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ABSTRACT 

 Demand signals across the Navy’s NIMITZ Class Carrier (CVN) Aircraft Launch 

and Recovery Equipment (ALRE) market-basket are highly erratic and do not fit neatly 

into the traditional demand-based sparing construct. This causes the Naval Supply 

Systems Command Weapons Systems Support (NAVSUP WSS) planning efforts to 

continually lag behind requirements, with material often arriving late-to-need. This 

project attempts to develop a comprehensive and more reliable ALRE material 

requirement forecast model. To accomplish this effectively, a comprehensive list of 

historical CVN ALRE demand data were analyzed in order to identify any correlation 

between ALRE demand and a ship’s operating phase status, and to identify whether that 

correlation directly drives ALRE demand. The analysis begins by collecting historical 

CVN ALRE demand data and identifying the improvements for the current forecasting 

model. After a complete analysis of the current forecasting model, we utilized multiple 

linear regression and evaluated various forecasting methods as the best available methods 

for developing/discovering an optimized and robust forecasting method. In conclusion, 

the extremely low demand quantities of critical ALRE components continue to make 

forecasting extremely unreliable, but we believe NAVSUP can improve the accuracy of 

ALRE demand forecast by adapting a flexible forecasting system. 
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EXECUTIVE SUMMARY 

At the behest of Naval Supply Systems Command Weapons Systems Support 

(NAVSUP WSS), this project set out to explore opportunities to optimize the current 

demand-forecasting model of critical aircraft launch and recovery equipment (ALRE) 

components. NAVSUP WSS sponsored this research due to current low service levels, fill 

rates, and lead times to operational units, specifically the Navy’s aircraft carriers. In order 

to improve existing demand forecast accuracy, the current model used by NAVSUP WSS 

was evaluated and compared against other models, which build upon the status-quo model 

framework. 

NAVSUP WSS currently utilizes a forecasting method known as simple 

exponential smoothing (SES), which averages historical data by giving older data less 

relative weight and disregards irrelevant outliers. This project formulated a hypothesis that 

this method could be improved by taking into account a ship’s operational tempo 

(OPTEMPO). A nuclear powered aircraft carrier’s (CVN) OPTEMPO depends on where 

the unit is in the operational cycle. The carrier will be in one of four phases within the 

cycle: deployment, training, maintenance, or sustainment. In order to determine the 

usefulness of using cyclicality in conjunction with exponential smoothing, a correlation 

between operational phases and ALRE parts demand need to be examined. 

This project utilized the previous six years of parts demand data along with the ship 

schedules of 10 aircraft carriers to run multiple linear regressions to determine the level of 

correlation. The results of nearly 400 regression models demonstrated virtually no 

correlation. This was evident by extremely low significance values and p-values well above 

the .05 threshold for null hypothesis rejection. Despite the lack of correlation between parts 

demand and the operational phase of the ship, four forecasting models (simple exponential 

smoothing, adaptive exponential smoothing, Holt-Winters, and Box–Jenkins) were 

evaluated for accuracy by three common evaluation methods. Those evaluation methods 

include the root mean square error (RMSE), the Akaike Information Criterion (AIC), and 

the mean absolute scaled error (MASE).  



 xvi 

Running a forecast on all of NAVSUP’s critical NIINs would be prohibitively time 

consuming, so the authors of this project utilized the ABC classification method to identify 

NAVSUP’s top 10% NIINs based on annual budget consumption. Four forecasts were run 

and evaluated for each of the NIINs identified.  

The forecasting testing conducted by this project identified the Holt–Winters model 

as the most accurate of the four models. The Simple Exponential Smoothing model, similar 

to the model utilized by NAVSUP, was second best.  

In conclusion, the extremely low demand quantities of critical ALRE components 

continue to make forecasting extremely unreliable, but the authors of this project believe 

NAVSUP could benefit from more flexibility in its forecasting. It can utilize the best-fit 

forecast for each critical NIIN by grouping them together using demand-based criteria. The 

NIINs will then be grouped by best-fit forecasts once those forecasts are identified.  
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I. INTRODUCTION 

The United States Navy operates aircrafts that take off and land on aircraft carriers 

every day. The successful launch and recovery of these aircrafts is critical to the completion 

of air missions and safety of flight crews. Since aircraft carriers have limited launch and 

recovery space, they are equipped with aircraft launch and recovery equipment (ALRE). 

These “products include catapults, arresting gear, helicopter landing systems, wind 

measuring systems, aviation-based information systems, aviation marking and lighting, 

recovery systems and visual landing aids, aircraft firefighting equipment, and 

expeditionary airfield systems and related products” (Naval Air Systems Command 

[NAVAIR], n.d.-a).  

A. BACKGROUND 

The ALRE Program Office (PMA-251) located at Naval Air Systems Command 

(NAVAIR) in Patuxent River, MD, “provides life-cycle acquisition management for Navy 

and Marine Corps systems and equipment utilized for the launch and recovery of current 

and future fixed wing and rotary wing aircraft” (NAVAIR, n.d.-a). The ALRE Branch of 

Naval Supply Systems Command Weapons Systems Support (NAVSUP WSS) provides 

inventory support for all launch and recovery equipment.  

Over the past 30 years, aircraft have continued to increase in weight while many of 

the ALRE systems and components have not undergone significant redesign to 

accommodate these higher energy loads. “The cumulative impact of heavier aircraft and 

other effects, including fatigue, cable dynamics, contractor manufacturing errors, and 

installation issues, has resulted in diminished factors of safety for ALRE critical parts” (J. 

Stark, email to author, May 6, 2018). In response, the Navy established the NAVAIR 

ALRE Flight Safe Program and designated the Support Equipment (SE) and Aircraft 

Launch and Recovery Equipment (ALRE) Department (NAVAIR 4.8) as overall in charge 

of this program. The responsibilities of NAVAIR 4.8 include final source approver, waiver 

& deviation issuance, and quality assurance. “The Flight Safe program ensures the safe 

operation of ALRE systems aboard naval vessels and shore installations by improving the 
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quality and control of Critical Safety Items (CSI), critical processes, and ALRE interface 

items for production, installation, repair, overhaul, and new ship construction” (J. Stark, 

email to author, May 6, 2018).  

“NAVSUP’s ALRE branch provides sustainment support for 1,500 National Stock 

Numbers (NSN) of which roughly 15% are CSI items” (J. Stark, email to author, May 6, 

2018). NAVAIR 4.8’s current interpretation and execution of ALRE “Flight Safe” Program 

policy in conjunction with highly erratic demand signals across the CVNs are “impacting 

NAVSUP’s ability to maintain healthy ALRE material pipelines” (J. Stark, email to author, 

May 6, 2018).  

The U.S. Navy operates highly complex systems on myriad naval platforms, each 

with its own long list of components. One of those highly complex systems is ALRE. 

ALRE is composed of equipment used to launch and recover aircraft onboard CVNs. The 

inventory and supply chain management of the thousands of line items that support these 

complex systems is a robust operation. Providing necessary support involves 

understanding CVN operational requirements as well as having access to accurate demand 

data in order to reliably predict the needs of the fleet and implement effective and efficient 

inventory management policies.  

B. RESEARCH GOALS 

Demand signals across the Nimitz Class CVN’s ALRE market-basket are highly 

erratic and do not fit neatly into the traditional demand-based sparing construct. This causes 

supply-planning efforts to continually lag requirements, with material often arriving late-

to-need. The current demand forecasting model primarily utilizes historical component 

replacement rates to predict future demand. However, this construct omits changes in 

ship’s operating phase status (deployment, sustainment, maintenance, and training).  

This study utilizes both a quantitative and qualitative approach to research, gather, 

and analyze historical CVN ALRE demand data to see if there is any correlation between 

ALRE component demand and ship’s operating phase status and if that correlation directly 

drives ALRE component demand. This research design aids in the development of a 

comprehensive and more reliable ALRE material requirement forecast model. The model 
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functions to forecast which CVN ALRE assets are needed, when they are needed, an in 

what quantity they are needed. All required data is provided by NAVSUP WSS. 

The purpose of this project is to evaluate demand signals across the CVNs ALRE 

market-basket to determine why this construct causes supply planning efforts to not support 

the unit at their time of part deficiency. Additionally, an evaluation was conducted to 

determine why the current model only uses past component replacement rates to predict 

future demand but omits changes in OPTEMPO. This could highlight the variables that 

drive ALRE demand and timely part replenishment.   

The following are our research questions: 

 Does the traditional sparing construct provide an accurate demand forecast 

for ALRE parts and components?  

 Is there a correlation between the ALRE component demand and the ship’s 

operating phase status?  

 If there is correlation between the ALRE component demand and the ship’s 

operating phase status, does that correlation directly drive ALRE 

component demand?  

 Does a forecasting method exist that outperforms the current employed 

method of simple exponential smoothing? 

C. THESIS ORGANIZATION 

The body of the thesis beginning in Chapter II discusses the history of the NAVSUP 

Enterprise, ALRE, and the naval ship operational cycle. ALRE history is summarized along 

with how its role is influenced by these organizations. Next, an extensive description of 

ALRE systems is summarized as a significant subject of examination in efforts to identify 

opportunities for forecast optimization. 

In Chapter III, the methodology for obtaining information along with the analysis, 

including explanations of statistical principles and methodologies, are used. The different 

forecasting models tested and the subsequent answers to the research questions, 
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assumptions for data, and findings are also discussed. Lastly, Chapter IV summarizes the 

results of the analysis and provides recommendations from the authors’ research.  
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II. LITERATURE REVIEW 

A. NAVAL SUPPLY SYSTEMS COMMAND (NAVSUP) 

Formally called NAVICP (Naval Inventory Control Point), NAVSUP logistically 

supports all components of the military in supplying weapons system parts and 

components. The two primary locations, both located in Pennsylvania (Mechanicsburg and 

Philadelphia), conjointly work together to address this issue. NAVSUP Global Logistics 

Support (NAVSUP GLS) Transportation and Distribution department recently realigned in 

2014 to join with NAVSUP Weapons Systems Support (NAVSUP WSS). WSS’s 

Directorate (N3) is in Norfolk, VA. These three entities are responsible for the efficient 

and cost-effective movement of personnel and cargo (Naval Supply Systems Command, 

[NAVSUP WSS], n.d.-a). 

On October 2, 1995, the Naval Inventory Control Point (NAVICP) was 

established with the merging of the former Aviation Supply Office (ASO) 

in Philadelphia and Ships Parts Control Center (SPCC) in Mechanicsburg. 

The purpose of this merger was to bring together all of the Navy's Program 

Support Inventory Control Point (PSICP) functions under a single 

command. The move to join the activities together as one Command, two 

sites, was the result of a need to reduce costs and infrastructure as well as 

to standardize inventory management procedures with a mission "to provide 

Navy, Marine Corps, Joint and Allied Forces quality supplies and services 

on a timely basis." (NAVSUP WSS, n.d.-a) 

SPCC was the original Naval Supply Depot in Mechanicsburg established for 

making ships parts, specifically for aircraft engines. By 1980, ASO and SPCC became the 

only two remaining ICPs to provide support to the Navy (NAVSUP WSS, n.d.-a). On the 

NAVSUP WSS homepage, a brief description of their role in Supply Chain Management 

and what that entails for WSS:  

Naval Material Supply Chain Management (SCM) is NAVSUP’s largest 

Product & Service in terms of resources invested with over 3,000 civilian, 

military and contractor personnel involved, $21 billion of inventory on hand 

and an annual material budget of over $3.5 billion. It covers the over 

430,000 class IX repair part line items of supply for which the NAVSUP 

Weapon Systems Support (NAVSUP WSS) is responsible. NAVSUP WSS 

uses funds from the Navy Working Capital Fund (NWCF) to buy and repair 

the parts and in turn sells them to Fleet customers. In a nutshell, naval SCM 

https://www.navsup.navy.mil/public/navsup/wss/nscm/
https://www.navsup.navy.mil/public/navsup/wss/nscm/
https://www.navsup.navy.mil/public/navsup/wss/nscm/
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is the collection of processes that result in Navy customers receiving the 

parts they need, when and where they need them, anywhere in the world. 

