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ABSTRACT 

 The ability to locate and identify vessels of interest in satellite imagery plays a 

vital role in maintaining maritime security. Recent studies have demonstrated that 

convolutional neural networks can be used to automatically classify or detect ships in 

satellite images; however, this technique requires large amounts of training data and 

computational power that may not be readily available in an operational environment. We 

seek to show that the process of transfer learning can be used to adapt open source 

convolutional neural network architectures pre-trained on large datasets to Department of 

Defense-specific image classification and detection tasks. We test this hypothesis by 

retraining both the VGG-16 image classification architecture and a VGG-16 based Single 

Shot Detector on a dataset comprised of satellite images containing ships. We first 

examine the performance of these retrained networks on the single category task of 

classifying or detecting ships in satellite imagery. We then evaluate model performance 

on datasets in which a fraction of the images contains blur and noise to simulate degraded 

satellite imagery. Finally, we test the models’ ability to distinguish between subcategories 

of ships. We show that transfer learning can be leveraged to reduce both the size of 

training set and the training time required to produce an effective classification or 

detection model to meet the Department of Defense’s analysis needs. 
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I. INTRODUCTION 

Electro-optical satellite imagery is a key resource used by the intelligence 

community to increase our National Security posture. However, due to large volumes of 

data produced it can be difficult for an intelligence analyst to both identify images of 

interest and conduct further in-depth analysis on these images in a timely manner. Recent 

advancements in Convolutional Neural Networks (CNN), may now provide a mechanism 

by which the Department of Defense (DoD) can address this workflow issue. 

Competitions such as the ImageNet Large Scale Visual Recognition Challenge [1] 

have demonstrated the ability of CNNs to be trained to correctly classify or detect objects 

in photographic images from a wide variety of categories. In recent work at the Naval 

Postgraduate School (NPS), Paul [2] shows that the open source CNN software and 

frameworks developed as part of this competition can be adapted for use on DoD-related 

image sets through a technique known as transfer learning. This thesis demonstrates that 

these open source CNN resources for object classification and object detection can also be 

easily adapted for use with satellite imagery. We show that new machine learning models 

can be trained quickly and with a limited number of training examples through the 

technique of transfer learning. Applying this technique to DoD-related object classification 

and detection tasks will greatly reduce the amount of time required for analysts to identify 

satellite images of interest, allowing them more time to analyze the significance of what is 

contained within the imagery and to pass that information along quickly to those who need 

it. Additionally, due to the reduced resource requirements of transfer learning, this 

technique has the potential to provide operational units with a quick reaction capability to 

train new image classification and object detection models as the need arises. 

A. PROBLEM STATEMENT 

Remote sensing technology provides vital capabilities to the intelligence 

community through the collection of large amounts of data from geographic areas of 

interest. However, not all data gathered has tactical or strategic significance. The raw data 

that is collected by these sensors requires further analysis to locate unusual activity or the 
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presence of targets of interest in an area. In many cases, the extraction of this critical 

information is time sensitive and can be used to tip other remote sensors to collect data 

from an area, or to provide vital indications and warnings to both warfighters and decision 

makers. As technology continues to improve, it has become increasingly difficult for 

analysts to visually inspect the enormous amount of accumulated sensor data. This issue 

can be addressed through the development of machine learning algorithms optimized for 

detecting and classifying objects of specific interest to the DoD in satellite imagery. 

However, these techniques are often time and resource intensive, requiring large quantities 

of training data and state-of-the art GPUs to produce high performing models. In this thesis, 

we aim to show that the technique of transfer learning can be applied to open source CNN 

architectures pretrained on large publicly available datasets such as ImageNet [3] to train 

new CNNs for DoD-related satellite imagery detection and classification tasks. Use of this 

training technique will greatly reduce the resources needed to train these new CNNs. 

B. RESEARCH QUESTIONS 

To address the problem of reducing the resources required to train new CNNs for 

DoD use with satellite imagery we pose the following research questions. The first set of 

questions relates to the task of classifying objects in satellite imagery, while the second 

addresses whether the same techniques can also be applied to the task of object detection 

in satellite imagery. 

1. How does a CNN trained initially on a large set of photographic images 

perform when the process of transfer learning is applied to retrain it for the 

task of classifying objects in satellite imagery? 

• What is the impact of reducing training set size on the recall and 

precision of a CNN retrained to classify objects in satellite 

imagery? 

• What effect does the presence of degraded satellite imagery and 

imagery of different resolutions have on the recall and precision of 

a CNN retrained via transfer learning? 
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• How does a retrained CNN perform when given the task of 

classifying sub-categories of ships in satellite imagery as measured 

by recall and precision? 

2. How does a CNN based object detection model trained initially on a large 

set of photographic images perform when the process of transfer learning 

is applied to retrain it for the task of detecting objects of interest in 

satellite imagery? 

• How does the presence of degraded satellite imagery and imagery 

of different resolutions impact the recall and precision of the 

retrained object detection model? 

• What is the maximum recall and precision that can be achieved by 

the retrained object detection model when given the task of 

detecting sub-categories of ships in satellite imagery? 

3. Does transfer learning reduce the required training time to a level where a 

GPU is no longer required to train new models for DoD use? 

C. CONTRIBUTIONS 

This thesis makes the following contributions: 

• We demonstrate that we are able to apply the technique of transfer 

learning to open source CNN architectures to classify satellite 

imagery containing ships with a recall of 1.00 and a precision of 

0.98. 

• We demonstrate that the technique of transfer learning can be 

applied to train a CNN model to classify satellite imagery with as 

few as 200 training images and still produce recall and precision 

scores above 0.95. 
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• We demonstrate that the introduction of images containing noise 

and blur to our test set causes a reduction in recall and precision. 

Additionally, we show that the inclusion of noise and blur in the 

training dataset helps to mitigate this negative effect. 

• We demonstrate that the transfer learning technique applied in this 

thesis can be used to train a CNN to classify satellite images 

containing sub-categories of ship images with an average recall of 

0.83 and an average precision of 0.85. 

• We demonstrate that transfer learning can also be applied to an 

open source object detection architecture to detect ships in satellite 

imagery with a recall of 0.88 and a precision of 0.95. We also 

show that the presence of noise and blur also have a negative 

impact on object detection performance, and that our object 

detection training method can be used to detect sub-categories of 

ships with an average recall of 0.82 and an average precision of 

0.86. 

• Lastly, we demonstrate that the use of transfer learning reduces the 

training resource cost to a point at which the use of a GPU is no 

longer required for the task of image classification. 

D. THESIS ORGANIZATION 

In Chapter II, we discuss key technical concepts related to the understanding of 

CNN architectures, the difference between object classification and object detection, 

transfer learning, a brief overview of the tools used in this thesis, and a description of the 

performance metrics we use for our analysis. In Chapter III, we describe previous work 

conducted in the fields of object classification and detection. Chapter IV outlines the 

methodology used for our experiments and we provide analysis of the results in Chapter 

V. Finally, in Chapter VI, we discuss how our results address the research questions 

outlined above, as well as possible future work in this research area. 
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II. TECHNICAL BACKGROUND 

This chapter discusses several key technical concepts relevant to the experiments 

we conduct in this thesis as well as the open source software libraries we use to build our 

models. We first briefly describe the basic components of CNN architectures. This is 

followed by a discussion of the difference between object classification and object 

detection, and a description of the single shot detector (SSD) method of object detection. 

We then describe the concepts behind the process of transfer learning which is used heavily 

in our work. Finally, we discuss the open source tools used in this thesis and the 

performance metrics used to evaluate model performance in our experiments. 

A. CONVOLUTIONAL NEURAL NETWORK CONCEPTS 

Here, we give an overview of basic concepts necessary to understand the CNN 

architectures used in this thesis. We first describe the neurons that make up CNNs. We then 

discuss the types of layers used to construct a CNN: convolutional, pooling, and fully 

connected. Lastly, we briefly describe the hyperparameters used in our model. 

1. Artificial Neurons 

The basic building block that makes up a CNN is the neuron. As the name suggests, 

artificial neurons are inspired by the neurons that make up the human nervous system. 

Neurons take input signals from one or multiple sources and produce a single output based 

on these inputs. The output is produced by calculating the sum of each input to the neuron 

multiplied by its weight, adding the neuron’s bias to it and then passing this value through 

an activation function (see Figure 1). Weights are real numbers that are used to express the 

relative importance of different input signals to that neuron. It is these weights, and the 

biases, that are updated during CNN training to create a model suited to a specific task such 

as the ship classification and detection tasks in this thesis. An activation function is then 

used to determine the final output of the neuron. Activation functions are discussed in 

further detail below. The single output from this activation function is then fed forward 

into the next layer of the CNN and the above process is repeated at each neuron in that 

layer [4].  
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In this example, there are three inputs to the neuron denoted by 𝑥𝑥0, 𝑥𝑥1, and 𝑥𝑥2. These inputs 
are then multiplied by their respective weights (𝜔𝜔0, 𝜔𝜔1, and 𝜔𝜔2), and the sum of all three 
inputs is taken and added to the bias (𝑏𝑏). This result is then passed through the activation 
function (𝑓𝑓) to produce the final output. 

