ARL-TN-0940 e MAR 2019

O [BEveom

Extraction of Multiple Soundings from Model
Output Files

by J Cogan

Approved for public release; distribution is unlimited.

NOTICES
Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

ARL-TN-0940 e MAR 2019

Z DEVCOM

Extraction of Multiple Soundings from Model
Output Files

by J Cogan
Computational and Informational Sciences Directorate, CCDC Army
Research Laboratory

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE oo Approved

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
March 2019 Technical Note November 12, 2018—January 29, 2019
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Extraction of Multiple Soundings from Model Output Files

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
J Cogan

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER
US Army Combat Capabilities Development Command Army Research
Laboratory ARL-TN-0940

ATTN: FCDD-RLC-E
2800 Powder Mill Rd, Adelphi, MD 21005-1138

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Evaluation of numerical weather prediction models commonly considers the surface and near-surface layers. Comprehensive
and sophisticated statistical packages are available that can generate a variety of statistical measures, although they mostly
consider the surface, near surface, and a limited number of higher levels, mainly within or near the boundary layer or at
standard pressure levels. An earlier report presented several scripts and programs that may assist in a more complete
evaluation of model performance. The software is able to extract vertical soundings from the output of several representative
models, including the Global Forecast System, the Global Air Land Weather Exploitation Model, and the Weather Research
and Forecast model, and can evaluate single or multiple soundings from the model output. This brief follow-on report extends
the means to extract vertical soundings from model output files to include multiple soundings at user-defined horizontal
intervals along a user-defined azimuth up to and including a user-defined maximum distance, as well as provides additional
flexibility with respect to the output of soundings with user-defined level and layer structures based on height, pressure, or
both. The added flexibility also is applied to radiosonde data.

15. SUBJECT TERMS
model evaluation, vertical profile extraction, multiple sounding extraction, user-defined sounding structures

17. LIMITATION | 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
16. SECURITY CLASSIFICATION OF:
OF OF J Cogan
ABSTRACT PAGES
a. REPORT b. ABSTRACT c. THIS PAGE U - 19b. TELEPHONE NUMBER (Include area code)
Unclassified Unclassified Unclassified (301) 394-2304

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

il

Contents

List of Figures
List of Tables
1. Introduction

2. Scripts
2.1 Script for GRIB2 Input
2.2 Script for netCDF (WRF) Input
2.3 Other Modified Scripts

3. Output

4. Conclusion

5. References

Appendix A. Flowcharts for the Bash Scripts

Appendix B. Extended Scripts and Additional Python 3 Script
List of Symbols, Abbreviations, and Acronyms

Distribution List

Approved for public release; distribution is unlimited.
ii

v o W N

11

12

13

17

19

20

List of Figures

Fig. A-1 Flowchart of the Bash script wgrb2 ma.sh.........

Fig. A-2 Flowchart of the Bash script wrf extract ma.sh

Approved for public release; distribution is unlimited.
v

List of Tables

Table 1

Table 2

Table 3

Table 4

Table 5

Ten of 302 data lines of the vertical profile extracted from a
GALWEM output file for a location 20 km from Dulles Airport,
Virginia, at an azimuth of 200°. The data were for the 3-h forecast for
a model integration starting at 12 UTC on 7 January 2019. 7

Header information and data lines extracted from the profile presented
in part in Table 1. Only the first 11 data lines are shown. P is pressure,
Hgt is height above mean sea level (MSL), Tmp is temperature, RH is
relative humidity, U is the east-west component of the wind, and V is
the north—south component. The units are as listed..........ccccccevvveenenns 8

Sounding extracted from the 12-h forecast output of a WRF integration
starting at 00 UTC on 9 November 2018 for a location 30 km from
Dulles Airport, Virginia, at an azimuth of 245°. The first 15 data lines
are shown. The first header line contains the requested latitude and
longitude in decimal degrees, elevation in meters, and the date and
time string extracted from the input filename. The second header line
has horizontal grid spacing in meters, latitude and longitude of the
profile, and a number indicating the selected interpolation method.
Each data line has height in meters MSL, pressure in hPa, temperature
in °C, RH in %, wind speed in ms™!, and wind direction in degrees. ... 9

Sounding with wind speed, wind direction, and Ty derived from
GALWEM output for the same location and time as Table 1, and with
a user-defined vertical height structure as defined in the file

usrhgt lIvls. The first 15 data lines are shown. Layer weighted mean
values are shown along with the midpoint heights above ground level
(AGL), except for the surface (layer 0), which has the model output
surface values. “Date:” has the date—time group from the input file,
Elevation is in m MSL, Latitude and Longitude are in decimal degrees,
and the values for Ceiling and Visibility are place holders (-999 means
missing data) for possible future use. Wind_Dir is wind direction and
Virt Temp is Ty. The units are as ShOWn.........cccoceevieriininiinienennne. 10

Sounding with wind components and RH derived from WRF output
for the same location and model time as Table 3 with a user-defined
vertical pressure level structure as defined in the file usrprs_Ivls. Data
values for the listed pressure levels are shown along with the heights
AGL. The first 15 data lines are shown. U-wind and V-wind are the
horizontal wind components. Rel-Humidity is RH. The units are as
displayed. The header information has the same meanings as in

TaABIE 4. ..o 11

Approved for public release; distribution is unlimited.

A\

1. Introduction

Evaluation of numerical weather prediction (NWP) models on finer scales
commonly considers the surface and near-surface layers where a larger number of
observations are available, often in greater detail relative to upper air
measurements. For larger-scale models, such as those run at weather centers,
publically available comparisons mostly consider data at certain standard levels at
set time intervals. The following websites were provided in my previous report
(Cogan 2018), but are summarized here for convenience. The National Center for
Environmental Prediction (NCEP; http://www.emc.ncep.noaa.gov/gmb/STATS _
vsdb/) and the European Centre for Medium-Range Weather Forecasting (ECMWF;
https://www.ecmwf.int/en/forecasts/charts/catalogue/) have readily accessible

verification websites. Worldwide comparisons are available for deterministic
forecasts at the ECMWF (http://apps.ecmwf.int/wmolcdnv/) and for ensemble
forecasts at the Japan Meteorological Agency (http://epsv.kishou.go.jp/EPSvV/).
Comprehensive and sophisticated statistical packages with extensive user guides are
available, such as the Model Evaluation Tool. They may be accessed at the Weather
Research and Forecasting model (WRF) Developmental Test Center,
http://www.dtcenter.org/met/ users/ and http://www.dtcenter.org/upp/users/. Similar
tools are available at other centers such as NCEP.

NWP model output is frequently compared with radiosonde observations, where
the entire sounding is often referred to using the acronym for radiosonde
observation (RAOB). Ingleby et al. (2018) and their included references have
up-to-date information on available RAOB data. Verification websites at major
weather centers mostly present comparisons of model output for levels above the
surface with data from RAOBs. Many field tests involve comparisons of output
from finer-scale models such as the WRF model (herein WRF) with RAOB data
(e.g., Dutsch [2012] and Kilpelainen et al. [2012]). Skamarock et al. (2008)
describe details of the WRF, and despite the upgrades since then, the basics remain
much the same. Details on output products from the Global Forecast System (GFS),
as used at the National Oceanic and Atmospheric Agency (NOAA), are available
at http://www.nco.ncep.noaa.gov/pmb/products/ and http://www.nco.ncep.noaa.
gov/pmb/products/gfs/#GFS, and via included links. The Global Air Land Weather
Exploitation Model (GALWEM) has no similar readily available website. However,
GALWEM is a version of the UK Met Office’s Unified Model, which has a public
website that contains overviews of the model and its application
(https://www.metoffice.gov.uk/research/modelling-systems/unified-model).

Approved for public release; distribution is unlimited.

1

http://www.emc.ncep.noaa.gov/gmb/STATS_%20vsdb/
http://www.emc.ncep.noaa.gov/gmb/STATS_%20vsdb/
https://www.ecmwf.int/en/forecasts/charts/catalogue/
http://apps.ecmwf.int/wmolcdnv/
http://www.dtcenter.org/met/%20users/
http://www.dtcenter.org/upp/users/
http://www.nco.ncep.noaa.gov/pmb/
https://www.metoffice.gov.uk/research/modelling-systems/unified-model

This report extends the set of scripts and programs presented in Cogan (2018) that
allow the user to easily extract vertical profiles of meteorological variables from
GFS and GALWEM output in Gridded Binary (GRIB2) format and vertical profiles
from WRF output in netCDF format. The software allows the user to convert the
extracted profiles into “soundings” with a height or pressure level or layer structure
as defined by the user. A RAOB sounding also can be converted into forms having
user-defined height or pressure levels or layers. Here I present a modified version
of the software for extraction of vertical profiles that has additional capabilities that
allow for soundings for multiple locations as defined by the user at horizontal
intervals along an azimuth up to and including a user-selected maximum distance.
As before, those profiles may include wind speed and direction plus virtual
temperature (Tv) or u and v wind components plus relative humidity (RH). Both
forms have temperature and pressure (or height) for the respective height-based (or
pressure-based) profiles. Additionally, other combinations of output variables may
be provided on request such as files with u and v components and Ty.

