

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

DETECTION AND MITIGATION OF ANTI-FORENSICS
USING FORENSIC TOOLS

by

Emre Caglar Hosgor

December 2018

Thesis Advisor: Neil C. Rowe
Second Reader: Glenn R. Cook

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
December 2018

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
DETECTION AND MITIGATION OF ANTI-FORENSICS USING FORENSIC
TOOLS

5. FUNDING NUMBERS

6. AUTHOR(S) Emre Caglar Hosgor

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
 Although information technology has improved our living standards, it has also provided criminals new
ways to commit crime. Digital crime includes identity theft, online piracy, hacking, and terrorism. For
combating digital crime, new techniques and tools emerge frequently in digital forensics. On the opposite
side, cyber-criminals develop counter-techniques called anti-forensics, which aim to disrupt or manipulate
forensic analysis of crime. This thesis investigated the effectiveness of some representative anti-forensic
tools for data hiding, artifact wiping, and trail obfuscation. We found they varied considerably in
effectiveness and a variety of countermeasures can be used against them.

14. SUBJECT TERMS
computer forensics, anti-forensics, computer forensic tools

15. NUMBER OF
PAGES

83
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

DETECTION AND MITIGATION OF ANTI-FORENSICS USING FORENSIC
TOOLS

Emre Caglar Hosgor
Captain, Army, Turkey

BS, Turkish Military Academy, 2006

Submitted in partial fulfillment of the
requirements for the degrees of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

and

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2018

Approved by: Neil C. Rowe
 Advisor

 Glenn R. Cook
 Second Reader

 Dan C. Boger
 Chair, Department of Information Sciences

 Peter J. Denning
 Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Although information technology has improved our living standards, it has also

provided criminals new ways to commit crime. Digital crime includes identity theft,

online piracy, hacking, and terrorism. For combating digital crime, new techniques and

tools emerge frequently in digital forensics. On the opposite side, cyber-criminals

develop counter-techniques called anti-forensics, which aim to disrupt or manipulate

forensic analysis of crime. This thesis investigated the effectiveness of some

representative anti-forensic tools for data hiding, artifact wiping, and trail obfuscation.

We found they varied considerably in effectiveness and a variety of countermeasures can

be used against them.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1

II. LITERATURE REVIEW ...3
A. ANTI-FORENSICS ...3
B. CATEGORIZATION OF ANTI-FORENSIC TECHNIQUES4
C. DESCRIPTION OF ANTI-FORENSIC CATEGORIES6

1. Data Hiding...6
2. Artifact Wiping ..9
3. Trail Obfuscation ...10
4. Attacks against Digital Forensic Tools and Processes10

III. ANALYSIS OF ANTI-FORENSIC TOOLS ...13
A. DATA HIDING ..14

1. File System Data Hiding Tools and Techniques14
2. Network-Communications Data Hiding17
3. Using Encryption for Data Hiding ...20
4. Steganography and Example Implementation21

B. ARTIFACT WIPING TECHNIQUES ..24
1. File Wiping ...24
2. Generic-Data Wiping and Registry Wiping25
3. Metadata Wiping ...26

C. TRAIL OBFUSCATION...26
D. ATTACKS AGAINST FORENSIC TOOLS AND PROCESSES26

IV. MITIGATION OF ANTI-FORENSICS AND RECOMMENDATIONS27
A. DATA HIDING ..27

1. Detection of File System Data Hiding ..27
2. Detection of Network Communication Data Hiding with

Stunnel ..28
3. Detection and Mitigation Techniques against Encryption

Usage for Data Hiding ...28
4. Detection of Steganography ..29

B. ARTIFACT WIPING ..29
C. MITIGATION TECHNIQUES AGAINST TRAIL

OBFUSCATION AND ATTACK AGAINST FORENSIC
TOOLS ..30

D. SUMMARY ..30

viii

APPENDIX A. ANTI-FORENSIC TOOLS CONSIDERED33

APPENDIX B. INSTRUCTIONS FOR ANTI-FORENSIC TOOLS.........................43
A. BMAP TOOL INSTALLATION, CONFIGURATION

PROCESS AND USAGE EXAMPLE ..43
B. STUNNEL TOOL INSTALLATION, CONFIGURATION AND

USAGE ..44
C. IMAGE STEGANOGRAPHY TOOL SOURCE CODE45
D. PYTHON SCRIPT FOR SHANNON ENTROPY

CALCULATIONS ...53
E. METADATA WIPING AND TRAIL OBFUSCATION

EXPERIMENTS ..55
F. EVENT LOG MANIPULATION ...57

LIST OF REFERENCES ..59

INITIAL DISTRIBUTION LIST ...63

ix

LIST OF FIGURES

Figure 1. Digital Forensic Examination Stages. Source: Yusoff et al. (2011).4

Figure 2. FAT32 and EXT3 Strings Command Output ..15

Figure 3. Testing Alternate Data Streams ...17

Figure 4. Stunnel Topology Used for Experiments ...17

Figure 5. Stunnel Private Key and Certificate and Certificate-Authority Signed
Certificate ...19

Figure 6. The Stunnel Configuration for Improving Security19

Figure 7. Forensic Analysis of VeraCrypt Volumes with TSK Autopsy and
FTK Imager ..21

Figure 8. Data Hiding and Retrieval with a Simple Image Steganography Tool22

Figure 9. Histogram of Base Image in Test ...23

Figure 10. Histogram of Steganography Image in Test ..24

Figure 11. Output of the Shred Tool on a Wiped File ...25

Figure 12. Test File Timestamps ...56

Figure 13. Result of Timestamp Change with timestomp ...56

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF TABLES

Table 1. Anti-forensic Tools ..13

Table 2. Metadata Files in NTFS. Adapted from Huebner et al. (2006).16

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

3DES Triple Data Encryption Standard

AES Advanced Encryption Standard

ASCII American Standard Code for Information Interchange

BEViewer Bulk Extractor Viewer

BIOS Basic Input/output System

CA Certification Authority

CFT Computer Forensic Tools

CPU Central Processing Unit

DBAN Darik’s Boot and Nuke

DES Data Encryption Standard

EXT2 2nd Extended File system

EXT3 3rd Extended File system

EXT4 4th Extended File system

FAT32 File Allocation Table 32 bits

FTP File Transfer Protocol

GB Giga Bytes

GPO Group Policy Objects

HTTP Hypertext Transfer Protocol

IP Internet Protocol

IPsec Internet Protocol Security

IRC Internet Relay Chat

LSB Least Significant Bit

MB Mega Bytes

NAT Network Address Translation

NTFS New Technology File System

PGP Pretty Good Privacy

PKCS Public Key Cryptography Standard

PKI Public Key Infrastructure

POP Post Office Protocol

RSA Rivest, Shamir & Adleman

xiv

TCP Transport Control Protocol

TSK The Sleuth Kit

VPN Virtual Private Network

xv

EXECUTIVE SUMMARY

New techniques and detection mechanisms emerge often in digital forensics. On

the opposite side, cyber criminals develop new techniques against digital forensics, as well

(Lillis, Becker, O’Sullivan, & Scanlon, 2016). The collection of those techniques are called

as anti-forensics. Anti-forensics became a phenomenon after 2005. Initial techniques were

very effective against forensic investigation. However, now we have detection and

mitigation methods for individual anti-forensic techniques. This research examines some

popular detection and mitigation techniques against anti-forensics.

Garfinkel (2007) provided a well-accepted taxonomy for the anti-forensics: data

hiding, artifact wiping, trail obfuscation, and attacks against forensic tools and processes.

This research focused on anti-forensic tools. A tool can have multiple purposes, but we

experimented with the most-used purpose of the anti-forensic tool. The most effective and

popular tool category is encryption since when a file is encrypted, forensic analysis cannot

be conducted. Steganography is also popular, a data hiding technique.

In this research, we provide detection or mitigation methods for each subcategory

of anti-forensics. Some tool detection depends on recovering installation files,

configuration information, and the use of specific “C” libraries. File streams can be

detectable with PowerShell scripts. Network covert-channel detection requires retrieval of

key data from the target system. Steganography detection depends on statistical analysis.

Trail obfuscation requires an exploit, so keeping systems up-to-date and detecting

an exploit is a viable mitigation method. When cyber-criminals use zip bombs or packers

against forensic tools, we can stop them by using FTK Imager, TSK-Autopsy, or Magnet

Forensics AXIOM.

References

Garfinkel, S., & Shelat, A. (2003). Remembrance of data passed: A study of disk
sanitization practices. IEEE Security & Privacy, 99(1), 17–27.

Lillis, D., Becker, B., O’Sullivan, T., & Scanlon, M. (2016). Current challenges and
future research areas for digital forensic investigation. arXiv preprint 1604.03850.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

ACKNOWLEDGMENTS

This thesis is dedicated to my wife, Demet, for her support and understanding. I

would like to thank my advisors, Dr. Neil Rowe and Mr. Glenn Cook, for their guidance

and wisdom.

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Since the introduction of the first computers, information technology and digital

devices have played significant roles in our daily lives. Cyber criminals and attackers have

also been using information technology and digital devices for malicious purposes (Lillis,

Becker, O’Sullivan, & Scanlon, 2016). Digital-forensic investigation has become an

important part of the criminal investigation because of the increasing criminal usage of the

computers (Lillis et al., 2016). Recently digital forensics is facing some challenges due to

technical improvements in digital devices and information technology. Increases in storage

capacity, improvements on network bandwidth capacity and communication speed,

introduction of the device networks in the “Internet of Things,” and continuing

development in mobile devices have created challenges to digital-forensic investigation.

Those challenges include complexity, diversity, consistency, volume, and time

management (Raghavan, 2013).

As the importance of digital forensic increases, anti-forensic techniques emerge

(Liu & Brown, 2006). This thesis defines and classifies anti-forensic techniques, and

analyzes some representative tools for detecting and mitigating them. We first provide

definitions and background on anti-forensic techniques, and describe some easy-to-use and

publicly available ones. Chapter III covers implementation of selected anti-forensic

techniques in more detail. Chapter IV covers detection and mitigation of those techniques

and some tools to do so, and reaches some conclusions.

2

THIS PAGE INTENTIONALLY LEFT BLANK

3

II. LITERATURE REVIEW

A. ANTI-FORENSICS

Foster and Liu (2005) demonstrated early implementations of anti-forensic tools.

Liu and Brown (2006) described four aims of anti-forensic techniques:

• Avoiding detection of malicious actions;

• Disrupting the information collection during the forensic investigation;

• Increasing investigation time required; and

• Decreasing the validity of a forensic report or testimony.

Other anti-forensic tools and techniques have started to emerge. The popular

“Metasploit” framework now includes the anti-forensic tools Timestomp, Transmogrify,

Slacker, and Sam Juicer in the MAFIA (Metasploit Anti Forensic Investigation Arsenal)

which implements techniques of Liu and Brown (2006). Another researcher categorized

anti-forensics in four categories as “data hiding, artifact wiping, trail obfuscation, and

attacks against digital forensic tools” (Garfinkel, 2007, p. 78). This listed aims of anti-

forensics as:

• Revealing the existence of the forensic tools;

• Disrupting forensic analysis;

• Attacking forensic examiners, and

• Clearing the evidence of anti-forensic tool’s existence. (Garfinkel, 2007)

Understanding anti-forensic techniques and tools requires understanding the

digital-forensic examination process. It includes three main stages: acquisition and

preservation, analysis, and presentation (Yusoff, Ismail, & Hassan, 2011). In addition to

these, pre-processing and post-processing phases help the investigator to maintain the

4

integrity of the evidence and results. Figure 1 depicts the stages of a digital-forensic

examination. Each stage has feedback to a previous stage.

