝐷𝐷,𝐺𝐺) + 𝜆𝜆𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐺𝐺) (8) 

We also experimented with the unregularized base loss model where we set 𝜆𝜆 = 0. 

We rely heavily on pre-training to give our GAN a good starting point.  Our generators are pre-
trained as de-noising AEs on the desired data [73].  Specifically, we train the generator with the 
loss function: 

𝐿𝐿𝐺𝐺𝐴𝐴𝑇𝑇𝐴𝐴_𝑃𝑃𝐹𝐹𝐹𝐹(𝐺𝐺) = 𝐸𝐸𝑦𝑦~𝑃𝑃(𝑦𝑦)[−𝑦𝑦 log𝐺𝐺(𝑦𝑦�)], (9) 

where 𝑦𝑦� is the noisy version of the input created by dropping tokens in 𝑦𝑦 with probability 0.2 and 
randomly inserting and deleting 𝑛𝑛 tokens, where 𝑛𝑛 is 0.03 times the sequence length.  These 
numbers were selected based on hyperparameter tuning. 

Likelihood-based methods for training sequence-to-sequence networks often utilize teacher 
forcing during training, where the input to the decoder is forced to be the desired value regardless 
of what was generated at the previous time step [74].  This allows stable training of very long 
sequence lengths even at the start of training.  Adversarial methods cannot use teacher forcing 
since the desired sequence is unknown, and must therefore always pass a sample of 𝑠𝑠𝑡𝑡−1 as the 
input to time 𝑡𝑡.  This can lead to unstable training since errors early in the output propagate 
forward, potentially creating meaningless phrases in the latter parts of the sequence.  To avoid this 
problem, we adopt a curriculum learning strategy in which we incrementally increase the length 
of produced sequences throughout training.  Instead of selecting subsets of the data for curriculum 
training, we clip all sequences to have a predefined maximum length for each curriculum step.  
Although this approach relies on the discriminator being able to handle incomplete sentences, it 
does not degrade the performance as long as the discriminator is briefly retrained after each 
curriculum update. 
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Hyperparameter Tuning 
We first train our generator as a denoising AE, for which we use the Adam optimizer with a 
learning rate of 1e-4.  The same pre-trained network is used to initialize the generator for all GAN 
and sequence-to-sequence networks. 

GAN networks are trained using the root mean square propagation (RMSProp) optimization 
algorithm.  Learning rates are initialized to 5e-4 for the discriminator and 1e-5 for the generator. 
We train the discriminator 15 times for every generator update.  Sequence-to-sequence models are 
trained using the Adam optimizer with a learning rate of 1e-4.  We experimented extensively with 
varying the learning rate but found that increasing the discriminator learning rate caused its 
accuracy to decrease.  Increasing the generator learning rate causes it to update too quickly for the 
discriminator, meaning the discriminator does not remain close to optimal and therefore gradients 
through it are not reliable.  To ensure that the discriminator starts close to optimal, we initialize it 
by training it alone for the first 10 epochs.  The generator’s learning rate is decayed by a factor of 
0.9 every 10 epochs.  In systems with curriculum learning, this decay is only done after the 
curriculum is completed. 

GAN training uses the original clipped version of Wasserstein GAN with a clipping threshold of 
0.05.  We also experimented heavily with this threshold, and found that a lower threshold led to 
low discriminator accuracy, and a higher threshold led to the discriminator providing poor 
gradients to the generator. 

Our curriculum clips each sequence to a given length. We step up the curriculum length either 
when the discriminator accuracy falls below 55% or after 40 epochs, whichever comes first. 

For the sorting and grammar experiments, the curriculum starts at 5 and is increased by 2 each 
step.  For the Juliet Test Suite experiment, the curriculum starts at 75 and is increased by 5 each 
step. 

Cycle-GAN 
Another method we experimented with to ensure that the generator outputs correct versions of the 
specific input functions (rather than arbitrary correct functions) is cycle-consistency (also known 
as cycle-GAN) [75].  In this method, we train two generators: the original generator that is used to 
fix vulnerable code and an additional generator that introduces vulnerabilities into code.  Cycle-
consistency is the property that if a correct function is fed through the new generator (to introduce 
a bug) and then through the original generator (to repair the bug), the output should be equivalent 
to the initial data. We enforce this through a cycle-consistency loss function which measures how 
different a data sample is from the output after feeding it through the two generators sequentially. 
Specifically, we minimize the following, 

𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹 =  ‖𝐸𝐸(𝑦𝑦) − 𝐸𝐸(𝐺𝐺1(𝐺𝐺2(𝑦𝑦, 𝑧𝑧)))‖22 (10) 

Here 𝐺𝐺1 is the repair GAN, 𝐺𝐺2 is the new GAN that creates vulnerabilities, 𝑦𝑦 is a correct data 
sample, 𝑧𝑧 is a random vector that allows 𝐺𝐺2 operate stochastically (since the mapping from correct 
to vulnerable code is one to many), and 𝐸𝐸 is a function that encodes samples in a space in which 
the distance between two samples corresponds approximately to how different they are.  In our 



 
 
 
 

Approved for Public Release; Distribution Unlimited. 
35  

experiments, we set 𝐸𝐸 to be the encoder part of the encoder/decoder AE used to initialize the repair 
GAN. 

3.3.5 Program Synthesis. 
The limited availability of labeled datasets is one of the main challenges for machine learning for 
vulnerability detection and repair.  Since substantial time and investment are needed to compile a 
corpus of labeled functions at the scale required for machine learning, we explored an alternative 
approach to generate labeled datasets.  We created a model that allows us to generate an arbitrary 
number of C functions that are known to obey some set of user-provided constraints, such as either 
containing or not containing a security vulnerability. 

To build this model, we implemented a grammar variational auto encoder (VAE) similar to that 
designed by Kusner et al. [76].  The grammar VAE is a generative model that guarantees the 
syntactic validity of the output if the input can be expressed as a parse tree according to a specified 
grammar.  It does not, in general, guarantee semantic validity, but it has been shown that grammar 
VAEs are particularly good at learning semantics because they do not need to learn any syntax. 
 
We define syntactic and semantic validity as follows:  a function string is syntactically valid if a 
parse operation succeeds in producing a corresponding AST without error, and a function string is 
semantically valid if it is syntactically valid and a compile operation succeeds in producing a 
corresponding binary file without error (we allow warnings in order to reduce the problem size).  
We use pycparser [77] for parsing and the GNU C Compiler (GCC) [78] for compilation.  The 
grammar VAE attempts to learn a latent representation of input sequences and to reconstruct inputs 
from their latent vectors. 
 
Figure 17 depicts the grammar VAE subsystem.  The input sequence accepted by the grammar 
VAE, shown as the output of Step 3 in Figure 17, must correspond to a sequence of production 
rules in some grammar.  In our grammar VAE, each function is:  parsed into an AST (Step 1), 
which is then optimized to reduce the number of production rules in the vocabulary (Step 2); 
transformed into a sequence of production rules through a preorder traversal of the AST and 
changed into a sequence of one-hot vectors, where each index represents the production rule’s 
index in the vocabulary (Step 3); and fed into the grammar VAE for encoding.  The encoder 
produces a latent vector that represents the function.  The decoder performs the inverse operation 
and outputs a sequence of production rules that correspond with a function similar to (ideally the 
same as) the input function.  The entire decode process encompasses Steps 4 through 7, and 
includes the first two optional constraint enforcement points.  We use 50 production rules as the 
shape of both input and output layers, which corresponds to functions approximately 2 to 10 lines 
in length.  From the production rules, we can reconstruct the AST (Step 8), deoptimize the AST to 
remove any custom production rules that cannot be handled by pycparser (Step 9), and then use 
the pycparser API to generate the C code from the AST (Step 10).  If the user chooses to inject 
vulnerabilities, this will occur in Step 11, after the code has been regenerated.  The latent space 
forms the basis of the generative model:  new functions that are similar to those on which the 
network was trained can be found by sampling arbitrary vectors from the latent space and passing 
them through the decoder. 
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Figure 17.  Program Synthesis System Overview 

Early in the development of this model, we encountered a problem.  The grammar VAE of Kusner 
et al. [76] was designed to handle a context-free grammar, but the language accepted by our parser 
is context-sensitive.  In other words, the meaning of a symbol in the grammar (a node in the AST) 
cannot be determined independently, but must take into account the symbols around it.  This poses 
a problem because we cannot reconstruct the AST properly after the decode step without 
incorporating context into the grammar, and thus there is no guarantee that functions output by 
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this network are syntactically valid.  Such a guarantee is important because every invalid function 
must be discarded from the final dataset, and this can be computationally expensive.  To address 
this problem, we add one step of backward-looking context (i.e., each rule has information about 
its predecessor rule) into the production rules when we get the rules from the traversal of the AST. 
This solves our first problem, but it causes an explosive increase in our vocabulary size.  We reduce 
the vocabulary size by only taking the production rules found in 100 randomly selected functions 
in the dataset.  After taking steps to make rules more generic by replacing literal values and 
identifier names, we find 234 rules, which is more than three times the number in the grammar 
used by Kusner et al. [76].  We do not capture most of the language of syntactically valid C 
functions with this small vocabulary.  However, we find it sufficient to describe many of the basic 
constructs in which we are interested. 

