

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

AUTONOMOUS DECISION IN MULTI-ROBOT
SYSTEMS

by

Matthew S. Hopchak

December 2018

Thesis Advisor: Duane T. Davis
Co-Advisor: Kathleen B. Giles

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
December 2018

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
AUTONOMOUS DECISION IN MULTI-ROBOT SYSTEMS

5. FUNDING NUMBERS

6. AUTHOR(S) Matthew S. Hopchak

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
 This research evaluates potential auction algorithm approaches to a multi-robot area search problem and
uses the Naval Postgraduate School Advanced Robotic System Engineering Laboratory’s multi-UAV
system to implement, test, and evaluate selected exemplars. Ultimately, for multi-robot systems to achieve
useful objectives autonomously, they need to reliably analyze objectives and assign supporting tasks to
individual vehicles. The market-based approaches analyzed in this research provide an intuitive mechanism
for robust realization of this capability in highly dynamic and uncertain environments. We present our
implementation, AuctionSearch, evaluate its design trade-offs, and influence agent bidding strategies based
on per-robot speed and endurance. We test our implementation in simulation and in live-fly experiments
across three different search areas with system sizes ranging from three to 10 robots each. The future
of warfare will include unmanned systems in many facets of operations and support. Furthermore, it is
likely that human intervention and direct handling of autonomous systems’ actions will be replaced
by human supervision of autonomously developed courses of action on the battlefield. For multi-robot
systems to have the capacity to develop and execute complex courses of action, they must be capable of
linking complex tasks together. Our research and testing demonstrate that auction algorithms are well
suited for autonomous decision.

14. SUBJECT TERMS
robotics, autonomous systems, auction, ARSENL, swarm, autonomous, multi-robot systems,
area search

15. NUMBER OF
PAGES

217
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

AUTONOMOUS DECISION IN MULTI-ROBOT SYSTEMS

Matthew S. Hopchak
Major, United States Army

BA, Virginia Military Institute, 2007

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2018

Approved by: Duane T. Davis
Advisor

Kathleen B. Giles
Co-Advisor

Peter J. Denning
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

This research evaluates potential auction algorithm approaches to a multi-robot

area search problem and uses the Naval Postgraduate School Advanced Robotic System

Engineering Laboratory’s multi-UAV system to implement, test, and evaluate selected

exemplars. Ultimately, for multi-robot systems to achieve useful objectives

autonomously, they need to reliably analyze objectives and assign supporting tasks to

individual vehicles. The market-based approaches analyzed in this research provide an

intuitive mechanism for robust realization of this capability in highly dynamic and

uncertain environments. We present our implementation, AuctionSearch, evaluate its

design trade-offs, and influence agent bidding strategies based on per-robot speed and

endurance. We test our implementation in simulation and in live-fly experiments across

three different search areas with system sizes ranging from three to 10 robots each. The

future of warfare will include unmanned systems in many facets of operations and

support. Furthermore, it is likely that human intervention and direct handling of

autonomous systems’ actions will be replaced by human supervision of

autonomously developed courses of action on the battlefield. For multi-robot

systems to have the capacity to develop and execute complex courses of action, they

must be capable of linking complex tasks together. Our research and testing

demonstrate that auction algorithms are well suited for autonomous decision.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Objectives . 1
1.3 Related Work . 2
1.4 Thesis Organization . 5

2 Approach 7
2.1 Methodology . 7
2.2 Auction Algorithm Overview 7
2.3 Application of Auction Algorithms to Autonomous Area Search. 17
2.4 Summary . 24

3 Implementation and Experiment Design 27
3.1 AuctionSearch Top-Level Flow of Control 27
3.2 Search Area Decomposition . 29
3.3 Assignment of Search Cells via Auction 35
3.4 Conduct of an Area Search after Cell Assignment 47
3.5 Summary . 49

4 Analysis of Auction-Based Assignment in Area Search 51
4.1 Impact of Cell Utilities on Agent Bidding Strategies 51
4.2 Utility Function 1: Agent Utility as a Function of Speed 53
4.3 Utility Function 2: Agent Utility as a Function of Endurance 58
4.4 AuctionSearch Experiment Setup and Performance Measurement 61
4.5 AuctionSearch Simulation Performance in Various Search Areas 65
4.6 Summary . 80

5 Conclusion 81
5.1 Findings and Lessons Learned 81

vii

5.2 Future Work . 84

Appendix: AuctionSearch Source Code 87

List of References 195

Initial Distribution List 201

viii

List of Figures

Figure 2.1 Search Area Discretized into Search Space 18

Figure 2.2 Area Search Execution Using Auctions 19

Figure 2.3 Bidding for Cells . 20

Figure 2.4 Dynamic Auction Application 23

Figure 3.1 AuctionSearch Flow of Control 28

Figure 3.2 Basic Search Area after Grid-Cellularization 30

Figure 3.3 Large-Basic Search Area after Grid-Cellularization 31

Figure 3.4 Complex Search Area after Boustrophedon Cellular Decomposition 32

Figure 3.5 Complex Search Area Adjacency Graph 33

Figure 3.6 Cell State Diagram . 34

Figure 3.7 Auction Control in AuctionSearch 36

Figure 3.8 Utility Cost Components . 41

Figure 3.9 Agent Bid Generation Logic . 44

Figure 3.10 Search Conduct in AuctionSearch 47

Figure 3.11 Agent Cell Change Logic Diagram 48

Figure 3.12 Agent Cell Change Example . 49

Figure 4.1 Agent Bids Given Cell Utilities 52

Figure 4.2 Utility Scenario 1: Agents with the Same Utility Costs 55

Figure 4.3 Agent Bids at Increasing Speed Utility Cost 55

Figure 4.4 Utility Scenario 2: Agents with Different Capabilities 56

Figure 4.5 Utility Scenario 3: Agents with Different Utility Costs for Same Cell 57

ix

Figure 4.6 Agent Bids as Slow Agent Costs Increase 58

Figure 4.7 Agent Bids as Endurance Utility Cost Increases 60

Figure 4.8 Agent Bids as Low-Endurance Agent Cost Increases 61

Figure 4.9 Total Number of Simulation Runs 63

Figure 4.10 Screen-shot of a 10-Robot Run in Software-in-the-Loop (SITL) Sim-
ulation . 65

Figure 4.11 Auction Performance in Large Area 66

Figure 4.12 AuctionSearch Runtimes and Worktimes in Large Area 68

Figure 4.13 AuctionSearch Division of Work in Large Area 69

Figure 4.14 Auction Performance in Complex Area 70

Figure 4.15 AuctionSearch Runtimes and Worktimes in Complex Area . . 71

Figure 4.16 AuctionSearch Division of Work in Complex Area 72

Figure 4.17 Auction Performance in Basic Area 73

Figure 4.18 AuctionSearch Runtimes and Worktimes in Basic Area 74

Figure 4.19 AuctionSearch Division of Work in Basic Area 75

Figure 4.20 AuctionSearchWorktimes Versus the Perfect Search 76

Figure 4.21 Live-Flight Auction Performance in Basic Area 78

Figure 4.22 AuctionSearchLive-Flight Runtimes andWorktimes in Basic Area 79

Figure 4.23 Live-Flight AuctionSearch Division of Work in Basic Area . . 79

x

List of Acronyms and Abbreviations

ARM Agent Resource Mapped

ARSENL Advanced Robotic Systems Engineering Laboratory

AUSM Adaptive User Selection Mechanism

BDA Battle Damage Assessment

CAP Combinatorial Auction Problem

DoD Department of Defense

ISR Intelligence, Surveillance, and Reconnaissance

MASC Mission-Based Architecture for Swarm Composability

MMKP Multi-Dimension Multiple-Choice Knapsack Problem

MRIC Multi-Robot Independent Cueing

NPS Naval Postgraduate School

SITL Software-in-the-Loop

SMR Simultaneous Multiple Round

SPP Set Packing Problem

UAV Unmanned Aerial Vehicle

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

Acknowledgments

I thank my advisors, Dr. Duane Davis and CDR Kathleen Giles, for their guidance and
attentive help during the course of this research. Thank you for keeping my feet firmly on
the ground, which ultimately led to me finishing in a reasonable amount of time. I also
thank the entire ARSENL team for the coordination and execution of the live-flight testing
that not only validated our results, but took the project out of the simulation and into the real
world. Finally, I thank my wife, Ashley, for her consistent support from the very beginning
of this adventure.