(NAVSUP WSS, n.d.-a) 

NAVSUP’s two locations in Pennsylvania serve as the backbone for the Navy’s 

supply system. “NAVSUP WSS Philadelphia provides support for naval aviation weapons 

systems while the Mechanicsburg site supports ships, submarines and nuclear propulsion” 

(NAVSUP WSS, n.d.-a). Figure 1 is a snapshot of the NAVSUP organization: 

https://www.navsup.navy.mil/public/navsup/wss/nscm/
https://www.navsup.navy.mil/public/navsup/wss/nscm/
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 NAVSUP Organization in Support of Logistics Movement throughout 

the Navy to Include the DoD. Source: NAVSUP 

 WSS (n.d.-b).  
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B. ABOUT AIRCRAFT LAUNCH AND RECOVERY EQUIPMENT (ALRE) 

In order to bring offensive air strike capabilities to objectives across the global 

landscape, aircraft must launch from a CVN platform to be within effective striking 

distance. Naval aircraft carriers support success on the maritime frontier by providing a 

platform that enables aircraft to accomplish the mission and successfully prosecute objects 

by landing ordnance on target. That mission set requires jet aircraft have a ship available 

that will allow them to fly the distance and return safely. CVNs are equipped with this 

advanced ALRE to launch and recover these aircrafts while operating at sea. Without the 

launch and recovery systems, it could not be done.  

The U.S. Navy will not have naval tactical aviation without launch and recovery. 

The first aircrafts launched off a U.S. aircraft carrier weighted only a couple thousand 

pounds. More energy is required to launch and recover the as aircrafts as they have gotten 

heavier over time. The initial aircraft carrier utilized hydraulic catapults (H-8 catapult), 

which were prone to malfunctions and explosions due to the weights of the aircrafts.  

The U.S. Navy adopted the use of steam technology, which was developed by the 

United Kingdom, in 1698. The first steam-powered catapult installed on a carrier was the 

C7 catapult. Driven by the need for more energy, the internal combustion catapult (TC14 

catapult) was developed with the capability to launch F-35C, F/A-18, and whatever 

aircrafts were developed in the future. However, it was deemed too dangerous for flight 

deck operations, so the Navy stayed with steam catapults.  

The Nimitz-Class aircraft carriers (CVN 68 – CVN 77) are outfitted with the C-13 

Mod 2 “Fat Cat.” The C-13 Mod 2’s development was led by Modest Zacharczenko, a 

developmental test engineer at NAVAIR, Patuxent River, MD. “His other engineering 

efforts were focused on the Navy’s Electromagnetic Aircraft Launch System (EMALS), 

which employs electromagnetic energy to propel aircraft, and is being incorporated into 

the latest Ford Class of nuclear-powered aircraft carriers” (Wooge, 2018). 

NAVAIR’s Aircraft Launch and Recovery Equipment Program Office (PMA-251) 

manages an array of ALRE products. These ALRE products include launch and recovery 

systems, visual landing aides, and their associated information systems. The launching 
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system includes the steam catapults, Jet Blast Deflectors (JBD), and the Integrated Catapult 

Control System (ICCS). “The launcher commodity encompasses not only catapults, but 

also the catapult control stations and jet blast deflectors” (NAVAIR, n.d.-b). “The ICCS, 

or ‘bubble,’ is a station located in carrier flight decks” (NAVAIR, n.d.-c). (See Figure 2.) 

It combines current remote stations to provide intercommunication during each aircraft 

launch. “JBDs are hydraulic-controlled panels on carrier flight decks designed to divert hot 

aircraft exhaust during launches” (LexLeader, 2012, para. 9). (See Figure 3.) “The panels 

are raised in preparation for takeoff, protecting the flight deck and other aircraft in the 

vicinity from the hot aircraft exhaust” (NAVAIR, n.d.-d).  

 

 Aircraft Shooters Watch from Inside the ICCS 

Source: United States Navy (n.d.). 

 

 An F-14 Tomcat Preparing for Launch with the JBDs in Position to 

Deflect the Exhaust. Source: Avikerensky (2011). 
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1. Launch and Recovery Systems 

Aircraft recovery at-sea is a critical piece of an aircraft carrier’s mission. Landing 

a high-speed jet on an aircraft carrier calls for a great deal of skill and constant practice. 

As the aircraft approaches the carrier, the Landing Signal Officer (LSO), positioned aft on 

the flight deck, provides the pilot with critical information to help position the aircraft for 

a safe a landing. The tailhook on the bottom of the plane must engage one of four steel 

cables protruding only a couple of inches above the deck in order to stop the plane (Figure 

4). An aircraft decelerates from 150 mph to zero within seconds upon landing on the flight 

deck of an aircraft carrier (LaGrone, 2014).  

Current recovery systems include the carrier-based Mk-7 Mod 3/4 shipboard 

arresting gear system, which can stop a 50,000-pound aircraft in less than 350 feet. Air 

capable ships utilize the Recovery Assist Secure and Traverse (RAST) system, “which 

helps guide a helicopter to the deck and then secures the aircraft during the traversing phase 

to the hangar” (NAVAIR, n.d.-e). 

 

 An EA-6B Prowler, Assigned to the “Rooks” of Electronic Warfare 

Squadron One Three Seven (VAQ-137), Catches One of Four Arresting 

Wires on the Flight Deck of the Aircraft Carrier USS Enterprise (CVN 

65). Source: Pogo (n.d.). 
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2. Visual Landing Aides (VLA) 

Visual landing aids (VLAs) help pilots land aircrafts onboard the carrier. “Current 

VLAs include flight deck status and signaling systems, hover position indicators and 

precision approach path indicators” (NAVAIR, n.d.-f). The most critical VLA system is 

the Fresnel Lens Optical Landing System (OLS) (Figure 5).  

[OLS is] designed to provide a “glide slope” for aviators approaching a 

carrier, the lights projected through the Fresnel lenses in different colors 

telling the aviator when the aircraft is at the desired altitude in the approach 

at any distance from the ship. If the aviator sees a red light (at the bottom), 

it means that the aircraft is dangerously low, the subsequent flashing red 

light activated by the landing signal officer (LSO) indicating a wave-off 

requiring the pilot to go around for another attempt. (National Naval 

Aviation Museum, n.d.) 

 

 Simulation of an Aircraft making its Approach to a CVN using the 

Precision Carrier Landing System. Source: Olson (2012). 

3. ALRE Information Systems 

Like most modern technologies, ALRE is controlled by information systems that 

were developed by the Naval Air Warfare Center Aircraft Division (NAWCAD), 

Lakehurst, NJ. These systems are used to collect important data, such as wind speed, which 
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are passed on by the LSO to the pilot. (NAVAIR, n.d.-g). ALRE information systems 

include the Moriah, Wind Measuring and Indicating System (WMIS), Aviation Data 

Management and Control System (ADMACS), and Landing Signal Officer Display 

System (LSODS). Moriah provides all shipboard wind related information, which is 

utilized for operations such as firefighting and navigation. (NAVAIR, n.d.-h). “ADMACS 

connects the air department, ship divisions, and embarked staff who manage the aircraft 

launch and recovery operations on CVN ships” (NAVAIR, n.d.-i). (See Figure 6.) 

“ADMACS communicates real-time aviation and command-related data across the 

ship’s computer networks” (NAVAIR, n.d.-i). ADMACS “also displays the status of 

aircraft launch and recovery equipment (ALRE), fuel, weapons and other aviation and ship 

related information” (NAWCAD, n.d.). The LSODS enable the LSO to assist the pilot with 

flight deck lighting and landing of the aircraft (Figure 7).  

  

 Sailors Onboard a CVN Monitoring ADMACS. 

 Source: NAWCAD (n.d.). 
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 LSOs Watch an F/A-18E Super Hornet, Assigned to the Gunslingers of 

Strike Fighter Squadron (VFA 105), Land Aboard the Aircraft Carrier 

USS Harry S. Truman (CVN 75). Source: Wikimedia Commons 

(2010). 

C. ABOUT NAVAL SHIP OPERATIONAL CYCLE 

All U.S. naval ships operate in a cyclical four-phase cycle. These phases consist of 

deployment, sustainment, maintenance, and training. The daily operations and overall 

objective for each phase directly attribute to the operational tempo and subsequent usage 

of equipment. This is important to take into account when considering the wear and tear on 

the material condition of the ship as it progresses through its operational cycle. 

Understanding the correlation between the CVN’s cyclical OPTEMPO and demand signals 

for repair parts is critical in forecasting the seasonality of ALRE usage and maintenance 

requirements. See Figure 8 below.  
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 A U.S. Navy Ship’s Typical Four-Phase Cyclical Operation Schedule. 

1. Deployment Phase 

The most well-known and arduous period is the deployment phase. CVN 

deployments typically last between seven and 10 months. During this time the ship 

conducts full operations at sea, which includes up to 12 hours of flight operations daily. 

This constant and demanding use of equipment directly correlates to extensive wear and 

tear, leading to increased component failure rates and subsequent replacement 

requirements. The amount of parts demand for corrective maintenance is typically highest 

during the deployment. 

Special attention and consideration must be given to ALRE parts demand during 

this phase. If a required critical part is not in stock (NIS) then the impacts can be significant. 

Not only can it have a direct impact on the ships ability to conduct flight operations and 

therefore degrade mission readiness, but also additional transportation costs in required to 

expedite high value components to the ship in theater can be substantial. 
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2. Sustainment Phase 

Once a ship returns to its respective homeport following a deployment, it 

immediately goes into what is referred to as the sustainment phase. This typically lasts 

between 30 and 90 days. The objective of this phase is to keep the ship in its current state 

of readiness in case it is tasked to conduct operations. This phase is generally considered 

an operational buffer providing Navy leadership flexibility in case of emergencies or 

unforeseen national defense requirements. Although the ship will technically be deployable 

during this time, it will not typically be conducting operations unless specifically called 

upon to do so. 

3. Maintenance Phase 

Upon completion of the sustainment phase, a ship will undergo a substantial period 

of maintenance referred to as an “availability.” A simplistic comparison can be made to 

that of a personal vehicle. After a time of usage, a car needs a tune-up or even an overhaul 

if the wear and tear is significant. This concept holds true, but on a much larger scale, for 

aircraft carriers. Depending on the amount of maintenance, repairs, modifications, and 

upgrades needed, a maintenance availability can range anywhere from three to 18 months. 

Post-deployment maintenance periods typically average approximately six months. 

During this time, significant work will be done throughout the entire ship, 

sometimes requiring it to be completely removed from the water in what is referred to as a 

“dry dock.” The environment during an availability is most comparable to a construction 

zone. Hard hats, cranes, and construction shipyard workers along with their equipment fill 

the ship. While some critical parts for ALRE may be requisitioned to support maintenance 

during this period overall, the demand is extremely low. Due to the lack of operations and 

subsequent use of aviation systems, demand for parts is typically lowest during the 

maintenance phase of the ship’s operational cycle. 

4. Training Phase 

There is a significant churn of personnel throughout the approximate 24-month 

operational cycle of a Navy ship. Due to this turnover of personnel, as well as the atrophy 
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of skills and capabilities of the crew during the maintenance availability, a substantial 

training phase must be completed. The entire training period is broken down into three 

subsequent phases: basic, intermediate, and advanced. 

The basic phase consists of a series of training evolutions and inspections that 

certify that the crew and ship can safely and effectively get underway. Examples of this 

include engineering certifications, damage control, force protection, and navigation. For 

the purposes of ALRE parts analysis, it is important to note that the material condition of 

the flight deck is not yet certified for flight operations until the end of the basic phase. 

Therefore, demand signals for corrective maintenance should still remain low. Once having 

demonstrated sufficient material readiness and watch standing proficiency, the ship and 

her crew will progress onto the intermediate phase. 

During the intermediate phase, the ship will train and certify in more complex 

evolutions to include flight operations. As the ship and crew certify in the requisite 

functional warfare areas they will begin to conduct advanced integration training that 

mimics operations that will be executed on deployment. During this advanced phase, the 

ship will be underway conducting full-scale dynamic training scenarios known as 

deployment “work ups.” The OPTEMPO during the training phase increases as the ship 

progresses from basic certifications through deployment work ups. Parts requirements will 

theoretically show a positive correlation and will increase along with OPTEMPO.  

