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ABSTRACT

This research evaluates potential auction algorithm approaches to a multi-robot
area search problem and uses the Naval Postgraduate School Advanced Robotic System
Engineering Laboratory’s multi-UAV system to implement, test, and evaluate selected
exemplars. Ultimately, for multi-robot systems to achieve wuseful objectives
autonomously, they need to reliably analyze objectives and assign supporting tasks to
individual vehicles. The market-based approaches analyzed in this research provide an
intuitive mechanism for robust realization of this capability in highly dynamic and
uncertain environments. We present our implementation, AuctionSearch, evaluate its
design trade-offs, and influence agent bidding strategies based on per-robot speed and
endurance. We test our implementation in simulation and in live-fly experiments across
three different search areas with system sizes ranging from three to 10 robots each. The
future of warfare will include unmanned systems in many facets of operations and
support. Furthermore, it is likely that human intervention and direct handling of
autonomous systems’ actions will be replaced by human supervision of
autonomously developed courses of action on the battlefield. For multi-robot
systems to have the capacity to develop and execute complex courses of action, they
must be capable of linking complex tasks together. Our research and testing

demonstrate that auction algorithms are well suited for autonomous decision.
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CHAPTER 1:

Introduction

1.1 Motivation

For military ground forces to be effective in their area of operation, they require an accurate
view of the operational environment. Sending human scouts into the environment to
assemble this comprehensive view can be unacceptably dangerous or risky if it removes
too much combat power from the core unit. The United States military has robotic systems
in its inventory that facilitate autonomous exploration of operational environments, but
these systems still utilize a “drive by wire” solution where a human handler is responsible
for decision making, maneuvering, and interpreting the results [1]. As more autonomous
systems are utilized by the Department of Defense (DoD), the ability of those systems to
coordinate among themselves to solve problems and make decisions could have far-reaching

tactical and strategic implications.

The future of warfare will include autonomous systems in many facets of operation and
support. Further, itis very likely that human intervention and direct handling of autonomous
systems’ actions will be replaced by human supervision of autonomously developed courses
of action on the battlefield [1]—-[7]. Interoperability and scalability will demand solutions
for robot-to-robot coordination, cuing, and decision making among others. Towards this
end, this research explores the use of market-based approaches for robot-to-robot coordi-
nation of complex behaviors. Exploration of autonomous system behaviors that maximize
independent coordination will ultimately lead to combat-enhancing capabilities within the

DoD today and in the future.

1.2 Research Objectives

This thesis explores the use of auction algorithms for multi-robot area search with different
utility functions implemented using the Advanced Robotic Systems Engineering Labo-
ratory (ARSENL) multi-Unmanned Aerial Vehicle (UAV) swarm as the test-bed for our

implementation. Most existing solutions for multi-robot search require centralized control



and likewise suffer from central points of failure. More robust and failure-tolerant solutions

can be obtained using decentralized assignment using auction algorithms.

In this work we present an area search implementation called AuctionSearch which uses
auction algorithms to generate assignments of agents to sections of a given search area. We
first explore different variants of market-based assignment algorithms and then apply them
to our implementation. We then observe our implementation in three different search areas
with two different utility functions with multi-robot system sizes ranging from three to 10

robots each. Finally, we validate our results with live-flight testing of AuctionSearch.

1.3 Related Work

Autonomous coordination among robotic systems has garnered a wide range of research
attention over the years as computational power and network speeds have increased. It also
takes on many shapes and directions as the terms “autonomous” and “coordination” can
apply to a range of independence, scale, and complexity. This thesis defines autonomous
coordination as the collective determination of follow-on actions by agents free from human-
handler intervention. Many advancements have been made in the multi-robot coordination
arena in recent years, ranging from taxonomies of robot behaviors as in [8], control of self
organized flocking techniques as in [9], [10] to large, complex robotic swarm formations
such as the 50-strong ARSENL multi-UAV swarm at Naval Postgraduate School (NPS)
and Harvard University’s 1000 Kilobots [2], [11], [12]. The efforts of these and other
research teams to increase the mechanical precision and motion control aspects of robotic
coordination provide the springboard to higher-level problem consideration by these robotic
systems, such as task deconfliction, assignment, and area search. This thesis builds on these
previous works by exploring multi-robot systems’ ability to link complex behaviors together
for complex objective completion. While some researchers have implemented emergent
behaviors using biologically inspired algorithms that use simple reactive interaction, our
research focuses on highly coordinated planning to achieve deliberative solutions to the

problems of task assignment and area search [13], [14].

Search problems can be defined as the exploration of a physical space by sensors in order to
observe all points contained within that space. Complete search consists of at least one sen-

sor observation per unit of search area, and an optimal search consists of exactly one sensor



observation per unit of search area. This definition translates directly to robotic coverage
problems, as described in [15], and much work is being done to advance autonomous sys-
tems’ ability to achieve solutions to such search and coverage problems. In 2011 researchers
from NPS, the University of Southern California, and the University of Minnesota presented
autonomous search techniques with specific application to mobile robotics [16]. The search
techniques explored in their research involved adversarial game-based utility maximization
and probabilistic path cost minimization involving perfect and imperfect sensors. In 2013
researchers from NPS used “mission performance” to evaluate area search patterns used by
agents operating within contested areas [17]. This approach to the search problem differs
from other work in this area by focusing on conducting the search with counter-agent evasion
as a consideration rather than only considering basic search performance measurements that
optimize the search coverage [17]. Another effort that looked at metrics other than basic
performance measurements to quantify success in search was conducted in 2007 from the
California Institute of Technology in [18]. In it, the researchers explored the problem of
search for a particular target in the context of the decisions the searcher-agent makes during

the pursuit of the target, not just the perceptions received from its sensors [18].

Many of these mentioned works generally explored single-agent searcher configurations that
sought to optimally segment the search space and path choices under certain conditions.
Works such as [19] focused on multi-UAV coordination dependent on human-handler inter-
vention, making design decisions based on human factors. This thesis, however, explores
and enhances multi-agent searching and objective execution by focusing on the agents’
ability to communicate and decide amongst themselves how best to segment the search
space and deconflict individual path options. To this end, the following research efforts are

germane to the area of robot-to-robot autonomous coordination.

Acknowledging the challenges of coordination over lossy communications networks, [20]
introduced a decentralized task assignment scheme that assigned multiple agents to multiple
moving targets where the agents decided to communicate based on how much of their local
information had changed since their last communication. Researchers in [21] approached
this problem by using a subset of aerial swarm participants in a “beacon” capacity, loitering
and providing information to “explorers,” the remainder of the swarm, in order to search
indoor corridors and spaces. As explorers moved from beacon to beacon and arrived

to an unexplored area, one of the explorers dynamically changed their role to beacon to



continue the search [21]. In 2015, NPS used a centralized relationship from one UAV to
all other swarm participants to communicate search commands, using what [4] terms a
“Teamleader Agent” dynamic, to successfully segment and deconflict search paths within

an area search [22].

This thesis seeks to distribute as much autonomy across the multi-robot system as possible
during complex behaviors such as area search. Work conducted in [23] by researchers at
NPS explored the mission assignment problem among multiple searcher-agents conducting
an area search where targets are observed in the environment and handed off to subsequent
searchers [23]. Researchers in [7] used agents to conduct search and attack functions on
objectives they encountered in a given search space, while agents in [24] add classification
and verification to these functions, and [25] adds Battle Damage Assessment (BDA) and
the decision to ignore a target to the list. This thesis explores behavior along the same
lines as the functions defined in [7], [13], [23]-[25] above. These works present a relative
line of demarcation and lineage for this thesis as we explore the limit to which we can
decentralize the assignment process and increase the agent-to-agent coordination capability

in multi-robot systems with auction algorithms.

Auction algorithms are used for assigning resources to agents in a decentralized manner.
They solve assignment problems by presenting opportunities for bidding on elements of a
resource pool at certain intervals with certain costs assigned to each element as a function
of the desired outcome. In 1979 the definition of an auction algorithm was offered in [26],
[27], and a distributed method was introduced for assigning objects to the highest bidder.
In [27], the auction process is described as having a bidding phase and an assignment phase.
In the bidding phase, all bids for resources are collected by a central auctioneer. In the
assignment phase, pairs of bidders and objects are created where no bidder owns more than
one resource and no resource is owned by more than one bidder. Decades of work related

to solving task assignment problems with auction algorithm implementations now exists.

In [28], a consensus-based auction algorithm is introduced in order to divide and commu-
nicate task assignments among agents within a multi-robot system. An interesting result
of [28]’s consensus-based auction approach is the removal of the requirement to have an
agent act as the auctioneer, removing reliance on a potential single point of failure, assum-

ing inadequate redundancy exists. Research conducted in 2012 at NPS explored the use



of an auction algorithm for swarm-on-swarm assignment of targets [29]. In that work, the
friendly swarm’s utility metric, or cost function, sought to minimize total distance traveled
from the current friendly agent’s location to the oncoming hostile agent, influencing which
friendly agents bid for which hostile agents at any given time in the scenarios [29]. [30]
used a tailored combinatorial auction algorithm and a modified winner determination algo-
rithm to conduct multi-agent negotiation for whether or not to participate in a collaborative
plan. The authors of [30] used roles (i.e., jobs) within the joint plan as the resources for
purchase by the bidders and included each bidder’s personal schedule of other activities as
private attributes of each bidder object. Their bids considered time for role completion as
a constraint to ensure agents did not overtask themselves if they ended up winning their
role. In this thesis, we contribute to this body of research by exploring ways in which these
principles, and other aspects of auction algorithms, can be applied to autonomous area

search problems.

1.4 Thesis Organization

The scope of this research effort includes the application of auction-based algorithms and
their utility functions to assignment of cells in an area search. This thesis is divided into five
chapters. Chapter 1 provides the motivation for this research, a summary of related efforts,
and an overview of the area search problem. Chapter 2 discusses current implementations of
auction algorithms and describes how they can be applied to cell assignment during an area
search. Chapter 3 provides an overview of our autonomous area search implementation,
AuctionSearch, and the major branches of execution which create the assignments and
conduct the search. Chapter 4 presents the results of our utility functions across search areas
and system sizes and analyzes their impact on the efficiency of the area search in simulation
and in live-flight testing. Chapter 5 presents our conclusions, findings, and future work that

may further illuminate the research area.
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CHAPTER 2:
Approach

The objective of this thesis is to assess the effectiveness of using auction algorithms with
various utility functions in multi-robot systems to assign search cells to individual robots

and to autonomously and dynamically complete an area search.

In this chapter we begin to detail how multi-robot systems can link complex tasks together
to develop and execute complex courses of action without human intervention. We first
lay the groundwork for our work in robot-to-robot coordination with a discussion of the
different variations of auction algorithms and their relationship to the generalized assignment
problem. We then expand the basic auction algorithm definition for use in a fault-tolerant

approach to autonomous area search.

2.1 Methodology

This thesis investigates the research objectives outlined in Section 1.2 in two steps. First, we
present an overview of auction algorithms, their purpose, their variations, and discuss their
feasibility as a solution for autonomous decision making during an area search by a multi-
robot system. Second, we present our auction algorithm implementation, AuctionSearch,
and the scenario-based experimentation with various utility functions applied. Ultimately
we seek to achieve complete, efficient, and fault-tolerant search execution without human

intervention.

2.2 Auction Algorithm Overview

The overarching goal of auction algorithms is to assign agents to tasks. The following
subsections describe the assignment problem that auction algorithms seek to solve, the
advantages and disadvantages of auction-based solutions, and the applicability of auction

algorithms to area search using multi-robot systems.



2.2.1 Basic and Generalized Assignment Problems

Fundamentally, the assignment problem seeks to create a one-to-one mapping from a set B
of m agents to a set T of n tasks. In the basic assignment problem m = n, creating symmetric
assignment [26]. In the generalized assignment problem, the number of agents does not
need to equal the number of tasks, creating asymmetric assignment [26]. The goal is to find
an optimal distribution of the available agents across the range of tasks [3], [28]. Agents are
assigned tasks based on a net-profit function that accounts for the benefit to agent a; € B for
completing task #; € T as well as the cost agent a; incurs to accomplish task #;. Solutions
to task assignment problems seek to assign every task in 7" to exactly one agent in B while
maximizing the system-wide profit p produced by each agent’s net-profit function [27]. For
basic assignment, each mapping of agent to task x;; in B — T must satisfy the conditions

specified by the following linear programming equation [26], [27]:

m n
maxZZp,-jxij
i=1 j=1
m
s.t. Xij = 1
i=1 2.1

M=

X,'j =1
1

Xij € {1, 0}

~

For generalized assignment each mapping of agent to task x;; in B — T must satisfy the
following conditions [26], [27]:

m n

max Z Z PijXij
=1 j=1

i=1 j

s.t. Xij = 1

1 2.2)

s

1

s |

X,'jZO

~.
I
—

Xij € {1, 0}



Optimal solutions to the assignment problem can be obtained by centralized or decentral-
ized means, as described in [29]. The term “optimal” is necessarily application specific,
as [14] argues that optimal assignment solutions conduct trade-offs between resources, time,
and bandwidth requirements [14], [31]. While centralized assignment methods generally
require less agent communication than decentralized methods, they frequently lack enough
redundancy and dynamism to overcome system failures or changes in operational circum-
stances [5], [32], [33]. Decentralized methods such as those employing auction algorithms
require higher rates of communication among agents but gain the ability to dynamically
reallocate assignments as conditions change, increasing the robustness of the system [3],
[13].

2.2.2 Auction-based Algorithms

In this section we describe the different auction algorithm variations and the auctioneer
mechanisms associated with them. Auction algorithms are a decentralized approach to
solving the assignment problem. The goal is to create agent-resource pairs from a set B
of m agents and a set S of n resources in a series of rounds. The generic form of an
auction creates symmetric assignment, meaning that the number of agents must equal the
number of tasks [26]. Each round typically has a bid phase and an assignment phase. The
bid phase provides each agent an opportunity to place a bid b for a resource. Each agent
maintains a private value v for each resource r in S, and each resource has an associated
cost of ownership c. Each agent possesses an amount of money d to spend on purchases
of resources. Agents bid on resources that maximize their net value while minimizing their
cost incurred. Once all bids are received, the assignment phase completes the assignment

of agents to resources for which a winning bid was submitted [27], completing the round.

In the generic form of an auction, each mapping of agent to task x;; in B — § is specified



by the following linear programming equation [26], [27], [33]:

m n
min Z Z CijXij
i=1 j=1

m

S.t. Xij = 1
; (2.3)
Xij = 1
i=1
Xij € {1,0}

Resources assigned in one round can be reassigned in subsequent rounds based on the
competing agents’ bid values. The auction continues in this fashion until some termination
criteria has been achieved. Typical termination criteria for an auction include |S| = O,
indicating no remaining resources requiring assignment or |B| = 0, where there are no
bidders remaining who require resources. Other termination criteria can include no-bid
rounds where no bidder accepts the current price of any of the given resources or no bids

being submitted within a given time period [34], [35].

In order to achieve optimal assignment of agents to tasks, utility metrics must be used to
influence which agents desire to own which resources, maximizing their individual utility
while advancing the broader goal. We define “utility” in agents in the same manner as
utility based agents in artificial intelligence: agents seek to maximize a hardwired cost-
benefit function in order to drive their individual decisions [4], [5], [30], [34], [36]. An
auction’s parameters and utility functions can be made arbitrarily complex; run-time, degree
of understanding of the current situation, and communication bandwidth must all be taken
into consideration when determining bidder utility functions. Common utility functions
include maximizing profit, minimizing cost, or minimizing aggregate time to complete a
set of tasks [32], [35]—[38].

2.2.3 Elements Common to Most Auctions
Many implementations of auction algorithms exist with a wide range of applications, in-

cluding dividing cloud computing resources as described in [39], completing government

10



procurement [40], consumer credit [34], and exploration of Mars [5], [33] to name only a
few. While there are many tailorable attributes and variations of auction algorithms, their
implementations have standard components that are generally common to them all. The

major structures are listed below:

R = {resourcey,resource, ...,resource;}

(2.4)
resource; = (resourcel Dj, cost;)
B = {bidder, bidder, ..., bidder;} 2.5)
bidder; = (bidderID;, money;) .
bidp,resource; = (bidder D, resourcel Dy, price;) 2.6)

price; = utilityp(cost;).

There are multiple methods for assigning costs and driving bidder decisions in auctions.
In [1], the chosen cost function seeks to minimize the collective time for a set of agents
to complete a set of tasks, which they call the “total mission time,” weighing the solutions
that take the least amount of time to execute the highest. The authors of [13] suggest power
consumption as another cost to consider when assigning agents to tasks. In [27] the author
describes the primal assignment problem, wherein a bidder holds a particular value for a
resource that the bidder wants to maximize with the purchase of it as a byproduct of a

bidder-specific utility function.

2.2.4 Single-Item Auctions

The first type of auction is a single-item auction, sometimes referred to as a progressive
auction, where bids are placed for one item at a time [5], [35]. Single-item auctions are
often “open-cry,” meaning the entire set of resources, their costs, and the set of current
bids are known to all bidders throughout the entire auction, however this is not a specific
requirement [34], [35]. A single-item auction process can be used to solve both the basic
and general assignment problems of Equations 2.1 and 2.2 respectively. The goal is to

create agent-resource pairs from a set B of m agents and a set S of n resources that satisfies

11



the following conditions:

min CijXij
i=1 j=1 22.7)

S.t.X,'j € {1, 0}

m n
=1

The basic single-item auction-based assignment algorithm as described in [8], [26], [27],
[29], [37] is provided in Algorithm 1:

Algorithm 1 Algorithm for Conducting a Single-Item Auction

S « [(resourcel Dy, costy), ... , (resourcel D,,, costy,)]
B « [(bidder1Dy, moneyy), ... , (bidderID,, money,)]
for j = 0to length(S) do
bids « []
highBid «— 0
myBid «— 0
winner «— NULL
for i = 0 to length(B) do
utility;; = bidderl[i].utility(resource|j])
if utility;; > myBid then
myBid = bidder|i].calc_bid(resource|j])
end if
end for
if myBid > 0 then
bids.append(bid;;)
end if
for k = 0 to length(bids) do
if auctioneer.winner_determination(bidy) > high_bid then
high_bid <« bidj
winner « bidder|k]
end if
end for
end for.

To begin the auction, the auctioneer needs two critical pieces of information: |S|, the number
of resources to be auctioned, and the cost ¢; for each resource r; € §. At a minimum, the
auctioneer must communicate ¢; for each r € S to all bidders b € B prior to bidding,
unless a specific application benefits from tailoring this to include blind bidding, where c;

is unknown.
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In order for bidder b; to gain possession of resource r;, b; must first submit an allowable bid
g and subsequently be chosen as the winner of the round by the auctioneer. An allowable
bid is any ¢ that conforms to all prescribed constraints of the auction. For example,
q = allowable iff g > c¢; + ¢ is an auction rule that indicates that all bids must exceed the
current price for r; by at least 6. [35] and [41] call this a “minimum increment” rule. A bid
of g = 0 is considered a no bid, and can either be viewed as a trivial case or as a means
for a bidder to explicitly abstain from bidding for a given resource [42]. Further, a useful
(and necessary) constraint is g < my,, forcing allowable bids to be ones which bidders can
actually afford resources for which they are selected as winners. Many other application

specific constraints are possible as well [5], [34].

Once each bidder has had the opportunity to bid on a given resource r;, the auctioneer
awards it to the winning bidder b; based on the auction’s specification, ending the round.
In the simplest version of winner determination for single-item auctions, a bidder b; wins
a resource r; if b; submitted an allowable bid g, to the set of bids Q such that r; — b; iff
qp, = max(Q). Once a winner has been selected, the single-item auction continues in this

manner until some termination criteria is triggered.

2.2.5 Combinatorial Auctions

Single-item auctions have the advantage of fine grained control over resource distribution,
however if the number of resources is substantial it may take unacceptably long to create
complete assignment of agents to resources [27]. The time-complexity of assignment
increases polynomially with the number of possible agent-resource pairs [1]. Combinatorial
auctions seek to achieve complete assignment more quickly by assigning variably-sized
subsets of the overall set of resources to each agent. The goal is to assign each agent in
a m-sized set B to a k-sized subset of resources T, such that ¢;: T — R. C is a set of
this mapping of agents to task-subsets x;; in B — T~ is subject to the linear programming

equation [43]:

max Z ¢T;
i=1
st. L[ )T;=0 Vi#j (2.8)

m
Un = T.
i=1
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A combinatorial auction follows the same general structure as a single-item auction except
that bidders are allowed to pursue any subset of resources 7 C R, known as bundles or
packages, with a single bid [32]-[34], [43]. In turn, each bidder b € B places a set of bids
U for T with the following forms:

T = {resourcej,resource, ...,resource;} (2.9)

UbT = {bidresourcela bidresaurcez, ceey bidresourcej} (210)

bid(presource;) = (resourcel Dj, price;) @1
price; = utilityy(resource;). .
The form and application of combinatorial auctions is discussed in [8], [30], [32], [33],

[37], with a version of the auction’s general form given by Algorithm 2:

Algorithm 2 Algorithm for Conducting a Combinatorial Auction

S « [(resourcel Dy, costy), ... , (resourcel D,,, costy,)]
B « [(bidder1Dy, moneyy), ... , (bidder1D,, money,)]
bids « ]

U=1[]

highBid <« 0

winner < NULL
for i = 0to length(B) do
Uir = bidder|i].utility(S)
if length(U;r) > O then
bids.append(U;r)
end if
end for
for k = 0 to length(bids) do
if auctioneer.winner_determination(bidy) > high_bid then
high_bid « bid
winner < bidder|k]
end if
end for.

For combinatorial auctions, finding the optimal assignment of subsets of resources to bidders
that maximizes utility, or the winner determination problem, is known to be NP-complete
and must therefore be combinatorically constrained to achieve tractability [5], [13], [32]—

[35], [44]. In combinatorial auctions, the most basic version of winner determination is
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accomplished by the auctioneer selecting the bid set U, that either maximizes utility or sells

most of the available resources:

winner = max(z Z qp; +¢j) U max(z Z |U|) where gp, € Up. (2.12)

i=1 j=1 i=1 j=1

Combinatorial auctions can create efficient assignment solutions as the size of the bid sets
grow, creating shorter auctions overall as more resources are consumed. They can also
become cumbersome, however, if bidders’ utility functions are overly complex (e.g., more
than simply maximizing some value associated with each resource). The complexity of
the Combinatorial Auction Problem (CAP), an instance of the well studied Set Packing
Problem (SPP), is an NP-hard problem which deals with the complexity introduced when a
bidder must consider all possible subsets of resources to find an optimal combination [43].
The Multi-Dimension Multiple-Choice Knapsack Problem (MMKP) is a similar problem

wherein each bidder must choose single elements from multiple resource pools.

A common thread through these problems is the combinatorial explosion that occurs as
the size of the resource pool grows [5], [32]-[35]. While complex utility functions effect
single-item auctions as well, the deliberation and analysis an agent might do while selecting
a set of resources can increase exponentially compared to a single resource [33]. If bidders
are spending inordinate amounts of time deciding what combination of resources best
maximizes their utility, the auction may fail to achieve complete assignment in a timely
enough manner. As computing power has increased over the years, so has the ability to
implement more complicated versions of combinatorial auctions, however the optimality
problem is yet to be solved [35], [43].

To combat the complexity of formulating optimal bid sets on the bidder’s side and selecting
the optimal winner on the auctioneer’s side, winner determination algorithms must be
carefully tailored to the particular application in order to create efficient solutions [30],
[42]. Some useful heuristics include limiting the size and number of bundles allowed in the

auction and using efficient clustering algorithms to produce bid sets [5], [32].
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2.2.6 Centralized Auctioneer Mechanisms

Determining which agent has submitted the winning bid among the set of bids for a particular
resource is the critical function linking the bid and assignment phases of an auction round.
Winner determination is either conducted by a central auctioneer or by a decentralized linear

program executing exchanges of resources between individual agents [26], [27].

In centralized implementations, the role of auctioneer is either statically assigned to one
of the participating agents or it can be rotated among them. Agents bidding on resources
submit their bids to the auctioneer who then selects the winner based on the set of received
bids and the auction’s specification (e.g., highest or lowest bid). Some implementations
include the auctioneer as a participating bidder while others exclude the auctioneer for the
duration of the auction [38], [43]. When the auctioneer receives identical bids for a given
resource, the winner is typically determined randomly by the auctioneer, unless the auction

is designed to avoid such situations [26], [43].

The most obvious limitation associated with using a centralized auctioneer is the reliance on
a single point of failure. If the auctioneer experiences a loss of functionality then the auction
may fail to properly execute. Creating redundancy would increase resilience but would
exacerbate or introduce other problems, such as data consistency and bandwidth demand.
Walrasian methods, discussed in [41], [43], attempt to reduce the impact of centralization
by replacing the selective auctioneer with a more passive price-setting merchant, but the

reliance on a singular entity remains.

2.2.7 Distributed Auctioneer Mechanisms

Decentralized implementations are generally less complex and more resilient to failure than
centralized ones. In decentralized implementations, the role of auctioneer is distributed
among the agents and each agent is capable of both bidding and auctioneering. To start,
each agent iterates through each resource and identifies the one that achieves the highest gross
utility given the agent’s utility function. Once identified, the agent then bids and greedily
assigns itself to the resource, exchanging its current resource for the higher grossing one.
If multiple agents are competing for the same resource, the price is increased with each
bid placed until there is only one agent remaining whose gross utility is still maximized.

The auction continues in this fashion until every agent is “happy,” meaning every agent is
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assigned a resource that maximizes its gross utility [26], [27].

2.3 Application of Auction Algorithms to Autonomous
Area Search

In this section we begin to discuss the application of auctions to the complex task of area
search. We start by tailoring the terms used in the preceding sections to the search problem.
Secondly we incorporate auctions into an area search algorithm and discuss the various
cost functions that can be utilized. Then we detail how auctions factor into an area search

algorithm including the fault-tolerance gained with dynamic reallocation.

To start our discussion we define our terms for using auctions in area search applications.
We continue to use the term “auction” for describing the action of bidders bidding for
resources for simplicity’s sake. We use the following terms and definitions from this point

forward:

1. Search Area: The predetermined physical area that the agents are required to explore.

2. Search Space: The search area broken down into an undirected graph of cells by some
cellular decomposition method (e.g., trapezoidal, grid, boustrophedon).

3. Cell: A biddable and awardable resource that represents a geometric subset of the
search space. Cells are organized as a set of waypoints distributed based on the
owning agent’s sensor characteristics.

4. Waypoint: An element of a cell that represents a physical location that an agent must
travel to in order to be considered explored. The dispersion pattern of the waypoints
should be a result of the dynamics of the configuration space, such as sensor sweep
width, speed, and turn radius of the searcher.

5. Searcher: An agent assuming search responsibilities of cells for which it has bid for
and won. Searchers participate in auctions and communicate with other searchers.

6. Auctioneer: A centralized or decentralized mechanism for determining which agent
won which cell. The position of auctioneer is typically accomplished by a single
agent, possibly a searcher [28], [32], [33]. In our implementation described in
Section 3 we explore methods that reduce or remove this control and communication
bottleneck [41], [43].
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Figure 2.1. Search Area Discretized into Search Space

The application of auction algorithms to the area search problem is fairly straightforward.
In a centralized scheme, the auctioneer first acquires the lists of available bidders, cells,
and their associated costs. In a decentralized scheme, the agents must first send each other
cell and bidder information. Next, the searchers receive and verify the list of available
cells (with costs) via transmissions from some decentralized formation control system [45]

before utility calculation and bidding.

Agents place bids for cells according to their individual utility functions and are assigned
cells for which they submitted the winning bid. Once assigned a cell, searchers move to and
systematically explore the cell’s waypoints, conducting new auctions for follow-on cells as
required, until the search is complete [32], [33]. In order for the search to be considered
complete, every waypoint of every cell in the search space must be explored by a searcher.
The general form of an area search using auctions is presented in Algorithm 3 and in
Figure 2.2 [33]:
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Figure 2.2. Area Search Execution Using Auctions

Algorithm 3 Algorithm for Conducting an Area Search with Auctions

searchers «— [(searcherlI Dy, moneyy), ... , (searcherID,,, money,,)]
search_space « [(celll Dy, cellStatusy, costy), ... , (celll Dy, cellStatus,, cost,)]
while not search_complete do

cell_assignments < conduct_auction(search_space, searchers)

while not cells_complete do

searchers.search(cell_assignments)

end while

end while

2.3.1 Utility Function Considerations

The agent’s utility function determines what the agent values in being assigned a given task.
Many factors can contribute to the calculation of such value. Considerations of interest
include distance, remaining power level (i.e., endurance), agent type and capabilities (e.g.,
quad-copter or fixed-wing), speed, and agent sensor sweep-width, to name a few. A more

detailed discussion of these considerations is offered in Chapter 3.