Figure 1. Digital Forensic Examination Stages. Source: Yusoff
et al. (2011).

The digital-forensic investigator finds valuable evidence during the analysis stage

from the data obtained during the acquisition stage. So anti-forensic tools and techniques

target mainly this stage. Some anti-forensic tools target the pre-processing and post-

processing stages as well.

B. CATEGORIZATION OF ANTI-FORENSIC TECHNIQUES

Because anti-forensics is an emerging area, new tools are emerging publicly every

day. Jahankhani and Beqiri (2010) classify anti-forensics from tool-specific perspective:

• Digital media wiping

• Steganography

• Privacy wipers

• Rootkits

• Homographic attacks

5

• File signature modification attacks

• Encryption

• Metadata anti-forensics

• Slack space anti-forensics

• Secure digest functions collision generations

• Digital memory anti-forensics

• Misleading evidence

• Packers/binders

• Forensic tools vulnerabilities/exploits

• Resource waste

• Forensic detections

• Anonymous actions

• Anti-forensics in flushable devices

Tool-specific classification of anti-forensics focuses on tool categories. We

followed four well-known categories in this research.

• Data hiding

• Artifact wiping

• Trail obfuscation

• Attacks against digital forensic tools and processes

6

C. DESCRIPTION OF ANTI-FORENSIC CATEGORIES

This project analyzed and correlated anti-forensic tools. An open-source version of

a tool was sought where possible. Otherwise, the tool selection of Conlan et al. (2016) was

used. Appendix A lists the tools considered.

1. Data Hiding

Data-hiding techniques and tools use file-system, memory, or network capabilities

of the operating system for hiding the digital data. Hiding tools, steganography, and

encryption are closely related (Bender, Gruhl, Morimoto, & Lu, 2010). However, data

hiding is a broader concept and steganography, rootkits, and encryption are specialized

hiding techniques. Conlan et al. (2016) suggested subcategories of “data contraception, file

system manipulation, hard disk manipulation, memory hiding and network-based hiding.”

a. File System Data Hiding Tools

The Microsoft Windows NTFS is a representative file system. NTFS organizes a

“volume” or major subpart on a disk with a:

• Boot Sector

• Master File Table

• File System Data

• Master File Table Copy

The Master File Table is the most important portion in an NTFS volume for forensic

purposes (Bergel, 2007). When a file data is less than a cluster size, unused space occurs;

if a file is larger than a cluster size it, becomes fragmented (Microsoft, 2003). A cyber-

criminal can hide data into unused spaces which occur when file-system data does not fill

records or when it is fragmented.

The UNIX and Linux operating systems use blocks for file-system structure, and

unused or slack space occurs at the Data Block portion of the EXT4 file-system (“Ext4,”

n.d.). Slack space provides a place for data hiding in both the Microsoft and UNIX/Linux

7

fil-system structures. Hiding data into slack or unused space is more effective in a Windows

environment (Huebner, Bern, & Wee, 2006). Huebner et al. (2006) suggests that a

successful data hiding should (1) hide from standard operating-system utilities, (2) have a

low chance of being overwritten, (3) hide from the user interface, and (4) store a good

amount of data. Slack-space data-hiding techniques meet those characteristics. MAFIA

includes a slack-space hiding tool, Slacker, within the Metasploit framework. Slacker was

first published in the Metasploit platform in 2006.

b. Memory Data Hiding (Live Hiding) Tools

“Live hiding” tools hide data in main memory (Swanson, Stoller, & Carter, 1998).

Main memory is volatile. Nevertheless, retrieval of the data can be done as long as there is

electricity to keep memory data on the memory cells. Retrieval techniques are both

hardware and software-based, and they are rather easy to implement because anti-forensic

tools in the main memory do not try to hide themselves very much (Burdach, 2006).

c. Network-Based Hiding Tools

Network-based data-hiding tools hide data in one of the layers provided in the

Internet Protocol Stack model. Techniques are covert channeling, protocol bending, and

packet crafting (Bergel, 2007).

Wrapping tools are a good example for network-based anti-forensic tools. They are

common and easy to implement. The UNIX Stunnel tool is a well-known network-level

SSL wrapper tool (Trojnara, 2016). It wraps unencrypted communication into a SSL

tunnel. This tool was developed for providing a secure communication channel for insecure

TCP/IP protocols. However, attackers can hide data using it.

Terminal emulators are other network-based anti-forensic tools. However, terminal

emulators require administrator/root privileges for an installation on a client machine.

Common network emulators that can hide data are AbsoluteTelnet, Indigo Terminal

Emulator, and SecureCRT (Conlan, et al., 2016).

A Virtual Private Network (VPN) provides security for private networks over an

insecure channel. VPN protocols use encryption for securing data. An attacker can

8

establish a client-server VPN for exfiltration of sensitive data or data hiding. Encapsulating

VPN packets in another protocol is an alternative method for data hiding. A good example

of VPN encapsulation is encapsulating VPN packets into an IP datagram, keeping the

header information unchanged.

d. Encryption Techniques

A basic definition for the encryption is transforming data into a secret code (Beal,

n.d.). Modern encryption algorithms can be synchronous or asynchronous. Encryption

provides confidentiality and ways to hide data (Boneh, Sahai, & Waters, 2011). Common

encryption targets are files, disks, email, file-systems, applications, and data in transit

(Conlan et al., 2016). Whole-disk and file encryption is the focus of this thesis. Encryption

disrupts the initial acquisition phase of the digital forensics examination so the examiner

cannot complete the following phases.

e. Steganography Techniques

Steganography is techniques to hide secret information in image, video, audio, or

text files so that the information cannot be detectable by a naked eye (Mishra et al., 2014).

Distortion and spread-spectrum techniques are examples of audio steganography, and

substitution techniques are examples of image steganography (Singh & Mahajan, 2016).

In all steganography methods, encryption can be used too to provide extra protection

against steganalysis. Comparing the aims of steganography and encryption, encryption puts

content of the message in an undecipherable form, and steganography hides the message

existence as well. Some example stenographic techniques are:

• Substitution. This is the most common and easiest technique. An attacker

uses redundant places to hide the secret message such as the least

significant bits.

• The discrete cosine transform on audio where one bit is modulated.

• The spread-spectrum technique on audio. The attacker spreads the secret

over a wide spectrum and then modulates it into the carrier signal.

9

• Distortion techniques. The information is encoded in the signal by

distorting the cover. The difference between the original cover and the

distorted one gives the secret. (Singh & Mahajan, 2016).

f. Rootkits

Rootkits are specialized code sectors that hide in the operating-system kernel

(Hoglund & Butler, 2006). Rootkits are a type of malicious software that runs at the inner

levels of an operating system. Cyber criminals use rootkits not only hiding data, but also

for logging the network activity, storing keystrokes, process hiding, and controlling

registry entries (Sparks & Butler, 2005).

2. Artifact Wiping

Artifact wiping is an effective method for destroying digital evidence. Garfinkel

(2007) and Conlan et al. (2016) identified these methods:

• Disk wiping erases data from a disk (hard or solid-state) securely. There

are many publicly available disk-wiping tools of which Blancoo 5, DBAN,

and WipeDisk are well known. Recent research show that the tools are

easy to use and subsequent data retrieval is quite hard (Lillis et al., 2016).

• Disk degaussing overwrites the data magnetically with zeros or random

values. It is difficult today, but on older magnetic disks the Gutmann

patterns enable investigators to retrieve data by using magnetic force

microscopy (Garfinkel & Shelat, 2003).

• Physical destruction techniques include melting, shredding, and

incarnating (Kissel, Scholl, Skolochenko, & Li, 2012).

• File wiping is similar to disk wiping but focused on files. Sdelete is the

most common tool (Conlan et al., 2016).

10

• Generic data wiping tools differ from file wiping tools by erasing artifacts

like cookies, temporary data, and Internet browsing history. A well-known

generic data-wiping tool is CCleaner (Conlan et al., 2016).

• Metadata wiping tools: Metadata is the data about the data. Metadata of a

file stores times, ownership, size, etc. An example tool for metadata

wiping is Timestomp. It is a part of the Mmetasploit framework

(Garfinkel, 2007). Metadata wiping requires advanced knowledge and a

successful exploit at the target system.

• The Windows registry is a database storing operating system and

application-specific settings for the Microsoft Windows operating system.

Registry wiping tools remove unused, broken, or wrong registry entries

(Conlan et al., 2016).

• Removable-disk wiping uses similar techniques to that of disk wiping

(Lillis et al., 2016).

3. Trail Obfuscation

This method is known as “counterfeiting” (Jain & Chhabra, 2014). Trail

obfuscation adds misdirection to digital evidence (Harris, 2006). Misdirection includes

timestamp modification, file defragmentation, and manipulation of log files. Any

inconsistencies on those suggest a trail-obfuscation activity.

4. Attacks against Digital Forensic Tools and Processes

Conlan et al. (2016) described attacks against forensic tools. Analysis is the most

important phase of forensic investigation, and file integrity is very important for a proper

analysis. An attacker by detecting either image creation or analysis of the logical partitions

(of files or directories) can alter the integrity of the evidence.

Denial of service is another attack type against forensic tools. By depleting

resources like the RAM and CPU required by the tools, an attacker can impede analysis

(Jain & Chhabra, 2014). Anti-reverse engineering is another method against forensic tools.

11

One way is compression bombs. Current tools open compressed files like ”zip” files during

the analysis of file system. Compression bombs are compressed files that when extracted

gets bigger than the tool can handle, perhaps with recursively contained files.

12

THIS PAGE INTENTIONALLY LEFT BLANK

13

III. ANALYSIS OF ANTI-FORENSIC TOOLS

We followed four steps for analysis of an anti-forensic tool: installation,

configuration, usage, and analysis of the forensic artifacts on the victim system. As

discussed above there are many anti-forensic tools. In choosing tools, the main criteria are

effectiveness in circumventing forensics, availability, ease of usage, cross-platform

capability, and resistance to cyber-attacks. More than 300 tools fit the criteria (Conlan,

et al., 2016). Thus, we narrowed the focus of the choices by adding novelty, community

support and popularity among the cyber criminals to the criteria list. Table 1 gives a short

summary and Appendix A gives the full tool list considered.

Table 1. Anti-forensic Tools

Technique Sub Category Specific item analyzed here
Data Hiding 1. File System Data Hiding BMAP and NTFS file streams

2. Memory Data Hiding Explanation of the techniques
3. Network-based Data Hiding Stunnel
4. Encryption VeraCrypt Whole disk and file

encryption, VeraCrypt Hidden
OS and plausible deniability

5. Steganography Audio
Text using Hydan tool
Image/video using home-
developed program for gray-
scaled pictures
Protocol

6. Rootkits In general
Artifact Wiping 1. Disk Wiping DBAN

2. Disk Degaussing &
Destruction

In general

3. File Wiping Sdelete and BitKiller
4. Generic Data Wiping CCleaner
5. Metadata Wiping Timestomp

14

Technique Sub Category Specific item analyzed here
6. Registry Wiping In general
7. Removable Disk Wiping In general

Trail Obfuscation Log cleaners with the Metasploit
framework.