D. CONCLUSION 

In conclusion, the literature review conducted describes and explains the U.S. 

Naval Supply organizational structure and how it provides inventory management services 

in support of the warfighter. One of the many equipment systems which fall under 

NAVSUP’s purview of fleet parts support is a group of components belonging to complex 

systems of equipment that are responsible for the launch and recovery of aircraft. ALRE is 

described in detail, as its usage and forecasting difficulty are the primary focus of this 

thesis.  

In our efforts to identify opportunities to optimize the Navy’s ability to accurately 

forecast demand for ALRE components, we have primarily focused on the perceived 
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correlation between the operational tempo of CVNs and replacement parts demand. 

Therefore, the typical operational cycle of a navy ship and subsequent phases of operation 

are also explained. Discovering ways to optimize and improve forecasting tools utilized by 

the U.S. Navy is extremely important. Accurate forecasting will ultimately reduce 

inventory management costs, reduce procurement and delivery lead times, and improve 

mission readiness. 
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III. METHODOLOGY AND ANALYSIS 

The purpose of this chapter is to analyze a specified group of ALRE NIINs in order 

to forecast demand to satisfy future operational requirements of the Navy’s air capable 

ships. To accomplish this goal we made use of the data provided by NAVSUP WSS. This 

data was organized utilizing the ABC classification method to identify NAVSUP’s top 10 

percent NIINs based on annual budget consumption. Next, this project will utilize both the 

causal (multiple linear regression) and time series (simple exponential smoothing, adaptive 

exponential smoothing, Holt–Winters exponential smoothing, and Box–Jenkins 

exponential smoothing) forecasting models to forecast ALRE demand for a 12-month 

period.  

The causal forecasting model will combine six years of historical demand data, and 

the historical schedules of the 10 CVNs to run multiple linear regressions, which will 

determine if there is a relationship between demand and OPTEMPO. The time series 

models will utilize the same historical demand data to uncover any trends and/or 

seasonality for ALRE demand. The different time series models utilized are explained in 

detail.  

The results from the time series forecast methods will be evaluated for accuracy by 

two common evaluation methods: the Root Mean Squared Error (RMSE), and the Akaike 

Information Criterion (AIC). A third forecast error method called the Mean Absolute 

Percentage Error (MAPE) will also be discussed, but not utilized. MAPE limitations, which 

do not allow it to work with this project’s low demand data is explained in further detail. 

The historical data utilized is the same across all models used in this project.  

A. DATA COLLECTION AND ORGANIZATION 

NAVSUP WSS provided six years of historical ALRE demand data for all 10 

CVNs. The demand data was then combined with historical ship schedules from 

unclassified open source outlets (uscarriers.net) to create a spreadsheet for each ship 

(example in Figure 9). This was formulated by consolidating the demand for each NIIN 

associated with all 10 CVNs. The spreadsheet separated the demand data by month and 



 20 

highlighted which phase of the operating cycle the ship was in. Once complete, we used 

data from those spreadsheets to run multiple linear regressions and advanced exponential 

smoothing forecast models for each NIIN to answer the research questions for this project.  

Table 1.   This is a Sample of USS Carl Vinson (CVN 70) Demand Data 

Organized by Months and Operational Schedule 

 

 

B. ABC CLASSIFICATION 

ABC classification is utilized to identify and segregate the vital inventory items in 

terms of budget consumption from the trivial many that may obfuscate data and are 

generally irrelevant for analytical purposes. The segregation and prioritization of high 

value units offer the ability to apply a different degree of control to those items (Dickie, 

1951). The first step in classifying inventory items is to identify the items criteria to classify 

your inventory. With the management of a constrained DoD budget in mind, this project 

prioritizes NAVSUP’s budget by ranking their critical NIINs based on annual budget 

consumption. Next, the items must be classified into groups based on that criterion. Finally, 

a degree of control must be applied in proportion to the importance of the group. 

NAVSUP provided a list of 100 critical NIINs for evaluation. Of the 100 critical 

NIINs, only 55 had historical demand from the 10 CVNs. This project utilized the ABC 

NIIN 12-04Apr 12-05May 12-06Jun 12-07Jul 12-08Aug 12-09Sep 12-10Oct 12-11Nov 12-12Dec 13-01Jan 13-02Feb 13-03Mar 13-04Apr 13-05May

000309452 0 0 0 0 0 0 0 0 0 1 0 0 0 0

000581381 0 0 0 1 2 0 0 0 0 1 0 0 0 0

000715184 0 0 0 0 0 0 0 0 0 1 0 1 1 5

001068440 0 0 0 0 0 0 0 0 0 0 0 0 0 0

001071654 0 0 0 0 0 0 0 0 0 0 0 0 0 0

001102604 0 0 0 0 0 0 0 0 0 0 0 0 0 0

001136177 0 0 0 0 0 0 0 0 0 1 0 0 0 0

001514355 0 0 0 0 0 0 0 0 0 0 0 0 3 0

001938859 0 0 0 0 0 0 0 0 0 0 0 0 0 1

002244686 0 0 0 0 0 0 0 0 0 0 0 1 0 0

002249023 0 0 0 0 0 0 0 0 0 1 0 0 0 0

002249098 0 0 0 0 0 0 0 0 0 2 0 0 0 0

002751898 0 0 0 0 0 0 0 0 0 0 0 1 0 0

002786951 0 0 0 0 0 0 0 0 0 0 0 1 1 0

002943617 0 0 0 0 0 0 0 0 0 1 0 0 1 1

003158906 0 0 0 0 0 0 0 0 0 0 0 1 1 0

003159101 0 0 0 0 0 0 0 0 0 0 0 0 0 1

003160033 0 0 0 0 0 0 0 0 0 1 0 0 0 1

003513815 0 0 0 0 0 0 0 0 0 0 0 0 0 1

003646970 0 0 0 0 0 0 0 0 0 0 0 1 0 0

004089800 0 0 0 0 0 0 0 0 0 1 0 0 0 0

004091435 0 0 0 0 0 0 0 0 0 0 0 0 0 1

004323430 0 0 0 0 0 0 0 0 0 0 0 0 0 0

004510011 0 0 0 0 0 0 0 0 0 0 0 0 0 1

004602936 0 0 0 0 0 0 0 0 0 0 0 0 0 1

004615366 0 0 0 0 0 0 0 0 0 0 0 1 0 0

004693398 0 0 0 0 0 0 0 0 0 0 1 1 0 0

004705269 0 0 0 0 0 0 0 0 0 0 0 0 1 0

004760009 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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Classification system to classify the 55 NIINs into three groups (A – top 10%, B – middle 

50%, C – bottom 40%) based on budget consumption. The “A” items consume roughly 

70% to 80% of the annual budget, the “B” items consume roughly 15% to 20% of the 

annual budget, and the “C” items consume roughly 10% to 15% of the annual budget. 

(Ferrer, 2018). “Once the A’s, B’s and C’s have been identified, each category can be 

handled in a different way, with more attention being devoted to category A, less to B, and 

even less to C.” (Statistics Solutions, n.d.).  

The “A” classified items contained only five NIINS. Since larger data samples lead 

to more accurate forecasts, the authors of this project decided to expand the “A” classified 

NIINs by adding the next five NIINs. This resulted in a top 10 list for the “A” category. 

The modified “A” classified NIINs can be seen in Table 1. Highlighted in yellow are the 

modified “A” classified items with the original top 10% of budget consumption delineated 

in red font in Tables 1 and 2. 

Table 1.   “A” Classified Items  
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Table 2.   “A” Classified Item Nomenclature 

    

 

C. EVALUATING FORECASTS 

Forecasting is not an exact science and a certain level of uncertainty or error is to 

be expected. Several mathematical methods exist that quantify the level of error in any 

given forecast. Armed with this error data, a forecast’s accuracy can be scrutinized as well 

as compared against other forecast models to determine which one provides more optimal 

results (Chambers, Mullick, & Smith, 1971). In this section, we present three such methods 

(RMSE, AIC, and MASE) that were used to evaluate the accuracy or amount of error of 

the time series forecasts employed in this project. A fourth method called the Mean 

Absolute Percentage Error (MAPE) is also discussed, but due to its inherent limitations 

when dealing with low demand data, it could not be used for this project.  

1. Mean Absolute Percentage Error (MAPE)  

The MAPE is a common method utilized to evaluate the calculated forecast error, 

but due to the nature of the formula, it is not applicable to this project. It is “based on the 

assumption that the severity of error is linearly related to its size. It is defined by and is the 

sum of the absolute values of the errors divided by the corresponding observed values all 

divided by the number of forecasts” (Jarrett, 1991, p. 32).  
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According to Jarrett, the MAPE formula is expressed as:  

 

𝑀𝐴𝑃𝐸 =
1

𝑛
𝛴 |

𝐴𝑡−𝐹𝑡

𝐴𝑡
| × 100                                              (1) 

where: 

 

 𝐴𝑡 = actual value 

 

 𝐹𝑡 = forecast value 

 

 n = number of time periods 

 

The issue arises when any of the actual values in the sample is zero. Due to the 

actual value being the sole variable in the denominator any zero that occurs results in an 

undefined solution. ALRE components have low quantity and sporadic demands with 

many time periods experiencing zero demand therefore rendering the MAPE method 

unusable for the purposes of this project.  

“The MAPE measures the size of the error in percentage terms. It is calculated as 

the average of the unsigned percentage error” (Stellwagen, n.d.). The MAPE is easy to 

interpret, but it can be delicate when working with low demand data.  

It is neither a resistant or robust summary measure because a few outliers 

can dominate it and the MAPE will not be close in value for many 

distributions (Hoaglin, Mosteller, and Tukey 1983: 28; Huber 1964; Tukey 

1970). Therefore, the MAPE can understate forecast accuracy, sometimes 

dramatically. As such, it has tended to reinforce the perception of inaccurate 

forecasts. (Swanson, Tayman, & Bryan, n.d., p. 8)  

For example, and as shown in Figure 9, the forecast for month 1 is subtracted from 

the actual and then divided by the actual, yielding an absolute error of 11%. Each 

consecutive month is calculated the same way and the average of these monthly values is 

calculated resulting in an overall MAPE of 17.6%.This MAPE percentage would be 

compared to other MAPE results for multiple forecasting methods. The lowest MAPE 

score would determine the type of forecasting method to utilize for that data specifically.  
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 Example of a MAPE calculation. Source: Stellwagen (n.d.). 

2. Root Mean Squared Error (RMSE) 

The second evaluation method is the RMSE.  

[It is the] standard deviation of the residuals (prediction errors). Residuals 

are a measure of how far from the regression line data points fall; RMSE is 

a measure of the spread of these residuals. In other words, it tells you how 

concentrated the data is around the line of best fit. RMSE is commonly used 

in climatology, forecasting, and regression analysis to verify experimental 

results. (Stephanie, 2016)  

The model with the lowest RMSE is the best performer.  According to Jarrett 

(1991), the RMSE formula is expressed as:  

 

 𝑅𝑀𝑆𝐸 = √∑ (𝐴𝑡−𝐹𝑡)2𝑛

𝑡=1

𝑛
                                                        (2) 

 

where: 

 

 𝐴𝑡 = actual value 

 

 𝐹𝑡 = forecast value 

 n = number of time periods 

https://www.statisticshowto.datasciencecentral.com/residual/
https://www.statisticshowto.datasciencecentral.com/line-of-best-fit/
https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/regression-analysis/
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The majority of forecasting software programs are equipped with the tools needed 

to calculate the RMSE, thereby alleviating the need to compute calculations manually. 

Referring to the whole integer values in Figure 10, the calculations using the RMSE 

forecast error method would appear as follows:  

 

𝑅𝑀𝑆𝐸 =  √(𝟏𝟏𝟐−𝟏𝟐𝟒)𝟐+(𝟏𝟎𝟖−𝟏𝟎𝟑)𝟐+(𝟏𝟒𝟖−𝟏𝟏𝟔)𝟐+(𝟏𝟏𝟕−𝟕𝟖)𝟐

𝟒
 = 26.05         (3) 

 

  

3. Akaike Information Criterion (AIC) 

The third and final evaluation method is the AIC. It “was formulated by the 

statistician Hirotugu Akaike; it was originally named ‘an information criterion’” (Akaike 

information criterion, n.d.).  