Other research efforts have also explored these considerations. Prim Allocation, introduced
in [33], uses the distance of the cheapest previous bid in each agent’s bidding history
to influence its utility. [32] used a bidding strategy that included the cost of a bundle

of waypoints plus exactly one dollar per every unit of distance the agent was from each
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waypoint as the bidding strategy. In [46], the searchers’ utility is based on their ability to
action objectives sooner rather than later, with weights assigned based on the length of time
each objective takes to complete. This stratification made it possible for searchers to be
assigned tasks for which they had an adequate amount of power remaining to accomplish,
preserving a high utilization rate. [25] notes that greedy first-step assignments in a search’s
first auction are generally unavoidable, given utility functions incorporating distance from

a given waypoint or cell.

An important aspect of auctions as applied to area search versus other applications is
that the most important goal is complete assignment, or tatonnement, of cells and waypoint
coverage over monetary frugality [41]. Deeply sub-optimal solutions result from cells going
unpurchased for long periods of time, as costs associated with unpurchased cells grow as
the search progresses farther away. Further, there is no chance of complete coverage if
cells go unpurchased indefinitely. With achieving complete assignment our primary goal,
bidding strategies need not necessarily save money, and searchers can be provided new total

amounts of money for each auction in order to avoid such situations.

Search Space

=Cell ID =cell 0

= Cost =20

= Bids =2, {S1, S2}

= High bid = S1

aypoints — D Searcher S2
bid = S2.utility(cell 0)
bid = Sl.utility(cell 0)
——p Auctioneer Al
Searcher S1 winner = Al.winner determination(cell 0)

Figure 2.3. Bidding for Cells. Agents submit bids in similar ways whether
a centralized or decentralized scheme is used. Some auctioneer mechanism
determines which agent won the given cell.

Arguments have been made that combinatorial auctions are better suited to producing

optimal assignment solutions than their single-item auction counterparts [32], [35]. It
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is argued that they produce optimal sub-teams during search operations as compared to
general auctions because they optimize the use of each agent’s “synergy,” as [32] describes
it, relative to the bundle of resources it bid for and won. The authors of [32] and [5]
define this “synergy” as the advantage gained from selecting two or more cells that are
close together in a single bundle rather than bidding for one of the cells, winning it, then
bidding on the second cell, losing it, resulting in potentially sub-optimal collective search

times [32].

Auctions are only useful for assignment during area search if the status of the various data
structures is kept current and accessible to the necessary agents. The auctioneer should only
offer unique, unexplored cells for bidding or risk missing or duplicative coverage resulting

in sub-optimal results at best.

2.3.2 Search Space Maintenance

Before each auction round, the searchers need to know which cells are up for auction and
which ones are not. In order to do this efficiently, the searchers need to track the state that
each cell is in. The set of possible states that a cell can be in and the transitions to and
from those states must be well-defined to ensure accuracy. We define “maintenance” here
as deciding how the search area is divided into cells and tracking what the current state of
each cell is. When combined, this provides a snapshot of the overall state of the search at
a particular point in time. [25] presents a well tuned set of possible states to consider. The

states used in [25] are presented below:
A = {available, associated, assigned, active, complete} (2.13)

where associated relates to a “provisional” assignment and assigned refers to an actual
assignment that translates into adjustment to robot motion control [25]. Defining, assigning,
and communicating these states, and doing so efficiently, is a chief concern because they
represent the direct input and output of any area search algorithm. Further, if dynamic
applications are used, as described in the next subsection, then ensuring accurate input to

each auction is vital to avoid detrimental error propagation.

Search space maintenance can be distributed or centered on a single searcher. [22] discusses

the relative advantages and disadvantages of each method. Managing a central search space
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requires a ground station or searcher to be assigned as the search space manager. The search
space manager is responsible for receiving statuses from searchers, updating the search

space, and rebroadcasting the updated information.

In decentralized maintenance, each searcher maintains its own current understanding of the
search space over the course of the search. The search area coordinates are first issued
to each searcher followed by execution of the same cellular decomposition, adjacency
development, and waypoint distribution algorithms across all of the searchers. While this
presents a duplication of effort and requires inter-swarm update messaging, it avoids reliance

on a single point of failure.

Regardless of which search space management solution is chosen, network communication
bandwidth and update frequency must be sufficient to maintain accuracy and universal
understanding. Consensus algorithms such as those analyzed in [31], lazy and eager
consensus introduced in [47], Kalman Consensus in [48], and consensus-based auction
algorithms in [28] have been shown to be viable communication solutions in dynamic and

lossy network environments [49].

2.3.3 Dynamic Search Space Reallocation Via Auctions

A key advantage to conducting an autonomous area search with auctions is the potential
for dynamic reallocation of search cells [33]. We define “dynamic reallocation” here as
updating the searcher-cell assignment solution given current statuses for the searchers and
cells. At the outset of a search but after all preliminary cellular development is completed,
an auction is started to create initial assignment of cells ranging from one up to and including

complete assignment.

Dynamic reallocation occurs when some trigger is met during the search that indicates a new
intermediate auction needs to take place given current information. An intermediate auction
is any auction occurring after the initial assignment auction has taken place. Figure 2.4
depicts how an area search progresses including dynamic reallocation and intermediate

auctions.
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Figure 2.4. Dynamic Auction Application. This figure shows how a
system of searchers can recover after one of the searchers leaves the search.
Once the remaining agents sense the loss, they can reallocate the lost agent's
work to operational searchers.

Algorithm 4 Algorithm for Conducting an Area Search with Dynamically Applied Auctions

searchers «— [(searcherl Dy, moneyy), ... , (searcherlD,,, money,,)]
search_space « [(celll Dy, cellStatusy, costy), ... , (cellID,, cellStatus,, cost,)]
for i = 0 to length(search_space) do
if search_spacelil[cellStatus] not in {active, complete} then
cells_to_auction.append(search_spaceli])
end if
end for
while not search_complete do
cell_assignments < conduct_auction(cells_to_auction, searchers)
while not cells_complete do
searchers.search(cell_assignments)
if searcher_reported_out then
cells_to_auction.update(search_space, searchers)
cell_assignments <« conduct_auction(cells_to_auction, searchers)
end if
end while

end while.
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Triggers include cell completion, searcher-agent failure, or any activity that causes a searcher
to exit the search, such as encountering some higher objective as in Figure 2.4. Regardless
of which event causes the trigger, the result is still the net loss of an agent (or agents)
responsible for searching a cell. The cell’s status is then reverted from active to available
using Equation 2.13 and the auction re-initiates. Algorithm 4 includes the cell statuses from

Equation 2.13 and a Boolean test to check for triggers.

Dynamic reallocation is advantageous because variability permeates all aspects of robotics,
and the more flexible robotic systems are to changing environmental conditions the better
they are at managing real world problems such as search when other objectives compete
for priority. Determining which triggers re-initiate assignment (i.e., which triggers make
searcher_reported_out == True) will affect auction frequency, completion time, and

individual robot utilization scores [5].

2.4 Summary

In this chapter we presented an overview of auction algorithms, discussed how they create
solutions to the assignment problem, and explored their applicability to autonomous area
search. When applied to area search, auction algorithms create agent-cell pairs where
the goal is to minimize the total system cost required for completing the search while
maximizing overall system utility. Auctions achieve this by using individual-searcher
utility functions which seek to greedily minimize individual cost to search cells, managing
run-time concerns by using the simplest functions possible that still achieve the best possible
assignments. Auction algorithms also allow for dynamic reallocation of cell assignments at
certain intervals and given certain triggers which allow the system-wide costs and utilities

to be reshuffled with current state information taken into account.

This chapter also discussed many approaches to auction implementations and the different
impacts and advantages associated with using single-item and combinatorial auctions to
create agent-cell assignments. Single-item auctions, where a single cell is bid for by each
agent, typically allow for locally optimal assignments because each agent bids highest for

the cell that achieves the agent’s highest utility.

Sub-optimal search completion times can occur, however, if agents are only associated

with a single cell because they must continuously wait for follow-on cells to be assigned
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via auction. This inefficiency can be mitigated with various auction-trigger strategies.
Combinatorial auctions can achieve faster search completion times since multiple cells are
bid for in bundles of high-utility cells at the cost of computation complexity that can likewise

hinder completion times.

Both types of auctions can assign cell-agent pairs using auctioneer winner determination
in both centralized and decentralized fashions, however decentralized methods are far
more robust to system failure while centralized mechanisms offer lower communication
bandwidth use. All of these factors are taken into consideration in Chapter 3 where we
introduce AuctionSearch, our implementation for area search using single-item auctions

and a decentralized auctioneer mechanism.
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CHAPTER 3:

Implementation and Experiment Design

In this chapter we explain AuctionSearch, our auction-based area search implementation.
First, we introduce the AuctionSearch flow of execution and the search environments
used for testing. We then describe our implementation’s major elements with specific
focus on utility calculations, bid generation, winner determination, and cell assignment and
reassignment. Lastly, we explain our use of speed and endurance to derive individualized
cell utility values to influence bidding strategies. In Chapter 4 we introduce our speed
and endurance utility functions and analyze our implementation’s performance in achieving

auction-based assignment in an efficient manner.

3.1 AuctionSearch Top-Level Flow of Control

In this section we explain the high-level flow of control for AuctionSearch. Each agent
participating in the AuctionSearch behavior executes the algorithms depicted in the flow
diagram of Figure 3.1. The two major branches of execution are IS_SEARCH_AUCTION and
IS_SEARCHER. These Boolean-controlled gates are tested each update cycle and executed
accordingly. Boolean controlled gates are more suitable than state-based control in this
implementation because they support parallel execution of both branches. That is, an agent

can execute the search of a cell while also participating in an auction for future cells.

The IS_SEARCH_AUCTION branch controls all activities related to cell assignment. In this
branch agents update their understanding of search progress, generate utility values for
each cell, calculate and submit bids for their favorite (i.e., highest utility-gaining) cells,
and conduct auction round winner determination. This branch ceases execution when each
agent has their required number of cells assigned or there are no more cells left to auction.

The branch flow is depicted in Figure 3.1.
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Figure 3.1. AuctionSearch Flow of Control. The overall flow of
AuctionSearch is controlled by the two major Boolean-controlled gates,
IS_SEARCH_AUCTION and IS_SEARCHER. The algorithm terminates when
there are no more cells to search.

The IS_SEARCHER branch controls all search-related activities. Agents who have bid for
and won cells execute the search of their assigned cells by following a self-generated series
of waypoints. If an agent finishes searching its current cell, it initiates a new auction with
all other searchers to complete a new round of cell assignments. If any agent has already
received an auction-start message with a current auction identifier, it does not send new

auction start messages in order to avoid race conditions.

This branch is no longer executed when the agent has no assigned cell. If there are no cells
left requiring search, the AuctionSearch algorithm terminates. Algorithm 5 describes
the overall flow of control for our implementation. Each agent executes Algorithm 5

independently.
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Algorithm 5 Top Level Control Algorithm for AuctionSearch

while cells left to search > 0 do
if IS SEARCH_AUCTION then
Execute auction for cell assignments
end if
if IS_SEARCHER then
Execute movement to and search of assigned cells
end if
end while.

3.2 Search Area Decomposition

Before the agents are capable of executing either one of the branches they must first have
a common understanding of the area to be searched and the cellular breakdown. As the
behavior is initialized, each agent independently breaks the search area down into cells and
graphs their adjacency. This process is conducted in a deterministic manner so that all

agents generate the same set of search cells and adjacency graphs.

At a minimum, a finite geographical area consisting of at least one cell (which covers the
entire area) is required in order to have an agent or group of agents complete an area search.
We developed three environments for testing our AuctionSearch implementation: a basic
search area, a large-basic search area, and a complex search area. The major differences
between the two basic search areas and the complex area is cell uniformity and the presence

of obstacles.

3.2.1 Basic Search Area

The basic environment is a small rectangular search area containing no obstacles that is
broken down into 12 uniform quadrilateral cells. The basic search area pictured in Figure
3.2 was used for algorithmic development in the Software-in-the-Loop (SITL) simulation
environment and for live-fly field testing of our design. It afforded the maximum number
of iterations and ensured containment within a mandated geo-fenced region of the test site.
Working with the basic search area allowed for small-scale tuning of the algorithms in the

minimum amount of time and enabled live-fly capability within testing constraints.
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Figure 3.2. Basic Search Area after Grid-Cellularization

The even distribution of cells in the basic search area provides the ability to test cases in
which high adjacency exists, such as in cell 4’s case in Figure 3.2 or cases wherein multiple
agents complete their in-progress cell at nearly the same time (assuming the same start
time). Further, the basic area’s cell uniformity minimizes the number of cases in which
utility calculations are based primarily on cell size and maximizes dependence on speed
and distance to the target cell. While cell size and distance to the target cell both ultimately
contribute to an overall distance calculation, the basic search area allows us to isolate each
variable and observe the contribution of specific independent variables to agent bid values

and the resulting assignments.

3.2.2 Large-Basic Search Area

The large-basic environment, pictured in Figure 3.3, is a scaled-up version of the basic
search area. It consists of a large rectangular search area that is broken down into 80
uniform quadrilateral cells and it also contains no obstacles. Using a larger area affords the
opportunity to observe large numbers of agents in execution and to observe how algorithm
run times and cell assignments scale with both the size of the swarm and the number of
cells. The shaded region in the lower-left of Figure 3.3 shows the basic search area from

Figure 3.2 to illustrate the scale difference between the two.
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Figure 3.3. Large-Basic Search Area after Grid-Cellularization

3.2.3 Complex Search Area

Many realistic search areas can be represented by a grid of uniform cells canvased across
an open area, such as search and rescue or reconnaissance in unobstructed areas. Other
realistic search areas may include obstacles or restricted areas where we are not interested
in having search conducted, making the environment more complex. In both cases, auction
algorithms are a suitable means for assigning searchers to cells. In order to observe how
assignment solutions differ from basic to complex environments, we created the complex

search area depicted in Figure 3.4.
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Figure 3.4. Complex Search Area after Boustrophedon Cellular Decomposi-
tion

The major difference between using auction algorithms for cell assignment in basic search
areas versus complex search areas is that obstacles create non-uniform cell sizes which
then impact cell utility calculations. Our implementation uses a Boustrophedon cellular
decomposition algorithm as described in [50] that breaks the complex environment down
into cells based on left and right critical vertices of the obstacles in the space. The various
cell sizes affect the utility calculation for a given cell because a large cell contains more

waypoints and takes longer to search than a smaller one.

Another difference between searching a complex and a basic area is the tendency for
bottlenecks in the adjacency of the cells. Bottlenecks can occur in both basic and complex
search areas, but they are more prevalent in complex areas where obstacles and restricted
areas can channel movement between cells. Bottlenecks in less complex areas, on the other

hand, are usually a byproduct of agent decision making.
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Figure 3.5. Complex Search Area Adjacency Graph. The adjacency
graph for our chosen complex environment. Adjacency graphs for complex
search areas can contain many bottlenecks that effect overall system utiliza-
tion.

3.2.4 Search Cell State Labeling

Regardless of whether the search area is basic or complex, the set of possible states that
each cell can be associated with at any given time is the same. Similar to how [25]
categorized cells as “available, associated, assigned, active, and complete,” in Equation 2.13,

we establish the set of states for our implementation as follows in Equation 3.1:
states = {available, assigned,in_progress, assignment_removed, complete} (3.1)

The list below describes each of the possible states given in Equation 3.1 and Figure 3.6
depicts the same states. Cells can never be in more than one state at any one time. Further,
they are tracked in our implementation as an enumeration in ascending order so agents can
easily detect and log cell state changes reported by other agents by simply identifying a state

which is associated with a higher enumeration than what they are tracking.

1. available: A cell which is unexplored and unclaimed by any searcher. Available cells
are always included as biddable and winnable resources in auctions.

2. assigned: A cell which has a searcher associated but has not yet begun to be explored.
Assigned cells are included as resources in auctions. An agent who submits a higher

bid for an already-assigned cell will assume the assignment, and the losing agent will
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Available

relinquish their assignment.

. in_progress: A cell which has a searcher associated and has begun to be explored by
that searcher. In-progress cells are never included as resources in auctions. In the
event that an in-progress cell’s searcher leaves the search, due to malfunction or some
other reason, the cell’s status is changed to assignment_removed.

. assignment_removed: A cell which has been assigned any one of the above mentioned
states previously but has since become unassigned. Prior to the next auction, all cells
with a status of assignment_removed are transmitted to every other agent so that all
locally maintained cell dictionaries can be updated to available. This intermediate
step is helpful because it places cells which are being “thrown back™ into the auction
into an easily detectable state rather than immediately changing the cell back to
available. The assignment_removed state occupies a higher enumeration than the
available state, so each agent can detect these cells during cell status updates without
having to examine every cell to see whether it is still available or not.

. complete: A cell which has had all of its associated waypoints visited by a searcher.

Complete cells are never included as resources in auctions.

If last waypoint
in cell is reached

If first waypoint
in cell is reached

If won in auction

Assigned In Progress Complete

If agent currently conducting search is
detected to have left the search
unexpectedly (malfunction or otherwise)

If another agent bid
higher for this cell |

Assignment
Removed
Figure 3.6. Cell State Diagram. This figure shows the cell state transitions
associated with our auction-based area search implementation. Cells can
only be in one state at a given time. Our implementation enumerates these

states in ascending order based on Equation 3.1 to enable easy identification
of cell status changes.

Once cell status change has been
detected, each agent reverts cell

In our implementation, cells are maintained as objects with certain characteristics. Each

agent maintains a dictionary of the cells and their current understanding of each cell’s

state. Before and after each auction, each agent communicates which cells they observed

change in and what those changes were to allow other agents to update their understanding.
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During these inter-robot cell status updates, each cell is represented and communicated as
a four-tuple in the following form:

cell_status = [cell_id, cell_state, cell_owner, cell_cost]. (3.2)

The cell_status field in Equation 3.2 relates to the cell status states listed in Equation 3.1,
which are listed in order of ascending precedence with regard to inter-robot updates. Put
differently, an update from a given agent that indicates a given cell is complete will supersede
an update from a different agent that indicates the same cell is only in_progress. Continuing
this example, an agent receiving this update would change their local understanding of this
particular cell’s status to complete and adjust its data structures accordingly to account for
the newly identified completed cell. This process occurs before and after each auction,
and auctions are not permitted to proceed unless all participating agents have updated their
understanding of cell statuses. As a final note on cell statuses, when all agents are in

agreement that the entire set of cells to search are complete, the search is terminated.

In the following sections we describe the two major branches of AuctionSearch execution
that were introduced in Figure 3.1, their algorithms, and the design trade-offs that shaped

the implementation.

3.3 Assignment of Search Cells via Auction

In this section we describe the first major branch of execution in our AuctionSearch
implementation, the IS_SEARCH_AUCTION branch. IS_SEARCH_AUCTION uses single item
auctions to create agent-cell assignment pairs. Figure 3.7 shows a detailed and zoomed in
flow of execution for the IS_SEARCH_AUCTION execution branch.
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if true

IS_SEARCH_AUCTION

if synced
sync_rounds

if updated if bid complete
or submitting
same bid

|

‘ cells_update

If not synced

gen_search_bid share_bids

if not updated

if not bid complete

if bids updated

gen_cell_utilities

winner_determination
for all cells -

if all submitted
same bid

calc_utility

if not updated

‘ gen_cell_assighments

if any agent
submitted a new bid

‘ auction_complete? ‘

if all agents have the required number
of cells, IS_SEARCH_AUCTION = False

Figure 3.7. Auction Control in AuctionSearch. IS_SEARCH_AUCTION
Boolean-controlled execution branch flow of control.

The overall objective of this branch is to generate one-to-one mappings of searchers to cells
based on each agent’s calculated utility for each cell. A number of AuctionSearch class
methods support this objective, doing everything from ensuring all agents are operating on
consistent data to round winner determination. At the top level, we ensure that only one
auction is occurring at any given time by having all agents check whether they are already
participating in an auction before they initiate one. If an agent triggers our new-auction
criteria (e.g., they just completed a cell) while they are already participating in an auction,
they log the update locally and communicate it to the other agents at the next scheduled

synchronization event.

Ensuring that all agents are operating on consistent data is the first, and by far the most
important, design challenge that we faced. If different agents in the system have different
concepts regarding cell statuses, current bid values, or how far they are in an auction, the
assignment solutions produced will be deeply flawed at best. To combat this and to make
sure all agents possess the same concept of ground truth, we implemented three important
methods for ensuring data consistency. They are syncRounds(), cellStatusUpdate(), and
bidStatusUpdate().

36



3.3.1 Ensuring Data Consistency During Auctions in AuctionSearch
Multiple rounds of bidding are typically required when assigning agent-cell pairs if the
agents are close together, as they often bid for the same cell. In subsequent rounds,
losing agents can either increase their bids for their preferred cells or pursue different cells.
Situations arise where some agents naturally get ahead of the others because they require
less computation in a given cycle through the behavior loop. For example, an agent who
has won their cell is only required to resubmit the same bid (their winning bid), while all

losing agents are required to recalculate utilities and bid values.

If this process were allowed to proceed unchecked, the winning agents would start executing
the next round of the auction before the losing agents entered that round, resulting in
inconsistency issues regarding what each agent’s current bid and targeted cell actually are.
The syncRounds() method is implemented to make sure that all agents are executing the

same round of the auction at the same time.

Formally described in Algorithm 6, the syncRounds() method combats data inconsistency
by forcing agents who are ahead of others to wait to execute the next auction round until all
other agents have caught up. This is accomplished by way of a corollary to the consensus
minimum problem with a connected communications graph and no malfunctioning or
misleading agents (i.e., no Byzantine failures) [47]. Any time an agent sends its cell
statuses or bids to other agents, they attach the round number corresponding to the round
within which they are operating. Agents receiving those messages maintain a set of reported
round numbers. An agent cannot proceed to the next round until the consensus-obtained
minimum equals the round it wants to execute. If an agent’s round number equals the

maximum of the set of agent round numbers, it must wait for the others to catch up.
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Algorithm 6 Auction Round Synchronization with syncRounds()

round_tracker.add(round_number)
if length(round_tracker) == 0 or length(round_tracker) == 1 then
return True
else
max_round_num «— max(round_tracker)
end if
if length(round_tracker) > 1 then
if round _number == max_round_num then
round_tracker.clear()
auction_status_request()
return False
else
return True
end if
end if

Similar constructs were implemented for cell status updates, bid messaging, and auction
complete messaging to help maintain synchronization by ensuring that agents are not
permitted to proceed with the auction unless every participating agent has heard a current
status from every other participating agent. Specifically, if an agent receives a bid from
another agent which is tagged with a round number that does not match their own, the bid
is rejected in order to enforce consistent round execution. Our implementation provides
“previous request” functionality that prevents deadlock situations where one agent is trying
to request information from other agents who are unwilling to send it, providing a way for

agents to catch up.

Robotic systems intended to operate in the real world not only need to cope with various
stages of execution, but they must also deal with lossy communications connections. The
system must be robust to data loss during transmission. Each agent in our implementation
keeps track of the number of agents executing AuctionSearch and checks whether it has
heard from all other active agents during key synchronization steps such as during cell status

updates or bidding. If an agent has not received messages from all other agents, it sends
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requests for the information. No agent will proceed with an auction round unless it has
heard from all other participating agents. If some subset of agents have stopped executing
AuctionSearch, their departure is detected by the remaining agents and they are excluded
from future reporting requirements and are stripped of any cells they were responsible for

prior to departure.

3.3.2 Generating Cell Utilities and Bids in AuctionSearch

Once all the agents have a common understanding of which cells are included in the auction
and which are not, the next step is for each agent to determine for which cell they prefer to
bid. To make this determination, each agent generates a utility value for each cell, choosing
the one which nets the highest value for the agent. The accrued set of utility values is used
to determine what bid the agent should place for its preferred cell. Below we detail how

our implementation accomplishes this task.

Our implementation uses generateCellUtilities() to iterate through each cell and calculate the
individual utility values. Equation 3.3, introduced in many forms in this thesis’ references,

shows how an agent calculates the utility for a given cell ¢ [26], [27], [33].
utility, = private_value — utility_cost — cell_cost 3.3)

utility_cost = distance + size + remaining_size. (3.4

The net utility associated with a particular cell, utility. in Equation 3.3, of a particular cell
¢ can be described as the net value realized by the agent for owning it. The objective of
each agent, then, is to maximize its own utility through selection of the highest-utility cell.
In the same vein, utility_cost can be described as the cost incurred by an agent for owning
a given cell. For the search problem of this thesis, this can be reasonably estimated as a
function of the distance that the agent would be required to travel to complete the search of

a particular cell (Equation 3.4). The components of this calculation are as follows:

1. distance: The Euclidean distance from a particular location to the closest starting
waypoint within a given cell. If an agent is already searching a cell (i.e., the cell’s
status is in_progress), distance is calculated as the Euclidean distance from the last

waypoint in the agent’s search path to the best starting waypoint in the candidate cell.
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The “best” starting waypoint is defined as the waypoint occupying the corner of the
candidate cell which is nearest the agent. If an agent does not have any active cells,
distance is the Euclidean distance from the agent’s current location to the closest
starting waypoint of the candidate cell.

2. size: The distance that the agent would be required to travel in completely searching
the candidate cell. This value is a function of the size of the cell and the agent’s sweep
width (i.e., visibility of the ground at the search altitude). While this component
remains constant in the basic environment (where cell sizes are uniform), it varies
with cell size in complex environments containing obstacles non-uniformly shaped
cells. The larger the size of the cell, the higher the cost of ownership since larger cells
will generally take longer to search.

3. remaining_size: The distance that the agent is required to travel to complete the search
of its current in_progress cell before transiting to the candidate cell. Similar to how
size scales, remaining_size can be arbitrarily large in complex environments where

non-uniformity can create arbitrarily large cells.

The above listed utility_cost components are depicted in Figure 3.8.
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Figure 3.8. Utility Cost Components. The utility cost that an agent
associates with a given cell is the combination of three components: distance
to the cell, the size of the cell, and the remaining size in an agent’s current
cell, if any.

3.3.3 Utility Function Variables

The components of the utility_cost of Equation 3.4 scale linearly as its individual compo-
nents vary. The size and remaining_size values associated with a search area, for instance,
vary in direct proportion to the cell’s size (area). Similarly, the distance value is wholly
dependent on vehicle locations and the Euclidean distance between individual search cells.
These components evidently scale the entire system linearly because the utility cost com-
ponents affect all agents equally and thus abstract away the specific agent locations at a

particular time.

Given that our utility costs are a function of distance traveled, we modify each agent’s
bidding strategy by using this distance to derive their expected incurred costs for each
candidate cell. Individualized bidding strategies ultimately allow each agent to maximize
their utilization relative to the strengths and weaknesses of the other agents. The individual

strategies we explore use per-robot speed and endurance to calculate cell utility as a function
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of time or energy required to search a cell. We then compare the results across the three
search areas introduced in Section 3.2 with different mixes of highly capable (i.e., fast or
high-endurance) and less capable (i.e., slow or low-endurance) agents. Below, we briefly
describe how we use these values to calculate expected costs. We define the actual functions
in Chapter 4.

1. Speed: Each agent is capable of a specific maximum transit speed to travel. We
use individual speed to derive utility values that maximize system-wide efficiency by
minimizing individual search times. We combine distance to travel with each agent’s
speed to compute the required search time for a particular cell. In order to avoid
overly greedy results (e.g., fast agents dominating the entire search to the detriment of
system-wide utilization) we provide an advantage bias to agent utility calculations that
is inversely proportional to transit speed. As a result the utility costs for faster agents
grow more slowly as cell sizes increase. The ultimate outcome that this dynamic
achieves is that all agents prefer to search smaller, closer cells, but faster agents are
less averse to searching larger, more distant cells.

2. Endurance: Each agent has a specific endurance threshold arising from its charac-
teristics (e.g., battery capacity) and mission history (e.g., prior tasking). We use
endurance to derive utility values that maximize system-wide efficiency by maximiz-
ing energy conservation. We combine distance to travel with each agent’s endurance
to estimate the required power usage, or effort, associated with a particular cell.
Scaled in a manner similar to the speed utility, all agents prefer to search low-effort
cells, but high-endurance agents are less averse to conducting more of the search

workload than low-endurance agents.

3.3.4 Generating a Bid for a Cell

Once these elements are considered and the utility for each cell is generated, the maximum
utility-producing cell is selected as the preferred cell and a bid for ownership is then
computed using Equation 3.5 and communicated to the rest of the agents. Introduced in
different forms in the auction algorithm literature [26], [27], [33], this equation computes a
bid as a function of the highest-utility cell, the second-highest-utility cell, and a system-wide

“minimum bid” value, (¢).
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bid_value, = previous_bid + highest_utility — 2nd_highest_utility + € 3.5)
e > 0. '

Our implementation’s bid generation function serves two purposes. First, it provides agents
the ability to compute new bids for each round that take previous results into account.
Second, it provides the means to determine when the auction can be terminated. Below we

discuss these major elements of bid generation in AuctionSearch.