Attacks against Forensic Tools and Techniques Packers (7-zip, PECompact,
UPX)

A. DATA HIDING

1. File System Data Hiding Tools and Techniques

We chose the Bmap tool to investigate data hiding in slack space in UNIX

environment. We installed Bmap version 1.0.17 on an Ubuntu 08.04 virtual machine with

1 core CPU, 1 GB memory, 10 GB HDD, and a bridged network. For testing, two image

files were created using “dd” command and mounted on the Ubuntu file system. Then a

string (“secret”) was put into the slack space. Appendix B explains Bmap usage and the

commands that were used.

We extracted two image files from a virtual machine containing FAT32 and EXT3

file systems. The test images represented two computers with hidden data in their slack

space. We hid a string into both file systems using the Bmap “putslack” option.

During the experiment, we altered to Bmap source code and recompiled it because

it had not been updated since 2000. We compiled Bmap on Ubuntu 08.04 and created a

text file using the command “echo ‘Testing bmap tool’ > text.txt.” The text.txt file had a

large slack space at the end of the file-system block. We used “bmap --mode slack test.txt”

to see the available slack space on the block. We ran “echo “secret” | bmap --mode putslack

text.txt” to put the “secret” string into the slack space of the text.txt. Appendix B has a

more detailed explanation.

Initial examination was done using LINUX “strings” command. Figure 2 shows

that it can extract strings in the slack space of an EXT3 file system but not a FAT32 file

system. Secondly, we tried forensic tools to extract the hidden strings from the slack space.

The Autopsy tool, installed on a Windows machine-GUI, could not extract them for

15

both file system types, but FTK Imager, Bulk Extractor using BEViewer, and TSK could

extract it.

Figure 2. FAT32 and EXT3 Strings Command Output

For data hiding in NTFS file systems, we used the NTFS alternate data streams tool

(ADS). NTFS metadata includes the files as shown at the Table 2; $DATA, $Boot,

$BadClus and $MFT provide opportunities to hide data (Huebner et al., 2006). ADS

constructs and alters metadata of NTFS files. It cannot be detected with forensic tools

because it contains title, author, and other necessary metadata about a file. Forensic tools

usually do not check the metadata.

16

Table 2. Metadata Files in NTFS. Adapted from Huebner et al.
(2006).

0 $MFT MFT 512B
1 $MFTMirr Backup MFT
2 $Log Transaction logs
3 $Volume Volume information
4 $AttrDef Attribute definition
5 . (dot) Root directory of the system
6 $BitMap Allocation status of all clusters
7 $Boot Boot record
8 $BadClus List of bad clusters
9 $Secure Security and access control information
10 $Upcase Converts lowercase characters to Unicode uppercase
11 $Extend Extension directory
12-15 Unnamed For future use
24 $Extend

The System Internals tool “lads.exe” can detect many data streams but not alternate

ones. However, “streams.exe” and “streams64.exe” can detect them. Huebner et al. (2006)

observed that detecting alternate data streams is laborious job and a forensics examiner can

have difficulty discriminating between legitimate and malicious usage. A stream needs to

be examined carefully with a hex editor. So alternate data streams are hard to conceal, and

are more an obfuscation technique than a data-hiding technique.

For the experiment, we created a pointer “evil.exe” in $DATA attribute of file

normal.exe. This pointer can be detected using System Internals “streams64.exe” tool.

Figure 3 shows that “streams64.exe” can extract the pointer in “normal.exe” which hides

“evil.exe” although it resides in a different cluster of the NTFS. The pointer can also be in

either the “author” or “title” attribute of the NTFS file so it will not attract attention during

the forensic analysis.

17

Figure 3. Testing Alternate Data Streams

2. Network-Communications Data Hiding

Stunnel provides network-based data hiding of unencrypted traffic in an SSL-

protocol traffic using a self-signed certificate. Stunnel needs a server and a client. The user

creates an SSL certificate using the OpenSSL library, and both server and client use the

certificate. Appendix B has details about the installation and configuration. For testing, the

topology shown in Figure 4 was established. The Netcat message-exchange utility was

used to transfer data.

Figure 4. Stunnel Topology Used for Experiments

For the experiment, we generated symmetric encryption keys using OpenSSL. Keys

were exchanged between the client and the server by another means of communication

(IRC messaging) or manually. After that, we simulated insecure network communication

using the “netcat” tool. The client started “netcat” on the localhost port 4489. Stunnel was

18

configured to get the messages on port 4489 and send them in SSL tunnel through the

network interface. On the server side, a similar configuration was used; Netcat configured

to listen on port 4489 and Stunnel was configured to get SSL messages and pass them to

localhost port 4489. Appendix B has the configuration and terminal commands used for

this experiment.

Initially we analyzed the Stunnel communication between client and server. We

used Wireshark, an open-source tool which captures network packages and analyzes them.

Our aim was to capture TLSv 1.2 communication establishment messages. Those messages

showed a client-server communication with a predefined symmetric key, which is an

uncommon use of TLS. Normally, TLS uses PKI for exchanging keys between the server

and the client.

When the Stunnel communication ended, the only artifacts remaining were the

installation packets and configuration files on the client and the server machine. TSK, FTK

Imager, Magnet Forensics AXIOM, and Linux “grep” (with appropriate search strings) can

detect and display installation and configuration files from the image files of the client and

the server machines. However, if an attacker wants to better deceive a forensic investigator,

they can recompile the Stunnel source under a different name.

A key indicator of Stunnel is its certificate. The Stunnel certificate includes both

the private key and certificate file in a single PEM file, which begins with a “BEGIN RSA

PRIVATE KEY” string. This string shows that private and public keys are concatenated

back to back. On the other hand, the certificate-authority signed certificate starts with

“BEGIN CERTIFICATE” and it is in PKCS format. Figure 5 shows Stunnel and

Microsoft-signed certificates to show starting statements and contents.

19

Figure 5. Stunnel Private Key and Certificate and Certificate-
Authority Signed Certificate

Since Stunnel can also provide privacy to a legitimate communication, a forensic

investigator needs to examine its configuration file. Figure 6 shows an example

configuration file which secures HTTP traffic between a client browser and IP Address

172.217.169.142 (www.google.com) on the port 443. A forensic investigator can examine

the Stunnel configuration file to see if it was used for malicious purposes.

Figure 6. The Stunnel Configuration for Improving Security

20

3. Using Encryption for Data Hiding

A user can use encryption to hide data from a forensic investigation. We

investigated the VeraCrypt encryption tool, which provides file, partition, and volume

encryption (Idrix, n.d.). Our experiments used both standard and hidden volumes with 100

MB disk space. The standard volume of VeraCrypt is an encrypted file container, which

mounts itself when correct password is input to VeraCrypt. The hidden volume is a

standard volume which contains another standard volume, and mounts itself only when the

password of the hidden volume is input. If the user inputs the standard volume’s password,

the hidden volume remains unmounted and standard volume mounts itself. This protective

standard volume is called “outer” disk space/volume of the hidden volume. The hidden

volume included 50 MB of “outer” disk space and the rest was 50 MB in size in our

experiments

In experiments, we stored three text files in the standard and hidden volumes. Our

experimental environment was Windows 10 OS running on virtual platform of Oracle

VBox. To examine the VeraCrypt tool and volumes, a VMDK-file to binary-file

conversion was done. Hexadecimal value analysis of the two volume files showed that

neither contained successive zero bytes. Filling out empty parts of the volume is a feature

of VeraCrypt (Idrix, n.d.). However, empty parts in a file must be filled with zero bytes in

Windows 10; seeing no successive zero bytes is a clue to use of VeraCrypt. Figure 7 shows

that TSK-Autopsy forensic analysis tool tags volume files as possible encrypted files.

21

Figure 7. Forensic Analysis of VeraCrypt Volumes with TSK
Autopsy and FTK Imager

Detection of encrypted data in the hidden volume is harder than in the standard

volume. The hidden volume provides deniable encryption and plausible deniability

(Kedziora, Chow, & Susilo, 2017). This meant that the first part (outer volume) must hide

the second part (hidden volume), and an investigator cannot collect information about

second part by accessing the first part (Kedziora et al., 2017). However, after mounting the

outer volume, entropy analysis of the mounted volume showed where the hidden volume

starts. Kedziora et al. (2017) suggested that dramatic drops on entropy values indicates start

and end points of hidden volume because the header files of the VeraCrypt volumes do not

contain random data when compared with the whole image, even when a hidden volume

created in a standard volume. Therefore, bit-entropy analysis of a VeraCrypt file yields

information about the existence of a hidden volume.

4. Steganography and Example Implementation

We developed our own steganography application. It hides an image in another one

by a substitution technique, the most common technique for text hiding (Mishra et al.,

2014). Substitution methods that are useful for text steganography include least-

significant-bit, random, and specific-bit replacements. Least-significant-bit image

22

steganography technique hides data into least-significant bits of image data, and there are

many options on which bytes to change. We developed an image steganography program,

which hides an image into a base image after encrypting it. It can hide half a grayscale

secret image in a base image so that the human eye cannot detect the difference.

Appendix B shows our implementation of this algorithm. Figure 8 displays the user

interface to the tool.

Figure 8. Data Hiding and Retrieval with a Simple Image
Steganography Tool

When a forensic analyst suspects the existence of steganography in an image file,

it is helpful to examine the hexadecimal values of the bytes of the image files. Statistical

analysis can suggest the existence of steganography in a file. Shannon (2001) suggests that

entropy (H) can help us to understand the uncertainty of the information source, so unusual

values for the entropy of a file can indicate steganography. However, examining each file

and trying to recognize a particular implementation of steganography is still challenging.

We tested steganography detection with two images in BMP format. We inserted a

secret message into these files. However, hexadecimal analysis showed the resulting

images were in PNG format (according to the Linux “file” command after examining their

headers). AforgeNet.dll was used in the C# source code and it saves only in PNG format.

Appendix B has the source code for the image steganography tool.

We also wrote a Python program which creates a histogram of Shannon entropy

values for the bytes. The original image for the example picture shown above has a byte

23

distribution shown in Figure 9. The image with steganography has fewer distinct values

and no values over 127 (Figure 10). The differences suggest use of steganography.

Figure 9. Histogram of Base Image in Test

24

Figure 10. Histogram of Steganography Image in Test

B. ARTIFACT WIPING TECHNIQUES

1. File Wiping

We first tested a carving on a file marked as deleted. A file in text format was

created on an Ubuntu 18.04 OS using FTKImager. Forensic analysis of the image found

the file and all its metadata and data could be recovered as expected. After deleting the file,

we used the “dd” tool to make a logical image of the drive by the command “sudo dd

if=\dev\sda1 of=\media\sf_VM_share\shred1.raw bs=4096 conv=noerror,sync”. The

Foremost, Scalpel, Autopsy, FTK, and FTKImager tools successfully retrieved the deleted

file.

Next, we used the Shred tool on the text file. The tool was installed on the Ubuntu

18.04 using “sudo apt-get install shred” command. Then the Shred tool’s zeroing option

was used once as seen in Figure 11. When contents of the file were retrieved using the

“cat” command, nothing appears in the terminal window. Similarly, the forensic-tool

analysis of the file showed that its size was zero and its contents were all zeros.