The Bash scripts for the model as well as the RAOB output presented in this report
also allow additional flexibility in output by enabling one or both types of
soundings (e.g., u, v, or wind speed and direction) for user-defined level and layer
structures based on height, pressure, or both; that is, one to all optional forms of
output may be selected by the user. The underlying wgrib2 commands, Python 3
scripts, US National Center for Atmospheric Research Command Language (NCL)
script (Reen 2017), and C programs remain as before, except that a short Python 3
script was written to help define the sounding locations from the model output and
a requested modification to the output required a few minor code changes to the
output section of a C program.

2. Scripts

Bash scripts were developed earlier for extraction of vertical soundings from global
(GFS and GALWEM) and mesoscale (WRF) model output (wgrb2.sh and
wrf extract.sh) and conversion into one of two types of output tables based on
either height- or pressure-based user-defined level and layer structures. Another
script converted a RAOB to soundings at user-defined height or pressure levels and
layers. These scripts were extended as discussed in the following subsections.
Appendix A contains flowcharts for the Bash scripts described in Section 2.1
(wgrb2 ma.sh) and Section 2.2 (wrf extract ma.sh). Appendix B has brief
descriptions along with attached code listings for the extended scripts and the
additional Python 3 script. Additionally, a modified version of wgrb2.sh was

Approved for public release; distribution is unlimited.

2

written in response to a user request. This modified version is briefly described in
Section 2.3.

2.1 Script for GRIB2 Input

A variation of the Bash script for extraction of soundings from GRIB2 data was
developed to enable the processing for multiple locations at set intervals from a
specific user-selected initial or base site in a user-defined direction from that site in
degrees from true north up to and including a user-set maximum distance. It also
allows for the user to output one of the user-defined optional types (e.g., wind
components for pressure levels and layers), some combination of output types, or
all of them.

This version of the script is executed by entering its name:
Jwgrb2 ma.sh

The “ ma” refers to multiple soundings (m) for one to all output types (a). As with
wgrb2.sh, the user is asked for the file and path names. The script contains default
values for the number of grid points in the horizontal (x, y) directions and the grid
spacing, 2 and 0.00001°, respectively, but the user has the option of choosing other
values. This default horizontal grid interval is roughly equivalent to 1 m. The user
also enters the interval in kilometers between profile extraction locations (e.g., 10),
the direction of consecutive locations in degrees (e.g., 140), and the maximum
distance in kilometers (e.g., 50). The maximum distance should be some integer
multiple of the interval. If 0 is chosen for the interval, the script skips the entry of
direction and maximum distance and only extracts the profile for the base site.

The output files have the same format as those produced using wgrb2.sh, but the
distance from the base site in kilometers also is included in the filename
(distance = interval x number of the iteration). For example, if the filename of the
output from the wgrib2 commands is TestRun and the interval is 10 km then the
first iteration will produce output with a filename of TestRun_Okm_out, the second
TestRun_10km_out, and so on to the maximum distance chosen by the user (e.g.,
TestRun_60km_out, which is the 7th iteration). The iterations start with the
user-selected site and progress according to the user-selected interval and direction
up to the user-chosen maximum distance. However, since an interval of 0 defaults
to extraction of a profile for the site alone, wgrb2 ma.sh and wgrb2.sh will produce
the same sounding in that case for the same GFS or GALWEM output file.

Following the extraction of the sounding and conversion to a tabular form (the
“ out” file), the user optionally may either exit the program or generate soundings
with user-defined level and layer height- and/or pressure-based structures. If output

Approved for public release; distribution is unlimited.

3

of soundings with user-defined structures is chosen, the user may select one to all
available options (i.e., output files for wind speed and direction and Ty for height
and pressure levels and layers plus u, v wind components and RH for height and
pressure levels and layers).

2.2 Script for netCDF (WRF) Input

Similarly to the modification of the Bash script for processing GRIB2 output files,
the Bash script for processing netCDF (i.e., WRF) files was changed to enable the
processing of multiple locations at set intervals from a specific user-selected initial
or base site in a user-defined direction from that site in degrees from true north up
to and including a user-set maximum distance. It also allows for the user to output
one of the user-defined optional types (e.g., wind components for pressure levels
and layers), a combination of output types, or all of them.

This version of the script is run by entering its name:

Jwrf extract ma.sh

[3

Again, “ ma” refers to multiple soundings (m) for one to all output types (a). As
with wrf extract.sh, the user is asked for the file and path names. The user also
types in the interval in kilometers between profile extraction locations, the direction
of consecutive locations in degrees, and the maximum distance in kilometers. The
maximum distance should be some integer multiple of the interval. If 0 is chosen
for the interval, the script skips the entry of direction and maximum distance and
only extracts the profile for the base site.

The output files have the same format as those produced using wrf extract.sh, but
the distance from the base site in kilometers also is included in the filename as with
wgrb2 ma.sh. For example, if the filename of the output from the included NCL
script is WRFtest and the interval is 10 km then the first iteration will produce
output with a filename of WRFtest Okm, the second WRFtest 10km, and so on to
the maximum distance chosen by the user (e.g., WRFtest 60km, which is the 7th
iteration). The iterations start with the user-selected site and progress according to
the user-selected interval and direction up to the chosen maximum distance. Since
an interval of 0 defaults to extraction of a profile for the site alone,
wrf extract ma.sh and wrf extract.sh will produce the same sounding in this case
for the same WRF output file.

Following the extraction of the sounding, the user optionally may either exit the
program or generate level and layer height- and/or pressure-based profiles.
Similarly as with wgrb2 ma.sh, the user may select one to all available options (i.e.,
output files for wind speed and direction and Ty for height and pressure levels and

Approved for public release; distribution is unlimited.

4

layers as well as u, v wind components and RH for height and pressure levels and
layers).

2.3 Other Modified Scripts

A short Python 3 script, latlondist.py, was written to compute distance increments
and the maximum distance in terms of latitude and longitude from user input in
kilometers. The parent Bash script, or the user if run independently, enters input on
the command line following the program name. The input parameters are latitude
and longitude in decimal degrees (west longitude and south latitude use the
convention of a negative value), the increment in kilometers, and the direction in
decimal degrees from north. The Bash script first computes the latitude increment
and then uses the average of the start and end latitudes of that increment (e.g., 30.5°
for an increment of 0.2° that starts at 30.4° and ends at 30.6°) in the computation
of the longitude increment. While use of the mean latitude versus the start (or end)
latitude may not be significant for a short increment, it may be for a longer one
since the increment in terms of longitude changes with latitude.

The script is executed as follows:
python3 latlondist.py LAT LON DIST DIR

where LAT, LON, DIST, and DIR are latitude, longitude, distance, and direction.
The parent Bash script provides the input values, though the script may be run
separately. The output is a single line in a text file named latlondist with the latitude
and longitude increment, respectively. A sample command line is

python3 latlondist.py 38.5 -105.4 20 290

and the output in the file latlondist is 0.0616° latitude and —0.2163° longitude. Also,
by typing “~h” after the program name (i.e., python3 latlondist.py —h) information
on the program and input parameters will be printed to the screen.

The script for conversion of a RAOB into a sounding with a user-defined structure
was modified to allow for more flexibility in the output. Similarly as with
wgrb2 ma.sh and wrf extract ma.sh, the user may select one to all available
options (i.e., output files for wind speed and direction and Ty for height and pressure
levels and layers plus u, v wind components and RH for height and pressure levels
and layers).

This version of the script is executed by entering its name:
Jraob_a.sh

The “_a” refers to the version for one to all output types.

Approved for public release; distribution is unlimited.

5

An additional version of the wgrb2.sh script described in my previous report (2018)
was developed on request. It generates soundings with a user-defined, height-based
structure only since no pressure-based sounding was needed for the application. It
is similar to wgrb2.sh without the option for a sounding with a user-defined
pressure based structure. Only one type of height-based output file is generated
since the user requested one specific type, that is, wind component and Ty values
in the output (vs. horizontal wind components and RH). Consequently, the output
routine of the C program for converting a RAOB to a sounding with a user-defined
height structure was slightly modified to produce tables with Ty instead of RH.

This additional version also is executed by entering its name:
Jwgrb2 sp.sh

The “ sp” refers to the “special” version. The called C program is a slightly
modified version of convertgfs (see Cogan [2018]) named convertgfs;j.

3. Output

The output files from wgrb2 ma.sh have the same formats as that from wgrb2.sh
(Cogan 2018), but one or more output files of each type are produced depending on
the chosen horizontal distance interval and the maximum distance from the base
site. The files produced by wrf extract ma.sh have the same formats as from
wrf extract.sh, but again several of each type are generated depending on the
interval and maximum distance.

Table 1 presents 10 of 302 lines of output extracted by wgrb2 ma.sh for a vertical
profile from a GALWEM file using the called wgrib2 commands. The location was
20 km from Dulles Airport in Virginia at an azimuth of 200° from true north. The
GALWEM file contained data for the 3-h forecast for an integration with a model
start time of 12 Coordinate Universal Time (UTC) on 7 January 2019. Vertical
profiles extracted from GFS output have nearly the same format

Approved for public release; distribution is unlimited.