For our implementation, we assume that search areas tend to contain more cells than
there are agents to search them, given our cellular decomposition strategy. This implies
that the majority of the auctions our implementation executes are instances of asymmetric
assignment, where either the cells outnumber the agents (e.g., early in a search) or the agents
outnumber the cells (e.g., at the end of a search). As such, the bidding and assignment

phases of each round must account for this wide range of configurations.

In symmetric assignment, introduced in [27] and discussed in Chapter 2, the auction
algorithm swaps n assignments among »n agents and then measures whether they are within
€ of their highest utility to determine whether to bid for a different cell or not. In our
implementation, the bidding phase consists of agents bidding for their highest net-utility
cell and checking whether any other agents submitted a higher bid for the same cell. If not,
the round moves to the assignment phase and tentatively assigns the cell to the winning

agent. If there was more than one bid for the same cell, the highest bid wins.

We manage bidding for cells by lumping agents into two bins. The first are those who won
their favorite cell in the previous round and the second are those who did not. Figure 3.9

depicts the bid generation logic our implementation follows.
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Figure 3.9. Agent Bid Generation Logic. This figure describes the logic
that AuctionSearch agents follow when generating bids for cells. As fewer
and fewer cells are available at the end of a search, only the agents with the
highest utility values will win assignment while the others abandon cells and
ultimately submit “no bids.”

If agent @ won its favorite cell in the previous round, it means that a’s bid is the maximum
value in the set of bids for a particular cell in a particular round. All agents who submitted
winning bids in the previous round are directed to submit the same bid for the same cell
again. When all participating agents have submitted the same bid twice for the same cell, and

all agent-cell pairs are unique, the auction is closed and agents commit to their assignments.

Designing the algorithm to have agents submit their winning bid twice allows each agent to
detect when all other agents are happy with their assignments, having selected net-utility-
maximizing cells that are free of conflicts. This design is equivalent to having each agent
send a specific message indicating satisfaction with the current assignment without the
overhead of additional messaging. In the next subsection we describe how this behavior

contributes to auction termination and cell assignment.

If agent a did not win its favorite cell, it means that two or more agents submitted bids for

the same cell and a’s bid is not the highest bid for its favorite cell. All losing agents are then
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required to compute new bids that take into account the winning bids from the previous
round as well as increasing bids by at least e. Agents compute new bids by logging the new
tentative costs for cells and determining the impact of those costs on their net utility values.
The losing agents then choose the cell with the highest associated net utility for their next
bid.

When the number of agents is larger than the number of cells, some number of agents
will necessarily fail to be assigned. In order to allow agents to abstain from bidding in a
detectable way (e.g., more than simply not bidding, which could be ambiguously interpreted
as a malfunction), non-bidding agents submit an explicit “no bid.” Agents decide to abstain
from bidding for a particular cell after they have lost the same cells multiple times back and
forth, indicating thrashing between two or more cells with similar utility values. As agents
decide to abstain from bidding as the auction proceeds, the set of cells eventually equals the
set of winning agents, producing our one-to-one mapping. As such, as the number of cells
continues to decrease at the end of a search, only the agents with the highest utility for the

last remaining cells will win them.

3.3.5 Auction Round Winner Determination in AuctionSearch
Once each agent has generated and shared its bid for its preferred cell, the next step is to
determine which bids are the highest and whether the agents are satisfied with their proposed

assignments or not. Our implementation uses Algorithm 7 for this purpose.

The computational complexity of winner determination in the general case as implemented
in Algorithm 7 is O(cnm) where c is the complexity of our consolidateBids() step which
checks for cell conflicts, organizes bids into dictionaries, and determines whether our
termination criteria has been met. n is the number of agents bidding for cells and m is the
number of bids per agent. An auction is terminated once each agent has submitted the same

bid for the same, unique cell for two consecutive auction rounds.
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Algorithm 7 Auction Round Winner Determination

all_bids « dictionary of previous round’s bids (if any)
inbound_bids « list of other bids of form [ [ searcher, cell, bid _value | ... ]
bid < my bid of form [ searcher, cell, bid_value ]
same_bids «— True
consolidateBids() and set same_bids < False if bids are different from last round
if same_bids == True then
Assign each searcher to cell for cost bid_value and set cell’s state to assigned
else
winner «<— my searcher_id
highest_bid <« my bid_value
for i = 0 to length(all_bids) do
if other agent’s bid_value > my bid_value for the same cell then
highest_bid < other agent’s bid_value
winner < other agent’s searcher_id
end if
end for
if winner == my searcher_id then
submit the same bid once again
submit_same_bid «— True
end if
end if

Every bid from every agent is inspected in our consolidation step to check for termination
criteria and conflicts, so this step requires n inspection operations. If the agents did
not submit the same bids, our winner determination step conducts another n inspection
operations to determine which agents won which cells. Therefore, in the worst case,
Algorithm 7 requires at least n”m inspection operations. Since our implementation follows
the single-item auction paradigm, agents only bid for one cell at a time, fixing m at 1 and
the computational complexity is therefore O(n?). The complexity of Algorithm 7 can be
reduced to O(n) if different auction termination criteria is used and the consolidation step

omitted.
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3.4 Conduct of an Area Search after Cell Assignment

In this section we describe the second major branch of execution in our implementation of
the AuctionSearch of Figure 3.1. The IS_SEARCHER branch controls the actual search
of assigned cells by assigned agents. Depicted in Figure 3.10, this Boolean-controlled
branch is executed by each agent while there are still cells that reside in any state other than
complete, as shown in Equation 2.13 and discussed in Figure 3.6. The set_waypoint() and
test_waypoint() tasks execute every time-step and respectively set latitude, longitude, and
altitude towards which the agent is to navigate and determine whether or not the current

search waypoint has been reached.

if true
IS_SEARCHER }—1

if not search complete
cell_complete? H search_complete?I I determine_waypoint

if cell complete and
next cell is optimal

if no cells left to search,
IS_SEARCHER = False

if cell complete and next cell
not optimal or no next cell

stay_in_my_cell

if cells are available

‘ set_waypoint ‘
and | have no next cell

l

‘ test_waypoint ‘

start_auction

if at waypoint, move to next waypoint
else, stay on path to current waypoint

Figure 3.10. Search Conduct in AuctionSearch. This figure shows a
deeper look at the search branch of control. IS_SEARCHER is True as long
as there are cells left that are not complete. IS_SEARCHER becomes False
when all cells are in the complete state, at which time the AuctionSearch
algorithm terminates as well.

Other steps depicted in Figure 3.10 are executed as required based on the current search
state. The current search state is a function of the collective statuses of the cells that make up

the search area. The state change logic driving AuctionSearch is depicted in Figure 3.11.
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Figure 3.11. Agent Cell Change Logic Diagram. This figure show how
cell state transitions are managed in AuctionSearch. Agents determine
what action to take based on their current cell assignments, if any.

A more illustrative example is provided in Figure 3.12 to further clarify agent behavior
based on current cell assignments. Referencing Figure 3.11 as well, Figure 3.12 shows
how the auction process optimizes cell assignments based on cell utilities and current
cell assignments. Agents are not obligated to search a cell unless it has set its status to
in_progress, which only occurs if the agent has entered the cell and begun search. Therefore,
assigned cells are available for auction in order to achieve higher system-wide utilization
and efficiency. Searcher a decides to abandon its association with cell 5 in favor of cell 4

or 7, for example, due to its expected increase in utility for the association.
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Figure 3.12. Agent Cell Change Example. This figure shows two agents
and their current assignments at a particular time-step of an area search.
We use cell search completion as a trigger criteria for a new auction. This
provides the opportunity for agents to increase their per-agent utilization
by reshuffling assignments to optimize system-wide utilization given current
conditions. This ultimately results in a more efficient search.

3.5 Summary

In this chapter we introduced our auction-based area search implementation through which
we experimented with various environmental and utility function considerations. We first
described the AuctionSearch three search areas with which experiments were conducted.
Each test search area provided a different scale and complexity to facilitate capture of

realistic results for auction-based assignment of area search cells in challenging scenarios.

In this chapter we also described our algorithmic implementations for major aspects our
use of auction algorithms to create cell-agent pairs for efficient execution of the area search.
Covered topics included maintenance of consistency over the course of multiple rounds,
decentralized winner and auction completion determination, and our adaptation of the
auction algorithm utility and bid equations of [26], [27], [33] to identify locally optimal

bids to maximize agent utility and avoid minimize system-wide cost. and our utilization of
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the cell statuses of [25] for cell state tracking.

Our agent utility functions include many different variables to allow us to explore the range
of possible solutions that our implementation can produce. These variables ultimately allow
us to observe the variance across a range of utility function implementations to measure
their performance against area search benchmarks. In Chapter 4 we present the results of
our simulated experimentation and live testing of our two utility functions across system

sizes and search areas.
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CHAPTER 4
Analysis of Auction-Based Assignment in Area Search

In this chapter we discuss the auction-based assignment and performance of AuctionSearch.
First, we discuss the interplay of cell utilities and their impact on agent bids. Then we in-
troduce speed and endurance utility functions that influence agent bidding strategies. We
then discuss our experimentation framework using those utility functions and our measures

of performance.

Finally, we measure how well AuctionSearch uses auction-based assignment to complete
area searches of varying complexity, and seek to draw conclusions about the use of auction
algorithms in general for area search applications. We analyze AuctionSearch perfor-
mance given various search areas, system sizes, and individual robot speed and endurance
values. Throughout this chapter we discuss the design trade-offs required to implement
AuctionSearch and the reasoning behind those decisions to inform future research in the

area of autonomous decision.

4.1 Impact of Cell Utilities on Agent Bidding Strategies

Agent bids are a function of the difference between their favorite (highest utility) cell and
their second favorite (second highest utility) cell, regardless of the utility function used to
calculate those utilities. Figure 4.1 provides a descriptive exemplar depicting how utility

costs impact cell utilities and agent bidding strategies.
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Figure 4.1. Agent Bids Given Cell Utilities. This figure shows two agents
and the variables that effect bid creation. Agents’ bids for their favorite cells
reflect the interplay of favorite and second-favorite utility values. In this
diagram, distances are al, a2, bl, b2, size is denoted by cell size, and
remaining _size equals 0.

An agent’s bid for its favorite cell is dependent on how much worse its second favorite cell
is because the bid is derived from the difference between the two utility values. In other
words, as the difference between favorite and second favorite grows, the agent’s bid for its

favorite cell increases as well.

Different utility functions will generate different bidding strategies. As an initial example
of a simple utility function’s impact on agent bidding, Figure 4.1 depicts two agents that use
minimum distance to determine their favorite cell. Searcher b favors its favorite cell because
bl < b2 with size and remaining_size utility cost components held constant. Further, b1
is much smaller than b2, making the difference between searcher b’s favorite and second-
favorite cells larger than for searcher a. Put differently, searcher b bids higher than searcher
a because (b2 — bl) > (a2 — al). As a result, searcher b will submit a larger bid for its

favorite cell than searcher a for its favorite.

Agent utility functions use this interplay of favorite and second-favorite cell utilities to

manage the utility dropoff, referring to the rate of utility decrease as a function of utility
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cost from Section 3.3. Different utility functions can be used to increase or decrease agent
utility dropoff rates on a per-robot basis, thus modifying individual bidding strategies using

different robot characteristics such as speed or endurance.

4.1.1 Issues Associated with Distance-Dominated Utility Functions

Using distance alone to calculate utility values generates assignment solutions that tend to
be overly greedy. By only considering distance in utility, each agent pursues its nearest
cell exclusively, with remaining_size acting as the only major differentiating factor between
individual utility_costs. In situations where multiple agents are collocated, this results in
similar utility valuations and overlapping bids for the same cell across the system. When
large numbers of agents come up with similar utility values for the same cells, multiple
agents often identify the same highest-utility option. This creates longer than desired
auction run times due to the large number of rounds required as agents seek more distant

cells.

In Sections 4.2 and 4.3, we introduce two utility functions that take into account individ-
ual robot characteristics other than just distance to calculate utility. By making utility a
function of individual capabilities, the multi-robot system is able to make better assignment
decisions based on those capabilities and ultimately achieve higher system-wide utilization

and efficiency.

4.2 Utility Function 1: Agent Utility as a Function of Speed
In this section we introduce our first utility function which uses speed to calculate cell
utility values. By making utility a function of speed, agents use time-to-complete as the
major differentiator between cells. We first define the function and then discuss the bidding

strategy we expect from each agent given the impact of individual speed on cell utility.

4.2.1 Speed Utility Function Definition
Our first individualized utility function generates cell utility values as a function of speed.
Our speed_utility function uses Equation 4.1 to calculate cell utility.

distance + size + remaining_size

utility; = value — —cell_cost “4.1)
speed
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The first term of utility, which we call value in Equation 4.1, represents a large constant
value from which the utility cost is taken. Our implementation treats all cells as equally
valuable for the value variable so it remains constant, and negative utilities are allowed. The
third term, cell_cost, is the additional cost a bidding agent is required to pay to take a cell
that is already assigned to another agent.

The second term of utility in Equation 4.1 evaluates to the time required to complete transit
and search of the prospective cell and the remainder of an in_progress cell, if any. This is
also referred to as the utility_cost of owning the candidate cell. The faster the agent, the
shorter the time it takes to complete a prospective cell. Our experiments use 15 and 23
meters per second (m/s) as the respective slow and fast speed values to provide measurable

differences while staying within the flight tolerance of our Zephyr II airframes.

4.2.2 Expected System Behavior Given Speed-based Utility

For a faster agent, the difference between the highest-utility cell and second-highest-utility
cell is less than for the slower agent. The slower agent, therefore, bids higher for the cell.
This design encourages fast agents to let slow agents have closer cells because fast agents
take less transit and search time for further cells than slow agents. By ensuring that slower

agents have an advantage bidding for closer cells, system-wide utilization is maximized.

Faster agents suffer less utility dropoff as utility_cost increases due to their increased speed,
so they are inherently capable of incurring such costs with less impact to system-wide
efficiency than slower ones. Figure 4.2 shows how a slow agent and a fast agent calculate
utilities for the same favorite cell. This figure depicts the notional bid values in Figure 4.3.
Slow agents win their favorite cell in situations where fast and slow agents have similar, or

identical, utility_costs.
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Figure 4.2. Utility Scenario 1: Agents with the Same Utility Costs.
This figure shows how two agents with different speed or endurance values
calculate bids for their favorite cell. In the depicted case, searcher a wins
the cell because of its lower speed or endurance. For figure clarity, the
remaining__size portion of utility cost is 0.

The graph in Figure 4.3 shows an example of the relationship between a slow and fast agent

bidding for their favorite cells based on speed utility calculated at increasing utility_costs.

Speed Utility Bids at Increasing Distances From Favorite Cell
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Figure 4.3. Agent Bids at Increasing Speed Utility Costs. This graph
depicts how fast and slow agents’ bids differ at increasing utility costs from
their favorite cell. Agents bid less for their favorite cell the higher their utility
cost. When utility costs between slow and fast agents are equal, slow agents
outbid fast ones.
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As expected, the higher the utility_cost associated with an agent’s favorite cell, the less
the agent is willing to bid for it. As shown in Figure 4.3, using our speed utility function
affords slower agents an advantage over fast agents for their favorite cell (given equivalent

second-favorite cell utility).

Agents rarely have the same utility costs and often have different utility dropoff values as
a result. Slower agents have a steeper utility dropoff the higher their utility cost for their
favorite cell is. Faster agents, however, experience a more gradual utility dropoff which
means they are more inclined to stop pursuit of a closer, smaller cell than their slower
counterparts. This relationship is depicted in Figure 4.4, showing how slower agents bid

for, and win, lower utility cost cells.
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Figure 4.4. Utility Scenario 2: Agents with Different Capabilities.
This figure shows how two agents with different speed or endurance values
calculate bids for their favorite cell. Slow agents win their favorite cell versus
fast agents when their utility dropoff is large. In the depicted case, searcher
a wins the cell because its second-favorite cell achieves less utility than that
of searcher b's second-favorite. For figure clarity, the remaining size portion
of utility cost is 0.

This utility relationship allows slow agents to be able to share in the workloads of very large

and fragmented search environments where dramatic differences in favorite and second-
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favorite cell utilities can occur (e.g., our large-basic area introduced in Chapter 3). Figure 4.6
shows how slow and fast agents bid for the same cell when the slow agent has a much higher

utility cost than the fast agent. A pictorial example of this scenario is presented in Figure 4.5.
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‘ Searcher @ = A (speed = 15, endurance = 0.2)  Searcher » = A (speed = 23, endurance = 0.8) |

Figure 4.5. Utility Scenario 3: Agents with Different Utility Costs
for Same Cell. This figure shows how two agents with different speed
or endurance values calculate bids for the same favorite cell when the less-
capable agent has a higher utility cost. In the depicted case, searcher b wins
the cell because searcher a's utility cost is excessively high. For figure clarity,
the remaining _size portion of utility cost is 0.

The crossover point in Figure 4.6 is the point at which highly-capable agents outbid less-
capable ones for the same cell, depicted in Figure 4.5. It is not advantageous for less-capable
agents to win cells which incur much higher utility cost than for their highly-capable
counterparts. Therefore, highly-capable agents win closer, smaller cells when less-capable
agents are too far away or the cell is too large to benefit system-wide utilization or search

time.
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Figure 4.6. Agent Bids as Slow Agent Costs Increase. This graph
depicts how fast and slow agents’ bids differ as the slow agent'’s utility costs
increase.

When the speed utility function is used in homogeneous systems (e.g., all fast or all slow
agents), agents revert to greedy strategies due to their identical speeds. This maximizes
individual utility in an effort to maximize system-wide utility like when using distance

alone.

4.3 Utility Function 2: Agent Utility as a Function of En-
durance

In this section we introduce our second utility function which uses endurance to calculate cell
utility values. By making utility a function of endurance, agents use energy-to-complete, or
“effort required,” as the major differentiator between cells. As with the first utility function,

We will define and then discuss the function’s impact on agent bidding strategies.

4.3.1 Endurance Utility Function Definition
Our second individualized utility function generates cell utility values as a function of
agent endurance. Using endurance makes the size and distance to each cell the dominant

differentiator between agent utility values for the same cell. Our endurance_utility function
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uses Equation 4.2 to calculate cell utility.

distance + size + remaining_size
—cell_cost
10 X endurance (4.2)

utility, = value —

0 < endurance < 1

The utility in Equation 4.2 represents the effort required to complete the search of the
candidate cell. Agents with lower endurance incur higher utility costs. We use 0.2 and 0.8
units as our low and high endurance values. The value and cell_cost terms are the same as

in Equation 4.1.

4.3.2 Expected System Behavior Given Endurance-based Utility

The goal of our endurance-based utility function is to allow low-endurance agents to bid
higher for smaller and closer cells than their higher-endurance counterparts. The more
endurance an agent has, the more time and energy it can devote to transit and search,

enabling it to be less averse to searching more distant or larger cells.

This design encourages high-endurance agents in much the same way our speed utility
function encourages fast agents. High endurance agents allow lower-endurance agents
to to take smaller, closer cells in an effort to get the maximum utilization possible from
them. High-endurance agents suffer less utility dropoff as utility_cost increases, so are more

inclined to find higher-cost cells acceptable than their low-endurance counterparts.

The graph in Figure 4.7 shows how low and high-endurance agents bid as utility costs for

their favorite cells increase.
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Figure 4.7. Agent Bids as Endurance Utility Cost Increases. This
graph shows how agents’ bids are impacted by utility costs with the en-
durance utility function. Low-endurance agents have a steeper utility dropoff
and therefore outbid high-endurance agents for their favorite cells.

When low and high-endurance agents are considering cells with similar distance, size,
and remaining_size values, low-endurance agents have a steeper utility dropoff from their
favorite to the second-favorite cells. This is indicated in Figure 4.7 by the difference in slope
between the two agents. As both high and low-endurance agents’ utility costs increase, they
both bid less due to the higher effort required. The higher-endurance agent, however, incurs
less utility dropoff than the low-endurance agent because the difference between its favorite
and second-favorite cells is small. This results in high-endurance agents allowing their
low-endurance counterparts to win cells when utility costs are small. The high-endurance

agents then pursue cells with larger utility costs.

Figure 4.8 shows what happens when low-endurance agents incur higher utility costs than
high-endurance agents (e.g., low-endurance agent is at an increased distance from the
cell than the high-endurance agent). High-endurance agents eventually outbid their low-
endurance counterparts because the low-endurance agents’ advantage erodes as utility cost
increases. This causes high-endurance agents to bid for, and win, nearby and small cells if

low-endurance agents are too far away to outbid them.
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Figure 4.8. Agent Bids as Low-Endurance Agent Cost Increases.
This graph shows how agents’ bids differ as the low-endurance agent's utility
costs increase. The result of, and motivation for, this behavior is the same
as for the speed utility function described in Figure 4.5. Eventually, the
high-endurance agent outbids the low-endurance agent.

4.4 AuctionSearch Experiment Setup and Performance
Measurement

In this section we describe our experiment methodology. We now pivot from the introduction
of our implementation and its utility functions to the measurement of its performance as
an auction-based, area search driver. We first define our measures of performance that
serve as the basis of our analysis, and then we introduce the framework that we tested

AuctionSearch in to capture those measures.

4.4.1 Metrics for AuctionSearch Success

Here we list the metrics captured during simulated and live demonstrations of AuctionSearch.
We use these metrics to quantify the variance between different runs with different config-
urations. Ultimately, these metrics allow us draw conclusions about system efficiency and
identify areas where efficiency could be improved using alternative auction implementa-

tions.

1. area search completion time: The amount of time that a multi-robot system requires
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to search a specific area running AuctionSearch. This value is compared to the
amount of time the perfect search takes with the same search area, number, and type
of robots.

. number of auctions: The number of auctions required to assign all cells in a given
search area with a given number of agents. The number of auctions required is a
function of the number of cells, agents, and the maximum number of cells allowed to
be won per agent per auction.

. average auction time: The average amount of time agents spend in each auction. This
metric is a function of the number and length of the rounds per auction. Conclusions
about auction efficiency are impacted by how long each agent takes to complete each
round, while conclusions about agent bidding strategies are impacted by the number
of times agents sought the same cells as discussed in Section 4.1.

. average rounds per auction: The number of rounds required for each auction divided
by the number of auctions. This metric is used to observe agent bidding strategies and
whether system-wide efficiency is impacted when agents are tightly bunched together.
. average round times per auction: The seconds per round divided by the number of
rounds per auction. This metric is used to observe the efficiency of the bidding phase
of our auctions.

. per-robot contribution: The percentage of the total search area that a particular robot
completes. This metric is used to determine if subsets of agents conducted the
majority of the search or if the workload was relatively dispersed system-wide. This
metric, combined with per-robot utilization, allows us to draw conclusions about
specific robot characteristics and their impact on the system’s search completion.

. per-robot utilization: The ratio of time an agent is actively engaged in search related
tasks. We derive utilization for robot i searching cell j by Equation 4.3 where u =

utilization, r = run_time, t = transit_time, and [ = loiter_time:
wij = rij — tij — L (4.3)

We further define transit_time as the time robot i spends moving to cell j and
search_time as the time i spends searching j (j is in_progress). We define loiter_time
as the time i spends waiting for a cell assignment or for the end of the search,

whichever comes first. More specifically, loiter_time = total_time — transit_time —
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search_time. We analyze the different components of Equation 4.3 with regard to
search area complexity, system size, and individual robot characteristics. We use this
analysis to derive system-wide efficiency as a function of individual robot efficiency

and to draw conclusions about the system’s assignment decisions.

4.4.2 Experimentation and Data Collection

Our experimentation with AuctionSearch consisted of live and simulated flights of be-
tween three and 10 ARSENL-owned Zephyr I UAVs per run. Our live experimentation was
conducted at McMillan Airfield, Camp Roberts, CA, and our simulated experimentation was
conducted in the ARSENL SITL simulation environment. In total, we ran AuctionSearch
326 times in simulation and live-flight against our three search areas, two utility functions,
and various system sizes. Figure 4.9 shows the breakdown of those runs per search area for

each utility function.

AuctionSearch Experimentation: Total Runs
Speed Utility Endurance Utility
Number of Robots Number of Runs| |Number of Robots| Number of Runs|
6 10 6 10
7 10 7 10
Large Basic 8 10 8 10
Area 9 10 9 10
10 10 10 10
total speed runs total endurance
in Large Basic runs in Large
Area: 50 Basic Area: 50
Number of Robots Number of Runs| |Number of Robots| Number of Runs|
6 10 6 10
7 10 7 10
8 10 8 10
Complex
9 10 9 10
Area 10 10 10 10
total endurance
total speed runs .
in Complex Area: runs in Complex
P : 50 Area: 50
Number of Robots Number of Runs| |Number of Robots| Number of Runs|
3 10 3 10
4 10 4 10
5 10 5 10
. 6 10 6 10
Basic Area 7 0 7 0
8 10 8 10
total endurance
total speed runs neuran
60 runs in Basic 60
in Basic Area:
Area:
total number of runs: 160 160

Figure 4.9. Total Number of Simulation Runs. This table shows the var-
ious configurations observed in SITL. Even numbered robots are fast/high-
endurance and odd numbered robots are slow/low-endurance. Agent num-
bering begins at 1. The additional six runs referenced above were live-flight
validation tests.

In addition to varying the system sizes and the utility functions in each search area, we varied
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the mix of fast or high-endurance and slow or low-endurance for each system and we varied
the agent start locations. We modified the mix of agents by selecting even-numbered agents
in each run to be the fast or high-endurance agents, with their odd-numbered counterparts
assigned as slow or low-endurance. This allowed us to observe the effects of the utility

functions on the overall search.

We varied the agent start locations by either starting in a cluster (i.e., all n participating
agents orbiting at roughly 140 meters away from the same waypoint) or by starting each
robot in a pseudo-randomly chosen location inside the search area. By varying the start
location, we are able to observe the effects of clustered-agent competition on overall search

performance versus a more dispersed, less competitive start.

We purposefully chose to test AuctionSearch against a wide range of areas, system sizes,
utility functions, and robot dispersion levels instead of testing against a single configuration
exhaustively. We chose this in order to observe the results of auction-based assignment
across a variety of configurations. Each run of AuctionSearch generates different assign-
ment solutions and run times, even from tightly controlled starting configurations, due to

the stochastic nature of agent cell completion patterns and auction initiation trigger times.

In addition to measuring performance across different system sizes, we also measure
AuctionSearch against the perfect search as was done in [22] to provide a basis of
comparison that is independent of our implementation. We use the same equation for the
perfect search as was used in [22], rewritten here for convenience, with T = search_time,

A = area, V = velocity, W = sweep_width, and N = number_of _agents:

A

T=— 4.4
VWN 44)

For our perfect search calculations, we defined W = 75m, and 3 < N < 10. V is equal
to 15m/s for measurement against our endurance function, and V is equal to the average
system-wide speed for our speed function. While this measurement is more useful for our
speed utility function’s performance, we include it for the endurance function as well for
completeness. High-endurance agent utilization is more useful in measuring our endurance
utility function’s performance, as higher utilization indicates more system-wide efficient

use of available energy.

64



4.5 AuctionSearch Simulation Performance in Various
Search Areas

In this section we discuss the performance of our area search application in the SITL sim-
ulation environment. We used simulation for two reasons. First, physics-based simulation
allows us to gather far more iterations of data than live-flight would allow. Second, using
simulation allowed us to run the application at scale. Airspace restrictions and safety con-
cerns limited the size of the area for which we could gather live-flight data. Our simulated
large and complex areas allowed us to observe system reactions to realistic, large search
areas with many cells to auction. Figure 4.10 shows the output of a typical experiment with

the SITL simulation environment.

Figure 4.10. Screen-shot of a 10-Robot Run in SITL Simulation.
This figure shows the user interface to the SITL simulation environment.
Each terminal window displays robot-specific state information while running
the behavior, while the overhead view in the lower left shows each robot's
location in the search area.

Each subsection below describes the results from our experimentation in each of the three
search areas utilized. We organize our results below by search area and by utility function,

with speed utility followed by endurance utility. First, we present the overall outcomes for
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each run, then we graph the average results per-robot, per-run. We present results at the
per-robot level because our analysis in Section 5.1 is dual-focused on per-robot contribution
to the area search as well as the multi-robot system’s performance overall. We focus at both
levels because individual performance given speed and endurance impacts the system-wide
performance of auction-based assignment and search completion. In the next section we
analyze the results, draw conclusions, and explain our findings about auction-based area

search.

