

Ballistic Effectiveness of Liquid Water and Solid Water (Ice) against a Shaped Charge Jet

by Nicholas Tee and John Runyeon

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Ballistic Effectiveness of Liquid Water and Solid Water (Ice) against a Shaped Charge Jet

by Nicholas Tee SMART Scholar, Under Secretary of Defense, Research and Engineering (USD/R&E), National Defense Education Program (NDEP)

John Runyeon Weapons and Materials Research Directorate, CCDC Army Research Laboratory

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188		
Public reporting burden for this collection of informat data needed, and completing and reviewing the collec burden, to Department of Defense, Washington Head Respondents should be aware that notwithstanding an valid OMB control number. PLEASE DO NOT RETURN YOUR FORM	tion is estimated to average 1 ho tion information. Send commen quarters Services, Directorate fo y other provision of law, no per: M TO THE ABOVE ADD	ur per response, including the ts regarding this burden estin r Information Operations and son shall be subject to any pe RESS.	e time for reviewing ir nate or any other aspec I Reports (0704-0188) nalty for failing to con	structions, searching existing data sources, gathering and maintaining the t of this collection of information, including suggestions for reducing the , 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. mply with a collection of information if it does not display a currently		
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE			3. DATES COVERED (From - To)		
March 2019	Technical Note			June 2001–January 2019		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Ballistic Effectiveness of Liquid	Water and Solid W	Vater (Ice) against	t a Shaped			
Charge Jet			1	5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
Nicholas Tee and John Runyeon	l			Su. PROJECT NOMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME	E(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER		
US Army Combat Capabilities I	Development Comn	nand, Army Rese	arch			
Laboratory*	-	-		ARL-TN-0943		
ATTN: FCDD-RWL-PD						
Aberdeen Proving Ground, MD 21005-5066						
9. SPONSORING/MONITORING AGENC	Y NAME(S) AND ADDRE	SS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATI	EMENT					
Approved for public release; dis	tribution is unlimite	ed.				
13. SUPPLEMENTARY NOTES * The work outlined in this repo Research, Development, and En US Army Combat Capabilities I Laboratory.	rt was performed w gineering Comman Development Comn	hile the US Army d (RDECOM). A nand (formerly R	y Research La s of 31 Janua DECOM) and	aboratory (ARL) was part of the US Army ry 2019, the organization is now part of the l is now called CCDC Army Research		
14. ABSTRACT						
Six experiments were conducted The water was evaluated at 500, water and solid water (ice) in ind suggest that liquid and solid wat and space efficiencies. Since bot neither water nor ice can be assi	to determine the b 1000, and 1500 mi crements provides c er have similar prot th the elemental ma gned a single value	allistic effectiven n. The ice was ev lecreasing returns tective capabilitie ss efficiency and to describe ballis	ess of liquid a valuated at 54. in effectiven s against shap elemental spa tic efficiency	and solid water against a shaped charge jet. 5, 1090, and 1636 mm. Increasing the liquid ess against the shaped charge jet. The data bed charge jets in terms of elemental mass ace efficiency vary with target thickness, against a shaped charge jet.		
15. SUBIECT TERMS						
Shaped charge jet, water, ice. ba	llistics, residual per	netration, element	tal mass effici	iency, elemental space efficiency		
	per per	17. LIMITATION	18. NUMBER	19a. NAME OF RESPONSIBLE PERSON		
16. SECURITY CLASSIFICATION OF:		OF	OF	Nicholas Tee		

19b. TELEPHONE NUMBER (Include area code)

410-278-6219

ABSTRACT

UU

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

PAGES

18

Contents

List	t of Figures	iv
List	t of Tables	iv
Ack	knowledgments	v
1.	Introduction	1
2.	Experimental Setup and Results	1
	2.1 Ballistic Effectiveness of Water	1
	2.2 Ballistic Effectiveness of Ice	5
3.	Discussion and Conclusion	7
4.	References	10
Dis	stribution List	11

List of Figures

Fig. 1	Experimental setup for water	2
Fig. 2	Filling target with 500 mm of water	3
Fig. 3	Typical experimental setup. Target with 1000 mm of water is shown. The wooden target assembly has a hole cut in the top so the first material impacted by the shaped charge jet is water	3
Fig. 4	Typical postexperimental debris. Debris from target with 1000 mm of water is shown. The jet stopped in witness Plate 3	f 4
Fig. 5	Experimental setup for ice	5
Fig. 6	Typical experimental setup showing a 545-mm ice target	6
Fig. 7	Typical box used to hold and freeze the water. The 1090-mm box is shown.	6
Fig. 8	Typical postexperimental debris. Witness plates from 1090-mm ice target are shown. The jet stopped in witness Plate 2 (W2)	7

List of Tables

Table 1	Summary of experimental results for water	4
Table 2	Summary of experimental results for ice	7
Table 3	Summary of results including elemental mass and space efficiency	8

Acknowledgments

The authors would like to thank Corey Yonce and Chester Benjamin for their assistance with target construction, as well as James Perrella, G Louis Schaefer, Joshua Sturgill, and Robin Strickland for performing the necessary explosive operations.