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

CHAPTER 1:
Introduction

1.1 Motivation
For military ground forces to be effective in their area of operation, they require an accurate
view of the operational environment. Sending human scouts into the environment to
assemble this comprehensive view can be unacceptably dangerous or risky if it removes
too much combat power from the core unit. The United States military has robotic systems
in its inventory that facilitate autonomous exploration of operational environments, but
these systems still utilize a “drive by wire” solution where a human handler is responsible
for decision making, maneuvering, and interpreting the results [1]. As more autonomous
systems are utilized by the Department of Defense (DoD), the ability of those systems to
coordinate among themselves to solve problems and make decisions could have far-reaching
tactical and strategic implications.

The future of warfare will include autonomous systems in many facets of operation and
support. Further, it is very likely that human intervention and direct handling of autonomous
systems’ actions will be replaced by human supervision of autonomously developed courses
of action on the battlefield [1]–[7]. Interoperability and scalability will demand solutions
for robot-to-robot coordination, cuing, and decision making among others. Towards this
end, this research explores the use of market-based approaches for robot-to-robot coordi-
nation of complex behaviors. Exploration of autonomous system behaviors that maximize
independent coordination will ultimately lead to combat-enhancing capabilities within the
DoD today and in the future.

1.2 Research Objectives
This thesis explores the use of auction algorithms for multi-robot area search with different
utility functions implemented using the Advanced Robotic Systems Engineering Labo-
ratory (ARSENL) multi-Unmanned Aerial Vehicle (UAV) swarm as the test-bed for our
implementation. Most existing solutions for multi-robot search require centralized control

1

and likewise suffer from central points of failure. More robust and failure-tolerant solutions
can be obtained using decentralized assignment using auction algorithms.

In this work we present an area search implementation called AuctionSearch which uses
auction algorithms to generate assignments of agents to sections of a given search area. We
first explore different variants of market-based assignment algorithms and then apply them
to our implementation. We then observe our implementation in three different search areas
with two different utility functions with multi-robot system sizes ranging from three to 10
robots each. Finally, we validate our results with live-flight testing of AuctionSearch.

1.3 Related Work
Autonomous coordination among robotic systems has garnered a wide range of research
attention over the years as computational power and network speeds have increased. It also
takes on many shapes and directions as the terms “autonomous” and “coordination” can
apply to a range of independence, scale, and complexity. This thesis defines autonomous
coordination as the collective determination of follow-on actions by agents free from human-
handler intervention. Many advancements have been made in the multi-robot coordination
arena in recent years, ranging from taxonomies of robot behaviors as in [8], control of self
organized flocking techniques as in [9], [10] to large, complex robotic swarm formations
such as the 50-strong ARSENL multi-UAV swarm at Naval Postgraduate School (NPS)
and Harvard University’s 1000 Kilobots [2], [11], [12]. The efforts of these and other
research teams to increase the mechanical precision and motion control aspects of robotic
coordination provide the springboard to higher-level problem consideration by these robotic
systems, such as task deconfliction, assignment, and area search. This thesis builds on these
previous works by exploring multi-robot systems’ ability to link complex behaviors together
for complex objective completion. While some researchers have implemented emergent
behaviors using biologically inspired algorithms that use simple reactive interaction, our
research focuses on highly coordinated planning to achieve deliberative solutions to the
problems of task assignment and area search [13], [14].

Search problems can be defined as the exploration of a physical space by sensors in order to
observe all points contained within that space. Complete search consists of at least one sen-
sor observation per unit of search area, and an optimal search consists of exactly one sensor

2

observation per unit of search area. This definition translates directly to robotic coverage
problems, as described in [15], and much work is being done to advance autonomous sys-
tems’ ability to achieve solutions to such search and coverage problems. In 2011 researchers
fromNPS, the University of Southern California, and the University ofMinnesota presented
autonomous search techniques with specific application to mobile robotics [16]. The search
techniques explored in their research involved adversarial game-based utility maximization
and probabilistic path cost minimization involving perfect and imperfect sensors. In 2013
researchers from NPS used “mission performance” to evaluate area search patterns used by
agents operating within contested areas [17]. This approach to the search problem differs
from other work in this area by focusing on conducting the searchwith counter-agent evasion
as a consideration rather than only considering basic search performance measurements that
optimize the search coverage [17]. Another effort that looked at metrics other than basic
performance measurements to quantify success in search was conducted in 2007 from the
California Institute of Technology in [18]. In it, the researchers explored the problem of
search for a particular target in the context of the decisions the searcher-agent makes during
the pursuit of the target, not just the perceptions received from its sensors [18].

Many of thesementionedworks generally explored single-agent searcher configurations that
sought to optimally segment the search space and path choices under certain conditions.
Works such as [19] focused on multi-UAV coordination dependent on human-handler inter-
vention, making design decisions based on human factors. This thesis, however, explores
and enhances multi-agent searching and objective execution by focusing on the agents’
ability to communicate and decide amongst themselves how best to segment the search
space and deconflict individual path options. To this end, the following research efforts are
germane to the area of robot-to-robot autonomous coordination.

Acknowledging the challenges of coordination over lossy communications networks, [20]
introduced a decentralized task assignment scheme that assignedmultiple agents to multiple
moving targets where the agents decided to communicate based on how much of their local
information had changed since their last communication. Researchers in [21] approached
this problem by using a subset of aerial swarm participants in a “beacon” capacity, loitering
and providing information to “explorers,” the remainder of the swarm, in order to search
indoor corridors and spaces. As explorers moved from beacon to beacon and arrived
to an unexplored area, one of the explorers dynamically changed their role to beacon to

3

continue the search [21]. In 2015, NPS used a centralized relationship from one UAV to
all other swarm participants to communicate search commands, using what [4] terms a
“Teamleader Agent” dynamic, to successfully segment and deconflict search paths within
an area search [22].

This thesis seeks to distribute as much autonomy across the multi-robot system as possible
during complex behaviors such as area search. Work conducted in [23] by researchers at
NPS explored the mission assignment problem among multiple searcher-agents conducting
an area search where targets are observed in the environment and handed off to subsequent
searchers [23]. Researchers in [7] used agents to conduct search and attack functions on
objectives they encountered in a given search space, while agents in [24] add classification
and verification to these functions, and [25] adds Battle Damage Assessment (BDA) and
the decision to ignore a target to the list. This thesis explores behavior along the same
lines as the functions defined in [7], [13], [23]–[25] above. These works present a relative
line of demarcation and lineage for this thesis as we explore the limit to which we can
decentralize the assignment process and increase the agent-to-agent coordination capability
in multi-robot systems with auction algorithms.

Auction algorithms are used for assigning resources to agents in a decentralized manner.
They solve assignment problems by presenting opportunities for bidding on elements of a
resource pool at certain intervals with certain costs assigned to each element as a function
of the desired outcome. In 1979 the definition of an auction algorithm was offered in [26],
[27], and a distributed method was introduced for assigning objects to the highest bidder.
In [27], the auction process is described as having a bidding phase and an assignment phase.
In the bidding phase, all bids for resources are collected by a central auctioneer. In the
assignment phase, pairs of bidders and objects are created where no bidder owns more than
one resource and no resource is owned by more than one bidder. Decades of work related
to solving task assignment problems with auction algorithm implementations now exists.