Figure 1. Example of basic CNN neuron structure. Adapted from [5]. 

2. CNN Layers 

In this section, we briefly cover the basic types of layers used to construct CNN 

architectures. We begin with a discussion of convolutional layers. We then discuss the 

function of max pooling layers and conclude with a description of the fully connected 

layers used during final classification determination. CNNs have become a popular 

machine learning method for use with image classification and detection tasks in part due 

to their ability to scale better than regular neural networks for large images. This scaling 

ability is due in part to the fact that the neurons in convolutional layers are connected only 

to neurons representing a nearby region of the image. In addition, all neurons in a 

convolutional layer share a common set of weights, which simulates the effect of applying 

a discrete convolutional filter to the input. This greatly reduces the number of parameters 

required during the early training layers and helps to reduce the potential for overfitting 

[5]. A simple example of this operation is shown in Figure 2. In this figure, each square of 

the image represents a pixel, with black pixels having a value of 1 and white pixels a value 

of 0. An example 3×3 filter of weights is then applied to this simple image and the resulting 

output is shown on the right (in practice, these weights are updated during CNN training). 

In this example, we use a stride of one, meaning that the filter is moved by one pixel each 

time it is applied to the image. Convolutional filters applied in this manner are able to detect 



7 

patterns in an image such as straight edges, curves, and other shapes. The filter in Figure 2 

can be interpreted visually as two intersecting lines. When it is applied to the region of the 

image that most closely matches this pattern it produces its highest output score, indicating 

the presence of a similar shape in that region. Alternatively, when applied to a region of 

the image that is completely absent of any lines, the filter produces its lowest output score, 

indicating the absence of a similar shape to the filter.  

 
Observe that the strongest response in the final output occurs when the pattern represented 
by the filter aligns with a matching pattern in the original input image. 

Figure 2. Example showing a 3×3 convolution applied to a simple image 
with a stride of one. 

The second major layer type found in CNN architectures is the pooling layer. 

Pooling layers are generally located between convolutional layers within the network 

architecture and are used to further reduce the spatial size of the network by summarizing 

regions of the image after they have been convolved with a filter as described above. This 

summarization is possible because the network does not need to know the exact location 

of a feature but is instead concerned with its relative location to other features in the image 

[4]. The ability to summarize feature locations in this way in turn reduces the number of 

parameters and required computations in subsequent layers. Two common strategies for 
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pooling are max pooling and average pooling. Of the two methods, max pooling has been 

found to produce better performance; however, average pooling was the favored technique 

in many early CNN architectures [5]. Examples of each of these pooling methods are 

provided in Figure 3. This example uses a 2×2 pooling filter with stride two. This means 

that either the maximum or the average value will be taken for each 2×2 area of the output 

matrix from the previous convolution. These values will then produce a new output matrix 

of smaller size for use as input to the next layer of the CNN. The VGG-16 CNN we use in 

our experiments implements the max pooling method [6]. The VGG-16 architecture is 

described in further detail in Chapter III.  

 

Figure 3. Example of max and average pooling conducted on the 
output of our convolution example from Figure 2 using 2×2 

pooling and a stride of two. 

The last of the major layer types found in CNNs is the fully connected layer. In this 

type of layer, each neuron in one layer is connected to every neuron in the subsequent layer. 

These fully connected layers are typically located after the convolutional and max pooling 

layers, and the final fully connected layer will contain a number of output neurons equal to 

the number of classes in the dataset the model is trained on [4]. A final activation function 

is then applied to the output from this last set of neurons to produce a predicted 

classification for the image that was passed through the CNN. Activation functions are 

discussed in further detail below. 
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3. CNN Hyperparameters 

Here, we discuss the hyperparameters used in our CNN architecture: batch size, 

training epochs, dropout, activation functions, loss functions, and optimization functions. 

For CNNs batch size represents the number of training examples passed into the neural 

network at one time. The full training set is divided into these batches and then each batch 

is passed through the neural network. Weights are updated after a batch has been fed 

through the neural network. An epoch is considered to have occurred once the entire dataset 

(all of the batches) has been passed through the neural network. The number of epochs 

required for training varies depending on the dataset in use and if too high or too low can 

have negative impacts on model performance due to underfitting or overfitting [7]. 

Overfitting is caused when a CNN learns complicated relationships that are only present in 

the training set but not in the test set and can be limited through the use of dropout. Dropout 

refers to the process of temporarily dropping certain neurons from the CNN including all 

of their connections to other neurons. The neurons that are removed are selected at random 

and this helps prevent the CNN from learning relationships that are overly specific to the 

training data [8]. 

Activation functions are the parameter that is used to determine what values are 

output from neurons at one layer of a neural network and passed on as input to the next 

layer, or alternatively used to make the final classification determination [5]. The CNN 

architecture used in this thesis employs the Rectified Linear Unit (ReLU) activation 

function following each intermediate layer of the network, and the softmax classifier for 

the classification determination in the final layer [6]. The ReLU function is [5] 

 𝑓𝑓(𝑥𝑥)  =  𝑚𝑚𝑚𝑚𝑥𝑥(0, 𝑥𝑥) . (1) 

This function has been found to greatly reduce the time required to train deep CNNs when 

compared to more traditional models such as the sigmoid and hyperbolic tangent activation 

functions [9]. 

 For classification neural networks, the activation function used for the final layer is 

often the softmax activation function. This activation function outputs scores between zero 

and one that can be interpreted as probabilities that the final output belongs to each of the 
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final categories. These probability scores will always sum to one [5]. Specifically, when 

classifying the neural network input (e.g. image) as one of K categories, the last layer has 

K neurons. For j = 1,…, k, let fj be the combined input to the jth neuron; then the softmax 

activation function applied to the ith neuron yields 

 𝑒𝑒𝑓𝑓𝑖𝑖

∑ 𝑒𝑒𝑓𝑓𝑗𝑗𝐾𝐾
𝑗𝑗=1

 . (2) 

We use these probability scores to examine performance at differing thresholds for two 

category classification tasks, and to examine both top-1 and top-2 performance of multi-

category classification tasks as described in further detail in Chapter IV. 

Loss functions are the parameter that measures how well the CNN is classifying 

the training data based on the output of the final activation function. Cross-entropy loss is 

a common loss function used to measure the difference between the true probability 

distribution (represented by correctly labeled classes) and the estimated distribution 

represented by predicted probabilities. Cross-entropy loss is logarithmic and increases as 

the predicted probability gets farther from the true classification of the training data [10]. 

It takes the form [5] of 

 𝐿𝐿𝑖𝑖 = −𝑙𝑙𝑙𝑙𝑙𝑙 � 𝑒𝑒𝑓𝑓𝑖𝑖

∑ 𝑒𝑒𝑓𝑓𝑗𝑗𝐾𝐾
𝑗𝑗=1

� , (3) 

where the formula inside the parenthesis is the softmax function previously discussed 

above. 

Optimization functions are the parameters that then determine how the weights and 

biases at each neuron should be updated to minimize the output of the loss function. Our 

work uses two optimization functions that build upon the stochastic gradient descent (SGD) 

method of optimization. Gradient descent calculates the gradient of the loss function with 

respect to the weights of the neuron and then updates the weights in the opposite direction 

until a local minimum is reached. SGD improves over traditional gradient descent by 

performing this parameter update after each training example [11]. We use the RMSProp 

optimization algorithm for our object classification experiments and the adam optimization 

algorithm for our object detection experiments. RMSProp speeds up the gradient descent 
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process by keeping an exponentially weighted average of the squares of past gradients. The 

learning rate is then divided by this average [12]. Adam is designed to combine the 

advantages of the RMSProp optimizer and the Momentum optimizer. In addition to 

following the procedure used for RMSProp, it also uses a “smooth” version of the gradient 

instead of the raw gradient vector and includes a bias correction mechanism [5]. 

B. OBJECT CLASSIFICATION AND OBJECT DETECTION 

In this section, we explain the primary differences in the related tasks of object 

classification and object detection. We then briefly describe the SSD technique for object 

detection that we apply to the experiments in this thesis. 

1. Object classification versus object detection 

To understand the two categories of experiments we conduct as part of this thesis, 

it is important to understand the difference between the process of object classification and 

object detection. Object classification refers to the process of determining the category of 

an object present in an image. The performance of an object classification model is 

measured based on how well it correctly labels the object. It does not, however, attempt to 

identify the number of objects within an image or their relative locations. This is the task 

of object detection models. Object detection refers to the process of determining the classes 

and locations of multiple objects within the same image and drawing bounding boxes 

around them. While CNN architectures constructed using the components described above 

are able to successfully complete object classification tasks, additional computational steps 

must be added to CNNs in order for them to complete the more complicated object 

detection tasks. 