There is one additional problem.  Because our training dataset, contains few functions that use 
only these production rules, our training dataset is now too small.  Our solution to this was to create 
a dataset of randomly generated functions that only use the production rules found in the 
vocabulary.  We generate functions by selecting production rules at random (masking out all 
invalid transitions based on the grammar, just like in the decoder) until we have a complete 
function.  If we reach 50 production rules without completing the function, then we retry.  We can 
now create a training dataset that is sufficiently large for our purposes.  The randomly generated 
dataset is not ideal for training the grammar VAE, but the functions that our model outputs are still 
useful for training the DeepCode classifiers for two main reasons.  First, we only used production 
rules found in our training dataset, so output functions share many syntactic properties with the 
original functions.  Second, our output functions provide more training examples of the most 
common vulnerabilities found in our training dataset, and thus may improve our classifier 
performance. 

Table 5.  Selected Constraints 

Constraint Category 
Return Type Modifier Disallow 

Argument Number Modifier Disallow 
Argument Type Modifier Disallow 

No Loops Disallow 
Contains Loop Include 

Semantically Valid Repair 
Contains Buffer Overflow Repair 

The final major aspect of our model is the ability to impose constraints on generated functions. 
Table 5 shows some of the constraints that we consider.  Constraints fall into 3 categories: disallow, 
include, and repair.  “Disallow” constraints can be expressed as masking operations on the 
vocabulary.  For example, if we want to force a function to return a certain type, we can simply 
mark as invalid any rules that result in a different return type.  “Include” constraints are more 
difficult to enforce.  First, during the decode step we disallow any rules that result in the function 
ending before the desired property is included.  Second, if the function does not have the desired 
property, we sort the production rules in the function completion operation to prioritize the rules 
that produce the desired property.  (For example, if we want the function to contain a loop, then 
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all the rules resulting in a loop are prioritized.)  “Repair” constraints are handled entirely after the 
function decode step.  This is the most complicated and diverse class of constraints, and each repair 
constraint requires its own logic that acts directly on either the production rules (as in the semantic 
repair constraint) or the reconstructed source code (as in the vulnerability injection constraint). 

The entire decode and constraint enforcement operation is deterministic.  Although randomness 
would allow us to achieve constraint enforcement by repeatedly decoding the latent vector until 
the output function meets all of the user-specified constraints, this is not a satisfactory solution. 
This approach could work if the user supplies only a small number of constraints to enforce, but it 
may take many iterations of decoding to find a satisfactory function if many constraints are given 
simultaneously.  Furthermore, it may be the case that no such latent vector exists that produces the 
function in question, so the model would spend an unbounded amount of time searching.  Our 
solution scales well, demonstrates rigor, and overcomes the aforementioned problem. 

4. RESULTS AND DISCUSSION
This section provides the results of evaluations of the developments described in Section 3.  
Section 4.1 provides details of datasets that we generated and used for the development of 
classification and repair tools.  Section 4.2 provides evaluation results for the newly developed 
classification technology.   Section 4.3 provides evaluation results for the newly developed repair 
technology.  Section 4.4 presents results of the program synthesis investigation.  Section 4.5 
summarizes results from program evaluations and hackathons. 

4.1 Data 

4.1.1 Data Generation and Ingestion. 
Table 6 presents metrics on training data extracted in order to train the machine learning 
algorithms.  The definitions of the data presented in the columns in Table 6 are as follows: 

• “Total Functions” is the total number of functions built and extracted from the dataset.

• “CFG > 0x0” is the total number of these functions that have a non-zero CFG size.  (Many
functions that are defined by macros in header files are reported as having a CFG size of
zero.)

• “Functions Pulled” is the total number of these functions kept during the pull step.

• “Valid Build” is the total number of these functions for which a valid build identifier is
available in the database to link back to source code.

• “Found Source” is the total number of these functions for which source code is available
in the database.

• “Labeling” indicates whether only SA labels are available or whether truth labels are also
available.
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Table 6.  Summary of Training Data 

Project Total CFG Functions Valid Found 
Labeling 

Functions > 0x0 Pulled Build Source 

SATE IV 417,311 83,922 83,922 83,222 82,765 SA + truth 
MUSE Corpus 11,426,565 3,013,190 2,847,950 2,596,967 1,142,150 SA 
Juliet Test Suite 651,812 121,904 121,904 121,353 100,863 SA + truth 
Debian Packages 41,075,788 10,736,998 10,736,998 6,926,830 3,346,313 SA 
Debian Kernel 778,644 246,684 246,684 244,582 191,754 SA 

Table 7 presents metrics on benchmark data extracted in order to evaluate performance of the 
machine learning algorithms.  ManyBugs is a special dataset that has labeled data.  Table 7 also 
presents metrics on data generation for two challenge problem datasets:  PureOS [79] and LibTIFF 
version 3.8.2. 

Table 7.  Summary of Benchmark and Challenge Problem Data 

Project Total CFG Functions Valid Found 
Labeling 

Functions > 0x0 Pulled Build Source 
ManyBugs 478,311 109,379 109,379 90,849 67,653 SA + truth 

PureOS 861,003 269,593 269,593 266,348 203,477 SA 
LibTIFF 3.8.2 2,059 694 694 594 545 SA 

4.1.2 Data Extraction. 
As described in section 3.3, data extraction during the pull step of the DeepCode functional flow 
performed necessary processing to clean the data queried from Elasticsearch and to transform to 
formats required by our machine learning models.  This included creating binary labels (“not 
vulnerable”/“good” and “vulnerable”/“bad”) and feature vectors, and filtering out the data samples 
that were missing features, were unreasonably long or short, or were considered duplicates.  We 
generated two datasets, which we refer to as Dataset 1 and Dataset 2.  Dataset 1 is the initial dataset 
with labels generated using Clang static analyzer only.  Subsequently, Dataset 2 was generated 
during Phase 3 of the program to improve some of the shortcomings of Dataset 1 including using 
multiple static analyzers to generate labels and incorporating additional kernel codes.  Details of 
the datasets are explained below. 

Table 8 summarizes the initial dataset that we used for the development.  The “Total” row 
represents the total number of functions extracted during the pull process.  The “Filtered” row 
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represents the total number of functions filtered out during the data curation process.  The “No 
source extracted” row represents the number of functions filtered out because our database does 
not contain source code for them.  The “Lexer size out of bounds” row represents the number of 
functions filtered out because the functions were unreasonably long or short, or our custom lexer 
failed to generate a lexed representation from the source code.  The “Duplicates” row represents 
the number of functions removed because they were considered duplicates by having identical 
build or source features.  The “Kept” row represents the number of functions remaining after the 
filtering process, with the “Not vulnerable” and “Vulnerable” rows representing the number 
functions with and without vulnerabilities, respectively.  The numbers for the combined corpus do 
not always add up to the sum of the numbers for the individual corpora because of duplicate 
rejection across corpora. 

Table 8.  Summary of Dataset 1 

CORPUS NAME: SATE IV MUSE DEBIAN COMBINED 

Total 83,222 2,805,962 6,731,561 9,620,835 

Filtered (% of total) 75,827 (91.1%) 2,472,686 (88.1%) 6,121,012 (90.9%) 8,724,364 (90.7%) 

 No source extracted 457 1,668,515 4,420,999 6,089,971 

 Lexer size out of bounds 5,020 195,265 371,464 571,749 

 Duplicates 70,350 608,906 1,328,549 2,062,644 

Kept (% of total) 7,395 (8.9%) 333,276 (11.9%) 610,639 (9.1%) 896,471 (9.3%) 

 Not vulnerable (% of kept) 3,808 (51.5%) 321,045 (96.3%) 590,565 (96.7%) 862,419 (96.2%) 

 Vulnerable (% of kept) 3,587 (48.5%) 12,231 (3.7%) 20,074 (3.3%) 34,052 (3.8%) 

One metric that stands out is that about 90% of the available functions are filtered out.  Most of 
these are because no source was extracted, with the next highest contributor being rejection of 
duplicate functions.  Source is not extracted for most function objects because many functions are 
defined in header files, and the data extraction process does not traverse dependencies to pull all 
source code.  Because these header files are included by many source files, each such function 
produces a large number of duplicate function objects in the database.  Therefore, the amount of 
data discarded due to this filtering step is not nearly as great as the metrics make it appear. 

Note that the functions kept were randomly split into 78% training, 10% validation, 2% ensemble, 
and 10% test sets for model development.  The training dataset was used to train the models.  The 
validate dataset was used for hyperparameter tuning of the trained models.  The ensemble dataset 
was used to develop ensemble models.  The test dataset was used to evaluate the performance of 
the fully tuned models. 

During Phase 3 of the program, we expanded the dataset with the following updates: 
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• Updated the SATE IV data to the newer Juliet Test Suite Version 1.3, which includes
more functions and vulnerabilities

• Added about 3 million additional functions from Debian Linux distribution packages

• Added the Debian Linux kernel, consisting of over 200,000 functions

• Used two additional SA tools, Cppcheck and Flawfinder, in order to generate more
robust labels

Table 9 summarizes the expanded dataset, where the labels for the functions from MUSE and 
Debian corpora were generated using the findings from the three SA tools. 

Table 9.  Summary of Dataset 2 

CORPUS NAME: JULIET MUSE DEBIAN COMBINED 

Total 121,353 2,806,469 9,532,081 12,459,903 

Filtered (% of total) 109,272 (90.1%) 2,426,088 (86.5%) 8,576,398 (90.0%) 11,185,661 (89.8%) 

 No source extracted 20,490 1,671,685 6,132,024 7,824,199 

 Lexer size out of bounds 91 92,275 244,559 336,925 

 Duplicates 88,771 662,128 2,199,815 3,024,537 

Kept (% of total) 12,001 (9.9%) 380,381 (13.5%) 955,683 (10.0%) 1,274,242 (10.2%) 

 Not vulnerable (% of kept) 6,559 (54.6%) 364,306 (95.8%) 907,186 (94.9%) 1,207,396 (94.8%) 

 Vulnerable (% of kept) 5,442 (45.4%) 16,075 (4.2%) 48,497 (5.1%) 66,846 (5.2%) 

Dataset 2 offers several potential improvements over Dataset 1.  The additional function examples 
improve the ability of our models to learn the patterns that help them distinguish vulnerable 
functions.  Inclusion of the Debian kernel functions (as distinct from ordinary package functions) 
exposes our models to learn from the wider variety of code samples, allowing our models to 
generalize to other kernel code.  Generating labels using the three SA tools instead of one creates 
more reliable and robust labels. 