4.5.1 Results from Area Search in the Large Area

In this subsection we present AuctionSearch results in the large area. This environment is
the same size as the complex area, but contains 5 times the number of cells, all of uniform
size. The goal of testing our implementation in this environment is to observe how systems
react when large numbers of cells require search. In this area, distance plays a dominant
role in utility costs as cell sizes are the same. Further, agent decisions have a larger impact
on overall search efficiency in the large area because of the prevalence of orphan cells (i.e.,
those cells which have been left behind as the search progresses) which must be cleaned up
as the search draws to a close. While these factors impact overall runtime in the large area,
auction statistics and overall division of work across agent capabilities is fairly stable as
system size increases. Figure 4.11 shows auction statistics for the large area across system
sizes for both utility functions.

Performance in Large Area Using Speed Utility Performance in Large Area Using Speed Utility
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Figure 4.11. Auction Performance in Large Area. This figure shows how
our implementation performs in the large area with regard to average auction
and round counts and duration. The number of auctions, rounds, and their
duration (measured in seconds) indicate how much internal deliberation the
system requires to complete the search. As system size increases, auction
counts decrease due to the increased number of cells assigned per auction.
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Average auction durations, round counts, and round durations are all relatively low compared
to the complex and basic areas. This is attributed to the fact that the cells outnumber the
agents for the vast majority of the search. Agents have many cells with similar utility values
to choose from, so the incurred utility dropoff is lower than in the complex area and suitable
replacements are pursued. This results in lower relative auction times as fewer rounds are

required to achieve unique cell-agent pairs.

The number of auctions required to complete the search in the large area generally decreases
linearly as system size increases. When more agents are conducting the search, more work
is being assigned per auction, until such time that the agents outnumber the cells. This
result is echoed in the overall runtimes, shown in Figure 4.12, as overall runtime generally
decreases with increased system size. The solid lines correspond to our implementation’s
average overall runtime for both utility functions. These include the time spent orbiting
(i.e., loiter time) waiting for assignments if agents are participating in auctions with no
in_progress cell. The dashed lines correspond to our implementation’s performance when

loiter time is removed, which we call worktime.

We compare runtime and worktime to the perfect search because our implementation incurs
high runtimes due to our auction-trigger criteria being cell completion. This strategy often
causes agents to orbit in place while conducting auctions if they do not have a follow-on
cell, increasing overall runtimes. Comparing worktime to the perfect search is a more
appropriate measure of the algorithm than our overall runtime since worktime removes this
implementation-specific factor. The graph of the perfect search runtime at each system size

is represented by the dotted line for comparison as well.
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Figure 4.12. AuctionSearch Runtimes and Worktimes in Large Area.
This figure shows the average runtimes and worktimes for the large area
across system sizes. The time to search generally decreases as more agents
are involved in the search.

Search of the large area benefits from increased system size more than either of the other two
test environments because of the large number of cells within it. The more cells there are,
the less competition there is among agents for assignments, so assignments are generated

more quickly than in the basic or complex areas.

Another important aspect of area search is each agent’s contribution to the overall search.
We captured loiter time, transit time, and percentage searched for each agent at each system
size to measure each agent’s contribution given their specific characteristics (i.e., fast or
slow, high-endurance or low). Figure 4.13 shows the percentage split of work completed by
fast or slow agents (using the speed utility function) and by high and low-endurance agents

(using the endurance utility function) in the large area across system sizes.
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Figure 4.13. AuctionSearch Division of Work in Large Area. This
figure shows the percentage of work completed by highly capable (i.e., fast
or high-endurance) versus less capable (i.e., slow or low-endurance) agents
across all tested system sizes in the large area. An equitable distribution
of work across system sizes is demonstrated, which is a result of the search
area consisting of uniform and relatively small cells that all agents achieve
high utility for searching.

The division of labor in the large area was roughly equal across all tested system sizes. This
is achieved because the search area consists entirely of small, uniform cells. While the cells
outnumber the agents, both highly capable and less capable agents are able to find small, and
relatively close, cells which achieve high utility. This causes all agents to contribute more or
less equally to system-wide utilization, maximizing efficiency. This equitable distribution
of labor breaks down once the agents begin to out number the cells, such as toward the end
of a given search. This breakdown is most pronounced when assignment patterns have left
distant orphan cells, which require agents to consider large distances in their utility cost

calculations.

4.5.2 Results from Area Search in the Complex Area

In this subsection we present AuctionSearchresults in the complex area. This environment
is 16 times larger than the basic area. It is also more complex than the large area due
to its various cell sizes. In this search area, size and remaining_size have the largest
impact on agent bidding strategies given our utility functions. The large variance in cell
utility introduced by these utility cost elements enables highly capable agents (i.e., those
possessing high speed or endurance) to contribute more to the search than their less capable
counterparts. Figure 4.14 shows auction performance in the complex area across system

sizes for both utility functions.
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Figure 4.14. Auction Performance in Complex Area. This figure shows
auction performance in the complex area with speed utility (left) and en-
durance utility (right). Average auction duration is higher in the complex
area than in other test areas due to agents adamantly wanting smaller cells
and entering bidding wars for them to avoid being assigned massive cells.

As expected, agents consistently pursued smaller cells instead of larger cells because of the
large disparity in utility cost. The higher average number of auctions (indicated by the blue
bars in Figure 4.14) is attributed to under-utilized agents initiating auctions for cells that
are assigned to, but not yet set to in-progress by, other agents. This begins to occur once
the agents outnumber the cells during the search, and the under-utilized agents (i.e., those
with no assignment) start an auction after a predefined amount of time. Under-utilized
agents continue to initiate auctions at predefined intervals as long as cells remain in either
the assigned or the available state in an effort to ensure that only agents with the highest
utility for a given cell end up searching it. Due to the large distances between cells in the
complex area, agents assigned cells can be in transit for extended periods of time, enduring
numerous auctions during which those agents must defend their assignment to the given cell
against the under-utilized agents. This ultimately leads to higher average auction counts in

the complex area, but ensures that highest utility is achieved.
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Figure 4.15. AuctionSearch Runtimes and Worktimes in Complex
Area. This figure shows the overall runtimes and worktimes of our imple-
mentation in the complex area. Runtimes are longer than in the perfect
search across both utility functions and across all system sizes due to agent
deliberation and bidding wars for limited numbers of attractive cells. In the
complex area, small cells are generally more attractive than larger cells due
to their greatly reduced utility costs.

Figure 4.15 shows the runtimes and worktimes of AuctionSearch in the complex area
across system sizes for both utility functions and as compared to the perfect search. Runtimes
are higher than in the perfect search due to the deliberation required to achieve assignment
and our implementation decision to start auctions for follow-on assignments only after a
cell is set to complete. Worktime (i.e., our runtime with time spent loitering removed)
trends lower as system size increases, mapping closer to the perfect search than our overall

runtimes.

Average runtimes are particularly high as system size increases across both utility functions
for two reasons. First, agents continually compete for cells back and forth as the search
draws to a close, with each agent competing for fewer and fewer cells until they eventually

hit the explicit “no bid” criteria discussed in Chapter 3. Once all of the small cells are
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already in-progress or complete, agents experience very high rates of utility dropoff from
their favorite to their second-favorite cells in the complex area due to largely variant cell
sizes. This causes all agents to pursue their favorite cell more per auction than if they had
less-costly alternatives to fall back on. The second reason for large average run times is the
impact of the requirement for system-wide consensus on shared data such as the cell states

and bid values for an increasing number of agents before auctions are permitted to proceed.

Runtimes and worktimes are generally longer when using the endurance function versus the
speed function because the high-endurance agents are required to carry a majority of the
workload due to the massive utility costs associated with the majority of cells in the complex
area. This resulted in the low-endurance agents completing all of the smaller cells while
the high-endurance agents were generally responsible for searching all of the larger cells,
requiring large amounts of time to search. This result is also apparent in the percentages

searched given speed and endurance in Figure 4.16.
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Figure 4.16. AuctionSearch Division of Work in Complex Area. This
figure shows the division of labor between fast and slow agents as well as
between high and low endurance agents across various system sizes. In
general, fast and high-endurance agents conduct the majority of the search
compared to their slow and low-endurance counterparts.

Figure 4.16 shows how fast and high-endurance agents generally dominate the search due
to their willingness to search larger and more distant cells. The complex area is made up
of mostly large cells, so agents searching those cells contribute a larger amount to search
utilization than agents searching small cells. Additionally, as system size increases, the
division of labor tips toward fast and high-endurance agents. This is due to more fast and
high-endurance agents being available in larger systems to take the larger cells (given that

even-numbered agents were set to high capability) which leads to those highly capable
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agents taking more of the work as more of them participate.

4.5.3 Results from Area Search in the Basic Area

In this subsection we present AuctionSearch results in the basic area. This environment
is the same size and structure of our live-fly area, and represents the smallest and most
constrained environment in which we tested our implementation. As such, the relative
number of auctions and the overall runtime of searches in this area were small compared to
the complex and large search areas. The auction results in the basic area are presented in
Figure 4.17.
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Figure 4.17. Auction Performance in Basic Area. This figure shows
the auction performance in our basic area for the speed utility (left) and
endurance utility (right) functions. The greater the number of agents par-
ticipating in the auctions, the longer the auctions take.

As system size grows, average auction runtimes grow as well. This is caused by at least
two things. First, increased competition for limited resources causes the system to require
more rounds to complete assignment. As more agents bid for fewer cells, the competition
generates bidding wars that, by definition, create a single winning bidder per round and thus
require more rounds to achieve unique cell-agent pairs. Having more auction rounds leads

to longer auction times even though round times remain low regardless of system size.

The second reason auction runtimes increase as system size increases is the increased
burden placed on the synchronization framework introduced in Section 3.3. As more agents
are cooperating in the system, more messages are transmitted and the risk of message
collisions and data loss increases. This increased messaging and re-transmission burden

increases auction times because the system can only proceed as quickly as the last agent
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receiving a required update. Figure 4.18 shows our implementation’s runtime and worktime

performance across system sizes as compared to the perfect search.
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Figure 4.18. AuctionSearch Runtimes and Worktimes in Basic Area.
This figure shows how much time is required to search the basic area. In-
creased auction times contribute to increased runtime in our implementation
as system size increases because auctions are initiated at cell completion.
Other trigger strategies that reduce time spent loitering will achieve im-
proved search times.

While our implementation requires more time than the perfect search, worktime generally
decreases with an increase in system size. This point is more apparent in the larger
environments, specifically the large area, where less competition for cells occurs. Transit
time contributes to longer runtimes as well in the basic area at system sizes seven and eight.
Our implementation seeks to maximize per-agent utilization through its utility functions’
deference to less capable agents (i.e., slow or low-endurance agents) when utility costs are
low, as in the basic area. Therefore less capable agents are allowed to transit further to
maximize their per-robot utility in the basic area, contributing to the increased runtime and
worktime. This result is less pronounced in the complex and large areas due to the larger
utility cost variances encountered.
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In Chapter 5 we provide more detail regarding ways to mitigate auction impact on over-
all search runtimes, such as starting auctions based on different trigger criteria than cell
completion. Increased messaging has no impact on the total number of auctions, however,
which decreases as system size increases. This occurs because there are more search cells

assigned per auction, reducing the total number of auctions.
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Figure 4.19. AuctionSearch Division of Work in Basic Area. This
figure shows the percentage searched by highly capable versus less capable
agents across system sizes. As discussed in 4.4, we assigned even-numbered
agents high speed and endurance and odd-numbered agents were assigned
low speed and endurance in order to achieve a roughly 50 percent split per
system size.

Figure 4.19 shows the percentages of work completed in the basic area. Our speed utility
function, shown on the left side of Figure 4.19, shows the expected result of fast agents
affording slow agents the opportunity to take lower-cost cells. The basic area is so small,
however, that fast agents defer most of the search to slow agents and, therefore, never have
the opportunity to take larger-cost cells; A behavior which is shown to be achieved in our

complex and large areas.

Our endurance utility function results, shown on the right side of Figure 4.19, show a more
equitable division of labor in the basic area. This occurs because low-endurance agents are
only presented with low cost cells due to the small area to be search, and therefore were not

penalized as harshly as in the other, larger search areas.

4.5.4 AuctionSearch Performance Against the Perfect Search
Measuring AuctionSearch against variants of itself, albeit a valuable tuning strategy,

provides no basis from which to measure its performance against other auction-based im-
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plementations. Comparing performance to the perfect search, however, provides a common

benchmark for all auction-based area search applications to measure against.

The perfect search makes many assumptions and represents ideal circumstances which
rarely, if ever, materialize in real implementation. System dynamics such as communication
infrastructure, decentralized assignment deliberation, and orphan cell management impact
performance in less than ideal, real-world applications. Regardless, certain design decisions

make auction-based implementations perform more closely to the ideal than others.

Figure 4.20 shows how AuctionSearch’s worktimes compare to the perfect search across

all configurations.
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Figure 4.20. AuctionSearch Worktimes Versus the Perfect Search.
This figure shows how many times longer our implementation took to com-
pletely search across all configurations than the theoretical perfect search.
Our implementation fared best in the large area where competition for cells
is lowest. It fared worst in the basic area where competition is highest,
especially at larger system sizes.
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Our implementation performed closest to the perfect search in the large area where auction
durations were low due to minimal bidding conflicts among the many cells. Performance
suffered the most in the basic area where the agents quickly outnumber the cells, creating

many cell conflicts that result in increased auction duration averages.

4.5.5 Live-Fly Results

In this Subsection, we discuss and compare the results of live AuctionSearch experimen-
tation conducted at Camp Roberts, CA with the NPS ARSENL Zephyr II UAVs. We ran
AuctionSearch on two separate occasions with different system sizes and utility functions
in the basic area to validate our simulation results and verify operation with real-world
constraints. We were only able to conduct live experimentation with the basic area due to

range safety restrictions.

We conducted live-flight demonstration in August 2018 with system sizes ranging from
three to six agents to demonstrate our implementation’s real-world feasibility. We then
conducted live-flight testing in November 2018 with system sizes ranging from four to eight
agents and both utility functions to validate and compare the results against our simulation
results. Figure 4.21 shows the auction statistics for live-flight across system sizes for both

utility functions.

The trend of increased system sizes having increased average auction runtimes, overall
runtimes, and worktimes is evident in live-flight as it was in simulation. Of note, we were
only able to test each system size one time, so the results presented here do not benefit
from results averaged over time. It is assumed that live-flight results would track closer to
simulated results given more runs, as the standard deviation in values is within the same

range observed in simulation.
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Live-Flight Performance Using Speed Utility
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Figure 4.21. Live-Flight Performance in Basic Area. This figure shows
how our implementation performs in live experimentation conducted at Camp
Roberts, CA. The average auction runtimes increase as system-size increases,

as was seen in simulation.

Figure 4.22 shows the live-flight run times of AuctionSearch in the basic area across

system sizes for both utility functions. These runtimes are graphed with the perfect search

for comparison. Our live-flight results closely match the trend evident in simulation,

showing that average runtimes increase with system-size for our implementation.
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Figure 4.22. AuctionSearch Live-Flight Runtimes and Worktimes
in Basic Area. This figure shows how much time is required to search
the basic area in our live-flight conducted at Camp Roberts, CA. Increased
auction times, as shown in Figure 4.22, contribute to increased runtime as
system size increases in our implementation.
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Figure 4.23. Live-Flight AuctionSearch Division of Work in Basic
Area. This figure shows the percentage searched by fast or high-endurance
versus slow or low-endurance agents across system sizes during live-flight
experimentation at Camp Roberts, CA. Highly capable agents conducted
the majority of the search, but a more or less equitable split was achieved as
intended.
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Figure 4.23 shows the percentage split of work completed by fast or slow agents (using the
speed utility function) and by high and low-endurance agents (using the endurance utility
function) in the basic area across system sizes. Again, live-flight experimentation yields

similar results to simulation.

4.6 Summary

In this chapter we introduced our speed and endurance utility functions that seek to achieve
agent bidding strategies that maximize system-wide utilization and efficiency in auction-
based area search. We also discussed the impacts that these functions have on agent bids
and the expected behavior from each. Our utility functions allow less capable agents (i.e.,
slow or low-endurance agents) the opportunity to make maximum use of their available
time and energy while more capable agents (i.e., fast or high-endurance agents) take on

larger and harder work that their less capable counterparts cannot efficiently complete.

We defined the measures of performance for our implementation and conducted 326 sim-
ulated and live runs in three different areas with system sizes ranging from three to 10
robots each. The results of these various experiment configurations provide a basis for
using auction-based cell assignment in area search applications in distributed systems. We
observed how different cellular decomposition strategies achieved different results with var-
ious system sizes and mixes of high and low-capability agents. We also observed how the
burdens of system-wide data consistency and distributed autonomy impact overall runtime
of auction-based implementations. We then validated our simulated results with live-flight

testing of our implementation.

With all data collected and results analyzed, we present our findings, conclusions, and
recommendations in Chapter 5. We also discuss the lessons learned during design, devel-
opment, and testing of AuctionSearch and outline what future research would inform the

area of autonomous decision in multi-robot systems.
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CHAPTER 5:

Conclusion

The overarching goal of this thesis was to demonstrate the applicability of auction-based as-
signment for the autonomous execution of area search by multi-robot systems. This research
goal was achieved by first exploring the different variations of market-based assignment
algorithms and their application to area search. We then introduced AuctionSearch; our
single-item auction-based area search behavior implemented for the ARSENL multi-UAV

system.

We went on to discuss the design trade-offs required to implement auction-based area search
and subject AuctionSearch to a wide range of tests, spanning three search areas, two utility
functions, and system sizes varying from three to 10 robots each. Per-robot and system-
wide statistics were collected and analyzed to measure AuctionSearch’s performance as
an auction-based area search solution. We compared our results for various configurations
to identify those aspects having the largest impact on search performance. Finally, we
validated our simulation-environment results with live-fly field experimentation to assess
performance with regard to the challenges presented by interaction with hardware the real

world.

5.1 Findings and Lessons Learned

In this section, we discuss our findings regarding auction-based area search and provide
recommendations for optimization given our implementation and research objectives. Our
AuctionSearch implementation described in Chapter 3 and its experimentation and test
results presented in Chapter 4 show that auction algorithms are well suited for autonomous
area search applications with multi-robot systems. Our research shows that satisfactory cell
assignment solutions can be achieved with auction algorithms. Our research also shows
that multi-robot systems are capable of achieving complete area search autonomously using
auction algorithms, and can do so in restrictive, lossy-communications environments of

various size and complexity.
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5.1.1 Increasing the Number of Agents Generally Decreases Search
Times

Worktime, which we defined in Chapter 4 as our implementation’s overall runtime with the

loiter time removed, generally decreases when more agents are included in an area search.

While auction-based assignment takes a non-trivial amount of time to achieve optimal cell-

agent pairs, it can perform nearly as well as the perfect search with optimal auction-start

criteria and agent bidding (or “no-bidding”) strategies.

To achieve area search runtimes that are close to that of the perfect search, agents need to
be searching cells for as much of the area search runtime as possible. This requires that
agents always have assigned cells, implying that auctions for those assignments occur and
are concluded prior to the completion of the current in_progress cell. This can be achieved
by requiring agents to start the next auction immediately after setting a cell to in_progress
or upon reaching some remaining_length threshold for their current cell instead of waiting
until a cell is set to complete, as our implementation does. Search runtimes might also be

decreased by assigning more of the search area per auction using combinatorial auctions.

Intra-system communication frequency and message complexity can also contribute to
increased runtimes. Communication frequency directly impacts runtime based on the
amount of built-in redundancy. For systems such as ours that are required to operate in lossy-
communications environments, the allowances to account for lost data are mandatory, to
prevent data inconsistency from undermining system-wide consensus. Messaging schemes
such as ours that use requests as the fail-safe for missed messages will incur some lost
time while retransmissions occur. This equates to some level of inefficiency, but it makes
the system robust to data-loss and ensures consensus is maintained throughout execution.
We view this trade-off as acceptable and have made the intentional decision to prioritize

correctness over efficiency.

5.1.2 Increasing the Number of Agents Increases Auction Duration

Auctions take longer to achieve unique cell-agent pairs as the number of participating
agents increases. While our research shows that having more agents generally decreases
area search completion times, particularly in large areas with many search cells, individual

auction performance suffers as a result of having more agents. Increased auction times are
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a natural byproduct of having more agents vying for the same number of cells, particularly
as the number of cells continues to decrease toward the end of a search when the agents
begin to outnumber the cells. Our research indicates that there may be an optimal number
of agents for a given search area which, if surpassed, degrades search performance. We
leave the actual identification of the optimal number given per-robot capabilities and cellular

decomposition, however, to future work.

Efforts can be undertaken to lessen the impact of increased competition, such as providing
off-ramps for subsets of agents who fall below some utility threshold or are bidding back
and forth between two cells of similar utility. This will allow highly competitive auctions to
complete more quickly but may result in more sub-optimal cell-agent pairs. Our experiments
indicate that some degree of sub-optimality may be preferable to extended auctions, however,
since it allows agents to commence work more quickly. Further, increased optimality can

once again be pursued in subsequent auctions that reshuffle any assigned or available cells.

5.1.3 Having Many Small Cells Increases Efficiency in AuctionSearch
The results of our large-area experiments indicate that our single-item auction assignment
scheme and utility functions lend themselves best to having many small cells as opposed to
fewer larger cells. When there are large numbers of small cells, agents have many fallback
options if they do not bid successfully for their favorite cell in a given round. This leads to

shorter auction times since agents settle on cell assignments more quickly.

The opposite effect was observed in the basic- and complex-area experiments. Agents have
very few options among the 12 and 16 cells, respectively, and therefore spend large amounts
of time in auction competing for the small number of cells. The prevalence of extremely
large cells in the complex area results in steep utility dropoff rates which cause agents to
pursue their favorite cell repeatedly to avoid being forced to accept their second favorite
assignment. This extended pursuit equates to increased auction times and sometimes even
inefficient assignment solutions. As more agents are introduced, the competition for the

few small cells is exacerbated, and auction times increase.
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5.1.4 Utility Function Modification can Achieve a Range of Bidding
Behaviors

Our results demonstrate that using agent characteristics to calculate cell utility can modify

agent bidding strategies by influencing what each agent views as a high-utility task. Mod-

ification of agent bidding strategies at the individual level appears to be the most tuneable

aspect of auction-based search implementation. A wide range of strategies can be imple-

mented to achieve efficient results across a variety of system sizes in as wide a range of

possible search areas.

For our research we used speed and endurance to achieve equitable division of labor across
all search areas to maximize per-robot utilization. Our implementation combines all aspects
of utility cost (distance, size, and remaining_size) and uses agent speed or endurance as the
differentiator between agents’ utility values for a particular cell. More nuanced variable
control might be used to refine bidding strategies further. For example, increases in per-robot
utilization can likely be achieved by incentivizing agents based on their particular distance
value. That is, agents can be made to favor closer cells regardless of size, producing
a greedy system response that may be desirable for certain applications. Other agent
characteristics that can be considered for more nuanced auction-based assignment include

sensor, defensive, and offensive capabilities.

5.2 Future Work

This thesis explored the technical capability of multi-robot systems to conduct area search
operations without human intervention. Our work implemented auction-based assignment
to achieve this level of autonomy, but it hardly represents the limit to which the field
of autonomous decision and distributed robotics should explore. Future research efforts
should experiment with a more broad spectrum of algorithms, system configurations, and
mission sets to identify more avenues for maturation of autonomous decision approaches.
Further, future efforts should explore how deeply these algorithms can be nested and linked

to develop ever-more robust behaviors.
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5.2.1 Autonomous Decision Using Combinatorial Auctions

Combinatorial auctions are as well-suited as single-item auctions to area search problems, if
not more so. Future research should explore the efficiency achieved by conducting auction-
based assignment of search cells using combinatorial auctions with various numbers of cells
per awardable subset. Many of the same design trade-offs wrestled with in AuctionSearch
will need to be addressed with combinatorial auctions as well, and many more issues will

require attention as well given the subset selection difficulties discussed in Chapter 2.

5.2.2 Independent Cuing and Nesting of Auctions During Area Search
One paradigm that should be explored is the linking of autonomous decision frameworks,
like auction algorithms, to allow multi-robot systems to perform arbitrarily complex behav-
iors given operational triggers, specific and specialized agent capabilities, and knowledge of
desired end-states. Area searches, for instance, are rarely ordered as stand alone operations.
Rather, they are typically information-gathering endeavors that inform follow-on actions. If
the agents participating in the area search know what operational outcomes are desired and
have knowledge of their own capabilities, the distributed system can collectively determine

how best to execute any number of trigger-based follow-on tasks.

Auctions can be initiated via agent-to-agent cuing with the goal of assigning some number
of agents to a single objective requiring attention. While some subset of agents bids
for and executes the emergent task (e.g., attack, follow, report, or defend), the remaining
agents can detect this through the auction process and dynamically reassign area search
cells among themselves. This would push even more autonomy to the per-robot level,
testing the discovering agent’s ability to not only identify, classify, and individually execute
an objective, but to also alert any number of the other agents to come to its aid on that
objective. In this way, arbitrary linkages of tasks can be achieved to develop arbitrarily

complex behaviors in a robust and failure-tolerant fashion.

Work in this area should not be completed in a vacuum or without an overarching frame-
work to govern systems’ employment for arbitrarily complex missions. The Mission-Based
Architecture for Swarm Composability (MASC) introduced by [51] represents a mission-
focused systems engineering framework within which technical implementation and ex-

perimentation can be undertaken to avoid haphazard and unfocused autonomous systems
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behavior development. Ultimately, the more autonomy that can be pushed to the edge of
our multi-robot systems, the more capable those systems will be for undertaking complex

behaviors.
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APPENDIX: AuctionSearch Source Code

4 — AuctionSearch
S — Matthew S. Hopchak, 2018

7 — Area search behavior utilizing an auction algorithm to
autonomously distribute

8 search cells among the swarm participants.

10 — This file contains four classes to run auction—based area
search
11 1. AuctionSearch: conduct auctions for cell assignments
at certain intervals
12 and run an area search given a number of agents and a
search area.
13 2. Cell: hold, mutate, and access attributes of cell
objects for conduct of area search and auctions.
14 3. Waypoint: hold, mutate, and access attributes of
waypoint objects for conduct of area search.]
15 4. Searcher: hold, mutate, and access attributes of
searcher objects for conduct of area search,
16 participation in auctions, and communication with
other agents.
17
18 — — — — — —

19 y

20 from __future__ import division
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21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36

37

38

39

40

41

42

43

44
45

import
import
import
import
import
import
import
import
import
import

import

math

rospy

ap_msgs.msg as apmsg
std_msgs.msg as stdmsg

ap_lib. gps_utils as gps

ap_lib. math_utils as ro_math
ap_lib.nodeable as nodeable
ap_lib.ap_enumerations as enums
ap_lib.bitmapped_bytes as bytes
ap_lib.plugin_behavior as plugin

ap_mission_planning .swarm_manager as swarm

class AuctionSearch (plugin.PluginBehavior):

’

Area search swarm behavior using auction algorithms

Used to distribute search cells from a given search area

to particpant

agents and to autonomously assign new cells at certain

trigger intervals.

Auctions are initiated each time an agent completes a

cell to maximize

system —wide utilization. Agents use either the speed or

the endurance

utility functions to compute utility values for each

cell , and subsequently

bid for their favorite (highest utility —yielding) cell.

If they are outbid,

agents pursue other cells or the same cell again,

on

increasing their bid, depending

utility. The algorithm terminates once there are no

more cells left requiring

search .

