

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

MECHATRONICS: THE DEVELOPMENT, ANALYSIS,
AND GROUND-BASED DEMONSTRATIONS OF

ROBOTIC SPACECRAFT HOPPING WITH A
MANIPULATOR

by

Justin L. Komma

December 2018

Thesis Advisor: Marcello Romano
Second Reader: Josep Virgili-Llop (contractor)

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 December 2018 3. REPORT TYPE AND DATES COVERED
 Master's thesis

 4. TITLE AND SUBTITLE
MECHATRONICS: THE DEVELOPMENT, ANALYSIS, AND
GROUND-BASED DEMONSTRATIONS OF ROBOTIC SPACECRAFT
HOPPING WITH A MANIPULATOR

 5. FUNDING NUMBERS

 6. AUTHOR(S) Justin L. Komma

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 Astrobee is a robot designed by Intelligent Robotics Group at NASA Ames Research Center to operate
inside of the International Space Station (ISS). The robot has a manipulator that is made up of various
mechanical, electronic, and control systems. The designed purpose of the manipulator is to perch Astrobee
in an effort to minimize power consumption. The study of grasping dynamics and hopping will lead to more
efficient maneuvers that would not require propellant. Can the current Astrobee manipulator perform a
propellantless maneuver by using its manipulator?
 This thesis reports the construction, design, integration, and testing of a robotic manipulator. A replica
model of NASA’s Astrobee manipulator, with 3 degrees of freedom (3-DOF), was constructed at the
Spacecraft Research Laboratory (SRL) of Naval Postgraduate School (NPS) using commercial off-the-shelf
(COTS) avionics. The control principle of the manipulator was correspondingly developed. Using the
Python scripts, the user can easily interact and control the manipulator. Purposely developed test beds
enabled to measure the maximum linear force required to remove the manipulator from a perched rail and
determine the gripper slip angle of the manipulator from a three-dimensional (3D) printed ISS rail. We
found that Astrobee’s manipulator can perform propellantless maneuvers by tossing itself from one ISS rail
to another ISS rail.

 14. SUBJECT TERMS
spacecraft, robotics, dynamics, multi-body mechanics, manipulators, and mechatronics 15. NUMBER OF

PAGES
 123
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

MECHATRONICS: THE DEVELOPMENT, ANALYSIS, AND GROUND-BASED
DEMONSTRATIONS OF ROBOTIC SPACECRAFT HOPPING WITH A

MANIPULATOR

Justin L. Komma
Lieutenant, United States Navy

BSEE, University of North Florida, 2010

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ASTRONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2018

Approved by: Marcello Romano
 Advisor

 Josep Virgili-Llop
 Second Reader

 Garth V. Hobson
 Chair, Department of Mechanical and Aerospace Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 Astrobee is a robot designed by Intelligent Robotics Group at NASA Ames

Research Center to operate inside of the International Space Station (ISS). The robot has

a manipulator that is made up of various mechanical, electronic, and control systems. The

designed purpose of the manipulator is to perch Astrobee in an effort to minimize power

consumption. The study of grasping dynamics and hopping will lead to more efficient

maneuvers that would not require propellant. Can the current Astrobee manipulator

perform a propellantless maneuver by using its manipulator?

 This thesis reports the construction, design, integration, and testing of a robotic

manipulator. A replica model of NASA’s Astrobee manipulator, with 3 degrees of

freedom (3-DOF), was constructed at the Spacecraft Research Laboratory (SRL) of Naval

Postgraduate School (NPS) using commercial off-the-shelf (COTS) avionics. The control

principle of the manipulator was correspondingly developed. Using the Python scripts,

the user can easily interact and control the manipulator. Purposely developed test beds

enabled to measure the maximum linear force required to remove the manipulator from a

perched rail and determine the gripper slip angle of the manipulator from a

three-dimensional (3D) printed ISS rail. We found that Astrobee’s manipulator can

perform propellantless maneuvers by tossing itself from one ISS rail to another ISS rail.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MECHATRONICS AND MANIPULATORS ..1

1. The First Manipulators ...2
2. State of the Art Manipulators in Space..4

B. RESEARCH MOTIVATION ...9
C. RESEARCH OBJECTIVES ...9
D. THESIS ORGANIZATION ..10

II. DEVELOPMENT OF THE MANIPULATOR...11
A. OVERVIEW ...11
B. HARDWARE ...14

1. Raspberry Pi ...15
2. Motor Driver and Motor ...17
3. Servo ..18
4. Load Cell ...18

C. SOFTWARE ...19
1. Siemens NX12 ...19
2. Python ...19
3. MATLAB ..20

D. COMMISSIONING OF THE MANIPULATOR20
1. 3D printing ..20
2. Range of Motion ...22
3. Operational Testing ...24

III. GRIPPER FORCE TESTING ..27
A. OVERVIEW ...27
B. LINEAR EXPERIMENTS ..27

1. Linear Test Bed Development ...27
2. Mounting the Load Cell...29
3. Test Bed Assembly ...32

C. PROCEDURE ..34
1. Setting Up and Testing the Test Bed ..34
2. Data Collection ...35

D. FORCE RESULTS ..36
E. CONCLUSIONS ..40

IV. SELF-TOSS TESTING ...43

 viii

A. OVERVIEW ...43
B. SELF-TOSS EXPERIMENTS ..44

1. Hardware ..44
2. Integration with Fourth Generation Floating Spacecraft

Simulator ..45
3. Rail Integration with POSEIDYN ..47
4. Vicon Motion Capture ...48

C. PROCEDURE ..49
1. Setting Up the Test Bed ...49
2. Data Collection ...54

D. RELEASE RESULTS ..55
E. CONCLUSIONS ..62

V. CONCLUSION ..63
A. SUMMARY OF WORK..63
B. LIST OF ACCOMPLISHMENTS ...63
C. FUTURE WORK ...64
D. RESEARCH SIGNIFICANCE ...65

APPENDIX A. PYTHON CODE ...67

APPENDIX B. MATLAB CODE ...75

APPENDIX C. LINEAR TEST RESULTS ...77

APPENDIX D. SELF-TOSS RESULTS ..93

LIST OF REFERENCES ..99

INITIAL DISTRIBUTION LIST ...103

 ix

LIST OF FIGURES

Figure 1. Mechatronics Multidisciplinary Engineering. Source: [1].1

Figure 2. Unimate. Source: [8]. ...2

Figure 3. Rancho Arm. Source: [9]. ..3

Figure 4. PUMA. Source: [11]. ...3

Figure 5. SCARA. Source: [12]. ...4

Figure 6. SRMS on the Space Shuttle. Source: [14]. ..4

Figure 7. SSRMS, SPDM, and MBS. Adapted from [15], [16].5

Figure 8. ETS-VII. Source: [18]. ...6

Figure 9. NASA’s Curiosity with JPL Manipulator. Source: [19].6

Figure 10. Manisat Hopping on POSEIDYN. Adapted from [21].7

Figure 11. Astrobee. Source: [22]. ..8

Figure 12. Astrobee Pan Range (-90° to 90°). Source: [23]. ...8

Figure 13. Astrobee Tilt Angles (-30° to 90°). Source: [23]. ..9

Figure 14. Robotic Manipulator Joints and Links ...11

Figure 15. Robotic Manipulator Actual Joints and Links ...12

Figure 16. Joint 1 (1-DOF) ..13

Figure 17. Joint 2 (1-DOF) ..13

Figure 18. The Newly Developed NPS Manipulator Replica of the Astrobee
Perching Arm ...14

Figure 19. Wiring Diagram of Manipulator ..15

Figure 20. Raspberry Pi 3 B. Source: [24]. ...16

Figure 21. RS485 USB Adapter. Source: [25]. ...16

Figure 22. Pololu Motor (Left) Motor and Magnetic Encoder (Right). Source:
[26]. ..17

 x

Figure 23. Pololu Motor Driver for Raspberry Pi. Source: [27].17

Figure 24. Dynamixel XH430-W210R Servo. Source: [28].18

Figure 25. ATI Nano43 Sensor. Source: [29]. ..18

Figure 26. Siemens NX12 CAD Software ..19

Figure 27. NPS Manipulator 3D Printed ...20

Figure 28. Gripper Distal Links ..21

Figure 29. NPS 3D Printed Manipulator ...21

Figure 30. Gripper Tendon and Spring Locations. Source: [23].22

Figure 31. Gripper Motor Modification ..23

Figure 32. Gripper Opened ..23

Figure 33. Range of Motion of Joint 1. ...24

Figure 34. Manipulator Operational Testing ...25

Figure 35. Linear Test Overview ..27

Figure 36. Initial Linear Test Bed Concept ...28

Figure 37. Linear Test Bed Rail System ...29

Figure 38. NX12 Rail (top) / Rail Adapter (bottom) ...30

Figure 39. NX12 Sensor Adapters. Tool Side Adapter (top) / Mounting Side
Adapter (bottom) ..31

Figure 40. Sensor Adapters Mounted to Sensor and Rail ...32

Figure 41. Command and Control of the Test Bed ...33

Figure 42. Actual Test Bed ..34

Figure 43. 15 Samples on Linear Test Bed ...36

Figure 44. Gripper Building Force Linearly ...37

Figure 45. Gripper Max Force Achieved ..37

Figure 46. Gripper Proximal Pads Are Removed ..38

 xi

Figure 47. Gripper Distal Contact ...38

Figure 48. Gripper Fingertip Grip Final ..39

Figure 49. Gripper Single Distal Link Release ...39

Figure 50. Gripper with Distal Links in Contact with the Rail40

Figure 51. POSEIDYN Test Bed ..43

Figure 52. SRL FSS...44

Figure 53. FSS Adapter Location ..45

Figure 54. Previous FSS Adapter Plate ...46

Figure 55. Manipulator Assembly Adapter to FSS ...46

Figure 56. Manipulator Mounted to FSS ..47

Figure 57. ISS Rail Mounting Location ..48

Figure 58. Vicon and POSEIDYN Test Bed. Source: [20]. ..49

Figure 59. FSS Power and Air Bearing Switches ...50

Figure 60. ATI Sensor Analysis. Source: [34]. ...51

Figure 61. POSEIDYN Test Bed ..52

Figure 62. Gripper Starting Location ..53

Figure 63. Joints Position over Time, Manipulator Opening56

Figure 64. Self-Toss Right (Opening) of FSS on POSEIDYN57

Figure 65. Self-Toss Left (Closing) of FSS on POSEIDYN58

Figure 66. Orientation of FSS over Time, Manipulator Opening59

Figure 67. Release to Left, Manipulator Closing ..60

Figure 68. Gripper Slip Angle Demonstration ..61

Figure 69. Gripper Slip Angle, Self-Toss Right ..62

Figure 70. Linear Force Data Sample 1 ..77

Figure 71. Linear Torque Data Sample 1 ..77

 xii

Figure 72. Linear Force Data Sample 2 ..78

Figure 73. Linear Torque Data Sample 2 ..78

Figure 74. Linear Force Data Sample 3 ..79

Figure 75. Linear Torque Data Sample 3 ..79

Figure 76. Linear Force Data Sample 4 ..80

Figure 77. Linear Torque Data Sample 4 ..80

Figure 78. Linear Force Data Sample 5 ..81

Figure 79. Linear Torque Data Sample 5 ..81

Figure 80. Linear Force Data Sample 6 ..82

Figure 81. Linear Torque Data Sample 6 ..82

Figure 82. Linear Force Data Sample 7 ..83

Figure 83. Linear Torque Data Sample 7 ..83

Figure 84. Linear Force Data Sample 8 ..84

Figure 85. Linear Torque Data Sample 8 ..84

Figure 86. Linear Force Data Sample 9 ..85

Figure 87. Linear Torque Data Sample 9 ..85

Figure 88. Linear Force Data Sample 10 ..86

Figure 89. Linear Torque Data Sample 10 ..86

Figure 90. Linear Force Data Sample 11 ..87

Figure 91. Linear Torque Data Sample 11 ..87

Figure 92. Linear Force Data Sample 12 ..88

Figure 93. Linear Torque Data Sample 12 ..88

Figure 94. Linear Force Data Sample 13 ..89

Figure 95. Linear Torque Data Sample 13 ..89

Figure 96. Linear Force Data Sample 14 ..90

 xiii

Figure 97. Linear Torque Data Sample 14 ..90

Figure 98. Linear Force Data Sample 15 ..91

Figure 99. Linear Torque Data Sample 15 ..91

Figure 100. Self-Toss Slip Angle Sample 1 ..93

Figure 101. Self-Toss Slip Angle Sample 2 ..93

Figure 102. Self-Toss Slip Angle Sample 3 ..94

Figure 103. Self-Toss Slip Angle Sample 4 ..94

Figure 104. Self-Toss Slip Angle Sample 5 ..95

Figure 105. Self-Toss Slip Angle Sample 6 ..95

Figure 106. Self-Toss Slip Angle Sample 7 ..96

Figure 107. Self-Toss Slip Angle Sample 8 ..96

Figure 108. Self-Toss Slip Angle Sample 9 ..97

Figure 109. Self-Toss Slip Angle Sample 10 ..97

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

CAD computer aided design
CAM computer aided modeling
CSA Canadian Space Agency
COTS commercial-off-the-shelf
DOF degrees of freedom
ETS-VII Engineering Test Satellite No. 7
FSS Floating Spacecraft Simulator
ISS International Space Station
IVA inter-vehicle activity
JPL Jet Propulsion Laboratory
LAN local area network
MATLAB Matric Laboratory
MBS Mobile Remote Servicer Base System
MSS Mobile Serving System
NASA National Aeronautical and Space Administration
NASDA National Space Development Agency of Japan
NPS Naval Postgraduate School
POSEIDYN Proximity Operation of Spacecraft: Experimental Hardware-In-the-

Loop Dynamic Simulator
PUMA programmable universal manipulator for assembly
SCARA Selective Compliance Assembly Robot Arm
SPDM Special Purpose Dexterous Manipulator
SRL Spacecraft Robotics Laboratory
SSAG Space Systems Academic Group
SSRMS Space Station Remote Manipulator System
UDP User Datagram Protocol

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

There are many people to thank when one completes a 27-month program covering

multidisciplinary subjects like mechanical engineering, electronics, computer engineering,

systems engineering, control engineering, telecommunications engineering, and robotics.