6

Table 1 Ten of 302 data lines of the vertical profile extracted from a GALWEM output file
for a location 20 km from Dulles Airport, Virginia, at an azimuth of 200°. The data were for
the 3-h forecast for a model integration starting at 12 UTC on 7 January 2019.

172:35910:d=2019010712:VGRD V-Component of Wind [m/s]:3 mb:3 hour
fest::lon=282.460800,lat=38.810700,i=1,ix=1,iy=1,val=8.00578
173:36120:d=2019010712:UGRD U-Component of Wind [m/s]:2 mb:3 hour
fest::lon=282.460800,lat=38.810700,i=1,ix=1,iy=1,val=64.545
174:36330:d=2019010712:VGRD V-Component of Wind [m/s]:2 mb:3 hour
fest::lon=282.460800,lat=38.810700,i=1,ix=1,iy=1,val=11.8519
175:36540:d=2019010712:UGRD U-Component of Wind [m/s]:1 mb:3 hour
fest::lon=282.460800,1at=38.810700,i=1,ix=1,iy=1,val=69.8118
176:36750:d=2019010712:VGRD V-Component of Wind [m/s]:1 mb:3 hour
fest::lon=282.460800,1at=38.810700,i=1,ix=1,iy=1,val=7.84904
177:36960:d=2019010712:UGRD U-Component of Wind [m/s]:0 mb:3 hour
fest::lon=282.460800,1at=38.810700,i=1,ix=1,iy=1,val=67.5217
178:37170:d=2019010712:VGRD V-Component of Wind [m/s]:0 mb:3 hour
fest::lon=282.460800,1at=38.810700,i=1,ix=1,iy=1,val=-0.555898
179:37380:d=2019010712:HGT Geopotential Height [gpm]:1013 mb:3 hour
fest::lon=282.460800,1at=38.810700,i=1,ix=1,iy=1,val=157.844
180:37590:d=2019010712:HGT Geopotential Height [gpm]:1000 mb:3 hour
fest::lon=282.460800,lat=38.810700,i=1,ix=1,iy=1,val=261
181:37800:d=2019010712:HGT Geopotential Height [gpm]:975 mb:3 hour
fest::lon=282.460800,lat=38.810700,i=1,ix=1,iy=1,val=462.962

Table 2 presents the output from the called Python 3 script gg wg2.sh (Cogan
2018) that converts the very wordy output produced using wgrib2 into a more user-
friendly form that also is more easily processed into a sounding with a user-defined
vertical structure. At this time, that Python 3 script only lists variables of interest
for current and planned applications, but other variables in the wgrib2-generated
output file could be processed as needed.

Approved for public release; distribution is unlimited.

7

Table 2 Header information and data lines extracted from the profile presented in part in
Table 1. Only the first 11 data lines are shown. P is pressure, Hgt is height above mean sea
level (MSL), Tmp is temperature, RH is relative humidity, U is the east—west component of
the wind, and V is the north—south component. The units are as listed.

3 hour forecast after model start at: 2019010712

Latitude: 38.811 Longitude: -77.539
P (hPa) Hgt (m) Tmp (K) RH (%) U (m/s) V (m/s)
1018.9 111.1 274.29 58.3 -2.39 -0.44
1013.0 157.8 273.53 58.4 -3.50 -0.67
1000.0 261.0 272.51 60.2 -4.01 -0.73
975.0 463.0 270.61 64.7 -4.05 -0.64
950.0 668.0 269.78 48.1 -3.63 -0.25
925.0 879.8 271.64 21.6 -2.41 0.98
900.0 1098.6 274.13 6.4 -1.27 1.80
875.0 1325.6 275.73 1.2 0.84 2.18
850.0 1559.6 276.58 1.5 2.55 2.00
825.0 1801.4 276.33 1.8 3.14 1.50
800.0 2049.4 275.01 10.2 3.45 0.51

Table 3 presents a sounding extracted from the 12-h forecast output of a WRF
integration. The model started at 00 UTC on 9 November 2018. The sounding is
for a location 30 km from Dulles Airport, Virginia, along an azimuth of 245° from
the airport. The header contains the requested latitude and longitude in degrees,
elevation in meters MSL, date and time string extracted from the input filename,
horizontal grid spacing in meters, latitude and longitude of the profile, and a number
indicating the selected interpolation method. The latitude and longitude of the
requested and computed locations are the same for the inverse distance weighting
(option 1) and bilinear (option 2) interpolations. However, they are different if there
is no interpolation, that is, extraction of the grid point nearest to the requested
location (option 0).

Approved for public release; distribution is unlimited.

8

Table 3 Sounding extracted from the 12-h forecast output of a WRF integration starting
at 00 UTC on 9 November 2018 for a location 30 km from Dulles Airport, Virginia, at an
azimuth of 245°. The first 15 data lines are shown. The first header line contains the requested
latitude and longitude in decimal degrees, elevation in meters, and the date and time string
extracted from the input filename. The second header line has horizontal grid spacing in
meters, latitude and longitude of the profile, and a number indicating the selected
interpolation method. Each data line has height in meters MSL, pressure in hPa, temperature
in °C, RH in %, wind speed in ms™!, and wind direction in degrees.

38.8658 77.7748 190.03 2018-11-09 12:00:00
3000.0 38.8658 -77.7748 2

190.03 1001.08 .01 71.91 0.86 106.76
201.74 999.43 .96 68.82 0.86 106.96
233.03 995.62 .01 65.31 3.45 107.23
280.15 989.90 .78 63.39 5.16 104.91
335.38 983.23 .39 62.52 6.37 103.21
398.88 975.62 .89 62.51 7.39 102.25

470.74 967.05
547.20 958.00
636.66 947.52
739.58 935.61
856.48 922.26
987.67 907.46
1133.69 891.25
1295.29 873.62
1478.23 854.11

.39 63.52 8.58 102.64
.11 66.51 10.18 105.09
.05 75.15 11.90 110.24
.99 88.35 13.39 118.34
.66 98.19 14.19 127.87
.09 95.34 13.97 136.02
.67 81.06 12.55 144.41
.72 63.95 11.19 153.97
.16 42.45 11.26 152.74

WRNDNWWWDS DD OOy O

The output profiles from wgrb2 ma.sh and wrf extract ma.sh, as well as a RAOB
sounding from the University of Wyoming (http://weather.uwyo.edu/upperair
/sounding.html) or the NOAA archive (https://ruc.noaa.gov/raobs/), may be
converted into soundings with one or more of the several user-defined structures as

noted in Section 2. The output formats are the same as presented in my earlier report
(Cogan 2018). The height or pressure level and layer structures are defined by the
parameter files usrhgt 1vls and usrprs_lvls, respectively. Here we present a sample
from wgrb2 ma.sh and another from wrf extract ma.sh (Tables 4 and 5,
respectively).

Approved for public release; distribution is unlimited.

9

http://weather.uwyo.edu/upperair/sounding.html
http://weather.uwyo.edu/upperair/sounding.html
https://ruc.noaa.gov/raobs/

Table 4 Sounding with wind speed, wind direction, and Tv derived from GALWEM output
for the same location and time as Table 1, and with a user-defined vertical height structure as
defined in the file usrhgt_lvls. The first 15 data lines are shown. Layer weighted mean values
are shown along with the midpoint heights above ground level (AGL), except for the surface
(layer 0), which has the model output surface values. “Date:” has the date—time group from
the input file, Elevation is in m MSL, Latitude and Longitude are in decimal degrees, and the
values for Ceiling and Visibility are place holders (-999 means missing data) for possible future
use. Wind_Dir is wind direction and Virt_Temp is Tv. The units are as shown.

USER DEFINED MODEL LAYER OUTPUT

Date: 2019010712 Time: 3 Latitude: 38.811 Longitude: -77.539
Elevation: 111.10 Ceiling: =-999.0 Visibility: =-999.0

Layer Height Wind Dir Wind Speed Virt Temp Pressure Temperature

(m) (degrees) (kn) (K) (hPa) (K)
0 0.0 79.6 4.72 274.68 1018.90 274.29
1 100.0 79.5 7.18 273.41 1006.27 273.04
2 350.0 81.6 7.80 271.15 975.09 270.82
3 750.0 107.0 5.15 271.81 927.21 271.66
4 1250.0 206.0 4.41 275.71 871.16 275.69
5 1750.0 249.2 6.62 275.90 818.91 275.85
6 2250.0 257.8 10.67 273.16 769.50 272.92
7 2750.0 254.4 23.48 271.51 722.73 271.20
8 3250.0 270.1 35.70 269.62 678.38 269.25
9 3750.0 282.6 44.89 266.90 636.60 266.48
10 4250.0 289.4 46.51 264.11 596.97 263.69
11 4750.0 294.8 47.51 262.28 559.44 261.88
12 5500.0 292.1 59.74 260.74 507.11 260.34
13 6500.0 290.5 69.97 257.04 444.63 256.72
14 7500.0 291.2 68.68 250.61 388.60 250.43

Approved for public release; distribution is unlimited.