25

Figure 11. Output of the Shred Tool on a Wiped File

We also examined the hexadecimal values in which the shredded file formerly

resided. Examination provided no clues about the presence of the file. However, logs and

folder names do report to the forensic analyst that Shred was used on a system.

Sdelete and BitKiller deleted and overwrote files as well. Both tools provide DoD-

secure deleting options, and both are freeware. For testing the programs, we downloaded

them to a virtual machine, a Windows 10 build 1809. Test folders were created with a text

file. One copy of the file was deleted with Sdelete using the overwrite option, one copy

was deleted with BitKiller, and one copy was deleted using the Windows File Explorer.

We then created a raw logical disk image of “C” drive with FTK Imager, and used TSK,

Autopsy, AXIOM, FTK Imager, and Foremost tools for analysis of the Windows image.

No forensic tools could retrieve the deleted files from the image. However, memory

analysis provides details about BitKiller if a memory image is made while BitKiller is

running. Therefore Sdelete is better than BitKiller at concealment.

2. Generic-Data Wiping and Registry Wiping

Not only disks and files contain artifacts, but also web browsers, applications, and

third-party tools. Generic wiping tools delete browser temporary Internet files, cookies,

26

caches, registry, and so on. One of the most common generic-artifact wiping tools is

Piriform Ccleaner, a commercial Windows OS tool. According to Cnet.com, it has been

downloaded nearly 161 million times. CCleaner overwrites a file at least three times with

random data using the “rand ()” function in Windows to make the file data random.

However, CCleaner is easy to see in a disk image since it creates an “.INI” file for storing

configuration data under the directory “C:\Program Files\CCleaner.” Another indicator is

the prefetch data mentioning “ccleaner” and “piriform.”

3. Metadata Wiping

We tested metadata wiping using the Metasploit Framework. The Experimental

details and setup are in Appendix B. In our experiment, an attacker deleted timestamps of

the file to conceal his tracks on the exploited system. We examined the file timestamps,

saw big inconsistencies between the usual OS files and the manipulated ones. This is an

indicator for metadata wiping activity.

C. TRAIL OBFUSCATION

We did a trail obfuscation experiment on the same setup we used for metadata

wiping. Trail obfuscation adds extra information or takes out information from a system to

mislead a forensic examiner. In our experiment, we deleted all event logs from a Windows

system. This is a major indicator for trail obfuscation activity on the system. But a cyber-

criminal can also change some logs or create extra ones to further cover his tracks.

D. ATTACKS AGAINST FORENSIC TOOLS AND PROCESSES

Packers are file-compression tools and they can be used against forensic tools to

provide code and data obfuscation. To analyze packers, we created a simple C code

segment to print a sentence to the terminal window, then packed it with PECompact, 7-zip

and UPX. Our results showed these packers compressed up to 70%. We ran the forensic

tools FTKImager, Autopsy, TSK, AXIOM, and BelkaSoft. They all successfully detected

that the compressed file contained an executable. When details of the executable were

examined with IDA PRO, it was seen that the “magic number” identifying the type of file

remained untouched. So packing alone is not a useful anti-forensics technique.

27

IV. MITIGATION OF ANTI-FORENSICS AND
RECOMMENDATIONS

We analyzed four kinds of anti-forensics. Table 1 summarized our analysis

methodology. Our analysis suggested that common anti-forensics techniques and tools can

be detectable by their leaving important evidence material in various places. In this chapter

tool-specific detection methods and mitigation techniques are presented.

A. DATA HIDING

1. Detection of File System Data Hiding

We installed and used the Bmap tool in a Linux environment. Detection of the tool

can be done by the “strings” tool for the EXT3 file system. If the file-system format is

FAT32, then detection can be done by the forensic tools FTKImager, Bulk-Extractor, and

TSK.

A second file system data-hiding method is using ADS on an NTFS environment.

Detection of ADS can be done using Microsoft System Internals “stream64.exe” tool. Our

tests on ADS showed that it successfully detected a hidden stream in an executable that

was pointing another malicious executable where the stream value was stored in $DATA

attribute of the executable. However, a forensic analyst can easily miss that pointer. A more

novel method for detection of ADS is to use PowerShell with following steps:

• Collect the user-created files.

• Run “Get-item -Path [file_path] -Stream * | Export-Csv <.csv_path> “

PowerShell cmdlet.

• Analyze the CSV files to detect uncommon ADS values.

• Run “Get-Content -Path <file_path> -Stream [uncommon_stream_name]

>> Evidence_Streams.txt” PowerShell cmdlet. Common stream names

such as $DATA, $AUTHOR, and $FILE_NAME are stored in the

metadata of the file.

28

Current state-of-art forensic techniques do not provide a mitigation technique for

ADS, because it has many valid usages. However, our PowerShell detection method can

be turned into a script, which runs on the client and sends stream contents to a server for

further analysis.

2. Detection of Network Communication Data Hiding with Stunnel

We tested Stunnel for data hiding. Stunnel communication is quite secure because

it uses the SSL protocol. Network-traffic analysis did not reveal its hidden data.

Communication initialization messages and socket communications (IP and port-tuple

communications) were analyzed using Wireshark for network-traffic analysis, but there

were no major indicators of the data hiding using Stunnel. There were clues in Stunnel

configuration files, server-client TLS communication for high-end (>1024) ports, use of

the OpenSSL library certificate, string search revelations of Stunnel keywords like stunnel,

stunnel4, stunnel.conf, etc.), and the “var/run/stunnel.pid” file.

Stunnel runs on the Linux. Stunnel requires OpenSSL library, a designated “uid”

and “gid” pairs for Stunnel, and /var/run/stunnel.pid file, containing the “pid#” for Stunnel.

A good mitigation against Stunnel is restricting users from creating or changing the Stunnel

installation and configuration requirements.

3. Detection and Mitigation Techniques against Encryption Usage for
Data Hiding

Encrypted files are hard to analyze without the key. Sometimes in a criminal

investigation the key can be retrieved from the suspect. On the other hand, if analyst cannot

detect any encrypted files, then they need to put mitigation techniques beforehand.

Our experiments on VeraCrypt revealed that TSK-Autopsy did flag VeraCrypt

volumes as encrypted files. Mitigation techniques against this method for the enterprise-

level networks are:

• A good corporate file-server policy so users cannot map a file share, and

only GPO or scripts can.

29

• Effective device control metrics. When a user plugs in a removable media,

contents should be copied to a central location (an evidence folder) for

examination.

• Installing an executable must be disabled. If the user is a system

administrator, installing the executable must be logged and monitored. It is

important to prepare a master operating-system image containing all the

required programs and executables. If a new executable is required, it

must get approval from the change-management board.

• Users should access encryption libraries such as OpenSSL only with

approval. and encryption must be done when required at the background

and not by users.

4. Detection of Steganography

Detection of the steganography depends on statistical analysis of the image files.

We discussed image steganography in Chapter III and suggested using Shannon entropy

for detecting anomalies in the cover image. However, this does require having both the

base image and the final image

B. ARTIFACT WIPING

Detection of artifact wiping is easy by observing data patterns of 0s or 1s; however,

retrieving the deleted data is cumbersome, and usually not possible. Mitigation methods

against artifact wiping are thus important Mitigation techniques against the artifact wiping

are possible for enterprise networks where there is a central server that maintains and

administers the network. The server can employ rules to control user activity. Some things

they need to manage are:

• Artifact-wiping tools are cleaning tools that delete registry, temp files,

browser history, and so forth. System administrators must prevent users

from downloading and installing such tools. The list of tools at the

Appendix A can serve as a guide.

30

• User-activity logs are valuable for detecting artifact-wiping activity. They

can be saved in a SIEM log-collection database for integrated analysis.

• System administrators need to prevent users from accessing system root

files and folders. This includes the Windows “C:” drive and in Linux all

the directories except user’s home director.

• The ideal option is live forensic-artifact collection using an agent-based

forensic application on the client systems.

C. MITIGATION TECHNIQUES AGAINST TRAIL OBFUSCATION AND
ATTACK AGAINST FORENSIC TOOLS

Trail obfuscation tools misdirect the forensic analysis. Cyber criminals use it in the

post-exploit phase of an attack. The best mitigation against the trail obfuscation is

protecting the systems against a cyber-attack.

We tested zip bombs and packers as attack methods against the forensic tools FTK

Imager, TSK-Autopsy, and Magnet Forensic AXIOM. They can detect zip bombs and

recover themselves against this attack. Success of the packers depends on the technique

used. If a packaging method like UPX is used against forensic tools, detection is possible

because UPX cannot hide the contents of the executable. On the other hand, the 7-Zip tool

encrypts both contents and file names, so this tool is effective against initial forensic

analysis. However, forensic examiners can provide findings of encryption and legal

authorities can request keys and passwords.

D. SUMMARY

Anti-forensics techniques and tools are ever-changing. Therefore, a solid set of

forensic tools is required combatting them. We first examined anti-forensic techniques and

identified tools in a number of categories. We identified publicly available, popular, up-to-

date, and easy-to-use tools. Our experiments on selected tools showed that anti-forensic

techniques do complicated well-known forensic practices. To detect each tool, forensic

examiner must look different parts of the operating system and must follow different

31

methodologies. We suggested mitigation and detection techniques that can help forensic

examiners to prevent anti-forensics or to detect its use.

Important threats we have not examined are rootkits and malware activity. Future

work should investigate mitigation and detection methods for them following our

methodology.

32

THIS PAGE INTENTIONALLY LEFT BLANK

33

APPENDIX A. ANTI-FORENSIC TOOLS CONSIDERED

Conlan et al. (2016) provided a list of 308 anti-forensic tools. A tool that supports

multiple operating system and is an open-source, easy to download, easy to configure, and

up-to-date was considered a good candidate for analysis.

Tool Name Short Description
AbsoluteTelnet Hiding tool. Network-based, Telnet emulator, Windows, up-to-date,

commercial,
http://www.celestialsoftware.net/.

Ace encrypt Encryption. Windows and Linux, up-to-date, both freeware and
commercial, no site available.

Acid
Cryptofiler

Encryption. Windows, outdated (2008), http://acid-
cryptofiler.software.informer.com/7.1/.

AdvFS Encryption. File-system level,
Open-sourced, up-to-date.

AES Crypt* Encryption. Windows, Linux, MacOS, mobile platforms. Open-source, up-
to-date, file-based encryption support, https://www.aescrypt.com/.

Aloaha Crypt
Disk

Encryption. Full-disk, Windows, up-to-date,
http://www.aloaha.com/aloaha-crypt-disk/.

Aloaha PKCS
#7 Crypter

Encryption. Windows, up-to-date, http://www.aloaha.com/aloaha-security-
solutions/aloaha-crypt-sign-and-zip/aloaha-pkcs-7-crypter/.

Aloaha USB
Endpoint
Security

Several features.. Partially uses data hiding, partly implements data-loss-
protection. http://www.aloaha.com/aloaha-security-solutions/aloaha-usb-
monitor/.

Android
Privacy Guard

Encryption. Latest version is 2014,
https://github.com/thialfihar/apg.

AxCrypt Encryption. Windows, MAC, IOS, Android. free and commercial, up-to-
date
https://www.axcrypt.net/.

Bcrypt Encryption. Open-source, old, not practical
http://bcrypt.sourceforge.net/.

BestCrypt
Container
Encryption

Encryption. Commercial, up-to-date, Windows
https://www.jetico.com/.

BestCrypt
Volume
Encryption

Encryption. Commercial, up-to-date, Windows
https://www.jetico.com/.