First, to Dr. Marcello Romano, my advisor: Thank you for your oversight and

guidance throughout the thesis process. I appreciate all of the work you have done over the

years to develop a state-of-the-art research facility in which all of us can become competent

engineers that are capable of so much more that the average graduate student.

Second, to my second reader, Dr. Josep Virgili-Llop, who was always the smartest

person in the room: I appreciate your patience not only with me but also with everyone that

comes to you for guidance. You always have a way of describing the most complicated

ideas so all of us can understand and apply your wisdom.

 Third, I would like to thank everyone in the Space Systems Academic Group

including my classmates in the Astronautical Engineering curriculum. Every day I was

surrounded by people who wanted and demanded more from me even when I thought I had

nothing left; I thank you.

Importantly, I would like to thank my family: without you, none of this would be

worth it. I am sorry for all of the hours this has taken from you all and hope that the process

will lead to a future of adventures we all will remember.

Most importantly, to my wife who enables all of what I do to come to fruition: You

push me to be a better man at everything I do. Thank you.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MECHATRONICS AND MANIPULATORS

Mechatronics, the interdisciplinary study of control systems, electronic systems,

mechanical systems, and computers (see Figure 1) is a rapidly growing field as the world

continues to move towards production automation. Robotics and automated controls are

the key buzzwords within the mechatronics field, and robotic arms are known as

manipulators. The use of manipulators in space is not new, the ability to collect samples

and conduct experiments that may otherwise be impossible by any other means is crucial.

The problem with the utilization of spacecraft to gather scientific data is it requires some

form of propellant to maneuver the spacecraft; however, this thesis considers robotic

hopping, a propellantless maneuver where a manipulator can throw a spacecraft from one

location to another, thus saving propellant. Incredibly expensive and a limited on-board

resource, propellant restricts how much a spacecraft can maneuver. The contact dynamics

of manipulators on spacecraft is an active research field and minimum data is available.

Overall, the thesis examines whether one specific manipulator, the Astrobee manipulator,

can conduct a hopping maneuver within the International Space System. The following

sections detail the history of state-of-the-art manipulators.

Figure 1. Mechatronics Multidisciplinary Engineering. Source: [1].

 2

Mechatronics is a term that originated with Tetsura Mori in Japan. He was a senior

engineer at Yaskawa Electric Corporation who specialized in building mechanical factory

equipment. In 1969, he was working on mechanical systems that were slowly being

integrated with electronics. He felt that an understanding of both disciplines was uniquely

required to be successful at this type of manufacturing [2]. Currently, to be competent at

mechatronic engineering, one would need to be proficient at electronic engineering,

mechanical engineering, materials science, computer science, systems, control

engineering, optical engineering, robotics, Computer Aided Design (CAD), Computer

Aided Modeling (CAM), and programming languages [3].

1. The First Manipulators

The first robotic manipulator, called the Unimate was built and sold to General

Motors. George Devol in 1954, designed what he called “A Programmed Article Transfer”

[4], produced as the Unimate. Devol’s patented idea was implemented during the industrial

age with partnership of Joseph Engelberger, [5], [6], [7], (see Figure 2).

Figure 2. Unimate. Source: [8].

The first computer-controlled manipulator, the Rancho Arm, was acquired by

Stanford University in 1963. This 6 degree of freedom (6-DOF) manipulator was

developed at Rancho Los Amigos Hospital in Downey, California [5], [6], [7]. The concept

of degrees of freedom in a manipulator is further discussed in Chapter II. This was the first

 3

manipulator created in effort to assist handicapped individuals and duplicate normal arm

function, (see Figure 3).

Figure 3. Rancho Arm. Source: [9].

The Rancho Arm led to the development of many manipulators, but one of

particular importance is the programmable universal manipulator for assembly (PUMA).

Victor Scheinman, while at Stanford University, developed the Stanford Arm, which was

sold to Unimate, which developed the PUMA with assistance from General Motors [5],

[6], [7], (see Figure 4), PUMA arms led to the development of first manipulators used in

surgery [10].

Figure 4. PUMA. Source: [11].

 4

The first pick and place parts manipulator, the Selective Compliance Assembly

Robot Arm (SCARA), developed in late 1970s by Hiroshi Makino at Yamanashi

University in Japan. The simplicity of its design allowed for quick manipulator to move

production items [5], [6], [7], (see Figure 5).

Figure 5. SCARA. Source: [12].

2. State of the Art Manipulators in Space

The use of manipulators has proven to be remarkably fruitful for terrestrial

applications, and more recently have also found uses in space. The first manipulator to be

used in space the Shuttle Remote Manipulator System (SRMS), or Canadarm, was

designed by the Canadian Space Agency (CSA), it operated from 1981 until 2011. The

Canadarm had a length of 15.2 m, a diameter of 38 cm, and a 6-DOF [13], (see Figure 6).

Figure 6. SRMS on the Space Shuttle. Source: [14].

 5

The next generation Canadarm2, designed by CSA, has been in operation since

2001. The Canadarm2 is part of a larger system, the Mobile Serving System (MSS). The

MSS composed of three components: Space Station Remote Manipulator System

(SSRMS), known as Canadarm2, the Mobile Remote Servicer Base System (MBS), and

the Special Purpose Dexterous Manipulator (SPDM). The SSRMS is a 17 m long

manipulator with 7-DOF. Attached to the end of the SSRMS is the SPDM called Dextre,

which is 3.7 m tall, each of its two arms are 3.5 m long, and each have 7-DOF [15], [16],

(see Figure 7).

Figure 7. SSRMS, SPDM, and MBS. Adapted from [15], [16].

Another early example of the use of manipulators in space, the Engineering Test

Satellite number 7 (ETS-VII) was designed by the National Space Development Agency

of Japan (NASDA), (see Figure 8) [17]. The ETS-VII operated from 1997–2002 and was

equipped with a 2 m long manipulator to grab a smaller satellite that was launch with it.

 6

Figure 8. ETS-VII. Source: [18].

Robotic manipulators have also been used in planetary exploration, enabling fixed

landers and rovers to collect and analyze ground samples. A whole set of Mars explorers

have been equipped with manipulators, from the pair of long-lived Mars Exploration Rover

Spirt and Opportunity, the Phoenix Mars Lander, the 1-ton Curiosity rover, to the recently

landed InSight lander.

Curiosity, built by NASA’s Jet Propulsion Laboratory (JPL) Robotics, is the most

complex and capable manipulator ever sent to another planetary surface, enabling sample

acquisition, processing, and delivery, as well as contact science operations. The

manipulator is a 5-DOF manipulator supporting a 30 kg payload mounted at the end of the

arm [19], (see Figure 9).

Figure 9. NASA’s Curiosity with JPL Manipulator. Source: [19].

 7

a. Manipulators at NPS Spacecraft Robotics Laboratory

Researchers at the Naval Postgraduate School (NPS) have access to a large granite

table. This table and its related navigation and spacecraft simulation equipment is known

as Proximity Operation of Spacecraft: Experimental hardware-In-the-loop Dynamic

Simulator (POSEIDYN). This is a large square granite table is 16 m2 in area that allows

planar motion to simulate a zero-gravity environment for dynamic experimental testing of

spacecraft dynamics [20]. The Spacecraft Robotics Laboratory (SRL) is on their fifth

version of the Floating Spacecraft Simulator (FSS). These FSS ride on air bearings that

allow the FSS to float on a thin film of air on top of the POSEIDYN granite. The idea of

manipulators providing a method of maneuverability is not new for NPS. The dual

manipulator was used by a previous NPS Master’s thesis student, Andrew Bradstreet [21].

He explored the idea of hopping from one rail to another with the SRL test bed

POSEIDYN. Manisat was the first to demonstrate a no propellant maneuver a spacecraft

here at NPS [21]. This type of maneuver will be referred to as propellantless. For spacecraft

to create a movement from one position to another without the use of propellant would be

a propellantless maneuver, (see Figure 10) for the hopping maneuver.

Figure 10. Manisat Hopping on POSEIDYN. Adapted from [21].

b. Astrobee Manipulator

In this thesis, I focus on one manipulator. Astrobee’s manipulator is of current

interest. Astrobee is a Free-Flying robot design to operate in the International Space Station

(ISS). There will be three of these robots in the ISS. Astrobee is a cube 32 cm x 32 cm x

32 cm. It will fly autonomously throughout the ISS interior. Using a battery-operated

impeller propulsion system. The purpose of Astrobee is to observe the astronauts, relay

 8

live information back to the ground station at NASA and manipulate objects on the station.

Each Astrobee has six cameras and one manipulator [22], (see Figure 11).

Figure 11. Astrobee. Source: [22].

Each Astrobee has a 3-DOF manipulator that allows it to perch on a rail so that it

can save power and easily observe astronaut tasks. Astrobee’s manipulator has a limited

range of motion [23]. For Astrobee’s pan range (see Figure 12), and for the tilt angles (see

Figure 13).

Figure 12. Astrobee Pan Range (-90° to 90°). Source: [23].

 9

Figure 13. Astrobee Tilt Angles (-30° to 90°). Source: [23].

B. RESEARCH MOTIVATION

The Astrobee manipulator has potential to do more than the designed purpose of

perching. Can the manipulator be used to toss Astrobee from one rail to another? To answer

that question, we need: to conduct testing on a replica manipulator and to determine the

gripper’s release forces. The gripper must be able to hold the rail through the intended

maneuver; if the force is too low, the maneuver would not be possible. If the gripper can

hold, would the maneuver be repeatable, with which accuracy? This required the

manipulator to be mounted in a way similar to how it currently is mounted on Astrobee.

Once the manipulator is mounted, testing can be conducted on using the manipulator to

hop or self-toss from the rail. This hopping maneuver determined that the release of the

gripper is clean and that the maneuver can be repeated. NASA Ames and NPS agreed that

this partnership would lead to useful data about Astrobee’s capabilities.

C. RESEARCH OBJECTIVES

After conducting research on manipulators and their versatility in particular to

space and throughout the DoD, building a manipulator was the next step. The design,

development, and construction of a manipulator would be the first step to understand

Astrobee’s manipulator and its functionality.

Once built, the release force needed to be tested in a linear test bed. In order to

achieve any type of propellantless maneuver, the maximum release force must be known.

 10

The current simulated force is 0.5 N. This assumption has been made by the NPS SRL.

Because no linear test bed was available, one was designed for this project. With the known

release force, a verification of the simulation could be made.

Knowing that the hopping maneuver is possible, a demonstration is required to

simulate the zero-gravity environment on the POSEIDYN test bed. In these experiments,

the manipulator can be used to launch one of the FSS. This hypothesis provides a proof of

concept for the hopping maneuver through a verification test.

After all of the data is gathered, an evaluation of the manipulator was conducted

and the results were analyzed.

D. THESIS ORGANIZATION

This thesis is organized as follows: Chapter II describes the design, development,

and construction of the NPS manipulator including DOF to better understand how the

manipulator functions. Chapter III explains how the linear test bed was developed and the

experimental results of the gripper release. Chapter IV explains the POSEIDYN test bed

and the experimental results of the self-toss maneuver while Chapter V gives concluding

remarks.

 11

II. DEVELOPMENT OF THE MANIPULATOR

A. OVERVIEW

This chapter discusses how the manipulator was built. Astrobee’s manipulator is

quite unique. This manipulator is designed to perch Astrobee to a rail allowing it to observe

the astronauts as they work in the International Space Station (ISS). With assistance from

NASA, the development of an Astrobee manipulator replica for NPS began. The hardware

and software used to create and control the manipulator is covered in this chapter. The end

result was for NPS to conduct simulations, experiments, and demonstrations on this

manipulator in an effort to prove that the simulated maneuvers are plausible.