10

Table 5 Sounding with wind components and RH derived from WRF output for the same
location and model time as Table 3 with a user-defined vertical pressure level structure as
defined in the file usrprs_lvls. Data values for the listed pressure levels are shown along with
the heights AGL. The first 15 data lines are shown. U-wind and V-wind are the horizontal
wind components. Rel-Humidity is RH. The units are as displayed. The header information
has the same meanings as in Table 4.

USER DEFINED PRESSURE LEVEL OUTPUT (MODEL)

Date:2018-11-09 Time:12:00:00 Latitude:38.866 Longitude:-77.775
Elevation: 190.03 Ceiling: -999.0 Visibility: =-999.0

Level Pressure Height U-wind V-wind Rel-Humidity Temperature

(hPa) (m) (m/s) (m/s) (%) (K)
0 1001.1 0.0 -0.82 0.25 71.91 279.17
1 1000.0 7.7 -0.82 0.25 69.89 279.14
2 990.0 89.3 -4.96 1.32 63.42 278.94
3 975.0 214.0 -7.30 1.59 62.58 278.01
4 950.0 425.4 -10.85 3.77 73.10 277.22
5 925.0 642.3 -11.32 8.22 96.16 276.89
6 900.0 864.5 -8.60 10.12 88.80 276.06
7 875.0 1092.5 -5.10 10.07 65.30 275.88
8 850.0 1327.3 -5.20 10.12 42 .38 276.36
9 825.0 1569.5 -3.24 11.49 55.28 276.67
10 800.0 1819.8 4.28 14.36 88.81 277.37
11 775.0 2078.5 10.32 15.16 100.00 277.48
12 750.0 2345.3 12.55 13.04 100.00 276.13
13 725.0 2619.8 14.21 11.51 99.78 274.71
14 700.0 2902.4 15.87 11.10 98.56 273.27

4. Conclusion

This brief report presents enhancements to a few of the Bash scripts presented in
my earlier report (Cogan 2018). In addition, minor modifications to an earlier Bash
script and a called C program were made as a result of a user request related to the
application of the output. The two reports together provide a description of the
overall set of scripts and programs that may be used to extract vertical profiles from
GRIB2 (GFS and GALWEM) and netCDF (WRF) meteorological model output
and compare them to soundings from RAOBs or with one another. Examples of the
latter could include output from the same model running with different
configurations such as with different physics packages or at different horizontal or
vertical grid resolutions, or output from different models such as GFS and
GALWEM. Nearly all of the C programs noted herein and in the previous report
are available on the US Army Combat Capabilities Development Command Army
Research Laboratory’s GitHub site (https://github.com/usarmyresearchlab), and
the others, including the Bash and Python 3 scripts and most of the NCL script, are
available in this report or Cogan (2018).

Approved for public release; distribution is unlimited.

11

5. References

Cogan J. Extraction and comparison of vertical profiles from global and mesoscale
models. Adelphi Laboratory Center (MD): Army Research Laboratory (US);
2018 Dec. Report No.: ARL-TR-8589.

Dutsch ML. Evaluation of the WRF model based on observations made by
controlled meteorological balloons in the atmospheric boundary layer of
Svalbard. Bergen (Norway): Meteorologisk Institutt, Bergen; 2012.

Ingleby B, Isaksen L, Kral T, Haiden T, Dahoui M. Improved use of atmospheric
in situ data. In: ECMWEF Newsletter. 2018;155:20-25. doi:10.21957
/cf724bi05s.

Kilpelainen T, Vihma T, Mannienen M, Sjoblom A, Jakobson E, Palo T, Maturilli
M. Modelling the vertical structure of the atmospheric boundary layer over
Arctic fjords in Svalbard. Q J R Meteorol Soc. 2012;138:1867—1883.

Reen B. Army Research Laboratory (US), Adelphi Laboratory Center, MD.
Personal communication, 2017.

Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG,
Huang X-Y, Wang W, Powers JG. A description of the Advanced Research
WRF Version 3. Boulder (CO): National Center for Atmospheric Sciences;
2008. Report No.: NCAR/TN-475+STR.

Approved for public release; distribution is unlimited.

12

Appendix A. Flowcharts for the Bash Scripts

This appendix appears in its original form without editorial change.

Approved for public release; distribution is unlimited.

13

This Appendix contains flowcharts for the Bash scripts wgrb2 ma.sh and
wrf extract ma.sh. They may be compared with those for wgrb2.sh and
wrf _extract.sh in my earlier report. !

!Cogan J. Extraction and comparison of vertical profiles from global and mesoscale models. Adelphi
Laboratory Center (MD): Army Research Laboratory; 2018 Dec. Report No.: ARL-TR-8589.

Approved for public release; distribution is unlimited.

14

~ Enter name and path of input GRIB2 file
(GFS or GALWEM).
—%

—Isinputa PVM GALWEM file? ——
e
Enter output file name.

4
Enter base latitude and longitude.
¥

Ifl=
Enter distanceincrement (l) in whole km.

Enter direction (to) as measured from true north (0-360 degrees).
¥

Run latlondist.py to obtain increment in terms of lat and lon.
Enter maximum distanae in whole km.
Run latlondist.py to maximum ;istance in terms of lat and lon.
Compute number of inc rement: over the maximum distance.
Select the number of grid points and in:erval in output small grid, or use defaults.
+

While loop from site to maximum distance (over number increments) <

i
Compute lat and lon for current iteration.

i
If X = yes run wgrib2 as modified for PVM GALWEM.
If X = no run “standard” wgrib2 for other GRIB2 output.

Run wgrib2 command to generate sounding output.
+
Run gg wg2.py to produce user friendly text sounding.

25 Compute user deﬁned soundlngs?

. No/ : \ Yes
/Outputsoundingwith § _
/ model data levels. Has' Select output type

_out added to na me, / / \
Wlndspd{dlrw U, ¥, and RH

Se}ecl: output basis. "~ Se]ect cutput ba5|s

| Height | t Both | | Pressure | | Height H Both | [Pressure |

N

| Run convertgfs || Run convertprsgfs || Run convertgfsl || Run convertprsgfsl |

| Output ! Output /Output /Output
f* _out_USRLVL _out USRLVL P /| _-"’ out_USRLVLI | '* out_USRLVL_P1 |

’ _out_USRMSG |/ *_out USRMSG_ P' '* out USRMSG1 * out USRMSG Pl

\'_\ //

Index > number |m:rements?

.‘./"l"es" —

End scrlpt

Fig. A-1 Flowchart of the Bash script wgrb2_ ma.sh

Approved for public release; distribution is unlimited.

15

Enter name and path of input WRF file (netCDF:l._____..----"""--
< 2
Specify the case day-time in
the specified format.
¥

—Sel ect input file grid resol-i;t'i'o'_f{.j'_ —

!

| Enter base latitude and longitude. |
¥

[Enter distance increment in whole km. IL

L i

| Run latlondist.py to obtain increment in terms of lat and lon. |
L

| Enter direction (to) as measured from true north (0-360 degrees). |

¥
| Enter maximum distance in whole km. |
¥
| Run latlondist.py to maximum distance in terms of lat and lan. |
¥

| Compute number of increments over the maximum distance. |
¥

| While loop from site to maximum distance (over number increments) |<—
A 4

Run part 1 of extract_profile.ncl to get available
spatial and temporal ranges.

¥
Enter index for desired model time. |
v

Select type of interpolation: nearest
grid point, inverse distance, or bilinear.

I Run part 2 of extract_profile.ncl to extract sounding.

= Compute user defined soundmg_s? o
: No/ = \ Yes
QOutput sounding with
model data levels. Sefect autputtype

| Windspd/dirand Tv |

Séh_'e_':.ft- output hagls =

I Height_ll Both | | Pressure] | Height || Both H Pressure l

| Run convertwrf || Run convertprswrf || Run convertwrfl || Run convertprawrfl |

| L]

[Output /[Output [/ | Output / | Output 7
* USRLVL | |/ * _USRLVL_P I-'I ."I * _USRLVL1 [[/ *_USRLVL P1
* USRMSG | * USRMSG_| P * USRMSG] " * USRMSG_| Pl

S oo

lndex > number mcrements?

Fig. A-2 Flowchart of the Bash script wrf_extract_ma.sh

Approved for public release; distribution is unlimited.

16

Appendix B. Extended Scripts and Additional Python 3 Script

Approved for public release; distribution is unlimited.