Member variables :
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46

47

48

49

50

51

52

33

54

55

56

57

58

59

60

61

62

_agent: Searcher instantiation for holding searcher

information like cells owned

_search_roll_call: set to keep track of agents who
have reported cell statuses

_bid_roll_call: set to keep track of agents who have

reported bids

_been_there: set to keep track of cells that have

been searched (are completed)
_cells_left: set to keep track of cells left to be

searched (are available or in—progress)

_round_tracker: set used by syncRounds() to track

what round all agents are in for consistency

_cells_in_progress: set to keep track of cells that

are in—progress

_cells_not_won: set used to keep track of cells an

agent has lost this auction

_cells_changed: set used to keep track of cells that

have updated statuses

_cell_update_sent: set to track which cells an agent

has sent updates for

_abandoned_cells: set used to keep track of which

cells an agent has stopped pursuing this auction

_complete_roll_call: set used to keep track of

agents who have reported auction complete
_loiter_checkpoint: list to hold latitude and

longitude of last waypoint for loiter location

_inbound_statuses: list of lists of cell statuses

received from other agents before processing

_west_wall: list holding cartesian coordinates to

western boundary of the search area

_north_wall: list holding cartesian coordinates to

northern boundary of the search area

_east_wall: list holding cartesian coordinates to
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63

64

65

66

67

68

69

70

71

72
73

74

75

76

77
78

79

eastern boundary of the search area

_south_wall: list holding cartesian coordinates to

southern boundary of the search area

_obstacle_grids: list holding cartesian coordinates

to the vertices of each obstacle in complex area

_obstacles: list of lists holding vertex —edge—vertex

for each obstacle in complex area

_inbound_bids: list of tuples of bids received from

other agents
_cell_utilities: list of tuples of cell utilities

within a given round of an auction

_curr_bid: list containing the cell_id and bid_value

for a given cell in a current auction round

_prev_bid: list containing the cell_id and bid_value

of my previous bid to allow agents to catch up

_prev_cells: list of cell_ids that changed last

auction round which require communication of
updates

_all_bids: dictionary of bids for a round where key
== gsearcher_id and value == (cell_id:bid_value)

_cells: dictionary to hold all cell objects

_message_count: counter of number of cell status

requests the agent has sent this auction

_bid_msg_count: counter of number of bid status

requests the agent has sent this round

_auc_msg_count: counter of number of auction

complete requests the agent has sent this auction

_sync_msg_count: counter of number of sync requests

the agent has sent this round

_auction_number: counter of number of auctions

_round_number: counter of number of rounds for a

particular auction

_wait: counter used to meter how often underutilized
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80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

agents request auction

_cell_memory: counter used to meter how many

previous rounds of cell changes agents maintain

_sensor_sweep: list containing the waypoint spread

by step (m) and stride (m)

_search_area: Geobox object containing the southwest

lat/long, width, and height of search area

_rounds_synced: boolean flag for whether agents can

proceed with round

_loiter_wait: boolean flag for whether agent must

stay at current waypoint

_bids_updated: boolean flag for whether agent has

received updated bids from all agents

_initial_assign: boolean flag for whether it is the

very first auction

_winners_picked: boolean flag for whether agent has

completed winner determination

_mid_search_bid: boolean flag for whether agent has

submitted a bid, completing obligation

_submit_same_bid: boolean flag for whether agent won

its last round and needs to submit same bid

_same_bids: boolean flag for whether all agents

submitted the same bids

_auction_started: boolean flag for whether agent is

in an auction

_bidding_complete: boolean flag for whether agent

has submitted a bid

_auction_complete: boolean flag for whether agent

has completed an auction

_cell_complete: boolean flag for whether agent has

completed an in—progress cell

_i_finished_last: boolean flag for whether agent

finished the last cell of the search, to tell
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others
96 _agent._IS_SEARCHER: boolean flag for whether

behavior is active with cells left to search

97 _cell_update_complete: boolean flag for whether
agent has received updated cell statuses from
others

98 _agent._IS_SEARCH_AUCTION: boolean flag for whether

agent is In an auction
99 _choose_search_area: AuctionSearch enumeration for
basic, large—basic, or complex search area
100 _choose_utility_function: AuctionSearch enumeration
for speed or endurance utility function
101 _data_auction_durations: data capture: no bearing on
AuctionSearch operation
102 _data_round_durations: data capture: no bearing on
AuctionSearch operation
103 _data_round_information: data capture: no bearing on
AuctionSearch operation
104 _data_robot_searching: data capture: no bearing on
AuctionSearch operation
105 _data_robot_loitering: data capture: no bearing on
AuctionSearch operation
106 _data_robot_utilization: data capture: no bearing on
AuctionSearch operation
107 _data_total_runtime: data capture: no bearing on
AuctionSearch operation
108 _data_round_time: data capture: no bearing on
AuctionSearch operation
109 _data_auction_time: data capture: no bearing on
AuctionSearch operation
110 _data_area_searched: data capture: no bearing on
AuctionSearch operation

111 _total_search_waypoints: data capture: no bearing on
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112

113

114

115

116

117

118

119

120

121

122

123

124

125

126
127

128

129

130

AuctionSearch operation

_am_searching: data capture: no bearing on
AuctionSearch operation

_am_loitering: data capture: no bearing on

AuctionSearch operation

Inherited member variables (PluginBehavior):
id: Unique integer identifier for this behavior
manager: BehaviorManager object to which this

behavior belongs

Member functions :

parameterize: implementation of the Behavior virtual
function

compute_command: runs one iteration of the behavior’
s control loop

safety_checks: completes behavior—specific safety
checks

process_behavior_data: process various behavior
messages

auctionCompleteRequest: execute requests for auction
completion (lossy comms protection)

auctionStatusRequest: execute requests for auction
status (lossy comms protection)

bidStatusUpdate: send bids to other agents

bidStatusRequest: execute requests for bids (lossy
comms protection)

calculateUtility: calculate the utility for a given
cell for a given agent

calculateUtilityCost: calculate distance, size, and
remaining_size for a given cell

calcTotalArea: used for data collection. No bearing

on AuctionSearch execution
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131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

captureRobotUtilizationData: used for data
collection. No bearing on AuctionSearch
execution

captureRoundData: used for data collection. No
bearing on AuctionSearch execution

captureThesisData: used for data collection. No
bearing on AuctionSearch execution

cellStatusUpdate: send cell status updates to other
agents

cellStatusRequest: execute requests for cell
statuses (lossy comms protection)

checklfAuctionComplete: check if auction is complete
and tell other agents if so

checklfCellComplete: check if agent completed an in-—
progress cell, and start an auction for new cells

checklfSearchComplete: check if the search is
complete, and start an auction to notify others
if so

checkUtilization: check if there are cells available
even though agent has none. Start an auction.

consolidateBids: place bids from inbound_bids list
into a dictionary for processing

defineGeometries: define the edges of obstacles in
the complex area

determineOffLimits: determine which cells are not
available for auciton

determineWaypoint: determine which waypoint to
travel to, or loiter at

displayReport: display auction and assignment
information

displayShortReport: display round and bid
information

externalUpdateMyCells: update knowledge of cells
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147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

from other agents’ knowledge

finalAuction: starts one more auction if agent was
last to finish search

finishAuction: clean up data structures after an
auction has finished

fromWaypoint: determine grid to use as last waypoint
for utility cost calculations

generateAdjacencyGraph: creates neighbors lists for
each cell

generateBasicCells: creates cell objects of
rectangular shape of specified height/width (m)

generateBasicSearchArea: fills boundary data
structures given basic, large, or complex area

generateCellAssignment: assign a cell won in auction
to an agent

generateCellUtilities: calculate the utility an
agent gains for owning a cell

generateComplexSearchCells: creates cell objects of
polygonal shape given obstacle locations

generateSearchBid: calculate an agent’s bid for a
cell given wutility calculations

generateWaypoints: create waypoint objects in a cell
given sweep width (spread, stride) (m)

getiInTheAuction: start an auction and reinitialize
all associated data structures

internalUpdateCells: update local cell knowledge
given winning bids from an auction

makeCellActive: set an assigned cell to in—progress
once a waypoint has been reached

moveToNextCell: move to an assigned cell upon
completion of in—progress cell

reassignCell: change assignment of a cell from one

agent to another
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163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

removeCellAssignment: change cell status to
assignment—removed so other agents can detect it

revertCell: change cell status from assignment—
removed to available

sendAuctionComplete: send a single message telling
other agents that agent is finished with auction

setWaypoint: send a speed waypoint command message
with lat/lon/alt/speed information

shareAuctionComplete: lossy —comms tolerant way to
reliably communicate auction status with agents

shareBids: lossy—-comms tolerant way to reliably
communicate bids with agents

shareStatuses: lossy—comms tolerant way to reliably

communicate cell statuses with agents

startAuction: send a burst of auction start messages

to other agents
staylnMyCell: command agent to loiter at last

waypoint after finishing its cell

submitSearchBid: send a single message telling other

agents bid information

syncRounds: check whether all agents are in the same

round, behind, or ahead in an auction
testWaypoint: check whether an agent has arrived at
a specified waypoint
winnerDetermination: determine highest bidder from

set of bids and direct auction termination

Inherited member functions (PluginBehavior)
set_ready: safely sets the ready state to True or
False
is_ready: returns the behavior’s current readiness

state
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181
182
183

184
185
186

187
188
189
190
191
192
193
194

195
196
197
198
199
200
201
202
203

204
205
206
207
208

# Class—specific enumerations and constants

# Basic rectangular search area enumerations (no
obstacles)

BASIC_LIVE_FLY 0

BASIC_LARGER 1

# Complex polygonal search area enumeration (with

obstacles)
COMPLEX = 2

# Utility Function enumerations
SPEED_UTIL = 3
ENDURANCE_UTIL = 4

# Search area southwest location

AREA_SW_LAT = 35.721147 # these values will be
modified when generate search area is called

AREA_SW_LON = -120.773008

# other enumerations
AREA MIN ALT = 354

AREA_MAX ALT = 854
CAPTURE_DIST = 65
MESSAGE_COUNT = 20
EPSILON = 300
NUM_CELLS = 12 # this is modified by the cell

generation methods below
NOT_BIDDING = NUM_CELLS
CELLS_PER_AUCTION = 2
CELL_STATUS_MEMORY= 4

def __init__(self , behavior_id, behavior_name, manager=
None) :
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209 "7 Class initializer initializes class variables.

210 @param behavior_id: unique identifier for this
behavior

211 @param behavior_name: string name of this behavior

212 @param manager: BehaviorManager object to which this

behavior belongs

213

214 plugin.PluginBehavior. __init__ (self, behavior_id,
behavior_name , manager)

215 self._agent = Searcher(rospy.get_param("aircraft_id"
))

216 self._search_roll_call = set()

217 self._bid_roll_call = set ()

218 self._been_there = set ()

219 self. _cells_left = set ()

220 self._round_tracker = set ()

221 self._cells_in_progress= set()

222 self. cells_not_won = set ()

223 self._cells_changed = set ()

224 self._cell_update_sent = set ()

225 self._abandoned_cells = set()

226 self._complete_roll_call = set()

227 self. _loiter_checkpoint= [ ]

228 self._inbound_statuses = [ ]

229 self._west_wall = [ ]

230 self. north_wall = [ ]

231 self. _east_wall = [ ]

232 self. south_wall = [ ]

233 self._obstacle_grids= [ ]

234 self._obstacles = [ ]

235 self._inbound_bids = [ ]

236 self. _cell_utilities= [ ]

237 self._curr_bid = [ ]



238 self._prev_bid = [ ]

239 self._prev_cells = [ ]

240 self._all_bids = { }

241 self._cells ={ }

242 self._message_count = 0

243 self._bid_msg_count = 0

244 self._auc_msg_count = 0

245 self._sync_msg_count= 0

246 self. auction_number= 0

247 self._round_number = 0

248 self._ wait =0

249 self._cell_memory =0

250 self._sensor_sweep = [75, 75]

251 self. _search_area = None

252 self . _rounds_synced = True

253 self. loiter_wait = False

254 self._bids_updated = False

255 self. _initial_assign= True

256 self._winners_picked = False

257 self._mid_search_bid = False

258 self. submit _same_bid = False

259 self. _same_ bids = False

260 self. _auction_started = False

261 self._bidding_complete = False

262 self._auction_complete = False

263 self._cell_complete = False

264 self. i _finished_last = False

265 self._agent._IS_SEARCHER = True

266 self._cell_update_complete = False

267 self._agent._IS_SEARCH_AUCTION = True

268 self. choose_search _area = AuctionSearch.
BASIC_LIVE_FLY

269 self._choose_utility_function = AuctionSearch.
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270

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

291
292

293

294

295
296

SPEED_UTIL
# data capture instrumentation follows: no bearing

on AuctionSearch operation

self. data_auction_durations

self. data_round_durations

self. data_round_information

self._data_robot_searching
self. _data_robot_loitering =
self. data_robot_utilization
self._data_total_runtime =
self. data_round_time =

self. data_auction_time =

Il
o m /m /m /m M/ / /A /@ ™
O e e e e e e e

self. data_area_searched =

self._total_search_waypoints = 0
self . _am_searching = False
self._am_loitering = False

H — — S N
# Implementation of parent class virtual functions
H — — S S

def parameterize(self, params):
*77 Sets behavior parameters based on set service

parameters and speed/endurance values

Parameters for AuctionSearch include:

_choose_search_area: enumeration identifying which
search area it being used

_choose_utility_function: enumeration identifying
which wutility function agents should use

@param params: parameters from the set service
request

@return True if set with valid parameters

PEE )
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297

298
299

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

self . manager.log_info("initializing auction, searcher

)

# reinitialize all __init__ parameters for
subsequent run

self. _search_roll_call.clear ()

self._bid_roll_call.clear ()

self._been_there.clear ()

self. _cells_left.clear ()

self . _round_tracker.clear ()

self. _cells_in_progress.clear ()

self._cells_not_won.clear ()

self._cells_changed.clear ()

self._cell_update_sent.clear ()

self._abandoned_cells.clear ()

self._complete_roll_call.clear ()

self. _loiter_checkpoint= [ ]

self._inbound_statuses = [ ]

self. west_wall =

self._north_wall =

self. east_wall =

self. _south_ wall =

self._obstacle_grids=

self. obstacles =

self. _inbound_bids =

self. cell utilities=

self._prev_bid =

self._prev_cells
self. _all _bids =

self. cells =

—— e e d bd b d ed ed b ed d b

[

[

[

[

[

[

[

[
self. curr_bid = |
[

[

{

{
self._message_count 0
0

self._bid_msg_count
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328
329
330
331
332
333
334

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

355

356

self._auc_msg_count = 0
self._sync_msg_count= 0
self. auction_number= 0
self. _round_number = 0
self. wait =0
self._cell_memory =0
self._sensor_sweep = [75, 75] # [waypoint spread
, ceiling/floor distances ]
self. search_area = None
self._rounds_synced = True
self. loiter_wait = False
self._bids_updated = False
self._initial_assign= True
self._winners_picked = False
self. mid_search_bid = False
self. submit_same_bid = False
self. same_ bids = False
self. auction_started = False

self._bidding_complete = False
self._auction_complete = False
self._cell_complete = False
self. i finished_last = False

self._agent._IS_SEARCHER = True

self._agent._IS_SEARCH_AUCTION = True

self._cell_update_complete = False

self._agent.resetCurrWaypointld ()

self._agent.removeAllAssignments ()

self. choose_search _area = AuctionSearch.
BASIC_LIVE_FLY

self. _choose_utility_function = AuctionSearch.
SPEED_UTIL

# data capture instrumentation follows: no bearing

on AuctionSearch operation
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358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

373

374

375

376

377

378

379
380

381

382

self. data_auction_durations =
self. data_round_durations =
self. data_round_information =
self._data_robot_searching =
self. _data_robot_loitering =
self. data_robot_utilization =
self._data_total_runtime =
self. data_round_time =

self. data_auction_time =

o m M/ /m /m /m M/ /@A /@ ™/
O e e e e e e e

self. data_area_searched =

self._total_search_waypoints = 0

self._am_searching = False

self._am_loitering = False

#——— EXPERIMENT VARIABLES. MODIFY THESE

# 1. Choose Search Area.

# BASIC_LIVE_FLY: live—fly area (Camp Roberts
McMillan Airfield geo—fence safe)

# BASIC LARGER: large —basic area, uniform
rectangular cells

# COMPLEX : large —complex area, polygonal
environ with obstacles and irregular cell sizes

# ——— SELECT ONE OF THE BELOW OPTIONS ———-

self. choose_search _area = AuctionSearch.

BASIC_LIVE _FLY
#self. _choose_search_area
BASIC LARGER

#self. _choose_search_area

AuctionSearch .

AuctionSearch . COMPLEX
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383
384

385

386

387
388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

# 2. Choose Utility Function.

# SPEED _UTIL : Generate private value (
utility ) using individual speeds

# ENDURANCE_UTIL: Generate private value (
utility ) using individual endurance

# —— SELECT ONE OF THE BELOW OPTIONS ————

self._choose_utility_function = AuctionSearch.
SPEED_UTIL

#self. _choose_utility_function = AuctionSearch.

ENDURANCE_UTIL

self._data_total_runtime .append(rospy.Time.now())
# generate the outer search area boundary for any
chosen search area

self.generateBasicSearchArea ()

# If search area is complex (includes obstacles),
conduct boustrophedon cellular decomposition
if self. _choose_search_area >= AuctionSearch.
COMPLEX:
self .manager.log_info (" Generating ,Complex,Search
uArea  Parameters")
AuctionSearch .NUM_CELLS = self.
generateComplexSearchCells ()
AuctionSearch .NOT BIDDING = AuctionSearch.
NUM_CELLS
self . generateAdjacencyGraph ()
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404
405

406

407
408
409
410

411
412
413

414
415
416

417

418

419

420

421

422

423

424

425

426

self.set_ready (True)
elif self. _choose_search_area in [AuctionSearch.
BASIC_LIVE_FLY, AuctionSearch.BASIC_LARGER]:
self .manager.log_info (" Generating Basic,Search,
Area_ Parameters")
self . generateAdjacencyGraph ()
self.set_ready (True)
else:
self . manager.log_info (" Unrecognized  search area,,
enumeration used ., Shutting down.")

self.set_ready (False)

# set total number of waypoints for thesis data
capture
self.calcTotalArea ()

# set individual wutility variables based on user—
selected utility function
if self._choose_utility_function == AuctionSearch.
SPEED_UTIL:
self .manager.log_info ("Speed, ,Utility Function,,
Chosen.,Setting Agent_ Speeds.")
# All agents with an even searcher_id are faster
than odds
if self._agent.getSearcherld() % 2 == O0:
self._agent.setSpeed (23)
else:
self._agent.setSpeed(15)
self.set_ready (True)
elif self._choose_utility_function == AuctionSearch.
ENDURANCE_UTIL:
self.manager.log_info ("Endurance Utility .

Function ,Chosen.  ,Setting ,Agents’ Endurance."

105



427

428
429
430
431
432
433
434
435

436
437
438

439

440

441
442
443
444

445

446
447
448
449

)

# All agents with an even searcher_id have
higher endurance than odds

if self._agent.getSearcherld() % 2 ==
self._agent.setEndurance (0.8)

else:
self._agent.setEndurance (0.2)

self._agent.setSpeed(15)

self.set_ready (True)

else:

self . manager.log_info (" Unrecognized utility .

function_enumeration_used.  ,Shutting down.")

self.set_ready (False)

# if the number of agents is greater than half the
number of cells

# change how many cells per auction to expect (
pigeon hole)

if AuctionSearch .NUM_CELLS / 2 < len(self.manager.
subswarm_keys) :
AuctionSearch .CELLS PER_AUCTION = 1

# initialize first waypoint
self. _loiter_checkpoint = [self.manager.
get_own_state () .state .pose.pose.position.lat,
self . manager.
get_own_state (). state .
pose .pose.position.lon

]

self._data_auction_time .append(rospy.Time.now())

return self.is_ready ()
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450
451
452
453

454

455

456

457

458

459

460
461

462

463

464

465

466
467

468

469

def process_behavior_data(self , data_msg):
"’ receive and direct action based on data messages
received from other agents
Parsers for these data messages are contained in
bitmapped_bytes . py
if data_msg.id == bytes.AUCTION_BID:
# I have received a message containing a bid for
a cell
parsed = bytes.AuctionSearchBidParser ()
parsed .unpack (data_msg.params)
self._round_tracker.add(parsed.round_id)
if parsed.round_id == self._round_number or
parsed . bid_value == AuctionSearch.NOT_BIDDING

if parsed.source_id not in self.
_bid_roll_call and not self._bids_updated
and \
self._bidding_complete:
if parsed.bid_cell_id == AuctionSearch.
NOT_BIDDING:
self . manager.log_info("agent %d says

"

Lhes not,bidding." % parsed.
source_id)

bid_val = int(round(parsed.bid_value))

self._inbound_bids.append( [parsed.

source_id , parsed.bid_cell_id,

bid_val] )
self._bid_roll_call.add(parsed.source_id
)

if self. i finished last:
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470
471
472
473

474
475
476
477
478
479
480
481
482
483
484
485
486

487
488
489
490
491
492

493
494
495

496
497

self. i finished _last = False

elif data_msg.id == bytes.AUCTION_BIDS_REQUEST:
# see if the request is for the previous round
or not to allow an agent to catch up
parsed = bytes.UShortParser ()
parsed .unpack (data_msg.params)
if parsed.value >= self._round_number:
is_previous = False

else:

is_previous True
for i in range(2):

self.bidStatusUpdate (is_previous)

elif data_msg.id == bytes.AUCTION_STATUS:
parsed = bytes. AuctionStatusParser ()
parsed .unpack (data_msg.params)

if parsed.auction_number >= self._auction_number

self._round_tracker.add(parsed.round_number)

elif data_msg.id == bytes.AUCTION_NEW:
parsed = bytes.NewAuctionParser ()
parsed .unpack (data_msg.params)
if not self. auction_started and self.
_auction_complete and \
self._auction_number == parsed.auction_number:
self.getInTheAuction ()
# if agent who started the auction claims
next cell, set it to IN_PROGRESS locally
if parsed.claim_next_cell:
self. _cells[parsed.next_cell_id].
setStatus (Cell .IN_PROGRESS)
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498 # thesis data capture line

499 if len(self._data_robot_searching) ==
500 self._data_robot_searching.append(
rospy . Time.now () )
501 self._am_searching = True
502 self._cells_changed.add(parsed.
next_cell_id)
503 self._cells_in_progress.add(parsed.
next_cell_id)
504
505 elif data_msg.id == bytes.AUCTION_CELLS:
506 parsed = bytes. AuctionSearchCellsParser ()
507 parsed .unpack (data_msg.params)
508 if parsed.source_id not in self.
_search_roll_call:
509 self._inbound_statuses.append( [parsed.
source_id , parsed.cell_list] )
510 self. _search_roll_call.add(parsed.source_id)
511
512 elif data_msg.id == bytes.AUCTION_CELLS_REQUEST:
513 parsed = bytes. AuctionStatusParser ()
514 parsed .unpack (data_msg.params)
515 auction_num = parsed.auction_number
516 round_num = parsed.round_number
517 # If I missed the auction start message, set
auction start (redundency for lossy comms)
518 if parsed.round_number == 0 and not self.
_auction_started:
519 self.manager.log_info ("missed the _auction,
start_message. . ,Catching up.")
520 self . manager.log_info("sending requested
cell status.")
521 self.cellStatusUpdate ()
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522
523
524
525
526
527
528
529
530
531
532

533
534
535
536
537
538

539
540
541
542
543

544
545
546
547
548
549
550
551

self.getInTheAuction ()
else:
self.cellStatusUpdate ()

elif data_msg.id == bytes.AUCTION_COMPLETE:
parsed = bytes.UShortParser ()
parsed .unpack (data_msg.params)
agent_id = parsed.value
if agent_id not in self._complete_roll_call:
self._complete_roll_call.add(agent_id)
self .manager.log_info ("Agent Y%d reports,

auction_complete" % parsed.value)

elif data_msg.id == bytes.AUCTION_COMPLETE_REQUEST:
parsed = bytes.UShortParser ()
parsed .unpack (data_msg.params)
am_complete = False
if len(self._agent.getMyCelllds()) ==
AuctionSearch .CELLS _PER_AUCTION and \

self._initial_assign:

am_complete = True
elif self. mid_search_bid:
am_complete = True

elif not self._initial_assign and not self.
~mid_search_bid and \
parsed.value < self._auction_number:
am_complete = True
if am_complete:
for i in range(AuctionSearch .MESSAGE_COUNT) :
self.sendAuctionComplete ()
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553
554

555

556
557
558
559
560
561
562

563
564

565
566
567
568

569
570
571
572
573
574
575
576
577
578
579

def compute_command(self):
"7’ Executes one iteration of the behavior
Agents start off requiring an auction for cells.
Once cells are assigned, agents can
execute auctions and search at the same time.
Behavior is finished once all cells have
been searched

# capture thesis data

self.captureRobotUtilizationData ()

num_agents = len(self.manager.subswarm_keys)

# auction for search cells state functionality below

#
if self._agent._IS_SEARCH_AUCTION:
self._rounds_synced = self.syncRounds(num_agents

)

if self._rounds_synced:
if not self._cell_update_complete:
self.shareStatuses (num_agents)
elif self._cell_update_complete and not self
. _mid_search_bid:
if not self._auction_complete:
if not self._bidding_complete:
self . generateSearchBid ()
if self._bidding_complete:
if not self._bids_updated:
self.shareBids (num_agents)
elif self._bids_updated:
self . winnerDetermination ()
if not self._auction_complete:
self.checkIfAuctionComplete (num_agents)

if self._auction_complete and self.
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580
581
582
583

584

585
586
587
588
589
590
591
592
593
594
595

596
597
598
599
600
601
602
603
604

605

_cell_update_complete:
self.finishAuction ()
self.displayReport ()
elif not self._rounds_synced:
self . manager.log_info ("I_am_ahead and_need,
to,wait. agent %d, round is %d._ " \
J% (self._agent.
getSearcherld () ,

self._round_number)

)

# area searcher state functionality below #

if self._agent._IS_SEARCHER:
self.checkIfCellComplete ()
self.checkIfSearchComplete ()
waypoint_data = self.determineWaypoint ()
self .setWaypoint(waypoint_data[1l])
self.testWaypoint(waypoint_data[1])
self.checkUtilization ()

# if the search is complete, the last agent starts a
final auction to ensure

# all agents terminate gracefully

self.finalAuction ()

return self.manager.spd_wp_cmd_msg

def safety_checks(self):
"7’ Conducts behavior—specific safety checks
@return True if the behavior passes all safety

checks (False otherwise)

PEE )
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606

607

608
609
610

611

612
613
614

615
616
617
618
619
620
621
622
623
624
625
626

627
628
629
630
631
632

# if agent is in one of these four states , return
True .
if self._agent._IS_SEARCHER or self._agent.
_IS_SEARCH_AUCTION or \
len(self._been_there) == AuctionSearch .NUM_CELLS:
return True
# or as long as the agent is still in the sub-swarm,
return True
elif self._agent.getSearcherld () in self.manager.
subswarm_keys:
return True
else:
self.manager.log_warn("agentfailed,
AuctionSearchsafety checks.")
return False

return True

H — — _— —

# Behavior—specific methods in alphabetical order

H#—— N —— N N

def auctionCompleteRequest(self):
'’ execute requests for auction completion (lossy

comms protection)

parser = bytes.UShortParser ()

parser .value = self._auction_number

report = self.manager.behavior_data_msg

report.id = bytes.AUCTION_COMPLETE REQUEST

report.params = parser.pack()
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633 self . manager. behavior_data_publisher.publish(report)
634

635

636

637 def auctionStatusRequest(self):

638 '’ execute requests for auction status (lossy comms
protection )

639

640 parser = bytes. AuctionStatusParser ()

641 parser.auction_number = self._auction_number

642 parser .round_number = self. round _number

643 report = self.manager.behavior_data_msg

644 report.id = bytes.AUCTION_STATUS

645 report.params = parser.pack()

646 self . manager.behavior_data_publisher.publish(report)

647

648

649

650 def bidStatusUpdate(self, is_previous):

651 77 send bids to other agents during an auction

652 @param is_previous: boolean flag for whether the
requesting agent is a round behind

653

654 parser = bytes. AuctionSearchBidParser ()

655 parser.source_id = self._agent.getSearcherld ()

656 # if an agent has fallen behind and is trying to
catch up, send previous bid

657 if is_previous:

658 bid = self._prev_bid

659 round_id = self._round_number - 1

660 else:

661 bid = self. _curr_bid

662 round_id = self._round_number
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663 if len(bid) > O:

664 parser.round_id = round_id

665 parser .bid_cell_id = bid[0]

666 parser .bid_value = int(round(bid[1]))

667 report = self.manager.behavior_data_msg

668 report.id = bytes.AUCTION_BID

669 report.params = parser.pack()

670 self . manager.behavior_data_publisher.publish (

report)

671

672

673

674 def bidStatusRequest(self):

675 "’ execute requests for bids (lossy comms
protection )

676

677 parser = bytes.UShortParser ()

678 parser .value = self._round_number

679 report = self.manager.behavior_data_msg

680 report.id = bytes.AUCTION_BIDS_REQUEST

681 report.params = parser.pack()

682 self . manager.behavior_data_publisher.publish(report)

683

684

685

686 def calculateUtility (self, cell_id, last_waypoint):

687 77 calculate the wutility for a given cell for a
given agent

688 @param cell_id: id of the cell

689 @param last_waypoint: the waypoint to start distance
calculations from

690 @return the utility for the specified cell from the

specified waypoint
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691
692

693
694
695
696
697
698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

def

PEE )

utility_cost = self.calculateUtilityCost(cell_id,
last_waypoint)
if cell_id == self._agent.getCurrCellld ():
cell _cost = 0.0
else:
cell_cost = self._cells[cell_id]. getCost()
private_value = self._cells[cell_id]. getValue ()
if self._choose_utility_function == AuctionSearch.
SPEED_UTIL:
util _cost_time
getSpeed ()
cell_utility

utility_cost / self._agent.

round ( private_value -

util_cost_time - cell_cost, 3)
elif self._choose_utility_function == AuctionSearch.
ENDURANCE_UTIL:
util_cost_endur = utility_cost / (10 =* self.