4.2 Classification 

This section presents evaluation results for classification.  Section 4.2.1 presents the approach we 
took to quantifying classification accuracy.  Section 4.2.2 presents the accuracy results based on 
validation using held-out examples from the training corpus.  Section 4.2.3 presents results based 
on evaluation of independent datasets.  Section 4.2.4 showcases selected classification examples. 

4.2.1 Approach to Quantifying Accuracy. 
We chose to evaluate our classifiers with several different metrics that can capture different aspects 
of classifier quality.  Each of our classification approaches produces a score as an output and binary 
classifications are made based on these scores surpassing some threshold 𝑇𝑇 between 0 and 1.  



Approved for Public Release; Distribution Unlimited. 
42 

Given a labeled evaluation dataset, we produce for each classifier the count of true positives (TP), 
true negatives (TN), false positives (FP), and false negatives (FN), where TP + TN + FP + FN 
must equal the total number of functions in the dataset for all threshold values 𝑇𝑇.  Area under curve 
(AUC) metrics evaluate the quality of a classifier over the full range of 𝑇𝑇 by integrating over a 
tradeoff curve, and thus capture the classification quality for a range of applications. 

Receiver Operating Characteristic (ROC) Curve 
The ROC curve is produced by plotting the true positive rate (TPR), TP/(TP + FN), versus the 
FPR, FP/(FP + TN), while varying the discrimination threshold of the classifier.  We include the 
ROC AUC (which ranges from 0 to 1) as one of our metrics since it is a standard metric for binary 
classifiers.  The ROC curve is good for quickly seeing how a classifier compares to a random 
classifier, as a random classifier always falls along the diagonal of the plot (0.5 AUC.)  This metric 
is primarily useful for evaluation datasets with relatively little class imbalance, such as the Juliet 
Test Suite.  However, for evaluation datasets with strong class imbalances, like our main test 
dataset, this metric should be used with caution since TN is very large compared to all of the other 
counts, making the FPR very small for most plausible threshold values.  In effect, for our class-
imbalanced dataset, the ROC AUC is weighted heavily towards scenarios in which a very large 
number of FP is acceptable. 

Precision-Recall (PR) Curve 
While the ROC curve provides accepted metrics for classification accuracy analysis, in the case of 
software vulnerability detection the metric produces optimistic estimates because the data are 
highly imbalanced (the number of functions with vulnerabilities is significantly lower than the 
number of functions without vulnerabilities).  Therefore, we also evaluated other metrics that give 
a more accurate assessment of how classification error statistics would translate into a user’s 
experience using the classifiers to detect vulnerabilities in their code. 

The PR curve is more appropriate for imbalanced evaluation data, since it plots the precision, 
TP/(TP + FP), against the TPR (which is equivalent to recall).  In effect, it shows the direct 
tradeoff between FN and FP as the threshold is varied.  A random classifier PR curve looks like a 
horizontal line at a precision equal to the fraction of the evaluation data that is positive.  For 
example, for a dataset in which 5% of the functions are vulnerable, a random classifier PR curve 
would be a horizontal line at a precision of 5% (and AUC for the random classifier would therefore 
be 0.05 in this example).  The PR AUC is probably the most useful general-purpose metric for 
classifier selection on our dataset, though its value still depends on the class imbalance of the 
evaluation dataset. 

Matthews Correlation Coefficient 
The MCC is our primary fixed-threshold metric.  It is calculated by: 

MCC =  (TP × TN − FP × FN)/�(TP + FP)(TP + FN)(TN + FP)(TN + FN) (11) 

MCC is effectively a correlation coefficient between our predictions and the true values.  Thus, 
the MCC can range from -1 (perfect anticorrelation) to 1 (perfect correlation), and a random 
classifier will have an MCC of 0.  The MCC metric has a major advantage over the more common 
accuracy (TP + TN)/(TP + TN + FP + FN) and 𝐹𝐹1 score (the harmonic mean of precision and 
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recall) metrics in that it is invariant to class imbalance.  Thus, the MCC can be directly compared 
between evaluating on a balanced dataset and an imbalanced dataset.  For most of our classification 
models, model parameters and checkpoints were determined based on the highest MCC.  The 
threshold for the test MCC for each classifier is determined by finding the threshold that maximizes 
the MCC on the validation data.  This is the “optimal threshold” in the sense that it maximizes the 
correlation between the validation predictions and the labels. 

4.2.2 Training Results. 
As described previously in Section 3.3.3, we investigated various different approaches for each 
classifier type.  For build feature-based classifiers, we investigated RF using simplified features, 
CNN with advanced features, one-layer LSTM with advanced features, and two-layer LSTM with 
advanced features.  For source feature-based classifiers, we investigated RF and extra-trees using 
the BOW representation of lexed source, CNN and RNN each with lexed source and embedded 
lexed source, and RF with CNN and RNN learned-feature representation of lexed source. 

Two-layer LSTM performed best among the build feature-based classifiers, RF with CNN learned-
feature representation of lexed source performed best among the source feature-based classifiers, 
and RF with simplified features and CNN learned-feature representation of lexed source performed 
best among the combined classifiers. 

Table 10 compares the performance metrics of the best-performing classifiers on Dataset 1, and 
Figure 18 shows the ROC curve and PR curve comparisons.  The source feature-based classifier 
offers an advantage over the build feature-based classifier in all three metrics, and the combined 
model performs better than either model does individually, illustrating that the build features 
provide useful information that source code itself does not provide.  Finally, ensemble model using 
the linear opinion pool approach to ensemble all three models further improves the performance. 
This analysis illustrates the accuracy with which the classifiers predict the training labels.  Since 
we do not have ground truth for most of the functions in this dataset, this mostly evaluates the 
ability of the classifiers to predict SA labels. 

Table 10.  Summary of Classification Results on Dataset 1 
MODEL ROC AUC PR AUC MCC THRESHOLD 

Build feature-based 0.801 0.361 0.413 0.530 

Source feature-based 0.863 0.473 0.482 0.298 

Combined 0.865 0.491 0.506 0.255 

Ensemble 0.877 0.505 0.515 0.260 
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Figure 18.  Classifier Comparison on Dataset 1 

Black dashed line: 
random classifier 

Black dashed line: 
random classifier 



Table 11 and Figure 19 show the performance comparison of the three types of classification 
models on Dataset 2.  The source feature-based classifier offers an advantage over the build 
feature-based classifier in all three metrics, and the combined model performs better than either 
model does individually, illustrating that the build features provide useful information that source 
code itself does not provide.  From Figure 19 we observe that there is no point on the curve where 
the source feature-based or build feature-based classifier performs better than the combined 
classifier, indicating that the ensemble approach will not improve performance.  Therefore, the 
ensemble classifier was omitted for Dataset 2. 

Table 11.  Summary of Classification Results on Dataset 2 
MODEL ROC AUC PR AUC MCC THRESHOLD 

Build feature-based 0.768 0.263 0.274 0.256 

Source feature-based 0.895 0.490 0.455 0.231 

Combined 0.896 0.512 0.474 0.201 

   Figure 19.  Classifier Comparison on Dataset 2 

The build feature-based classifier gives lower prediction accuracy on Dataset 2 than it does on 
Dataset 1.  We conclude that the build features are less effective for predicting SA labels from the 
two SA tools that were added for Dataset 2 (Flawfinder and Cppcheck) than for those from the 
original SA tool from Dataset 1 (Clang).  Unlike Clang, Flawfinder and Cppcheck use 
analysis rules that operate directly on a program’s source code that may be difficult to detect 
from build artifacts.  As our source features come directly from the lexed source code, the 
classifiers with access to these should more easily learn to recognize the patterns that result in 
Flawfinder and Cppcheck findings. 
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4.2.3 Evaluation Results. 
Evaluation of classification accuracy is complicated by a lack of available benchmark datasets that 
represent real-world software (as opposed to the synthetic examples of the Juliet Test Suite), 
include examples of software bugs that are typical of software vulnerabilities (as opposed to 
algorithm bugs that would produce incorrect output but would not expose vulnerabilities), and 
provide truth data for evaluation. 

For our accuracy assessment challenge problem, we ran the DeepCode classifiers on code from 
the Juliet Test Suite and demonstrated better accuracy than three SA tools.  Section 4.5.4 presents 
those results. 

To evaluate accuracy against more realistic software, we first ran the Vader dynamic analysis tool 
against functions in a specific version of the LibTIFF package that were deemed by a team of 
Draper cybersecurity experts to be most likely to contain security vulnerabilities.  This exercise 
uncovered vulnerabilities in three functions.  This is not a large enough sample size for a statistical 
analysis, but we were able to run the DeepCode classifiers on the same LibTIFF package and 
determine classification scores.  We then determined where the three known vulnerable functions 
ranked relative to the other functions in LibTIFF according to classification scores on a percentile 
basis, with the 100th percentile indicating the function scored as being most likely to be vulnerable 
and the 0th percentile indicating the function scored as being least likely to be vulnerable.   
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Figure 20 shows the results for three DeepCode classifier versions.  All three functions known to 
be vulnerable scored in the upper 40% of results.  We would expect a random result to be 
distributed with a mean about the 50th percentile, so these results are better than random, 
representing a good comparison relative to an independent vulnerability assessment.  It should 
further be noted that dynamic analysis requires orders of magnitude more processing time than the 
DeepCode classifiers. 