In [28], a consensus-based auction algorithm is introduced in order to divide and commu-
nicate task assignments among agents within a multi-robot system. An interesting result
of [28]’s consensus-based auction approach is the removal of the requirement to have an
agent act as the auctioneer, removing reliance on a potential single point of failure, assum-
ing inadequate redundancy exists. Research conducted in 2012 at NPS explored the use

4

of an auction algorithm for swarm-on-swarm assignment of targets [29]. In that work, the
friendly swarm’s utility metric, or cost function, sought to minimize total distance traveled
from the current friendly agent’s location to the oncoming hostile agent, influencing which
friendly agents bid for which hostile agents at any given time in the scenarios [29]. [30]
used a tailored combinatorial auction algorithm and a modified winner determination algo-
rithm to conduct multi-agent negotiation for whether or not to participate in a collaborative
plan. The authors of [30] used roles (i.e., jobs) within the joint plan as the resources for
purchase by the bidders and included each bidder’s personal schedule of other activities as
private attributes of each bidder object. Their bids considered time for role completion as
a constraint to ensure agents did not overtask themselves if they ended up winning their
role. In this thesis, we contribute to this body of research by exploring ways in which these
principles, and other aspects of auction algorithms, can be applied to autonomous area
search problems.

1.4 Thesis Organization
The scope of this research effort includes the application of auction-based algorithms and
their utility functions to assignment of cells in an area search. This thesis is divided into five
chapters. Chapter 1 provides the motivation for this research, a summary of related efforts,
and an overview of the area search problem. Chapter 2 discusses current implementations of
auction algorithms and describes how they can be applied to cell assignment during an area
search. Chapter 3 provides an overview of our autonomous area search implementation,
AuctionSearch, and the major branches of execution which create the assignments and
conduct the search. Chapter 4 presents the results of our utility functions across search areas
and system sizes and analyzes their impact on the efficiency of the area search in simulation
and in live-flight testing. Chapter 5 presents our conclusions, findings, and future work that
may further illuminate the research area.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

CHAPTER 2:
Approach

The objective of this thesis is to assess the effectiveness of using auction algorithms with
various utility functions in multi-robot systems to assign search cells to individual robots
and to autonomously and dynamically complete an area search.

In this chapter we begin to detail how multi-robot systems can link complex tasks together
to develop and execute complex courses of action without human intervention. We first
lay the groundwork for our work in robot-to-robot coordination with a discussion of the
different variations of auction algorithms and their relationship to the generalized assignment
problem. We then expand the basic auction algorithm definition for use in a fault-tolerant
approach to autonomous area search.

2.1 Methodology
This thesis investigates the research objectives outlined in Section 1.2 in two steps. First, we
present an overview of auction algorithms, their purpose, their variations, and discuss their
feasibility as a solution for autonomous decision making during an area search by a multi-
robot system. Second, we present our auction algorithm implementation, AuctionSearch,
and the scenario-based experimentation with various utility functions applied. Ultimately
we seek to achieve complete, efficient, and fault-tolerant search execution without human
intervention.

2.2 Auction Algorithm Overview
The overarching goal of auction algorithms is to assign agents to tasks. The following
subsections describe the assignment problem that auction algorithms seek to solve, the
advantages and disadvantages of auction-based solutions, and the applicability of auction
algorithms to area search using multi-robot systems.

7

2.2.1 Basic and Generalized Assignment Problems
Fundamentally, the assignment problem seeks to create a one-to-one mapping from a set B

of m agents to a setT of n tasks. In the basic assignment problem m = n, creating symmetric
assignment [26]. In the generalized assignment problem, the number of agents does not
need to equal the number of tasks, creating asymmetric assignment [26]. The goal is to find
an optimal distribution of the available agents across the range of tasks [3], [28]. Agents are
assigned tasks based on a net-profit function that accounts for the benefit to agent ai ∈ B for
completing task t j ∈ T as well as the cost agent ai incurs to accomplish task t j . Solutions
to task assignment problems seek to assign every task in T to exactly one agent in B while
maximizing the system-wide profit p produced by each agent’s net-profit function [27]. For
basic assignment, each mapping of agent to task xi j in B → T must satisfy the conditions
specified by the following linear programming equation [26], [27]:

max
m∑

i=1

n∑
j=1

pi j xi j

s.t.
m∑

i=1
xi j = 1

n∑
j=1

xi j = 1

xi j ∈ {1, 0}.

(2.1)

For generalized assignment each mapping of agent to task xi j in B → T must satisfy the
following conditions [26], [27]:

max
m∑

i=1

n∑
j=1

pi j xi j

s.t.
m∑

i=1
xi j = 1

n∑
j=1

xi j ≥ 0

xi j ∈ {1, 0}.

(2.2)

8

Optimal solutions to the assignment problem can be obtained by centralized or decentral-
ized means, as described in [29]. The term “optimal” is necessarily application specific,
as [14] argues that optimal assignment solutions conduct trade-offs between resources, time,
and bandwidth requirements [14], [31]. While centralized assignment methods generally
require less agent communication than decentralized methods, they frequently lack enough
redundancy and dynamism to overcome system failures or changes in operational circum-
stances [5], [32], [33]. Decentralized methods such as those employing auction algorithms
require higher rates of communication among agents but gain the ability to dynamically
reallocate assignments as conditions change, increasing the robustness of the system [3],
[13].

2.2.2 Auction-based Algorithms
In this section we describe the different auction algorithm variations and the auctioneer
mechanisms associated with them. Auction algorithms are a decentralized approach to
solving the assignment problem. The goal is to create agent-resource pairs from a set B

of m agents and a set S of n resources in a series of rounds. The generic form of an
auction creates symmetric assignment, meaning that the number of agents must equal the
number of tasks [26]. Each round typically has a bid phase and an assignment phase. The
bid phase provides each agent an opportunity to place a bid b for a resource. Each agent
maintains a private value v for each resource r in S, and each resource has an associated
cost of ownership c. Each agent possesses an amount of money d to spend on purchases
of resources. Agents bid on resources that maximize their net value while minimizing their
cost incurred. Once all bids are received, the assignment phase completes the assignment
of agents to resources for which a winning bid was submitted [27], completing the round.

In the generic form of an auction, each mapping of agent to task xi j in B → S is specified

9

by the following linear programming equation [26], [27], [33]:

min
m∑

i=1

n∑
j=1

ci j xi j

s.t.
m∑

i=1
xi j = 1

m∑
i=1

xi j = 1

xi j ∈ {1, 0}.

(2.3)

Resources assigned in one round can be reassigned in subsequent rounds based on the
competing agents’ bid values. The auction continues in this fashion until some termination
criteria has been achieved. Typical termination criteria for an auction include |S | = 0,
indicating no remaining resources requiring assignment or |B | = 0, where there are no
bidders remaining who require resources. Other termination criteria can include no-bid
rounds where no bidder accepts the current price of any of the given resources or no bids
being submitted within a given time period [34], [35].

In order to achieve optimal assignment of agents to tasks, utility metrics must be used to
influence which agents desire to own which resources, maximizing their individual utility
while advancing the broader goal. We define “utility” in agents in the same manner as
utility based agents in artificial intelligence: agents seek to maximize a hardwired cost-
benefit function in order to drive their individual decisions [4], [5], [30], [34], [36]. An
auction’s parameters and utility functions can bemade arbitrarily complex; run-time, degree
of understanding of the current situation, and communication bandwidth must all be taken
into consideration when determining bidder utility functions. Common utility functions
include maximizing profit, minimizing cost, or minimizing aggregate time to complete a
set of tasks [32], [35]–[38].