_agent.getEndurance () )
cell_utility = round(private_value -
util_cost_endur — cell_cost, 3)

return cell_utility

calculateUtilityCost(self, cell_id, last_waypoint):
"7 used by generateCellUtilities () to generate all
relevant components
for the wutility calculation
@param cell_id: id of the cell
@param last_waypoint: the waypoint to start distance
calculations from

@return the utility cost for specified cell
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715
716
717
718
719
720
721
722
723
724
725

726

727

728

729
730
731

732

733

PEE )

self. _cells[cell_id].deleteWaypoints ()
self.generateWaypoints (cell_id , last_waypoint)
cell_location = self._cells[cell_id].getWaypoints ()
[0]. getLatLonLocation ()
cell_size = self._cells[cell_id]. getSize ()
if len(self._agent.getMyCelllds()) > O:
if self._cells[self._agent.getCurrCellld () ].
getStatus () == Cell .ASSIGNED:
curr_cell_left = len(self._cells[self._agent
.getCurrCellld () ]. getWaypoints () ) \

% self._sensor_sweep|[1]

else:
curr_cell_left = (len(self._cells[self.
_agent.getCurrCellld () ]. getWaypoints () ) \
- self._agent.
getCurrWaypointld () ) =
self._sensor_sweep[1]
dist_to_cell = gps.gps_distance(cell_location

[0O], cell_location[1], \
last_waypoint
(01,
last_waypoint
(LD
else:
0
dist _to_cell = gps.gps_distance(cell_location
[0], cell_location[1], \

curr_cell left

last_waypoint

(07,
last_waypoint

[11)

# sum terms to produce the gross utility (before
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subtracting cell cost)
734 utility_cost = dist_to_cell + cell_size +

curr_cell left

735 return utility_cost

736

737

738

739 def calcTotalArea(self):

740 "’ for data collection. determine total number of

waypoints in any cell.

741
742 bot = self.manager.get_own_state().state.pose.pose.
position
743 start_position = (bot.lat, bot.lon)
744 for cell_id in range(len(self._cells)):
745 self.generateWaypoints (cell_id , start_position)
746 self . _total_search_waypoints += len(self._cells|
cell_id ]. getWaypoints ())
747 self. _cells[cell_id].deleteWaypoints ()
748
749
750
751 def captureRobotUtilizationData(self):
752 "7’ for data collection. determine loiter , transit,
and search times for each agent.
753
754 if self._rounds_synced:
755 if not self._initial_assign:
756 # if i’m not searching, I’m either
transiting or I’m loitering
757 if not self._am_searching:
758 # if loiter_wait is true, I’m loitering
759 if self._loiter_wait and not self.
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760

761

762
763

764

765
766

767

768
769

770

771
772

773

774
775

776

777
778

_am_loitering:
self._data_robot_loitering .append/(
rospy . Time.now () )
# set am_loitering to true to make
sure we only append once
self._am_loitering = True
# if loiter_wait is false, I’m no longer
loitering
elif not self. loiter_wait and self.
_agent.getCurrCellld () != None and \
self._am_loitering:
self._data_robot_loitering .append/(
rospy . Time.now () )
# set am_loitering to false to make
sure we only append once
self._am_loitering = False
# if I don’t have a current cell, I am
loitering
elif self._agent.getCurrCellld () == None
and len(self. _cells_left) > 0 and \
not self._am_loitering:
self._data_robot_loitering .append/(
rospy . Time .now () )
# set am_loitering to true to make
sure we only append once
self._am_loitering = True
# if search is over and I was still
loitering , append second loiter value
if len(self. _cells_left) == 0 and not
self._agent._IS_SEARCH_AUCTION and \
self._am_loitering:
self._data_robot_loitering .append(

rospy . Time .now () )
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779 self._am_loitering = False

780 # if I’ve started searching, [’m not
loitering or transiting
781 elif self._am_searching:
782 # if am_loitering is still true, need to
append second loiter time
783 if self._am_loitering:
784 self._data_robot_loitering .append/(

rospy . Time.now () )
785 # set am_loitering to false to make

sure we only append once

786 self._am_loitering = False

787 elif self._initial_assign:

788 # if we have just started the behavior,
append the first loiter value

789 if not self._am_loitering:

790 self . _data_robot_loitering .append(rospy.

Time .now () )

791 self._am_loitering = True

792 # append durations when they become available

793 if len(self._data_robot_loitering) == 2:

794 start_time = self._data_robot_loitering [0]

795 end_time = self._data_robot_loitering [1]

796 total loiter_time = end_time — start_time

797 self._data_robot_utilization.append (("1",
total_loiter_time))

798 self._data_robot_loitering = [ ]

799 if len(self._data_robot_searching) == 2:

800 start_time = self._data_robot_searching[0]

801 end_time = self._data_robot_searching[1]

802 total _search_time = end_time — start_time

803 self._data_robot_utilization.append (("s",

total_search_time))
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804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819

820
821
822
823
824
825
826

827
828
829

830
831
832

def

self._data_robot_searching = [ ]

captureRoundData(self):
for data collection. capture start and end

times of rounds.

self._data_round_time.append(rospy.Time.now())

if len(self._data_round_time) > 1:

start_time self._data_round_time [0O]

self._data_round_time|[1]

end_time

round_time end time — start_time
self._data_round_durations.append(round_time)

self. _data_round_time = [ ]|

self._auction_complete:

# calculate number of rounds and average round

runtimes

num_rounds = len(self._data_round_durations)

# iterate through rospy time duration instances

round_times = rospy.Duration (0)
for duration in self._data_round_durations:
round_times += duration
if num _rounds > O:
average_round_time = round_times /
num_rounds
else:
average_round_time = rospy.Duration (0)
self._data_round_information.append (( num_rounds,
average_round_time))
self._data_round_time = [ ]

self. _data_round_durations = [ ]
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833
834
835
836

837
838
839
840
841
842

843
844
845
846
847
848
849

850
851
852
853
854
855

856

857
858
859
860

def captureThesisData(self):

>0

for data collection. compile and display

iteration data for collection

PRSI

# calculate total AuctionSearch runtime

start_time = self._data_total_runtime [O]
end_time = self. _data_total _runtime|[1]
total runtime = end_time — start_time

# calculate number of auctions and average auction
runtimes

num_auctions = len(self._data_auction_durations)

# iterate through rospy time duration instances

auction_times = rospy.Duration (0)

for duration in self._ data_auction_durations:
auction_times += duration

average_auction_time = auction_times / num_auctions

# calculate rounds per auction and other round—count
information

total _rounds = 0

total_round_times = rospy.Duration (0)

for info in self._data_round_information:
total_rounds += info[0]
total_round_times += info[1]

average_rounds = total_rounds / len(self.
_data_round_information)

average_round_times = total_round_times / len(self.
_data_round_information)

# calculate per—robot utilization

total_loiter = rospy.Duration (0)

total_search = rospy.Duration (0)

total_transit rospy . Duration (0)
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862

863

864

865

866

867

868

869

870

871

872

873

874
875

876

877

878
879
880
881
882

for capture in self._data_robot_utilization:

if capture[0] == "s":
total_search += capture[]]
else:
total_loiter += capture[1]

total transit = total runtime - total search -
total_loiter

percent_i_searched = self._data_area_searched / self
. _total_search_waypoints

self .manager.log_info (" Searcher_id =_%d" % self.
_agent.getSearcherld ())

self .manager.log_info (( "number of _jauctions: ",
num_auctions))

self . manager.log_info (("average auction, duration: ",
average_auction_time.secs))

self .manager.log_info (("average rounds, per auction:
", round(average_rounds, 2)))

self .manager.log_info (("average round time per
auction: ", average_round_times.secs))

self . manager.log_info (("total jruntime: ",
total_runtime .secs))

self.manager.log_info("")

self . manager.log_info (("total time spent loitering:
", total_loiter.secs))

self.manager.log_info (("total time_spent transiting:
L', total_transit.secs))

self . manager.log_info (("percentage of area I,

searched:", round(percent_i_searched, 3)))

def cellStatusUpdate(self):

PRSI

send cell status updates to other agents
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883

884 parser = bytes.AuctionSearchCellsParser ()

885 parser.cell_list = [ ]

886 parser .source_id = self._agent.getSearcherld ()
887 parser.round_id = self._round_number

888 parser .auction_number = self._auction_number
889 # send current cell updates as well as the most

recent previous updates
890 cells_to_transmit = self._cells_changed.union(self.

_prev_cells)

891 if len(cells_to_transmit) != O:

892 for cell _id in cells_to_transmit:

893 self._cell_update_sent.add(cell_id)

894 parser.cell_list.append( [self._cells|[

cell_id]. getCellld (), \

895 self. _cells|
cell_id].
getStatus (), \

896 self. _cells|
cell_id].
getOwner (), \

897 self. _cells|
cell_id].
getCost()] )

898 report = self.manager.behavior_data_msg

899 report.id = bytes.AUCTION_CELLS

900 report.params = parser.pack()

901 self .manager. behavior_data_publisher.publish(report)

902

903

904

905 def cellStatusRequest(self):

906 "7’ execute requests for cell statuses (lossy comms
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907
908
909
910
911
912
913
914
915
916
917
918
919

920

921
922
923

924
925
926
927
928
929
930
931
932

933
934

def

def

protection )
parser = bytes.AuctionStatusParser ()
parser .auction_number = self._auction_number
parser .round_number = self. round _number
report = self.manager.behavior_data_msg
report.id = bytes.AUCTION_CELLS_REQUEST
report.params = parser.pack()

self .manager.behavior_data_publisher.publish(report)

checkIfAuctionComplete (self , num_agents):
"’ check if auction is complete and tell other
agents if so
@param num_agents: the number of agents in the
subswarm executing AuctionSearch
if self._winners_picked:
if len(self._agent.getMyCelllds()) ==
AuctionSearch .CELLS_PER_AUCTION and \
self. _initial_assign:
self.shareAuctionComplete (num_agents)
elif self. _mid_search_bid:

self.shareAuctionComplete (num_agents)

checkIfCellComplete (self):
"7 check if agent completed an in—progress cell ,

and start an auction for new cells

PRSI

if len(self._agent.getMyCelllds()) > O:
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935
936

937

938

939

940

941

942

943

944

945

946
947

948
949
950

951

952

953

cell_index = self._agent.getCurrCellld ()
# if I have completed searching my cell , move to
next cell or wait until I get a new cell
if self._agent.getCurrWaypointld() > O and len (
self. _cells[cell_index ]. getWaypoints()) > 0 \
and self._cells[cell_index ]. getStatus () ==
Cell .IN_PROGRESS:
if self._agent.getCurrWaypointld () > len(
self. _cells[cell_index ].getWaypoints ())—1
\
and not self._cell_complete and not self.

_loiter_wait:

self._cells[cell_index ].setStatus (Cell.
COMPLETE)

# thesis data capture

if len(self._data_robot_searching) == 1:
self._data_robot_searching.append(

rospy . Time.now () )
self._am_searching = False
self._cells_changed.add(cell_index)
self. _loiter_checkpoint = self._cells|[
cell_index ]. getWaypoints () [ —-1].
getLatLonLocation ()
self._cell_complete = True
self._agent.resetCurrWaypointld ()
self.manager.log_warn ("I _have  completed,
search of_cell %d" % cell_index)

# if I have finished the last cell in
the search area, remember it to start
auction

if cell _index in self. cells_left and
len(self. _cells_left) in [0, 1]:

self. i finished last = True
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954 # capture thesis data
955 self._data_area_searched += len(self.

_cells[cell_index ]. getWaypoints ())

956 if len(self._agent.getMyCelllds()) <= 1:
957 self.stayInMyCell ()

958

959

960

961 def checkIfSearchComplete(self):

962 "7 check if the search is complete, and start an

auction to notify others if so

963 T

964 if len(self._cells_left) == 0 and not self.
_initial_assign and \

965 not self._auction_started and self._agent.

_IS_SEARCHER:
966 self .manager.log_info ("Search is, complete. .,
Deactivate_ Behavior.")
967 self._cells_in_progress.clear ()
968 # start a final auction to force a cell status
update informing all agents of completion

969 more_to_search = False

970 self.startAuction (more_to_search)

971 self . _agent.resetCurrWaypointld ()

972 self._agent._IS_SEARCHER = False

973

974

975

976 def checkUtilization(self):

977 "7 check if there are cells available even though
agent has none. Start an auction.

978

979 if not self._auction_started and not self.
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980
981

982

983

984

985
986
987
988

989
990
991
992
993

994
995

996

997
998
999
1000
1001

1002

_initial_assign and \
len(self._agent.getMyCelllds()) ==
# if there are cells left to search that are not
in progress, start an auction
if len(self._cells_left) > len(self.
_cells_in_progress) and \
self._wait >= (AuctionSearch .MESSAGE_COUNT
20):
self .manager.log_info ("Cells are_available
and I have_ none. Starting auction.")
more_to_search = False
self.startAuction(more_to_search)
else:
self . _wait 4= 1 # self._wait gives other

agents a chance to finishAuction ()

def consolidateBids (self):
*77 place bids from inbound_bids list into a
dictionary for processing
cells_bid_on = { } # member—test cell_ids to
check for conflicts
# consolidate other agents’ bids in _all_bids
dictionary
for update in self._inbound_bids:
agent_key = update[O0]
cell_key update [1]
bid_val update [2]

# check for cell conflicts (two or more agents

bidding for same cell)
if cell_key in cells_bid_on:
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1003 self. _same_bids = False

1004 else:
1005 if cell_key != AuctionSearch.NOT_BIDDING:
1006 cells_bid_on[cell_key] = 0 # we only
care about fast lookup of cell_id
1007 # if first time seeing agent’s bid or its for a
new cell, create agent:{cell_id:bid} pair
1008 if agent_key not in self._all_bids or cell_key
not in self._all_bids[agent_key]:
1009 self._same_bids = False # agent submitted a
new bid
1010 self._all_bids[agent_key] = { }
1011 self._all_bids[agent_key][cell_key] =
bid_val
1012 # if agent has bid higher for same cell, it is
still not happy.
1013 elif bid_val != self._all_bids[agent_key][
cell_key ]:
1014 self._same_bids = False # agent submitted a
new bid
1015 self._all_bids[agent_key ][cell_key] =
bid_val
1016 else:
1017 self._all_bids[agent_key][cell_key] =
bid_val
1018 # include agent’s bid into _all_bids, following same
logic as other agents’ bids
1019 agent_key = self._agent.getSearcherld ()
1020 cell_key = self._curr_bid[0]
1021 bid_val = self._curr_bid[1]
1022 # check for cell conflicts with my bid included
1023 if cell_key in cells_bid_on:
1024 self._same_bids = False
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1025
1026
1027

1028

1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054

else:

if cell_key != AuctionSearch.NOT_BIDDING:
cells_bid_on[cell_key] = 0 # we only care
about fast lookup of cell_id
if agent_key not in self._all_bids or cell_key not
in self._all_bids[agent_key]:

self._same_bids = False
self._all_bids[agent_key] = { }
self._all_bids[agent_key][cell_key] = bid_val

elif bid_val != self._all_bids[agent_key][cell_key]:
self. same_bids = False
self._all_bids[agent_key][cell_key] = bid_val
else:
self._all_bids[agent_key][cell_key] = bid_val

# conduct one more sanity check for cell conflicts
ids = [ ]
cell _conflict = False
for agent in self._all_bids:
for cell in self._all_bids[agent]:
if cell not in ids:
if cell != AuctionSearch .NOT BIDDING:
ids .append(cell)
else:
cell _conflict = True
break
if cell_conflict:

self. same_bids = False

def defineGeometries(self, objects):

>0

Defines edges of geometries in COMPLEX environments

(obstacles , no_fly_zones, etc.)
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1056

1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

1075

1076

1077

1078

1079

1080

1081
1082

def

@param objects: list of obstacle grids
@return list of node—node connections for each
obstacle
geometries = [ ]
each_geometry = [ ]
for geo in objects:
i =0
each_geometry = [ ]
while i < len(geo) —1:
each_geometry .append( (geo[i], geo[i+1]) )
i +=1
each_geometry.append( (geo[0], geo[-1]) )
geometries .append (each_geometry)

return geometries

determineOffLimits (self):
used by self.generateCellUtilities() to decide which
cells should be off limits
during a given auction. in—progress and complete
cells are not auctionable
@return list of cell_ids that are not available for
auction
if self._initial_assign:
off_limits = (Cell .IN_PROGRESS, Cell.COMPLETE,
Cell . ASSIGNED)
else:
off_limits = (Cell.IN_PROGRESS, Cell .COMPLETE)

return off limits
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1083
1084
1085
1086
1087

1088
1089
1090
1091
1092
1093

1094
1095

1096
1097

1098
1099
1100
1101
1102

1103
1104

1105
1106
1107

def determineWaypoint(self):
"7’ determine which waypoint to travel to, or loiter
at
claim_my_next_cell = False
# if search is complete, orbit in place
if not self._agent._IS_SEARCHER:
waypoint_loc = self._loiter_checkpoint
elif self._initial_assign and self._agent.
getCurrCellld () == None:
waypoint_loc = self._loiter_checkpoint
# if I completed my cell, decide to move to next
cell or wait
elif self._cell_complete:
# if we’re in the middle of an auction and 1
have finished a cell, stay put
if self._auction_started:
self.stayInMyCell ()
waypoint_loc = self._loiter_checkpoint
else:
# otherwise, if my next cell is still
optimal , move to it
if len(self._agent.getMyCelllds()) > 1 \
and self._agent.getMyCelllds () [1] in self.
_cells[self._agent.getCurrCellld () ].
getNeighbors () :
self . moveToNextCell ()
claim_my_next_cell = True
waypoint_loc = self._cells[self._agent.
getCurrCellld () ]. getWaypoints () [ self.
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_agent.getCurrWaypointld () ].
getLatLonLocation ()

1108 else:

1109 self .stayInMyCell ()

1110 waypoint_loc = self._loiter_checkpoint
1111 # start a new auction for cells, and broadcast

whether I claim my next cell or not (if it is

still optimal)

1112 if not self. auction_started:

1113 self . manager.log_info (("starting an_auction.
uuclaim_next_cell: ", claim_my_next_cell)
)

1114 self.startAuction(claim_my_next_cell)

1115 self._cell_complete = False

1116 # if I have not completed my current cell, stay on

the path to my current waypoint

1117 else:

1118 if self._agent.getCurrCellld () != None and \

1119 self._agent.getCurrWaypointld() > len(self.

_cells[self._agent.getCurrCellld () ].
getWaypoints () ):

1120 waypoint_loc = self._loiter_checkpoint

1121 elif self._agent.getCurrCellld() != None and \

1122 len(self._cells[self._agent.getCurrCellld () ].

getWaypoints () ) > O:

1123 waypoint_loc = self._cells[self._agent.
getCurrCellld () ]. getWaypoints () [ self .
_agent.getCurrWaypointld () ].
getLatLonLocation ()

1124 # if I don’t have any assigned cells, loiter
until I have a cell or until the search is
complete

1125 else:
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1126
1127

1128

1129
1130
1131

1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142

1143

1144

1145

1146

1147

1148

waypoint_loc = self._loiter_checkpoint

# if I’ve started searching my current cell, set it
to IN_PROGRESS

if self._agent.getCurrWaypointld() > O and not self.
_auction_started :
self.makeCellActive ()

self._same_bids = False

return (self._agent.getCurrWaypointld () ,

waypoint_loc)

def displayReport(self):

PSS

display auction and assignment information
self .manager.log_info ("_."

self .manager.log_info ("_,")

self .manager.log_info (" — - L
self . manager.log_info ("###_### NEW_UPDATE_ ### ###")
self .manager.log_info (" Searcher_id_ =_%d" % self.
_agent.getSearcherld ())
self .manager.log_info (" Auction_ number_=_%d" % self.
_auction_number)
self . manager.log_info (" Auction round number = %d" %
self._round_number)
if self. _choose_search_area in [AuctionSearch.
BASIC_LIVE_FLY, AuctionSearch .COMPLEX]:
self . manager.log_info ("Search ,Cell ,Statuses are,,
below . ")
self .manager.log_info ("Format of each Cell
Status is:[cell_id , cell_status ,_cell_owner,
ucell_cost]")

rep = [ ]
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1149
1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

for i in range(len(self._cells)):
rep.append( [self._cells[i]. getCellld (),
self. _cells[i]. getStatus (), \
self. _cells[i].getOwner(),
round(self. _cells[i]. getCost
O)1 )

self . manager.log_info (rep)

self . manager.log_info (("cells_left: ", self.
_cells_left))
self .manager.log_info (("been_there: ", self.

_been_there))
self .manager.log_info (("cells_in_progress", self.
_cells_in_progress))
if self._agent.getCurrCellld () != None:
self . manager.log_info (("waypoints:_ ", len(self.
_cells[self._agent.getCurrCellld () ].
getWaypointlds ())))
self .manager.log_info (("curr_waypoint: ", self.

_agent.getCurrWaypointld () ))

self .manager.log_info (("curr_cell: ", self._agent.
getCurrCellld ()))
self.manager.log_info (("my,cells: ", self._agent.

getMyCelllds ()))
self .manager.log_info (" #_ #_ # #H# H#H H H#A H H#H H HF H HFH
ll)

self .manager.log_info (" —— - )

self .manager.log_info ("_")

self .manager.log_info (",")

if len(self. _cells_left) == 0 and not self.
_initial_assign:
self._data_total_runtime .append(rospy . Time.now ()

)
self._agent.resetCurrWaypointld ()
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1168 self . manager.log_info ("Search is complete. .

Deactivate Behavior.")

1169 # capture last loiter time for any orbiting
agents for thesis data

1170 self.captureRobotUtilizationData ()

1171 self . manager.log_info (","

1172 self . manager.log_info (",")

1173 self.captureThesisData ()

1174 self . manager.log_info (",")

1175 self.manager.log_info ("_."

1176

1177

1178

1179 def displayShortReport(self):

1180 "7 display round and bid information

1181

1182 # provide a quick report of agent’s information

during each round

1183 self .manager.log_info ("Bid,info_inside of,
winnerDetermination () is_ below")

1184 self . manager.log_info (" Auction number = %d" % self.
_auction_number)

1185 self . manager.log_info (" Auction round_ number: %d" %

self._round_number)

1186 self.manager.log_info (("my_curr_bid:_ ", self.
_curr_bid))

1187 self .manager.log_info (("my,cells: ", self._agent.
getMyCelllds ()))

1188 self .manager.log_info (("all_bids_dict:, ", self.
_all_bids))

1189 self . manager.log_info (("cells_changed: ", self.

_cells_changed))

1190 self .manager.log_info (("prev_cells: ", self.
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1191
1192
1193
1194
1195
1196

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206

1207

1208

1209

1210

1211

1212

1213
1214

_prev_cells))

self.manager.log_info("")

def externalUpdateMyCells(self):
"7 update knowledge of cells from other agents’
knowledge
removed_assignments = [ ]
for update in self._inbound_statuses:
if len(update[1]) > O:
for i in range(len (update[1])):
cell_id = update[1][i][O]
cell_status = update[1][i][1]
cell_owner = update[1][i][2]
update [1][i][3]

# assume new info based on another agent

cell _cost

‘s higher cell status
if cell_status > self._cells[cell_id].
getStatus () :

self. _cells[cell_id].setStatus (
cell_status)

self._cells[cell_id].setOwner(
cell_owner)

self. _cells[cell_id].setCost(
cell_cost)

# if another agent says a cell is
complete, set that cell to
complete

if cell _status == Cell .COMPLETE:

self._been_there.add(cell_id)

self._cells_in_progress.discard(
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1215

1216

1217

1218

1219

1220

1221

1222

1223

1224
1225

1226

1227

1228

1229

1230

1231
1232

cell_id)
self._cells_left.discard(cell_id
)

# if the agent owning this cell is
not active anymore, remove their
assignment

if cell_status == Cell .IN_PROGRESS:

if cell _owner not in self.

manager . subswarm_keys:

self. _cells[cell_id].
setOwner ( Cell .NO OWNER)

self. _cells[cell_id].setCost
(Cell .NO_COST)

self. _cells_in_progress.
discard (cell_id)

self. _cells_left.add(cell_id

)
removed_assignments .append (
cell_id)

else:
self. _cells_in_progress.add(
cell_id)
elif cell_status == Cell.
ASSIGNMENT_REMOVED \
and cell_id not in
removed_assignments:
removed_assignments . append (
cell_id)
# to make cells available for auction again, update
statuses .
for cell_id in removed_assignments:
self.revertCell (cell_id)

removed_assignments = [ ]
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1233
1234
1235
1236
1237
1238

1239
1240

1241
1242

1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253

1254
1255
1256
1257
1258
1259
1260

self._inbound_statuses = [ ]

def finalAuction(self):
'’ starts one more auction if agent was last to
finish search

if self._i_finished_last and not self.

_auction_started:

if len(self. _cells_left) == O:
if self._wait >= AuctionSearch .MESSAGE COUNT
% 3
self. _wait = 0
more_to_search = False

self.startAuction(more_to_search)
#self. _i_finished_last = False
else:

self. wait += 1

def finishAuction(self):

PSS

clean up data structures after an auction has

finished
self. _initial_assign = False
self. auction_started = False

self. loiter_wait False
self._agent._IS_SEARCH_AUCTION = False

self._prev_cells = [e for e in self._cells_changed]

temp = self._cells_changed.difference (self.