2. Single Shot Detector Method for Object Detection 

Here, we briefly describe the SSD method for object detection that we use in our 

second set of experiments. SSD is a technique developed by Lie et al. [13] in an effort to 

reduce the training time and computational resources required for accurate object detection 

in images. Unlike previous object detection techniques such as Regions with CNN features 

(R-CNN) [14], the SSD technique does not require resampling of pixels and is able to 
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perform object detection with a single pass through a CNN. This is accomplished by using 

a base network composed of a CNN designed for image classification such as the VGG-16 

model we use in this thesis. The final classification layers are stripped from this base model 

and additional convolutional layers of decreasing size are added. These new layers allow 

for detection predictions at multiple scales. Predictions are made by evaluating a small set 

of default bounding boxes at each location in these new layers and producing shape offsets 

and confidence values for all object classes present in the dataset. These predictions are 

then compared with the ground truth boxes in the training set to determine model loss [13]. 

This thesis uses the SSD300 object detection model based on the VGG-16 architecture. A 

diagram of the SSD300 architecture is shown in Figure 4 and the VGG-16 base architecture 

is discussed in further detail in Chapter III. 

 

Figure 4. SSD300 model architecture. Source: [13]. 

C. TRANSFER LEARNING 

Having covered some of the important concepts related to CNN architectures and 

the SSD method of object detection, we now briefly discuss the idea of transfer learning 

which is a primary focus of our work. The technique of transfer learning was developed as 

a means to address the issue of training CNNs on new tasks when there is a limited amount 

of training data available [15]. This is accomplished by using features extracted from a 

CNN trained on a large dataset such as ImageNet and then applying them to a new image 

classification or object detection tasks. Specifically, features produced by passing training 
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images through the pretrained network are extracted from the penultimate layer, the layer 

just prior to the last fully connected classification layer. These extracted features are then 

fed into new fully connected layers to train a classifier for the new task [15]. This allows 

for successful training on smaller datasets because low and mid-level features, which are 

common across different datasets, are learned on the large initial dataset, while the small 

dataset is used only to associate these features with the specific categories in the new 

classification task. 

A second benefit to transfer learning is the ability to reduce the required training 

time for the model through the use of what is commonly referred to as bottleneck features 

[16]. The term bottleneck features refers to the process of running training images through 

the pretrained CNN layers only once and saving the extracted features into an array. These 

saved features are then applied to the new fully connected classification layers during each 

training epoch. This results in each image in the training set only needing to pass through 

the full CNN architecture once [16]. We show in our results that this reduction in training 

time is enough to allow for training of effective models for DoD use on a CPU only. 

D. TOOLS 

In this section, we briefly describe the two open source machine learning software 

libraries we use to build our object classification and detection models. The first library we 

use is TensorFlow. It is an open-source software library designed by Google that provides 

support for tasks requiring high performance numerical computation such as machine 

learning [17]. We select TensorFlow as the backend software library for our work because 

of its previous use in Paul’s thesis as discussed in Chapter III [2]. While his work examined 

the use of TensorFlow with DoD related image categories, we aim to show that it can also 

be used to retrain CNN architectures for use with satellite imagery containing objects of 

interest to the DoD. 

We use the Keras deep learning library for Python to simplify the coding 

requirements of building our models. Keras is a high-level application program interface 

(API) that runs on top of TensorFlow and contains numerous built in functions for building 

and testing machine learning models [18]. Additionally, Keras provides access to deep 
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learning models pretrained on the ImageNet dataset [19]. This greatly simplifies the Python 

code required to conduct our transfer learning tasks. We obtain satellite imagery from 

Planet Labs using their Planet Explorer imagery exploration tool [20]. Available satellite 

imagery was taken by the PlanetScope satellite constellation, which is capable of producing 

four-band images (blue, red, green, and near infrared) with an approximate ground sample 

distance of 3m [21]. 

E. PERFORMANCE METRICS 

Performance for two-level classification is measured by counting the true positives 

(TP), false positives (FP), and false negatives (FN) where an input is classified as positive 

if its probability score is greater than a threshold. We evaluate thresholds ranging from 0.0 

to 1.0 and incrementing by 0.1. Our definitions of TP, FP, and FN for our tasks will be 

discussed in further detail in Chapter IV. This information is then used to calculate recall, 

precision, false positive rate (FPR) and F-score for each threshold as defined in equations 

4, 5, 6, and 7, respectively. The F-score is the harmonic mean of both precision and recall 

and can be used to determine the optimal threshold for a machine learning classifier [2]. 

Recall and FPR values are then used to plot a receiver operating characteristics (ROC) 

curve, which shows the tradeoffs between number of true positives versus number of false 

positives in a model [22]. These results are discussed in Chapter V. 

Equations for recall, precision, FPR [22], and F-score [23] are given below. 

 𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙𝑙𝑙 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑒𝑒𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑒𝑒 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑃𝑃

  (4) 

 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑒𝑒𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑒𝑒𝑃𝑃 + 𝐹𝐹𝐸𝐸𝐸𝐸𝑃𝑃𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑒𝑒𝑃𝑃

  (5) 

 𝐹𝐹𝐹𝐹𝐹𝐹 =  𝐹𝐹𝐸𝐸𝐸𝐸𝑃𝑃𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑒𝑒𝑃𝑃
𝑁𝑁𝑒𝑒𝑁𝑁𝐸𝐸𝑃𝑃𝑖𝑖𝑃𝑃𝑒𝑒 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑃𝑃

  (6) 

 𝐹𝐹 − 𝑝𝑝𝑟𝑟𝑙𝑙𝑟𝑟𝑟𝑟 =  (1+1)∗𝐸𝐸𝑇𝑇𝑒𝑒𝑝𝑝𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑝𝑝∗𝑇𝑇𝑒𝑒𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸
1∗𝐸𝐸𝑇𝑇𝑒𝑒𝑝𝑝𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑝𝑝+𝑇𝑇𝑒𝑒𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸

  (7) 
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III. RELATED WORK 

Much of the prior work in object classification and detection focuses on improving 

CNN performance through training on large repositories of photographs such as the 

ImageNet database. This thesis builds upon that work by leveraging the VGG-16 CNN 

architecture previously trained on ImageNet in order to reduce the overhead required to 

train new models for use with satellite imagery. We briefly discuss a previous NPS thesis 

by Paul that demonstrates the potential for open source deep learning frameworks to be 

adapted for use with DoD related image sets. We then describe the composition of the 

ImageNet database, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), 

and the development of the VGG-16 CNN architecture. We next discuss some of the 

challenges presented by working with satellite imagery explored in this thesis: image pre-

processing requirements and the impact of degraded data on model performance. Lastly, 

we discuss related research that explores the use of CNNs for the task of ship classification 

and detection in satellite imagery. 

A. OPEN SOURCE FRAMEWORKS FOR USE IN DOD RELATED IMAGE 
SETS 

Paul [2] explores the idea that open-source deep learning frameworks can be 

leveraged by the DoD for use with intelligence related image sets. He uses the open-source 

software TensorFlow to test the performance of deep learning algorithms as a means for 

detecting AK-47s, ships, and screenshots [2]. This performance was compared with the 

previously used methods of object detection performed on similar data sets [24], [25], [26]. 

Paul [2] shows that TensorFlow-based CNN architectures provide a performance 

increase for classification tasks involving both AK-47 and ship images when compared 

with previous methods used by Jones [24] and Camp [25]. His screenshot detection 

experiments yield similar performance as those conducted by Sharpe. However, her 

method requires human-selected feature extractors, while CNNs do not require direct 

human input to determine which features to evaluate [2]. While Paul’s work focuses on the 

detection and classification of DoD related objects in standard images, we expand upon 
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this work to examine the performance of TensorFlow and the publicly available VGG-16 

architecture to the classification and detection of objects from satellite imagery. 

B. IMAGENET, ILSVRC, AND THE DEVELOPMENT OF VGG-16 

One of the challenges relating to CNNs is the requirement for large datasets and 

increased computing power when compared with legacy object classification and detection 

methods [2]. For this reason, our work focuses on the use of the technique of transfer 

learning, allowing us to make use of publicly available CNNs pretrained on the ImageNet 

database. Here, we briefly discuss the composition of ImageNet, the ILSVRC, and the 

VGG-16 architecture used in our work. 

1. ImageNet Database 

ImageNet, developed in 2009 by Deng et al. [3], represents an effort to organize the 

vast amount of multimedia data presently found on the Internet. At the time of its initial 

release ImageNet contained 3.2 million images and has since grown to over 14 million 

images. These images are organized based on the hierarchical method developed for use 

with WordNet. The WordNet hierarchy is based on the idea of synonymy, meaning that 

images labeled with similar terms such as “car and automobile” are grouped together into 

categories known as synonym sets or synsets. Synsets are then linked into a hierarchical 

structure based on super-subordinate relationships such that more general synsets are 

linked to more specific subcategories of that type of object [27]. Figure 5 demonstrates 

how ImageNet applies this hierarchical structure to organize images into increasingly 

specific synsets. ImageNet currently contains 27 high-level categories divided into a total 

of 21,841 synsets with an average of 743 images in each synset [19]. 
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Figure 5. A snapshot of two ImageNet categories showing the 
hierarchical structure of synsets. Source: [3]. 