  

 AIC = −2 log 𝐿 ̂ (𝜃 |y) + 2k                                              (4) 

 

where: 

 

�̂� (𝜃 |y) = the value of the likelihood of a model’s fit 

k = the number of estimated parameters or variables in the model 

 

The AIC is a complex algorithm that is used to compare the quality or effectiveness 

of a given set of statistical models against each other. It does not evaluate the validity or 

quality of a single model but is instead a tool used exclusively for model comparison. AIC 

essentially ranks a group of models from best to worst and is limited to comparisons 

between models that utilize the same data set. It is also important to note that AIC does not 

provide any information in regard to hypothesis testing. According to the Akaike 

information criterion, the model with the lowest AIC value is deemed the optimal model 

of the set evaluated. 

https://en.wikipedia.org/wiki/Hirotugu_Akaike
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4. Mean Absolute Scaled Error (MASE) 

The MASE equation (equation 5) can be used to verify the forecast performance 

for low demand items such as ALRE because it is usually not affected by periods with no 

demand (Hyndman & Koehler, 2006). MASE is simply a performance metric to compare 

two different forecasting methods.   It calculates the difference between the four forecasting 

methods compared to a naïve forecast. A naïve forecast is the simplest forecasting method.  

“According to the naïve forecasting method, demand in period 𝑡+1 should be the same as 

in period 𝑡. For example, if demand for specialty gray paint was 23 gallons this week, the 

naïve forecasting method would estimate the demand for that specialty paint to be 23 

gallons next week” (Ferrer, 2018, p. 317).   

 “Ideally, the MASE should be close to 0. If the MASE is smaller than 1, the 

forecasting method performs better than the naïve method. If the MASE is greater than 1, 

the forecasting method performs worse than the naive method and the manager should 

choose another method for that item.” (Ferrer, 2018, p. 360).  According to Ferrer, the 

MASE equation is expressed as:   

 

𝑀𝐴𝑆𝐸𝑡 = (
𝑛−1

𝑛
) 𝑥

∑ |𝐴𝑡−𝑛+𝑖−𝐹𝑡−𝑛+𝑖|
𝑛

𝑖=1

𝛴𝑖=2
𝑛 |𝐴𝑡−𝑛+𝑖− 𝐴𝑡−𝑛+𝑖|

                                        (5) 

 

D. FORECASTING METHODS 

Two schools of thought, causal and time series, generally delineate forecasting 

methodologies. Both categories of forecasting is evaluated and discussed in this section. 

The causal approach seeks to identify associations between variables and use these 

associations to predict the future behavior of dependent variables. A common example of 

a causal forecast method is regression analysis (Chambers, Mullick, & Smith, 1971).  

Times series forecast models study historical data to identify trends and seasonality 

and then use that information to project trends into the future. These models are generally 

known to be reactive in nature since they are reliant on past events and data. Common 
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examples of time series models include simple exponential smoothing, adaptive 

exponential smoothing, Holt-Winters, and Box–Jenkins. 

1. Causal Approach: Regression Analysis 

A primary focus of this thesis is the hypothesis that there is a direct correlation 

between the demand for ALRE components and the operational phase of the CVN. The 

initial intuitive assumption is that increased operational tempos (i.e., underway periods 

with sustained flight operations) such as those during deployment would cause additional 

wear and tear on recovery equipment. This constant usage would theoretically cause more 

equipment failures and subsequent requisitions for replacement parts. Conversely, 

maintenance periods are thought to have extremely low demand for ALRE components 

due to minimal equipment operation. 

To test this correlation hypothesis, requisition demand data for over 100 critical 

NIINs from 10 CVNs for the past six years was consolidated and utilized to run four 

separate multiple linear regressions. The following quote explains Multiple Linear 

Regression.  

Multiple linear regression is the most common form of linear regression 

analysis. As a predictive analysis, the multiple linear regression is used to 

explain the relationship between one continuous dependent variable and 

two or more independent variables. The independent variables can be 

continuous or categorical. (Statistics Solutions, n.d.)  

According to Anderson, Sweeney, & Williams (2013), the multiple linear regression 

equation is expressed below: 

 

�̂� = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑃𝑥𝑃                                        (6) 

 

where:  

 ŷ = the predicted value of dependent variable 

b0= the value of ŷ when all of the independent variables (𝑥1 through 𝑥𝑃) are equal 

to zero 



 28 

 𝑏1, 𝑏2, …, 𝑏𝑃 = the estimated regression coefficients 

 𝑥1, 𝑥2, …, 𝑥𝑝 = the p distinct independent or predictor variables 

 The scenario for this study uses ALRE parts demand as the variable dependent on 

the particular operational phase of the ship at a given point in time. The operational 

phases of deployment, training, maintenance, and sustainment are, therefore, the 

independent variables for the purposes of a multiple linear regression analysis. The 

following quote explains the relationship between the independent and dependent 

variables. “It can be used to forecast effects or impacts of changes. That is, multiple 

linear regression analysis helps us to understand how much will the dependent variable 

change when we change the independent variables.” (Statistics Solutions, n.d.). Table 3 is 

a visual representation of data organization implemented to run a multiple regression 

analysis where the “Demand for NIIN” column is the dependent variable and subsequent 

phase columns are the independent variables. 

Table 3.    Data Organization of Multiple Regression Analysis  

 

 

Period

Demand for NIIN 

015325728

# of Ships 

Deployed

# of Ships in 

Training

# of Ships in 

Maintenance

# of Ships in 

Sustainment
12-04Apr 0 2 5 2 1
12-05May 0 3 4 2 1
12-06Jun 1 3 4 1 2
12-07Jul 0 3 4 1 2
12-08Aug 0 3 3 2 2
12-09Sep 0 3 3 2 2
12-10Oct 0 3 4 3 0
12-11Nov 0 3 4 3 0
12-12Dec 0 2 4 4 0
13-01Jan 1 1 4 4 1
13-02Feb 0 2 6 2 0
13-03Mar 1 2 6 1 1
13-04Apr 0 3 5 1 1
13-05May 0 2 5 2 1
13-06Jun 2 3 4 2 1
13-07Jul 0 3 4 2 1
13-08Aug 1 2 4 2 2
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As stated previously, four separate multiple linear regressions were run on 

approximately 100 NIINs that were deemed “critical” by NAVSUP WSS. The four 

regressions included the comparison of the following independent variables (op phase) and 

NIIN demand: 

1. Combined correlation of all four operational phases (deployment, training, 

maintenance and sustainment). 

2. Combined correlation between demand in relation to deployment, training, 

and maintenance. 

3. Combined correlation between demand in relation to deployment and 

training. 

4. Correlation between demand and deployed status only. 

 

Tables 4–11 investigates NIINs 012929791, 012963788, 013019246, and 

013102990. They show two regression results of those four NIINs. The first table for each 

respective NIIN illustrates the results using the primary operation cycles (deployment, 

training, and maintenance) as the independent variables. The second table for each NIIN 

shows the results of the regression that only used the ships’ deployment status as the 

independent variable. 
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Table 4.   Statistical Results of Multiple Linear Regression of Historical Demand 

Data for ALRE (NIIN 012929791) Dependent Variable and Ships’ 

(Operational Phases) Independent Variables 

 

 

The coefficient of multiple determination, also known as “R squared” shows how 

closely data points “fit” along the regression line. It is a value between 0 and 1 that 

demonstrates how strongly the variables are correlated and how much variance among the 

data is explained. Generally speaking, the closer the value is to 1 the better, and anything 

with R square above 50% is deemed favorable since this means at least half of the variance 

can be explained. The R square for NIIN 012929791 in Table 4 is very weak (.051795848) 

and is not favorable. The next step is to analyze the Significance F. 

The results observed in Table 4 infer that the regression is not overall statistically 

significant and in fact, very little correlation between the dependent variable (NIIN 

demand) and the independent variables (op phase) appears to exist. The model’s overall 

significance indicator shows this, which is the highlighted value labeled as Significance F 

in Table 4. 

NIIN 012929791:  DEPLOYMENT + TRAINING + MAINTENANCE

Regression Statistics

Multiple R 0.227587011

R Square 0.051795848

Adjusted R Square 0.013355139

Standard Error 0.983243307

Observations 78

ANOVA

df SS MS F Significance F

Regression 3 3.907930295 1.302643 1.347421759 0.265591377

Residual 74 71.54078765 0.966767

Total 77 75.44871795

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept -0.201013001 1.119411457 -0.17957 0.857980753 -2.431489018 2.029463016

# of ships deployed 0.298075032 0.184172583 1.618455 0.109819316 -0.06889685 0.665046914

# of ships in training 0.02405782 0.138384323 0.173848 0.862459727 -0.251678963 0.299794603

# of ships in maintenance -0.024579699 0.145028145 -0.16948 0.865879778 -0.313554587 0.264395189
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  F Test for Significance (Multiple Linear Regressions) Hypothesis Test. 

The Significance F value shows the p-value of the F test, which indicates whether 

all three independent variables are capable of predicting a correlation with the dependent 

variable. If the overall significance value exceeds the 𝛼 of .05 then the model is not 

effective. This confirms that the multiple linear regression model for NIIN 012929791 is 

not reliable and does not show a significant relationship between the variables.  

Another prominent indicator of model strength and hypothesis validity is the p-

value. “A p-value is a probability that provides a measure of the evidence against the null 

hypothesis provided by the sample. Smaller p-values indicate more evidence against 𝐻𝑜.” 

(Anderson et al., 2013). Anderson et al. also provide guidelines when interpreting p-values: 

 Less than .01 – Overwhelming evidence to conclude that 𝐻𝑎 is true 

 Between .01 and .05 – Strong evidence to conclude that 𝐻𝑎 is true 

 Between .05 and .10 – Weak evidence to conclude that 𝐻𝑎 is true 

 Greater than .10 – Insufficient evidence to conclude that 𝐻𝑎 is true 

 

The p-values for NIIN 012929791 are all insignificant because the p-values are all 

greater than .05.  

Now we are going to hypothesize that there is no correlation between demand for 

NIIN 012929791 and deployed status only since ALRE equipment is usually used at a 
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higher rate when ships are deployed. The results in Table 5 indicate an R square of 

.048818882, a Significance F of .051899004 and a p-value of .051899004. These results 

mean there is not enough evidence to reject the null hypothesis and there is no correlation 

between demand for NIIN 012929791 and deployed status only. 

Table 5.   Statistical Results of Multiple Linear Regression of Historical Demand 

Data for ALRE (NIIN 012929791) Dependent Variable and Ships’ 

(Operational Phases) Independent Variables 

 

 

The same analysis applies to Tables 6–11. 