Figure 20.  Classification Results on LibTIFF 

4.2.4 Examples. 
In this section, we provide selected examples of error localization using the class activation 
mapping technique described in Section 3.3.3. 
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Figure 21 shows the error localization highlighting the relevant code block with a potential 
vulnerability, in which incrementing the pointer in the for loop cause memory to be freed using a 
pointer that is not at the start of the buffer. 

Figure 21.  Free of Pointer Not at Start of Buffer 
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Figure 22 shows the error localization highlighting the strncpy function use with a potential 
vulnerability in which unexpected sign extension of the variable data exceeds the boundaries of 
the dest array for the strncpy operation.  The error localization also highlighted another relevant 
code block with a potential weakness where the fscanf function is used instead of scanf to read 
data from console input. 
 
 

 
Figure 22.  Unexpected Sign Extension 
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Figure 23 shows the error localization highlighting the relevant code block with a potential 
vulnerability where the pointer references a memory location prior to the targeted buffer. 

Figure 23.  Buffer Under-Read 

4.3 Repair 

This section presents evaluation results for repair.  Section 4.3.1 presents the approach we took to 
quantifying repair accuracy.  Section 4.3.2 presents accuracy results for several repair experiments. 
Section 4.3.3 showcases selected repair examples. 

4.3.1 Approach to Quantifying Accuracy. 
While our GAN approach does not require paired examples to train, we focus our experiments on 
datasets with paired examples so that we can meaningfully evaluate the performance of our 
approach.  These datasets also allow direct comparison to sequence-to-sequence networks, and we 
can use their performance as a benchmark for comparison with our GAN approach. 

We use the Bilingual Evaluation Understudy (BLEU) score [80], which is one of the most 
commonly used evaluation metrics for machine translation problems, as the main evaluation metric 
for the repair performance.  The BLEU score compares n-grams (we use n of 4, which we refer to 
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as BLEU-4) of the repaired function’s sequence tokens with the n-grams of the sequence tokens 
of the desired good version and count the number of matches.  This metric is more robust to simple 
insertion and deletion changes that may be over-penalized by “Sequence Accuracy” that compares 
the entire sequence of tokens. 

In addition to BLEU score, we use sequence accuracy, order accuracy, or grammar accuracy 
depending on the experiments and contexts of the datasets.  The next section includes details of 
these additional metrics when discussing each of the experiments. 

4.3.2 Repair Accuracy Results. 
We evaluated our GAN approach using three experiments:  repair of sequences of sorted numbers, 
repair of sentences in a context-free grammar, and repair of vulnerabilities in C and C++ code. 
The first two of these involve hand-curated datasets and are intended to highlight the benefits of 
our GAN approach to address the domain mapping problem.  The third evaluates repair 
performance in the problem domain of interest. 

Sorting Experiment 
To show the necessity of enforcing accurate domain mapping, we conduct an experiment for which 
the repair task is to sort the input into ascending order.  We generate sequences of 20 randomly 
selected integers (without replacement) between 0 and 50 in ascending order.  We then inject errors 
by swapping n selected tokens which are next to each other, where n is a (rounded) Gaussian 
random variable with mean 8 and standard deviation 4.  The task is to sort the sequence back into 
its original ascending order given the error-injected sequence.  This scheme of data generation 
allows us to maintain pairs of good (before error injection) and bad (after error injection) data, and 
to compute the “sequence accuracy” with which our GAN is able to restore the good sequences 
from the bad.  To assess our domain mapping approach and evaluate the usefulness of our self-
regularizer loss functions, we also compute the percentage of sequences which have valid 
orderings but not necessarily valid domain mappings, which we refer to as “order accuracy”. 

We use identical networks for the generator in our GAN model and the sequence-to-sequence 
baseline.  The generator RNNs contain 3 layers of 512 hidden states each.  The discriminator 
convolutional layer has 3 filter sizes (3, 7, and 11 hidden states) and 300 filters for each size, 
leading to a total of 900 filters.  The fully connected layer for the discriminator output consists of 
two layers (the first with 512 hidden states and the second with a single hidden state).  Networks 
are trained for 200 epochs.  The curriculum starts at 5 and is increased by 2 each step. 
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Table 12 presents the sorting repair experiment results.  In Table 12, “Cur” refers to experiments 
using curriculum learning, while “Auto”, “Freq”, and “Cycle” are those using 𝐿𝐿𝐺𝐺𝐴𝐴𝑇𝑇𝐴𝐴, 𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, and 
𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹, respectively.  The base GAN easily learns to generate sequences with valid ordering, 
without necessarily paying attention to the input sequence.  This leads to high order accuracy, but 
low sequence accuracy.  However, adding Auto or Freq loss regularizers significantly improves 
the sequence accuracy, which shows that these losses effectively enforce the correct mapping 
between the source and target domains. 

Table 12.  Sorting Repair Experiment Results 

Model Configuration Sequence Accuracy Order Accuracy 
Sequence-to-sequence Base 99.7 99.8 

Base + Cur 99.7 99.8 
GAN Base 82.8 96.9 

Base + Auto 98.9 99.6 
Base + Freq 99.3 99.7 
Base + Cur 81.5 98.0 
Base + Cur + Auto 96.2 98.0 
Base + Cur + Freq 98.2 99.1 
Base + Cur + Cycle 91.0 97.8 

Grammar Experiment 
For our second experiment, we generate data from a simple context-free grammar similar to that 
used by Rajeswar et al. [65].  Our good data are selected randomly from the set of all sequences 
which satisfy the grammar and are less than length 20.  We then inject errors into each sequence, 
where the number of errors is chosen as a Gaussian random variable (zero thresholded and 
rounded) with mean 5 and standard deviation 2.  Each error is then randomly chosen to be either a 
deletion of a random token, insertion of a random token, or swap of two random tokens. 

The network is tasked with generating the original sequence from the error injected one.  This task 
better models real data than the sorting task above, because each generated token must follow the 
grammar and is therefore conditioned on all previous tokens. 

We use identical networks for the generator in our GAN model and the sequence-to-sequence 
baseline.  The generator RNNs contain 3 layers of 512 hidden states each.  The discriminator 
convolutional layer has 3 filter sizes (3, 7, and 11 hidden states) and 300 filters for each size, 
leading to a total of 900 filters.  The fully connected layer for the discriminator output consists of 
two layers (the first with 512 hidden states and the second with a single hidden state).  Networks 
are trained for 400 epochs.  The curriculum starts at 5 and is increased by 2 each step. 
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Table 13 presents the grammar repair experiment results.  These results show that our GAN 
approach is able to achieve high grammar accuracy, in terms of generating correct sequences that 
fit the context-free grammar.  Notably, all of our methods preform reasonably well on this task, 
which shows that the GAN approach is able to correctly map a bad distribution to a good 
distribution. 

Table 13.  Grammar Repair Experiment Results 

Model Configuration Grammar Accuracy 
Sequence-to-sequence Base 99.3 

Base + Cur 98.9 
GAN Base 98.0 

Base + Auto 96.5 
Base + Freq 97.5 
Base + Cur 98.9 
Base + Cur + Auto 97.8 
Base + Cur + Freq 96.3 
Base + Cur + Cycle 98.3 

Juliet Test Suite 
We tested our GAN model on the Juliet Test Suite.  We use identical networks for the generator 
in our GAN model and the sequence-to-sequence baseline.  The generator RNNs contain 4 layers 
of 512 hidden states each.  The discriminator convolutional layer has 3 filter sizes (3, 7, and 11 
hidden states) and 300 filters for each size, leading to a total of 900 filters.  The fully connected 
layer for the discriminator output consists of two layers (the first with 512 hidden states and the 
second with a single hidden state).  Networks are trained for 1000 epochs.  The curriculum starts 
at 75 and is increased by 5 each step. 
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Table 14 presents the Juliet Test Suite experiment results.  Our GAN approach achieves 
progressively better results when we add (a) curriculum training, and (b) either 𝐿𝐿𝐺𝐺𝐴𝐴𝑇𝑇𝐴𝐴 or 𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 
regularization loss.  The Base+Cur+Freq model proves to be the best among different GAN 
models, and performs reasonably close to the sequence-to-sequence baseline (which is the upper 
performance bound in this experiment because it is trained using paired training examples).  Code 
examples where our GAN makes correct repairs are provided in Section 4.2.3.  Non-curriculum 
tests with 𝐿𝐿𝐺𝐺𝐴𝐴𝑇𝑇𝐴𝐴 or 𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  regularization losses were not included in one-line testing because they 
were already shown in multi-line testing to have poorer performance than the curriculum-based 
approaches. 

Table 14.  Juliet Test Suite Repair Experiment Results 

Model Configuration One-Line Multi-Line 
Sequence-to-sequence Base .997 .963 

Base + Cur .997 .964 
GAN Base .873 .842 

Base + Auto .857 
Base + Freq .862 
Base + Cur .904 .883 
Base + Cur + Auto .956 .899 
Base + Cur + Freq .962 .903 
Base + Cur + Cycle .918 .831 

We note that the sequence-to-sequence baseline has higher accuracy metrics than the GAN 
approach for these experiments.  These are experiments involving simple repairs of very simple 
synthetic code.  We relied on such data for repair accuracy assessment because we needed paired 
examples with ground truth data in order to do the analysis for the accuracy assessment.  We expect 
the real power of the GAN approach to come with repair problems involving more complex code, 
but we lacked the benchmark dataset necessary for such an evaluation. 