The images contained within the ImageNet database were obtained by conducting 

searches on image search engines using the set of WordNet synonyms that makes up that 

particular synset. Queries were also expanded by adding in terms from the parent synset as 

well as conducting queries in multiple languages. The task of verifying that all images are 

labeled correctly was conducted manually by a group of individuals selected using Amazon 

Mechanical Turk, a platform which allows users of the system to be paid for completing 

customer-defined tasks. Users were tasked to confirm that candidate images of a synset 

matched the definition of the target synset that they were given. To further ensure accuracy 

of image categorization, multiple users are tasked to independently review each image and 

an image is only considered an acceptable example of a synset if the majority of users vote 

that it belongs in that synset. Using this methodology, an average of 99.7% precision was 

obtained across 80 synsets, as determined through evaluation of random samples by an 

independent group of expert raters with label verification [3]. 

2. ImageNet Large Scale Visual Recognition Challenge 

The large number, accuracy, and diversity of images contained within the ImageNet 

database led to the development of the ILSVRC which was run annually from 2010 to 2017 

[1], [28]. The ILSVRC provides the computer vision research community with a publicly 

released dataset containing annotated training images as well as unlabeled test images. 

Teams wishing to participate in the challenge would train their model using the training 
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dataset and submit their automatically annotated test images to an evaluation server for 

scoring. Two categories of annotations were provided for training and scoring: image-level 

annotation and object-level annotation. Image-level annotations indicate the presence or 

absence of a particular category in an image and can be used to train for object 

classification, while object-level annotations include bounding boxes around a specific 

object within an image. This type of annotation is used for training object detection 

architectures [1]. 

The ILSVRC dataset contains a subset of 1,000 synsets selected from the ImageNet 

database for the image classification training set and an additional subset of 200 synsets 

for use in the object detection data set. In both cases, the synsets are selected such that there 

is no overlap between them; meaning that one is not the parent of the other in the ImageNet 

hierarchy. Table 1 includes details of the datasets provided as part of the ILSVRC [1]. 

Several notable CNN architectures have been produced as a result of this annual 

competition including: AlexNet [9], Inception [29], VGG [6], and ResNet [30]. The 

transfer learning conducted as part of our work used the VGG-16 architecture pretrained 

on the ILSVRC2012 classification data set and an SSD object detection model built on the 

VGG-16 architecture and pretrained on the ILSVRC2014 object detection data set.  

Table 1. Summary of ILSVRC image classification and object 
detection datasets. Adapted from [1]. 

Year Train Images Validation Images Test Images 
Image Classification (1000 classes)     
 ILSVRC2010 1,261,406 50,000 150,000 
 ILSVRC2011 1,229,413 50,000 150,000 
 ILSVRC2012-17 1,281,167 50,000 150,000 
Object Detection (200 classes)     
 ILSVRC2013 395909 21121 40152 
 ILSVRC2014-17 345854 21121 40152 
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3. VGG-16 Architecture 

VGG-16 is a deep CNN architecture developed for ILSVRC-2014 by the Visual 

Geometry Group at the University of Oxford [6]. The VGG model sought to improve CNN 

performance on the ImageNet dataset by increasing the depth of the network architecture. 

This is accomplished by increasing the number of convolutional layers, while reducing 

their size to small (3×3) filters (compared to the 11×11 and 7×7 filters used by other 

architectures) to decrease the number of parameters without making the increased number 

of convolutional layers computationally infeasible. The 3×3 size is selected because it is 

the smallest filter size that is still able to recognize the ideas of center, up versus down, and 

left versus right when stepping across an image during the convolution process. 

Additionally, a stride of one is used such that the filter is convolved with the input at each 

pixel. The convolutional layers are interspersed with max pooling layers at regular 

intervals. These are followed by three fully connected layers, and a final softmax layer. 

The top two performing architectures from this work have 16 and 19 total weight layers 

(VGG-16 and VGG-19, respectively) [6]. This architecture was awarded second place in 

the object classification category of ILSVRC-2014 with a top-5 error percentage of 7.3% 

[1]. We use the VGG-16 version of this architecture which is diagramed in Figure 6. 

 

Figure 6. VGG-16 model architecture. Adapted from [6]. 
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C. CHALLENGES PRESENTED BY THE USE OF SATELLITE IMAGERY 

The use of object detection and classification models with satellite imagery is not 

without challenges. Here, we focus on two potential challenges that are addressed by our 

work. We briefly discuss the requirement for image pre-processing in previously explored 

methods of vessel classification and the potential impact of degraded satellite imagery on 

model performance. 

1. Image Pre-processing Requirements 

Much of the previous work conducted on object detection and classification in 

satellite imagery relies on human-selected feature extractors that are sensitive to 

differences in rotation and scale. Yao et al. suggests that this creates a requirement for 

candidate images to be rotated and resized before any features can be extracted [31]. 

Additionally, Rainey et al. explores the use of a Bag of Words (BOW) feature extraction 

algorithm to avoid this issue but found that other algorithms that required pre-processing 

were more effective. This pre-processing is conducted by manually rotating, cropping, 

aligning, and resizing each image prior to feature extraction and classification [32].  

The use of CNNs for object detection and classification automates the feature 

generation process and is capable of producing effective classification results despite the 

presence of images in a variety of orientations. This feature of CNNs has also been used to 

augment small datasets when a large database such as ImageNet is not available. Yao et al. 

begins with a data set of only 36 images containing 1411 ships. Using a combination of 

rotations and cropping they scale their training data set up to a total of 22,683 ships of 

different scales and orientations for use in their ship detection network [31]. Although, 

their methodology produces a successful ship detection model (resulting in a recall of 0.92 

and a precision of 0.78), the need to scale up their dataset to an effective training size still 

requires image pre-processing that increases the initial overhead of training the model. It 

does, however, improve on previous methods in that this image pre-processing is only 

required for initial training/testing, and not for applying the trained classifier as with 

previously used feature extraction methods. We show that this type of pre-processing is 

not required for small training sets if the technique of transfer learning is applied. 
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2. Impact of Degraded Satellite Imagery on Model Performance 

Another challenge to working with satellite imagery is the potential variation in 

images collected from different sensors or during a range of collection windows. Imagery 

from different collection assets may be lower or higher in resolution, the image may be 

degraded by the presence of noise, or the image may be partially occluded by cloud cover. 

Rainey et al. demonstrate that the presence of these types of degradation may have negative 

impact on model performance if not accounted for during the training process [33]. They 

compare the effect of resolution difference, noise, and occlusion on the ability of a BOW 

feature extractor and support vector machine (SVM) classifier to correctly classify ships of 

different types in satellite images. Their results demonstrate that their model accuracy is 

much higher when the same degree of image degradation was present in both the testing 

set and the training set. These results indicate that when building a classifier, it is important 

to include examples of all variations you expect your model to encounter during use [33].  

Our work aims to determine whether image degradations have a similar impact on 

CNN-based classifiers. These findings also demonstrate a potential problem with using 

available open source images for training DoD-focused CNN networks and provide another 

example showing that ability to conduct training on small data sets via transfer learning 

may be vital to this problem area. Although, resources such as the UCMerced data set [34] 

and datasets created for the DeepGlobe 2018 [35], DIUX xView [36], and Airbus Ship 

Detection Challenge [37] provide potential training sets, if the images are at different 

resolutions or have significantly different amounts of noise and occlusion examples, a 

model trained using them may perform poorly when used for images collected via DoD 

sensor platforms. Development of a model that can be quickly trained on a small dataset 

will allow analysts to train models tailored specifically for their classification and detection 

requirements. 

D. RELATED RESEARCH ON THE USE OF CNNS FOR SHIP 
CLASSIFICATION AND DETECTION 

In this section, we examine previously published research that also demonstrates 

the ability of CNNs to be used for the task of ship classification and detection in satellite 
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imagery. Rainey et al. examines whether a CNN can be trained to recognize different 

classes of ships in satellite imagery [38]. They use a moderately sized CNN architecture 

containing four convolutional layers and train their model on 21,934 images containing 

ships from four different ship classes as well as non-ship objects. Instead of training a 

single multi-category classification system, a separate binary classification model is trained 

to recognize each different ship class. Their results demonstrate that their model is able to 

correctly classify ship sub-categories with an average recall of 0.74 and an average 

precision of 0.25 across all categories [38]. In this thesis, we demonstrate that better 

performance can be obtained by applying transfer learning to the VGG-16 architecture 

pretrained on the ImageNet database. 

Yao et al. and Nie et al. explore two methods for leveraging CNNs for the task of 

ship detection in satellite imagery. Yao et al. use a CNN to extract feature maps from 

satellite images and then apply a region proposal network to determine the precise location 

of each ship [31]. As mentioned previously, they use a dataset containing 22,683 ships for 

training and focus only on those ships larger than 20 pixels. Additionally, they do not label 

small ships with long wakes as positive examples. This method produced higher 

performance (see above) than previously conducted research using non-CNN based 

methods such as Histogram of Oriented Gradients (HOG) [39] and Singular Value 

Decomposition (SVD) networks [40]. 