1. Introduction

A previously published report regarding the ballistic effectiveness of liquid water against a shaped charge jet (Runyeon 2018) has been incorporated into this technical note. Given the similar properties of liquid water (hereinafter referred to as water) and solid water (hereinafter referred to as ice), the experimental documentation was consolidated to allow comparisons to be made.

2. Experimental Setup and Results

2.1 Ballistic Effectiveness of Water

Three experiments were conducted on 28 June 2001 at the US Army Research Laboratory^{*} to determine the ballistic effectiveness of water against a shaped charge jet. The experimental setup is shown in Fig. 1.

The shaped charge warhead used in these experiments had a 65-mm-diameter copper liner with a 44° cone angle. At 130-mm standoff, it nominally penetrated 380 mm of rolled homogenous armor (RHA) steel. The wooden boxes were lined with plastic and filled with fresh water that had been pumped from a local well. Figure 2 is a typical photograph of this procedure. Figure 3 is a photograph of a typical experimental setup. Figure 4 is a photograph of typical postexperimental debris. Table 1 summarizes the experimental results.

^{*} The work outlined in this report was performed while the US Army Research Laboratory (ARL) was part of the US Army Research, Development, and Engineering Command (RDECOM). As of 31 January 2019, the organization is now part of the US Army Combat Capabilities Development Command (formerly RDECOM) and is now called CCDC Army Research Laboratory.

Approved for public release; distribution is unlimited.

Fig. 1 Experimental setup for water

Fig. 2 Filling target with 500 mm of water

Fig. 3 Typical experimental setup. Target with 1000 mm of water is shown. The wooden target assembly has a hole cut in the top so the first material impacted by the shaped charge jet is water.

Fig. 4 Typical postexperimental debris. Debris from target with 1000 mm of water is shown. The jet stopped in witness Plate 3.

Depth of water (mm)	Penetration into RHA witness plate (mm)
0	380 (baseline data)
500	128
1000	56
1500	32

 Table 1
 Summary of experimental results for water

2.2 Ballistic Effectiveness of Ice

Three additional experiments were conducted on 28–29 January 2019 to determine the ballistic effectiveness of ice against a shaped charge jet. As a continuation of the experimentation done on water in 2001, the setup was kept as similar as possible to compare the ballistic effectiveness of water and ice.

The experimental setup is shown in Figs. 5 and 6. Based on typical ice having a density of approximately 0.917 g/cm^3 , each thickness of ice was increased to maintain the same areal density as the original targets of water. Shown in Fig. 7, plastic-lined plywood boxes were filled with fresh water and kept at -50 °F until completely frozen. To simplify the setup and accelerate the freezing process, the ice was frozen and placed horizontally. A chainsaw was used to cut the ice to the correct thickness and create a flat surface, perpendicular to the shot line. The plywood and plastic were removed from the ice before each experiment. The diameter and cone angle of the shaped charge warheads used in these experiments were identical to those used against the water. The standoff distance was kept constant at 130 mm. The baseline nominal penetration into RHA remained at 380 mm. Figure 8 is a photograph of typical postexperimental debris. Table 2 summarizes the results for each thickness of ice.

Fig. 5 Experimental setup for ice

Fig. 6 Typical experimental setup showing a 545-mm ice target

Fig. 7 Typical box used to hold and freeze the water. The 1090-mm box is shown.

Fig. 8 Typical postexperimental debris. Witness plates from 1090-mm ice target are shown. The jet stopped in witness Plate 2 (W2).

Ice thickness (mm)	Penetration into RHA witness plate (mm)
0	380 (baseline data)
545	147
1090	36
1636	0 (stopped in ice, did not reach witness plate)

 Table 2
 Summary of experimental results for ice

3. Discussion and Conclusion

Shown in Tables 1 and 2, the data suggest that water and ice have similar protective capabilities against shaped charge jets. The findings of this research are limited by the absence of repetition for each experiment. Shaped charges have round-to-round variation and only one data point exists for each condition.