Approved for Public Release; Distribution Unlimited. 
55 

4.3.3 Repair Examples. 
The figures in this section show selected GAN repair examples. 

Figure 24 shows an error where the memory is used after it is freed.  Our GAN repairs it correctly 
by removing the piece of code that frees the memory. 

Figure 24.  Memory Use After Free 

Figure 25 shows a function that has a buffer allocated which is too small for the resulting data 
write.  Our GAN repairs it by increasing the amount of memory allocated to the buffer. 

Figure 25.  Buffer Allocation Error 
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Figure 26 shows a function that reads the index of an array access from a socket and returns the 
memory at the index.  The vulnerable function only checks the lower bound on the array size.  Our 
GAN repairs it by adding an additional check on the upper bound. 

Figure 26.  Socket Array Access Error 
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Figure 27 shows a function that calls sprint to print out two strings, but only provides the first 
string to print.  Our GAN repairs it by providing a second string. 

Figure 27.  Format Print Error 

Figure 28 shows a function that attempts to accept a socket and use it before it has bound it.  Our 
GAN approach repairs the function by reordering the bind, listen, and accept into the correct order. 

Figure 28.  Socket Binding Error 
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4.4 Program Synthesis 

Here we describe some of the preliminary results of our work in program synthesis. 

Our first experiment tested our ability to reconstruct functions from the sequences of production 
rules output by our grammar VAE.  We reconstructed over 500,000 functions and found that all 
of them were syntactically valid.  This is an improvement over the work of Kusner et al. [76] in 
two ways:  (1) we guarantee syntactic validity even when the neural network outputs only a partial 
sequence (the neural network can only predict the first 50 production rules in the sequence, but 
this does not always correspond with a complete function); and (2) we successfully demonstrate 
that the grammar VAE architecture can handle a context-sensitive grammar, rather than a simple 
context-free grammar. 

In our second experiment, we trained the grammar VAE on functions from our training corpus so 
that the model could learn a latent space representative of the kinds of functions found in our 
classifier and repair datasets.  We found that our network architecture is comparable to that of 
Kusner et al. [76], but our vocabulary is more than three times as large.  We tuned the model to 
minimize validation loss (a combination of cross-entropy loss and Kullback-Leibler divergence).  
We reviewed 1,000 randomly selected functions from the training dataset and verified that all 
1,000 of these were parsed correctly. 

In our third experiment, we demonstrate our ability to impose constraints on generated functions 
in a reliable and efficient manner.  Table 15 shows these results.  Our experiments have shown 
that we can enforce constraints with a 100% success rate without significant overhead.  We can 
enforce the semantic validity constraint with a 99.97% success rate. 

Table 15.  Constraint Enforcement Success Rate 

Constraint Success Rate 
Return Type Modifier 100% 

Argument Number Modifier 100% 
Argument Type Modifier 100% 

No Loops 100% 
Contains Loop 100% 

Semantically Valid 99.97% 

We anticipate one potential problem in our approach.  While this approach can guarantee that a 
function has a vulnerability, it cannot guarantee that a function does not have a vulnerability.  This 
could result in noisy labels for the negative (non-buggy) functions, but we anticipate that the 
number of mislabeled functions would be small. 

4.5 Program Evaluations 

Over the course of the three MUSE program phases, Draper supported program-wide evaluation 
events and hackathons hosted during the demonstration workshops.  The sections that follow 
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describe Draper’s results from these events. 

4.5.1 Phase 1 Hackathon. 
Draper participated in a hackathon sponsored by DARPA at the end of Phase 1 of the MUSE 
program, concurrent with the Phase 1 Demonstration Workshop in February 2016.  Draper’s goal 
for this hackathon was to uncover vulnerabilities in the SATE IV dataset. 

During the course of the hackathon, the Draper DeepCode classifier successfully identified the 
Heartbleed Bug [81] associated with the OpenSSL cryptographic software library.  Figure 29 
shows the example of the vulnerability identified in this case.  The memcpy at line 1487 is an 
implicit loop with a loop bound identified by a variable (payload).  Neither this variable nor any 
of its ancestors is involved in a compare instruction.  We verified that the Draper DeepCode 
classifier correctly assigned this function an “untaint” value of 0, indicating a loop variable that 
was not untainted (compared before use). 

Figure 29.  Tainted Loop Bound Associated with Heartbleed Bug 

1464 n2s(p, payload);
1465 pl = p;
1466
1467 if (s->msg_callback)
1468 s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,
1469 &s->s3->rrec.data[0], s->s3->rrec.length,
1470 s, s->msg_callback_arg);
1471
1472 if (hbtype == TLS1_HB_REQUEST)
1473 {
1474 unsigned char *buffer, *bp;
1475 int r;
1476
1477 /* Allocate memory for the response, size is 1 byte
1478 * message type, plus 2 bytes payload length, plus
1479 * payload, plus padding
1480 */
1481 buffer = OPENSSL_malloc(1 + 2 + payload + padding);
1482 bp = buffer;
1483
1484 /* Enter response type, length and copy payload */
1485 *bp++ = TLS1_HB_RESPONSE;
1486 s2n(payload, bp);
1487 memcpy(bp, pl, payload);
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Figure 30 shows the corrected version of this code with the correct untaint operation.  Here, the 
payload variable is involved in the assignment to write_length at line 1479.  Then write_length 
is involved in the comparison at line 1484.  We verified that the Draper DeepCode classifier 
correctly assigned this function an “untaint” value of 1, indicating a loop variable that was 
untainted (compared before use). 

Figure 30.  Untainted Loop Bound Associated with Corrected Code 

4.5.2 Phase 2 Evaluation. 
During Phase 2, Draper provided a remote interface and documentation for Leidos to conduct an 
independent evaluation of the DeepCode classification and repair tools.  Leidos conducted this 
evaluation and reported at the Phase 2 Demonstration Workshop that Draper had met our 
evaluation criteria. 

We evaluated classification accuracy using data held out from training (that is, not used in the 
training set) from the SATE IV dataset.  We used SATE IV for the evaluation because this dataset 
comes with truth data to enable accuracy analysis.  Table 16 indicates the accuracy with which 
DeepCode identified errors associated with different CWEs.  Blank rows in Table 16 correspond 
to CWEs which were present in the training set but did not have enough statistics to be present in 
the test set. 

1479 unsigned int write_length = 1 /* heartbeat type */ +
1480 2 /* heartbeat length */ +
1481 payload + padding;
1482 int r;
1483
1484 if (write_length > SSL3_RT_MAX_PLAIN_LENGTH)
1485 return 0;
1486
1487 /* Allocate memory for the response, size is 1 byte
1488 * message type, plus 2 bytes payload length, plus
1489 * payload, plus padding
1490 */
1491 buffer = OPENSSL_malloc(write_length);
1492 bp = buffer;
1493
1494 /* Enter response type, length and copy payload */
1495 *bp++ = TLS1_HB_RESPONSE;
1496 s2n(payload, bp);
1497 memcpy(bp, pl, payload);
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Table 16.  Classification Test Results on SATE IV by CWE 
CWE Accuracy % 
CWE15_External_Control_of_System_or_Configuration_Setting   
CWE114_Process_Control 2/2 100% 
CWE121_Stack_Based_Buffer_Overflow 88/90 98% 
CWE122_Heap_Based_Buffer_Overflow 115/115 100% 
CWE123_Write_What_Where_Condition 2/2 100% 
CWE124_Buffer_Underwrite 70/70 100% 
CWE126_Buffer_Overread 1/1 100% 
CWE127_Buffer_Underread 75/75 100% 
CWE129_Improper_Validation_Of_Array_Index 22/22 100% 
CWE131_Incorrect_Calculation_Of_Buffer_Size 24/24 100% 
CWE134_Uncontrolled_Format_String 16/20 100% 
CWE135_Incorrect_Calculation_Of_Multibyte_String_Length 1/1 100% 
CWE170_Improper_Null_Termination 8/8 100% 
CWE187_Partial_Comparison 15/15 100% 
CWE190_Integer_Overflow 31/31 100% 
CWE191_Integer_Underflow 14/14 100% 
CWE193_Off_by_One_Error 5/6 83% 
CWE194_Unexpected_Sign_Extension 9/9 100% 
CWE195_Signed_To_Unsigned_Conversion 15/15 100% 
CWE196_Unsigned_To_Signed_Conversion_Error 2/2 100% 
CWE197_Numeric_Truncation_Error 9/9 100% 
CWE242_Use_of_Inherently_Dangerous_Function 2/2 100% 
CWE252_Unchecked_Return_Value   
CWE253_Incorrect_Check_of_Function_Return_Value 34/35 97% 
CWE369_Divide_By_Zero 8/9 89% 
CWE374_Passing_Mutable_Objects_to_Untrusted_Method 2/2 100% 
CWE390_Error_Without_Action 36/38 95% 
CWE401_Memory_Leak 38/42 90% 
CWE415_Double_Free 49/50 98% 
CWE416_Use_After_Free 45/50 90% 
CWE457_Use_of_Uninitialized_Variable 29/29 100% 
CWE459_Incomplete_Cleanup   
CWE467_Use_of_sizeof_on_Pointer_Type 5/6 83% 
CWE468_Incorrect_Pointer_Scaling   
CWE469_Use_Of_Pointer_Subtraction_To_Determine_Size 7/10 70% 
CWE476_NULL_Pointer_Dereference 4/6 67% 
CWE480_Use_of_Incorrect_Operator   
CWE481_Assigning_instead_of_Comparing 2/2 100% 
CWE482_Comparing_instead_of_Assigning   
CWE562_Return_Of_Stack_Variable_Address   
CWE587_Assignment_Of_Fixed_Address_To_Pointer   
CWE588_Attempt_To_Access_Child_Of_A_Non_Structure_Pointer   
CWE590_Free_Of_Invalid_Pointer_Not_On_The_Heap 43/45 96% 
CWE606_Unchecked_Loop_Condition   
CWE680_Integer_Overflow_To_Buffer_Overflow 7/7 100% 
CWE690_NULL_Deref_from_Return   
CWE761_Free_Pointer_Not_At_Start_Of_Buffer 2/2 100% 
Overall 837/866 97% 
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To evaluate repair we constructed several datasets as follows: 

• Synthesize extremely simple fix examples from templates, focusing specifically on buffer
overflows.