2.2.3 Elements Common to Most Auctions
Many implementations of auction algorithms exist with a wide range of applications, in-
cluding dividing cloud computing resources as described in [39], completing government

10

procurement [40], consumer credit [34], and exploration of Mars [5], [33] to name only a
few. While there are many tailorable attributes and variations of auction algorithms, their
implementations have standard components that are generally common to them all. The
major structures are listed below:

R = {resource1, resource2, ..., resource j}

resource j = (resourceID j, cost j)
(2.4)

B = {bidder1, bidder2, ..., bidderi}

bidderi = (bidder IDi,moneyi)
(2.5)

bidb,resourcej = (bidder IDi, resourceID j, price j)

price j = utilityb(cost j).
(2.6)

There are multiple methods for assigning costs and driving bidder decisions in auctions.
In [1], the chosen cost function seeks to minimize the collective time for a set of agents
to complete a set of tasks, which they call the “total mission time,” weighing the solutions
that take the least amount of time to execute the highest. The authors of [13] suggest power
consumption as another cost to consider when assigning agents to tasks. In [27] the author
describes the primal assignment problem, wherein a bidder holds a particular value for a
resource that the bidder wants to maximize with the purchase of it as a byproduct of a
bidder-specific utility function.

2.2.4 Single-Item Auctions
The first type of auction is a single-item auction, sometimes referred to as a progressive
auction, where bids are placed for one item at a time [5], [35]. Single-item auctions are
often “open-cry,” meaning the entire set of resources, their costs, and the set of current
bids are known to all bidders throughout the entire auction, however this is not a specific
requirement [34], [35]. A single-item auction process can be used to solve both the basic
and general assignment problems of Equations 2.1 and 2.2 respectively. The goal is to
create agent-resource pairs from a set B of m agents and a set S of n resources that satisfies

11

the following conditions:

min
m∑

i=1

n∑
j=1

ci j xi j

s.t.xi j ∈ {1, 0}.

(2.7)

The basic single-item auction-based assignment algorithm as described in [8], [26], [27],
[29], [37] is provided in Algorithm 1:

Algorithm 1 Algorithm for Conducting a Single-Item Auction
S ← [(resourceID0, cost0), ... , (resourceIDm, costm)]
B← [(bidder ID0, money0), ... , (bidder IDn, moneyn)]

for j = 0 to length(S) do
bids← []
highBid ← 0
myBid ← 0
winner ← NULL
for i = 0 to length(B) do

utilityi j = bidder[i].utility(resource[j])
if utilityi j > myBid then

myBid = bidder[i].calc_bid(resource[j])
end if

end for
if myBid > 0 then

bids.append(bidi j)

end if
for k = 0 to length(bids) do

if auctioneer .winner_determination(bidk) > high_bid then
high_bid ← bidk
winner ← bidder[k]

end if
end for

end for.

To begin the auction, the auctioneer needs two critical pieces of information: |S |, the number
of resources to be auctioned, and the cost c j for each resource r j ∈ S. At a minimum, the
auctioneer must communicate c j for each r ∈ S to all bidders b ∈ B prior to bidding,
unless a specific application benefits from tailoring this to include blind bidding, where c j

is unknown.

12

In order for bidder bi to gain possession of resource r j , bi must first submit an allowable bid
q and subsequently be chosen as the winner of the round by the auctioneer. An allowable
bid is any q that conforms to all prescribed constraints of the auction. For example,
q = allowable iff q ≥ c j + δ is an auction rule that indicates that all bids must exceed the
current price for r j by at least δ. [35] and [41] call this a “minimum increment” rule. A bid
of q = 0 is considered a no bid, and can either be viewed as a trivial case or as a means
for a bidder to explicitly abstain from bidding for a given resource [42]. Further, a useful
(and necessary) constraint is q ≤ mbi , forcing allowable bids to be ones which bidders can
actually afford resources for which they are selected as winners. Many other application
specific constraints are possible as well [5], [34].

Once each bidder has had the opportunity to bid on a given resource r j , the auctioneer
awards it to the winning bidder bi based on the auction’s specification, ending the round.
In the simplest version of winner determination for single-item auctions, a bidder bi wins
a resource r j if bi submitted an allowable bid qbi to the set of bids Q such that r j → bi iff
qbi = max(Q). Once a winner has been selected, the single-item auction continues in this
manner until some termination criteria is triggered.

2.2.5 Combinatorial Auctions
Single-item auctions have the advantage of fine grained control over resource distribution,
however if the number of resources is substantial it may take unacceptably long to create
complete assignment of agents to resources [27]. The time-complexity of assignment
increases polynomially with the number of possible agent-resource pairs [1]. Combinatorial
auctions seek to achieve complete assignment more quickly by assigning variably-sized
subsets of the overall set of resources to each agent. The goal is to assign each agent in
a m-sized set B to a k-sized subset of resources T , such that ci : T → R. C is a set of
this mapping of agents to task-subsets xi j in B → T˜ is subject to the linear programming
equation [43]:

max
m∑

i=1
ciTi

s.t. Ti

⋂
Tj = ∅ ∀i , j

m⋃
i=1

Ti = T .

(2.8)

13

A combinatorial auction follows the same general structure as a single-item auction except
that bidders are allowed to pursue any subset of resources T ⊆ R, known as bundles or
packages, with a single bid [32]–[34], [43]. In turn, each bidder b ∈ B places a set of bids
U for T with the following forms:

T = {resource1, resource2, ..., resource j} (2.9)

UbT = {bidresource1, bidresource2, ..., bidresourcej } (2.10)

bid(b,resourcej) = (resourceID j, price j)

price j = utilityb(resource j).
(2.11)

The form and application of combinatorial auctions is discussed in [8], [30], [32], [33],
[37], with a version of the auction’s general form given by Algorithm 2:

Algorithm 2 Algorithm for Conducting a Combinatorial Auction
S ← [(resourceID0, cost0), ... , (resourceIDm, costm)]
B← [(bidder ID0, money0), ... , (bidder IDn, moneyn)]

bids← []
U = []
highBid ← 0
winner ← NULL
for i = 0 to length(B) do

UiT = bidder[i].utility(S)
if length(UiT) > 0 then

bids.append(UiT)

end if
end for
for k = 0 to length(bids) do

if auctioneer .winner_determination(bidk) > high_bid then
high_bid ← bidk
winner ← bidder[k]

end if
end for.

For combinatorial auctions, finding the optimal assignment of subsets of resources to bidders
that maximizes utility, or the winner determination problem, is known to be NP-complete
and must therefore be combinatorically constrained to achieve tractability [5], [13], [32]–
[35], [44]. In combinatorial auctions, the most basic version of winner determination is

14

accomplished by the auctioneer selecting the bid setUb that either maximizes utility or sells
most of the available resources:

winner = max(
m∑

i=1

n∑
j=1

qbi + c j) ∪ max(
m∑

i=1

n∑
j=1
|U |) where qbi ∈ Ub. (2.12)

Combinatorial auctions can create efficient assignment solutions as the size of the bid sets
grow, creating shorter auctions overall as more resources are consumed. They can also
become cumbersome, however, if bidders’ utility functions are overly complex (e.g., more
than simply maximizing some value associated with each resource). The complexity of
the Combinatorial Auction Problem (CAP), an instance of the well studied Set Packing
Problem (SPP), is an NP-hard problem which deals with the complexity introduced when a
bidder must consider all possible subsets of resources to find an optimal combination [43].
The Multi-Dimension Multiple-Choice Knapsack Problem (MMKP) is a similar problem
wherein each bidder must choose single elements from multiple resource pools.

A common thread through these problems is the combinatorial explosion that occurs as
the size of the resource pool grows [5], [32]–[35]. While complex utility functions effect
single-item auctions as well, the deliberation and analysis an agent might do while selecting
a set of resources can increase exponentially compared to a single resource [33]. If bidders
are spending inordinate amounts of time deciding what combination of resources best
maximizes their utility, the auction may fail to achieve complete assignment in a timely
enough manner. As computing power has increased over the years, so has the ability to
implement more complicated versions of combinatorial auctions, however the optimality
problem is yet to be solved [35], [43].

To combat the complexity of formulating optimal bid sets on the bidder’s side and selecting
the optimal winner on the auctioneer’s side, winner determination algorithms must be
carefully tailored to the particular application in order to create efficient solutions [30],
[42]. Some useful heuristics include limiting the size and number of bundles allowed in the
auction and using efficient clustering algorithms to produce bid sets [5], [32].