Nie et al. explore the use of an SSD object detection model that uses a pretrained 

VGG-16 network as its base [41]. They train their model using a dataset containing satellite 

images of 3898 ships obtained from Google Earth with a 0.54m ground sample distance. 

They achieve a maximum F-score of 0.843 at a recall rate of 0.90 demonstrating that this 

method is able to achieve high performance levels [41]. This thesis expands upon their 

work by exploring model performance on images with lower ground sample distance, the 

addition of degradations to selected images in the dataset, and the ability of the model to 

detect sub-categories of ships in satellite imagery.  
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IV. METHODOLOGY 

This chapter outlines the methods and techniques used in our research. We first 

describe the hardware and software used to conduct our experiments and discuss how we 

constructed our dataset. We then describe the methods we use in our first set of 

experiments, which focus on the task of ship classification in satellite imagery. In 

Experiment 1 we verify the baseline performance of our ship classification model. Next, 

Experiment 2 examines the impact of training dataset size on model performance. 

Experiment 3 then explores the impact of noise and blur on model performance, and 

Experiment 4 tests whether our ship classification model can also be trained to classify 

sub-categories of ships. Lastly, we describe the techniques we use in our second set of 

experiments, which focus on the task of ship detection in satellite imagery. In Experiment 

5, we verify the baseline performance of our ship detection model. Experiment 6 then 

examines the impact of noise and blur on model performance, and Experiment 7 tests 

whether our ship detection model can also be trained to correctly detect and classify ship 

sub-categories. 

A. HARDWARE AND SOFTWARE 

Our CNNs are trained using a Windows 10 desktop computer with a NVIDIA GTX 

1080 GPU and i7-7700 CPU. Full specifications are located in Table 2. Tensorflow version 

1.11.0 is used as the backend for our neural network architectures and interfaces with the 

GTX 1080 GPU through use of NVIDIA’s CUDA 9.0 API and CUDA Deep Neural 

Network library (cuDNN) 7.3. All code is written in Python 3.6.3 using the Keras library. 

Table 2. Hardware specifications 

GPU Clock Speed Cores Memory (GB) Memory Interface 
GTX 1080 1.607 GHz 2,560 8 GDDR5X 
CPU         
i7-7700 3.60 GHz 4 32 DDR4 
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B. DATASETS 

To retrain the VGG-16 architecture to classify and detect objects in electro-optical 

satellite imagery, we obtain overhead images from Planet Labs using their Planet Explorer 

imagery exploration tool [20]. To build the dataset, we manually examined areas near 

major shipping lanes for images containing ships, which we then clipped out as smaller 

images of 100×100 and 300×300 pixels for classification and object detection experiments, 

respectively. In addition to ships, the dataset includes images containing clouds, open 

ocean, islands, and land to provide negative training and testing examples. A description 

of the full dataset is provided in Table 3 and example images from each subcategory are 

shown in Figure 7. This dataset is then randomly divided into training, validation, and test 

subsets as described in the task-specific sections below. 

Table 3. Datasets for ship classification and detection. 

  
Ship 

Classification Ship Detection 

Ship 1100 826 
 Barge 220 202 
 Fast 220 235 
 Merchant 660 389 

No Ship 1100 437 
 Cloud 287 220 
 Island 299 217 
 Land 220 N/A 
 Ocean 294 N/A 

 
The numbers for ship classification represent 100x100 pixel satellite 
images. The numbers for ship detection represent the number of 
bounding boxes drawn for each category within a set of 484 300x300 
pixel satellite images. 
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Figure 7. Example images from the 100×100 pixel ship classification dataset. 

C. SHIP CLASSIFICATION TASKS 

In this section we test the performance of our VGG-16 based ship classification 

model on a variety of ship classification tasks. We first verify baseline model performance. 

We then examine the impact of decreasing training size and the addition of noise and blur 

to our dataset. Lastly, we test whether our model can also be trained to classify ship sub-

categories. 

1. Experiment 1: Ship Classification Baseline 

In Experiment 1, we verify whether our retrained VGG-16 model is able to 

correctly classify ships in satellite imagery. For this experiment, the ship classification 

dataset from Table 3 is randomly divided into training, validation, and test subsets 

containing 1800, 200, and 200 images, respectively. Each subset is evenly divided between 

images containing ships and those not containing ships. This dataset is then used to retrain 

the VGG-16 architecture described in Chapter III via transfer learning on a model 

previously trained on the ImageNet ILSVRC2012 dataset described in Table 1 [1]. To 

accomplish this task, we modify publicly available code to meet our requirements [42], 

[43]. Our modifications adjust the input size and number of categories to match our dataset, 
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change the final activation function to softmax, and adjust the output metrics to produce a 

list of predicted image classes and their respective probabilities. These alterations allow us 

to produce the ROC graph described in Chapter II as a measure of model performance. 

Re-training the VGG-16 CNN is a two-step process (see Figure 8). We first obtain 

“bottleneck” features by running our images through the convolutional and max pooling 

layers of a VGG-16 network pretrained on the ImageNet database. The fully-connected 

classifier layers are not used in this process. Instead, the activation maps from the last max 

pooling layer for the training and validation datasets are saved in numpy arrays. This step 

reduces the computational requirements of retraining the network, because each image only 

has to pass through the main layers of the VGG-16 network once. These bottleneck features 

are then used to train our own fully-connected layers on the specific categories we are 

attempting to classify [42]. The model is trained using the following hyperparameters: 

• Batch size = 16 

• Number of Epochs = 50 

• Activation = relu, softmax (final layer) 

• Optimizer = RMSprop 

• Loss = cross-entropy 

• Dropout = 0.5 

We then calculate TP, FP, and FN at probability thresholds ranging from zero to 

one and incrementing by 0.1. In our ship classification experiments, a TP is defined as an 

image that contains at least one example of a ship and is also classified as “ship”. A FP is 

defined as an image that does not contain an example of a ship but is misclassified as 

“ship.” Lastly, a FN is defined as an image that contains at least one example of a ship but 

is classified as “no ship.” We do not analyze true negative images as there are large 

expanses of empty ocean collected by remote sensing platforms and we are only concerned 

with the ability to correctly classify those images that contain an object of interest, in this 

case a ship. We use these TP, FP, and FN values to calculate recall, precision, FPR, and F-
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score. We then produce ROC curves from the calculated recall and FPR. These results are 

discussed in Chapter V.  

 

Figure 8. Diagram of VGG-16 model adapted for transfer 
learning. Adapted from [6], [42]. 

2. Experiment 2: Impact of Training Dataset Size on Model 
Performance 

As discussed in Chapter II, the process of transfer learning provides a method to 

train a high-performance CNN without the need for a large dataset of labeled images. In 

this section we examine the performance of the previously described VGG-16 transfer 

learning process when trained on datasets of decreasing size. To accomplish this, subsets 

of ship and non-ship images are produced by starting with the 2000 image dataset used in 

Experiment 1 and randomly selecting 200 images for removal each time a new subset is 

constructed. This process produces a series of subsets ranging in size from 2000 to 200 and 

decreasing by steps of 200. Prior to re-training the VGG-16 network, these datasets are 

further subdivided such that 10% of the training images are randomly selected for use in 

model validation during training. The test set is the same as that used in Experiment 1 and 

remains constant across each newly trained model. Each model is trained using the same 

parameters as in previous tasks and we evaluate them with the same performance metrics 



28 

of recall, precision, FPR, and F-score. We repeat this process three times to control for 

potential impact of variations in the randomly selected training sets of reduced size. We 

produce ROC graphs from the average recall and FPR. 

3. Experiment 3: Impact of Noise and Blur on Model Performance 

Rainey et al. demonstrate that the effect of image degradation due to noise and 

resolution differences on SVM performance can be mitigated by including images of these 

types in their training set [33]. We aim to build upon this work by comparing retrained 

VGG-16 performance on datasets where a percentage of images contain salt and pepper 

noise. We test the effect of replacing 25%, 50%, or 75% of either the training set, test set, 

or both with images containing salt and pepper noise. Images are randomly selected from 

the ship classification dataset in Table 3 and noise is added by selecting random pixels to 

be set to either black or white values.  

We then repeat this process with the addition of a Gaussian blur to 25%, 50%, or 

75% of either the training set, test set or both. This is to simulate the presence of images of 

lower resolution in the dataset which may occur if imagery analysts are working with data 

coming from different overhead sensor platforms. We train each model using the same 

parameters as in previous tasks and we evaluate them using the same performance metrics 

of recall, precision, FPR, and F-score. We produce ROC curves from the calculated recall 

and FPR. 