• Inject simple buffer overflow examples into real functions.

• Gather bad-good function pairs from the SATE IV dataset.

During Phase 2 we were in the early stages of developing the repair capability; therefore, we 
focused on single-line repairs for simplicity in the Phase 2 evaluation.  Table 17 summarizes results 
on test sets for the different datasets described above.  “Localization %” is the percentage of 
examples in which the correct line to fix was identified.  “Repair %” is the percentage of examples 
in which the new line was generated entirely correctly.  The validation and test sets were a 50/50 
split between bad-good pairs and good-good pairs.  Therefore, some of the accuracy in Table 17 
is due to the network correctly recognizing a good function that does not need to be repaired, while 
part comes from fixes being generated successfully. 

Table 17.  Repair Accuracy Summary 

Evaluation Dataset Localization % Repair % 
Basic templates 99.99% 99.99% 
Injected templates 96.9% 75.9% 
SATE IV (overflows only) 100% 100% 
SATE IV (expanded bug set) 98.5% 96.7% 

We can think of these datasets along two axes – repair complexity and number of bug variants. 
While the SATE IV dataset has relatively simple functions as examples, we were able to test across 
a wide variety of bug variants.  The injected templates were more complex because they were 
injected into real code, but they covered a smaller breadth of bugs.   
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Figure 31 depicts accuracy relative to these two metrics. 
 
 

 
Figure 31.  Repair Accuracy Dependence 

 
 
One way of visualizing what the network has learned is to do a principal component analysis (PCA) 
of the encoding layer to see how it is separating examples.  Figure 32 shows an example from our 
simplest set of buffer overflow templates. We can see three clusters, corresponding to the three 
templates from which we generated our dataset.  The reason the network was able to perform so 
well is that it essentially memorized the templates. 
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Figure 32.  Repair PCA for Buffer Overflow Templates 

On the more realistic dataset of templates injected into real functions, the network still shows an 
ability to separate the templates.  However, the clustering is not as tight as seen previously because 
of the additional variation in the data.  Figure 33 shows the PCA mapping of that network’s 
encoding. 

Figure 33.  Repair PCA for Injected Templates 

In this dataset, the aggregate performance was strongly dependent on the different templates we 



Approved for Public Release; Distribution Unlimited. 
65 

injected.  One template, a bug where memcpy was used to copy too large a source array into a 
smaller destination array, showed very good repair performance, close to 95%.  The other template, 
where the integer limit on a for loop was larger than an array that was indexed within the loop, 
showed worse performance, with only 52% accuracy.  This is because in the second case, the 
network had to memorize the exact size of the array in order to generate a correct repair.  While 
the network was able to correctly identify the line to be repaired most of the time, it did not 
sufficiently remember the integer value needed for a completely correct fix.  In the memcpy case, 
only the correct ordering of the source and destination was necessary to generate the repair. 

4.5.3 Phase 2 Hackathon. 
Draper participated in a hackathon sponsored by DARPA at the end of Phase 2 of the MUSE 
program, concurrent with the Phase 2 Demonstration Workshop in May 2017.  Draper’s goal for 
this hackathon was to uncover vulnerabilities that had been injected into the Ardupilot C/C++ code 
by the system evaluator (Leidos).  Since we had a build-feature-based classifier prepared for the 
Phase 2 hackathon, we analyzed the subset of functions from Ardupilot from which we were able 
to extract build features during the course of the hackathon. 

We applied 3 different classifier models that we had previously trained in preparation for the 
hackathon:  AE, RF, and RNN.  We also combined individual models together to create new 
classification scores.  We tested these models on 1,239 functions from Ardupilot that our pipeline 
ingested.  Since we did not know ground truth for this test, we could not compute accuracy metrics. 
Instead, we reviewed functions that the classifiers identified as having a high probability of error 
and looked for issues in those functions. 
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Of the 1,239 functions analyzed, 127 of these had an ensemble score greater than 80%.  Of these, 
we labeled 36 as especially suspect.  Many of these were not necessarily vulnerabilities in and of 
themselves, but we identified some edge cases that could be triggered.  Figure 34 shows the 
breakdown of the high-scoring examples by library, and we provide some detailed examples later 
in this section. 

Figure 34.  Error Detection Breakdown by Library 

We also tried 3 different repair models that we had previously trained on the following data: 

1. Hand-crafted bug templates injected into real code

2. SATE IV data only

3. SATE IV templates injected into real code

We found that the bugs we detected could not be patched with the types of patches in the training 
sets, but it was still useful to keep track of repair attempts as an additional measure of bug 
localization.  Functions that had a repair attempted sometimes had higher classification scores as 
well.  Out of the 36 verified high-scoring functions, 5 also had a repair attempt.   
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Figure 35 shows histograms of classification score and repair attempts for the three types of 
classifier (AE, RF, and RNN) and an ensemble classifier. 
 
 

 
Figure 35.  Classification Attempts and Repair Histograms 

 
 
Figure 36 shows an example of a function tagged by the DeepCode classifiers.  Note that the for 
loop highlighted in orange has an incorrect conditional statement (“length” should be “ofs < 
length”). 
 
 

 
Figure 36.  Error Example:  For Loop Conditional Statement 

 
  

void StorageManager::erase(void){
uint8_t blk[16];
memset(blk, 0, sizeof(blk));
for (uint8_t i=0; i<STORAGE_NUM_AREAS; i++) {

const StorageManager::StorageArea &area = StorageManager::layout[i];
uint16_t length = pgm_read_word(&area.length);
uint16_t offset = pgm_read_word(&area.offset);
for (uint8_t ofs=0; length; ofs += sizeof(blk)) {

uint8_t n = 16;
if (ofs + n > length) {

n = length - ofs;
}
hal.storage->write_block(offset + ofs, blk, n);

}
}

}



Approved for Public Release; Distribution Unlimited. 
68 

Figure 37 shows an example of a function tagged by the DeepCode classifiers that may or may not 
be erroneous depending on how the function is used and its relationship to other software in the 
ecosystem.  Note that in the operations highlighted in orange, a pointer is set and dereferenced 
without checking the size of the array to which the pointer points. 

Figure 37.  Error Example:  Pointer De-Reference 

uint32_t AP_GPS_NMEA::_parse_decimal_100()
{

char *p = _term;
uint32_t ret = 100UL * atol(p);
while (isdigit(*p))

++p;
if (*p == '.') {

if (isdigit(p[1])) {
ret += 10 * DIGIT_TO_VAL(p[1]);
if (isdigit(p[2]))

ret += DIGIT_TO_VAL(p[2]);
}

}
return ret;

}
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Figure 38 shows an example of a function tagged by the DeepCode classifiers in which an element 
of an array is referenced based on an input parameter to the function, without checking whether 
the parameter is within the bounds of the array.  It is possible that this is checked before the 
function is called, but if the function is used without such a check, this could lead to errors. 

Figure 38.  Error Example:  Array Index 

void AP_Compass_Backend::correct_field(Vector3f &mag, uint8_t i){
Compass::mag_state &state = _compass._state[i];

if (state.diagonals.get().is_zero()) {
state.diagonals.set(Vector3f(1.0f,1.0f,1.0f));

}

const Vector3f &offsets = state.offset.get();
const Vector3f &diagonals = state.diagonals.get();
const Vector3f &offdiagonals = state.offdiagonals.get();
const Vector3f &mot = state.motor_compensation.get();

/*
* note that _motor_offset[] is kept even if compensation is not
* being applied so it can be logged correctly
*/
mag += offsets; …



Approved for Public Release; Distribution Unlimited. 
70 

Figure 39 shows an example of a double pointer that is de-referenced and used in a loop without 
validity checks.  Again, it is possible that everything is checked before the function is called, or 
that the input is constructed in a way that guarantees this to work, but if the function is used 
differently, this could lead to errors. 

Figure 39.  Error Example:  Double Pointer De-Reference 

By running the DeepCode classifiers on the sample code from this hackathon, we were able to 
identify situations in the code where many assumptions were made about global buffers, pointers, 
and the like.  While not necessarily vulnerabilities in and of themselves, they could pose potential 
pitfalls for a novice writing code in this environment, which could possibly lead to vulnerabilities 
being introduced. 

At the time of the Phase 2 hackathon, we had only build-feature-based classifiers available that 
required the code to build in order to analyze it.  Difficulties building the code in the environment 
of the DeepCode data pipeline made the analysis less efficient and comprehensive than it could 
have been.  We took this as a lesson learned that led us to develop source-feature-based classifiers 
in Phase 3. 

We also found that we needed to expand the training data substantially for our repair network.  We 
also took this as a lesson learned that led us to develop the GAN for repair in Phase 3. 

static char *dequote_value(const char *varname, char *varval)
{
const char **dqnam;
char *dqval = varval;
int len;

if (dqval)
{
/* Check if the variable name is in the list of strings to be 

dequoated */

for (dqnam = dequote_list; *dqnam; dqnam++)
{
if (strcmp(*dqnam, varname) == 0)
{
break;

}
}
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4.5.4 Phase 3 Challenge Problem. 
For Phase 3 we had two challenge problems:  one to support an analysis goal and one to support a 
demonstration goal.  This section describes the challenge problems and our results relative to these 
challenge problems. 
 