15

2.2.6 Centralized Auctioneer Mechanisms
Determiningwhich agent has submitted thewinning bid among the set of bids for a particular
resource is the critical function linking the bid and assignment phases of an auction round.
Winner determination is either conducted by a central auctioneer or by a decentralized linear
program executing exchanges of resources between individual agents [26], [27].

In centralized implementations, the role of auctioneer is either statically assigned to one
of the participating agents or it can be rotated among them. Agents bidding on resources
submit their bids to the auctioneer who then selects the winner based on the set of received
bids and the auction’s specification (e.g., highest or lowest bid). Some implementations
include the auctioneer as a participating bidder while others exclude the auctioneer for the
duration of the auction [38], [43]. When the auctioneer receives identical bids for a given
resource, the winner is typically determined randomly by the auctioneer, unless the auction
is designed to avoid such situations [26], [43].

The most obvious limitation associated with using a centralized auctioneer is the reliance on
a single point of failure. If the auctioneer experiences a loss of functionality then the auction
may fail to properly execute. Creating redundancy would increase resilience but would
exacerbate or introduce other problems, such as data consistency and bandwidth demand.
Walrasian methods, discussed in [41], [43], attempt to reduce the impact of centralization
by replacing the selective auctioneer with a more passive price-setting merchant, but the
reliance on a singular entity remains.

2.2.7 Distributed Auctioneer Mechanisms
Decentralized implementations are generally less complex and more resilient to failure than
centralized ones. In decentralized implementations, the role of auctioneer is distributed
among the agents and each agent is capable of both bidding and auctioneering. To start,
each agent iterates through each resource and identifies the one that achieves the highest gross
utility given the agent’s utility function. Once identified, the agent then bids and greedily
assigns itself to the resource, exchanging its current resource for the higher grossing one.
If multiple agents are competing for the same resource, the price is increased with each
bid placed until there is only one agent remaining whose gross utility is still maximized.
The auction continues in this fashion until every agent is “happy,” meaning every agent is

16

assigned a resource that maximizes its gross utility [26], [27].

2.3 Application of Auction Algorithms to Autonomous
Area Search

In this section we begin to discuss the application of auctions to the complex task of area
search. We start by tailoring the terms used in the preceding sections to the search problem.
Secondly we incorporate auctions into an area search algorithm and discuss the various
cost functions that can be utilized. Then we detail how auctions factor into an area search
algorithm including the fault-tolerance gained with dynamic reallocation.

To start our discussion we define our terms for using auctions in area search applications.
We continue to use the term “auction” for describing the action of bidders bidding for
resources for simplicity’s sake. We use the following terms and definitions from this point
forward:

1. Search Area: The predetermined physical area that the agents are required to explore.
2. Search Space: The search area broken down into an undirected graph of cells by some

cellular decomposition method (e.g., trapezoidal, grid, boustrophedon).
3. Cell: A biddable and awardable resource that represents a geometric subset of the

search space. Cells are organized as a set of waypoints distributed based on the
owning agent’s sensor characteristics.

4. Waypoint: An element of a cell that represents a physical location that an agent must
travel to in order to be considered explored. The dispersion pattern of the waypoints
should be a result of the dynamics of the configuration space, such as sensor sweep
width, speed, and turn radius of the searcher.

5. Searcher: An agent assuming search responsibilities of cells for which it has bid for
and won. Searchers participate in auctions and communicate with other searchers.

6. Auctioneer: A centralized or decentralized mechanism for determining which agent
won which cell. The position of auctioneer is typically accomplished by a single
agent, possibly a searcher [28], [32], [33]. In our implementation described in
Section 3 we explore methods that reduce or remove this control and communication
bottleneck [41], [43].

17

Figure 2.1. Search Area Discretized into Search Space

The application of auction algorithms to the area search problem is fairly straightforward.
In a centralized scheme, the auctioneer first acquires the lists of available bidders, cells,
and their associated costs. In a decentralized scheme, the agents must first send each other
cell and bidder information. Next, the searchers receive and verify the list of available
cells (with costs) via transmissions from some decentralized formation control system [45]
before utility calculation and bidding.

Agents place bids for cells according to their individual utility functions and are assigned
cells for which they submitted the winning bid. Once assigned a cell, searchers move to and
systematically explore the cell’s waypoints, conducting new auctions for follow-on cells as
required, until the search is complete [32], [33]. In order for the search to be considered
complete, every waypoint of every cell in the search space must be explored by a searcher.
The general form of an area search using auctions is presented in Algorithm 3 and in
Figure 2.2 [33]:

18

Figure 2.2. Area Search Execution Using Auctions

Algorithm 3 Algorithm for Conducting an Area Search with Auctions
searchers← [(searcher ID0, money0), ... , (searcher IDm, moneym)]

search_space← [(cell ID0, cellStatus0, cost0), ... , (cell IDn, cellStatusn, costn)]

while not search_complete do
cell_assignments← conduct_auction(search_space, searchers)

while not cells_complete do
searchers.search(cell_assignments)

end while
end while

2.3.1 Utility Function Considerations
The agent’s utility function determines what the agent values in being assigned a given task.
Many factors can contribute to the calculation of such value. Considerations of interest
include distance, remaining power level (i.e., endurance), agent type and capabilities (e.g.,
quad-copter or fixed-wing), speed, and agent sensor sweep-width, to name a few. A more
detailed discussion of these considerations is offered in Chapter 3.

Other research efforts have also explored these considerations. Prim Allocation, introduced
in [33], uses the distance of the cheapest previous bid in each agent’s bidding history
to influence its utility. [32] used a bidding strategy that included the cost of a bundle
of waypoints plus exactly one dollar per every unit of distance the agent was from each

19

waypoint as the bidding strategy. In [46], the searchers’ utility is based on their ability to
action objectives sooner rather than later, with weights assigned based on the length of time
each objective takes to complete. This stratification made it possible for searchers to be
assigned tasks for which they had an adequate amount of power remaining to accomplish,
preserving a high utilization rate. [25] notes that greedy first-step assignments in a search’s
first auction are generally unavoidable, given utility functions incorporating distance from
a given waypoint or cell.

An important aspect of auctions as applied to area search versus other applications is
that the most important goal is complete assignment, or tatonnement, of cells and waypoint
coverage over monetary frugality [41]. Deeply sub-optimal solutions result from cells going
unpurchased for long periods of time, as costs associated with unpurchased cells grow as
the search progresses farther away. Further, there is no chance of complete coverage if
cells go unpurchased indefinitely. With achieving complete assignment our primary goal,
bidding strategies need not necessarily save money, and searchers can be provided new total
amounts of money for each auction in order to avoid such situations.

Figure 2.3. Bidding for Cells. Agents submit bids in similar ways whether
a centralized or decentralized scheme is used. Some auctioneer mechanism
determines which agent won the given cell.

Arguments have been made that combinatorial auctions are better suited to producing
optimal assignment solutions than their single-item auction counterparts [32], [35]. It

20

is argued that they produce optimal sub-teams during search operations as compared to
general auctions because they optimize the use of each agent’s “synergy,” as [32] describes
it, relative to the bundle of resources it bid for and won. The authors of [32] and [5]
define this “synergy” as the advantage gained from selecting two or more cells that are
close together in a single bundle rather than bidding for one of the cells, winning it, then
bidding on the second cell, losing it, resulting in potentially sub-optimal collective search
times [32].

Auctions are only useful for assignment during area search if the status of the various data
structures is kept current and accessible to the necessary agents. The auctioneer should only
offer unique, unexplored cells for bidding or risk missing or duplicative coverage resulting
in sub-optimal results at best.