Bitlocker Encryption. Windows.
Bmap* Slack space hiding tool. Linux, open-source, obsolete.

https://packetstormsecurity.com/files/17642/bmap-1.0.17.tar.gz.html.

34

Tool Name Short Description
Boringssl Encryption. Data-in-transit, Forked Google developed SSL library.
Botan Encryption. Cross-platform, up-to-date,

https://botan.randombit.net/.
Bouncy Castle Encryption. C#, open-source, cross-platform

https://www.bouncycastle.org/.
Burneye Encryption. https://github.com/packz/binary-

encryption/blob/master/binary-encryption/burneye-stripped/src/burneye.c.
Ccrypt Encryption. Files and streams. Outdated, Windows and Linux,

http://ccrypt.sourceforge.net/.
Challenger* Encryption. Files, portable and local usage, secure deletion, Windows, up-

to-date, freeware and commercial, http://www.encryption-
software.de/challenger/en/index.html.

CipherShed Encryption. Project forked from TrueCrypt, community failed to get
support, cross platform, https://ciphershed.org/.

CloudFogger Encryption. Files, cloud storage services, background working, cross
platform, freeware, up-to-date,
https://cloudfogger.en.softonic.com/?ex=REG-60.2.

CrossCrypt* Encryption. CD/DVD encryption property is interesting, old, Windows,
http://www.softpedia.com/get/Security/Encrypting/Cross-Crypt.shtml.

Cryptainer Encryption. Windows, Up-to-date, freeware and commercial,
https://www.cypherix.com/cryptainerle/.

Cryptarchiver Encryption. Folders and disks. Windows, up-to-date, commercial.
Cryptmount* Encryption. Mounts encrypted file systems without privileged user

accounts, Linux, up-to-date, library, http://cryptmount.sourceforge.net/.
CryptoCat* Encryption. Chat program, cross-platform, non-commercial, up-to-date,

https://crypto.cat/.
Cypherix* Encryption. Splits hard drive into small containers and encrypts them,

Windows, up-to-date, commercial,
https://www.cypherix.com/cryptainerpe/.

DiskCryptor Encryption. Drives, Windows, freeware,
https://diskcryptor.net/wiki/Main_Page.

Dropbear Encryption. SSH-based server, data-on-transit encryption, Linux, up-to-
date, https://matt.ucc.asn.au/dropbear/dropbear.html.

eCryptfs Encryption. Drives and folders, Linux, up-to-date, open-source,
http://ecryptfs.org/.

Encrypted File
System on AIX

Encryption. Files, Linux, up-to-date, open-source.

Ergosecure Wiping and encryption. Cross-platform, up-to-date, commercial.
https://egosecure.com/en/.

EncFS Encryption. Files, open-source, Linux, up-to-date,
https://github.com/vgough/encfs.

EncryptStick Encryption. Cross-platform, commercial, up-to-date,
https://www.encryptstick.com/.

35

Tool Name Short Description
GPG Encryption. Open-source, Linux, up-to-date, https://gnupg.org/, similar

applications are Gpg4win and GPGmail.
Hcovert* Steganography. Covert channel network data hiding tool,

https://sourceforge.net/projects/hcovert/.
HICCUPS
(Hidden
communication
system for
corrupted
networks)

Steganography. Link layer, requires CSMA/CD or CA channel access to
read all the sent messages to retrieve hidden secret,
http://krzysiek.tele.pw.edu.pl/pdf/acs2003-hiccups.pdf.

Hushmail Encryption and safe deletion. Cross platform, commercial, up-to-date,
https://www.hushmail.com/.

Hydan Steganography. Hides data into program executables, it is old but still
works, Linux and Windows, http://www.crazyboy.com/hydan/.

I.CX Encryption. Network, works on a web browser,
https://i.cx/?icx.screen=home&convoId=0.

IAI-JCE Encryption. Cross-platform, commercial, https://jce.iaik.tugraz.at/.
Imagespyer
G2*

Steganography. Windows, freeware, up-to-date,
http://qpdownload.com/imagespyer-g2/.

Invisible
Secrets

Encryption and steganography. Windows, commercial, up-to-date,
http://www.invisiblesecrets.com/.

Keepass Encryption. Passwords, Cross-platform, up-to-date, open-source,
https://keepass.info/.

Lastpass Encryption. Passwords and files, Cross-platform, up-to-date, freeware and
commercial, https://www.lastpass.com/.

Libressl Encryption. OpenBSD and cross-platform, up-to-date, forked from
OpenSSL, https://www.libressl.org/.

Loop AES Encryption. Drives, open-source, Linux, up-to-date,
https://sourceforge.net/projects/loop-aes/.

LUKS
manager

Encryption. Drives, Linux, up-to-date, open source,
https://sourceforge.net/projects/luks-manager/.

MagicFS* Steganography with encryption. Data hiding in a ext2/3 file systems,
Linux, up-to-date, open-source, http://magikfs.sourceforge.net/.

Mail1Click Encryption. Web-based, cross platform, commercial and freeware,
https://www.mail1click.com.

MatrixSSL Encryption. Cross-platform, up-to-date, small fingerprint,
https://github.com/matrixssl/matrixssl.

Mbed TLS Encryption. Cross-platform, written in C, up-to-date, https://tls.mbed.org/.
metFS Encryption. File system, UNIX and OpenBSD,

http://www.enderunix.org/metfs/.
Mitto Password
Manager

Encryption. Passwords, cross-platform, up-to-date, freeware,
http://download.cnet.com/windows/mitto-password-manager/3260-20_4-
10097870-1.html.

http://www.crazyboy.com/hydan/

36

Tool Name Short Description
Mobistego Steganography. Android, LSB-based, freeware and commercial,

https://sourceforge.net/projects/mobistego/.
Mujahideen
Secrets

Encryption. Windows, old, freeware,
https://www.schneier.com/blog/archives/2008/02/mujahideen_secr_1.html.

NetPGP Encryption. OpenBSD, cross-platform, http://netpgp.com/.
One big cloud
(CloudZ)

Encryption. For cloud file-sharing applications like Google Drive,
Dropbox, freeware and commercial, https://cloudz.io/.

OpenPuff Steganography. Open-source, cross-platform, up-to-date,
http://www.embeddedsw.net/OpenPuff_Steganography_Home.html.

OpenSSH Encryption. SSH traffic, OpenBSD, cross-platform, up-to-date,
https://www.openssh.com/.

OpenSSL Encryption. For TLS and SSL, open-source, cross platform, up-to-date,
https://www.openssl.org/.

OurSecret Steganography. Windows, http://steganography.findmysoft.com/.
Password Safe Password encryption. Freeware, Windows, https://www.pwsafe.org/.
Peerio Encryption. Chat and cloud, freeware and commercial, web based,

https://www.peerio.com/.
PEFS (Private
encrypted file
system) on
FreeBSD

Encryption. File systems for UNIX/Linux, open-source, up-to-date, PEFS
(Private encrypted file system) on FreeBSD.

Private Disk Disk encryption. Windows, commercial,
https://www.dekart.com/products/encryption/private_disk/.

Proxy Crypt File encryption. Windows, up-to-date, open source,
https://sourceforge.net/projects/proxycrypt/.

Quick Crypto Steganography and encryption. Windows, commercial, up-to-date,
http://quickcrypto.com/download.html.

Red JPEG XT Steganography. Windows, https://totalcmd.net/plugring/redjpeg.html.
Rohos mini
drive*

Encryption. USB drive files,Windows, up-to-date, freeware
https://www.rohos.com/products/rohos-disk-encryption/rohos-mini-drive/.

Sbwave Encryption. Email, freeware, Windows,
http://www.sbwave.com/enkryptor/home.html.

Scramdisk Disk encryption. Linux, open-source,
http://www.securiteam.com/tools/5VP011F0BY.html.

SecureDoc Encryption. Holographic data hiding, watermarking, commercial, cross-
platform, https://www.winmagic.com/.

SypproofVPN Encryption. Data-in-transit, commercial, cross-platform,
http://spyproof.net/.

StegFS Steganography. Linux and FreeBSD, open-source,
https://sourceforge.net/projects/stegfs/.

strongSwan Encryption. Linux, open-source, https://strongswan.org/.
Stunnel* Encryption. Data-in-transit, Linux, Windows, open-source,

https://www.stunnel.org/.

http://steganography.findmysoft.com/

37

Tool Name Short Description
Symantec
Endpoint
Protection

Drive encryption. Windows, commercial,
https://www.symantec.com/products/endpoint-encryption.

TrueCrypt Encryption. Cross-platform, open-source, obsolete,
http://truecrypt.sourceforge.net/.

USBCrypt Encryption. Flash drives, commercial, Windows,
http://www.usbcrypt.com/.

Vera Crypt* Encryption. Cross-platform, forked from True Crypt, up-to-date,
https://www.veracrypt.fr/en/Home.html.

ViPNet Office Encryption. VPN, data-in-transit, Windows, http://vipnet-
office.download3000.com/.

Win PT Encryption. Windows, open-source, up-to-date,
http://winpt.wald.intevation.org/.

WolfSSL Encryption. Internet of things, TLS support, light weight library for C
programming language, up-to-date, Gnu License,
https://www.wolfssl.com/.

Zfone Encryption. Data-in-transit, VoIP, open-source, http://zfoneproject.com/
ZFS Encryption. Linux and UNIX, open-source, http://zfsonlinux.org/.
Artifact Wiping Tools
ACleaner Browser, application, and Windows registry data cleaner, up-to-date,

freeware,
http://www.cleanersoft.com/cleaner/privacy_registry_cleaner.htm.

Active Cleaner Disk wiping, Windows, http://download.cnet.com/Active-Eraser/3000-
2092_4-10199620.html.

Advanced
System care
Free*

PC Cleaner, freeware, Windows, up-to-date,
https://www.iobit.com/en/advancedsystemcarefree.php.

Aevita Erase
Hard Drive

Hard disk cleaner, wiping tool, Windows, beta version, http://aevita-erase-
hard-drive.en.lo4d.com/.

Aevita Wipe &
Delete

File and folder deletion tool, Windows, http://aevita-wipe-and-
delete.en.lo4d.com/.

Aomei
Partition
Assistant

Disk wiping, Windows, commercial, https://www.disk-partition.com/free-
partition-manager.html.

Argente
Utilities*

Registry fixing, disk wiping, shredding, Windows, freeware,
https://argenteutilities.com/.

Ashampoo
WinOptimizer

Registry fixing, disk wiping, browser data cleaning, Windows, up-to-date,
freeware, https://www.ashampoo.com/en/usd/pin/3606/system-
software/winoptimizer-free.

Auslogics
Registry
Cleaner

Registry wiping, Windows, freeware, up-to-date,
https://www.auslogics.com/en/software/registry-cleaner/.

38

Tool Name Short Description
Baidu PC
Faster

Generic wiping tool, Windows, up-to-date, http://www.pcfaster.com/en/.

BCWipe Data wiping, cross-platform, up-to-date, commercial,
https://www.jetico.com/downloads/data-wiping.

BitKiller Data wiping, Windows, freeware, not very new, relatively basic tool,
http://www.snapfiles.com/get/bitkiller.html.

Blancoo Tools Comprehensive data wiping tools for cross platform, commercial, up-to-
date, https://www.blancco.com/.