 

NIIN 012929791:  DEPLOYED ONLY

Regression Statistics

Multiple R 0.220949953

R Square 0.048818882

Adjusted R Square 0.036303341

Standard Error 0.971741491

Observations 78

ANOVA

df SS MS F Significance F

Regression 1 3.683322054 3.683322 3.900660933 0.051899004

Residual 76 71.76539589 0.944282

Total 77 75.44871795

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept -0.219941349 0.368359264 -0.59708 0.552226147 -0.953592406 0.513709708

# of ships deployed 0.305962854 0.154917187 1.975009 0.051899004 -0.002581465 0.614507173
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Table 6.   Statistical Results of Multiple Linear Regression of Historical Demand 

Data for ALRE (NIIN 012963788) Dependent Variable and Ships’ 

(Operational Phases) Independent Variables 

 

Table 7.   Statistical Results (Multiple Linear Regression) of Historical Demand 

Data for ALRE (NIIN 012963788) Dependent Variable (Deployment) 

Ships’ (Operational Phases) Independent Variables 

 

NIIN 012963788:  DEPLOYED + TRAINING + MAINTENANCE

Regression Statistics

Multiple R 0.165401949

R Square 0.027357805

Adjusted R Square -0.012073635

Standard Error 0.642927742

Observations 78

ANOVA

df SS MS F Significance F

Regression 3 0.860367888 0.286789 0.693806886 0.558730789

Residual 74 30.58835006 0.413356

Total 77 31.44871795

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0.959374123 0.731966011 1.310681 0.194018724 -0.49909999 2.417848236

# of ships deployed 0.010796718 0.120427632 0.089653 0.928805048 -0.229160576 0.250754012

# of ships in training -0.051853461 0.09048739 -0.57305 0.56835065 -0.232153521 0.1284466

# of ships in maintenance -0.109278628 0.094831684 -1.15234 0.252889249 -0.298234882 0.079677626

NIIN 012963788:  DEPLOYED ONLY

Regression Statistics

Multiple R 0.086377599

R Square 0.00746109

Adjusted R Square -0.005598633

Standard Error 0.640867794

Observations 78

ANOVA

df SS MS F Significance F

Regression 1 0.234641702 0.234642 0.57130537 0.452077061

Residual 76 31.21407625 0.410712

Total 77 31.44871795

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0.299120235 0.242934558 1.231279 0.222015127 -0.18472587 0.782966339

# of ships deployed 0.077223851 0.102168568 0.755847 0.452077061 -0.126262486 0.280710189
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Table 8.   Statistical Results (Multiple Linear Regression) of Historical Demand 

Data for ALRE (NIIN 013019246) Dependent Variable and Ships’ 

Operational phases Independent Variables 

 

Table 9.   Statistical Results (Multiple Linear Regression) Historical Demand 

Data ALRE (NIIN 013019246) Dependent Variable and Ships’ 

Deployed Operational Status Independent Variables 

 

NIIN 013019246:  DEPLOYMENT + TRAINING + MAINTENANCE

Regression Statistics

Multiple R 0.122111247

R Square 0.014911157

Adjusted R Square -0.025024878

Standard Error 1.429652318

Observations 78

ANOVA

df SS MS F Significance F

Regression 3 2.289436041 0.763145347 0.373375997 0.772442405

Residual 74 151.2490255 2.04390575

Total 77 153.5384615

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 1.245372904 1.6276431 0.76513881 0.446622282 -1.997776767 4.488522575

# of ships deployed -0.143524877 0.267790035 -0.535960486 0.593593242 -0.67710817 0.390058415

# of ships in training -0.056683376 0.201213135 -0.281708132 0.778953621 -0.4576093 0.344242547

# of ships in maintenance 0.058220708 0.210873365 0.276093228 0.783246064 -0.361953643 0.478395059

NIIN 013019246:  DEPLOYED ONLY

Regression Statistics

Multiple R 0.082143841

R Square 0.006747611

Adjusted R Square -0.0063215

Standard Error 1.416549012

Observations 78

ANOVA

df SS MS F Significance F

Regression 1 1.036017746 1.036017746 0.516302209 0.474626651

Residual 76 152.5024438 2.006611103

Total 77 153.5384615

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 1.291300098 0.536973008 2.404776548 0.018616645 0.221825665 2.360774531

# of ships deployed -0.16226784 0.225829391 -0.718541724 0.474626651 -0.612046051 0.287510372
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Table 10.   Statistical Results (Multiple Linear Regression) Historical Demand 

Data ALRE (NIIN 013102990) Dependent Variable Ships’  

Operational phases as Independent Variables 

 

Table 11.   Statistical Results (Multiple Linear Regression Historical Demand Data 

ALRE (NIIN 013102990) as the Dependent Variable and Ships’ 

Deployed Operational Status. 

 

NIIN 013102990:  DEPLOYMENT + TRAINING + MAINTENANCE

Regression Statistics

Multiple R 0.282965006

R Square 0.080069195

Adjusted R Square 0.042774703

Standard Error 0.599099025

Observations 78

ANOVA

df SS MS F Significance F

Regression 3 2.311741366 0.77058 2.146944 0.101516546

Residual 74 26.56005351 0.35892

Total 77 28.87179487

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept -0.804809598 0.682067508 -1.17996 0.241797 -2.163858775 0.554239579

# of ships deployed 0.133612722 0.112218018 1.190653 0.237595 -0.089986559 0.357212003

# of ships in training 0.175880505 0.084318818 2.085899 0.040435 0.007871594 0.343889417

# of ships in maintenance 0.063037933 0.088366959 0.713365 0.477863 -0.113037075 0.239112942

NIIN 013102990:  DEPLOYED ONLY

Regression Statistics

Multiple R 0.077597464

R Square 0.006021366

Adjusted R Square -0.0070573

Standard Error 0.614495377

Observations 78

ANOVA

df SS MS F Significance F

Regression 1 0.173847658 0.173848 0.460396 0.499499852

Residual 76 28.69794721 0.377605

Total 77 28.87179487

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0.105571848 0.232937532 0.45322 0.651682 -0.358363456 0.569507151

# of ships deployed 0.066471163 0.097964218 0.678525 0.4995 -0.128641487 0.261583813
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2. Causal Analysis Results 

After running nearly 400 regression models, the results overwhelmingly displayed 

a lack of significance in the regression. This means that a correlation between ALRE parts 

demand and a ship’s operational phase status could not be quantifiably determined, 

demonstrated, or verified. This result can be observed by looking at tables 4–11 with the 

regression’s statistics illustrating the numerical values of certain significance indicators, 

specifically the coefficient of determination (R square), Significance F, and the p-values. 

The coefficient of multiple determination, also known as “R squared” shows how 

closely data points “fit” along the regression line. It is a value between 0 and 1 that shows 

how strongly the variables are correlated and how much variance among the data is 

explained. Generally speaking, the closer the value is to 1 the better, and anything with R 

square above 50% is deemed favorable since this means at least half of the variance can be 

explained. The typical results from this analysis of parts demand and a ship’s operational 

tempo demonstrated R square values of approximately 2%-6%. These low values indicate 

that operational tempo alone can explain virtually none of the variance in demand data. 

Tables 4–11 demonstrate results that are typical and consistent across all NIINs that 

were examined in this project. The results observed infer that the regression is not overall 

statistically significant and in fact, very little correlation between the dependent variable 

(NIIN demand) and the independent variables (operational phase) appears to exist. The 

model’s overall significance indicator shows this, which is the highlighted value labeled as 

Significance F on the regression results tables.  

The Significance F value shows the p-value of the F test, which indicates whether 

all three independent variables are capable of predicting a correlation with the dependent 

variable. If the overall significance value exceeds the 𝛼 of .05, then the model is not 

effective. This confirms that the multiple linear regression model is not reliable and does 

not show a significant relationship between the variables.  
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Table 12.   Summary of Significance F Values for NIINs in Tables 4–11 

 

 

In this analysis, the null hypothesis assumed that there was no correlation between 

ALRE parts demand and a ship’s operational phase. In order to reject this null hypothesis 

a p-value less than significance level α (.05) is needed. The results of approximately 400 

regression models consistently show p-values for independent variables well above this 

threshold, often generating p-values in excess of .85. This demonstrates that there is a very 

high probability that the p-values’ respective variable (e.g., operational phase) generated 

outputs from the model by random chance. The lack of impact the variables have on one 

another demonstrates that a correlation between ALRE parts demand and a ship’s 

operational cycle was not observed. 

3. Time Series Approach 

A software program called Forecast X was utilized to compute the time series 

forecasts in this project. Forecasting is not an exact science and even an advanced software 

program such as Forecast X is vulnerable to mathematical errors and inherent limitations. 

Despite such challenges associated with forecasting, Forecast X is a powerful tool. The 

needs to input available raw data and the software will determine which forecast method is 

optimal, as well as, necessary variables such as α and β.  

NIIN Independent Variables P -value of F Test Conclusion

012929791 Primary OP phases 0.26 insufficient evidence to reject 

Deployed only 0.05 weak evidence to reject 

012963788 Primary OP phases 0.56 insufficient evidence to reject 

Deployed only 0.45 insufficient evidence to reject 

013019246 Primary OP phases 0.77 insufficient evidence to reject 

Deployed only 0.47 insufficient evidence to reject 

013102990 Primary OP phases 0.10 weak evidence to reject 

Deployed only 0.50 insufficient evidence to reject 

Regression Significance Summary  (α = 0.05)

𝐻𝑜

𝐻𝑜

𝐻𝑜

𝐻𝑜

𝐻𝑜

𝐻𝑜

𝐻𝑜

𝐻𝑜
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a. Simple Exponential Smoothing Forecasting 

Simple exponential smoothing is one of the most commonly used forecasting methods. The 

general concept is that older data is given less priority (weight) and newer data, which is 

seen as more relevant, is given more weight.  

Wilson and Keating explain that “It uses only past values of a time series to 

forecast future values of the same series and is properly employed when 

there is no trend or seasonality present in the data. With exponential 

smoothing, the forecast value at any time is a weighted average of all the 

available previous values; the weights decline geometrically as you go back 

in time”(Wilson & Keating, 1990, pp. 76–77).   

They also state that  

The weights are made to decline geometrically with the age of the 

observation to conform to the argument that the most recent observation 

contain the most relevant information, so they should be accorded 

proportionately more influence than the older observations.  

According to Wilson and Keating, the simple exponential smoothing equation as follows: 

 

𝐹𝑡+1 = 𝛼𝑡𝑋𝑡+1 + (1 − 𝛼𝑡)𝐹𝑡                                                 (7) 

 

where: 

 

Ft+1 = Forecast value for period t + 1 

α = Smoothing constant (0 < α < 1), in practice (0.05 < α < 0.30) 

Xt = Actual value now (in period t) 

Ft = Forecast (i.e., smoothed) value for period t  

 

They also explain that  

the weight of the most recent observation is assigned by multiplying the 

observed value by α (known as alpha), the next most recent observation by 

(1- α), the next observation by (1 − 𝛼)2 α, and so on. The number we 

choose for α is called the smoothing constant. In using this equation the 

forecaster does not need to deal with every actual past value at every step; 
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only the exponentially smoothed value for the last period and the actual 

value for this period are necessary. (Wilson & Keating, 1990, pp. 76–77)  

In addition to simple exponential smoothing, NAVSUP currently sets the initial 

condition for the forecast using a method known as backcasting. It is a term introduced by 

John B. Robinson from the University of Waterloo, denoting a method to analyze future 

options. Dreborg (1996) states:  

The major distinguishing characteristic of backcasting analysis is a concern, 

not with what futures are likely to happen, but with how desirable futures 

can be attained. It is thus explicitly normative, involving working 

backwards from a particular desirable future end-point to the present in 

order to determine the physical feasibility of that future and what policy 

measures would be required to reach that point. (p. 814) 

 Backcasting is a complex method to determine an initial condition of a forecast, but 

it is not necessarily optimal when convolved with simple exponential smoothing. This is 

because of how SES works. Exponential smoothing keeps historical data, but data far in 

the past implicitly has very low weight. This dilution of the forecasts first value makes 

trying to perfect an initial condition several periods ago, inconsequential since it has very 

little impact on the quality of the current forecast. Using the first actual demand data point 

as the initial condition will likely be just as effective. Values from the forecasts are 

maintained up to two decimals without rounding in order to maintain accurate quantitative 

results throughout all time periods examined in the forecast. The final value may be 

rounded at the discretion of the inventory manager’s economic order quantity policy.  
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Table 13.   Simple Exponential Smoothing Forecast with Six Years of Historical 

Demand for NIIN 015504195 (12-Month Forecast) 

DATES 
Demand for NIIN 

015504195 - 
Actual 

Simple Exponential Smoothing 
Forecast using 𝜶 = 0.03 

Jun-12     

Jul-12 1.00 1.05 

Aug-12 3.00 1.05 

Sep-12 0.00 1.10 

Oct-12 1.00 1.07 

Nov-12 2.00 1.07 

Dec-12 0.00 1.09 

Jan-13 0.00 1.06 

Feb-13 0.00 1.03 

Mar-13 0.00 1.01 

Apr-13 0.00 0.98 

May-13 4.00 0.95 

Jun-13 1.00 1.03 

Jul-13 1.00 1.03 

Aug-13 0.00 1.03 

Sep-13 2.00 1.00 

Oct-13 0.00 1.03 

Nov-13 1.00 1.00 

Dec-13 0.00 1.00 

Jan-14 0.00 0.98 

Feb-14 0.00 0.95 

Mar-14 4.00 0.92 

Apr-14 2.00 1.01 

May-14 3.00 1.03 

Jun-14 1.00 1.09 

Jul-14 2.00 1.09 

Aug-14 1.00 1.11 

Sep-14 1.00 1.11 

Oct-14 1.00 1.11 

Nov-14 1.00 1.10 

Dec-14 1.00 1.10 

Jan-15 1.00 1.10 

Feb-15 3.00 1.09 

Mar-15 0.00 1.15 
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DATES 
Demand for NIIN 