Table 3 is a summary of the experimental results including elemental mass efficiency (e_m) and elemental space efficiency (e_s) . Note that the shaped charge jet did not perforate the 1636-mm ice target, so the residual penetration could not be

measured. Thus, the actual e_m and e_s for 1636 mm of ice is potentially higher than the calculated value. Increasing the water in 500-mm increments showed decreasing returns in effectiveness against the jet. Increasing the thickness of ice showed similarly decreasing returns. Since both the e_m and e_s vary with target thickness, neither water nor ice can be assigned a single value to describe ballistic efficiency against a shaped charge jet.

Material	Thickness (mm)	Penetration into RHA witness plate (mm)	em	es	$\mathbf{e}_{\mathbf{m}} \times \mathbf{e}_{\mathbf{s}}$
RHA		380	1	1	1
water	500	128	3.9	0.50	2.0
water	1000	56	2.6	0.32	0.83
water	1500	32	1.8	0.23	0.41
ice	545	147	3.6	0.43	1.5
ice	1090	36	2.7	0.32	0.86
ice	1636	0	2.0	0.23	0.46

 Table 3
 Summary of results including elemental mass and space efficiency

The e_m and e_s calculations:

- e_m = (RHA penetration capability of the shaped charge minus residual penetration into RHA witness)/areal density of target expressed in terms of RHA equivalent.
- $e_s = (RHA \text{ penetration capability of the shaped charge minus residual penetration into RHA witness)/thickness of target.$
- For the experiment with 500 mm of water, 500 mm of water has the equivalent areal density of 64 mm of RHA steel. Therefore, $e_m = (380\text{-mm} \text{ RHA} \text{ penetration capability minus 128-mm RHA residual penetration})/ 64-mm RHA equivalent = 252/64 = 3.9. The <math>e_s = (380\text{-mm RHA penetration capability minus 128-mm RHA residual penetration})/500\text{-mm target thickness} = 252/500 = 0.50.$
- For the experiment with 1000 mm of water, $e_m = (380 \text{-mm RHA penetration capability minus 56-mm RHA residual penetration)/127-mm RHA equivalent = <math>324/127 = 2.6$. The $e_s = (380 \text{-mm RHA penetration capability minus 56-mm RHA residual penetration)/1000-mm target thickness = <math>324/1000 = 0.32$.

Approved for public release; distribution is unlimited.

- For the experiment with 1500 mm of water, $e_m = (380 \text{-mm RHA penetration capability minus 32-mm RHA residual penetration)/191-mm RHA equivalent = 348/191 = 1.8. The <math>e_s = (380 \text{-mm RHA penetration capability minus 32-mm RHA residual penetration)/1500-mm target thickness = 348/1500 = 0.23.$
- For the experiment with 545 mm of ice, $e_m = (380 \text{-mm RHA penetration capability minus 147-mm RHA residual penetration)/64-mm RHA equivalent = 233/64 = 3.6. The <math>e_s = (380 \text{-mm RHA penetration capability minus 147-mm RHA residual penetration)/545-mm target thickness = 233/545 = 0.43.$
- For the experiment with 1090 mm of ice, $e_m = (380\text{-mm RHA penetration capability minus 36\text{-mm RHA residual penetration})/127\text{-mm RHA equivalent} = 344/127 = 2.7$. The $e_s = (380\text{-mm RHA penetration capability minus 36\text{-mm RHA residual penetration})/1090\text{-mm target thickness} = 344/1090 = 0.32$.
- For the experiment with 1636 mm of ice, $e_m = (380 \text{-mm RHA penetration capability minus 0-mm RHA residual penetration)/191-mm RHA equivalent = 380/191 = 2.0. The <math>e_s = (380 \text{-mm RHA penetration capability minus 0-mm RHA residual penetration)/1636-mm target thickness = 380/1636 = 0.23.$

4. References

Runyeon J. Ballistic effectiveness of water against a shaped charge jet. Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2018 Dec. Report No.: ARL-TN-0932.

1	DEFENSE TECHNICAL
(PDF)	INFORMATION CTR
	DTIC OCA

2 CCDC ARL

(PDF)	IMAL HRA
	RECORDS MGMT
	FCDD RLD CL
	TECH LIB

1 GOVT PRINTG OFC (PDF) A MALHOTRA

5 ARL

(PDF) FCDD RLW PD N TEE J RUNYEON C RANDOW M KEELE K STOFFEL