17

The modified scripts wgrb2 ma.sh, wrf extract ma.sh, raob_a.sh, and latlondist.py
are very briefly described in this Appendix and the respective listings in text format
are attached.

wgrb2 ma.sh: Extracts one or more “soundings” from a Global Forecast System or
Global Air Land Weather Exploitation Model output file and converts them to
soundings with user height or pressure levels and layers. Includes options for the
user. If 0 is chosen for the increment, then the sounding for the base site alone is
extracted. In that case, the script will produce the same output as wgrb2.sh (single
site only). The user may generate soundings with one to all of the optional
combinations of output types and height and pressure level and layer structures.

wrf extract ma.sh: Extracts one or more soundings from a Weather Research and
Forecasting output file and converts them to soundings with user height or pressure
levels and layers. Includes options for the user. If 0 is chosen for the increment,
then the sounding for the base site alone is extracted. In that case, the script will
produce the same output as wrf extract.sh (single site only). The user may generate
soundings with one to all of the optional combinations of output types and height
and pressure level and layer structures. The included US National Center for
Atmospheric Research (NCAR) Command Language program was written by
Reen? as were certain related parts of the Bash script.

raob_a.sh: Takes a radiosonde sounding from the University of Wyoming’s
weather website or from the National Oceanic and Atmospheric Agency archive
website and converts it to forms with user height or pressure levels and layers.
Includes options for the user. The user may generate soundings with one to all of
the optional combinations of output types and height and pressure level and layer
structures.

latlondist.py: Converts an input distance in kilometers to the equivalent increment
in latitude and longitude in decimal degrees given input of initial latitude and
longitude, distance in kilometers, and direction relative to true north from the initial
site (i.e., azimuth). Used by wgrb2 ma.sh and wrf extract ma.sh, but may be used
separately.

2 Reen B. Army Research Laboratory, Adelphi Laboratory Center, MD. Personal communication,
2017.

Approved for public release; distribution is unlimited.

18

List of Symbols, Abbreviations, and Acronyms

AGL above ground level

ECMWF European Centre for Medium-Range Weather Forecasting
GALWEM Global Air Land Weather Exploitation Model

GFS Global Forecast System

GRIB2 Gridded Binary

MSL mean sea level

NCEP National Center for Environmental Prediction

NCL US National Center for Atmospheric Research Command
Language

NOAA National Oceanic and Atmospheric Agency

NWP numerical weather prediction

RAOB radiosonde observation

RH relative humidity

Ty virtual temperature

UTC Coordinated Universal Time

WRF Weather Research and Forecasting

Approved for public release; distribution is unlimited.

19

1 DEFENSE TECHNICAL
(PDF) INFORMATION CTR
DTIC OCA

2 DIRCCDC ARL
(PDF) IMAL HRA
RECORDS MGMT
FCDD RLD CL
TECH LIB

1 GOVT PRINTG OFC
(PDF) A MALHOTRA

1 CCDC ARL
(PDF) FCDD RLC E
J COGAN

Approved for public release; distribution is unlimited.

20

	List of Figures
	List of Tables
	1. Introduction
	2. Scripts
	2.1 Script for GRIB2 Input
	2.2 Script for netCDF (WRF) Input
	2.3 Other Modified Scripts

	3. Output
	4. Conclusion
	5. References
	Appendix A. Flowcharts for the Bash Scripts 0F(
	Appendix B. Extended Scripts and Additional Python 3 Script
	List of Symbols, Abbreviations, and Acronyms

#!/bin/env python3

#Name: latlondist.py

#Converts distance in km to distance in decimal latitude and longitude.

#

import math

import argparse

#Set up argparse command arguments.

parser = argparse.ArgumentParser(description='Computes latitude and/or longitude distance from km distance in any direction.')

parser.add_argument('lat', help='Latitude in decimal degrees.')

parser.add_argument('lon', help='Longitude in decimal degrees.')

parser.add_argument('distance', help='Distance entered in km.')

parser.add_argument('angle', help='Angle of direction of interest from north in degrees.')

parser.add_argument('-v', '--verbosity', action='store_true')

arg = parser.parse_args()

#Set variables from input parameters.

distance = float(arg.distance) #Distance entered in km.

angle = float(arg.angle) #Angle from north in degrees.

lat = float(arg.lat) #Latitude in decimal degrees.

lon = float(arg.lon) #Longitude in decimal degrees.

if arg.verbosity:

 print('lat, lon, distance(km), angle(degrees): ', arg.lat, ' ', arg.lon, ' ', arg.distance, ' ', arg.angle, '\n')

#Compute distances in terms of latitude and/or longitude.

if angle >= 0 and angle <= 360:

 rad_lat = math.radians(lat)

 cos_lat = math.cos(rad_lat)

 rad_angle = math.radians(angle)

 lat_1deg_dist = 111

 latdist = distance*math.cos(rad_angle)/lat_1deg_dist

 londist = distance*math.sin(rad_angle)/(cos_lat*lat_1deg_dist)

else:

 print('The angle from north cannot be < 0 or > 360 degrees. Exiting script.\n')

 exit()

with open("latlondist", "w") as fo:

 outstring = '{0:7.4f} {1:8.4f}\n'.format(latdist, londist)

 fo.write(outstring)

#Uncomment the following if you want to print values to screen.

#latdist = round(latdist, 4)

#londist = round(londist, 4)

#print('latdist(degrees) ', latdist, '\nlondist(degrees) ', londist, '\n')

#!/bin/bash

#

#Script name: raob_a.sh

#This script is used to process RAOB files from the U of Wyoming or from the NOAA archive.

#The user has the option of generating soundings with one to all of the available user-defined

#height and pressure level and layer structures.

#

echo This script, raob_a.sh processes radiosonde observation \(RAOB\) data from either the U of Wyoming

echo web site or the NOAA archive site. The data from the U of Wyoming site may have missing

echo data fields which are left as blank spaces. The program for generation of user defined

echo profiles can account for many of these situations, but not all \(e.g, missing fields in the

echo middle of a sounding which should not occur, but they occasionally happen\).

echo NOTE: the U of Wyoming weather web site for upper air is http://weather.uwyo.edu/upperair/

echo and the NOAA archive site is https://ruc.noaa.gov/raobs/.

echo

echo -n 'Enter input RAOB file name (without path name): '

read raob_input

echo

echo -n 'Is the file from the U of Wyoming site (w) or NOAA site (n). Type w or n: '

read file_type

echo

echo -n 'Output with wind speed/dir and virtual temp (s) or u,v components and rel humidity (c) or both (b): '

read output_type

if [$output_type != "s"] && [$output_type != "c"] && [$output_type != "b"]

then

 echo

 echo 'Need to enter s or c or b for type of output.'

 echo 'Exiting script'

 exit

fi

if [$file_type == "w"] # U Wyoming or NOAA sounding being processed.

then

 convert=convertwyo

 convertp=convertprswyo

 convert1=convertwyo1

 convertp1=convertprswyo1

elif [$file_type == "n"]

then

 convert=convertnoaa

 convertp=convertprsnoaa

 convert1=convertnoaa1

 convertp1=convertprsnoaa1

else

 echo

 echo 'Need to enter w or n to obtain a user defined vertical profile.'

 echo 'Exiting script.'

 exit

fi

#Fill the input_parameters file with the input and output paths.

echo

echo 'Enter full input path for use by profile generation program (use / at end of path name).'

read inpathname

echo $inpathname > input_parameters

echo

echo -n 'Enter y or yes if want output path = input path: '

read path_choice

if [$path_choice == "y"] || [$path_choice == "yes"] # Select output path = input path.

then

 outpathname=$inpathname

 echo User chose to use same path for input and output.

else

 echo Enter output path for use by profile generation program.

 read outpathname

fi

echo $outpathname >> input_parameters

echo $outpathname

echo

Wind spd/dir and Tv; or u, v and RH; or both in output.

echo -n 'For the output profiles, enter h for height based, p for pressure based, or b for both: '

read prof_type

 if [$prof_type != 'h'] && [$prof_type != 'p'] && [$prof_type != 'b']

 then

 echo 'Need to rerun script and enter h (height based) or p for pressure based, or b for both.'

 exit

 fi

 echo

if [$prof_type == "b"] && [$output_type == "b"]

then

 ./$convert $raob_input

 ./$convertp $raob_input

 ./$convert1 $raob_input

 ./$convertp1 $raob_input

elif [$prof_type == "b"] && [$output_type == "s"]

then

 ./$convert $raob_input

 ./$convertp $raob_input

elif [$prof_type == "b"] && [$output_type == "c"]

then

 ./$convert1 $raob_input

 ./$convertp1 $raob_input

elif [$prof_type == "h"] && [$output_type == "b"]

then

 ./$convert $raob_input

 ./$convert1 $raob_input

elif [$prof_type == "h"] && [$output_type == "s"]

then

 ./$convert $raob_input

elif [$prof_type == "h"] && [$output_type == "c"]

then

 ./$convert1 $raob_input

elif [$prof_type == "p"] && [$output_type == "b"]

then

 ./$convertp $raob_input

 ./$convertp1 $raob_input

elif [$prof_type == "p"] && [$output_type == "s"]

then

 ./$convertp $raob_input

elif [$prof_type == "p"] && [$output_type == "c"]

then

 ./$convertp1 $raob_input

else

 echo No user defined profile selected. Need to rerun script and enter h, p, or b to obtain profile\(s\).

 echo

 exit

fi

echo

echo End of user defined profile from RAOB sounding script.

echo

#!/bin/bash

#Name: wgrb2_ma.sh

#The bash script wgrb2_ma.sh is used to process both GFS and GALWEM output files,

#but extra processing within the script is performed when GALWEM files are of the type

#used as input to PVM. That GALWEM version has a somewhat different format which makes

#wgrib2 ignore the wind component data (i.e., u and v wind components are in separate

#sections vs. being contiguous for the same data level). The extra processing

#resolves that issue.