4. Experiment 4: Model Performance when Trained on Sub-categories 
of Ship and Non-ship Images 

In our fourth experiment, we explore whether the VGG-16 architecture can be 

retrained to classify more specific categories than “ship” or “no ship.” For this task, we 

create a subset of the ship classification dataset in Table 3 by randomly sampling 220 

images from each sub-category. Twenty images are randomly selected from each category 

to serve as test images and an additional 20 images are randomly split from the training set 

to be used for validation during the training process. This new data set is summarized in 

Table 4. The VGG-16 transfer learning architecture and parameters are the same as in 

previous experiments. Performance is measured by counting the number of correctly and 
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incorrectly classified images in each category. This data is then used to create a multi-class 

confusion matrix and calculate recall, precision, FPR, and F-score as done previously in 

Experiments 1-3. 

Table 4. Dataset breakdown for ship category classification model 

 

D. OBJECT DETECTION TASKS 

In our second set of experiments, we aim to expand upon previous experiments by 

moving from image classification to object detection. We retrain an SSD model that is built 

upon the VGG-16 architecture and previously trained on the ILSVRC2014 object detection 

dataset. As discussed in Chapter III, this method has previously been used by Nie et al. for 

detection of ships in satellite imagery [41]. We replicate these results in Experiment 5 using 

our own dataset and then build upon them in Experiments 6 and 7 by testing the effect of 

noise and blur additions to our dataset and by examining model performance on 

subcategories of ship images. 

In Experiment 5, we verify whether our object detection model is able to correctly 

detect and classify ships in satellite imagery. To conduct our training, we use a Keras 

adaptation of the SSD model described in Chapter II [44]. We modify this model for the 

number of ship-related categories (one or three) depending on the current task. The model 

is then trained on the ship detection dataset described in Table 3, after we subdivide it by 

randomly selecting 10% of the images to be used in validation, and 10% to be used in 

testing. We use the following parameters in training: 

Ship Classification
Ship 660
     Barge 220
     Fast 220
     Merchant 220
Non-Ship 880
     Cloud 220
     Island 220
     Land 220
     Ocean 220
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• Batch size = 8 

• Number of Epochs = 50 

• Step per Epoch = 100 

• Activation = relu, softmax (final layer) 

• Optimizer = adam 

• Learning Rate = 0.001 

We then examine the effect of noise and blur on SSD model performance in 

Experiment 6 using the same procedure as outlined above for adding salt and pepper noise 

and Gaussian blur 75% of the training set, test set, or both. We elect to manipulate 75% of 

the images as that is the percentage where we see the greatest impact on ship classification 

performance. Finally, in Experiment 7, we test SSD model performance on the task of 

identifying specific subcategories of ships. Model performance is once again evaluated by 

counting TP, FP, and FN. This information is then used to calculate recall, precision, FPR, 

and F-score for single category tasks and to construct a multi-class confusion matrix for 

the task of detecting ship subcategories. For this set of experiments, a detection is 

considered a TP if the bounding box contains any portion of the ship and correctly identifies 

the ship. This is because the premise of our thesis is to develop a model that can be used to 

help analysts quickly find ships in satellite imagery, so the bounding boxes do not need to 

be 100% accurate as long as they correctly flag the object. A detection is considered a FP 

if a bounding box is drawn around a region that does not contain a ship. Lastly, a FN is 

defined as a region containing a ship that is not detected by the model. We do not count 

TN objects as that category would include all background objects found in each image.  
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V. RESULTS AND ANALYSIS 

This chapter discusses the results obtained from the experiments outlined in 

Chapter IV. In our first set of experiments, we find that a retrained VGG-16 network 

provides an accurate model for the task of object classification even when trained on 

datasets with as few as 200 samples. In our second set of experiments, we find that a 

retrained SSD model built upon the VGG-16 architecture can be used for the object 

detection task as well. As part of our analysis, we provide ROC curves and F-scores for 

single category classification tasks and confusion matrices for multi-category classification 

and tasks. For each experiment, we also examine which images the model failed to properly 

classify or detect in an effort to better understand what characterizes hard cases. Lastly, we 

compare the training time required for models trained on a CPU to time required when 

training is conducted on a GPU. 

A. OBJECT CLASSIFICATION TASKS 

This section discusses the results we obtained when testing our model on a variety 

of tasks related to object classification. We first evaluate the performance of a retrained 

VGG-16 model to establish a baseline for ship classification tasks. Following this, we 

examine the performance of our retrained VGG-16 network when it is trained on datasets 

of decreasing size. Next, we examine the effect that the addition of images containing noise 

or blur has on retrained VGG-16 model performance. Finally, we show that our retrained 

VGG-16 model can be trained to distinguish between sub-categories of ships as well as the 

overall class. 

1. Experiment 1: Ship Classification Baseline 

The retrained VGG-16 network demonstrates high performance resulting in only 

two false-positives and no-false negatives at the highest performing threshold. Figure 9 

depicts the ROC curve for the models when presented with a test set of 200 images 

containing examples of both the “ship” and “no-ship” categories. Figures 10 and 11 depict 

examples of images that were correctly and incorrectly classified by our model, 

respectively. Both false positive images shown in Figure 11 contain rectangular shapes of 
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a similar size to many of the ships in our dataset. It is these regions in each image that 

likely caused our model to misclassify them as ships. In contrast to this, the barge that is 

misclassified as “No Ship” is slightly blurry and has similar characteristics to the small 

cloud shown as a true negative example in Figure 10. 

 
The model is evaluated on a test set containing 200 images from both the “ship” and “no 
ship” categories after 50 epochs of training. The retrained VGG-16 demonstrated high 
performance with a maximum F-score of 0.99. 

Figure 9. Ship classification performance for the VGG-16 model retrained 
on our dataset using transfer learning  
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The number displayed below each image represents the predicted probability that the image 
is in the correct category. 

Figure 10. Examples of images correctly classified by the VGG-16 model 
retrained using transfer learning.  

 
The number displayed below each image represents the predicted probability that resulted 
in the image being misclassified. 

Figure 11. Examples of images misclassified by the simple CNN model 
and the VGG-16 retrained using transfer learning.  
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2. Experiment 2: Impact of Training Dataset Size on Model 
Performance 

Figure 12 displays the ROC curves for each of the models and Table 5 contains the 

corresponding performance metrics at the best F-score threshold for each model. Although 

there is slight variation in the maximum F-scores for each model, all models perform well, 

with the worst performer having an F-score of 0.973. This indicates that VGG-16 can be 

retrained to fit new DoD related imagery classification tasks even in cases where a large 

amount of previously obtained satellite imagery is not available for use in model training. 

 
All models are evaluated on the same test set containing 200 images from both the “ship” 
and “no ship” categories. Performance metrics at the threshold producing the highest F-
score are displayed in Table 7. 

Figure 12. Ship classification performance for the VGG-16 model retrained 
on datasets of decreasing size using transfer learning. 
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Table 5. Performance metrics for VGG-16 models trained on 
datasets of decreasing size using transfer learning.  

 
These metrics represent performance at the threshold producing the highest F-
score. All subsets of data show high performance with a minimum F-score of 
0.973 indicating that new models can be trained even in the absence of large 
amounts of training data. 

3. Experiment 3: Impact of Noise and Blur on Model Performance 

Figure 13 displays ROC curves for models trained and tested on datasets containing 

noise in either 25%, 50%, or 75% of their training data, test data, or both data sets. We find 

that models trained on datasets devoid of noise examples produce a higher rate of false 

positives when presented with a test set containing noise. Figure 14 displays examples of 

images that are misclassified with the addition of noise. Note that the image misclassified 

in the 25% Test set did not contain noise. Therefore, the addition of noise to 25% of the 

test images had no measurable impact on our results. However, when noise is added to the 

image, as can be seen in the 50% Test experiment, the image is misclassified with a higher 

predicted probability.  

Training Set Size Recall (TPR) Precision F-score FPR
2000 0.990 0.980 0.985 0.020
1800 0.987 0.980 0.983 0.020
1600 0.983 0.971 0.977 0.030
1400 0.987 0.980 0.983 0.020
1200 0.963 0.983 0.973 0.017
1000 0.973 0.980 0.977 0.020
800 0.973 0.977 0.975 0.020
600 0.980 0.980 0.980 0.020
400 0.967 0.983 0.975 0.017
200 0.977 0.977 0.977 0.023
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In all three cases, models that are only exposed to noise during testing demonstrated the 
worst performance. 

Figure 13. Ship classification performance for the VGG-16 model when 
presented with training and test data with 25%, 50%, or 75% 

of images containing salt and pepper noise. 
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Images selected for inclusion are those with the highest probability score in the incorrect 
category. This probability score is displayed below each image. The first image shown in 
the 25% and 50% Test categories is also misclassified in the 75% Test category, however, 
it does not score high enough for inclusion in the figure. 

Figure 14. Examples of images misclassified as ships when noise is 
added to the test set only.  

Figure 15 displays ROC curves examining model performance when blur is added 

to 25%, 50%, or 75% of the training set, test set, or both image datasets. We find that 

models which had no blurred images in training perform worse when tested on datasets 

that include blurred images than those trained on both blurred and not blurred images. This 

decrease in performance is the result of a higher number of false negative classifications. 