A manipulator is a Multibody (MB) system which refers to a collection of bodies

coupled by joints. The bodies are referred to as links and will be considered rigid bodies

for this thesis. The MB systems are the bases of how a manipulator is constructed. A joint

is connect to a link. Generally, joint 0 is the joint at which the base or link 0 is attached.

From this point, link 0 will be only referred to as the base and joint 0 is not be discussed as

it is only the method of how the base is attached to each of the test beds that are developed.

The final link of the manipulator is called an end effector, link 2 would be the end effector.

(See Figure 14) for an overview of the joints and links involved in this thesis.

Figure 14. Robotic Manipulator Joints and Links

 12

In actuality, this manipulator has 7 joints and 7 links, (see Figure 15). Joints 3–7

and links 3–7 are all controlled by one gripper motor. The joints and links all move in

relation to the gripper motor as they are all connected by a tendon. The gripper motors

speed and direction are controllable and open and close the gripper. The gripper motor is

physically located inside of link 2. To remove any confusion, joints 3–7 and links 3–7 will

no longer be discussed in this thesis. The end effector is known as the gripper and will be

analyzed as one link, seen inside of the red circle, (see Figure 15).

Figure 15. Robotic Manipulator Actual Joints and Links

The manipulator is a 3 Degree of Freedom (3-DOF) robotic arm. 3-DOF means that

the device can angularly move at three different unique joints. Joint 1 and joint 2 have 180

degrees of available rotation. The rotation is accomplished by the joints and in this case

revolute joints. The gripper also has 1-DOF which is associated to the gripper motor inside

of link 2. Section D.2 discusses more detail on the functionality and interconnection of the

gripper. Joint 1 allows rotation of all the attached links and joints to rotate about that axis

in that plane defined at Joint 1, (see Figure 16). The red arrow displays the directions of

rotation. Notice how the rest of the manipulator remains ridged as Joint 1 rotates about its

axis of rotation.

 13

Figure 16. Joint 1 (1-DOF)

Joint 2 allows rotation of all the attached links and joints following it to rotate about

this new axis in that plane defined at Joint 2, (see Figure 17). Unlike Joint 1 where the

entire manipulator rotates, Joint 2 only allows the gripper to rotate.

Figure 17. Joint 2 (1-DOF)

The axis of rotation of Joint 2 is perpendicular to Joint 1, (see Figure 17). This can

be seen in more detail in actual manipulator, (see Figure 18). The third and final degree of

freedom is the gripper. It can open and close given the manipulator’s 3-DOF. From this

point on, the three degrees of motion will be at Joint 1, Joint 2 and the Gripper.

 14

Figure 18. The Newly Developed NPS Manipulator Replica of the Astrobee
Perching Arm

B. HARDWARE

To build the manipulator some hardware was acquired to provide control and

functionality desired. The avionics on Astrobee are complex and expensive as it needs to

survive the launch environment and the ISS environment. Custom made avionics allow the

servos in Astrobee to be controlled with simple off the shelve items. The substitutions

allowed for cost effective control required to operate the manipulator. The Raspberry Pi,

Pololu motor driver, and an RS485 adapter allowed for custom avionics to control the

servos and gripper motor, (see Figure 19). The following section discusses the individual

hardware used in the building of the manipulator.

 15

Figure 19. Wiring Diagram of Manipulator

1. Raspberry Pi

The Raspberry Pi 3 model B was chosen to be the controller for the manipulator.

One key feature is the wireless Local Area Network (LAN) connectivity. The controller

was formatted with the recommended Raspbian operating system to work with the Ubuntu

operating system running on the Ground Station Computer (GSC). The Raspberry Pi was

chosen because of the availability of free code and the available tutorials. There are many

resources for connecting servos to a Raspberry Pi, making it a popular choice for off-the-

shelf controllers. The Raspberry Pi can understand multiple coding languages, but the

developers recommend Python [24]. All programing with the Raspberry Pi is in Python,

(see Figure 20) for the Raspberry Pi 3 B.

 16

Figure 20. Raspberry Pi 3 B. Source: [24].

The Raspberry Pi needed an RS485 USB adapter to create a serial communication

path to the servo, (see Figure 21). The RS485 USB adapter can be connected to any of the

four available USB ports on the Raspberry Pi. All that is needed once connected is to

connect the servos to the D- and D+, further discussed in the commissioning of NPS’s

newest manipulator.

Figure 21. RS485 USB Adapter. Source: [25].

 17

2. Motor Driver and Motor

The manipulator has a Pololu 12 V motor to control the opening and closing of the

gripper. The Pololu 12 V motor will be referred to as the gripper motor, (see Figure 22

(left)). For the motor to function and be controlled it must be connected to a magnetic

encoder, (see Figure 22 (right)).

Figure 22. Pololu Motor (Left) Motor and Magnetic Encoder (Right). Source:
[26].

 The encoder is soldered to the motor driver, and a magnet is attached to the smaller

shaft outside of the encoder. The encoder is connected to the motor driver. The motor driver

controls the bidirectional brushed DC motor. The motor driver was ordered partially

assembled, (see Figure 23 (Left)). The motor driver is also from Pololu and is designed to

stack on top of the Raspberry Pi [27], (see Figure 23 (right)).

Figure 23. Pololu Motor Driver for Raspberry Pi. Source: [27].

 18

3. Servo

The servos that are used in the Astrobee manipulator are the Dynamixel XH430-

W210R. These are the same servos that are used in the NPS replica. Both servos are

connected to the RS485 asynchronous serial communication port. This allows for the

Raspberry Pi to control each of the servos independently [28], (see Figure 24).

Figure 24. Dynamixel XH430-W210R Servo. Source: [28].

4. Load Cell

To test all of the forces felt at the gripper a 6-axis load cell is utilized. The ATI

nano43 sensor is used throughout the experiments. The sensor can read forces in the X, Y,

and Z axes (up to 36N). The forces are referred to as Fx, Fy, and Fz. The sensor can read

torques seen about the X, Y, and Z axes (up to 500N·mm) [29], referred to as Tx, Ty, and

Tz from this point on, (see Figure 25) for the sensor.

Figure 25. ATI Nano43 Sensor. Source: [29].

 19

C. SOFTWARE

1. Siemens NX12

 To design parts to be 3D printed a Computer Aided Design (CAD) tool was

selected. Siemens is the developer of NX12. Siemens has developed many extension free

tutorials to help better understand some of the capabilities of their tools. NX is the software

that has been used throughout the 591 curricula here at NPS. (See Figure 26) for examples

of parts designed for this project in NX12.

Figure 26. Siemens NX12 CAD Software

Siemens software allows users to design parts, and save those parts as stereo

lithography files or STL file that are easily understood by most 3D printers. STL is the

current standard for saving files that contain data about shapes in 3 dimensions. “The first

3D printer was invented by Chuck Hull in 1987 at 3D systems. The same person was behind

the STL file format” [30]. The file describes the surface geometry of the part so that it can

be recreated by a 3D printer.

2. Python

 The programing language recommended by Raspberry Pi developers is python.

Python is an object-oriented, high-level programming language [31]. There is an extensive

library that is supported free of charge for many operations systems. Python has been the

programing language of choice for the 591 curricula at NPS and works well with Linux

based systems such as Ubuntu. Ubuntu is the operating system used on the GSC.

 20

3. MATLAB

To capture and analyze the data from the experiments Matrix Laboratory

(MATLAB) was used. “MATLAB is a programming platform designed specifically for

engineers and scientists. The heart of MATLAB is the MATLAB language, a matrix-based

language allowing the most natural expression of computational mathematics” [32].

MATLAB is the tool of choice for the 591 curricula at NPS for analyzing data, performing

numerical simulations, creating graphs, and plotting results.

D. COMMISSIONING OF THE MANIPULATOR

1. 3D printing

The first step in assembly was retrieving CAD files of the individual pieces. Each

CAD file was imported to NX12 and then converted to STL files to be sent to the 3D

printer. The NPS Space Systems Academic Group (SSAG) has access to several 3D

printers. The model Stratasys Fortus 400mc 3D printer was utilized for all 3D printing in

this thesis. The Stratasys Fortus 400mc 3D printer prints the desired pieces in

polycarbonate which is known for its impact strength and durability [33]. The pieces to the

NPS manipulator are intricate, (see Figure 27). Notice the build-up material on the 3D

printed parts, (see Figure 27 (left)). This is used to strength the piece as it is printed until it

can cool and harden. This build-up material must be broken off after it is printed, (see

Figure 27 (right)).

Figure 27. NPS Manipulator 3D Printed

 21

The gripper does have some unique aspects to the fingers of the gripper. There are

a proximal and distal links. The proximal links are identical for each finger. The distal links

are different. This is to allow the gripper to close over itself which creates a grasping quality

to the gripper. One of the distal links has a single fingertip, the other has a double fingertip.

They will be referred to as single distal and double distal links in this thesis. On the left

side of the gripper is the double distal link, the single distal link is seen on the right, (see

Figure 28).

Figure 28. Gripper Distal Links

The final 3D printed manipulator, (see Figure 29).

Figure 29. NPS 3D Printed Manipulator

 22

2. Range of Motion

The gripper opens with the use of a gripper motor and tendon system through the

gripper links. The gripper motor spins creating tension in the tendons which cause the

grippers fingers to open. Each location of a joint in the gripper contains torsional springs.

The torsional springs provide joint flexion to keep the gripper closed. The gripper closes

using the same gripper motor and tendon system but now with assistance from the torsional

springs. This is gripper’s natural position. The tendons, seen in green, travel from the

gripper motor through the proximal links and distal links to the fingertips, where the tendon

is tied off. The torsional springs, seen in blue, are placed at the joints, (see Figure 30).

Figure 30. Gripper Tendon and Spring Locations. Source: [23].

 For the NPS gripper motor there was a modification to the design. During initial

testing and setup, it was found that the tendons would wrap around each other causing each

finger to move in an unsymmetrical pattern. Sometimes they would work correctly, but

every so often, it would bind up at the gripper motor shaft. One time it cut or broke the

tendon. This was a time-consuming incident as the tendons needed to be completely

rerouted again. This is not desirable; the placement of a screw and separator solved this

issue. The placement of this screw and separator created a distance between the two

 23

tendons allowing for two separate location to wind up the tendon. The unsymmetrical

finger-opening pattern and tendon breaking issues were resolved with this modification,

(see Figure 31). NASA Ames Astrobee has not had any issue of this type. NPS’s

manipulator may have had sharp edges on the shaft of the gripper motor from when the

shaft was drilled to insert the tendon. The shaft was sanded smooth to remove any sharp

edges, no future tendon issues would be found.

Figure 31. Gripper Motor Modification

 Each of the proximal gripper links can open 45 degrees. This creates a 90-degree

opening between the two-gripper fingers, (see Figure 32). When the gripper is fully open,

the double and single distal links go just beyond parallel to one another.

Figure 32. Gripper Opened

 24

Joint 1 and Joint 2 has been restricted to 180 degrees of rotation to avoid any

possible collisions with other components. Both joints have the ability to move a larger

range of motion but are not required for this thesis. Joint 1 is set to -90 degrees or open,

(See Figure 33 (left)). Joint 1 set at 0 degrees, which stands straight up or perpendicular to

the open or closed position, (see Figure 33 (center)). Joint 1 is set to 90 degrees the

manipulator is completely closed, this is called home position, (see Figure 33 (right)). This

is the full range of motion of Joint 1, (see Figure 33).

Figure 33. Range of Motion of Joint 1.

3. Operational Testing

a. Servos

Once the manipulator had been assembled the operational testing begun. Using an

incremental approach in testing one item at a time would be energized and tested. First

controlling of the servos needed to be tested. Starting with Joint 1, the addressing on each

servo needed to be defined individually before the two servos could be connected in series.

Joint 1, in the code proximal, was set to address 1. Using code that was provided by

Dynamixel some modification was made to work for this manipulator. To make

modification all that was needed was to add whatever control address from Dynamixel

 25

product manual [34]. Once an address is created, setting changes can be made as required.

The same process was used for Joint 2. The code created is called:

RA_Constants.py

b. Gripper Motor

The gripper motor was controlled form the same Python program as Joint 1 and

Joint 2. The gripper only needed torque to be adjusted down and the gripper open and close

times were set. The opening and closing time were set to approximately 2 seconds. The

gripper setting was added to the RA_Constants.py file. A new file was created:

RA_Functions.py

This program sets up all the communication ports, sets up the servos, provides goal

locations, reads the present position of the servos, starts the timer, and set the home

position. All operations require the following that RA_Constants.py and RA_Functions.py

are available, (see Figure 34). These two programs are imported to the final program, which

performs whatever task is required of the manipulator, (see Appendix A. Python Code).

Several programs have been created to use this manipulator but to narrow the code to two

programs that were used heavily in this thesis are:

test_90.py - This program was used to test the linear forces.

self_toss.py - This program was used to test the self-toss maneuver.