#

#The script processes multiple soundings from the input GFS or GALWEM files starting

#from the user chosen location to a maximum distance in km along a user selected

#direction (from true north) and at intervals chosen by the user. The user has the

#option of choosing to produce output files with various combinations of user

#defined output variables and structures. All optional types may be output as well.

#In this version the input file and directory (path) are entered by the user.

#

echo

echo Enter input grib2 file name including path \(complete or relative\).

read grib2_input

echo

#Extract path of input file from file name.

inpath=$(dirname "$grib2_input")

echo

echo -n 'Is the input file GALWEM output in the PVM compatible format? Enter y or yes if PVM compatible: '

read pvm_format

echo

echo Enter name of output file without the \"_out\" extension.

read input_file

echo

echo To obtain a profile very close to the desired location use a separation that

echo is very small, such as 0.0001 degrees. Use a grid size of 2 by 2 grid points.

echo

echo -n 'Enter base latitude in decimal degrees (-90<lat<90): '

read baselat

echo -n 'Enter base longitude in decimal degrees (-180<lon<180): '

read baselon

echo

echo $baselat $baselon

echo

#Set increment to 0 to have output for site only.

echo -n 'Enter + or - increment in whole number of km (if set to 0 will output for site only): '

read increment

if [$increment != 0]

then

 echo

 echo -n 'Enter direction as measured from true north (0-360 degrees): '

 read angle

 echo

#

#Get increment distance in terms of degrees latitude and longitude.

#

 python3 latlondist.py $baselat $baselon $increment $angle

#The following code extracts the line of data from the output text file latlondist and

#converts it into an array via the line starting with IFS.

 latlong=$(<latlondist)

 IFS=' ' read -a larray <<< "$latlong"

 lat_increment=${larray[0]}

 lon_increment=${larray[1]}

 echo $lat_increment 'lat_increment'

 echo $lon_increment 'lon_increment'

 echo

 echo "Enter + or - maximum distance in km. If not the same sign as the increment the program"

 echo "will run, but there may be some confusion w/r the direction of consecutive soundings. "

 read maxdist

 echo

#

#Get maximum distance in terms of degrees latitude and longitude.

#

 python3 latlondist.py $baselat $baselon $maxdist $angle

#The following code extracts the line of data from the output text file latlondist and

#converts it into an array via the line starting with IFS.

 latlong=$(<latlondist)

 IFS=' ' read -a larray <<< "$latlong"

 lat_max=${larray[0]}

 lon_max=${larray[1]}

 echo $lat_max 'lat_max'

 echo $lon_max 'lon_max'

 echo

fi

#Find number of increments to iterate over in while loop.

#$maxdist and $increment normally have the same sign, but

#the script will run if different signs. But could cause

#some confusion w/r direction of consecutive soundings.

if [$increment == 0]

then

 lat_increment=0 #Needed for later computation within while loop.

 number_increments=0

else

 number_increments=$(($maxdist / $increment))

 if [$number_increments -lt 0]

 then

 echo $number_increments 'Initial negative increment number. Unequal signs for increment and maxdist.'

 number_increments=$(bc <<< "scale=4; $number_increments*-1")

 fi

fi

echo

#The following section of code sets up parameters for the small grib2 file

#output by the first wgrib2 command.

echo 'Enter y or yes if default values for input to wgrib2 to be used for'

echo -n 'number of x and y grid points and x and y grid separation distances: '

read choice

if [$choice == 'y'] || [$choice == 'yes'] #Check if defaults to be used.

then

 xnumber=2

 ynumber=2

 xgrid_space=0.00001

 ygrid_space=0.00001

else

 #Currently assumes a square grid where number x pts = number y pts.

 echo 'Enter number of grid points for x and y (assumes square grid, e.g., 2 x 2 points).'

 read xnumber

 ynumber=$xnumber

 #Currently assumes latitude interval in degrees = longitude interval in degrees.

 echo Enter x and y grid interval in degrees \(assumes equal intervals\).

 read xgrid_space

 ygrid_space=$xgrid_space

fi

#echo

#echo $xnumber $ynumber $xgrid_space $ygrid_space

echo

lon_grid=$baselon':'$xnumber':'$xgrid_space

lat_grid=$baselat':'$ynumber':'$ygrid_space

echo $lon_grid $lat_grid

echo

number=0 #Initialize the counter (number).

#

#WHILE LOOP over all distances up to and including the maximum distance from the site. ##############

#

while [$number -le $number_increments]

do

echo 'number = ' $number

#Find new value of the base latitude and base longitude.

newlat=$(bc <<< "scale=6; $baselat+$lat_increment*$number")

#echo 'newlat, lat_increment, number = '$newlat' '$lat_increment' '$number

if [$number -gt 0]

then

 #echo 'number = '$number

 newlon=$(bc <<< "scale=6; $newlon+$newlon_increment")

 #echo 'newlon, newlon_increment, number, angle = '$newlon' '$newlon_increment' '$number' '$angle

 midlat=$(bc <<< "scale=4; ($newlat+$oldlat)*0.5")

 #echo 'oldlat midlat newlat = '$oldlat' '$midlat' '$newlat

#Get distances in terms of degrees latitude and longitude.

#

 python3 latlondist.py $midlat $newlon $increment $angle

#The following code extracts the line of data from the output text file latlondist and

#converts it into an array via the line starting with IFS.

 latlong=$(<latlondist)

 echo ' latlong '$latlong

 echo

 IFS=' ' read -a larray <<< "$latlong"

 newlat_increment=${larray[0]}

 newlon_increment=${larray[1]}

 lon=$(bc <<< "scale=4; $newlon+$newlon_increment")

echo $newlat_increment 'newlat_increment'

echo $newlon_increment 'newlon_increment'

echo $lon_increment ' lon_increment'

else

 lon=$baselon

 newlon=$baselon

 newlon_increment=0

fi

#echo

#echo 'newlon, newlon_increment, number = '$newlon' '$newlon_increment' '$number

echo

lat=$newlat

#echo 'newlat and lat_increment = ' $newlat $lat_increment

#echo 'newlon and newlon_increment '$newlon $newlon_increment

echo 'latitude = '$lat

echo 'longitude = '$lon

echo

oldlat=$newlat #oldlat used above for obtaining average latitude for computation of longitude increment.

#Reset the grid longitude and latitude in the lon-grid and lat_grid strings.

lon_grid=$lon':'$xnumber':'$xgrid_space

lat_grid=$lat':'$ynumber':'$ygrid_space

#Perform the wgrib2 calculations to extract sounding data for a specified location.

if [$pvm_format == 'y'] || [$pvm_format == 'yes'] #Use for PVM compatible GALWEM files only.

then

 wgrib2 $grib2_input | sed -e 's/:UGRD:/:UGRDa:/' -e 's/:VGRD:/:VGRDb:/' | \

 sort -t: -k3,3 -k5,8 -k4,4 | \

 wgrib2 $grib2_input -i -set_grib_type same -new_grid_winds earth -new_grid latlon $lon_grid $lat_grid small_file.grb2 > Category_data

else

 #Use with all other GFS and GALWEM files encountered to date. May need other "special cases" in future.

 wgrib2 $grib2_input -set_grib_type same -new_grid_winds earth -new_grid latlon $lon_grid $lat_grid small_file.grb2 > Category_data

fi

file_end=$(bc <<< "scale=4; $increment*$number")'km'

#echo 'file_end: ' $file_end

wgrib2 small_file.grb2 -v -s -lon $lon $lat > $inpath'/'$input_file'_'$file_end #This command works for both of the previous processes.

#Perform the conversion of input_file into a user friendly tabular form.

 python3 gg_wg2.py $inpath'/'$input_file'_'$file_end

#Rest of program assumes output from gg_wg2.py has '_out' added to the file name.

#

#Decide on whether or not to generate a user defined profile.

echo

echo -n 'Enter y or yes if want to compute user defined profiles: '

read user_profile

echo

if [$user_profile == "y"] || [$user_profile == "yes"] # Decide if uesr defined profile generated.

then

#Fill the input_parameters file with the input and output paths.

 if [$number == 0]

 then

 echo Enter complete input path for use by profile generation program.

 echo For example, \'/data/user/files/\' will work, \'files/\' will not.

 echo Exception to rule: \'./\', works if C executable and input file

 echo are in the same directory. For this script the \'/\' at the end is required.

 echo For example, \'/data/files/\' will work, \'/data/files\' will not.

 echo

 read inpathname

 echo

 fi

 echo $inpathname > input_parameters

 echo

 echo -n 'Enter y or yes if want output path = input path: '

 read path_choice

 #echo $path_choice

 if [$path_choice == "y"] || [$path_choice == "yes"] # Select output path = input path.

 then

 outpathname=$inpathname

 echo User chose to use same path for input and output.

 else

 echo Enter complete output path for use by profile generation program.

 read outpathname

 fi

 echo

 echo $outpathname >> input_parameters

 echo $outpathname

 echo

 echo -n 'Wind spd/dir and Tv and/or components (u,v) and RH; enter s (spd/dir) or c (compnents) or b (both): '

 read output_type

 if [$output_type != 's'] && [$output_type != 'c'] && [$output_type != 'b']

 then

 echo Need to rerun script and enter s \(wind spd/dir\) or c \(components\) or b \(both\)to obtain profile\(s\).

 exit

 fi

 echo

 echo -n 'For the output profiles, enter h for height based, p for pressure based, or b for both: '

 read prof_type

 if [$prof_type != 'h'] && [$prof_type != 'p'] && [$prof_type != 'b']

 then

 echo 'Need to rerun script and enter h (height based) or p for pressure based, or b for both.'

 exit

 fi

 echo

 input_filename=$input_file'_'$file_end'_out' #Used for conversion C programs.