Examples of the highest scoring false-negatives for the models exposed to blurred images 

during testing only are shown in Figure 16. There is not a noticeable impact due to the 

presence of blurred images in the creation of false-positive images. This result indicates 
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that a dataset trained on higher resolution images will likely perform poorly when 

attempting to classify images obtained from a lower resolution sensor. 

 
In all three cases, models that are only exposed to blurred images during testing are the 
worst performers. 

Figure 15. Ship classification performance for the VGG-16 model when 
presented with training and test data in which 25%, 50%, or 

75% of images are blurred. 
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Images selected for inclusion are those with the highest probability score in the incorrect 
category. This probability score is displayed below each image. 

Figure 16. Examples of images misclassified as ships when blurred 
images are added to the test set only.  

We find that the presence of noise and blur in the test data only produce opposite 

effects. The presence of noise causes an increase in the number of FP image classifications, 

while the presence of blur causes an increase in the number of FN classifications. We 

hypothesize that this occurs because the model is learning to associate sharp gradients in 

an image with the presence of a ship. Thus, the presence of additional sharp gradients in 

the form of salt and pepper noise causes an increase in FPs and the reduction of sharp 

gradients created by the application of Gaussian blur causes an increase in FNs. 

Additionally, we demonstrate that these negative effects can be mitigated by the presence 

of images with noise and blur in the training data. 
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4. Experiment 4: Model performance when trained on sub-categories of 
ship and non-ship images 

Table 6 represents a confusion matrix showing predicted versus actual classes for 

each image sub-category. Figure 17 displays the ship images that are misclassified and the 

probability score in their predicted category. Based on the low probability scores for some 

of the misclassified images we also examine the model’s top-2 performance on the ship 

subcategory classification task. This means that we count an image as properly classified 

if its true category is one of the top two predicted categories. We adapt this method from 

the top-5 metric for measuring model performance that is used to evaluate ILSVRC entries 

[28]. We elect to examine only the top two scores instead of the top five due to the small 

number of categories in our dataset. Top-2 performance results are displayed in Table 7.  

Table 6. Confusion matrix representing top-1 performance on 
the ship subcategory classification task. 

 

Barge Fast Ship Merchant Cloud Island Land Water Recall (TPR)
Barge 18 1 1 0.90
Fast ship 3 14 3 0.70
Merchant 2 18 0.90
Cloud 20 1.00
Island 1 18 1 0.90
Land 2 17 1 0.85
Water 1 19 0.95
Precision 0.78 0.93 0.85 0.95 0.86 0.94 0.95

Predicted Class - Top 1
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The number located below each image represents the probability score that it belongs in 
the indicated category. 

Figure 17. Examples of images misclassified during the ship category 
classification task.  
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Table 7. Confusion matrix representing top-2 performance on 
the ship subcategory classification task. 

 
 

We find that while the model mis-categorizes several images in each subcategory, 

it is still able to correctly identify between images containing ships and those containing 

non-ship objects. The model has the most difficulty recognizing the category we 

characterize as “fast” ships. We hypothesize that this may be due to their small size and 

the presence of wakes in some “barge” and “merchant” images that may be confused with 

the “fast” ship characteristic.  Additionally, barges are composed of two pieces (the tug 

boat and the barge it is towing) which may be confused with the presence of multiple fast 

ships in an image. 

B. OBJECT DETECTION TASKS 

This section examines the performance of the SSD300 object detection model on 

the task of ship detection. We begin by confirming that our model is able to correctly detect 

ships present in satellite imagery. We then explore the effect that the addition of noise and 

blur has on our retrained SSD300 object detection model. Finally, we show that our model 

is able to distinguish between subcategories of ships during the detection process, similar 

to what we observe during testing of the object classification tasks. 

1. Experiment 5: Object Detection Baseline  

Here, we show that an SSD300 object detection architecture pretrained on the 

ImageNet dataset can be retrained to detect ships present in satellite imagery. Although, 

Barge Fast Ship Merchant Cloud Island Land Water Recall (TPR)
Barge 19 1 0.95
Fast ship 19 1 0.95
Merchant 1 19 0.95
Cloud 20 1.00
Island 20 1.00
Land 1 19 0.95
Water 1 19 0.95
Precision 0.95 1.00 0.90 1.00 0.91 1.00 1.00

Predicted Class - Top 2
Ship No Ship
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performance was lower than with the easier ship classification task, our model achieves a 

maximum F-score of 0.91, outperforming the maximum F-score of 0.84 reported by Nie et 

al. [41]. We note that although this metric is encouraging, it may be influenced by 

variations in our datasets. A fair comparison would require that we test against their dataset, 

a task we leave for future work. A ROC curve of our results is displayed in Figure 18 and 

examples of correctly classified images are presented in Figure 19. Examples of both 

misclassified and un-detected images are presented in Figure 20. Four objects are 

misclassified. However, only two of them receive a probability score above 0.5. These 

objects were sandy areas of larger islands which were incorrectly classified as ships. Small 

islands are also included in the training set and are correctly not detected as ships. The 

majority of the undetected ships are fast ships. Barges proved second most difficult to 

detect and only a few small merchants were undetected. Additionally, many of the fast 

ships were only detected at thresholds below 0.5 preventing us from raising the detection 

threshold to reduce the number of false positives. 

 

Figure 18. Performance of the SSD300 object detection architecture 
retrained on our dataset using transfer learning. 



44 

 
Green bounding boxes were hand drawn around both ship and non-ship images during 
construction of the dataset. Red bounding boxes indicate the predictions made by the 
classifier. 

Figure 19. Examples of images that are correctly detected and classified 
by the retrained SSD300 object detection model.  



45 

 
Green bounding boxes were hand drawn around both ship and non-ship images during 
construction of the dataset. Red bounding boxes indicate the predictions made by the 
classifier. 

Figure 20. Examples of images that are either misclassified or undetected 
during the ship detection task.  

2. Experiment 6: Impact of Noise and Blur on Model Performance 

We find that both types of image degradation have a different effect on model 

performance than what we find in the ship classification task discussed above. Figure 21 

displays the ROC curve for the ship detection task when noise is added to 75% of test 

images, training images, or both data sets. The addition of noise to the test set only again 

results in the worst model performance, similar to the results previously discussed for ship 

classification. However, while for ship classification the poor performance is due to an 
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increased number of false positives, for ship detection the poor performance is due to 

a larger number of false negatives. At the highest performing threshold there are 

24 undetected ships compared to only 10 in the original ship detection task. Additionally, 

the model presented noise only during training exhibited poorer performance but in the 

form of additional false-positives. There is an increase in misclassified objects from four 

in the original ship detection task to 12 following training on a dataset containing noise. 

 
Addition of noise to the test set only results in a higher number of undetected images when 
compared to models trained and tested with no noise present. 

Figure 21. Performance of the SSD300 object detection architecture 
retrained on our dataset using transfer learning when noise 
is added to 75% of either the training set, test set, or both.  

Figure 22 displays the ROC curve for the ship detection task when 75% of test 

images, training images, or images in both data sets are blurred using a gaussian blur. We 

find that in all three scenarios the presence of blur results in a higher number of false 

positive ship detections when compared to our original model with no blurry images. 

Unlike with the ship classification task, the presence of blur in the test set only does not 
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result in a large amount of undetected ships. In the ship classification task, we see a drop 

in recall from 1.0 to 0.90 when blur is added to the test set only. In this task, we find recall 

only drops from 0.88 to 0.86 with the same addition of blur to the test set. 

 
Addition of blurred images results in a higher false positive rate in all three models with 
the worst performer being the model with blurred images added only to the training set. 

Figure 22. Performance of the SSD300 object detection architecture 
retrained on our dataset using transfer learning when 75% 

of either the training set, test set, or both is blurred. 

3. Experiment 7: Model Performance when Trained to Detect 
Sub-categories of Ship Images 

We find that our model is able to correctly detect specific ship types with an average 

recall of 0.82 and average precision of 0.86 (see Table 8 for the full confusion matrix). The 

model performs the worst on the barge subcategory, possibly because barges appear in 

imagery as two small ships traveling in a straight line. Those examples where the tug and 

barge are close together are detected at a higher rate than those with a greater distance 

between the two components of the barge. In this second case, the barges are either 

undetected or a bounding box is drawn around the tug only and it is labeled as a fast ship. 
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Two fast ships are also misclassified as merchants. Both cases are fast ships with a very 

long wake where the model classifies different parts of the wake as different ship types. In 

both cases, merchant is the highest scoring category; however, a fast ship bounding box is 

also drawn with a lower probability score. No objects are misclassified as a barge. 

Additionally, of the eight false positives detected only one has a probability score over 0.5. 

Subsections of larger islands are misclassified as merchants, while several small islands 

and clouds are misclassified as fast ships. Examples of the misclassified images discussed 

above are shown in Figure 23. 

Table 8. Confusion matrix representing SSD300 model performance 
on the ship subcategory detection task. 