015504195 - 
Actual 

Simple Exponential Smoothing 
Forecast using 𝜶 = 0.03 

Apr-15 0.00 1.11 

May-15 0.00 1.08 

Jun-15 0.00 1.05 

Jul-15 4.00 1.03 

Aug-15 0.00 1.11 

Sep-15 2.00 1.08 

Oct-15 2.00 1.10 

Nov-15 4.00 1.13 

Dec-15 5.00 1.21 

Jan-16 1.00 1.31 

Feb-16 4.00 1.30 

Mar-16 0.00 1.37 

Apr-16 0.00 1.34 

May-16 2.00 1.30 

Jun-16 1.00 1.32 

Jul-16 0.00 1.31 

Aug-16 4.00 1.27 

Sep-16 1.00 1.35 

Oct-16 2.00 1.34 

Nov-16 2.00 1.36 

Dec-16 1.00 1.38 

Jan-17 0.00 1.37 

Feb-17 1.00 1.33 

Mar-17 0.00 1.32 

Apr-17 0.00 1.28 

May-17 2.00 1.25 

Jun-17 1.00 1.27 

Jul-17 2.00 1.26 

Aug-17 0.00 1.28 

Sep-17 1.00 1.25 

Oct-17 1.00 1.24 

Nov-17 2.00 1.23 

Dec-17 1.00 1.25 

Jan-18 0.00 1.25 

Feb-18 2.00 1.21 

Mar-18 1.00 1.23 

Apr-18 2.00 1.23 
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DATES 
Demand for NIIN 

015504195 - 
Actual 

Simple Exponential Smoothing 
Forecast using 𝜶 = 0.03 

May-18 2.00 1.25 

Jun-18 2.00 1.27 

Jul-18 2.00 1.29 

Aug-18 1.00 1.31 

Sep-18 1.00 1.30 

Oct-18 0.00 1.29 

Nov-18 0.00 1.26 

Dec-18  1.22 

Jan-19  1.22 

Feb-19  1.22 

Mar-19  1.22 

Apr-19  1.22 

May-19  1.22 

Jun-19  1.22 

Jul-19  1.22 

Aug-19  1.22 

Sep-19  1.22 

Oct-19  1.22 

Nov-19  1.22 

 

Table 14.   NIIN 015504195 Simple Exponential Smoothing Evaluation Results  

AIC 256.80 

RMSE 1.27 

MASE 0.78 
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   Forecast   95% - 5% 95% - 5% 

Date Monthly Quarterly Annual Upper Lower 

Dec-2018 1.22 1.22 1.22 3.25 0.00 

Jan-2019 1.22   3.25 0.00 

Feb-2019 1.22   3.25 0.00 

Mar-2019 1.22 3.67  3.25 0.00 

Apr-2019 1.22   3.25 0.00 

May-2019 1.22   3.25 0.00 

Jun-2019 1.22 3.67  3.25 0.00 

Jul-2019 1.22   3.25 0.00 

Aug-2019 1.22   3.25 0.00 

Sep-2019 1.22 3.67  3.25 0.00 

Oct-2019 1.22   3.25 0.00 

Nov-2019 1.22     3.25 0.00 

Avg 1.22 3.06 1.22 3.25 0.00 

Max 1.22 3.67 1.22 3.25 0.00 

Min 1.22 1.22 1.22 3.25 0.00 

 

 Simple Exponential Smoothing Forecast with Six Years of Historical 

Demand for NIIN 015504195 (12-Month Forecast). 

The chart illustrates the upper (purple) and lower (blue) limits of a forecast with a 

95% confidence interval. The simple exponential smoothing forecast for NIIN 015504195 

is 95% confident that demand for each of the next 12 months will fall between the upper 

and lower limits above. An AIC of 256.58, and an RMSE of 1.26 means it is more accurate 

than the adaptive exponential smoothing forecast, which recorded an AIC, and RMSE of 

274.7, and 1.45, respectively. A MASE of .78 means it performed better than the naïve 

forecast.  



 44 

b. Adaptive Exponential Smoothing Forecast 

Adaptive exponential smoothing is an advanced version of simple exponential 

smoothing. It “is attractive when a great many items have to be forecast. By the term 

“adaptive,” we mean that this method can change the value of an unspecified α on an 

ongoing basis” (Jarrett, 1991, pp. 34–35).  

Adaptive exponential smoothing adjusts the value of α when a change in the basic 

pattern is detected. A different smoothing constant is applied once a change in the basic 

pattern is detected. According to Jarrett, the equation for adaptive exponential smoothing 

is: 

 

𝐹𝑡+1 = 𝛼𝑡𝑋𝑡+1 + (1 − 𝛼𝑡)𝐹𝑡                                                (8) 

 

where: 

 

 𝛼𝑡 = |
𝐸𝑡

𝑀𝑡
|                                                                  (9); 

 

 𝐸𝑡 = 𝛽𝑒𝑡 + (1 − 𝛽)𝐸𝑡−1                                                    (10); 

 

is the smoothed error,  

 

 𝑀𝑡 = 𝛽|𝑒𝑡| + (1 − 𝛽)𝑀𝑡−1                                             (11); 

 

is the absolute smoothed error,  

 

    𝑒𝑡 = 𝑋𝑡 − 𝐹𝑡                                                           (12); 

 

is the error, and  

 

 𝛽 = 0.1 
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Table 15.   Adaptive Exponential Smoothing Forecast with Six Years of Demand 

for NIIN 015504195 (12-Month Forecast) 

DATES 
Demand for NIIN 

015504195 - 
Actual 

Adaptive Exponential Smoothing 

Forecast using 𝜷 = 0.1 

Jun-12     

Jul-12 1.00 1.33 

Aug-12 3.00 1.30 

Sep-12 0.00 3.00 

Oct-12 1.00 0.90 

Nov-12 2.00 0.94 

Dec-12 0.00 1.29 

Jan-13 0.00 1.22 

Feb-13 0.00 0.90 

Mar-13 0.00 0.54 

Apr-13 0.00 0.28 

May-13 4.00 0.13 

Jun-13 1.00 2.24 

Jul-13 1.00 2.14 

Aug-13 0.00 2.08 

Sep-13 2.00 1.74 

Oct-13 0.00 1.82 

Nov-13 1.00 1.30 

Dec-13 0.00 1.18 

Jan-14 0.00 0.68 

Feb-14 0.00 0.35 

Mar-14 4.00 0.17 

Apr-14 2.00 2.24 

May-14 3.00 2.23 

Jun-14 1.00 2.29 

Jul-14 2.00 2.28 

Aug-14 1.00 2.25 

Sep-14 1.00 2.07 

Oct-14 1.00 1.81 

Nov-14 1.00 1.55 

Dec-14 1.00 1.34 

Jan-15 1.00 1.20 

Feb-15 3.00 1.12 

Mar-15 0.00 1.96 
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DATES 
Demand for NIIN 

015504195 - 
Actual 

Adaptive Exponential Smoothing 

Forecast using 𝜷 = 0.1 

Apr-15 0.00 1.65 

May-15 0.00 1.13 

Jun-15 0.00 0.66 

Jul-15 4.00 0.34 

Aug-15 0.00 2.20 

Sep-15 2.00 2.00 

Oct-15 2.00 2.00 

Nov-15 4.00 2.00 

Dec-15 5.00 2.47 

Jan-16 1.00 2.55 

Feb-16 4.00 2.30 

Mar-16 0.00 2.35 

Apr-16 0.00 2.01 

May-16 2.00 1.94 

Jun-16 1.00 1.95 

Jul-16 0.00 1.81 

Aug-16 4.00 1.42 

Sep-16 1.00 2.23 

Oct-16 2.00 2.12 

Nov-16 2.00 2.10 

Dec-16 1.00 2.08 

Jan-17 0.00 1.89 

Feb-17 1.00 1.41 

Mar-17 0.00 1.26 

Apr-17 0.00 0.78 

May-17 2.00 0.43 

Jun-17 1.00 1.19 

Jul-17 2.00 1.14 

Aug-17 0.00 1.40 

Sep-17 1.00 1.12 

Oct-17 1.00 1.08 

Nov-17 2.00 1.06 

Dec-17 1.00 1.35 

Jan-18 0.00 1.29 

Feb-18 2.00 1.01 

Mar-18 1.00 1.34 

Apr-18 2.00 1.27 
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DATES 
Demand for NIIN 

015504195 - 
Actual 

Adaptive Exponential Smoothing 

Forecast using 𝜷 = 0.1 

May-18 2.00 1.43 

Jun-18 2.00 1.49 

Jul-18 2.00 1.51 

Aug-18 1.00 1.53 

Sep-18 1.00 1.48 

Oct-18 0.00 1.47 

Nov-18 0.00 1.39 

Dec-18  1.07 

Jan-19  1.07 

Feb-19  1.07 

Mar-19  1.07 

Apr-19  1.07 

May-19  1.07 

Jun-19  1.07 

Jul-19  1.07 

Aug-19  1.07 

Sep-19  1.07 

Oct-19  1.07 

Nov-19  1.07 

 

Table 16.   NIIN 015504195 Adaptive Exponential Smoothing Evaluation Results  

AIC 274.70 

RMSE 1.42 

MASE 0.89 
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   Forecast   95% - 5% 95% - 5% 

Date Monthly Quarterly Annual Upper Lower 

Dec-2018 1.07 1.07 1.07 3.39 0.00 

Jan-2019 1.07   4.35 0.00 

Feb-2019 1.07   5.08 0.00 

Mar-2019 1.07 3.22  5.70 0.00 

Apr-2019 1.07   6.25 0.00 

May-2019 1.07   6.74 0.00 

Jun-2019 1.07 3.22  7.19 0.00 

Jul-2019 1.07   7.62 0.00 

Aug-2019 1.07   8.01 0.00 

Sep-2019 1.07 3.22  8.39 0.00 

Oct-2019 1.07   8.75 0.00 

Nov-2019 1.07     9.09 0.00 

Avg 1.07 2.69 1.07 6.71 0.00 

Max 1.07 3.22 1.07 9.09 0.00 

Min 1.07 1.07 1.07 3.39 0.00 

 Adaptive Exponential Smoothing Forecast with Six Years of Historical 

Demand for NIIN 015504195 (12-Month Forecast).  

The chart illustrates the upper (purple) and lower (blue) limits of a forecast with a 

95% confidence interval. The adaptive exponential smoothing forecast is 95% confident 

that demand for each of the next 12 months will fall between the upper and lower limits 

above. A MAPE of 52.42%, an AIC of 277.79, and an RMSE of 1.45 means it’s less 
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accurate than the simple exponential smoothing forecast, which recorded a MAPE, AIC, 

and RMSE of 35.91%, 256, and 1.26, respectively. A MASE of .89 means it performed 

better than the naïve forecast.   

c. Holt–Winters Double Exponential Smoothing Forecast 

Charles C. Holt created a “two-parameter exponential smoothing method that is an 

extension of the simple exponential smoothing; it adds a growth factor (or trend factor) to 

the smoothing equation as a way of adjusting for the trend. Three equations and two 

smoothing constants are used in the model” (Wilson & Keating, 1990, pp. 84–85); 

 

    𝑆𝑡+1 = 𝛼𝑋𝑡 + (1 − 𝛼)(𝑆𝑡 + 𝑇𝑡)                                      (13) 

 𝑇𝑡+1 = 𝛽(𝑆𝑡+1 − 𝑆𝑡) + (1 − 𝛽)𝑇𝑡                                          (14) 

 𝐹𝑡+𝑚 = 𝑆𝑡 + 𝑚𝑇𝑡                                                  (15) 

 

where: 

 

𝑆𝑡+1 = Smoothed value for period t + 1 

α = Smoothed constant for the data (0 < α < 1) 

𝑋𝑡= Actual value now (in period t) 

𝐹𝑡 = Forecast (i.e., smoothed) value for time period t (which is also the smoothed  

value for time period t - 1). 