 #convertgfs/convertgfs1 and convertprsgfs/convertprsgfs1 work for GALWEM as well as GFS

 #since the extracted soundings have the same format.

 if [$output_type == "b"] && [$prof_type == "b"]

 then

 echo 'input_filename '$input_filename 'with out ' $input_filename'_out'

 echo

 echo

 ./convertgfs $input_filename

 ./convertprsgfs $input_filename

 ./convertgfs1 $input_filename

 ./convertprsgfs1 $input_filename

 elif [$output_type == "b"] && [$prof_type == "h"]

 then

 ./convertgfs $input_filename

 ./convertgfs1 $input_filename

 elif [$output_type == "b"] && [$prof_type == "p"]

 then

 ./convertprsgfs $input_filename

 ./convertprsgfs1 $input_filename

 elif [$output_type == "s"] && [$prof_type == "b"]

 then

 ./convertgfs $input_filename

 ./convertprsgfs $input_filename

 elif [$output_type == "s"] && [$prof_type == "h"]

 then

 ./convertgfs $input_filename

 elif [$output_type == "s"] && [$prof_type == 'p']

 then

 ./convertprsgfs $input_filename

 elif [$output_type == "c"] && [$prof_type == 'b']

 then

 ./convertgfs1 $input_filename

 ./convertprsgfs1 $input_filename

 elif [$output_type == "c"] && [$prof_type == 'h']

 then

 ./convertprsgfs $input_filename

 elif [$output_type == "c"] && [$prof_type == 'p']

 then

 ./convertprsgfs1 $input_filename

 fi

else

 echo No user defined profile generated at the user\'s request.

fi

let number=$number+1

#echo 'number for new iteration of while loop: '$number

done #End of while loop.

echo

echo End of GRIB2 vertical profile extraction and conversion script.

echo

#!/bin/bash

#Script name: wrf_extract_ma.sh

#This script extracts vertical proflies of meteorological variables at multiple user selected

#locations (lat and lon) from a WRF output file and converts it into a "sounding" for

#user selected levels or layers. A base lat/lon is entered, followed by an increment in

#terms of latitude and longitude. This version can extract soundings along a line in a

#direction at a user selected angle from north.

#

#Input file can be in the standard WRF output format (e.g., wrfout_d02_2018-05-09_12:00:00)

#or some other name. However, must use the standard date-time format (e.g., 20180508_12-00-00)

#at the end of the filename. Otherwise the script may crash. An example of an alternate name

#could be wrfout_d02_IAD_GAL_2018-12-04_12:00:00. However, names such as

#wrfout_d02_IAD_2018-12-04_12:00:00_GFS or wrfout_d02_IAD_GAL_2018-12-04_satdata_12:00:00

#will not work.

#

#In this version the filename with path are entered via user responses; case_day_text is extracted

#from the filename (with path). Output of all available user selectable variables and structures allowed.

#

echo

echo "Enter the name of the input file including the path if not in same directory as the script."

read input_file

echo

#Extract path of input file from file name.

input_path=$(dirname "$input_file")

#Input path for input WRF output file.

#echo "Enter the path to the input file (no / at end of path name)."

#read input_path

#echo

#The parameter case_day_text is extracted from the file name vs. entered separately by the user.

#A case day (and time) is normally the last part of the WRF output name (e.g., 2017-06-26_18:00:00).'

length_text=${#input_file}-19

#echo 'case_day_text: '${input_file:$length_text}

case_day_text=${input_file:$length_text}

echo 'case_day_text: '$case_day_text

echo

#Script to change which domain is linked to.

file_to_link_from='wrfout.nc'

#Set the base directory (the path).

wrf_out_base_dir=$input_path

echo "wrf_out_base_dir: " $wrf_out_base_dir

echo

#If the file we wish to link from exists but is not a link

#error and exit.

if [-f "$file_to_link_from"] && [! -h "$file_to_link_from"]; then

 echo "ERROR: $file_to_link_from exists but is not a link."

 echo "Will not remove $file_to_link from to avoid possibly removing a file that should not be removed"

 exit

#If the file we wish to link from exists and IS a link

#delete it.

elif [-h "$file_to_link_from"]; then

 rm -f $file_to_link_from

fi

#If the file remains after deleting error and exit.

if [-f "$file_to_link_from"]; then

 echo "ERROR: After removal link $file_to_link_from still exists!"

 exit

fi

#Arrays are zero-based but we ignore the 0 value here for simplicity.

#echo "WRF output is available from the following cases"

#case_day_choice=1. THIS SELECTION METHOD NOT USED IN THIS VERSION.

echo "WRF output is available for up to the listed domains"

echo "1. Outer domain (d01)horizontal grid spacing"

echo "2. d02 horizontal grid spacing"

echo "3. d03 horizontal grid spacing"

echo "4. d04 horizontal grid spacing"

echo "5. d05 horizontal grid spacing"

echo "6. d06 horizontal grid spacing"

echo -n "Choose a domain: "

read domain_choice

#Since case day entered by user there is only 1 case day. Original

#allowed > 1 case day that was entered or modified within the script.

#Text regarding date/time associated with case day.

echo

#Reading exp_num_text no longer used in this version.

#echo -n 'Enter an experiment name which is the directory name holding the WRF output(e.g., LMN_2018051100): '

#read exp_num_text

#echo

domain_text[1]="d01"

domain_text[2]="d02"

domain_text[3]="d03"

domain_text[4]="d04"

domain_text[5]="d05"

domain_text[6]="d06"

echo "User chose to process WRF file beginning at ${case_day_text} for domain ${domain_text[$domain_choice]}"

echo

#Copy input file to "standard" name for wrf output file.

if [$input_file != $input_path"/wrfout_"${domain_text[$domain_choice]}"_"$case_day_text]

then

 cp $input_file $input_path"/wrfout_"${domain_text[$domain_choice]}"_"$case_day_text

 echo $input_path"/wrfout_"${domain_text[$domain_choice]}"_"$case_day_text

 echo "Different file name"

else

 echo "Same as standard wrf output file name."

fi

#echo "file name to be used"

#echo $input_path"/wrfout_"${domain_text[$domain_choice]}"_"$case_day_text

file_to_link_to="wrfout_${domain_text[$domain_choice]}_${case_day_text}"

file_to_link_to_with_path=${wrf_out_base_dir}"/"${file_to_link_to}

#echo "file to link to with path"

#echo $file_to_link_to_with_path

echo "Linking $file_to_link_from to $file_to_link_to_with_path"

ln -s $file_to_link_to_with_path $file_to_link_from

echo

echo End generaton of wrfout.nc.

echo 'Begin extraction of profile(s).'

echo

#Select whether lat or lon incremented, base lat/lon, increment distance in km, maximum distance.

echo -n 'Enter base latitude (decimal degrees): '

read baselat

echo -n 'Enter base longitude (decimal degrees): '

read baselon

echo

echo 'baselat and baselon ' $baselat $baselon

echo

echo -n 'Enter + or - increment in whole number of km (if set to 0 will output for site only): '

read increment

if [$increment != 0]

then

 echo

 echo -n 'Enter direction as measured from true north (0-360 degrees): '

 read angle

 echo

#

#Get increment distance in terms of degrees latitude and longitude.

#

 python3 latlondist.py $baselat $baselon $increment $angle

 latlong=$(<latlondist)

 IFS=' ' read -a larray <<< "$latlong"

 lat_increment=${larray[0]}

 lon_increment=${larray[1]}

 echo $lat_increment 'lat_increment'

 echo $lon_increment 'lon_increment'

 echo

 echo 'Enter + or - maximum distance in km (if not the same sign as increment'

 echo 'the script will run, but may not have the expected outcome.)'

 read maxdist

 echo

#

#Get maximum distance in terms of degrees latitude and longitude.

#

 python3 latlondist.py $baselat $baselon $maxdist $angle

 latlong=$(<latlondist)

 IFS=' ' read -a larray <<< "$latlong"

 lat_max=${larray[0]}

 lon_max=${larray[1]}

 echo $lat_max 'lat_max'

 echo $lon_max 'lon_max'

 echo

fi

#Find number of increments to iterate over in while loop.