CBL Data
Shredder

Data wiping, Windows, up-to-date, freeware,
http://www.cbldatarecovery.com/data-shredder/.

CCleaner* Generic data cleaner, wiping tool, freeware and commercial, suitable for
home-use, up-to-date, https://www.ccleaner.com/ccleaner.

Cleanersoft
Registry Fix

Registry wiping, Windows, freeware, up-to-date,
http://www.cleanersoft.com/registry_fix/free_registry_fix.htm.

CyberScrub Firm provides wiping tool for generic data wiping, Windows, commercial,
http://www.cyberscrub.com/.

DBAN* Hard disk wiping tool, cross-platform, freeware, up-to-date,
https://dban.org/.

Dclasfy Disk wiping, Windows, command-line tool, not new,
http://www.dmares.com/maresware/html/declasfy.htm.

Delete Files
Permanently

Small size file deletion tool, Windows, commercial,
http://download.cnet.com/Delete-Files-Permanently/3000-2248_4-
10790111.html.

DP Secure
Wiper

File wiping, Windows, freeware, up-to-date,
https://www.ghacks.net/2008/05/09/dp-secure-wiper-removes-files-
securely-from-your-system/.

East-tec Eraser Generic data wiper, Windows, commercial, up-to-date, https://www.east-
tec.com/eraser/.

Eraser File and disk wiping, Windows, up-to-date, commercial,
https://eraser.heidi.ie/.

Eusing
Registry
Cleaner

Registry wiping, fixing tool, Windows, freeware, not new,
http://www.eusing.com/free_registry_cleaner/registry_cleaner.htm.

FCleaner Generic data wiping, Windows, freeware, not new,
http://www.fcleaner.com/.

Free Easis
Data Eraser

Data wiping tool, Windows, freeware, obsolete,
http://download.cnet.com/EASIS-Data-Eraser/3000-2092_4-
75452799.html.

Free Window
Registry Repair

Registry wiping, Windows, freeware, not new,
http://download.cnet.com/Free-Window-Registry-Repair/3000-2086_4-
10606555.html.

Freeraser File wiping, Windows, freeware, not new, http://www.freeraser.com/

39

Tool Name Short Description
Glary Utilities Generic data wiping, registry cleaning tools, windows, freeware, up-to-

date, https://www.glarysoft.com/.
Hard Disk
Scrubber

Disk cleaning tool, Windows, freeware, not new,
http://summitcn.com/hdscrub.html.

Hard Drive
Eraser

Complete hard disk wiping, Windows, freeware,
http://www.harddriveeraser.org/.

Hardwipe Disk wiping, Windows, freeware, up-to-date, http://hardwipe.com/.
HDDerase Bootable disk wiping tool, cross-platform, not new,

https://www.lifewire.com/hdderase-review-2619137.
JetClean Generic clean tool, Windows, freeware, not new,

http://www.majorgeeks.com/files/details/jetclean.html.
Macrorit Data
Wiper

Disk wiper, Windows, freeware, up-to-date, https://macrorit.com/free-
data-wiper.html.

Mini Tool
Drive Wipe

Drive wiping, Windows, up-to-date. freeware,
https://www.minitool.com/free-tools/minitool-drivewipe.html.

Ontrack Eraser
Degausser

Disk Destruction, Degaussing, https://www.ontrack.com/products/data-
erasure/degausser/.

Pointstone
Registry
Cleaner

Registry wiping, fixing, commercial, up-to-date,
https://www.pointstone.com/download/.

Powertools Lite Generic wiping, disk wiping, registry fixing, up-to-date, Windows,
commercial, https://www.macecraft.com/download/.

PrivaZer Cleaner and wiping tool, Windows, up-to-date, freeware,
https://privazer.com/.

Protect Star
Data Shredder

Data wiping, Windows, commercial, up-to-date,
https://www.protectstar.com/en/products/data-shredder.

Registry Life Registry fixing, Windows, up-to-date, freeware,
https://www.chemtable.com/RegistryLife.htm.

Registry
Recycler

Registry wiping, freeware, Windows, up-to-date,
https://www.registryrecycler.com/.

Registry Repair Registry fixing, Windows, freeware, up-to-date,
http://download.cnet.com/Free-Window-Registry-Repair/3000-2086_4-
10606555.html.

RegSeeker Generic erasing, registry fixing, tuning, Windows, up-to-date,
http://www.hoverdesk.net/index.php.

Remo Drive
Wipe

Drive wiping, Windows, freeware and commercial, up-to-date,
https://www.remosoftware.com/remo-drive-wipe.

Remo File
Eraser

File deletion tool, Windows, freeware and commercial, up-to-date,
https://www.remosoftware.com/remo-file-eraser.

R-Wipe &
Clean

Wiping tool for files, Windows, commercial, up-to-date, http://www.r-
wipe.com/.

Sdelete System Internals tool from Windows, Wiping, Windows, freeware, up-to-
date, https://docs.microsoft.com/en-us/sysinternals/downloads/sdelete.

40

Tool Name Short Description
Secure Clean Wiping tool, Windows, commercial, up-to-date,

https://www.whitecanyon.com/home-products/secureclean.
Secure Eraser Wiping, Windows, freeware and commercial, up-to-date,

http://www.secure-eraser.com/.
Securely File
Shredder

File eraser, Windows, freeware, up-to-date, http://www.securely.co/.

SlimCleaner
Free

Wiping and generic file deletion, Windows, up-to-date, freeware,
http://download.cnet.com/SlimCleaner-Free/3000-18512_4-
75279939.html.

System
Mechanic Free

Generic wiping, Windows, up-to-date, freeware and commercial,
http://www.iolo.com/downloads/download-system-mechanic/.

Timestomp* Metadata wiping, Windows and Linux, open-source,
https://sourceforge.net/projects/timestomp-gui/.

TweakNow
RegCleaner

Registry cleaner, Windows, freeware, up-to-date,
http://www.tweaknow.com/RegCleaner.php.

TweakNow
SecureDelete

Disk wiping tool. Windows, freeware, up-to-date,
http://www.tweaknow.com/SecureDelete.php.

Wise Care 365 Generic wiping tool, Windows, freeware and commercial. Up-to-date,
http://www.wisecleaner.com/wise-care-365.html.

XT File
Shredder
Lizard

File removal tool. Windows, freeware, up-to-date, http://www.lizard-
labs.com/xt_file_shredder_lizard.aspx.

Ya- wipe Disk degaussing, cross-platform, obsolete,
http://freshmeat.sourceforge.net/projects/ya-wipe.

Trail Obfuscation Tools
Attention-
deficit disorder
(ADD)

Memory obfuscation, https://code.google.com/archive/p/attention-deficit-
disorder/.

Bitblinder Anonymous P2P, https://bitblinder.en.uptodown.com/windows.
Fake Location GPS data obfuscation for mobile, http://download.cnet.com/Fake-

Location/3000-12941_4-75463190.html.
Filetopia P2P sharing, cross-platform, http://www.filetopia.org/.
GNUnet Secure P2P, https://gnunet.org/.
I2P* Anonymous networking, cross-platform, https://geti2p.net/en/.
I2P-bote Anonymous email service using I2P network,

https://github.com/i2p/i2p.i2p-bote.
IMule Anonymous P2P, https://imule.en.softonic.com/.
JonDonym Anonymous proxy and web surfing, https://anonymous-proxy-

servers.net/en/index2.html.
Marabunta Anonymous free-net P2P, http://marabunta.laotracara.com/english.php.
MUTE Anonymous P2P network, file sharing,

https://sourceforge.net/projects/mute-net/.

41

Tool Name Short Description
Netsukuku Anonymous P2P, free-net project,

https://github.com/Netsukuku/netsukuku.
OFFSystem Highly connected P2P network, http://offsystem.sourceforge.net/.
OneSwarm Private P2P sharing, http://www.oneswarm.org/.
Perfect Dark P2P file sharing, http://kasumi.moe/pd/.
Retroshare Encrypted chat, mail, share using Tor / I2P, http://retroshare.net/.
StealthNet Anonymous file sharing, http://www.stealthnet.de/en_index.php.
Stego Share File sharing using steganography, http://stegoshare.sourceforge.net/.
Tribler Anonymous, Tor-based P2P, https://www.tribler.org/.
Attacks against forensic tools and methods
7-zip Program packer, hard to analyze, initially archive needs unpacking,

http://www.7-zip.org/.
BitCrypter Program Packet, commercial, https://www.crypter.com/download.html.
PECompact* Program packer, https://bitsum.com/portfolio/PECompact/.
UPX (Ultimate
Packer for
eXecutables)

Executable packer, cross-platform, open-source, up-to-date,
https://github.com/upx/upx/releases/tag/v3.94.

42

THIS PAGE INTENTIONALLY LEFT BLANK

43

APPENDIX B. INSTRUCTIONS FOR ANTI-FORENSIC TOOLS

A. BMAP TOOL INSTALLATION, CONFIGURATION PROCESS AND
USAGE EXAMPLE

BMAP (Robertson, 2003) can be downloaded from the packetstormsecurity

website (the link is provided at the Appendix-A). After downloading the TARBALL, the

following steps (listed below) are enough for correct compilation of the tool.

• tar -vxzf bmap-1.0.17.tar.gz

• cd bmap-1.0.7

• make

• sudo ln -s /home/<user>/Desktop/bmap-1.0.17/bmap /sbin/bmap

• bmap –help

If the last command displays options of bmap tool, then the installation is completed

successfully. Using dd if=/dev/zero of=fileEXT3.fs bs=1024 count=10240 creates a 10MB

raw image file. Using mkfs.ext3 changes the raw image file to ext3 file system type.

Following that, a user can mount the ext3 file system to a temp directory, navigate to the

mounted temp directory, and use the following bmap options to hide a “secret” string in

the slack space.

• echo “Testing bmap tool” > text.txt

• bmap --mode slack test.txt (displays slack space)

• echo “secret” | bmap --mode putslack text.txt

• bmap --mode slack test.txt (displays same slack space in step-2)

On Windows one can repeat the same four steps and unmount file systems.

44

B. STUNNEL TOOL INSTALLATION, CONFIGURATION AND USAGE

For installing Stunnel, the user needs to download the corresponding package and

follow the installation directives. The best practice for Stunnel is configuring a Linux host

as the server and either Windows or Linux host as the client. Stunnel needs a Linux package

management environment such as dpkg. The installation is:

• apt-get update

• apt-get upgrade

• apt-get install stunnel4

This provides just the application. Specific configurations, SSL certificate setup,

and service adjustments are also required. The list below shows the additional steps.

• vi /etc/stunnel/stunnel.conf

• Change “ENABLED = 1” for auto-start.

• Generate a key using OpenSSL:

• # openssl genrsa –out key.pem 2048

• Create a certificate for SSL communication:

• # openssl –req –new –x509 –key key.pem –out cert.pem –days 1095

• # cat key.pem cert.pem >> /etc/stunnel/stunnel.pem

Customize the configuration according to the topology at hand. The Stunnel default

configuration file has options for IMAPS, https, POP3s, and TLS communication. An

example configuration for the server is:

• setuid = stunnel4

• setgid = stunnel4

45

• pid = /var/run/stunnel.pid (stunnel.pid needs to be created beforehand

including pid#)

• client = no

• [https] (accurate service name is required)

• accept = 4488

• connect = 127.0.0.1:4489

• cert = / etc/stunnel/stunnel.pem

• An example configuration for Linux client is:

• setuid = stunnel4

• setgid = stunnel4

• pid = /var/run/stunnel.pid (stunnel.pid needs to be created beforehand

including pid#)

• client = yes

• accept = 4488

• connect = 4489

• cert = / etc/stunnel/stunnel.pem (certificate needs to be transferred from

server to client)

• /etc/init.d/stunnel4 restart (on both OSes).