_cell_update_sent)
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1261

1262

1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283

1284
1285
1286

1287
1288
1289

# clear the record of cell changes after a few
auctions
if self._cell_memory >= AuctionSearch.
CELL_STATUS_MEMORY :
self._cells_changed.clear ()
self._cell_memory = 0
else:
self._cell_memory += 1
for e in temp:
self._cells_changed.add(e)
self._cell_update_sent.clear ()
self._search_roll_call.clear ()
self._complete_roll_call.clear ()
self._bid_roll_call.clear ()
self._abandoned_cells.clear ()
self._cells_not_won.clear ()
self._all_bids = { }
self._ wait = 0
self._auc_msg_count = 0
self._auction_number += 1
# data capture instrumentation below

self._data_auction_time .append(rospy.Time.now())

auction_start_time = self._data_auction_time [O]
auction_end_time = self._data_auction_time|[1]
auction_runtime = auction_end_time -—

auction_start_time
self._data_auction_durations.append(auction_runtime )
self. _data_auction_time = [ ]
self.manager.log_info ("the_ auction_ is_ complete and,

cells are  updated")
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1290 def fromWaypoint(self , first_cell):
1291 "7’ determine grid to use as last waypoint for

utility cost calculations

1292 @return the waypoint from which distance
calculations are started
1293
1294 if self._initial_assign:
1295 if len(self._agent.getMyCelllds()) > 0 and \
1296 len(self. _cells[first_cell ].getWaypoints()) >
0:
1297 last_waypoint = self._cells[first_cell].
getWaypoints () [ —1]. getLatLonLocation ()
1298 else:
1299 bot = self.manager.get_own_state (). state.
pose.pose.position
1300 last_waypoint = (bot.lat, bot.lon)
1301 elif len(self._agent.getMyCelllds()) >= 1 and \
1302 self. _cells[first_cell]. getStatus () == Cell.
ASSIGNED:
1303 bot = self.manager.get_own_state (). state.pose.
pose.position
1304 last_waypoint = (bot.lat, bot.lon)
1305 elif len(self._agent.getMyCelllds()) >= 1 \
1306 and self._cells[first_cell]. getStatus () == Cell.
IN_PROGRESS \
1307 and len(self._cells[first_cell ].getWaypoints()) >
0:
1308 last_waypoint = self._cells[first_cell].
getWaypoints () [—1]. getLatLonLocation ()
1309 else:
1310 bot = self.manager.get_own_state (). state .pose.
pose . position
1311 last_waypoint = (bot.lat, bot.lon)
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1312
1313
1314
1315
1316
1317

1318
1319

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330

1331
1332
1333
1334
1335
1336
1337

1338

1339

return last_waypoint

def generateAdjacencyGraph(self):
"’ creates 8—way adjacent neighbors lists for each
cell
# Finds the 8-way adjacency relationships of cells
given a list of cells
for i in range(len(self._cells)):
cell = self._cells[i]
for j in range(len(self._cells)):
other = self._cells[j]
common_bounds = False
if cell.getCellld() != other.getCellld ():
for grid in cell.getBoundaryGrids () :
if grid in other.getBoundaryGrids ():
common_bounds = True
break
# if cell and other—cell share 1 boundary
grid, they are 8—way adjacent

if common_bounds == True:
cell .addNeighbor(other. getCellld ())
common_bounds = False

def generateBasicCells(self, area_length, area_width,
c_length, c_width):
77 creates cell objects of rectangular shape of
specified height/width (m)

Cells will be integer numbered starting at 0.
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1340 n

1341 # Define cell dimensions
1342 l_divisor = int(math.ceil (area_length / c_length))
1343 w_divisor = int(math.ceil (area_width / c_width))
1344 cell_length = area_length / 1_divisor
1345 cell _width = area_width / w_divisor
1346 # Make these modified values publicly available
1347 AuctionSearch .NUM_CELLS = | _divisor *x w_divisor
1348 AuctionSearch .NOT_BIDDING = AuctionSearch .NUM_CELLS
1349 # Define length_lines as guidelines for cell
boundaries along the length of the area
1350 num_length_lines = 1_divisor — 1
1351 length_lines = [ ]
1352 chalk_line = [ ]
1353 length_lines .append(self._south_wall)
1354 for i in range(0, num_length_lines):
1355 temp = length_lines[—1]
1356 chalk_line = [ (temp[O][0] + cell_length , temp
[(OJLL]), \
1357 (temp[1][0] + cell_length , temp
[LI[L]) 1]
1358 length_lines.append(chalk_line)
1359 length_lines .append(self._north_wall)
1360 # Define width_lines as guidelines for cell
boundaries along the width of area
1361 num_width lines = w_divisor — 1
1362 width_lines = [ ]
1363 chalk_line = [ ]
1364 width_lines .append(self._west_wall)
1365 for i in range(0, num_width_lines):
1366 temp = width_lines[—1]
1367 chalk_line = [ (temp[O0][O], temp[O][1] +

cell_width), \
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1368

1369
1370
1371

1372
1373
1374
1375

1376
1377

1378

1379

1380

1381
1382
1383

1384

1385

(temp[1][0], temp[1][1] +
cell_width) ]
width_lines .append(chalk_line)
width_lines .append(self._east_wall)
# Generate Cell objects using the length_lines (j)
and width_lines (k) guidelines
cell_id, j, k=0, 0, 0
temp_cell = None
while cell_id < AuctionSearch .NUM_CELLS:
for r in range(0, num_length_lines + 1):
# cell south—west corner
sw_width_norm = ro_math.
normal_form_parameters (width_lines [k][O],
width_lines[k][1])
sw_length_norm = ro_math.
normal_form_parameters(length_lines [
1[0], length_lines[j][1])
sw = ro_math.line_intersect( sw_width_norm
[1], sw_width_norm[O], \
sw_length_norm
[11,
sw_length_norm
(01 )
# cell north—west corner
j +=1
nw_width_norm = ro_math.
normal_form_parameters (width_lines [k][O],
width_lines[k][1])
nw_length_norm = ro_math.
normal_form_parameters(length_lines [
][0], length_lines[j][1])
nw = ro_math.line_intersect( nw_width_norm
[1], nw_width_norm[O], \

144



1386

1387
1388
1389

1390

1391

1392

1393
1394
1395

1396

1397

1398

1399

nw_length_norm
[11,
nw_length_norm
(01 )
# cell north—east corner
k += 1
ne_width_norm = ro_math.
normal_form_parameters (width_lines [k][O],
width_lines[k][1])
ne_length_norm = ro_math.
normal_form_parameters(length_lines [
J[0], length_lines[j][1])
ne = ro_math.line_intersect( ne_width_norm
[1], ne_width_norm[O0], \
ne_length_norm
[11,
ne_length_norm
(01 )
# cell south-east corner
j —=1
se_width _norm = ro_math.
normal_form_parameters (width_lines [k][O],
width_lines [k][1])
se_length_norm = ro_math.
normal_form_parameters(length_lines[j
1[0], length_lines[j][1])
se = ro_math.line_intersect( se_width_norm
[1], se_width_norm[O0], \
se_length_norm
[1],
se_length_norm
(0] )
# Create Cell object
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1400

1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414

1415
1416

1417
1418
1419

1420
1421
1422

1423
1424
1425
1426
1427

temp_cell = Cell(cell_id, [(sw, nw), (nw, ne
), (ne, se), (sw, se)])

self. _cells[cell_id] = temp_cell

self._cells[cell_id ].setWestBound ((sw, nw))

self. _cells[cell_id].setEastBound ((ne, se))

self. _cells_left.add(temp_cell. getCellld ())

k —=1

j +=1

cell _id += 1
k += 1
j =0

def generateBasicSearchArea(self):

27 fills boundary data structures given basic,
large , or complex area
if self. _choose_search_area == AuctionSearch.
BASIC_LIVE_FLY :
cell_length = 200
cell _width = 200
elif self._choose_search_area == AuctionSearch.
BASIC_LARGER:
cell_length = 325
cell _width = 325
if self. _choose_search_area == AuctionSearch.
BASIC_LIVE_FLY :
AuctionSearch .AREA_SW_LAT
AuctionSearch .AREA_SW_LON

35.721147
-120.773008

AREA_ORIENT = 25.183537917993224
AREA_LENGTH = 575
AREA WIDTH = 750
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1428

1429
1430
1431
1432
1433
1434

1435
1436
1437
1438
1439
1440
1441

1442
1443
1444
1445
1446
1447
1448

1449
1450
1451
1452
1453
1454

elif self. _choose_search_area == AuctionSearch.
BASIC_LARGER:

AuctionSearch .AREA SW ILAT = 35.721147
AuctionSearch .AREA_SW_LON = -120.773008
AREA_ORIENT = 0
AREA_LENGTH = 2300
AREA_WIDTH = 3000

elif self. choose_search_area == AuctionSearch.

COMPLEX :

AuctionSearch .AREA_SW_LAT = 35.72102
AuctionSearch .AREA SW ION = -120.79111

AREA_ORIENT = 0
AREA_LENGTH = 2300
AREA_WIDTH = 3000
else:
self.manager.log_info("self._choose_search_area,,

value unrecognized.  Area not,created.")

area = bytes. AuctionSearchBasicAreaParser ()

area . latitude = AuctionSearch .AREA SW_LAT
area.longitude = AuctionSearch . AREA_SW_LON
area.length = AREA_LENGTH

area .width = AREA_WIDTH

area.orientation = AREA_ORIENT

self._search_area = gps.GeoBox(area.latitude , area.

longitude , area.length, area.width, area.

orientation)

corners = self. _search_area. cart_corners
self . _north_wall = (corners[1], corners[2])
self._south_wall = (corners[0], corners[3])

self._west_wall (corners [0], corners[1])

self._east_wall (corners[2], corners|[3])
self .manager.log_info ("Outersearch area boundary,

generated . ")
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1455

1456

1457
1458
1459
1460
1461
1462
1463

1464
1465
1466
1467
1468

1469
1470

1471
1472
1473
1474
1475

1476
1477
1478

1479

def

if self._choose_search_area in [AuctionSearch.
BASIC_LIVE_FLY, AuctionSearch.BASIC_LARGER]:
self.generateBasicCells (AREA_LENGTH, AREA_WIDTH,
cell_length , cell_width)

generateCellAssignment(self):

> 0

assign a cell won in auction to an agent

PSS

bot = self.manager.get_own_state().state.pose.pose.
position
cell_id = self._curr_bid[0]

cell_cost = self._curr_bid[1]
if len(self._agent.getMyCelllds()) > O:
assigned_cell = self._agent.getMyCelllds ()[—1]
# if the cell I just won is already assigned to me,
update its cost with my current value
if cell_id in self._agent.getMyCelllds ():
self . manager.log_info (" Cell_id_ matches a_ cell I,
own. ., Setting new, cost.")
self. _cells[assigned_cell].setCost(cell_cost)
self._cells_changed.add(assigned_cell)
if self._agent.getCurrCellld () == assigned_cell:
self._agent.resetCurrWaypointld ()
# if the cell I just won is different than my
assigned cell, reassign to it
else:
self.manager.log_info ("New, cell_id_ assigned.")
if len(self._agent.getMyCelllds()) > 1 and not
self. _initial_assign \
and self._cells[assigned_cell]. getStatus () !=
Cell .IN_PROGRESS:
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1480

1481
1482
1483
1484
1485
1486
1487
1488
1489

1490
1491
1492

1493
1494

1495
1496
1497
1498
1499
1500

1501
1502
1503

1504
1505
1506

self . manager.log_info ("Removing, previous
assignment.")
self. _cells[assigned_cell ].deleteWaypoints ()
self .removeCellAssignment(assigned_cell)
self._cells_changed.add(assigned_cell)
self._agent.removeCell (assigned_cell)
if len(self._agent.getMyCelllds()) ==
self._agent.resetCurrWaypointld ()
self._agent.addCell(cell_id)
self. _cells[cell_id].setStatus (Cell.ASSIGNED)
self. _cells[cell_id].setOwner(self._agent.
getSearcherld ())
self._cells[cell_id].setCost(cell_cost)
self._cells_changed.add(cell_id)
if len(self._agent.getMyCelllds()) == 1 and self.
_cells[cell_id]. getStatus () == Cell .ASSIGNED:
self . _agent.resetCurrWaypointld ()
self . manager.log_info ("I ve_ been assigned a new,,
cell._  Moving to_ cell.")

self. loiter_wait = False

def generateCellUtilities (self):

y

calculate the utility an agent gains for owning

a cell

self. _cell_utilities = [ ]

first_cell = self._agent.getCurrCellld () # if no
current cell, first_cell == None

last_waypoint self . fromWaypoint( first_cell)

off _limits self.determineOffLimits ()

for cell _id in self. cells_left:

149



1507

1508

1509
1510

1511

1512

1513

1514
1515
1516
1517
1518
1519
1520

1521
1522
1523

1524
1525
1526
1527
1528
1529

def

if self._cells[cell_id]. getStatus () not in

off limits and cell_id not in self.

_abandoned _cells:

if self._cells[cell_id]. getStatus () == Cell.
ASSIGNMENT_REMOVED:
self.revertCell (cell_id)

cell_utility = self.calculateUtility (cell_id
, last_waypoint)

self. _cells[cell_id].setUtility (cell_utility

)
self. _cell_utilities .append( (cell_utility ,
cell_id) )

# sort utility values. Highest utility (most
valuable) in tuple (value, cell_id) at index [-1]

self._cell_utilities.sort ()

generateComplexSearchCells (self):

PEE )

Calculates Boustraphedon Decomposition given self.

obstacles list in the following steps:

1. Finds the outer perimeter of the environment
2. Finds critical points and sorts them on x—value
3. Cells are manually generated then instantiated

as objects of a Cell class

@return the number of cells to be searched

>0

{}

bous_cells = [ ]

bous_vertices

# obstacle lat_lon corner locations
obstacle_locations = [ ( (35.73800, -120.78375),
(35.73918, —-120.78545), (35.74049, -120.78332),
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1530

1531

1532

1533

1534
1535

1536
1537
1538
1539

1540
1541
1542
1543

(35.73938, -120.78160) ), \
( (35.73270, -120.78571),
(35.73408, -120.78702),
(35.73558, —-120.77891),
(35.73319, -120.78005) ),
\
( (35.72678, -120.78152),
(35.72800, -120.78146),
(35.72796, -120.77364),
(35.72554, -120.77332) ),
\
( (35.73110, -120.77050),
(35.73627, -120.76903),
(35.73205, -120.76780) ),
\
( (35.72184, -120.76102),
(35.72695, -120.76488),
(35.72878, —-120.76422),
(35.72345, -120.75987) ),
\
]
# convert lat_lon obstacle corners to cartesian x_y
corners
each_obstacle = [ ]
for obstacle in obstacle_locations:
for lat_lon in obstacle:

X_y = gps.cartesian_offset(AuctionSearch.
AREA _SW LAT, AuctionSearch .AREA SW ILON,
lat_lon[0], lat_lon[1])

each_obstacle .append(x_y)

self._obstacle_grids.append(each_obstacle)
each_obstacle = [ ]

self . _obstacles = self.defineGeometries(self.
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_obstacle_grids)

1544 # find the left and right critical points on each
obstacle for boustrophedon cell boundaries

1545 left = [0, O]

1546 right = [0, 0]

1547 for obstacle in self._obstacle_grids:

1548 left = [self._east_wall[O][0], self._east_wall
[OT[1]]

1549 right = [self._west_wall[0][0], self._west_wall
[OT[1]]

1550 for corner in obstacle:

1551 if corner[1] <= left][1]:

1552 left[1] = corner[1]

1553 left [0] = corner[0]

1554 if corner[1] >= right[1]:

1555 right[1] = corner[1]

1556 right[0] = corner[0]

1557 # add the boustraphedon critical vertices to a
dictionary

1558 bous_vertices[left[0]] = (left[0], left[1])

1559 bous_vertices[right[0]] = (right[0], right[1])

1560 # get the boustraphedon vertices into sorted order

1561 verts = [ ]

1562 size = len(bous_vertices)

1563 i =20

1564 while i < size:

1565 mini = min(bous_vertices.keys())

1566 verts .append(bous_vertices [ mini])

1567 del bous_vertices [ mini]

1568 i +=1

1569 # find the obstacle intersections given the search

area and obstacles

1570 interl = ro_math.segment_intersect( (self.
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1571

1572

1573

1574

1575

1576

1577

1578

1579

_north_wall[0][0], verts[8][1]), \
(self.
_south_wall
[O]J[O], verts
[81[1]), \
self. obstacles
[LICLI[0],
self.
_obstacles
[LICLICL] )
inter2 = ro_math.segment_intersect( (self.
_north_wall[0][O0], verts[9][1]), \
(self.
_south_wall
[0][0], verts
[(9101]), \
self. obstacles
[LI[1][0],
self.
_obstacles
[LICLI0L] )
inter3 = ro_math.segment_intersect( (self.
_north_wall[0][0], verts[2][1]), \
(self.
_south_wall
[0][0], verts
[2]101]), \
self. obstacles
[T1[31[07],
self.
_obstacles
[LI0310L] )

inter4 = ro_math.segment_intersect( (self.
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1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

_north_wall[0][0], verts[7][1]), \
(self.
_south_wall
[O]J[O], verts
[7101]), \
self. obstacles
[2][1][0],
self.
_obstacles
(21011011 )
# create the COMPLEX cell boundaries given obstacle
locations
cell_0 = [self._west_wall, (self._north_wall[0], (
self._north_wall[0][0], verts[6][1])), \
((self._north_wall[O][0], verts[6][1]), (
self._south_wall[0][0], verts[6][1])),
\
(self._south_wall[0], (self._south_wall
[0I[O0], verts[6][1]))]
cell_1 = [(verts[6], (self._north_wall[O][0], verts
[(61011)), \
((self._north_wall[O][O0], verts[6][1]), (
self._north_wall[0][0], verts[8][1])),
\
((self._north_wall[O][0], verts[8][1]),
interl), (interl , verts[6])]
cell_2 = [(verts[8], (self._north_wall[O][0], verts
[81[11)), \
((self._north_wall[O][O0], verts[8][1]), (
self._north_wall[0][0], verts[9][1])),
\
((self._north_wall[0][0], verts[9][1]),
verts [9]), self._obstacles[0][2], self.
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1592

1593
1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

_obstacles [O][1]]
cell_3 = [(interl , verts[8]), self._obstacles[0][0],
self._obstacles[0][3], \
(verts [9], inter2), (inter2 , interl)]
cell_4 = [((self._south_wall[O][0], verts[6][1]),
verts [6]), \
self._obstacles[1][0], (self._obstacles
[1][0][0], inter3), \
(inter3, (self._south_wall[O]J[0], verts
[(2101D)), \
((self._south_wall[O][0], verts[2][1]), (
self._south_wall[0][0], verts[6][1]))]
cell_5 = [((self._south_wall[0][0], verts[2][1]),
verts [2]), \
(verts[2], verts[1]), (verts[1], (self.
_south_wall[0][0], verts[1][1])), \
((self._south_wall[O][O], verts[1][1]), (
self._south_wall[0][0], verts[2][1]))]
cell_6 = [(verts[2], inter3), (inter3 , self.
_obstacles [1][2][1]), \
(self._obstacles [1][2][1], verts[7]), (
verts [7], interd4d), \
(inter4 , self._obstacles[2][O0][1]), (self.
_obstacles [2][0][1], verts[2])]
cell_7 = [(inter2 , (self._north_wall[0][0], verts
[91[1])), \
((self._north_wall[O][O], verts[9][1]), (
self. _north_wall[0][0], verts[7][1])),
\
((self._north_wall[O][O0], verts[7][1]),
verts [7]), (verts[7], inter2)]
cell_8 = [(inter4 , (self._north_wall[O][0], verts

[(71011D)), \
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1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

((self._north_wall[O][O], verts[7][1]), (
self._north_wall[0][0], verts[1][1])),
\
((self._north_wall[O][0], verts[1][1]),
verts[1]), \
self. _obstacles[2][2], (self._obstacles
[2][1][1], inter4)]
cell_9 = [((self._south_wall[0][0], verts[1][1]), (
self._north_wall[0][0], verts[1][1])), \
((self._north_wall[O][O], verts[1][1]), (
self._north_wall[0][0], verts[4][1])),
\
((self._north_wall[O][O0], verts[4][1]), (
self._south_wall[0][0], verts[4][1])),
\
((self._south_wall[O][O0], verts[4][1]), (
self._south_wall[0][0], verts[1][1]))]
cell_10 = [(verts[4], (self._north_wall[O][0], verts
[41[1D)), \
((self._north_wall[O][O0], verts[4][1]), (
self._north_wall[0][0], verts[5][1])),
\
((self._north_wall[O][O0], verts[5][1]),
verts [5]), \
self. _obstacles[3][1], self._obstacles
[31[0]]
cell_11 = [((self._south_wall[0][0], verts[4][1]),
verts [4]), \
(verts[4], verts[5]), (verts[5], (self.
_south_wall[0][0], verts[5][1])), \
((self._south_wall[O][0], verts[5][1]), (
self._south_wall[O][0], verts[4][1]))]
cell_12 = [((self._south_wall[O]J[O], verts[5][1]), (

156



1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

self._north_wall[0][0], verts[5][1])), \
((self._north_wall[O][O], verts[5][1]), (
self._north_wall[0][0], verts[3][1])),
\
((self._north_wall[O][0], verts[3][1]), (
self._south_wall[0][0], verts[3][1])),
\
((self._south_wall[O][0], verts[3][1]), (
self._south_wall[O][0], verts[5][1]))]
cell_13 = [(verts[3], (self._north_wall[O][0], verts
[3101D)), \
((self._north_wall[O]J[O], verts[3][1]), (
self._north_wall[0][0], verts[O0][1])),
\
((self._north_wall[O][0], verts[O][1]),
verts [0]), \
self._obstacles[4][2], self._obstacles
[41[1]]
cell_14 = [((self._south_wall[O][O0], verts[3][1]),
verts [3]), \
self._obstacles[4][0], self._obstacles
(41031, \
(verts [0], (self._south_wall[O][0], verts
[(0I011)), \
((self._south_wall[O][0], verts[O][1]), (
self._south_wall[0][0], verts[3][1]))]
cell_15 = [((self._south_wall[O]J[O], verts[O][1]), (
self . _north_wall[0][0], verts[O][1])), \
((self._north_wall[O][O0], verts[O][1]),
self._north_wall[1]), \
self._east_wall, (self._east_wall[0], (
self._south_wall[O][0], verts[O][1]))]
temp_cells = [cell_O0, cell_1, cell_2, cell_3, cell_4
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, cell_5, \

1638 cell_6, cell_7, cell_8, cell_9,
cell_ 10, cell 11, \
1639 cell _12, cell_13, cell_14, cell_15]
1640 # create cell objects from the Cell class (
final_cells_class.py) given the list of cells
above
1641 concave_north_walled_cells = [3, 4, 6, 14]
1642 for cell_id in range(len(temp_cells)):
1643 self. _cells[cell_id] = Cell(cell_id, temp_cells|
cell_id])
1644 self. _cells[cell_id].setWestBound(self. _cells|[
cell_id ]. getBoundary () [0])
1645 if cell_id in concave_north_walled _cells:
1646 self. _cells[cell_id].setEastBound(self.
_cells[cell_id ]. getBoundary () [3])
1647 else:
1648 self. _cells[cell_id].setEastBound(self.
_cells[cell_id ]. getBoundary () [2])
1649 self._cells_left.add(self._cells[cell_id].
getCellld ())
1650 return len(self._cells)
1651
1652
1653
1654 def generateSearchBid (self):
1655 "7’ calculate an agent’s bid for a cell given
utility calculations
1656
1657 # thesis data capture
1658 self.captureRoundData ()
1659 self._prev_bid = [e for e in self._curr_bid]
1660 # if agent won its cell in winnerDetermination (),
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1661
1662
1663
1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674
1675

1676
1677
1678
1679

1680

submit the same bid again
if self. submit_same_ bid:
self. submit_same_bid = False
else:
# if agent has no viable cells to bid for,
submit explicit "no_bid"
no_cells = self._cells_left.difference (self.
_cells_in_progress) == self._abandoned_cells
if no_cells and not self._initial_assign:
self._curr_bid = [ ]

self._curr_bid = [AuctionSearch .NOT_BIDDING,

Cell .NO_COST]
else:

# if agent did not win a cell in
winnerDetermination (), generate utilities
and a new bid

self . manager.log_info (" Generating a_ new bid"
)

self.generateCellUtilities ()

# if I have cells available, but have lost
twice in a row for each one, concede the
round .

if len(self._cell_utilities) ==
self .manager.log_info ("No,utility  in,

bidding, this_ round._  Submit explicit,

no—bid.")
bid_cell _id = AuctionSearch .NOT_BIDDING
bid_value = Cell .NO_COST

elif len(self. _cell_utilities) > 1:

highest_util
[-1110]
second_best

[-2]1[0]

self. cell _utilities

self. cell _utilities

159



1681

1682

1683

1684

1685

1686
1687

1688

1689
1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

bid _cell _id = self. _cell_utilities
[-1][1]
# allow negative utilities
if second _best < O:
bid_value = self._cells[bid_cell_id
].getCost() + highest_util \
+ second_best +
AuctionSearch . EPSILON
else:
bid_value = self._cells[bid_cell_id
].getCost() + highest_util \
— second_best +
AuctionSearch . EPSILON
else:
bid_cell_id = self. _cell_utilities
[-1][1]
highest_util
[-1110]
bid_value = self._cells[bid_cell_id].
getCost () \
+ highest_util +
AuctionSearch . EPSILON
if bid_cell_id in self._cells_not_won:
bid_value += AuctionSearch .EPSILON

# if my new bid is exactly the same as my

self. cell _utilities

previous bid,
# and 1 didn’t mean for that to happen (
NOT self._submit_same_bid)
# increase it by epsilon again. (this
occurs very rarely)
if len(self._prev_bid) > 0 and bid_cell_id
== self._prev_bid[0] \
and bid_value == self._prev_bid[1] and
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1701
1702
1703
1704
1705

1706

1707
1708

1709
1710

1711
1712
1713
1714
1715
1716
1717

1718
1719

1720
1721

1722

1723

def

bid_cell_id != AuctionSearch.
NOT_BIDDING:
bid_value += AuctionSearch .EPSILON
self._curr_bid = [ ]
self._curr_bid.append(bid_cell_id)
self._curr_bid.append(int(round(bid_value)))
if self._choose_search_area in [AuctionSearch.
BASIC_LIVE_FLY, AuctionSearch . COMPLEX]:
self.manager.log_info (" Utilities calculated and,
below .  Index[—-1], == highest utility cell:")
self .manager.log_info(self. _cell_utilities)
self.manager.log_info (("My,bid:_ format, [, cell , bid,
]:0", self._curr_bid))
if self._curr_bid[0] != AuctionSearch.NOT_BIDDING:
self . manager.log_info (("bid_cell_cost:, ", self.
_cells[self._curr_bid[0]]. getCost()))
self._bidding_complete = True

self. round number += 1

generateWaypoints (self , cell_id, start_location):
"7’ Generates, distributes , and prioritizes waypoint
objects in a given cell
@param cell_id: the cell having waypoints created
@param start_location: the closest corner to
last_waypoint from which to start waypoints
grid = gps.cartesian_offset(AuctionSearch.
AREA_SW_LAT, AuctionSearch .AREA_SW_LON, \
start_location[O0],
start_location[1])
chalk_line = [ ]
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1724 west_bound self. _cells[cell_id].getWestBound ()

1725 east_bound self._cells[cell_id]. getEastBound ()

1726 bot_to_nw = ro_math.cartesian_distance (grid,
west_bound|[1])

1727 bot_to_sw = ro_math.cartesian_distance (grid,
west_bound [0])

1728 bot_to_ne = ro_math.cartesian_distance (grid,
east_bound [0])

1729 bot_to_se = ro_math.cartesian_distance (grid,
east_bound|[1])

1730 waypoint_id= 1

1731 size = 0

1732 # determine where to start waypoints based on bot-—

cell relative location

1733 # if bot closest to east side, start waypoints from
east side

1734 if bot_to_ne < bot_to_nw or bot _to_se < bot_to_sw:

1735 from_east = True

1736 # if bot closest to northeast corner, start

waypoints from north

1737 if bot_to_ne < bot_to_se:

1738 from_north = True

1739 else:

1740 from_north = False

1741 else:

1742 from_east = False

1743 # if bot closest to northwest corner, start

waypoints from north

1744 if bot to_nw < bot_to_sw:

1745 from_north = True

1746 else:

1747 from_north = False

1748 # if bot is approaching from the east, generate east
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1749
1750

1751

1752

1753

1754

1755

1756
1757

1758

1759

1760

1761

1762

1763
1764

—to—west sweep line
if from_east:
sweep_line = ((east_bound[0][0], east_bound
[0][1] — self._sensor_sweep[1l]), \
(east_bound[1][0], east_bound
[1][1] — self._sensor_sweep[1])
)

# generate a "sweeper" line that guides a "
chalk_line" for planting waypoints
sweeper = [[sweep_line[0][0] + (1.5%self.
_sensor_sweep[0]), sweep_line[O][1]], \
[sweep_line [1][0] — (1.5%self.
_sensor_sweep[0]), sweep_line
[LI[T]]]
# if bot is approaching from the west, generate west
—to—east sweep line
else:
sweep_line = ((west_bound[0][0], west_bound
[0][1] + self._sensor_sweep[1]), \
(west_bound[1][0], west_bound
[1][1] + self._sensor_sweep[1])
)

# generate a "sweeper" line that guides a "
chalk_line" for planting waypoints
sweeper = [[sweep_line[0][0] — (1.5%self.
_sensor_sweep[0]), sweep_line [O][1]], \
[sweep_line [1][0] + (1.5%self.
_sensor_sweep[0]), sweep_line
[11011]]
# if bot is nearest the north, lay waypoints from
north to south to start "lawnmower" pattern
if from_north:

inflection = 1

163



1765
1766
1767

1768
1769
1770

1771

1772

1773
1774
1775

1776
1777
1778
1779

1780

1781
1782
1783
1784
1785
1786

else:
inflection = 0
# sweep a vertical "chalk_line" across the cell as a
guide for planting waypoints
if from_east:
while sweeper[0][1] >= west_bound[O][1]:
for bound in self._cells[cell_id].
getBoundary () :
intersection = ro_math.segment_intersect
(bound[0], bound[1], \
sweeper
(01,

sweeper

[11)

if intersection != None:
chalk_line .append(intersection)
# place waypoints at specified intervals
along the chalk_line
if len(chalk_line) < 2:
break
y = chalk_line [0][1]
max_x = chalk_line [0][0] — self.
_sensor_sweep[1]
min_x = chalk_line[1][0] + self.
_sensor_sweep[1]
inverter = divmod(inflection , 2)[1]
# place waypoints from south to north
if inverter ==
X = min_Xx
while x <= max_x:

waypoint = Waypoint(self._cells|
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1787

1788

1789
1790
1791
1792
1793
1794
1795
1796

1797

1798

1799

cell_id]. getCellld (), waypoint_id
, 0\
(x, y), (
AuctionSearch
.AREA_SW_LAT,

AuctionSearch
.AREA_SW_LON)
)
self._cells[cell_id].addWaypoint(
waypoint)
x += self._sensor_sweep|[1]
size += self._sensor_sweep|[1]
waypoint_id += 1
# place waypoints from north to south
elif inverter == 1:
X = max_Xx
while x >= min_x:
waypoint = Waypoint(self._cells|[
cell_id]. getCellld (), waypoint_id
, (X, ).\

AuctionSearch

AREA_SW_LAT

b

AuctionSearch

AREA_SW_LON
))
self. _cells[cell_id ].addWaypoint(
waypoint)
x —= self._sensor_sweep|[1]
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1800
1801
1802
1803
1804
1805