#$maxdist and $increment normally have the same sign, but

#the script will run if different signs. But could cause

#some confusion.

if [$increment == 0]

then

 lat_increment=0 #Needed for later computation within while loop.

 lon_increment=0

 number_increments=0

else

 let "number_increments = $maxdist / $increment"

 if [$number_increments -lt 0]

 then

 echo $number_increments 'Initial negative increment number. Unequal signs for increment and maxdist.'

 number_increments=$(bc <<< "scale=4; $number_increments*-1")

 fi

fi

echo 'Number of increments for while loop: '$number_increments

echo

number=0 #Initialize the counter (number).

#

#WHILE LOOP over all distances up to and including the maximum distance from the site.

#

while [$number -le $number_increments]

do

echo 'number = ' $number

#Run to get the available spatiotemporal ranges.

 eval ncl run_to_inform_user_of_options=1 time_index_to_extract=-999 position_specifier_type=-999 latitude_to_extract=-999 longitude_to_extract=-999 x_index_to_extract=-999 y_index_to_extract=-999 interp_option=-999 extract_profile.ncl

#Ask user where and when to extract a profile

 echo -n "Enter the index to the desired time (0-based): "

 read time_index_to_extract

 echo 'In this version only use latitude and longitude.'

#Following block not used in this version.

#echo "To choose the point to extract do you wish to choose:"

#echo " 1) latitude / longitude "

#echo " 2) x/y " Only want lat or lon for this version.

#echo -n ": "

#read position_specifier_type

 position_specifier_type=1

 if [$position_specifier_type -eq 1]

 then

#Find new value of the base latitude and base longitude.

 if [$number -gt 0]

 then

 newlat=$(bc <<< "scale=6; $baselat+$lat_increment*$number")

 echo 'newlat, lat_increment, number = '$newlat' '$lat_increment' '$number

 #echo 'number = '$number

 newlon=$(bc <<< "scale=6; $newlon+$newlon_increment")

 #echo 'newlon, newlon_increment, number, angle = '$newlon' '$newlon_increment' '$number' '$angle

 midlat=$(bc <<< "scale=4; ($newlat+$oldlat)*0.5")

 #echo 'oldlat midlat newlat = '$oldlat' '$midlat' '$newlat

#Get distances in terms of degrees latitude and longitude.

#

 python3 latlondist.py $midlat $newlon $increment $angle

#The following code extracts the line of data from the output text file latlondist and

#converts it into an array via the line starting with IFS.

 latlong=$(<latlondist)

 echo ' latlong '$latlong

 echo

 IFS=' ' read -a larray <<< "$latlong"

 newlat_increment=${larray[0]}

 newlon_increment=${larray[1]}

echo $newlat_increment 'newlat_increment'

echo $newlon_increment 'newlon_increment'

echo $lon_increment ' lon_increment'

 latitude_to_extract=$newlat

 longitude_to_extract=$(bc <<< "scale=4; $newlon+$newlon_increment")

 else

 newlat=$baselat

 newlon=$baselon

 midlat=$baselat

 newlat_increment=0

 newlon_increment=0

 latitude_to_extract=$baselat

 longitude_to_extract=$baselon

 fi

 echo 'newlon, newlon_increment, midlat, newlat_increment, number = '$newlon' '$newlon_increment' '$midlat' '$newlat_increment' '$number

 echo

echo 'newlon and newlon_increment '$newlon $newlon_increment

 echo 'latitude = '$latitude_to_extract

 echo 'longitude = '$longitude_to_extract

 echo

 oldlat=$newlat #oldlat used above for obtaining average latitude for computation of longitude increment.

echo

echo 'End of new lines in WHILE LOOP. #########################'

#echo

 x_index_to_extract=-999

 y_index_to_extract=-999

 echo

 echo 'latitude to extract = '$latitude_to_extract

 echo 'longitude to extract = ' $longitude_to_extract

 echo

#The use of grid index not used in this version.

elif [$position_specifier_type -eq 2]; then

echo -n "Enter the x-index to extract (0-based): "

read x_index_to_extract

echo -n "Enter the y-index to extract (0-based): "

read y_index_to_extract

latitude_to_extract=-999

longitude_to_extract=-999

 else

 echo "Invalid choice. Exiting."

 exit 1

 fi

 if [$position_specifier_type -eq 1]

 then

 echo "Do you wish to:"

 echo " 0) Extract the point nearest to the chosen latitude/longitude"

 echo " 1) Use inverse distance weight interpolation to the chosen latitude/longitude"

 echo " 2) Use bilinear interpolation to the chosen latitude/longitude"

 echo -n ": "

 read interp_option

 else

 interp_option=-999

 fi

#Extract the profile

 eval ncl run_to_inform_user_of_options=0 time_index_to_extract=$time_index_to_extract position_specifier_type=$position_specifier_type latitude_to_extract=${latitude_to_extract}d longitude_to_extract=${longitude_to_extract}d x_index_to_extract=$x_index_to_extract y_index_to_extract=$y_index_to_extract interp_option=$interp_option extract_profile.ncl

 echo

 file_end=$(bc <<< "$increment*$number")'km'

 infile='wrf_profile_'$file_end

 cp wrf_profile $infile

 echo 'Extracted profile filename ' $infile

#ncl function produces a profile with file name wrf_profile.

 echo -n 'If you want the default file name (wrf_profile*) for extracted WRF sounding enter y or yes: '

 read use_default_name

 if [$use_default_name == "y"] || [$use_default_name == "yes"]

 then

 input_file=$infile

 cp $input_file $input_path'/'

 else

 echo "Enter file name for extracted sounding."

 read input_file

 cp wrf_profile $input_path'/'$input_file

 fi

#Decide on whether or not to generate a user defined profile.

 echo

 echo -n 'Enter y or yes if want to compute user defined profiles: '

 read user_profile

 echo

 if [$user_profile == "y"] || [$user_profile == "yes"] # Decide if user defined profile generated.

 then

 #Fill the input_parameters file with the input and output paths.

 if [$number == 0]

 then

 echo 'Enter complete input path for use by profile generation program (use / at end of path name).'

 read inpathname

 echo $inpathname > input_parameters

echo $inpathname

 mv $input_file $inpathname

 echo

 echo -n 'Enter y or yes if want output path = input path: '

 read path_choice

 #echo $path_choice

 if [$path_choice == "y"] || [$path_choice == "yes"] # Select output path = input path.

 then

 outpathname=$inpathname

 echo User chose to use same path for input and output.

 else

 echo "Enter output path for use by profile generation program (use / at end of path name)."

 read outpathname

 fi

 fi

 echo

 echo $outpathname >> input_parameters

 echo 'inpathname = ' $inpathname

 echo 'outpathname = ' $outpathname

 echo

fi

 echo -n 'Wind spd/dir and Tv and/or components (u,v) and RH; enter s (spd/dir) or c (compnents) or b (both): '

 read output_type

 if [$output_type != 's'] && [$output_type != 'c'] && [$output_type != 'b']

 then

 echo Need to rerun script and enter s \(wind spd/dir\) or c \(components\) or b \(both\)to obtain profile\(s\).

 exit

 fi

 echo

 echo -n 'For the output profiles, enter h for height based, p for pressure based, or b for both: '

 read prof_type

 if [$prof_type != 'h'] && [$prof_type != 'p'] && [$prof_type != 'b']

 then

 echo 'Need to rerun script and enter h (height based) or p for pressure based, or b for both.'

 exit

 fi

 echo

 #convertwrf and convertprswrf work for GALWEM as well as GFS since the extracted soundings have the same format.

 if [$output_type == "b"] && [$prof_type == "b"]

 then

 ./convertwrf $input_file

 ./convertprswrf $input_file

 ./convertwrf1 $input_file

 ./convertprswrf1 $input_file

 elif [$output_type == "b"] && [$prof_type == "h"]

 then

 ./convertwrf $input_file

 ./convertwrf1 $input_file

 elif [$output_type == "b"] && [$prof_type == "p"]

 then

 ./convertprswrf $input_file

 ./convertprswrf1 $input_file

 elif [$output_type == "s"] && [$prof_type == "b"]

 then

 ./convertwrf $input_file

 ./convertprswrf $input_file

 elif [$output_type == "s"] && [$prof_type == "h"]

 then

 ./convertwrf $input_file

 elif [$output_type == "s"] && [$prof_type == 'p']

 then

 ./convertprswrf $input_file

 elif [$output_type == "c"] && [$prof_type == 'b']

 then

 ./convertwrf1 $input_file

 ./convertprswrf1 $input_file

 elif [$output_type == "c"] && [$prof_type == 'h']

 then

 ./convertwrf1 $input_file

 elif [$output_type == "c"] && [$prof_type == 'p']

 then

 ./convertprswrf1 $input_file

 fi

 else

 echo No user defined profile generated at the user\'s request.

 echo

 fi

 let number=$number+1

echo 'number is ' $number

done #End of while loop.

echo

echo END OF WRF VERTICAL PROFILE EXTRACTION AND CONVERSION SCRIPT.

echo