C. IMAGE STEGANOGRAPHY TOOL SOURCE CODE

Program.cs /*main C# code */

using System;
using System.Windows.Forms;

46

namespace Image_Stego
{
 static class Program
 {
 [STAThread]
 static void Main()
 {
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Application.Run(new Form1());
 }
 }
}

Form1.cs /*Desktop form application C-sharp side*/
using System;
using System.Collections;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Windows.Forms;
using AForge.Imaging.Filters;

namespace Assignment_2
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void buttonBrowseSimple_Click(object sender, EventArgs e)
 {
 OpenFileDialog fileDiag = new OpenFileDialog();
 fileDiag.Filter = “Bitmap Image (.bmp)|*.bmp| Gif Image (.gif)|*.gif| JPG
Image (.jpg) |*.jpg| Png Image (.png)|*.png”;

 if (fileDiag.ShowDialog() == DialogResult.OK)
 {
 pictureBoxSimple.ImageLocation = fileDiag.FileName;
 buttonBrowseSecret.Enabled = true;
 }
 }

47

 private void buttonBrowseSecret_Click(object sender, EventArgs e)
 {
 OpenFileDialog fileDiag = new OpenFileDialog();
 fileDiag.Filter = “Bitmap Image (.bmp)|*.bmp| Gif Image (.gif)|*.gif | JPG
Image (.jpg)|*.jpg| Png Image (.png)|*.png”;

 if (fileDiag.ShowDialog() == DialogResult.OK)
 {
 Bitmap image = new Bitmap(fileDiag.FileName);
 pictureBoxSecret.Image = ToGreyScale(image);
 buttonSaveAsGrey.Enabled = true;
 }
 }

 private void buttonExit_Click(object sender, EventArgs e)
 {
 Application.Exit();
 }

 // converts RGB values to grey scale
 private Bitmap ToGreyScale(Bitmap bitmap)
 {
 int grey, i, j;
 Color color;
 for (i = 0; i < bitmap.Width; i++)
 {
 for (j = 0; j < bitmap.Height; j++)
 {
 color = bitmap.GetPixel(i, j);
 grey = (int)((color.R + color.G + color.B) / 3);
 bitmap.SetPixel(i, j, Color.FromArgb(grey, grey, grey));
 }
 }
 return bitmap;
 }

 private void textBox1_TextChanged(object sender, EventArgs e)
 {
 if (textBoxKey.Text.Trim().Length < 4)
 {
 buttonGenerate.Enabled = false;
 errorProvider.SetError(textBoxKey, “Key length must be greater than
3.”);
 return;
 }

48

 else
 {
 buttonGenerate.Enabled = true;
 errorProvider.SetError(textBoxKey, ““);
 }

 try
 {
 int.Parse(textBoxKey.Text);
 errorProvider.SetError(textBoxKey, ““);
 }
 catch (FormatException)
 {
 errorProvider.SetError(textBoxKey, “Key must be number.”);
 return;
 }
 }
 // Saves only in BMP format
 private void buttonSaveAs_Click(object sender, EventArgs e)
 {
 SaveFileDialog fileDiagSave = new SaveFileDialog();
 fileDiagSave.Filter = “Bitmap Image (.bmp)|*.bmp”;

 if (fileDiagSave.ShowDialog() == DialogResult.OK)
 {
 pictureBoxResult.Image.Save(fileDiagSave.FileName);
 }
 }

 private void buttonDecryption_Click(object sender, EventArgs e)
 {
 groupBoxEncryption.Visible = false;
 groupBoxDecryption.Visible = true;
 }

 private void buttonEncryption_Click(object sender, EventArgs e)
 {
 groupBoxEncryption.Visible = true;
 groupBoxDecryption.Visible = false;
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 groupBoxDecryption.Visible = false;
 groupBoxEncryption.Visible = true;

49

 }

 private void BrowseDecrypt_Click(object sender, EventArgs e)
 {
 OpenFileDialog ofd = new OpenFileDialog();
 ofd.Filter = “Bitmap Image (.bmp)|*.bmp|Gif Image (.gif)|*.gif |JPEG
Image (.jpeg)|*.jpeg |Png Image (.png)|*.png “;
 if (ofd.ShowDialog() == DialogResult.OK)
 {
 pictureBoxEncryptedImage.ImageLocation = ofd.FileName;
 }
 }
 // Creates a Byte Array
 private byte getByte(byte[] bits)
 {
 String bitString = ““;
 for (int i = 0; i < 8; i++)
 bitString += bits[i];
 byte newpix = Convert.ToByte(bitString, 2);
 int dePix = (int)newpix ^ key;
 return (byte)dePix;
 }

 private byte[] getBits(byte simplepixel)
 {
 int pixel = 0;
 pixel = (int)simplepixel ^ key;
 BitArray bits = new BitArray(new byte[] { (byte)pixel });
 bool[] boolarray = new bool[bits.Count];
 bits.CopyTo(boolarray, 0);
 byte[] bitsArray = boolarray.Select(bit => (byte)(bit ? 1 : 0)).ToArray();
 Array.Reverse(bitsArray);
 return bitsArray;
 }

 int key = 0;
 private void ButtonGenerate_Click(object sender, EventArgs e)
 {
 Bitmap simple = new Bitmap(pictureBoxSimple.Image);
 Bitmap secretGreyScale = new Bitmap(pictureBoxSecret.Image);

 if (secretGreyScale.Height != simple.Height || secretGreyScale.Width !=
simple.Width)
 {

50

 ResizeBilinear resizeFilter = new ResizeBilinear(simple.Width,
simple.Height);
 secretGreyScale = resizeFilter.Apply(secretGreyScale);
 }
 // Initialize
 Color pixelContainerImage = new Color();
 Color pixelMsgImage = new Color();
 // get key in Integer
 key = int.Parse(textBoxKey.Text);

 byte[] MsgBits;
 byte[] AlphaBits;
 byte[] RedBits;
 byte[] GreenBits;
 byte[] BlueBits;

 byte newAlpha = 0;
 byte newRed = 0;
 byte newGreen = 0;
 byte newBlue = 0;

 /* Image Encryption */
 #region Encryption

 for (int i = 0; i < simple.Height; i++)
 {
 for (int j = 0; j < simple.Width; j++)
 {
 pixelMsgImage = secretGreyScale.GetPixel(j, i);
 MsgBits = getBits((byte)pixelMsgImage.R);
 pixelContainerImage = simple.GetPixel(j, i);
 AlphaBits = getBits((byte)pixelContainerImage.A);
 RedBits = getBits((byte)pixelContainerImage.R);
 GreenBits = getBits((byte)pixelContainerImage.G);
 BlueBits = getBits((byte)pixelContainerImage.B);

 AlphaBits[6] = MsgBits[0]; AlphaBits[7] = MsgBits[1];
 RedBits[6] = MsgBits[2]; RedBits[7] = MsgBits[3];
 GreenBits[6] = MsgBits[4]; GreenBits[7] = MsgBits[5];
 BlueBits[6] = MsgBits[6]; BlueBits[7] = MsgBits[7];

 newAlpha = getByte(AlphaBits);
 newRed = getByte(RedBits);
 newGreen = getByte(GreenBits);
 newBlue = getByte(BlueBits);

51

 pixelContainerImage = Color.FromArgb(newAlpha, newRed,
newGreen, newBlue);
 simple.SetPixel(j, i, pixelContainerImage);
 }
 }
 pictureBoxResult.Image = simple;
 buttonSaveAs.Enabled = true;
 #endregion
 }

 private void btnDecrypt_Click(object sender, EventArgs e)
 {
 Bitmap EncryptedImage = (Bitmap)pictureBoxEncryptedImage.Image;
 Bitmap hiddenImage = new Bitmap (EncryptedImage.Width,
EncryptedImage.Height);
 Color pixelToDecrypt = new Color();
 try
 {
 key = int.Parse(textBoxDecryptionKey.Text);
 }
 catch (FormatException)
 {
 MessageBox.Show(“Key must be number.”);
 return;
 }

 byte[] BitsToDecrypt = new byte[8];
 byte[] AlphaBits;
 byte[] RedBits;
 byte[] GreenBits;
 byte[] BlueBits;
 byte newGrey = 0;
 /* Image Decryption */
 #region Decryption

 for (int i = 0; i < EncryptedImage.Height; i++)
 {
 for (int j = 0; j < EncryptedImage.Width; j++)
 {
 pixelToDecrypt = EncryptedImage.GetPixel(j, i);

 AlphaBits = getBits((byte)pixelToDecrypt.A);
 RedBits = getBits((byte)pixelToDecrypt.R);
 GreenBits = getBits((byte)pixelToDecrypt.G);

52

 BlueBits = getBits((byte)pixelToDecrypt.B);

 BitsToDecrypt[0] = AlphaBits[6];
 BitsToDecrypt[1] = AlphaBits[7];
 BitsToDecrypt[2] = RedBits[6];
 BitsToDecrypt[3] = RedBits[7];
 BitsToDecrypt[4] = GreenBits[6];
 BitsToDecrypt[5] = GreenBits[7];
 BitsToDecrypt[6] = BlueBits[6];
 BitsToDecrypt[7] = BlueBits[7];

 newGrey = getByte(BitsToDecrypt);
 pixelToDecrypt = Color.FromArgb(newGrey, newGrey, newGrey);
 hiddenImage.SetPixel(j, i, pixelToDecrypt);
 }
 }
 pictureBoxExtractedImage.Image = hiddenImage;
 buttonSaveAsFinal.Enabled = true;
 #endregion
 }

 private void buttonSaveAsFinal_Click(object sender, EventArgs e)
 {
 SaveFileDialog sfd = new SaveFileDialog();
 sfd.Filter = “Bitmap Image (.bmp)|*.bmp|Gif Image (.gif)|*.gif |JPEG
Image (.jpeg)|*.jpeg |Png Image (.png)|*.png “;

 if (sfd.ShowDialog() == DialogResult.OK)
 {
 pictureBoxExtractedImage.Image.Save(sfd.FileName);
 }
 }

 private void button3_Click(object sender, EventArgs e)
 {
 SaveFileDialog sfd = new SaveFileDialog();
 sfd.Filter = “Bitmap Image (.bmp)|*.bmp|Gif Image (.gif)|*.gif |JPEG
Image (.jpeg)|*.jpeg |Png Image (.png)|*.png “;

 if (sfd.ShowDialog() == DialogResult.OK)
 {
 pictureBoxSecret.Image.Save(sfd.FileName);
 }
 }

53

 private void T_BoxDecryptionKey_TextChanged(object sender, EventArgs e)
 {
 if (textBoxDecryptionKey.Text.Trim().Length < 4 &&
textBoxDecryptionKey.Text.Trim().Length > 7)
 {
 btnDecrypt.Enabled = false;
 errorProvider.SetError(textBoxDecryptionKey, “Key length must be
greater than 3 .”);
 return;
 }
 else
 {
 errorProvider.SetError(textBoxDecryptionKey, ““);
 btnDecrypt.Enabled = true;
 }
 try
 {
 int.Parse(textBoxDecryptionKey.Text);
 errorProvider.SetError(textBoxDecryptionKey, ““);
 }
 catch (FormatException)
 {
 errorProvider.SetError(textBoxDecryptionKey, “Key must be
number.”);
 return;
 }
 }
 }
}}