1806
1807
1808
1809
1810

1811

1812

1813
1814
1815

1816
1817
1818
1819

1820

1821

else:

size += self._sensor_sweep|[1]
waypoint_id += 1
chalk_line = [ ]
inflection += 1
size += self._sensor_sweep[0]
# move the chalk—line waypoint guide to the
left by one sensor—sweep (east to west)
sweeper [0O][1] —= self._sensor_sweep[0]

sweeper[1][1] —= self._sensor_sweep[0]

while sweeper[0][1] <= east_bound [O][1]:

for bound in self._cells[cell_id].
getBoundary () :
intersection = ro_math.segment_intersect
(bound [0], bound[1], \
sweeper
(0],

sweeper

[1])

if intersection != None:
chalk_line .append(intersection)
# place waypoints at specified intervals
along the chalk_line
if len(chalk_line) < 2:
break
y = chalk_line [0][1]
max_x = chalk_line[O0][0] - self.
_sensor_sweep[1]
min_x = chalk_line[1][0] + self.
_sensor_sweep[1]

inverter = divmod(inflection , 2)[1]
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1822
1823
1824
1825
1826

1827

1828

1829
1830
1831
1832
1833
1834
1835
1836

1837

1838

1839
1840

# place waypoints from south to north

inverter ==

X = min_Xx
while x <= max_x:
waypoint = Waypoint(self. _cells|[
cell_id]. getCellld (), waypoint_id
o (x,y) s N
(AuctionSearch .
AREA_SW_LAT,
AuctionSearch
.AREA_SW_LON)
)
self._cells[cell_id].addWaypoint(
waypoint)
x += self._sensor_sweep|[1]
size += self._sensor_sweep|[1]

waypoint_id += 1

# place waypoints from north to south

inverter == 1:
X = max_Xx
while x >= min_x:
waypoint = Waypoint(self._cells|[
cell_id]. getCellld (), waypoint_id
, (X, ).\
(AuctionSearch .
AREA_SW_LAT,
AuctionSearch
.AREA_SW_LON)
)
self._cells[cell_id].addWaypoint(
waypoint)
x —= self._sensor_sweep|[1]

size += self._sensor_sweep|[1]
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1841 waypoint_id += 1

1842 chalk_line = [ ]

1843 inflection += 1

1844 # move the chalk—line waypoint guide to the
right by one sensor—sweep (west to east)

1845 sweeper [O][1] += self._sensor_sweep[0]

1846 sweeper[1][1] += self._sensor_sweep[0]

1847 size += self._sensor_sweep[0]

1848 self. _cells[cell_id].setSize(size)

1849

1850

1851 def getInTheAuction(self):

1852 '’ start an auction and reinitialize all associated

data structures

1853

1854 self . manager.log_warn (" Auction,start _ message,
received")

1855 self._agent.setSearchAuction ()

1856 self._data_auction_time .append(rospy.Time.now())

1857 self._round_number =0

1858 self. inbound_bids = [ ]

1859 self. _inbound_statuses= [ ]

1860 self. _search_roll_call.clear ()

1861 self._bid_roll_call.clear ()

1862 self._round_tracker.clear ()

1863 self._complete_roll_call.clear ()

1864 self. _auction_started = True

1865 self. mid _search_bid = False

1866 self._auction_complete= False

1867 self._bidding_complete= False

1868 self._bids_updated = False

1869 self._cell_update_complete = False

1870
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1871
1872
1873
1874
1875
1876
1877

1878
1879

1880

1881
1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

def internalUpdateCells(self):
"7 update local cell knowledge given winning bids
from an auction
for agent_key in self._all_bids:
for cell_key, cost in self._all_bids[agent_key].
items () :
if cell_key in self._cells:
# if owning agent is no longer alive,
abort assignment
if agent_key not in self.manager.
subswarm_keys:
self .revertCell (cell_key)
self. _cells_in_progress.discard(
cell_key)
self. _cells_left.add(cell_key)
else:
# if another agent won a cell [’m
assigned to, remove assignment
if cell_key in self._agent.
getMyCelllds () and \

agent_key != self._agent.
getSearcherld () :
if cell_key == self._agent.

getCurrCellld () :
self._agent.
resetCurrWaypointld ()
self .removeCellAssignment (
cell_key)
self. _cells[cell_key].setStatus (Cell
.ASSIGNED)
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1892

1893
1894
1895
1896
1897
1898
1899

1900
1901
1902
1903

1904

1905

1906
1907
1908

1909
1910
1911
1912
1913
1914
1915
1916

1917

self. _cells[cell_key ].setOwner (
agent_key)

self. _cells[cell_key].setCost(cost)

self._cells_changed.add(cell_key)

def makeCellActive(self):
"’ set an assigned cell to in—progress once a
waypoint has been reached
my_cell = self._agent. getCurrCellld ()
if my_cell != None:
if self._cells[my_cell]. getStatus () != Cell.
IN_PROGRESS:
self.manager.log_warn("this is_ where_ I set
cell %d, to IN_PROGRESS" % my_cell)
self. _cells[my_cell]. setStatus (Cell.
IN_PROGRESS)
# thesis data capture line
if len(self._data_robot_searching) == 0:
self._data_robot_searching.append(rospy.
Time .now () )
self._am_searching = True
self._cells_changed.add(my_cell)
self. _cells_in_progress.add(my_cell)

def moveToNextCell(self):

move to an assigned cell upon completion of in-

progress cell

PRSI
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1918

1919

1920

1921
1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937
1938

self . manager.log_info (" finished, cell %d,_ moving to,
cell %d." \
J% (self._agent.getCurrCellld ()
, self._agent.getMyCelllds
OLLH)
bot = self.manager.get_own_state().state.pose.pose.
position
self._been_there.add(self._agent.getCurrCellld ())
self._cells_in_progress.discard(self._agent.
getCurrCellld ())
self. _cells_left.discard(self._agent.getCurrCellld ()
)
# getCurrCellld() is now the next cell in
getMyCelllds ()
self._agent.removeCell(self._agent. getCurrCellld ())
self._agent.resetCurrWaypointld ()
self._cells_changed.add(self._agent. getCurrCellld ())
self. _cells[self._agent.getCurrCellld () ].
deleteWaypoints ()
self.generateWaypoints (self._agent. getCurrCellld (),
(bot.lat, bot.lon))
self. _cells[self._agent.getCurrCellld () ].setStatus(
Cell .IN_PROGRESS)

# thesis data capture line

if len(self._data_robot_searching) == 0:
self._data_robot_searching.append(rospy.Time.now
)
self._am_searching = True

self._cells_changed.add(self._agent. getCurrCellld ())
self. _cells_in_progress.add(self._agent.
getCurrCellld () )
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1939
1940
1941

1942
1943

1944

1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956

1957
1958
1959
1960
1961

1962

1963

1964
1965

def

def

reassignCell (self , cell_id, agent_id, agent_bid):
"’ change assignment of a cell from one agent to
another
@param cell_id: the id of the cell being reassigned
@param agent_id: the id of the agent being
reassigned the cell
@param agent_bid: the bid amount that agent_id won
cell_id for
if cell_id in self._agent.getMyCelllds():
self. _cells[cell_id].deleteWaypoints ()
self._agent.removeCell(cell_id)
self._cells_changed.add(cell_id)
self. _cells[cell_id].setStatus (Cell.ASSIGNED)
self._cells[cell_id].setOwner(agent_id)
if agent_bid > self._cells[cell_id]. getCost():
self. _cells[cell_id].setCost(agent_bid)
self._cells_changed.add(cell_id)
else:
self . manager.log_info ("ReassignCell () failed :
cell_id_not in MyCelllds () ")

removeCellAssignment(self, cell_id):

"’ change cell status to assignment—removed so

other agents can detect it

@param cell_id: the id of the cell being
disassociated

if cell_id in self._agent.getMyCelllds ():
self. _cells[cell_id].deleteWaypoints ()
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1966
1967
1968
1969
1970
1971
1972

1973

1974

1975

1976
1977
1978
1979
1980

1981

1982
1983
1984
1985
1986
1987
1988
1989
1990

1991

self._agent.removeCell(cell_id)
self.revertCell (cell_id)

def revertCell(self, cell_id):
"7’ change cell status from assignment—removed to
available
Setting a cell to "assignment_removed" allows other
agents to
detect that an "assigned" cell should now be
considered "available."
@param cell_id: the id of the cell being set to
available
self. _cells[cell_id].setOwner(Cell .NO OWNER)
self._cells[cell_id].setCost(Cell .NO_COST)
self. _cells_in_progress.discard(cell_id)
if self._cells[cell_id]. getStatus () != Cell.
ASSIGNMENT_REMOVED::
self. _cells[cell_id].setStatus (Cell.
ASSIGNMENT_REMOVED)
self._cells_changed.add(cell_id)
else:
self. _cells[cell_id].setStatus (Cell . AVAILABLE)
self._cells_changed.add(cell_id)

def sendAuctionComplete(self):

>0

send a single message telling other agents that

agent is finished with auction

PEE )
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1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002

2003

2004
2005
2006
2007
2008
2009

2010

2011
2012
2013
2014
2015

2016

2017
2018

def

def

parser = bytes.UShortParser ()

parser.value = self._agent.getSearcherld ()
report = self.manager.behavior_data_msg
report.id = bytes.AUCTION_COMPLETE
report.params = parser.pack()

self . manager.behavior_data_publisher.publish(report)

setWaypoint(self , waypoint_loc):
"’ send a speed waypoint command message with lat/
lon/alt/speed information
@param waypoint_loc: the waypoint to set autopilot
to
if not self. loiter_wait:
self._loiter_checkpoint = waypoint_loc

self . manager.spd_wp_cmd_msg. lat = waypoint_loc [0]

self . manager.spd_wp_cmd_msg.lon waypoint_loc [1]

self . manager.spd_wp_cmd_msg. alt

self . manager.

ap_wpt.z

self .manager.spd_wp_cmd_msg.speed
getSpeed ()

self._agent.

shareAuctionComplete (self , num_agents):

77 lossy —comms tolerant way to reliably communicate

auction status with agents

@param num_agents: the number of agents in the
subswarm executing AuctionSearch

» 0

if self._auc_msg_count < AuctionSearch.MESSAGE_COUNT

174



2019
2020
2021
2022
2023
2024

2025

2026
2027
2028
2029

2030
2031

2032

2033

2034
2035
2036
2037
2038
2039

2040
2041
2042

if self._auc_msg_count ==
self._complete_roll_call.clear ()
if divmod(self._auc_msg_count, 3)[1] == O:
self .sendAuctionComplete ()
self._auc_msg_count += 1
# If searcher has not heard from all others, request
auction status from them
elif self._auc_msg_count >= AuctionSearch.
MESSAGE_COUNT and \
len(self._complete_roll_call) < (num_agents — 1):
if divmod(self._auc_msg_count, 5)[1] == O:
self.auctionCompleteRequest ()
self . manager.log_info("requesting ,complete,,
statuses , ,auction Jd" % self.
_auction_number)
self . _auc_msg_count += 1
# If searcher has heard from all other active agents
, finish auction
if len(self._complete_roll_call) >= (num_agents — 1)
and \
self._auc_msg_count >= AuctionSearch .MESSAGE_COUNT

self._auc_msg_count = 0
self._auction_complete = True
self._winners_picked = False

# capture thesis data
self.captureRoundData ()
self.manager.log_info ("—_—_ —_—_auction_ is

complete ,— —,——u")
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2043
2044

2045
2046
2047

2048
2049
2050
2051

2052

2053
2054
2055
2056

2057
2058

2059

2060

2061

2062

2063

2064

2065

2066

def shareBids(self, num_agents):
77 lossy —comms tolerant way to reliably communicate
bids with agents
if self._bidding_complete:
if self._bid_msg_count < AuctionSearch.
MESSAGE_COUNT:
if divmod(self._bid_msg_count, 3)[1] == O:
self.bidStatusUpdate (False)
self._bid_msg_count += 1
# If searcher has not heard from all others,
request status from them
elif self._bid_msg_count >= AuctionSearch.
MESSAGE_COUNT and \
len(self._bid_roll_call) < (num_agents — 1):
if divmod(self._bid_msg_count, 3)[1] == O0:
self .bidStatusRequest ()
self . manager.log_info("requesting bids .
uround Y%d" % self._round_number)
self._bid_msg_count += 1
# If searcher has heard from all other active
agents, report ready status
if len(self._bid_roll_call) >= (num_agents — 1)
and \
self._bid_msg_count >= AuctionSearch.
MESSAGE_COUNT:
self._bid_msg_count = 0
self._bid_roll_call.clear ()
self._bids_updated = True
self . _round_tracker.clear ()
self .manager.log_info ("— ,—,—,—,bid update,
complete ,— — ——"

self . manager.log_info("")

176



2067
2068
2069
2070
2071

2072

2073
2074

2075
2076
2077
2078
2079
2080
2081
2082
2083

2084

2085
2086

2087

2088

def shareStatuses(self, num_agents):
77 lossy —comms tolerant way to reliably communicate

cell statuses with agents

@param num_agents: the number of agents in the

subswarm executing AuctionSearch

>

if self._message_count < AuctionSearch.MESSAGE_COUNT

if divmod(self._message_count, 3)[1] == O:
self.cellStatusUpdate ()
self._message_count += 1
# If searcher has not heard from all others, request
status from them
elif self._message_count >= AuctionSearch.
MESSAGE_COUNT and \
len(self._search_roll_call) < (num_agents — 1):
if divmod(self._message_count, 5)[1] ==
self.cellStatusRequest ()
self .manager.log_info("requesting, cell
statuses , auction Yd, round %d" \
% (self.
_auction_number ,
self._round_number)
)
self._message_count += 1
# If searcher has heard from all other active agents
, update cells
if len(self._search_roll_call) >= (num_agents — 1)
and \
self._message_count >= AuctionSearch .MESSAGE_COUNT
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2089 self.externalUpdateMyCells ()

2090 self._message_count = 0
2091 self._cell_update_complete = True
2092 self .manager.log_info ("—_ —_—u—ucell update,

complete ,— —,——u")

2093
2094
2095
2096 def startAuction(self, next_cell_claimed):
2097 "’ send a burst of auction start messages to other
agents
2098
2099 parser = bytes.NewAuctionParser ()
2100 parser.source_id = self._agent.getSearcherld ()
2101 if next_cell claimed:
2102 parser.next_cell_id = self._agent.getCurrCellld
0
2103 else:
2104 parser.next_cell_id = AuctionSearch .NOT_BIDDING
2105 parser .auction_number = self._auction_number
2106 parser.search_auction = True
2107 self.claim_next_cell = next_cell_claimed
2108 for i in range(AuctionSearch .MESSAGE_COUNT) :
2109 if i == 0:
2110 self .manager.log_warn("sending auction start
,message.")
2111
2112 report = self.manager.behavior_data_msg
2113 report.id = bytes . AUCTION_NEW
2114 report.params = parser.pack()
2115 self.manager.behavior_data_publisher.publish (
report)
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2116
2117
2118
2119
2120
2121
2122
2123

2124
2125
2126
2127

2128
2129

2130
2131

2132

2133

2134

2135

2136

2137

2138

2139
2140

self. start_auction = False
self._auction_complete = False
self.getInTheAuction ()

def stayInMyCell(self):

>0

command agent to loiter at last waypoint after
finishing its cell
wait_for_cell = False
if len(self._agent.getMyCelllds()) > 1:
self .manager.log_info (" finished my,cell , but am,
waiting fora_ potentially better next,cell.")
else:
self .manager.log_info ("finished _my,last_ cell._ .,
Standing by.")
if self._agent.getCurrCellld () != None:
self._been_there.add(self._agent.getCurrCellld ()
)
self. _cells_in_progress.discard(self._agent.
getCurrCellld ())
self. _cells_left.discard(self._agent.getCurrCellld ()
)
# so CurrCellld() now corresponds to my next cell,
if any
self._agent.removeCell(self._agent.getCurrCellld ())
self._agent.resetCurrWaypointld ()
if self._agent.getCurrCellld () != None:
self._cells_changed.add(self._agent.
getCurrCellld ())

self. loiter_wait = True
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2141
2142
2143

2144

2145

2146
2147

2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161

2162

2163
2164
2165
2166
2167

def

def

submitSearchBid (self , searcher_id , cell_id,
bid_value):

"7’ send a single message telling other agents bid
information

@param searcher_id: id of the searcher submitting
the bid

@param cell_id: id of the cell searcher_id bid for

@param bid_value: amount that searcher_id bids for
cell id

parser = bytes.AuctionSearchBidParser ()

parser .my_id = searcher_id

parser.cell_id = cell_id

parser .bid_val = bid_value

report = self.manager.behavior_data_msg

report.id = bytes.AUCTION_BID

report.params = parser.pack()

self . manager.behavior_data_publisher.publish(report)

syncRounds (self , num_agents):

y

check whether all agents are in the same round,
behind, or ahead in an auction
@param num_agents: the number of agents in the
subswarm executing AuctionSearch
synced = False
self._round_tracker.add(self._round_number)
diff_round_nums = len(self._round_tracker)

# if all agents are in the same round, length of
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2168
2169
2170
2171
2172
2173
2174
2175
2176

2177
2178

2179
2180
2181
2182
2183

2184
2185
2186

2187
2188
2189

2190
2191
2192
2193
2194

this set will be 1,

# so return true because agents are synced.

if diff round nums == 0 or diff round nums == 1:
synced = True

else:

if diff_round_nums ==
max_round_num = 0
else:
max_round_num = max(self._round_tracker)
# if there is more than one number in self.
_round_tracker set, then agents are out of sync
if diff round _nums > 1:
# if my round number is the same as max, I am
ahead of other agents and need to wait.
if self. _round _number == max_round num:
min_num = min(self._round_tracker)
if max round num - min num > 2:
synced = True
elif divmod(self._sync_msg_count, 3)[1] ==
0:
self._round_tracker.clear ()
self.auctionStatusRequest ()
self .manager.log_info ("I m ahead. .,
Requesting round numbers.")
synced = False
self._sync_msg_count += 1
# if my round number is not the same as max, I
need to continue in order to catch up.
else:
synced = True
if synced:
self._sync_msg_count = 0

return synced
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2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213
2214
2215

def testWaypoint(self, waypoint_loc):
"7’ check whether an agent has arrived at a
specified waypoint
@param waypoint_loc: the waypoint agent is traveling
toward
if not self._initial_assign:
# if agent is at waypoint, go to next waypoint
if not self. loiter_wait:
bot = self.manager.get_own_state (). state.
pose .pose. position
dist_to_wp = gps.gps_distance (waypoint_loc
[0], waypoint_loc[1], bot.lat, bot.lon)
if dist_to_wp < AuctionSearch.CAPTURE_DIST
and self._agent.getCurrCellld () != None:
if self._cells[self._agent.getCurrCellld
() ].getStatus () == Cell .IN_PROGRESS:
self._agent.incrementCurrWaypointld
0
elif self._agent.getCurrWaypointld () ==
0 and not self._agent.
_IS_SEARCH_AUCTION \
and self._cells[self._agent.
getCurrCellld () ]. getStatus () ==
Cell . ASSIGNED:

self._agent.incrementCurrWaypointld

Q)
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2216
2217

2218
2219
2220
2221

2222

2223
2224
2225

2226
2227
2228

2229
2230
2231
2232
2233
2234
2235
2236
2237

2238
2239
2240
2241

def winnerDetermination(self):
"7’ determine highest bidder from a set of bids and

direct auction termination

winner_id = self._agent.getSearcherld ()

highest_bid 0.0

self._same_bids = True # if all agents submit the

same bids a second time, all are happy.
# consolidate all bid information from others and
myself
self.consolidateBids ()
self.displayShortReport ()
# if all agents are happy and no conflicts remain,
commit to assignments.
if self. _same_ bids:
if not self._auction_complete:
if self._curr_bid[0] != AuctionSearch.
NOT_BIDDING:
self.generateCellAssignment ()
self.internalUpdateCells ()
if not self._initial_assign:
self. mid_search_bid = True
self._cell_update_complete = False
self. _search_roll_call.clear ()
self. submit _same_bid = False
self._winners_picked = True
self . manager.log_info ("SAME_BIDS,,==_TRUE, .,and ,no
ueellconflicts ., ,Committing assignments.")
# if agents are not happy, determine who’s bid won

else:

winner_id
highest_bid

submitted highest bid unless proven otherwise

self._agent.getSearcherld ()

self._curr_bid[1] # assume agent
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2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258
2259

2260

cell_key = self._curr_bid[0]
for agent_key in self._all_bids:
# if another agent placed a bid for the same
cell as me, highest bid is winner

if cell_key in self._all_bids[agent_key] and

agent_key != self._agent.getSearcherld ()
\
and cell_key != AuctionSearch.NOT_BIDDING:

agent_bid = self._all_bids[agent_key][
cell_key]
if self._all_bids[agent_key][cell_key] >
highest_bid:
highest_bid

winner_id = agent_key

agent_bid

# if another agent bid higher for a
cell I am assigned, I relinquish
it

if cell_key in self._agent.
getMyCelllds () :

if cell_key == self._agent.
getCurrCellld () :

self._agent.
resetCurrWaypointld ()

self.reassignCell (cell_key ,
agent_key , agent_bid)

self._cells_changed.add(cell_key
)

if self._all_bids[agent_key][cell_key]
== highest_bid:
if winner_id < agent_key:
highest_bid = self._all_bids|[
agent_key [[cell_key]

winner_id = agent_key
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2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279
2280

if cell_key in self._agent.
getMyCelllds () :
if cell_key == self._agent.
getCurrCellld () :
self._agent.
resetCurrWaypointld ()
self.reassignCell (cell_key ,
agent_key , agent_bid)
self._cells_changed .add(
cell_key)
# if I won the cell I bid for this round, submit

the same bid next round

if winner_id == self._agent.getSearcherld():
if cell_key != AuctionSearch.NOT_BIDDING:
self. submit _same_bid = True

if self._curr_bid[1] > self._cells|
cell_key ].getCost():
self. _cells[cell_key].setCost(self.
_curr_bid[1])
self._cells_changed.add(cell_key)
# I did not win the cell I bid for
else:
# if I’ve lost the same cell multiple times,
conclude I won’t win it
if cell_key in self._cells_not_won and
cell_key != AuctionSearch .NOT_BIDDING:
self . manager.log_info("cell %d is
outside of ;threshold . Abandon, pursuit
uforother cells." \
% cell_key)
self._abandoned_cells.add(cell_key)
if highest_bid > self._cells[cell_key].
getCost():
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2281 self. _cells[cell_key].setCost(
highest_bid)

2282 # if I lost the round, keep track of the
cell_id

2283 else:

2284 self.manager.log_info ("I lost,_ but,
keeping, track of ,cell %d." % cell_key
)

2285 self._cells_not_won.add(cell_key)

2286 if highest_bid > self._cells[cell_key].
getCost () :

2287 self. _cells[cell_key].setCost(

highest_bid)

2288 self._cells_changed.add(cell_key)

2289 self. _inbound_bids = [ ]

2290 self._bids_updated = False

2291 self._bidding_complete = False

2292

2293

2294

2295 class Cell(object):

2296

2297 Class for maintaining attributes of each cell created by

decomposition .

2298 Each Cell represents a biddable resource in Auctions.

2299

2300 # CELL status enumerations

2301 AVAILABLE =0

2302 ASSIGNED =1

2303 IN_PROGRESS = 2

2304 ASSIGNMENT_REMOVED = 3

2305 COMPLETE = 4

2306
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2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339

# other enumerations
NO_OWNER = 255
NO_COST = 0.0
PRIVATE_VALUE = 8000

def __init__(self, cell_id, boundary):

self. cell _id

self._boundary =

self. west_bound=

self. east_bound=

self._waypoints
self._neighbors =
self._size =
self. _utility =
self. bid _amts =
self. cost =
self. status =
self. owner =

self. _private_val

def getCellld(self):

return self. cell_

def getBoundary(self):

cell_id
boundary

[ 1]
[ ]
[ ]
[ 1]
0
Cell .NO_COST
Cell .NO_COST
Cell .NO_COST
Cell .AVAILABLE

Cell .NO_OWNER
= Cell .PRIVATE_VALUE

id

return self._boundary

def getBoundaryGrids(self):
boundary_grids = [ ]

for bound in self.

getBoundary () :

boundary_grids .append (bound [0])

boundary_grids .append (bound[1])

return boundary_grids
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2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372

def

def

def

def

def

def

def

def

def

def

def

getWaypoints (self):

return self._waypoints

getNeighbors(self):

return self._neighbors

getSize (self):

return self. size

getStatus (self):
return self. _status

getOwner(self):

return self._owner

getBidAmounts(self):

return self. bid_amts

getCost(self):
return self. cost

getValue (self):

return self._private_val

getUtility (self):
return self. _utility

getWestBound (self):

return self. west_bound

getEastBound (self):

return self. east_bound
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2373
2374
2375
2376

2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404

def

def

def

def

def

def

def

def

getWaypointCartLocations (self):
locations = [ ]
for waypoint in self._waypoints:
locations .append(waypoint. getCartesianLocation ()

)

return locations

getWaypointLatLonLocations (self):
locations = [ ]
for waypoint in self._waypoints:
locations .append(waypoint. getLatLonLocation () )

return locations

getWaypointlds (self):

waypoint_ids = [ ]

for waypoint in self._waypoints:
waypoint_ids.append (waypoint. getWaypointld())

return waypoint_ids

addWaypoint(self , waypoint):
self._waypoints.append (waypoint)

deleteWaypoints (self):

self._waypoints = [ ]

addNeighbor(self , neighbor_id):
self._neighbors.append(neighbor_id)

deleteNeighbor (self , neighbor_id):

self._neighbors.remove(neighbor)

deleteBidAmounts(self):
self._bid_amts = Cell .NO_COST
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2405

2406 def setBidAmounts(self, amt):
2407 self. bid_amts = amt

2408

2409 def setSize (self, size):

2410 self. size = size

2411

2412 def setStatus(self, new_status):
2413 self. status = new_status
2414

2415 def setOwner(self, owner_id):
2416 self. owner = owner_id
2417

2418 def setCost(self, price):
2419 self . _cost = price

2420

2421 def setValue(self, value):
2422 self. _private_val = value
2423

2424 def setUtility (self, util):
2425 self. _utility = util

2426

2427 def setWestBound(self, w):
2428 self. _west_bound = w

2429

2430 def setEastBound(self, e):
2431 self. _east_bound = e

2432

2433

2434

2435 class Waypoint(object):

2436

2437 Class for maintaining attributes of each waypoint within
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2438
2439

2440
2441
2442

2443

2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466

LRSS

def

def

def

def

» 9

a cell

__init__(self, cell_id, waypoint_id, location,

SW_corner) :

self . _waypoint_id = waypoint_id

self. cart_loc location

self. lat _lon_loc

gps.gps_offset(sw_corner[0],

sw_corner[1], \

location[1],
location [0])

getWaypointld (self):
return self._waypoint_id

getCartesianLocation(self):

return self. cart_loc

getLatLonLocation(self):
return self. lat _lon_loc

class Searcher(object):

Class for maintaining attributes of each searcher

LRSS

def

__init__(self , searcher_id):

self. searcher_id = searcher_id
self ._IS_SEARCHER = True
self._IS_SEARCH_AUCTION = True
self._curr_waypoint = 0

self._speed = 0

self. endurance = 0.0
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2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499

def

def

def

def

def

def

def

def

def

self._my_cell_ids

o
— —
—_

self. been_there

getSearcherld (self):

return self. searcher_id

getMyCelllds (self):

return self._my_cell_ids

getCurrCellld (self):

if len(self._my_cell_ids) > O:
return self._my_cell_ids[0]

else:

return None

getCurrWaypointld (self):

return self._curr_waypoint

getEndurance (self):

return self. endurance

getSpeed (self):
return self._speed

setSearchAuction(self):
self ._IS_SEARCH_AUCTION = True

setEndurance (self , endurance):

self. _endurance = endurance

setSpeed (self, speed):
self._speed = speed
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2500 def addCell(self, cell_id):

2501 self._my_cell_ids.append(cell_id)
2502

2503 def removeCell(self, cell_id):

2504 if cell_id in self._my_cell_ids:
2505 self._my_cell_ids.remove(cell_id)
2506

2507 def removeAssignedCells(self):

2508 curr_cell = self.getCurrCellld ()
2509 if curr_cell == None:

2510 self._my_cell_ids = [ ]

2511 else:

2512 self._my_cell_ids = [curr_cell]
2513

2514 def removeAllAssignments(self):

2515 self._my_cell_ids = [ ]

2516

2517 def incrementCurrWaypointld(self):
2518 self._curr_waypoint += 1

2519

2520 def resetCurrWaypointld(self):

2521 self._curr_waypoint = 0
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