 

Barge Fast Ship Merchant Not Detected Recall (TPR)
Barge 15 3 2 0.75
Fast ship 19 2 2 0.83
Merchant 34 4 0.89
Non-Ship 3 5 38 0.83
Precision 1.00 0.76 0.83 0.83

Predicted Class
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Dark green bounding boxes were hand drawn around both ship and non-ship classes during 
construction of the dataset. Red, blue, and bright green bounding boxes indicate the 
classifier presents the presence of a merchant, a fast ship, and a barge respectively. 

Figure 23. Examples of images that are misclassified 
as fast ships and merchants.  

C. COMPARISON OF TRAINING TIME BETWEEN CPU AND GPU 

Table 9 provides a comparison of training times for each model type trained on 

both the CPU and GPU described in Chapter IV. Although, the GPU provides faster 

training, the CPU is still able to complete training on a set of 2000 images in under four 

minutes for object classification tasks. CPU use for the task of object detection appears to 

be less viable, requiring a training time of over 36 hours. This is significant because it 

demonstrates that transfer learning may be an effective machine learning technique for 
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some tasks even in an operational environment where computational resources may be 

limited. 

Table 9. Comparison of training times in seconds for our 
object classification and object detection models. 

GPU CPU
Object Classification Model 44.208 213.804
Object Detection Model 662.95 36+ hrs
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VI. CONCLUSION AND FUTURE WORK 

We now discuss the answers to the research questions addressed by this thesis as 

demonstrated by the results presented in Chapter V. We begin by discussing the benefits 

and risks of using transfer learning to re-train CNNs to classify objects of interest to the 

DoD in satellite imagery. We then discuss the benefits and risks of applying similar 

techniques to the related task of object detection on a dataset obtained from the same 

sensor. Lastly, we discuss future work that could further advance research in this 

application of machine learning. 

A. BENEFITS AND RISKS OF USING RETRAINED CNNS FOR OBJECT 
CLASSIFICATION IN SATELLITE IMAGERY 

Our results demonstrate that a CNN classifier initially trained on a large dataset of 

photographic images can be successfully retrained to classify objects in satellite imagery. 

At the highest performing classification threshold our model performed with an F-score of 

0.99, producing no false-negative classifications and only two false-positive 

classifications. This high level of performance was obtained using a significantly smaller 

training set than that which the network was initially trained on: our model was trained on 

only 2000 images, whereas the original VGG-16 network was trained on a set of over 1.2 

million images [28], [6]. We also show that our retrained model performs well when trained 

on a dataset as small as 200 images; producing a maximum F-score of 0.97, only 0.02 lower 

than the model trained on 2000 images. The ability to train on such a comparatively small 

dataset and still produce high levels of accuracy is of great benefit to the DoD. Using this 

method of training CNNs to correctly classify novel object categories of interest to the DoD 

will greatly reduce the overhead required for development of new models in terms of the 

training images needed and the time required to manually label new training datasets. 

Additionally, we show that the process of transfer learning is not very resource intensive. 

We find that retraining the VGG-16 network on 2000 images takes approximately three 

minutes longer when training is conducted using a CPU compared with a GPU. This 

demonstrates that although training with a GPU is still faster, it is not required to produce 

new CNN models in a timely manner if the technique of transfer learning is applied. 
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There is still some risk associated with using this type of CNN for object 

classification, however. Our results show that the retrained VGG-16 model is sensitive to 

the presence of images containing noise and blurred images in the test set. Noise is added 

to simulate degraded satellite imagery, while blur is used to simulate images of a lower 

resolution. In both cases, we see a reduction in model accuracy when these effects are 

added to the test dataset only. In the case of noise, we see a drop in maximum F-score from 

0.99 to 0.95 when noise is added to 75% of the test set; and in the case of blur we see a 

drop in maximum F-score from 0.99 to 0.94. We find that this reduction in performance 

can be mitigated by including examples of noise and blur in the training set; producing 

overall accuracies of 0.99 and 0.98 for noise and blur, respectively.  

These results demonstrate the importance of ensuring that the training is 

representative of the images you later hope to classify. It is often tempting to include only 

perfect examples of images when building a dataset; however, this is not useful if there are 

defects present in the real-world images the model will later encounter. We show that the 

negative effects of testing our model on images containing both noise and blur can be 

mitigated through the inclusion of similarly degraded images in our training set. 

Additionally, the effect produced by the addition of blurred images demonstrates that 

similar images may be misclassified if they are obtained from different sensors that have 

different image resolutions. This presents a challenge for the DoD as it may rule out the 

use of publicly available overhead datasets for training, further highlighting the importance 

of being able to produce an accurate model from a limited number of training images 

specific to the sensor currently of interest. 

We also demonstrate the potential for a retrained CNN to correctly classify sub-

categories of objects when trained on as few as 200 examples of each image category. We 

find that our model is able to correctly classify the ship sub-categories tested with an 

average recall of 0.83 and an average precision of 0.85. Although, this is low compared 

with our results for a single classification task, it is worth noting that while multiple ships 

were mis-categorized, they were all mis-categorized as other types of ships. We find that 

our model has the most difficulty recognizing small, fast moving ships, but performs well 

when presented with larger merchant ships. This result indicates that using a retrained CNN 
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for sub-category classification may be more useful for certain tasks than others. In the case 

of our dataset, sub-category classification could be useful to pull out merchants from the 

dataset but would be less useful in identifying the presence of speedboats in a particular 

region of the oceans. 

B. BENEFITS AND RISKS OF USING RETRAINED CNNS FOR OBJECT 
DETECTION IN SATELLITE IMAGERY 

The results of our second set of experiments demonstrate that the technique of 

transfer learning can also be successfully applied to the task of object detection. Similar to 

our results for classification of ship sub-categories discussed above, we find that our object 

detection model has a more difficult time detecting small, fast ships and barges compared 

to larger merchant vessels in open ocean. To increase model performance in this area we 

conclude that the detection threshold must be set to a very low value. Although lowering 

the threshold in this manner increases the number of false positives produced by the model, 

it produces an overall improvement in model performance. Additionally, the increase in 

false-positives is not a large concern due to the motivation behind our work: we aim to 

produce a model that will allow intelligence analysts to quickly find objects in satellite 

imagery that may be of interest. For this reason, we are more concerned with eliminating 

as many false-negatives as possible. An analyst using this model, would be able to quickly 

sort out any false-positives present when viewing the data for further analysis. 

Using a retrained CNN for the object detection tasks carries risks similar to those 

associated with the object classification task in terms of the impact of noise and blur on 

model performance. We find that the addition of noise to our test set only produces an 

increase in false-negatives and a reduction of maximum F-score from 0.91 to 0.81. As with 

our object classification results, the addition of noise to the training set as well as the test 

set helped to mitigate this issue. The addition of noise to both the training and the test set, 

also produced a higher number of false positives. However, as discussed above we are 

concerned less with many false positives than we are with a large number of false-negatives 

due to the ultimate use case for our model. We find that with blurred images the largest 

impact is observed if there are blurred images in only the training set. This created a much 

higher false-positive rate (0.35 compared to 0.15) when presented with our test set. These 
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results once again indicate that when training a new model, care must be taken to ensure 

that the training set is fully representative of the data that the model will ultimately be used 

to detect. 

Finally, we show that our object detection model is also able to detect sub-

categories of ships; producing an average recall of 0.82 and an average precision of 0.86. 

Much like our object classification model, the model performs best on the task of detecting 

merchant ships. This is once again an indication that using a model trained for sub-category 

classification may be more or less useful depending on your target object. However, the 

imagery used in our experiments was taken at a relatively low resolution of 3m. There is 

the potential that sub-category classification models may perform better when trained on 

higher resolution imagery, as we discuss further in our future work section below. 

C. FUTURE WORK 

We show that using retrained CNN for object classification and detection has the 

potential to allow the DoD to quickly train new models for novel datasets without a 

requirement for large amounts of training data or machines with powerful GPUs. However, 

there are several areas that require future study that we were not able to address within the 

scope of this thesis. As mentioned briefly above, all of our data came from the same 3m 

resolution sensor [21]. Here, we use blur to approximate the effect that including images 

of lower resolution to the test or training sets will have on model performance. However, 

we do not directly test any images obtained from a secondary remote sensing platform. It 

would be useful to compare model performance on models trained on images from several 

different remote sensing platforms at differing resolutions. 

Additionally, this work could be expanded by re-training the VGG-16 object 

classification and detection architectures for use on other DoD related image sets such as 

airplanes or ground vehicles. We limited the scope of this thesis to the maritime domain; 

however, the land domain may provide a unique set of challenges due to the increase in 

background noise from other objects such as buildings that we did not need to address 

when focusing primarily on areas of open ocean. Lastly, the techniques used in this thesis 

should eventually be tested on images from the actual remote sensors used by DoD 
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intelligence analysts. The work in this thesis provides a solid proof of concept for the use 

of retrained CNNs in the DoD; however, it will be important to determine the performance 

of these tools on the actual data and tasks for which we aim to see them used. 
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