Figure 34. Manipulator Operational Testing

 26

THIS PAGE INTENTIONALLY LEFT BLANK

 27

III. GRIPPER FORCE TESTING

A. OVERVIEW

What are the max forces that can be applied before the gripper can no longer hold

onto a rail to which it is perched to? The concern with testing the hopping maneuver is

whether it could be conducted on the ISS. To measure this force a test setup analogous to

a tensile strength test is used. The manipulator, with the gripper grasping the handrail is

subjected to a controlled displacement, forcing the gripper to fail and release the handrail.

The forces applied to the handrail are measured with a load cell and thus the max force that

the gripper is capable to hold is empirically determined.

This chapter describes how the test bed was developed and the adapters that needed

to be designed to hold the rail and sensor all while mounting them to the test bed. Then a

procedure of how to set up the test bed and how the data was collected is set. Finally,

conclusions are made on the results of the linear testing.

B. LINEAR EXPERIMENTS

1. Linear Test Bed Development

Testing of the gripper force required a test bed to be developed to control the motion

of the manipulator along a single axis. A high-level view of what the linear test bed needs

to achieve, (see Figure 35).

Figure 35. Linear Test Overview

 28

The problem statement here is how to control a 3-DOF manipulator in a single axis

with constant velocity and at a speed that would be experienced during the hopping

maneuver. A device needed to be designed that would limit the manipulator to a single axis

of motion. An adapter was designed to mount the manipulator and slide along two rails that

restrict the base to only move along the ± X-axis. The adapter base sled and setup

fundamental was developed, (see Figure 36). The design used a stepper motor mounted to

a lead screw that would control the movement of the adapter base sled. Due to fiscal

limitation during the design phase, a more resourceful test bed needed to be developed.

Figure 36. Initial Linear Test Bed Concept

Using the same concepts as the initial linear test bed, a wooden plate with two

polished aluminum rails was mounted parallel to one another to create the same restricted

motion in the Y-axis. To control the motion of the sled in the X-axis, an additional gripper

motor was installed with a pulley attached to the sled. Thus, allowing the manipulator to

be pulled with a constant velocity in the + X-axis. (See Figure 37), the long polish rail

system allows the sled to slide along the X-axis, on the right is the sensor adapter mounting

location, in the center the adapter base sled. The adapter base sled can be seen attached to

the tendon cord which feeds through the pulley to the gripper motor. As the gripper motor

 29

rotates, it winds up the tendon which pulls the sled via the pulley system. With the addition

of the aluminum rails and a constant voltage of 2 V at 150 mA applied to the motor, a

constant velocity in the X-axis can be reiterated.

Figure 37. Linear Test Bed Rail System

2. Mounting the Load Cell

Mounting the load cell sensor took some design work to create two sensor adapter

plates and one rail adapter. The rail adapter needed to securely hold the rail throughout all

testing. Using the NX12 software to design the adapters allowed for a polycarbonate

material to be 3D printed. A12 mm deep hole was designed so that the rail could fit inside

the hole and mount to the rail adapter. Also, a large screw was placed through the bottom

surface of the rail adapter to keep the rail in place. The ISS rail which is 30.5 cm long and

fits into the rail adapter, rail (see Figure 38 (top)), rail adapter (see Figure 38 (bottom)).

 30

Figure 38. NX12 Rail (top) / Rail Adapter (bottom)

The sensor requires two adapters. One adapter is on the tool side of the sensor and

the other is on the mounting side of the sensor. The tool side adapter to the sensor, (see

Figure 39 (top)). The mounting side adapter for the sensor, (see Figure 39 (bottom)).

 31

Figure 39. NX12 Sensor Adapters. Tool Side Adapter (top) / Mounting Side
Adapter (bottom)

Once all of the adapters were 3D printed, the sensor could be mounted to the test

bed. The overall view of the sensor mounted to the adapters, (see Figure 40). On the top of

this figure, you can see the rail adapter holding the ISS rail replica. Below that is the tool

 32

side adapter that mounts to the tool side of the sensor and the rail adapter. The next layer

down, the nano43 sensor is seen with the umbilical cord coming out of it. Finally, the

mounting side adapter is mounted to the mounting side of the sensor and the bottom plate

of the test bed.

Figure 40. Sensor Adapters Mounted to Sensor and Rail

3. Test Bed Assembly

To put the test bed together the following diagram can be used to recreate the

interconnecting elements of the test bed. (See Figure 41) for the command and control of

the test bed. The ground station computer controls the manipulator and supplies 5 V via

the USB cable to the Raspberry Pi 3. The two servos are powered by a power supply

regulated to 12 V at 1.3 A. Another power supply powers the gripper motor to 2 V at 150

mA. The sensor is attached to the data acquisition device (1001 DAQ) connected to a PCI

port on the rear of the computer tower. The computer recorded the data in matrix files in

MATLAB.

 33

Figure 41. Command and Control of the Test Bed

The motion of the manipulator in the + X-axis is approximately 75 mm. To initiate

the +X direction, the power supply to the gripper motor must be energized. When power is

applied, the motor spins and slowly wind up the tendon. Thus, the pulley system begins to

pull the sled holding the Raspberry Pi, motor driver, and manipulator at a constant velocity.

The gripper releases from the rail over a period of 12 seconds. The gripper needs to be

removed slowly for a reason: by minimizing the transient and dynamic effects on the

manipulator, a static loading effect is analyzed. The intended hopping maneuver is

expected to be slow and controlled. The slow transition between grip surfaces could reveal

critical information that may be useful to future real-world testing in the ISS. (See Figure

42) for the actual test bed that was used for this experiment.

 34

Figure 42. Actual Test Bed

The red arrow shows the direction of travel of the adapter base sled towards the

pulley, (see Figure 42). After the data is collected through the sensor, it is processed at the

data collection computer.

C. PROCEDURE

1. Setting Up and Testing the Test Bed

Before the test bed can be energized, confirm that the power supplies are outputting

the required voltage and current so no damage may happen to the equipment or test bed.

The servo power supply should be set to 12 V at 1.3 A, while the gripper motor supply is

set to 2 V at 150 mA. Once the power levels have been set and confirmed, ensure that the

power supplies power on the required devices.

To begin the experiment, the Ground Station Computer which contains the python

script to control the manipulator and communicates to the Raspberry Pi must be turn on. A

terminal window is used to remotely login into Raspberry Pi via the Wi-Fi router. A static

IP address is assigned in the router settings. For this test, 192.168.0.105 was assigned to

the Raspberry Pi. Once logged on as root into the Raspberry Pi the python file needs to be

loaded. The following command was used to load the file:

 35

scp test_90.py pi@192.168.0.105

To run the test, the file test_90.py was developed and used, (see Appendix A.

Python Code). Once logged into the Raspberry Pi and the script is loaded into memory all

that is needed is to run the script. In Linux, to run the python script the following command

was used:

sudo python test_90.py

The code opens the gripper and places it on the rail and then closes the gripper

throughout the test for 30 seconds. Once the timer has completed the gripper opens and

return to home position when complete.

The manipulator and gripper can now be commanded via the onboard Raspberry Pi

and capture data from the sensor. The data is saved as a .mat file for future analysis.

2. Data Collection

Once the manipulator has been set up, the test bed is ready to begin collecting data,

(see Appendix B. MATLAB Code). The first step in collecting samples is to run the

MATLAB file named:

Test_loading_Justin.m

 Once the file is run, the bias will be set, a read out will display “Bias Set.” Which

is seen in the command window. The commanded window will display “Paused waiting

for manipulator…10 seconds.” This is to provide time to move to the ground station

computer and run the python script:

sudo python test_90.py

This script moved the manipulator and gripper into place for the data collections.

Next, the power supply of the gripper motor should be prepared to be energized. After the

“Reading forces…” is displayed in the MATLAB command window. When the sensor is

reading, energize the gripper motor to pull the gripper from the rail. The removal of the

gripper takes approximately 12 seconds and the sensor recorded data for 15 seconds to

capture all the data for that test sample.

 36

D. FORCE RESULTS

Every data sample collected contains 1200 points of data over all 6 axes of the

sensor. The first three columns of data are the forces Fx, Fy, and Fz. The next three columns

are the torques Tx, Ty, and Tz. There were a total of 15 samples collected and analyzed.

The individual results (see Appendix C. Linear Test Results). The 15 samples were plotted

together and the mean of those samples was found, (see Figure 43). The individual samples

can be seen in gray with the mean in black. To remove the disparity of the samples not

always being started and sampled at the exact same time, the MATLAB code shifts all the

data to the first point where the force goes above 0.2 N. This lined up the data to provide a

much more expressive mean line.

Figure 43. 15 Samples on Linear Test Bed

(From Figure 43), it can be seen when following the mean line from 0 - 2.3 seconds

that the force increases in a quasi-linear way. During this time, the gripper is building force

as it is pulled from the rail. The proximal and distal gripper links are pulled open increasing

the torque on the torsion springs in those joints. There is also contact dynamics from the

 37

foam pads on all four surfaces of the gripper’s links. One pad for each of the two proximal

links and one on each of the two distal links, (see Figure 44).

Figure 44. Gripper Building Force Linearly

During the testing, from 2.3 - 4.3 seconds, the springs and foam pads exert a

maximum combined force on the rail as the proximal link begins to side off at 4.295 N,

(see Figure 45) for max force.

Figure 45. Gripper Max Force Achieved

 38

The testing from 4.3 - 6.3 seconds, the proximal link pads are sliding off until they

are removed at 6.3 seconds, (see Figure 46) for the proximal pads release.

Figure 46. Gripper Proximal Pads Are Removed

At this time, the force rapidly drops to 1.5 N and the distal pads are the only thing

in contact with the rail from 6.3–8 seconds. At first, the entire surface area of the distal link

is felt and decreases rapidly as the surface area in contact with the rail is reduced, (see

Figure 47) for the transition from distal link pad to distal link fingertip.

Figure 47. Gripper Distal Contact

 39

The testing from 8 -10 seconds once the gripper transitioned to a distal link fingertip

grip it holds a constant 1.5 N, (see Figure 48) for the fingertip release near the end of

holding the rail.

Figure 48. Gripper Fingertip Grip Final

The testing after 10 seconds the single distal link begins to slip off the rail followed

by the double distal link at 11 seconds, (see Figure 49) for the single distal release.

Figure 49. Gripper Single Distal Link Release

 40

The vibrations that are seen beyond 10 seconds are from the double distal link

remaining in contact for a fraction of a second longer than the single distal link, (see Figure

50).

Figure 50. Gripper with Distal Links in Contact with the Rail

E. CONCLUSIONS

The linear testing is how the forces were determined that were needed to release

the gripper from the handrail. The question was answered, “What are the max forces that

can be applied before the gripper can no longer hold onto a rail to which it is perched to?”

Through the analysis, it was found that the maximum mean grip force that can be imposed

to the rail is 4.295 N. The maximum force felt from all 15 sample experiments was 4.453

N. To perform the propellantless maneuver an assumption of 0.5 N was made and applied

to the simulations [35]. Alsup’s assumptions were conservative and her maneuver has an

order of magnitude larger capability. Further analysis should be conducted on an actual

 41

ISS rail. The 3D printed rail in the test may provide different release forces than what will

be felt on the actual ISS handrails.

A secondary observation from this experiment is that the distal fingers do not

release at the same time when removed from the rail. This induced vibrations into the rail

when they sequentially slide off the rail, first the single distal link followed by the double

distal link. Originally, it was thought that both of the distal links would act in a mirrored

structure to the rail. Even though this data point may help other research, it does not affect

the planed propellantless maneuver, since the gripper will self-toss away from the rail. The

timing of the gripper’s links opening and clearing the rail are not a concern as the self-toss

maneuver is demonstration in Chapter IV.

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

IV. SELF-TOSS TESTING

A. OVERVIEW

The chapter answers the research question, “Can a clean release from the rail be

achieved during a self-tossing maneuver of Astrobee?” The timing to open the gripper is

crucial. For the propellantless maneuver to be successful it must be determined if the

gripper opens at the expected time. For the self-toss to be successful, it must be conducted

without interference from the gripper’s links. Any contact on the rail after the release has

been made will induce unpredicted results. Testing the release of the gripper required a test

bed. Utilizing the POSEIDYN test bed and the FSS is how the experiments are performed,

(see Figure 51). The manipulator was mounted to the FSS and the ISS rail was mounted to

the test bed. Code was written to have the manipulator toss the FSS in a planar motion so

that the manipulator would be in a simulated zero gravity environment. A procedure of

how to set up the test bed and how the data was collected is covered in this chapter.

Figure 51. POSEIDYN Test Bed

 44

This chapter will also answer, “Is the maneuver repeatable?” How well can the

manipulator recreate the intended motion is of importance. When a maneuver is

commanded, it will be expected to release at a precise time and self-toss in a predetermined

direction. Also, while conducting this experiment some other interesting results about the

gripper were found and are discussed in this chapter.