𝑇𝑡 = Trend estimate 

𝛽 = Smoothing constant for the trend estimate (0 < β < 1) 

m = Number of periods ahead to be forecast 

𝐹𝑡+𝑚 = Holt’s forecast value for period t + m  

 

Holt and Peter R. Winters worked to extend Holt’s exponential smoothing method 

to factor in seasonality. This new method was named the Holt–Winters exponential 

smoothing method. The Holt–Winters method “is used for data that exhibit both trend and 

seasonality. An additional equation adjusts the model for the seasonal component” (Wilson 

& Keating, 1990, p. 90). For the purpose of this project, we used a 12-month cycle for 
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seasonality because NAVSUP orders the critical NIINs every fiscal year.  According to 

Wilson and Keating, the exponential smoothing equation is as follows: 

 

 𝐹𝑡 = 𝛼𝑋𝑡 ∕ 𝑆𝑡−𝑝 + (1 − 𝛼)(𝐹𝑡−1 + 𝑇𝑡−1)                                (16)  

 𝑆𝑡 = 𝛽𝑋𝑡 ∕ 𝐹𝑡 + (1 − 𝛽)𝑆𝑡−𝑝                                        (17) 

 𝑇𝑡 = 𝛾(𝐹𝑡 − 𝐹𝑡−1) + (1 − 𝛾)𝑇𝑡−1                                      (18) 

 𝑊𝑡+𝑚 = (𝐹𝑡 + 𝑚𝑇𝑡)𝑆𝑡                                                (19) 

 

where: 

 

𝐹𝑡 = Smoothed value for period t 

α = Smoothing constant for the data (0 < α < 1) 

𝑋𝑡 = Actual value now (in period t) 

𝐹𝑡−1 = Average experience of series smoothed to period t – 1 

𝑇𝑡 = Trend estimate 

𝑆𝑡 = Seasonality estimate 

β = Smoothing constant for seasonality estimate 

γ = Smoothing constant for trend estimate 

m = Number of periods in the forecast lead period 

p = Number of periods in the seasonal cycle 

𝑊𝑡+𝑚 = Holt-Winters’ forecast for m periods into the future 

 

Table 17.   Holt–Winters Exponential Smoothing Forecast with Six Years of 

Historical Demand for NIIN 015504195 (12-Month Forecast) 

DATES 
Demand for NIIN 

015504195 - 
Actual 

Holt–Winters Exponential 

Smoothing Forecast using α 

= 0.12, 𝜷 = 0, and γ = 0  

Jun-12     

Jul-12 1.00 1.80 
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DATES 
Demand for NIIN 

015504195 - 
Actual 

Holt–Winters Exponential 

Smoothing Forecast using α 

= 0.12, 𝜷 = 0, and γ = 0  

Aug-12 3.00 1.20 

Sep-12 0.00 1.07 

Oct-12 1.00 0.57 

Nov-12 2.00 1.01 

Dec-12 0.00 1.10 

Jan-13 0.00 0.17 

Feb-13 0.00 1.74 

Mar-13 0.00 0.95 

Apr-13 0.00 1.29 

May-13 4.00 2.15 

Jun-13 1.00 1.45 

Jul-13 1.00 1.71 

Aug-13 0.00 1.41 

Sep-13 2.00 0.94 

Oct-13 0.00 0.62 

Nov-13 1.00 1.12 

Dec-13 0.00 0.97 

Jan-14 0.00 0.15 

Feb-14 0.00 1.54 

Mar-14 4.00 0.84 

Apr-14 2.00 1.14 

May-14 3.00 2.37 

Jun-14 1.00 1.40 

Jul-14 2.00 1.63 

Aug-14 1.00 1.24 

Sep-14 1.00 1.07 

Oct-14 1.00 0.55 

Nov-14 1.00 1.11 

Dec-14 1.00 0.86 

Jan-15 1.00 0.13 

Feb-15 3.00 1.37 

Mar-15 0.00 1.20 

Apr-15 0.00 1.24 

May-15 0.00 2.44 

Jun-15 0.00 1.35 

Jul-15 4.00 1.67 

Aug-15 0.00 1.22 
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DATES 
Demand for NIIN 

015504195 - 
Actual 

Holt–Winters Exponential 

Smoothing Forecast using α 

= 0.12, 𝜷 = 0, and γ = 0  

Sep-15 2.00 1.06 

Oct-15 2.00 0.60 

Nov-15 4.00 1.10 

Dec-15 5.00 0.88 

Jan-16 1.00 0.23 

Feb-16 4.00 1.55 

Mar-16 0.00 1.07 

Apr-16 0.00 1.10 

May-16 2.00 2.16 

Jun-16 1.00 1.20 

Jul-16 0.00 1.94 

Aug-16 4.00 1.08 

Sep-16 1.00 1.17 

Oct-16 2.00 0.76 

Nov-16 2.00 1.43 

Dec-16 1.00 1.35 

Jan-17 0.00 0.32 

Feb-17 1.00 1.84 

Mar-17 0.00 0.94 

Apr-17 0.00 0.97 

May-17 2.00 2.14 

Jun-17 1.00 1.17 

Jul-17 2.00 1.72 

Aug-17 0.00 1.41 

Sep-17 1.00 1.15 

Oct-17 1.00 0.90 

Nov-17 2.00 1.50 

Dec-17 1.00 1.31 

Jan-18 0.00 0.28 

Feb-18 2.00 1.74 

Mar-18 1.00 0.83 

Apr-18 2.00 0.86 

May-18 2.00 2.12 

Jun-18 2.00 1.15 

Jul-18 2.00 1.75 

Aug-18 1.00 1.25 

Sep-18 1.00 1.13 
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DATES 
Demand for NIIN 

015504195 - 
Actual 

Holt–Winters Exponential 

Smoothing Forecast using α 

= 0.12, 𝜷 = 0, and γ = 0  

Oct-18 0.00 0.92 

Nov-18 0.00 1.55 

Dec-18  1.28 

Jan-19  0.25 

Feb-19  1.77 

Mar-19  0.85 

Apr-19  0.99 

May-19  2.11 

Jun-19  1.25 

Jul-19  1.78 

Aug-19  1.22 

Sep-19  1.12 

Oct-19  0.81 

Nov-19  1.38 

Table 18.   NIIN 015504195 Holt–Winters Exponential Smoothing Evaluation 

Results 

AIC 258.13 

RMSE 1.24 

MASE 0.75 
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   Forecast   95% - 5% 95% - 5% 

Date Monthly Quarterly Annual Upper Lower 

Dec-2018 1.28 1.28 1.28 3.21 0.00 

Jan-2019 0.25   2.27 0.00 

Feb-2019 1.77   3.87 0.00 

Mar-2019 0.85 2.87  3.04 0.00 

Apr-2019 0.99   3.26 0.00 

May-2019 2.11   4.47 0.00 

Jun-2019 1.25 4.35  3.70 0.00 

Jul-2019 1.78   4.31 0.00 

Aug-2019 1.22   3.84 0.00 

Sep-2019 1.12 4.11  3.83 0.00 

Oct-2019 0.81   3.61 0.00 

Nov-2019 1.38     4.27 0.00 

Avg 1.23 3.15 1.28 3.64 0.00 

Max 2.11 4.35 1.28 4.47 0.00 

Min 0.25 1.28 1.28 2.27 0.00 

 Holt–Winters Exponential Smoothing Forecast with Six Years of 

Historical Demand for NIIN 015504195 (12-Month Forecast).  

𝛽 = 0 and γ = 0 because no trends or seasonality were present for the demand of 

NIIN 015504195. The Holt–Winters exponential smoothing forecast is 95% confident that 

demand for each of the next 12 months will fall between the upper and lower limits above. 

An AIC of 256.73 and an RMSE of 1.23 means it is more accurate than the simple 

exponential smoothing forecast, which recorded an AIC and RMSE of 256.58 and 1.26, 

respectively. Also, it is more accurate than the adaptive smoothing forecast, which recorded 

an AIC and RMSE of 256 and 1.26, respectively. A MASE of .78 means it performed better 

than the naïve forecast.  
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d. Box–Jenkins Exponential Smoothing Forecast 

The fourth and final time series analysis forecasting method is the Box–Jenkins 

method.  

In time series analysis, the Box–Jenkins method, named after the George 

Box and Gwilym Jenkins, applies Autoregressive Moving Average (ARMA) or 

Autoregressive Integrated Moving Average (ARIMA) models to find the best fit of 

a time-series model to past values of a time series. (Box–Jenkins method, 2018) 

This method  

is a statistically sophisticated way of analyzing and building a forecasting 

model which best represents a time series. Firstly, it is logically and 

statistically accurate. Secondly, the method extracts a great deal of 

information from the historical time series data. Finally, the method results 

in an increase in forecast accuracy while keeping the number of parameters 

to a minimum in comparison with similar modeling processes. (Jarrett, 

1991, p. 317)  

The Box–Jenkins model is a mixture of the Autoregressive (AR) and Moving 

Average (MA) models. According to Jarrett, a common approach for modeling univariate 

time series is the autoregressive (AR) model: 

 

 Xt = δ+ϕ1Xt−1+ϕ2Xt−2+⋯+ϕpXt−1+At                                            (20) 

where: 

 

Xt is the time series, At is white noise, and 

 

δ = (1−∑ 𝜙𝑖
𝑝
𝑖=1 )μ,                                                (21) 

 

with μ denoting the process mean. 

 

An autoregressive model is simply a linear regression of the current value 

of the series against one or more prior values of the series. The value of p is 

called the order of the AR model. AR models can be analyzed with one of 

various methods, including standard linear least squares techniques. They 

also have a straightforward interpretation. (6.4.4.4. Common Approaches to 

Univariate Time Series, n.d.) 

 

https://en.wikipedia.org/wiki/Time_series_analysis
https://en.wikipedia.org/wiki/George_Box
https://en.wikipedia.org/wiki/George_Box
https://en.wikipedia.org/wiki/Gwilym_Jenkins
https://en.wikipedia.org/wiki/Autoregressive_moving_average
https://en.wikipedia.org/wiki/Time_series
https://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
https://www.itl.nist.gov/div898/handbook/pmd/section4/pmd4.htm
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Jarrett further states “that the second part of the Box–Jenkins is the MA model, 

which is another way of modelling univariate time series models” (p. 317). The equation 

is expressed as: 

Xt=μ + At−θ1At−i−θ2At−2−⋯−θqAt−q                                                (22) 

where:  

 

Xt is the time series, μ is the mean of the series, At−i are white noise terms, 

and θ1,…,θq are the parameters of the model. The value of q is called the 

order of the MA model. That is, a moving average model is conceptually 

a linear regression of the current value of the series against the white noise 

or random shocks of one or more prior values of the series. The random 

shocks at each point are assumed to come from the same distribution, 

typically a normal distribution, with location at zero and constant scale. The 

distinction in this model is that these random shocks are propagated to 

future values of the time series. Fitting the MA estimates is more 

complicated than with AR models because the error terms are not 

observable. This means that iterative non-linear fitting procedures need to 

be used in place of linear least squares. MA models also have a less obvious 

interpretation than AR models. (6.4.4.4. Common Approaches to Univariate 

Time Series, n.d.) 

 

According to Jarrett, the Box–Jenkins method equation is expressed as: 

 

Xt = δ + ϕ1Xt−1 + ϕ2Xt−2 +⋯+ ϕpXt−p + At−θ1At−1−θ2At−2−⋯−θqAt−q, (23) 

where the terms in the equation have the same meaning as given for the AR and MA model. 