Challenge Problem 1 (Analysis Goal) 
Challenge problem 1 was to demonstrate our ability to identify and repair C and C++ functions in 
one or more open-source benchmark datasets that have security vulnerabilities.  The main 
challenge for this goal lay in finding a dataset with sufficient truth data to serve as a benchmark 
for evaluation.  We investigated ManyBugs [17], Google OSS-Fuzz [82], Codeflaws [83], and the 
Juliet Test Suite [19] as possible benchmark datasets.  ManyBugs provides differences before and 
after fixes in open-source software with enough information to determine the functions that 
changed, but with only a small number of security vulnerabilities for testing.  Google OSS-Fuzz 
provides truth data for about 2000 security vulnerabilities but lacks resolution at the function level, 
which we needed for evaluation.  Codeflaws provides truth data for over 7000 software bugs, but 
most of these are algorithmic issues that would not translate to security vulnerabilities.  The Juliet 
Test Suite has the best truth data about vulnerabilities, so we used the Juliet Test Suite for this 
evaluation.  Since some code from the Juliet Test Suite was also in the training corpus, we were 
very careful to hold out examples for the evaluation that we did not include in the training data. 
 
The current state of practice consists of SA, which provides a fast analysis of software to look for 
known issues, and dynamic analysis, which is more flexible but takes orders of magnitude more 
time.  Learning-based algorithms show promise to generalize better while taking similar (or even 
less) time than SA.  In addressing our Phase 3 accuracy assessment challenge problem, we 
compared DeepCode vulnerability detection against a number of SA tools using held-out functions 
from the Juliet Test Suite.  Figure 40 demonstrates that our machine learning approaches 
outperformed the SA tools in this comparison.  We also determined that our pre-trained source-
feature-based classifier takes about an order of magnitude less run time than the Clang SA because 
the source-feature-based classifier does not have to build the software first.  DeepCode classifiers 
that use build features take about the same amount of time as the Clang SA because they need to 
run Clang to do the builds first. 
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Figure 40.  DeepCode Classifier Comparisons with SA on Juliet Test Suite 

Challenge Problem 2 (Demonstration Goal) 
Challenge problem 2 was to identify and repair previously undiscovered security vulnerabilities in 
one or more open-source C / C++ software packages in widespread use.  We chose the PureOS 
kernel as the code-under-test for this challenge problem due to its importance as a privacy-centric 
Linux distribution.  Our initial attempts to apply DeepCode classifiers to this kernel software 
showed much lower accuracy than we obtained against other application software.  Our hypothesis 
for this result was that the training corpus did not contain examples similar enough to kernel 
software from which the classifiers could learn patterns.  As a result, we augmented the training 
corpus with examples from the Debian Linux kernel. 

After augmenting the training corpus with Debian kernel code examples, we ran again the 
DeepCode classifier against the PureOS kernel code.  We selected a threshold of 0.80 and 
identified 35 functions from the PureOS kernel code with classification scores above threshold 
(indicating that DeepCode ranked these 35 functions as having the highest likelihood of having 
vulnerabilities).  We then asked an internal team of cybersecurity experts at Draper to inspect these 
35 functions manually to determine how many were vulnerable.  The cybersecurity expert team 
found that 17 of the 35 functions (about half) had vulnerabilities.  By contrast, we would not expect 
35 randomly selected functions to include vulnerabilities in nearly half of those functions.  Table 
18 provides the details of the DeepCode rankings and the manual inspection findings. 

Dashed line = 
random chance

Best 
possible Dashed line = 

random chance

Best 
possible
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Table 18.  Classification Demonstration Challenge Problem Results 
File Score Manual inspection finding Line number
scripts/pnmtologo.c 0.94 none
scripts/kallsyms.c 0.92 none
drivers/infiniband/core/cma.c 0.89 memcpy 1676
kernel/debug/kdb/kdb_main.c 0.89 sprintf 2615
drivers/gpu/drm/radeon/mkregtable.c 0.88 none
drivers/net/wireless/brcm80211/brcmsmac/main.c 0.88 none
init/do_mounts.c 0.87 none
scripts/asn1_compiler.c 0.86 atoi usage … ; ' 'buffer' allocated but never free'd 557;576
drivers/net/usb/sr9800.c 0.85 none
drivers/net/ethernet/mellanox/mlx4/en_rx.c 0.84 none
scripts/mod/file2alias.c 0.84 sprintf 693

arch/x86/boot/compressed/mkpiggy.c 0.84

p: ilen is signed but treated as unsigned in print 
@L37@L67@L83 || fopen doesn’t check for 

symlink @L51 || atoi doesn’t have error handle, 
input must be str that can be converted to signed 

int, is deprecated, use strtol
drivers/staging/lustre/lustre/obdclass/cl_lock.c 0.84 none
drivers/connector/cn_proc.c 0.84 cn_proc_event_id is not declared in func scope 181
drivers/connector/cn_proc.c 0.84 none
drivers/connector/cn_proc.c 0.84 cn_proc_event_id is not declared in func scope 265
drivers/connector/cn_proc.c 0.84 cn_proc_event_id is not declared in func scope 292
drivers/ata/ahci.c 0.83 none
drivers/message/fusion/mptbase.c 0.83 none
drivers/connector/cn_proc.c 0.83 none
drivers/mfd/rtsx_pcr.c 0.83 memcpy
mm/memcontrol.c 0.82 memcpy 3713
arch/x86/tools/relocs_common.c 0.82 none
arch/x86/pci/i386.c 0.82 the value of 'dev' is not checked for null 314
sound/pci/mixart/mixart.c 0.82 strcpy, sprintf 990
sound/pci/mixart/mixart.c 0.82 strcpy, sprintf 1023
drivers/gpu/drm/i2c/adv7511.c 0.81 none
net/mac80211/wpa.c 0.81 memcpy 559
scripts/mod/mk_elfconfig.c 0.81 none
scripts/mod/file2alias.c 0.81 sprintf 796
Documentation/spi/spidev_fdx.c 0.80 none
sound/usb/mixer_quirks.c 0.80 none
drivers/gpu/drm/radeon/mkregtable.c 0.80 none
drivers/net/wireless/brcm80211/brcmsmac/main.c 0.80 memcpy 1908

scripts/mod/modpost.c 0.80
sprintf possible overwriting other struct member, 

or even outside of struct data 2464
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Figure 41 shows a selected example of one of the vulnerabilities identified by DeepCode.  This is 
an example of CWE-120 (buffer copy without checking size of input).  In this example, we also 
see the result of using backpropagation to isolate the location of the bug.  In this case, 
backpropagation automatically highlighted the portions of the code that contributed to the 
vulnerability finding.  This highlights backpropagation as a valuable tool for a user to isolate issues 
quickly that DeepCode finds. 

Figure 41.  Classification Demonstration Challenge Problem Example 

For the repair portion of the demonstration challenge problem, we attempted repairs on the errors 
we identified in the LibTIFF and PureOS software.  The results of these repair attempts did not 
work out as well as we hoped.  Some repair attempts produced compilable code, but others did 
not, and the repair attempts that compiled still didn’t make sense upon manual inspection.  We 
reviewed the results and identified reasons for this performance.  In these more realistic code 
examples (unlike the synthetic SATE IV examples), a one-to-many relationship exists between a 
given vulnerable function and several possible repairs.  GAN training breaks down when the 
generator produces several possible repairs with similar probability. 

The typical sequence-to-sequence network outputs the probability of an output sequence given a 
particular input sequence.  This allows us to obtain the most probable repair candidates using an 
approach like beam search.  We pass these probability outputs as one input to the GAN 
discriminator and real samples as another.  GAN training then attempts to minimize the distance 
between the distribution of generator outputs and the real samples.  Specifically, we use a WGAN, 
which attempts to minimize the Wasserstein-1 or EM distance.  Unfortunately, it turns out that 
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minimizing the Wasserstein-1 distance between these probabilistic generator outputs and the real 
samples does not minimize the distance between samples from the generator output and the real 
samples (which is what we want).  This does occur for cross-entropy loss (used by sequence-to-
sequence), but not for many other distance metrics.  This means our method may produce some 
good samples, but will likely struggle when there are several possible repairs with relatively equal 
probability, which is more likely for real data than for synthetic data like SATE IV. 

5. CONCLUSIONS 
During the course of the DARPA MUSE program, Draper advanced the state of the art in automatic 
detection and repair of security vulnerabilities in software.  In the sections that follow, we 
summarize these contributions, discuss the readiness of the technology for transition, and provide 
recommendations for future work in this area. 

5.1 Classification 

We have developed a fast and scalable vulnerability detection tool based on machine learning for 
the detection of bugs that can lead to security vulnerabilities in C/C++ code.  We have shown that 
machine learning is able to effectively learn to detect vulnerability labels at the function level.  In 
particular, Deep Learning is a powerful way of generating high-level features for vulnerability 
detection from both source code and build artifacts.  When learning directly on lexed source code, 
Deep Learning approaches were able to learn the vulnerability labels from three different SA tools 
well.  Deep Learning on build features was similarly effective for build feature-based vulnerability 
labels, but weaker on the labels from the two source-based SA tools.  The most effective approach 
for detecting build-based SA labels was achieved by training the classifier on a combined set of 
simplified build features and source features derived through neural network classification 
training. 
 