B. SELF-TOSS EXPERIMENTS

1. Hardware

The SRL group at Professor Romano’s lab has developed the POSEIDYN test bed

that was discussed in chapter one. This simulator can simulate a planar motion that

represents the weightlessness condition that would be felt on Astrobee throughout the

maneuver. The manipulator must be mounted parallel to the granite floor so that the

intended maneuver can be replicated as close as possible. There are three FSS in the SRL.

FSS # 2 was selected to adapt the manipulator to, (see Figure 52). To do this the adapter

needed to hold the manipulator, the motor drivers and the Raspberry Pi. Also, power would

need to be provided from the FSS #2. The power requirements to run the servos and gripper

motor are 12 V at 1.3 A and 5 V USB to power the Raspberry Pi.

Figure 52. SRL FSS

 45

2. Integration with Fourth Generation Floating Spacecraft Simulator

The FSS has been utilized for past experiments and currently has a mounting

location to mount the current manipulator, (see Figure 52) and (see Figure 53). At the

bottom edge of the FSS, a circular mounting location can be seen which is similar to the

mounting location of the manipulator. The adapter needed to match the mounting holes

that were available on the spacecraft.

Figure 53. FSS Adapter Location

One previous Master’s student [21], designed an adapter for his manipulator to

mount to the 4th generation FSS, (see Figure 54). This is one adapter with two views from

the left and from the right. The plate has 5 screw holes that allow the adapter to be firmly

attached to the FSS. This adapter provided the ability to mount another adapter to it by

sliding it over the gray portion of the figure.

 46

Figure 54. Previous FSS Adapter Plate

The manipulator side adapter was modified to hold the current smaller manipulator

assembly. The design was a slide on style that would make it easy to attach and remove the

assembly in the future. The sliding connection point was too close in tolerance to be

removed after it was place on the mount. To make the mount easier to remove a Dremel

was used to remove some of the 3D material. The adapter holds the manipulator assembly

and can easily be removed for troubleshooting and future adaptability. (See Figure 55) for

the new adapter to the FSS. The light blue portion, (see Figure 55) slides over the gray

portion, (see Figure 54). As seen in the previous figures, this is one adapter with two views.

The adapter has two separate compartments. The closest compartment to the adapter slide

plate is where the Raspberry Pi assembly is placed. The open compartment farthest from

the adapter slide plate is where the manipulator is mounted.

Figure 55. Manipulator Assembly Adapter to FSS

 47

The adapter is designed to hold the manipulator out away from the FSS to allow a

minimum unobstructed 180 degrees of motions. The manipulator needed to have freedom

of movement in both the XY plane and the distal joint servo needed to also have a minimum

unobstructed 180 degrees of motion. This led to the final solution, (see Figure 56). This

figure displays the mounting from the left and right sides of the manipulator. The only

requirement the manipulator needed from the FSS is the 5 V USB input and 12 V to power

the servos and gripper motor. Luckily the FSS already had both of these power sources

available and only a harness needed to be made to connect the 12 V power supply to the

manipulator.

Figure 56. Manipulator Mounted to FSS

3. Rail Integration with POSEIDYN

The next step is to mount ISS rail replica to the POSEIDYN test bed. The rail needs

to be mounted parallel to the granite table so that the maneuver simulates the environment

 48

that Astrobee will be in while on the ISS. The adapter to mount to the linear test bed was

originally design to meet the mounting needs of both the linear test bed and POSEIDYN

test bed, (see Figure 57). The rail is mounted to the test bed with four M3 x 40 mm bolts.

To reduce the chance of the rail loosing throughout the testing a large M4 x 50 mm bolt

with lock washers and a nut were placed through the center of the mount.

Figure 57. ISS Rail Mounting Location

4. Vicon Motion Capture

Once the manipulator has been mounted onto the FSS and the rail has been mounted

to the POSEIDYN test bed, a new positioning system was utilized to track the position of

the FSS on the test bed. The motion caption system in called Vicon and it uses 10 infrared

cameras, a server, and proprietary software to activate the system to sense the location of

small reflective spheres mounted to the FSS. The infrared cameras sense the light that

reflects off the spherical markers and sends this telemetry data back to the Vicon server to

be processed and to determine precise position and orientation of the FSS, (see Figure 58)

 49

Figure 58. Vicon and POSEIDYN Test Bed. Source: [20].

C. PROCEDURE

1. Setting Up the Test Bed

Once the previous hardware section adapters have been mounted the FSS is ready

to test its functionality. Before beginning any operational testing, the FSS have their own

functional testing that needs to be performed. Each FSS has a large tank that can hold up

20,684 kPa (3000 psi) of compressed air, to maintain the FSS simulated weightlessness on

the granite table. The air tank provides air pressure to three small air bearings that slowly

allow the air to escape causing an air cushioning affect that allows the FSS to hover. The

tanks need to be at or near the 20,684 kPa (3000 psi) before initializing any equipment.

Next, the FSS has two large battery packs and a power conditioning and distribution system

that provide the 24V needed to power the FSS hardware. There is an umbilical cord that

slowly charges the battery packs to ensure they are at maximum capacity. The unit needs

to be fully charged before beginning any operational testing.

After the FSS’s functionality is validated, power can be supplied to the FSS by

pressing the small button on the lower portion of the FSS. A valve is open to allow air from

 50

the tank to enter the air bearing system. Finally, the FSS air bearing switch is activated to

energize the air bearing system, (see Figure 59).

Figure 59. FSS Power and Air Bearing Switches

At this point the FSS is on and floating. As in the previous linear force tests, it is

required to remote login to the Raspberry Pi to command and up load new python scripts

to control the manipulator. The new script that has been created is called self_toss.py. This

script commanded the manipulator to rock itself back to a set angle and then pull itself back

to a set angle and release. This simulated the self-toss motion that will be utilize in the ISS

testing. The angles that were chosen through many iterations that provided a good

resemblance to the self-toss simulation conducted by Master’s student [28] were 80 degrees

and 20 degrees. Due to the fact that the mass of the FSS was not the same as what was

expected to the actual Astrobee these numbers should be taken as only examples and not

applied as actual possible angles of release for the future ISS testing.

 51

Originally, the forces that were induced while preforming this maneuver were

going to be sampled and analyzed but it was during this phase of functionality testing of

the equipment that the nano43 sensor was found to be providing faulty data. The sensor

when reset with a zero bias would continue to read forces that were not being felt at the

sensor. Complete removal of the sensor and extensive troubleshooting led to the conclusion

that the G4 resistance is not within tolerance and the sensor needs to be sent to be

recalibrated, (see Figure 60). The sensor recalibration is a lengthy process and a new

method to analyze the motion of the manipulator needed to be devised.

Figure 60. ATI Sensor Analysis. Source: [34].

The load cell was no longer available. The forces on the rail may be important but,

the best way to prove that the maneuver would be able to be performed would be a

demonstration. A deeper look into the position of the manipulator relative to the FSS may

provide more useful data to analysis and come to a determination of the feasibility of the

 52

ISS self-toss maneuver. To do this, a new method of data transfer was needed to transfer

the positioning and orientation information from the Vicon and to the servos on the

manipulator to the ground station computer, (see Figure 61) for and overview of the

POSEIDYN test bed.

Figure 61. POSEIDYN Test Bed

 User Datagram Protocol (UDP) communication protocol was the chosen solution

to this problem, the green arrows represent the communication paths, (see Figure 61). A

new script needed to be created for the Raspberry Pi to transmit UDP data about the

position of its servos via the Wi-Fi to the ground station computer. Using the previously

developed self-toss code the UDP transmit was added to report its current servo position

of both joints 1 and joints 2. UDP is a method to transmit communication data with

messages, called datagrams, that are sent from the transmitting user to destination IP

address and port number. This method is suitable to the small environment that is being

utilize and not much interference was involved in this situation. Interference could cause

loss of packet data and which creates data loss for the analysis. The NPS Vicon system is

 53

already setup to send data in this method. All that was required was to set the new IP

address and port needed to receive the telemetry data correlating to the FSS. Both the Vicon

and the Raspberry Pi where setup to transmit UDP data via Wi-Fi to the ground station

computer at 192.168.0.104. The Raspberry Pi utilizes port 25010 to transmit data and the

Vicon utilized port 25020. A MATLAB script was developed to modified and capture the

UDP data. The script was designed to receive the angles of joint 1 and joint 2 from the

Raspberry Pi as well as the FSS orientation and position in the XY plane. Data is received

with the FSS’s exact position and orientation while the servos provide the ordered position

of each joint at the same time.

Once the FSS is functional and the Raspberry Pi and Vicon systems are reporting

their data, the latest version of the self-toss python program needs to be loaded to the

Raspberry Pi with the following command from root:

scp self_toss.py pi@192.168.0.105

The Raspberry Pi is ready to start the self-toss script. To run the script the following

command was entered:

sudo python self_toss.py

The manipulator begins to open and move to start angle of 80 degrees. Once the

servo reads 80 degrees, the gripper closes onto the rail at the predetermined launch location,

(see Figure 62). The gripper is place perpendicular to the rail between the two black lines.

This allows for a common launch location to be used throughout the testing.

Figure 62. Gripper Starting Location

 54

Once the gripper was place on the rail a waiting period of 30 seconds was given to

the system to stabilize. The manipulator can allow the FSS to twist back and forth while

attached to the rail. The 30 seconds was provided to securely fasten the manipulator to the

rail and remove any unwanted motion it may have before retrieving data from the test. This

was an indication, that there is a bit of play or that the grasp is not very firm. This then

manifest itself in terms of a slip angle during the self-toss maneuver. The gripper would

allow the FSS to rock back and forth even while the gripper is closed. This was an unknown

phenomenon of the gripper that needed to be analyzed. Before the applied time, the gripper

was considered to be fixed once on the rail but instead the gripper had a slip angle that was

consistently seen before motion was perceived in the FSS. The slip angle has become a

new data point that must be captured.

Once the self-toss command is entered and the gripper is applied to the chosen

location on the rail the manipulator stabilized the spacecraft during the 30 second waiting

period. The manipulator begins the self-toss maneuver by pulling the spacecraft forward

until joint 1 reads the set release angle. 20 degrees was set to be the release angle. The

gripper is commanded to open releasing the spacecraft from the rail. The commanded

motion launches the spacecraft to the right of the rail. To launch the spacecraft to the left,

the code would need to be changed. The start angle would need to be set to -80 degrees and

the release angle set to -20 degrees. While the manipulator is in the wait phase of 30

seconds and the FSS is stabilized the MATLAB program can be ran to receive the UDP

data from both the Raspberry Pi and the Vicon. The Vicon system has a MATLAB program

that needs to only be ran one time. The program continued to send updated telemetry until

it is stopped. The data was be saved as a .mat file on the ground station computer to be

analyzed later. Once all of these steps are completed consistently, data can be collected.

2. Data Collection

Once the FSS is functional and the Raspberry Pi is updated with the latest self-toss

script the collection process begins. First, Vicon must be transmitting UDP telemetry data

to the ground station computer. Second, command the self-toss program to begin from the

ground station computer. Once the manipulator is applied to the correct location on the rail

 55

and has stabilized, the MATLAB program on the Ground Station Computer can be

executed to begin collecting data from the UDP data ports. A total of 20 individual sample

runs were conducted on the manipulator. 10 samples were of the manipulator launching

the FSS to the left and 10 samples were of the manipulator launching the FSS to the right.

The data collection process for these samples was lengthy. The motion of the

maneuver is very slow. To recreate the SRL ISS hopping maneuver. The motion duration

coupled with the 30-second waiting period would take each sample approximately two and

a half minutes to gather the data. Resetting the test bed would take another two minutes.

Thus, it would only allow for approximately 5 samples to be taken until the tank needed to

be refilled to allow consistent results to be taken. As the tank pressure drops, the pressure

applied to the air bearings decreases. This slowly allows more resistance to be felt by the

FSS against the granite surface. To maintain consistent data, it is recommended not to

exceed approximately 20 continuous minutes of usage. The tank slowly leak air while the

air tank valve is open. To avoid unneeded loss of air, the valve needs to be closed when

not actively in use. Extending the time between air pressure tank refills.

D. RELEASE RESULTS

This experiment received two separate data samples via UDP to the Ground Station

Computer. Every sample collected contained 1635 points of data in respect to the position

of joint 1 and position of joint 2 form the Raspberry Pi. Also, 1635 points of data in respect

to position in X, position in Y, and orientation from Vicon. The data was correlated and

truncated to focus on the release of the manipulator. Due to the lengthy sampling time, 10

self-toss samples were collected in each direction from the rail. To record the results of the

manipulator closing, the command motion of joint 1 was -80 degrees for the start angle and

-20 degrees for the release angle, generating a self-toss to the left of the rail. To record the

results of the manipulator opening, the command motion of joint 1 was 80 degrees for the

start angle and 20 degrees for the release angle, generating a self-toss to the right of the

rail.