2.3.2 Search Space Maintenance
Before each auction round, the searchers need to know which cells are up for auction and
which ones are not. In order to do this efficiently, the searchers need to track the state that
each cell is in. The set of possible states that a cell can be in and the transitions to and
from those states must be well-defined to ensure accuracy. We define “maintenance” here
as deciding how the search area is divided into cells and tracking what the current state of
each cell is. When combined, this provides a snapshot of the overall state of the search at
a particular point in time. [25] presents a well tuned set of possible states to consider. The
states used in [25] are presented below:

A = {available, associated, assigned, active, complete} (2.13)

where associated relates to a “provisional” assignment and assigned refers to an actual
assignment that translates into adjustment to robot motion control [25]. Defining, assigning,
and communicating these states, and doing so efficiently, is a chief concern because they
represent the direct input and output of any area search algorithm. Further, if dynamic
applications are used, as described in the next subsection, then ensuring accurate input to
each auction is vital to avoid detrimental error propagation.

Search space maintenance can be distributed or centered on a single searcher. [22] discusses
the relative advantages and disadvantages of each method. Managing a central search space

21

requires a ground station or searcher to be assigned as the search space manager. The search
space manager is responsible for receiving statuses from searchers, updating the search
space, and rebroadcasting the updated information.

In decentralized maintenance, each searcher maintains its own current understanding of the
search space over the course of the search. The search area coordinates are first issued
to each searcher followed by execution of the same cellular decomposition, adjacency
development, and waypoint distribution algorithms across all of the searchers. While this
presents a duplication of effort and requires inter-swarm updatemessaging, it avoids reliance
on a single point of failure.

Regardless of which search space management solution is chosen, network communication
bandwidth and update frequency must be sufficient to maintain accuracy and universal
understanding. Consensus algorithms such as those analyzed in [31], lazy and eager
consensus introduced in [47], Kalman Consensus in [48], and consensus-based auction
algorithms in [28] have been shown to be viable communication solutions in dynamic and
lossy network environments [49].

2.3.3 Dynamic Search Space Reallocation Via Auctions
A key advantage to conducting an autonomous area search with auctions is the potential
for dynamic reallocation of search cells [33]. We define “dynamic reallocation” here as
updating the searcher-cell assignment solution given current statuses for the searchers and
cells. At the outset of a search but after all preliminary cellular development is completed,
an auction is started to create initial assignment of cells ranging from one up to and including
complete assignment.

Dynamic reallocation occurs when some trigger is met during the search that indicates a new
intermediate auction needs to take place given current information. An intermediate auction
is any auction occurring after the initial assignment auction has taken place. Figure 2.4
depicts how an area search progresses including dynamic reallocation and intermediate
auctions.

22

Figure 2.4. Dynamic Auction Application. This figure shows how a
system of searchers can recover after one of the searchers leaves the search.
Once the remaining agents sense the loss, they can reallocate the lost agent’s
work to operational searchers.

Algorithm 4Algorithm for Conducting anArea SearchwithDynamically AppliedAuctions
searchers← [(searcher ID0, money0), ... , (searcher IDm, moneym)]

search_space← [(cell ID0, cellStatus0, cost0), ... , (cell IDn, cellStatusn, costn)]

for i = 0 to length(search_space) do
if search_space[i][cellStatus] not in {active, complete} then

cells_to_auction.append(search_space[i])

end if
end for
while not search_complete do

cell_assignments← conduct_auction(cells_to_auction, searchers)

while not cells_complete do
searchers.search(cell_assignments)

if searcher_reported_out then
cells_to_auction.update(search_space, searchers)

cell_assignments← conduct_auction(cells_to_auction, searchers)

end if
end while

end while.

23

Triggers include cell completion, searcher-agent failure, or any activity that causes a searcher
to exit the search, such as encountering some higher objective as in Figure 2.4. Regardless
of which event causes the trigger, the result is still the net loss of an agent (or agents)
responsible for searching a cell. The cell’s status is then reverted from active to available
using Equation 2.13 and the auction re-initiates. Algorithm 4 includes the cell statuses from
Equation 2.13 and a Boolean test to check for triggers.

Dynamic reallocation is advantageous because variability permeates all aspects of robotics,
and the more flexible robotic systems are to changing environmental conditions the better
they are at managing real world problems such as search when other objectives compete
for priority. Determining which triggers re-initiate assignment (i.e., which triggers make
searcher_reported_out == True) will affect auction frequency, completion time, and
individual robot utilization scores [5].

2.4 Summary
In this chapter we presented an overview of auction algorithms, discussed how they create
solutions to the assignment problem, and explored their applicability to autonomous area
search. When applied to area search, auction algorithms create agent-cell pairs where
the goal is to minimize the total system cost required for completing the search while
maximizing overall system utility. Auctions achieve this by using individual-searcher
utility functions which seek to greedily minimize individual cost to search cells, managing
run-time concerns by using the simplest functions possible that still achieve the best possible
assignments. Auction algorithms also allow for dynamic reallocation of cell assignments at
certain intervals and given certain triggers which allow the system-wide costs and utilities
to be reshuffled with current state information taken into account.

This chapter also discussed many approaches to auction implementations and the different
impacts and advantages associated with using single-item and combinatorial auctions to
create agent-cell assignments. Single-item auctions, where a single cell is bid for by each
agent, typically allow for locally optimal assignments because each agent bids highest for
the cell that achieves the agent’s highest utility.

Sub-optimal search completion times can occur, however, if agents are only associated
with a single cell because they must continuously wait for follow-on cells to be assigned

24

via auction. This inefficiency can be mitigated with various auction-trigger strategies.
Combinatorial auctions can achieve faster search completion times since multiple cells are
bid for in bundles of high-utility cells at the cost of computation complexity that can likewise
hinder completion times.

Both types of auctions can assign cell-agent pairs using auctioneer winner determination
in both centralized and decentralized fashions, however decentralized methods are far
more robust to system failure while centralized mechanisms offer lower communication
bandwidth use. All of these factors are taken into consideration in Chapter 3 where we
introduce AuctionSearch, our implementation for area search using single-item auctions
and a decentralized auctioneer mechanism.

25

THIS PAGE INTENTIONALLY LEFT BLANK

26

CHAPTER 3:
Implementation and Experiment Design

In this chapter we explain AuctionSearch, our auction-based area search implementation.
First, we introduce the AuctionSearch flow of execution and the search environments
used for testing. We then describe our implementation’s major elements with specific
focus on utility calculations, bid generation, winner determination, and cell assignment and
reassignment. Lastly, we explain our use of speed and endurance to derive individualized
cell utility values to influence bidding strategies. In Chapter 4 we introduce our speed
and endurance utility functions and analyze our implementation’s performance in achieving
auction-based assignment in an efficient manner.

3.1 AuctionSearch Top-Level Flow of Control
In this section we explain the high-level flow of control for AuctionSearch. Each agent
participating in the AuctionSearch behavior executes the algorithms depicted in the flow
diagram of Figure 3.1. The two major branches of execution are IS_SEARCH_AUCTION and
IS_SEARCHER. These Boolean-controlled gates are tested each update cycle and executed
accordingly. Boolean controlled gates are more suitable than state-based control in this
implementation because they support parallel execution of both branches. That is, an agent
can execute the search of a cell while also participating in an auction for future cells.

The IS_SEARCH_AUCTION branch controls all activities related to cell assignment. In this
branch agents update their understanding of search progress, generate utility values for
each cell, calculate and submit bids for their favorite (i.e., highest utility-gaining) cells,
and conduct auction round winner determination. This branch ceases execution when each
agent has their required number of cells assigned or there are no more cells left to auction.
The branch flow is depicted in Figure 3.1.

27

Figure 3.1. AuctionSearch Flow of Control. The overall flow of
AuctionSearch is controlled by the two major Boolean-controlled gates,
IS_SEARCH_AUCTION and IS_SEARCHER. The algorithm terminates when
there are no more cells to search.

The IS_SEARCHER branch controls all search-related activities. Agents who have bid for
and won cells execute the search of their assigned cells by following a self-generated series
of waypoints. If an agent finishes searching its current cell, it initiates a new auction with
all other searchers to complete a new round of cell assignments. If any agent has already
received an auction-start message with a current auction identifier, it does not send new
auction start messages in order to avoid race conditions.