 

Table 19.   Box–Jenkins Exponential Smoothing Forecast with Six Years of 

Historical Demand for NIIN 015504195 (12-Month Forecast) 

DATES 
Demand for NIIN 

015504195 - 
Actual 

Box–Jenkins Exponential 
Smoothing Forecast  

Jun-12     

Jul-12 1.00 1.25 

Aug-12 3.00 1.24 

Sep-12 0.00 1.27 

Oct-12 1.00 1.23 

https://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
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DATES 
Demand for NIIN 

015504195 - 
Actual 

Box–Jenkins Exponential 
Smoothing Forecast  

Nov-12 2.00 1.24 

Dec-12 0.00 1.26 

Jan-13 0.00 1.23 

Feb-13 0.00 1.23 

Mar-13 0.00 1.23 

Apr-13 0.00 1.23 

May-13 4.00 1.23 

Jun-13 1.00 1.29 

Jul-13 1.00 1.24 

Aug-13 0.00 1.24 

Sep-13 2.00 1.23 

Oct-13 0.00 1.26 

Nov-13 1.00 1.23 

Dec-13 0.00 1.24 

Jan-14 0.00 1.23 

Feb-14 0.00 1.23 

Mar-14 4.00 1.23 

Apr-14 2.00 1.29 

May-14 3.00 1.26 

Jun-14 1.00 1.27 

Jul-14 2.00 1.24 

Aug-14 1.00 1.26 

Sep-14 1.00 1.24 

Oct-14 1.00 1.24 

Nov-14 1.00 1.24 

Dec-14 1.00 1.24 

Jan-15 1.00 1.24 

Feb-15 3.00 1.24 

Mar-15 0.00 1.27 

Apr-15 0.00 1.23 

May-15 0.00 1.23 

Jun-15 0.00 1.23 

Jul-15 4.00 1.23 

Aug-15 0.00 1.29 

Sep-15 2.00 1.23 

Oct-15 2.00 1.26 

Nov-15 4.00 1.26 
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DATES 
Demand for NIIN 

015504195 - 
Actual 

Box–Jenkins Exponential 
Smoothing Forecast  

Dec-15 5.00 1.29 

Jan-16 1.00 1.31 

Feb-16 4.00 1.24 

Mar-16 0.00 1.29 

Apr-16 0.00 1.23 

May-16 2.00 1.23 

Jun-16 1.00 1.26 

Jul-16 0.00 1.24 

Aug-16 4.00 1.23 

Sep-16 1.00 1.29 

Oct-16 2.00 1.24 

Nov-16 2.00 1.26 

Dec-16 1.00 1.26 

Jan-17 0.00 1.24 

Feb-17 1.00 1.23 

Mar-17 0.00 1.24 

Apr-17 0.00 1.23 

May-17 2.00 1.23 

Jun-17 1.00 1.26 

Jul-17 2.00 1.24 

Aug-17 0.00 1.26 

Sep-17 1.00 1.23 

Oct-17 1.00 1.24 

Nov-17 2.00 1.24 

Dec-17 1.00 1.26 

Jan-18 0.00 1.24 

Feb-18 2.00 1.23 

Mar-18 1.00 1.26 

Apr-18 2.00 1.24 

May-18 2.00 1.26 

Jun-18 2.00 1.26 

Jul-18 2.00 1.26 

Aug-18 1.00 1.26 

Sep-18 1.00 1.24 

Oct-18 0.00 1.24 

Nov-18 0.00 1.23 

Dec-18  1.23 
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DATES 
Demand for NIIN 

015504195 - 
Actual 

Box–Jenkins Exponential 
Smoothing Forecast  

Jan-19  1.25 

Feb-19  1.25 

Mar-19  1.25 

Apr-19  1.25 

May-19  1.25 

Jun-19  1.25 

Jul-19  1.25 

Aug-19  1.25 

Sep-19  1.25 

Oct-19  1.25 

Nov-19  1.25 

 

Table 20.   NIIN 015504195 Box–Jenkins Exponential Smoothing Evaluation 

Results 

AIC 256.86 

RMSE 1.25 

MASE 0.80 
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   Forecast   95% - 5% 95% - 5% 

Date Monthly Quarterly Annual Upper Lower 

Dec-2018 1.23 1.23 1.23 3.30 0.00 

Jan-2019 1.25   4.17 0.00 

Feb-2019 1.25   4.83 0.00 

Mar-2019 1.25 3.74  5.39 0.00 

Apr-2019 1.25   5.88 0.00 

May-2019 1.25   6.32 0.00 

Jun-2019 1.25 3.74  6.72 0.00 

Jul-2019 1.25   7.10 0.00 

Aug-2019 1.25   7.46 0.00 

Sep-2019 1.25 3.74  7.79 0.00 

Oct-2019 1.25   8.11 0.00 

Nov-2019 1.25     8.42 0.00 

Avg 1.24 3.11 1.23 6.29 0.00 

Max 1.25 3.74 1.23 8.42 0.00 

Min 1.23 1.23 1.23 3.30 0.00 

 Box–Jenkins Exponential Smoothing Forecast with Six Years of 

Historical Demand for NIIN 015504195 (12-Month Forecast). 

The Box–Jenkins exponential smoothing forecast is 95% confident that demand for 

each of the next 12 months will fall between the upper and lower limits above. An AIC of 

262.25, and an RMSE of 1.29 means it is more accurate than the adaptive exponential 

smoothing forecast, which recorded an AIC, and RMSE of 277.79, and 1.45, respectively. 

Box–Jenkins generated more erroneous RMSE and AIC values than both forecasts. A 

MASE of .80 means it performed better than the naïve forecast.    

0
1
2
3
4
5
6
7
8
9

Ju
l-

1
2

O
ct

-1
2

Ja
n

-1
3

A
p

r-
1

3

Ju
l-

1
3

O
ct

-1
3

Ja
n

-1
4

A
p

r-
1

4

Ju
l-

1
4

O
ct

-1
4

Ja
n

-1
5

A
p

r-
1

5

Ju
l-

1
5

O
ct

-1
5

Ja
n

-1
6

A
p

r-
1

6

Ju
l-

1
6

O
ct

-1
6

Ja
n

-1
7

A
p

r-
1

7

Ju
l-

1
7

O
ct

-1
7

Ja
n

-1
8

A
p

r-
1

8

Ju
l-

1
8

O
ct

-1
8

Ja
n

-1
9

A
p

r-
1

9

Ju
l-

1
9

O
ct

-1
9

Demand for NIN 015504195

Demand for NIN 015504195 Forecast of Demand for NIN 015504195

Fitted Values Upper

Lower



 61 

4. Time Series Analysis Forecasting Results 

The historical demand data set that we used for generating the forecasts ranged 

from April 2012 to September 2018. This project compares actual demand from June 2016 

to September 2018 against all the four different forecasts generated. In addition, it 

evaluated the accuracy of four forecasting methods by using the RMSE, AIC, and MASE. 

Table 21.   RMSE Values for Time Series Forecasts 

 

 

We see that the four methods have a RMSE less than 7.79, which is acceptable even 

though a RMSE as close to zero as possible is preferred. The Holt–Winters model recorded 

the lowest RMSE for six of the 10 NIINs. This means it performed better than the other 

three methods according to the RMSE criteria.  
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Table 22.   Respective AIC Values 

 

 

We see that the four methods have an AIC error less than 325.04, which is very 

high. The Holt–Winters model recorded the lowest AIC error for five of the 10 NIINs. This 

means it performed better than the other three methods according to the AIC criteria.  

Table 23.   Respective MASE Values 

 
 

We see that the four methods have a MASE less than 1.06. The four methods 

performed better than the naïve forecast for nine out of the 10 NIINs evaluated. Of the four 
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time series models used in this the project, the Holt–Winters model recorded the lowest 

MASE scores for eight out of the 10 NIINs evaluated.  
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IV. FINDINGS AND RECOMMENDATIONS 

A. FINDINGS 

While many of our findings throughout this research are detailed at the point of 

discussion, the major findings of our research regarding demand and OPTEMPO 

correlation and forecasting accuracy are summarized here for ease of access. 

After conducting detailed analysis of the results from both the causal and time series 

analysis forecasting, the results demonstrated that there is not a significant relationship 

between ALRE parts demand and ship OPTEMPO. However, a more robust forecasting 

method was identified. 

1. No Relationship between ALRE Demand and Ship OPTEMPO  

The initial motivation behind this project was the hypothesis that an essential 

association existed that was a significant driver of demand for ALRE components among 

the Navy’s air capable ships. This driver was thought to be the ship’s operational tempo. 

Six years of demand data was consolidated with ten CVN operational schedules to build 

and a run a causal forecasting model. Multiple linear regression analysis was used to see if 

a correlation between the two variables existed. The end result of approximately 400 

regression models demonstrated that this was not the case and that virtually no measureable 

correlation between parts demand and a ship’s operational tempo could be observed. 

Since a causal forecast method proved to be ineffective, this project then proceeded 

to run the demand data through a gamut of time series models. The goal was to see if any 

other forecast models could provide better results than the simple exponential smoothing 

method that NAVSUP WSS is currently using. The results were then evaluated by multiple 

error determination evaluation methods. The results were encouraging. 

2. Holt–Winters Forecasting Model Outperforms Simple Exponential 

Smoothing Model 

Low-demand items are notoriously difficult to forecast, but the testing and 

subsequent comparison of multiple forecasting models revealed an opportunity for 
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improvement. The Holt–Winters exponential smoothing method outperformed the simple, 

adaptive, and Box–Jenkins exponential smoothing methods during the RMSE, AIC, and 

MASE evaluations.  

It is noteworthy to realize that the results varied from NIIN to NIIN with no 

discernable reason as to why or how. The efficacy of the forecast accuracy also depended 

on which evaluation method was used. This shows that flexibility in terms of inventory 

management methods and protocols may need to be incorporated into current business 

practices. 

B. RECOMMENDATIONS 

As we have demonstrated, the Holt–Winters forecasting model outperforms 

NAVSUP’s current forecasting model (simple exponential smoothing) on average. The 

complexity of producing precise demand forecasts for such a low demand as ALRE, does 

not suffice for utilizing only one analytical forecasting type. NAVSUP could benefit from 

more flexibility in its forecasting. Inventory managers and decision makers can adopt a 

best-fit forecast system for their ALRE NIINs. The NIINs can be grouped by best-fit 

forecasts once those forecasts are identified.  

Beyond the scope of ALRE components, it is recommended that NAVSUP adjust 

which forecast models are used based on demand similarities among NIINs. In the short 

term, in order to efficiently use time and resources, it is suggested that NAVSUP prioritize 

which NIINs to evaluate and test by the same ABC method used in this project. The top 

10% NIINs with the highest budget consumption could be examined to see if any demand 

patterns exist among them and test those NIINs using different forecast models to identify 

a more optimal method. 

C. LIMITATIONS  

Data collection for this research was limited to the data provided by NAVSUP 

WSS. Although the sample size was large, the actual demand data for a majority of the 

NIINs across the six-year period observed were extremely low with high variability. Also, 
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of the 100 critical NIINs, only 55 had historical demand from the 10 CVNs, which limited 

the forecasting evaluation. 

D. FUTURE STUDIES  

The current levels of demand for ALRE components are extremely low and erratic 

among the Navy’s 10 aircraft carriers. It is unlikely that this data is completely accurate, 

which degrades the efficacy of any forecasting model. Future research is recommended to 

assess the validity of demand data extracted through the Navy’s ERP software system as 

well as data reporting accuracy from the CVNs themselves. Standard practices by the end 

users in the fleet are not always adhered to. This is typically in reaction to long lead times 

and insufficient fill rates. Maintenance personnel may carry unreported safety stock to 

buffer against this often unavailability of parts, which obfuscates demand signals and may 

obscure other correlations as well. This project recommends that the informal inventory 

control policies and actual inventory management practices among the CVN maintenance 

and supply departments be examined. 

In addition to researching demand signal accuracy across the fleet, it is also 

recommended that NAVSUP examine the viability of modifying current demand forecast 

processes for all NIINs, not just critical ALRE components. It may be beneficial to identify 

and group NIINs together based on demand similarities and utilize the most appropriate 

forecast for that particular group of NIINs. Parts with extremely low and sporadic demand 

quantities for example, may be forecasted more accurately with Holt–Winters or simple 

exponential smoothing forecast models as opposed to Box–Jenkins. Future studies where 

this hypothesis is put to the test could prove extremely useful and directly applicable to 

improving the U.S. Navy’s inventory management program. 
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