We also evaluated the ability of the DeepCode classifiers to find true vulnerabilities in software 
(as distinct from predicting SA labels).  This was more difficult to quantify due to the limited 
availability of benchmark datasets that provide ground truth for evaluation.  We were able to 
quantify accuracy with which we predicted ground truth labels for the Juliet Test Suite, and we 
showed that the DeepCode classifiers were more accurate than the three SA tools that we also 
evaluated.  We also showed that vulnerabilities identified by the Vader dynamic analysis tool also 
scored highly for likelihood of vulnerability when analyzed by the DeepCode classifiers. 

5.2 Repair 

We have developed a GAN-based approach to train a system for software vulnerability repair.  We 
demonstrated that our new approach is an effective technique for repairing software vulnerabilities, 
performing close to the state-of-the-art sequence-to-sequence approaches that require labeled 
pairs. 
 
One of the main challenges of code repair is the lack of paired training data (i.e., having training 
data consisting of corresponding vulnerable and repaired functions).  In our comparisons between 
the GAN-based and sequence-to-sequence approaches, the sequence-to-sequence approach 
achieved higher accuracy metrics (BLEU scores), but this was for an evaluation on synthetic data, 
for which we already had labeled pairs available for training. 
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Given the training challenge and the results of our work, GANs (and generative models in general) 
represent the most promising path towards automatic code repair due to two important attributes. 
First, they harness the power of neural networks, which have been shown to provide state-of-the-
art results on a variety of machine learning problems.  Second, they can be trained on exclusively 
unpaired training data.  This is crucial for real-world scenarios where paired training data is scarce 
if not non-existent. 

5.3 Program Synthesis 

Our program synthesis work provided a proof of concept that satisfactory performance could be 
obtained for generation of training examples.  Kusner et al. [76] previously showed that the 
grammar VAE is a powerful generative model for grammar-based constructs that can achieve 
excellent performance on the sequence learning task.  We showed that it could be applied to the 
domain of program synthesis. 

5.4 Transition 

Table 19 lists products and potential products of Draper’s developments under the DARPA MUSE 
program and summarizes the readiness of each product for transition. 

Table 19.  Readiness for Transition of DeepCode Products 

Product Readiness for Transition 
Portable error detection engine based on 
pre-trained networks 

Mature.  Docker image enables portability.  More / 
better training data will improve accuracy.  Would 
benefit from additional user interface design effort. 

Full pipeline for “power users” that have 
substantial compute resources and 
datasets that they would like to train on 

Mature.  Docker image enables portability.  More 
development needed to transition the training 
engine. 

Automatic code repair engine Docker image possible with modest additional 
development.  Ongoing research needed to improve 
performance. 

Tool to prioritize the effort required to 
find security vulnerabilities through 
code reviews 

Mature.  Docker image enables portability.  FP are 
less of a concern for this use case because it still 
saves time and money over exhaustive code 
reviews. 

Continuous integration (CI) tool to look 
for new errors as code is updated 

Not currently developed, but would be possible 
with additional user interface and integration work.  
Would require careful management of FP. 

Ongoing machine learning research for 
automatic error detection and repair 

Best return would come from ongoing research into 
more / better labeled training data. 

One of the products that is closest to readiness for transition is a tool to prioritize the effort required 
to find security vulnerabilities through code reviews.  We see this as a particularly attractive 
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application because this is a relatively mature application for DeepCode and because it can produce 
high value to users with the accuracy levels that we have already demonstrated under the MUSE 
program.  

Figure 42 demonstrates how our classification accuracy metrics presented earlier in this report 
would translate into a user’s experience using DeepCode as a code review prioritization tool.  This 
analysis assumed a fictitious 10,000-lines-of-code program with typical industry-standard error 
discovery rates.  The DeepCode classifiers provide a score that would allow a user to prioritize 
reviewing the highest-scoring findings first to find many vulnerabilities in a short time, thereby 
substantially reducing labor hours vs. code review alone.  In this example, about 80% of the 
vulnerabilities that would normally be found through code review could be found in about 20% of 
the time that would be required for an exhaustive review of the code. 

Figure 42.  Vulnerabilities Found vs. Labor Hours 

5.5 Recommendations for Future Work 

5.5.1 Labeling. 
Future work should focus on improved labels, such as those from dynamic analysis tools or mined 
from security patches.  This would allow scores produced from the machine learning models to be 
more complementary with SA tools. 
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Figure 43 shows the current DeepCode classifier accuracy trend relative to the size of the training 
corpus.  This shows that accuracy is still increasing as a function of training corpus size, meaning 
that we expect that there are significant accuracy improvements still available to be achieved 
through substantial increases in the amount of training data. 

Figure 43.  Classification Accuracy vs. Size of Training Dataset 

5.5.2 Classification. 
We posed the vulnerability detection as a binary classification problem indicating whether a given 
function contains at least one of the several vulnerabilities or not.  Future work could develop 
multi-label classification approaches to specify the type of vulnerability to provide users more 
detailed code review experience. 

5.5.3 Repair GAN. 
Our initial GAN attempts have been very successful, but current performance is limited by two 
main issues.  The first issue is that the discriminator has difficulty distinguishing valid repairs from 
invalid ones, which it needs to do in order to provide good instruction for the generator.  The 
second issue is that the real data are samples from a distribution, whereas the desired generator 
output is an estimate of the distribution itself.  This drives errors in GAN training when there are 
several possible repairs with relatively equal probability. 

Both of these issues may be addressed by using an appropriate embedding on the input to the 
discriminator.  This would serve as a continuous relaxation for the discrete samples in the real 
data, as well as allow for easier approximation of these samples by the generator.  To this end we 
are experimenting with techniques from graph embedding in order to generate linear embeddings 
for our data which preserve interesting features.  For example, one such embedding minimizes the 
distance in the embedded space between tokens which often appear adjacent to one another in the 
code. 
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As a second approach towards solving the difference in distribution problem, we are looking at the 
inclusion of noise at the input of the generator’s decoder, similar to how traditional GANs work. 
This removes the necessity for the discriminator to estimate the probability distribution and instead 
allows it to approximate samples from the distribution, thus providing the discriminator with far 
more similarity between generated and real inputs.  However, this approach does have the issue 
that outputs from the generator are not dependent upon this noise vector, and as such it is difficult 
to determine which generated repairs are the most probable.  We believe we may be able to rectify 
this by using transfer learning to train a new GAN which does not require noise from one that does. 

5.5.4 Program Synthesis. 
One area for future work in program synthesis is to expand the semantic content of generated 
functions.  Examples of additional types of training data we might wish to generate include 
functions with nested loops, recursive functions, functions with return value constraints (say, only 
positive integers), or functions that exhibit simple semantic qualities such as not having statements 
after a return.  We have designed an extensible framework in which constraints could be 
implemented with relative ease. 

Opportunities to improve our semantic repair constraint include more meaningful variable names, 
better capture of the original user intent, and warnings during semantic repair.  Even semantically 
valid code can produce warnings at compile time, and repaired code quality would be significantly 
improved by also resolving issues that produce warnings. 

Our next suggested area for future work is to improve the vocabulary.  The expressiveness of the 
current vocabulary is limited by the need to include context to the production rules to determine 
whether certain rules are valid additions to the function’s current rule sequence during the decode 
step.  It may be possible to reduce or eliminate this need for context by developing an inference 
algorithm to perform these functions.  This is complicated by the desire for a guarantee that all 
decoded functions are syntactically valid, but it might be possible to relax that restriction (allowing 
function decoding to produce invalid functions some small fraction of the time) and develop an 
approach that eliminates the need for context.  This would significantly decrease the number of 
production rules needed to produce the same range of functions.  This would enable adding more 
rules to the vocabulary by using more functions as input (allowing greater variety in generated 
functions) or including more semantic information, such as variable names and constant values 
(allowing the VAE to learn more semantic information). 

The grammar VAE guarantees that all output sequences are syntactically valid by virtue of the 
associated context-free grammar.  However, it makes no such guarantee when using a context-
sensitive grammar.  Extensive testing of our model supports the conclusion that all output 
sequences are syntactically valid, but there is no guarantee based on formal theory.  The same is 
true for the semantically valid constraint.  Future implementations of a grammar VAE in a context-
sensitive environment would be improved by finding ways to make guarantees about syntactic and 
semantic validity. 
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AE auto encoder 

AI artificial intelligence 

ANN artificial neural network 

API application programming interface 

AST abstract syntax tree 

AUC area under curve 

BLEU Bilingual Evaluation Understudy 

BOW bag of words 

CFG control flow graph 

CI continuous integration 

CNN convolutional neural network 

CPU central processing unit 

CVE Common Vulnerabilities and Exposures 

CWE Common Weakness Enumeration 

DARPA Defense Advanced Research Projects Agency 

Draper The Charles Stark Draper Laboratory, Inc. 

EM earth movers 

FN false negatives 

FP false positives 

FPR false positive rate 

GAN generative adversarial network 

GCC GNU C Compiler 

GPU graphics processing unit 

IR intermediate representation 

JSON JavaScript Object Notation 

LLVM formerly known as Low Level Virtual Machine 

LSTM long-short term memory 
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MCC Matthews Correlation Coefficient 

MFI MUSE function index 

MICCAI Medical Image Computing and Computer Assisted Intervention 

MMD maximum mean discrepancy 

MUSE Mining and Understanding Software Enclaves 

NIST National Institute of Standards and Technology 

NLP natural language processing 

PCA principal component analysis 

PR precision-recall 

ReLU rectified linear unit 

RF random forest 

RMSProp root mean square propagation 

RNN recurrent neural network 

ROC receiver operating characteristic 

SA static analysis 

SATE Static Analysis Tool Exposition 

SVM support vector machine 

t-SNE t-distributed stochastic neighbor embedding 

TA technical area 

TN true negatives 

TP true positives 

TPR true positive rate 

VAE variational auto encoder 

WGAN Wasserstein Generative Adversarial Network 
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