There were a total of 20 sample experiments collected and analyzed. The individual

results can be seen in (Appendix D. Self-Toss Results). The 10 samples were plotted

 56

together and the mean of those samples was found, (see Figure 63). The individual samples

can be seen in gray with the mean in black. These are the results found when preforming

the self-toss with the manipulator opening launching the FSS to the right. The manipulator

remains at 80 degrees until commanded at time = 0 seconds, which is the first vertical

dashed line, to begin the self-toss maneuver. The joint begins to transition to the command

20-degree position which takes a mean time of 5.5 seconds to complete, displayed by the

second vertical dashed line. The gripper opens and the FSS is released from the rail. The

code continues to move the manipulator to avoid possible collisions with the rail and

subsequently returns to the command 20-degree position and remains there until the

completion of the sample at 20 seconds. These results are as commanded and anticipated.

Figure 63. Joints Position over Time, Manipulator Opening

The position of the FSS was analyzed to see if the maneuver was repeatable, (see

Figure 64). The POSEIDYN granite table is 4 m x 4 m. The testing of the self-toss only

used a small portion of that table available. The origin of the reference frame for

POSEIDYN is the bottom left corner, (see Figure 64) and (see Figure 65). The FSS started

 57

near the center of the left side of the table near the edge. The maneuver was small as it

moved approximately 0.6 m the -Y direction and 0.5 m in the +X direction. The maneuver

is the self-toss to the right. The + represents the starting position of the FSS and the °

represents the point of release. Once the FSS is released, it continues on a linear path.

Figure 64. Self-Toss Right (Opening) of FSS on POSEIDYN

When the maneuver was preformed to the left or closing the manipulator the FSS

was tossed a larger distance. The maneuver was larger as it moved approximately 1.2 m

the +Y direction and 0.5 m in the +X direction, (see Figure 65) for self-toss to the left.

 58

Figure 65. Self-Toss Left (Closing) of FSS on POSEIDYN

The orientation of the FSS was analyzed. As before, the 10 samples were plotted

together and the mean of those samples was found, (see Figure 66). The individual samples

can be seen in gray with the mean in black. The orientation was expected to change linear

rate after release. The 10 samples all changed linearly but not with the same linear rate.

Further analysis showed that at the beginning of the maneuver, the vertical line on the left

represents the start of the maneuver, the FSS did not immediately start changing in

orientation as the FSS was tossed. Adversely the joints immediately began to change in

position, (see Figure 63). A new question was established, “What was causing this

anomaly?”

 59

Figure 66. Orientation of FSS over Time, Manipulator Opening

After reviewing the videos and the data, it was noticed that the gripper slips before

it creates a force imposed to the rail which starts the motion in the FSS. (See Figure 67),

for photos that characterize the maneuver over time. Starting on row one column one [1,

1] the manipulator is seen at the start angle of -80 degrees. The next photo row 1 column

2, [1, 2] displays the slip angle. The slip angle is discussed more later. The next row starting

[2, 1] shows the maneuver moving the FSS to the left. In the same row, [2, 2] the

manipulator has now reached the command position or -20 degrees and the distal link in

the gripper are still attached to the rail. In the next row, [3, 1] is the moment of release. The

distal link in the gripper is now open. In the same row, [3, 2] the FSS is free-floating as it

leaves the rail. In the next row, [4, 1] the FSS is one a linear path away from the rail. In the

same row, [4, 2] the FSS is clearing the data samples area.

 60

Figure 67. Release to Left, Manipulator Closing

(See Figure 68) for gripper slip angle, this is the angle at which the manipulator

slips before it begins to self-toss the FSS. The maneuver starts at an angle of -80 degrees,

(see Figure 68 (top)). When the manipulator is commanded to move to -20 degrees, the

manipulator does move as commanded, (see Figure 68 (bottom)). Notice how the FSS has

only slightly rotated and not yet moved away from the side of the POSEIDYN test bed.

 61

(See Figure 68 (bottom)), the gripper at this time, was expected to have remained

perpendicular to the rail, (see Figure 68 (top)). A slip in the gripper was observed.

Figure 68. Gripper Slip Angle Demonstration

Deeper analysis found that the max slip angle on the opening manipulator, self-toss

right, was 10.8 degrees. The max slip angle on the closing manipulator, self-toss left, was

 62

13.1 degrees. As before the individual samples can be seen in gray with the mean in black,

(see Figure 69) for slip angle results with a self-toss to the right.

Figure 69. Gripper Slip Angle, Self-Toss Right

E. CONCLUSIONS

The second goal was to determine if the gripper would have a clean separation after

the self-toss maneuver has been performed. The experiments demonstrated that the release

of the gripper is clean and is not a concern for the maneuver. Not one time through all of

the testing did the gripper come in contact with the rail or even the larger mounting adapter.

The maneuver was found to be repeatable only when the gripper slip angle was

considered. If the gripper slip angle is not considered for the maneuver the success of the

maneuver would be coincidence and not a calculated controlled maneuver.

 63

V. CONCLUSION

A. SUMMARY OF WORK

Robotic hopping is a unique idea and can be utilized in many ways in space.

Through the extension hardware development process coupled with multiple software

language developments, the NPS manipulator executed a controlled robotic hopping

maneuver. Through this process, original data was acquired. This thesis demonstrated that

the current Astrobee manipulator can perform a propellantless maneuver by using its

manipulator.

To the research question “What are the max forces that can be applied before the

gripper can no longer hold onto a rail to which it is perched to?” the answer 4.453 N. The

linear testbed determined what are the required forces to release the gripper from the

handrail. Through the analysis, it was found that the maximum mean grip force that can be

imposed to the rail is 4.295 N. The maximum force felt from all 15 samples was 4.453 N.

In conducting this experiment, it was found that the distal fingers do not release at the same

time when removed from the rail.

To the research question “Can a clean release from the rail be achieved during a

self-tossing maneuver of Astrobee?” the answer is yes. The self-toss experiments

conducted empirically demonstrate that the release of the gripper is indeed clean and not a

concern for the maneuver. In conducting this experiment, it was found that the gripper has

a slip angle. This maximum slip angle on the opening manipulator, self-toss right, was 10.8

degrees. The max slip angle on the closing manipulator, self-toss left, was 13.1 degrees.

The conclusion was made that the maneuver is plausible and repeatable only when the

gripper slip angle is considered.

B. LIST OF ACCOMPLISHMENTS

(1) NPS manipulator was designed, developed, and constructed.

Control software was developed to control the manipulator

 64

(2) A linear test bed was designed and constructed.

Control software was developed to control the manipulator on the linear test bed.

(3) Experiments were conducted on the linear test bed.

Software was developed to collect the forces effects felt on the ISS rail. Results

were collected.

(4) The NPS manipulator was adapted to the POSEIDYN test bed.

Modification to the existing test bed and FSS were made to allow the manipulator

to function while on the FSS.

(5) Self-Toss experiments were conducted on POSEIDYN test bed.

Software was developed to collect UDP data from the Vicon positioning systems

and UDP data from the Raspberry Pi about the position of the joints in the manipulator.

Results were collected.

(6) Data was analyzed and conclusions were made.

MATLAB code was developed to plot and analyze the data from both of the

experiments. Video were analyzed and data correlated to tell the story.

C. FUTURE WORK

The next step is to preform testing on the NPS manipulator on Astrobee. This would

validate the results found on the NPS POSEIDYN test bed. Currently NASA Ames is

building an air bearing simulator for Astrobee. An alternate power source would be needed

to supply the power required to operate the manipulator. Using the control built in the thesis

the manipulator could self-toss the actual Astrobee and provide data relative to the mass of

Astrobee instead of the NPS FSS. This would allow practice of the intended hopping

maneuver on the ISS.

Another avenue would be to acquire a new force sensor, with wireless capability,

and retest the NPS manipulator on the linear test bed. Then borrow the Astrobee

manipulator from NASA Ames and test the gripper on the linear test bed. This would

 65

validate the results found from the testing of the NPS manipulator. Once the manipulator

is validated then extension experiment could be conducted on POSEIDYN with two ISS

rails and practice the hopping maneuver here at NPS. If the sensor had not failed this would

have been the next step for this thesis.

D. RESEARCH SIGNIFICANCE

Robotic hopping is a potentially effective and efficient method of motion. Anytime

an object can move without the use of propellant is adventurous. This research will lead to

more extensive hopping maneuvers of manipulators for many purposes. In the ISS, man-

hours are of the most expensive resource and are tremendously limited. The more

workloads that robotics can remove from the astronaut’s daily requirements, the more time

the astronauts would have available conducting the needed human interactive tasks. This

would lead to hopping maneuvers exterior to the ISS and remove astronauts from the risk

of injury while providing maintenance and repairs to the ISS. The possibility of a maneuver

that is beyond the limits of its propulsions system has an even larger impact to hopping

maneuvers.

With the new NPS manipulator and controls available, more thesis student can

explore the range of opportunity that mechatronics can provide to solving the problems

that DoD, and other U.S. agencies have not yet solved.

 66

THIS PAGE INTENTIONALLY LEFT BLANK

 67

APPENDIX A. PYTHON CODE

#RA_Constants.py
from dual_mc33926_rpi import MAX_SPEED

GRIPPER_TORQUE = int(float(MAX_SPEED)/2.0) # Torque
GRIPPER_OPENTIME = 2.0
GRIPPER_CLOSETIME = 2.0/2.5

Control table address is different in Dynamixel model
Control table address (XH430-W210-R)
ADDR_PRO_TEMPERATURE_LIMIT = 31 # Initial value 80, NASA going to 80
ADDR_PRO_MIN_VOLTAGE_LIMIT = 34 # Initial value 95, NASA going to 100
ADDR_PRO_PWM_LIMIT = 36 # Initial value 885, NASA going to 400
ADDR_PRO_ACCELERATION_LIMIT = 40 # Initial value 32767, NASA going to 10
ADDR_PRO_VELOCITY_LIMIT = 44 # Initial value 360, NASA going to 5
ADDR_PRO_TORQUE_ENABLE = 64 # Initial value 0
ADDR_PRO_PROFILE_ACCELERATION = 108 # Initial value 0
ADDR_PRO_PROFILE_VELOCITY = 112 # Initial value 0
ADDR_PRO_GOAL_POSITION = 116 # Initial value -
ADDR_PRO_PRESENT_VELOCITY = 128 # Initial value -
ADDR_PRO_PRESENT_POSITION = 132 # Initial value -

Protocol version
PROTOCOL_VERSION = 2.0 # See which protocol version is used in the Dynamixel

Default setting
DXL_ID_PROXIMAL = 1 # Dynamixel ID : 1
DXL_ID_DISTAL = 2 # Dynamixel ID : 2
BAUDRATE = 57600 # (NASA) Dynamixel default baudrate : 57600
DEVICENAME = ‘/dev/ttyUSB0’ # Check which port is being used on your controller
 # ex) Windows: “COM1” Linux: “/dev/ttyUSB0” Mac: “/dev/tty.usbserial-*”
Servo Settings
TORQUE_ENABLE = 1 # Value for enabling the torque
TORQUE_DISABLE = 0 # Value for disabling the torque
DXL_TEMPERATURE_LIMIT = 8 # (NASA) Dynamixel temperature confirmed to default setting
DXL_MIN_VOLTAGE_LIMIT = 100 # (NASA) Dynamixel temperature confirmed to default setting
DXL_PWM_LIMIT = 400 # (NASA) Dynamixel temperature confirmed to default setting
DXL_MINIMUM_POSITION_VALUE = 975 # Dynamixel will rotate between this value
DXL_MAXIMUM_POSITION_VALUE = 3125 # and this value (note that the Dynamixel would
 # not move when the position value is out of
 # movable range. Check e-manual about the range of
 # the Dynamixel you use.)
DXL_MOVING_STATUS_THRESHOLD = 5 # Dynamixel moving status threshold in degrees
 # from ordered
DXL_VELOCITY_LIMIT = 5 # (NASA) Dynamixel velocity limit (50 NPS)
DXL_PROFILE_VELOCITY = 5 # Dynamixel ????, cannot exceed velocity limit (50 NPS)
DXL_ACCELERATION_LIMIT = 10 # (NASA) Dynamixel acceleration limit
DXL_PROFILE_ACCELERATION = 0 # Dynamixel ????, cannot exceed acceleration limit (NPS 10)

Bias
BIAS = [0,2048,2048] # Servo [0,1,2] only using 1-Proximal and 2-Distal

 68

Conversion constants
DEG_PER_COUNT = 360.0/4096.0 # Deg/step = 0.0878, 4096 steps in 1 turn or 360 deg

#UDP constants
GS_IP = “192.168.0.104”
GS_UDP_Port = 25010

#Frequency
FREQ = 20;

#RA_Functions.py
from dynamixel_sdk import * # Uses Dynamixel SDK library
from dual_mc33926_rpi import motors
import RA_Constants as RAC
import os
import time
import socket
import struct

if os.name == ‘nt’:
 import msvcrt
 def getch():
 return msvcrt.getch().decode()
else:
 import sys, tty, termios
 fd = sys.stdin.fileno()
 old_settings = termios.tcgetattr(fd)
 def getch():
 try:
 tty.setraw(sys.stdin.fileno())
 ch = sys.stdin.read(1)
 finally:
 termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
 return ch

def InitializeComms():