This branch is no longer executed when the agent has no assigned cell. If there are no cells
left requiring search, the AuctionSearch algorithm terminates. Algorithm 5 describes
the overall flow of control for our implementation. Each agent executes Algorithm 5
independently.

28

Algorithm 5 Top Level Control Algorithm for AuctionSearch
while cells left to search > 0 do

if IS_SE ARCH_AUCT ION then
Execute auction for cell assignments

end if
if IS_SE ARCHE R then

Execute movement to and search of assigned cells
end if

end while.

3.2 Search Area Decomposition
Before the agents are capable of executing either one of the branches they must first have
a common understanding of the area to be searched and the cellular breakdown. As the
behavior is initialized, each agent independently breaks the search area down into cells and
graphs their adjacency. This process is conducted in a deterministic manner so that all
agents generate the same set of search cells and adjacency graphs.

At a minimum, a finite geographical area consisting of at least one cell (which covers the
entire area) is required in order to have an agent or group of agents complete an area search.
We developed three environments for testing our AuctionSearch implementation: a basic
search area, a large-basic search area, and a complex search area. The major differences
between the two basic search areas and the complex area is cell uniformity and the presence
of obstacles.

3.2.1 Basic Search Area
The basic environment is a small rectangular search area containing no obstacles that is
broken down into 12 uniform quadrilateral cells. The basic search area pictured in Figure
3.2 was used for algorithmic development in the Software-in-the-Loop (SITL) simulation
environment and for live-fly field testing of our design. It afforded the maximum number
of iterations and ensured containment within a mandated geo-fenced region of the test site.
Working with the basic search area allowed for small-scale tuning of the algorithms in the
minimum amount of time and enabled live-fly capability within testing constraints.

29

Figure 3.2. Basic Search Area after Grid-Cellularization

The even distribution of cells in the basic search area provides the ability to test cases in
which high adjacency exists, such as in cell 4’s case in Figure 3.2 or cases wherein multiple
agents complete their in-progress cell at nearly the same time (assuming the same start
time). Further, the basic area’s cell uniformity minimizes the number of cases in which
utility calculations are based primarily on cell size and maximizes dependence on speed
and distance to the target cell. While cell size and distance to the target cell both ultimately
contribute to an overall distance calculation, the basic search area allows us to isolate each
variable and observe the contribution of specific independent variables to agent bid values
and the resulting assignments.

3.2.2 Large-Basic Search Area
The large-basic environment, pictured in Figure 3.3, is a scaled-up version of the basic
search area. It consists of a large rectangular search area that is broken down into 80
uniform quadrilateral cells and it also contains no obstacles. Using a larger area affords the
opportunity to observe large numbers of agents in execution and to observe how algorithm
run times and cell assignments scale with both the size of the swarm and the number of
cells. The shaded region in the lower-left of Figure 3.3 shows the basic search area from
Figure 3.2 to illustrate the scale difference between the two.

30

Figure 3.3. Large-Basic Search Area after Grid-Cellularization

3.2.3 Complex Search Area
Many realistic search areas can be represented by a grid of uniform cells canvased across
an open area, such as search and rescue or reconnaissance in unobstructed areas. Other
realistic search areas may include obstacles or restricted areas where we are not interested
in having search conducted, making the environment more complex. In both cases, auction
algorithms are a suitable means for assigning searchers to cells. In order to observe how
assignment solutions differ from basic to complex environments, we created the complex
search area depicted in Figure 3.4.

31

Figure 3.4. Complex Search Area after Boustrophedon Cellular Decomposi-
tion

The major difference between using auction algorithms for cell assignment in basic search
areas versus complex search areas is that obstacles create non-uniform cell sizes which
then impact cell utility calculations. Our implementation uses a Boustrophedon cellular
decomposition algorithm as described in [50] that breaks the complex environment down
into cells based on left and right critical vertices of the obstacles in the space. The various
cell sizes affect the utility calculation for a given cell because a large cell contains more
waypoints and takes longer to search than a smaller one.

Another difference between searching a complex and a basic area is the tendency for
bottlenecks in the adjacency of the cells. Bottlenecks can occur in both basic and complex
search areas, but they are more prevalent in complex areas where obstacles and restricted
areas can channel movement between cells. Bottlenecks in less complex areas, on the other
hand, are usually a byproduct of agent decision making.

32

Figure 3.5. Complex Search Area Adjacency Graph. The adjacency
graph for our chosen complex environment. Adjacency graphs for complex
search areas can contain many bottlenecks that effect overall system utiliza-
tion.

3.2.4 Search Cell State Labeling
Regardless of whether the search area is basic or complex, the set of possible states that
each cell can be associated with at any given time is the same. Similar to how [25]
categorized cells as “available, associated, assigned, active, and complete,” in Equation 2.13,
we establish the set of states for our implementation as follows in Equation 3.1:

states = {available, assigned, in_progress, assignment_removed, complete} (3.1)

The list below describes each of the possible states given in Equation 3.1 and Figure 3.6
depicts the same states. Cells can never be in more than one state at any one time. Further,
they are tracked in our implementation as an enumeration in ascending order so agents can
easily detect and log cell state changes reported by other agents by simply identifying a state
which is associated with a higher enumeration than what they are tracking.

1. available: A cell which is unexplored and unclaimed by any searcher. Available cells
are always included as biddable and winnable resources in auctions.

2. assigned: A cell which has a searcher associated but has not yet begun to be explored.
Assigned cells are included as resources in auctions. An agent who submits a higher
bid for an already-assigned cell will assume the assignment, and the losing agent will

33

relinquish their assignment.
3. in_progress: A cell which has a searcher associated and has begun to be explored by

that searcher. In-progress cells are never included as resources in auctions. In the
event that an in-progress cell’s searcher leaves the search, due to malfunction or some
other reason, the cell’s status is changed to assignment_removed.

4. assignment_removed: A cell which has been assigned any one of the abovementioned
states previously but has since become unassigned. Prior to the next auction, all cells
with a status of assignment_removed are transmitted to every other agent so that all
locally maintained cell dictionaries can be updated to available. This intermediate
step is helpful because it places cells which are being “thrown back” into the auction
into an easily detectable state rather than immediately changing the cell back to
available. The assignment_removed state occupies a higher enumeration than the
available state, so each agent can detect these cells during cell status updates without
having to examine every cell to see whether it is still available or not.

5. complete: A cell which has had all of its associated waypoints visited by a searcher.
Complete cells are never included as resources in auctions.

Figure 3.6. Cell State Diagram. This figure shows the cell state transitions
associated with our auction-based area search implementation. Cells can
only be in one state at a given time. Our implementation enumerates these
states in ascending order based on Equation 3.1 to enable easy identification
of cell status changes.

In our implementation, cells are maintained as objects with certain characteristics. Each
agent maintains a dictionary of the cells and their current understanding of each cell’s
state. Before and after each auction, each agent communicates which cells they observed
change in and what those changes were to allow other agents to update their understanding.

34

During these inter-robot cell status updates, each cell is represented and communicated as
a four-tuple in the following form:

cell_status = [cell_id, cell_state, cell_owner, cell_cost]. (3.2)

The cell_status field in Equation 3.2 relates to the cell status states listed in Equation 3.1,
which are listed in order of ascending precedence with regard to inter-robot updates. Put
differently, an update from a given agent that indicates a given cell is completewill supersede
an update from a different agent that indicates the same cell is only in_progress. Continuing
this example, an agent receiving this update would change their local understanding of this
particular cell’s status to complete and adjust its data structures accordingly to account for
the newly identified completed cell. This process occurs before and after each auction,
and auctions are not permitted to proceed unless all participating agents have updated their
understanding of cell statuses. As a final note on cell statuses, when all agents are in
agreement that the entire set of cells to search are complete, the search is terminated.

In the following sections we describe the two major branches of AuctionSearch execution
that were introduced in Figure 3.1, their algorithms, and the design trade-offs that shaped
the implementation.