D. PYTHON SCRIPT FOR SHANNON ENTROPY CALCULATIONS

entropy.py

Shannon Entropy of a file
#minimum average number of bits per character

import sys
import math

if len(sys.argv) != 2:
 print(‘Usage: file_entropy.py [path]filename’)
 sys.exit()

read the whole file into a byte array

54

f = open(sys.argv[1], “r”)
byteArr = map(ord,f.read())
f.close()
fileSize = len(byteArr)
print(‘File size in bytes:’)
print(‘fileSize’)

calculate the frequency of each byte value in the file
freqList = []
for b in range(256):
 ctr = 0
 for byte in byteArr:
 if byte == b:
 ctr += 1
 freqList.append(float(ctr) / fileSize)
Shannon entropy
ent = 0.0
for freq in freqList:
 if freq > 0:
 ent = ent + freq * math.log(freq, 2)
ent = -ent
print(‘Shannon entropy (min bits per byte-character):’)
print(ent)
print(‘Min possible file size assuming max theoretical compression efficiency:’)
print (ent * fileSize), ‘in bits’
print (ent * fileSize) / 8, ‘in bytes’

import numpy as np
import matplotlib.pyplot as plt

N = len(freqList)
ind = np.arange(N) # the x locations for the groups
width = 1.00 # the width of the bars

fig = plt.figure()
fig = plt.figure(figsize=(11, 5), dpi=100)
ax = fig.add_subplot(111)
rects1 = ax.bar(ind, freqList, width)
ax.set_autoscalex_on(False)
ax.set_xlim([0, 255])

ax.set_ylabel(‘Frequency’)
ax.set_xlabel(‘Byte’)
ax.set_title(‘Frequency of Bytes 0 to 255\nFILENAME: ‘ + sys.argv[1])
plt.show()

55

E. METADATA WIPING AND TRAIL OBFUSCATION EXPERIMENTS

In this experiment target’s user used his PC for daily activities.

• The target machine is Windows 7 and the attacker machine is Kali-Linux.

Both operating systems share the same network. Windows IP address is

10.0.0.10 and Kali-Linux IP address is 10.0.0.5. Wireshark ran on the host

OS for capturing intermediary traffic between two machines.

• In the Kali-Linux to start Metasploit, the PostgreSQL service is started

with t“service PostgreSQL start” and the “ss –ant” command is used to

check the state of the PostgreSQL. Next initialize the database by using

“msfdb init” command. Next start metasploit with the “msfconsole”

command. Simultaneously, nmap search is used to detect the OS version,

the IP address, and the open ports of the target OS.

• On the Windows side, user created a test file (C:\FP.txt). Initial file name

was “forensics Project Test File.” The file name is changed to “FP.txt” for

easy access the file from “msfconsole” during the exploit.

• Using exploit ms15_100_mcl_exe requires the user to open a purposely-

crafted Windows Media Player list. Then the payload (.mcl) initiates a

reverse TCP connection from target machine to attacker machine using

crafted mcl.exe on port 4444 (Figure 12).

56

Figure 12. Test File Timestamps

Figure 13. Result of Timestamp Change with timestomp

57

F. EVENT LOG MANIPULATION

After deleting or changing timestamps, an attacker can delete evidence of their

presence on the system. For achieving this Metasploit provides “clearev” tool.

58

THIS PAGE INTENTIONALLY LEFT BLANK

59

LIST OF REFERENCES

Beal, V. (n.d.). Encryption. Webopedia. Retrieved October 29, 2018, from
https://www.webopedia.com/TERM/E/encryption.html

Bender, W., Gruhl, D., Morimoto, N., & Lu, A. (2010). Techniques for data hiding. IBM
Systems Journal, 35(3), 313–336. doi:10.1147/sj.353.0313

Bergel, H. (2007). Hiding data, forensics and anti-forensics. Communications of the
ACM, 15–20. doi:10.1145/1232743.1232761

Böhme, R., & Kirchner, M. (2013). Counter-forensics: Attacking image forensics. New
York, NY: Springer.

Boneh, D., Sahai, A., & Waters, B. (2011). Functional encryption: Definitions and
challenges. In Theory of Cryptography Conference (pp. 253–273). Berlin
Heidelberg: Springer.

Burdach, M. (2006).Physical memory forensics. Retrieved from
https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Burdach.pdf

Conlan, K., Baggili, I., & Breitinger, F. (2016). Anti-forensics: Furthering digital forensic
science through a new extended, granular taxonomy. Digital Investigation (18),
66–75.

Counterfeit. (n.d.). Retrieved October 29, 2018, from https://www.dictionary.com/
browse/counterfeit

Foster, J. C., & Liu, V. (2005). Catch me, if you can. Retrieved May 5, 2017, from
https://www.bishopfox.com/resources/tools/other-free-tools/mafia/

Garfinkel, S. (2007). Anti-forensics: Techniques, detection and countermeasures. 2nd
International Conference on Information Warfare and Security (ICIS) (pp. 77–
84).

Garfinkel, S., & Shelat, A. (2003). Remembrance of data passed: A study of disk
sanitization practices. IEEE Security & Privacy, 99(1), 17–27.

Harris, R. (2006). Arriving at an anti-forensics consensus: Examining how to define and
control the anti-forensics problem. Digital Investigation, 3, 44–49.
https://dx.doi.org/10.1016/j.diin.2006.06.005

Hoglund, G., & Butler, J. (2006). Rootkits: Subverting the Windows kernel (2nd ed.).
Stoughton, MA: Addison Wesley Professional.

60

Huebner, E., Bern, D., & Wee, C. K. (2006). Data hiding in the NTFS file system. Digital
Investigation, 3(4), 211–226. https://doi.org/10.1016/j.diin.2006.10.005

Idrix. (n.d.). VeraCrypt documentation. Retrieved September 12, 2018, from
https://www.veracrypt.fr/en/Documentation.html

Jahankhani, H., & Beqiri, E. (2010). Handbook of electronic security and digital
forensics. Retrieved from https://books.google.com/books/about/
Handbook_of_Electronic_Security_and_Digi.html?id=ZgpV6Rvw2FoC

Jain, A., & Chhabra, G. S. (2014). Anti-forensics techniques: An analytical review.
Contemporary Computing (IC3), 7, 412–418. https://ieeexplore.ieee.org/
document/6897209/

Kedziora, M., Chow, Y.W., & Susilo, W. (2017). Defeating plausible deniability of
VeraCrypt hidden operating systems. In Batten L., Kim D., Zhang X., Li G. (Eds)
Applications and techniques in information security: Vol. 719. Communications
in Computer and Information Science (pp. 3–13).

Ext4. (n.d.). Retrieved May 11, 2017, from https://ext4.wiki.kernel.org/index.php/
Ext4_Disk_Layout

Kissel, R., Scholl, M., Skolochenko, S., & Li, X. (2012). Guidelines for media
sanitization revision 1. Gaithersburg, MD: National Institute of Standards and
Technology (NIST).

Lillis, D., Becker, B., O’Sullivan, T., & Scanlon, M. (2016). Current challenges and
future research areas for digital forensic investigation. arXiv preprint
arXiv:1604.03850.

Liu, V., & Brown, F. (2006). Bleeding-edge anti-forensics. Presentation at InfoSec
World.

Microsoft. (2003, March 28). How NTFS works. Retrieved from
https://technet.microsoft.com/en-us/library/cc781134(v=ws.10).aspx

Mishra, M., Mishra, P., & Adhikary, M. C. (2014). Digital image data hiding techniques:
A comparative study. arXiv preprint arXiv:1408.3564.

Raghavan, S. (2013). Digital forensic research: Current state of art. CSI Transactions on
ICT, 1(1), 91–114. https://doi.org/10.1007/s40012-012-0008-7

Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE
Mobile Computing and Communications Rev, 5(1), 3–55.

61

Singh, M., & Mahajan, G. (2016). Various approaches of video and image stenography:
A review. International Journal of Science and Research (IJSR), 5(6), 1547–
1549. http://dx.doi.org/10.21275/v5i6.NOV164537

Sparks, S., & Butler, J. (2005). “Shadow walker”: Raising the bar for rootkit detection.
Retrieved from http://blackhat.com/presentations/bh-usa-05/bh-us-05-sparks.pdf

Swanson, M., Stoller, L., & Carter, J. (1998). Making distributed shared memory simple,
yet efficient. In High-level Parallel Programming Models and Supportive
Environments (pp. 2–13).

Trojnara, M. (2016, November 28). Stunnel. Retrieved from https://www.stunnel.org/
index.html

Yusoff, Y., Ismail, R., & Hassan, Z. (2011). Common Phases of Computer Forensics
Investigation Models. International Journal Computer Sciences Information
Technologies, 3(3), 17–31.

62

THIS PAGE INTENTIONALLY LEFT BLANK

63

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	18Dec_Hosgor_Emre_First8
	18Dec_Hosgor_Emre
	I. INTRODUCTION
	II. LITERATURE REVIEW
	A. ANTI-FORENSICS
	B. CATEGORIZATION OF ANTI-FORENSIC TECHNIQUES
	C. DESCRIPTION OF ANTI-FORENSIC CATEGORIES
	1. Data Hiding
	a. File System Data Hiding Tools
	b. Memory Data Hiding (Live Hiding) Tools
	c. Network-Based Hiding Tools
	d. Encryption Techniques
	e. Steganography Techniques
	f. Rootkits

	2. Artifact Wiping
	3. Trail Obfuscation
	4. Attacks against Digital Forensic Tools and Processes

	III. ANALYSIS OF ANTI-FORENSIC TOOLS
	A. Data Hiding
	1. File System Data Hiding Tools and Techniques
	2. Network-Communications Data Hiding
	3. Using Encryption for Data Hiding
	4. Steganography and Example Implementation

	B. ArtIfact Wiping Techniques
	1. File Wiping
	2. Generic-Data Wiping and Registry Wiping
	3. Metadata Wiping

	C. Trail Obfuscation
	D. Attacks Against Forensic Tools and Processes

	IV. MITIGATION of ANTI-FORENSICS AND RECOMMENDATIONS
	A. Data Hiding
	1. Detection of File System Data Hiding
	2. Detection of Network Communication Data Hiding with Stunnel
	3. Detection and Mitigation Techniques against Encryption Usage for Data Hiding
	4. Detection of Steganography

	B. Artifact Wiping
	C. Mitigation Techniques Against Trail Obfuscation and Attack AGAINST FORENSIC TOOLS
	D. Summary

	APPENDIX A. ANTI-forensic tools Considered
	APPENDIX B. INSTRUCTIONS for ANTI-forensic toolS
	A. BMAP Tool Installation, CONFIGURATION process and usage EXAMPLE
	B. STUNNEL TOOL INSTALLATION, CONFIGURATION and USAGE
	C. IMAGE STEGANOGRAPHY TOOL SOURCE CODE
	D. PYTHON SCRIPT FOR SHANNON ENTROPY CALCULATIONS
	E. METADATA WIPING and TRAIL OBFUSCATION EXPERIMENTs
	F. Event Log Manipulation

	List of References
	initial distribution list