 # Initialize PortHandler instance
 # Set the port path
 # Get methods and members of PortHandlerLinux or PortHandlerWindows
 portHandler = PortHandler(RAC.DEVICENAME)

 # Initialize PacketHandler instance
 # Set the protocol version
 # Get methods and members of Protocol1PacketHandler or Protocol2PacketHandler
 packetHandler = PacketHandler(RAC.PROTOCOL_VERSION)

 # Open port
 if portHandler.openPort():
 print(“Succeeded to open the port”)
 else:
 print(“Failed to open the port”)

 69

 print(“Press any key to terminate...”)
 getch()
 quit()

 # Set port baudrate
 if portHandler.setBaudRate(RAC.BAUDRATE):
 print(“Succeeded to change the baudrate”)
 else:
 print(“Failed to change the baudrate”)
 print(“Press any key to terminate...”)
 getch()
 quit()

 return portHandler, packetHandler

def SetUpServo(portHandler,packetHandler,DXL_ID):
 # Disable Dynamixel Torque
 dxl_comm_result, dxl_error = packetHandler.write1ByteTxRx(portHandler, DXL_ID,
RAC.ADDR_PRO_TORQUE_ENABLE, RAC.TORQUE_DISABLE)
 if dxl_comm_result != COMM_SUCCESS:
 print(“%s” % packetHandler.getTxRxResult(dxl_comm_result))
 elif dxl_error != 0:
 print(“%s” % packetHandler.getRxPacketError(dxl_error))
 else:
 print(“Dynamixel has been successfully connected”)

 # Write velocity
 dxl_comm_result, dxl_error = packetHandler.write4ByteTxRx(portHandler, DXL_ID,
RAC.ADDR_PRO_VELOCITY_LIMIT, RAC.DXL_VELOCITY_LIMIT)
 if dxl_comm_result != COMM_SUCCESS:
 print(“%s” % packetHandler.getTxRxResult(dxl_comm_result))
 elif dxl_error != 0:
 print(“%s” % packetHandler.getRxPacketError(dxl_error))

 # Write acceleration
 dxl_comm_result, dxl_error = packetHandler.write4ByteTxRx(portHandler, DXL_ID,
RAC.ADDR_PRO_ACCELERATION_LIMIT, RAC.DXL_ACCELERATION_LIMIT)
 if dxl_comm_result != COMM_SUCCESS:
 print(“%s” % packetHandler.getTxRxResult(dxl_comm_result))
 elif dxl_error != 0:
 print(“%s” % packetHandler.getRxPacketError(dxl_error))

 # Write profile velocity
 dxl_comm_result, dxl_error = packetHandler.write4ByteTxRx(portHandler, DXL_ID,
RAC.ADDR_PRO_PROFILE_VELOCITY, RAC.DXL_PROFILE_VELOCITY)
 if dxl_comm_result != COMM_SUCCESS:
 print(“%s” % packetHandler.getTxRxResult(dxl_comm_result))
 elif dxl_error != 0:
 print(“%s” % packetHandler.getRxPacketError(dxl_error))

 # Enable Dynamixel Torque
 dxl_comm_result, dxl_error = packetHandler.write1ByteTxRx(portHandler, DXL_ID,
RAC.ADDR_PRO_TORQUE_ENABLE, RAC.TORQUE_ENABLE)
 if dxl_comm_result != COMM_SUCCESS:

 70

 print(“%s” % packetHandler.getTxRxResult(dxl_comm_result))
 elif dxl_error != 0:
 print(“%s” % packetHandler.getRxPacketError(dxl_error))
 else:
 print(“Dynamixel has been successfully connected”)

def MoveIDTo(portHandler,packetHandler,DXL_ID,Goal_Pos):
 # Write goal position
 dxl_comm_result, dxl_error = packetHandler.write4ByteTxRx(portHandler, DXL_ID,
RAC.ADDR_PRO_GOAL_POSITION,int(round(Goal_Pos/RAC.DEG_PER_COUNT))+RAC.BIAS[DX
L_ID])
 if dxl_comm_result != COMM_SUCCESS:
 print(“%s” % packetHandler.getTxRxResult(dxl_comm_result))
 elif dxl_error != 0:
 print(“%s” % packetHandler.getRxPacketError(dxl_error))

def GetPosition(portHandler,packetHandler,DXL_ID):
 # Read present position
 dxl_present_position, dxl_comm_result, dxl_error = packetHandler.read4ByteTxRx(portHandler,
DXL_ID, RAC.ADDR_PRO_PRESENT_POSITION)
 if dxl_comm_result != COMM_SUCCESS:
 print(“%s” % packetHandler.getTxRxResult(dxl_comm_result))
 elif dxl_error != 0:
 print(“%s” % packetHandler.getRxPacketError(dxl_error))

 return float(dxl_present_position-RAC.BIAS[DXL_ID])*RAC.DEG_PER_COUNT

print(“[ID:%03d] GoalPos:%03d PresPos:%03d” % (DXL_ID_DISTAL, dxl_goal_position[index],
dxl_present_position))

def SendingSleep(arm,sleep_time):
 #Loop start time
 start_loop_time = time.time()
 t = 0;
 while t<sleep_time:
 start_time = time.time()
 pos=arm.GetPos()
 arm.sock.sendto(struct.pack(‘%sf’ % len(pos), *pos), (RAC.GS_IP,
RAC.GS_UDP_Port))
 current_time=time.time()
 if ((current_time - start_time)<(1.0/RAC.FREQ)):
 time.sleep(1.0/RAC.FREQ-(current_time - start_time))
 else:
 print(‘Not meeting deadline’)
 t=time.time()-start_loop_time;

class arm:

 def __init__(self):

 #Parameters
 self.gripper_state = 0
 self.moving_status_threshold = RAC.DXL_MOVING_STATUS_THRESHOLD

 71

 # Initialize serial comms port
 self.portHandler,self.packetHandler=InitializeComms()

 #Set Up the servos
 SetUpServo(self.portHandler,self.packetHandler,RAC.DXL_ID_PROXIMAL)
 SetUpServo(self.portHandler,self.packetHandler,RAC.DXL_ID_DISTAL)

 # Set Up gipper motor to zero
 motors.enable()
 motors.setSpeeds(0, 0)

 #Configure socket
 self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 # Methods
 def Move(self,Goal_Proximal,Goal_Distal,wait=False):

 MoveIDTo(self.portHandler,self.packetHandler,RAC.DXL_ID_PROXIMAL,Goal_Proximal)
 MoveIDTo(self.portHandler,self.packetHandler,RAC.DXL_ID_DISTAL,Goal_Distal)
 if wait:
 while True:
 pos=self.GetPos()
 if (abs(pos[0] - Goal_Proximal) < self.moving_status_threshold) &
(abs(pos[1] - Goal_Distal) < self.moving_status_threshold):
 break

 def GetPos(self):

 Proximal_Pos=GetPosition(self.portHandler,self.packetHandler,RAC.DXL_ID_PROXIMAL)
 Distal_Pos=GetPosition(self.portHandler,self.packetHandler,RAC.DXL_ID_DISTAL)
 return Proximal_Pos, Distal_Pos

 def Fold(self):
 self.Move(0,0,True)
 self.Close_Gripper()
 self.Move(90,0,True)

 def Open_Gripper(self):
 if self.gripper_state == 0:
 motors.motor1.setSpeed(RAC.GRIPPER_TORQUE)
 #time.sleep(RAC.GRIPPER_OPENTIME)
 SendingSleep(self,RAC.GRIPPER_OPENTIME)
 motors.setSpeeds(0, 0)
 self.gripper_state = 1
 else:
 print “Gripper is Already Open”

 def Close_Gripper(self):
 if self.gripper_state == 1:
 motors.motor1.setSpeed(-RAC.GRIPPER_TORQUE)
 #time.sleep(RAC.GRIPPER_CLOSETIME)
 SendingSleep(self,RAC.GRIPPER_CLOSETIME)
 motors.setSpeeds(0, 0)
 self.gripper_state = 0

 72

 else:
 print “Gripper is Already Closed”

 # Clearing Objects, Resetting
 def __del__(self):
 self.Fold()
 time.sleep(2)

 # Disable Dynamixel Torque of Proximal
 dxl_comm_result, dxl_error = self.packetHandler.write1ByteTxRx(self.portHandler,
RAC.DXL_ID_PROXIMAL, RAC.ADDR_PRO_TORQUE_ENABLE, RAC.TORQUE_DISABLE)
 if dxl_comm_result != COMM_SUCCESS:
 print(“%s” % self.packetHandler.getTxRxResult(dxl_comm_result))
 elif dxl_error != 0:
 print(“%s” % self.packetHandler.getRxPacketError(dxl_error))

 # Disable Dynamixel Torque of Distal
 dxl_comm_result, dxl_error = self.packetHandler.write1ByteTxRx(self.portHandler,
RAC.DXL_ID_DISTAL, RAC.ADDR_PRO_TORQUE_ENABLE, RAC.TORQUE_DISABLE)
 if dxl_comm_result != COMM_SUCCESS:
 print(“%s” % self.packetHandler.getTxRxResult(dxl_comm_result))
 elif dxl_error != 0:
 print(“%s” % self.packetHandler.getRxPacketError(dxl_error))

 # Close port
 self.portHandler.closePort()

 # Stop the motors, even if there is an exception
 # or the user presses Ctrl+C to kill the process.
 motors.setSpeeds(0, 0)
 motors.disable()

#test_90.py
import RA_Constants as RAC
import RA_Functions as RAF
import time

arm= RAF.arm()
arm.Move(0,0,True)
arm.Open_Gripper()
arm.Move(-90,0,True)
arm.Close_Gripper()
time.sleep(30)
arm.Open_Gripper()
arm.Move(0,0,True)

#self_toss.py
import RA_Constants as RAC
import RA_Functions as RAF
import time
import struct

 73

def sign(x):
 return 1–2*int(x<=0)

#Start angle
To release right, angle must be between 90 to 0
To release left, angle must be between -90 to 0
S_angle=80 # -60 max -110
80

#Release

R_angle=20 # -6
20

#Self-toss direction
direction = sign(R_angle-S_angle)
print direction

#Initialize
arm = RAF.arm()

#Perch
arm.Open_Gripper()
arm.Move(S_angle,0,True)
arm.Close_Gripper()

#Toss
RAF.SendingSleep(arm,30)

arm.Move(R_angle+20*direction,0,False)

while True:

 start_time = time.time()
 pos=arm.GetPos()
 arm.sock.sendto(struct.pack(‘%sf’ % len(pos), *pos), (RAC.GS_IP, RAC.GS_UDP_Port))

 if (pos[0]-R_angle)*direction>0:
 arm.Open_Gripper()
 break

 current_time=time.time();
 if ((current_time - start_time)<(1.0/RAC.FREQ)):
 time.sleep(1.0/RAC.FREQ-(current_time - start_time))
 else:
 print(‘Not meeting deadline’)

arm.Move(R_angle,0,False)
RAF.SendingSleep(arm,60)

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

APPENDIX B. MATLAB CODE

%Test_loading_Justin.m
%Reads load cell data

%% Clean and clear
clear
clc
close all

%% Read sensor data
Sensor_Param

%% Discover Analog Input Devices
% To discover a device that supports analog input subsystems, click the
% name of the device in the list in the Command window, or access the
% device in the array returned by |daq.getDevices| command. This example
% uses a NI 9201 device with ID ‘cDAQ1Mod4’. This is a 8 channel analog
% input module and is in slot 4 of Chassis ‘cDAQ1’.
device = daq.getDevices;

%% Create a Session and Add an Analog Input Channel
% Create a session, and use the |addAnalogInputChannel| function to add two
% analog input channels from this device to the session.
s = daq.createSession(‘ni’);
% addAnalogInputChannel(s,’cDAQ1Mod4’, 0, ‘Voltage’);
% addAnalogInputChannel(s,’cDAQ1Mod4’, 1, ‘Voltage’);
addAnalogInputChannel(s,’Dev1’, 0, ‘Voltage’);
addAnalogInputChannel(s,’Dev1’, 1, ‘Voltage’);
addAnalogInputChannel(s,’Dev1’, 2, ‘Voltage’);
addAnalogInputChannel(s,’Dev1’, 3, ‘Voltage’);
addAnalogInputChannel(s,’Dev1’, 4, ‘Voltage’);
addAnalogInputChannel(s,’Dev1’, 5, ‘Voltage’);
%% Set Session Rate
% By default the session is configured for 1000 scans/second.
% Change the scan rate to acquire at 8000 scans / second.
s.Rate = 80;

%% Set bias
Gb = (s.inputSingleScan*M’)’;
disp(‘Bias Set.’)

%% Acquire data for a Specified Duration

%Pause to attached gripper
disp(‘...Paused waiting for manipulator...’)
pause(10)

%Adqusistion time
s.DurationInSeconds = 15;

%Adquire data
disp(‘Reading forces’)

 76

[raw_data,time] = s.startForeground;

%Process data
data = raw_data*M’-ones(s.Rate*s.DurationInSeconds,1)*Gb’;
force = data(:,1:3); % [N]
torque = data(:,4:6); % [Nm]

%% Plot output
close all

figure(1)
plot(time,force);
xlabel(‘Time (secs)’);
ylabel(‘Force [N]’)
legend({‘Fx’,’Fy’,’Fz’})

figure(2)
plot(time,torque);
xlabel(‘Time (secs)’);
ylabel(‘Torque [N mm]’)
legend({‘Tx’,’Ty’,’Tz’})

 77

APPENDIX C. LINEAR TEST RESULTS

Figure 70. Linear Force Data Sample 1

Figure 71. Linear Torque Data Sample 1

 78

Figure 72. Linear Force Data Sample 2

Figure 73. Linear Torque Data Sample 2

 79

Figure 74. Linear Force Data Sample 3

Figure 75. Linear Torque Data Sample 3

 80

Figure 76. Linear Force Data Sample 4

Figure 77. Linear Torque Data Sample 4

 81

Figure 78. Linear Force Data Sample 5

Figure 79. Linear Torque Data Sample 5

 82

Figure 80. Linear Force Data Sample 6

Figure 81. Linear Torque Data Sample 6

 83

Figure 82. Linear Force Data Sample 7

Figure 83. Linear Torque Data Sample 7

 84

Figure 84. Linear Force Data Sample 8

Figure 85. Linear Torque Data Sample 8

 85

Figure 86. Linear Force Data Sample 9

Figure 87. Linear Torque Data Sample 9

 86

Figure 88. Linear Force Data Sample 10

Figure 89. Linear Torque Data Sample 10

 87

Figure 90. Linear Force Data Sample 11

Figure 91. Linear Torque Data Sample 11

 88

Figure 92. Linear Force Data Sample 12

Figure 93. Linear Torque Data Sample 12

 89

Figure 94. Linear Force Data Sample 13

Figure 95. Linear Torque Data Sample 13

 90

Figure 96. Linear Force Data Sample 14

Figure 97. Linear Torque Data Sample 14

 91

Figure 98. Linear Force Data Sample 15

Figure 99. Linear Torque Data Sample 15

 92

THIS PAGE INTENTIONALLY LEFT BLANK

 93

APPENDIX D. SELF-TOSS RESULTS

Figure 100. Self-Toss Slip Angle Sample 1

Figure 101. Self-Toss Slip Angle Sample 2

 94

Figure 102. Self-Toss Slip Angle Sample 3

Figure 103. Self-Toss Slip Angle Sample 4

 95

Figure 104. Self-Toss Slip Angle Sample 5

Figure 105. Self-Toss Slip Angle Sample 6

 96

Figure 106. Self-Toss Slip Angle Sample 7

Figure 107. Self-Toss Slip Angle Sample 8

 97

Figure 108. Self-Toss Slip Angle Sample 9

Figure 109. Self-Toss Slip Angle Sample 10

 98

THIS PAGE INTENTIONALLY LEFT BLANK

 99

LIST OF REFERENCES

[1] Mechatronic Works LLC, “Mechatronics,” Accessed Nov. 28, 2018. [Online].
Available: http://mechatronicworks.com/index.php/engineering-services/
mechatronics-engineering

[2] K. Ryan, “Mechatronics: A vertical perspective,” Intech, vol. 58, no. 1, pp. 22–25,
Jan./Feb. 2011. [Online]. Available: login?url=https://search.proquest.com/docview/
852729387?accountid=12702.

[3] Types of Engineering Degrees, “Mechatronics engineering degree programs,”
Accessed Nov. 28, 2018. [Online]. Available: https://typesofengineeringdegrees.org/
mechatronics-engineering/

[4] J. C. Devol Jr., “Programmed article transfer,” U.S. Patent 2988237A, Jun. 13, 1961.
[Online]. Available: https://patents.google.com/patent/US2988237A/en

[5] J. R. Surg, “Evolution of robotic arms” Journal of robotic surgery vol. 1,2 (2007):
103–11. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4247431/.

[6] J. Wallén, “The history of the industrial robot,” Linköping, 2008. [Online].
Available: http://liu.diva-portal.org/smash/get/diva2:316930/FULLTEXT01.pdf.

[7] C. Woodford, “Robots,” Explain that stuff, May 9, 2018. [Online]. Available:
https://www.explainthatstuff.com/robots.html

[8] L. Kelly, “Unimate: the first industrial robot and why it failed,” History 101, May 1,
2018. [Online]. Available: http://www.history101.com/unimate-first-industrial-
robot/1/.

[9] J. Clark, “Rancho arm,” Computer History Museum, May 16, 2003. [Online].
Available: http://www.computerhistory.org/collections/catalog/102654000

[10] D. Samadi, “History and the future of robotic surgery,” Robotic Oncology, Accessed
Nov 28, 2018. [Online]. Available: https://www.roboticoncology.com/history-of-
robotic-surgery/

[11] NASA Ames, “Robotic arm,” March 23, 2008. [Online]. Available:
https://www.nasa.gov/multimedia/imagegallery/image_feature_433.html

[12] J. Camillo, “What’s new with SCARA robots,” Assembly Mag, April 7, 2016.
[Online]. Available: https://www.assemblymag.com/articles/93338-whats-new-with-
scara-robots

 100

[13] Canadian Space Agency, “The structure of canadarm,” Accessed November 28,
2018. [Online]. Available: http://www.asc-csa.gc.ca/eng/canadarm/description.asp

[14] Canadian Space Agency, “Canadarm made its space debut on the space shuttle
columbia (STS-2) 36 years ago,” Twitter, November 13, 2017. [Online]. Available:
https://twitter.com/csa_asc/status/930148479866941442

[15] Canadian Space Agency, “About canadarm2,” Accessed November 28, 2018.
Available: [Online]. Available: http://asc-csa.gc.ca/eng/iss/canadarm2/about.asp

[16] Canadian Space Agency, “About Dextre,” November 28, 2018. [Online]. Available:
[Online]. Available: http://asc-csa.gc.ca/eng/iss/dextre/about.asp

[17] JAXA, “Engineering Test Satellite VII “KIKU-7” (ETS-VII),” Accessed November
28, 2018. [Online]. Available: http://global.jaxa.jp/projects/sat/ets7/index.html

[18] Space Robotics Laboratory, “Japanese engineering test satellite (ETS-VII),” Tohoku
University, Accessed November 28, 2018. [Online]. Available:
https://www.researchgate.net/figure/Japanese-Engineering-Test-Satellite-ETS-VII-
credit-Space-Robotics-Laboratory_fig4_259902832

 [19] Jet Propulsion Laboratory, “Flight projects - mars science laboratory,” Acessed
November 28, 2018. [Online]. Available: https://www-robotics.jpl.nasa.gov/
projects/MSL.cfm?Project=3

[20] Wilde M., Ciarcia’ M., Grompone, A., Romano M., “Experimental characterization
of inverse dynamics guidance and control in docking with a rotating target,” Journal
of Guidance, Control, and Dynamics, Vol. 39, No. 6, pp. 1173–1187, 2016.
[Online]. Available: https://www.researchgate.net/publication/303423862_/
Experimental_Characterization_of_Inverse_Dynamics_Guidance_in_Docking_with
_a_Rotating_Target

[21] A. Bradstreet, J. Virgili-Llop, and M. Romano, “Demonstration of a propellantless
spacecraft hopping maneuver on a planar air bearing test bed,” 2018 AAS/AIAA
Astrodynamics Specialist Conference, 2018. [Online]. Available:
https://www.researchgate.net/publication/327560912_Demonstration_of_a_Propella
ntless_Spacecraft_Hopping_Maneuver_on_a_Planar_Air_Bearing_Test_Bed

[22] NASA Ames, “Astrobee guest science guide,” Accessed November 28, 2018.
[Online]. Available: https://www.nasa.gov/sites/default/files/atoms/files/irg-ff029-
astrobee-guest-science-guide.pdf

[23] Park, I. W., Smith, T., Sanchez, H., Wong, S. W., Piacenza, P., and Ciocarlie, M.,
“Developing a 3-DOF compliant perching arm for a free-flying robot on the
International Space Station,” 2017 IEEE International Conference on Advanced
Intelligent Mechatronics (AIM), 2017, pp. 1135–1141.https://doi.org/10.1109/
AIM.2017.8014171.

 101

[24] Raspberry Pi, “Raspberry pi 3 model b,” Accessed November 28, 2018. [Online].
Available: https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

[25] Amazon, “USB to RS485 USB-485 Converter Adapter Support Win7 / 8 XP Vista
Linux,” Accessed November 28, 2018. [Online]. Available:
https://www.amazon.com/RS485-USB-485-Converter-Adapter-Support/dp/
B06Y1JTGZX

[26] Pololu Robotics and Electronics, “298:1 Micro metal gearmotor HPCB 12V with
extended motor shaft,” Accessed November 28, 2018. [Online]. Available:
https://www.pololu.com/product/3056

[27] Pololu Robotics and Electronics, “Dual TB9051FTG motor driver for raspberry pi
(partial kit),” Accessed November 28, 2018. [Online]. Available:
https://www.pololu.com/product/2761

[28] Robotis, “DYNAMIXEL XH430-V210-R,” Accessed November 28, 2018.
[Online]. Available: http://www.robotis.us/dynamixel-xh430-v210-r/

[29] ATI Industrial Automation, “ATI’s Force/Torque Sensors Help Stanford
Researchers Cut Ties with Old Flight Testing Methods,” November 28, 2018.
[Online]. Available: https://www.ati-ia.com/company/
NewsArticle2.aspx?id=180829986

[30] D. Chakravorty, “4 Most Common 3D Printer File Formats of 2018,” All3DP, June
16, 2018. [Online]. Available: https://all3dp.com/3d-printing-file-formats/

[31] Python, “Quick & Easy to Learn,” November 28, 2018. [Online]. Available:
https://www.python.org/

[32] MathWorks, “What is MATLAB,” November 28, 2018. [Online]. Available:
https://www.mathworks.com/discovery/what-is-matlab.html

[33] Airwolf 3D, “The guide to polycarbonate 3d printing,” November 28, 2018.
[Online]. Available: https://airwolf3d.com/polycarbonate-3d-printing/

[34] Dynamixel, “ ROBOTIS e-Manual v1.31.30,” Accessed November 28, 2018.
[Online]. Available: http://support.robotis.com/en/product/actuator/dynamixel_x/
xh_series/xh430-w210_main.htm

[35] K. Alsup, “Robotic spacecraft hopping: Application, analysis, and demonstration,”
M.S. thesis, Dept. of Astro. Eng, NPS, Monterey, CA, USA, 2018.

[36] G. Parnell, email, Nov. 2018.

 102

THIS PAGE INTENTIONALLY LEFT BLANK

 103

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	18Dec_Komma_Justin_First8
	18Dec_Komma_Justin
	I. introduction
	A. Mechatronics and manipulators
	1. The First Manipulators
	2. State of the Art Manipulators in Space
	a. Manipulators at NPS Spacecraft Robotics Laboratory
	b. Astrobee Manipulator

	B. Research Motivation
	C. Research Objectives
	D. Thesis organization

	II. development of the manipulator
	A. Overview
	B. hardware
	1. Raspberry Pi
	2. Motor Driver and Motor
	3. Servo
	4. Load Cell

	C. software
	1. Siemens NX12
	2. Python
	3. MATLAB

	D. ComMissioning of the manipulator
	1. 3D printing
	2. Range of Motion
	3. Operational Testing
	a. Servos
	b. Gripper Motor

	III. gripper force testing
	A. Overview
	B. Linear Experiments
	1. Linear Test Bed Development
	2. Mounting the Load Cell
	3. Test Bed Assembly

	C. Procedure
	1. Setting Up and Testing the Test Bed
	2. Data Collection

	D. force Results
	E. Conclusions

	IV. self-toss testing
	A. Overview
	B. Self-toss experiments
	1. Hardware
	2. Integration with Fourth Generation Floating Spacecraft Simulator
	3. Rail Integration with POSEIDYN
	4. Vicon Motion Capture

	C. Procedure
	1. Setting Up the Test Bed
	2. Data Collection

	D. Release Results
	E. Conclusions

	V. conclusion
	A. summary of work
	B. List of Accomplishments
	(1) NPS manipulator was designed, developed, and constructed.
	(2) A linear test bed was designed and constructed.
	(3) Experiments were conducted on the linear test bed.
	(4) The NPS manipulator was adapted to the POSEIDYN test bed.
	(5) Self-Toss experiments were conducted on POSEIDYN test bed.
	(6) Data was analyzed and conclusions were made.

	C. future work
	D. Research significance

	appendix A. Python code
	appendix B. MATLAB code
	appendix C. Linear test results
	appendix D. Self-toss results
	List of References
	initial distribution list