3.3 Assignment of Search Cells via Auction
In this section we describe the first major branch of execution in our AuctionSearch
implementation, the IS_SEARCH_AUCTION branch. IS_SEARCH_AUCTION uses single item
auctions to create agent-cell assignment pairs. Figure 3.7 shows a detailed and zoomed in
flow of execution for the IS_SEARCH_AUCTION execution branch.

35

Figure 3.7. Auction Control in AuctionSearch. IS_SEARCH_AUCTION
Boolean-controlled execution branch flow of control.

The overall objective of this branch is to generate one-to-one mappings of searchers to cells
based on each agent’s calculated utility for each cell. A number of AuctionSearch class
methods support this objective, doing everything from ensuring all agents are operating on
consistent data to round winner determination. At the top level, we ensure that only one
auction is occurring at any given time by having all agents check whether they are already
participating in an auction before they initiate one. If an agent triggers our new-auction
criteria (e.g., they just completed a cell) while they are already participating in an auction,
they log the update locally and communicate it to the other agents at the next scheduled
synchronization event.

Ensuring that all agents are operating on consistent data is the first, and by far the most
important, design challenge that we faced. If different agents in the system have different
concepts regarding cell statuses, current bid values, or how far they are in an auction, the
assignment solutions produced will be deeply flawed at best. To combat this and to make
sure all agents possess the same concept of ground truth, we implemented three important
methods for ensuring data consistency. They are syncRounds(), cellStatusUpdate(), and
bidStatusUpdate().

36

3.3.1 Ensuring Data Consistency During Auctions in AuctionSearch
Multiple rounds of bidding are typically required when assigning agent-cell pairs if the
agents are close together, as they often bid for the same cell. In subsequent rounds,
losing agents can either increase their bids for their preferred cells or pursue different cells.
Situations arise where some agents naturally get ahead of the others because they require
less computation in a given cycle through the behavior loop. For example, an agent who
has won their cell is only required to resubmit the same bid (their winning bid), while all
losing agents are required to recalculate utilities and bid values.

If this process were allowed to proceed unchecked, the winning agents would start executing
the next round of the auction before the losing agents entered that round, resulting in
inconsistency issues regarding what each agent’s current bid and targeted cell actually are.
The syncRounds() method is implemented to make sure that all agents are executing the
same round of the auction at the same time.

Formally described in Algorithm 6, the syncRounds() method combats data inconsistency
by forcing agents who are ahead of others to wait to execute the next auction round until all
other agents have caught up. This is accomplished by way of a corollary to the consensus
minimum problem with a connected communications graph and no malfunctioning or
misleading agents (i.e., no Byzantine failures) [47]. Any time an agent sends its cell
statuses or bids to other agents, they attach the round number corresponding to the round
within which they are operating. Agents receiving those messages maintain a set of reported
round numbers. An agent cannot proceed to the next round until the consensus-obtained
minimum equals the round it wants to execute. If an agent’s round number equals the
maximum of the set of agent round numbers, it must wait for the others to catch up.

37

Algorithm 6 Auction Round Synchronization with syncRounds()
round_tracker.add(round_number)
if length(round_tracker) == 0 or length(round_tracker) == 1 then

return True
else

max_round_num← max(round_tracker)
end if
if length(round_tracker) > 1 then

if round_number == max_round_num then
round_tracker.clear()
auction_status_request()
return False

else
return True

end if
end if

Similar constructs were implemented for cell status updates, bid messaging, and auction
complete messaging to help maintain synchronization by ensuring that agents are not
permitted to proceed with the auction unless every participating agent has heard a current
status from every other participating agent. Specifically, if an agent receives a bid from
another agent which is tagged with a round number that does not match their own, the bid
is rejected in order to enforce consistent round execution. Our implementation provides
“previous request” functionality that prevents deadlock situations where one agent is trying
to request information from other agents who are unwilling to send it, providing a way for
agents to catch up.

Robotic systems intended to operate in the real world not only need to cope with various
stages of execution, but they must also deal with lossy communications connections. The
system must be robust to data loss during transmission. Each agent in our implementation
keeps track of the number of agents executing AuctionSearch and checks whether it has
heard from all other active agents during key synchronization steps such as during cell status
updates or bidding. If an agent has not received messages from all other agents, it sends

38

requests for the information. No agent will proceed with an auction round unless it has
heard from all other participating agents. If some subset of agents have stopped executing
AuctionSearch, their departure is detected by the remaining agents and they are excluded
from future reporting requirements and are stripped of any cells they were responsible for
prior to departure.

3.3.2 Generating Cell Utilities and Bids in AuctionSearch
Once all the agents have a common understanding of which cells are included in the auction
and which are not, the next step is for each agent to determine for which cell they prefer to
bid. To make this determination, each agent generates a utility value for each cell, choosing
the one which nets the highest value for the agent. The accrued set of utility values is used
to determine what bid the agent should place for its preferred cell. Below we detail how
our implementation accomplishes this task.

Our implementation uses generateCellUtilities() to iterate through each cell and calculate the
individual utility values. Equation 3.3, introduced in many forms in this thesis’ references,
shows how an agent calculates the utility for a given cell c [26], [27], [33].

utilityc = private_value − utility_cost − cell_cost (3.3)

utility_cost = distance + size + remaining_size. (3.4)

The net utility associated with a particular cell, utilityc in Equation 3.3, of a particular cell
c can be described as the net value realized by the agent for owning it. The objective of
each agent, then, is to maximize its own utility through selection of the highest-utility cell.
In the same vein, utility_cost can be described as the cost incurred by an agent for owning
a given cell. For the search problem of this thesis, this can be reasonably estimated as a
function of the distance that the agent would be required to travel to complete the search of
a particular cell (Equation 3.4). The components of this calculation are as follows:

1. distance: The Euclidean distance from a particular location to the closest starting
waypoint within a given cell. If an agent is already searching a cell (i.e., the cell’s
status is in_progress), distance is calculated as the Euclidean distance from the last
waypoint in the agent’s search path to the best starting waypoint in the candidate cell.

39

The “best” starting waypoint is defined as the waypoint occupying the corner of the
candidate cell which is nearest the agent. If an agent does not have any active cells,
distance is the Euclidean distance from the agent’s current location to the closest
starting waypoint of the candidate cell.

2. size: The distance that the agent would be required to travel in completely searching
the candidate cell. This value is a function of the size of the cell and the agent’s sweep
width (i.e., visibility of the ground at the search altitude). While this component
remains constant in the basic environment (where cell sizes are uniform), it varies
with cell size in complex environments containing obstacles non-uniformly shaped
cells. The larger the size of the cell, the higher the cost of ownership since larger cells
will generally take longer to search.

3. remaining_size: The distance that the agent is required to travel to complete the search
of its current in_progress cell before transiting to the candidate cell. Similar to how
size scales, remaining_size can be arbitrarily large in complex environments where
non-uniformity can create arbitrarily large cells.

The above listed utility_cost components are depicted in Figure 3.8.

40

Figure 3.8. Utility Cost Components. The utility cost that an agent
associates with a given cell is the combination of three components: distance
to the cell, the size of the cell, and the remaining_size in an agent’s current
cell, if any.

3.3.3 Utility Function Variables
The components of the utility_cost of Equation 3.4 scale linearly as its individual compo-
nents vary. The size and remaining_size values associated with a search area, for instance,
vary in direct proportion to the cell’s size (area). Similarly, the distance value is wholly
dependent on vehicle locations and the Euclidean distance between individual search cells.
These components evidently scale the entire system linearly because the utility cost com-
ponents affect all agents equally and thus abstract away the specific agent locations at a
particular time.

Given that our utility costs are a function of distance traveled, we modify each agent’s
bidding strategy by using this distance to derive their expected incurred costs for each
candidate cell. Individualized bidding strategies ultimately allow each agent to maximize
their utilization relative to the strengths and weaknesses of the other agents. The individual
strategies we explore use per-robot speed and endurance to calculate cell utility as a function

41

of time or energy required to search a cell. We then compare the results across the three
search areas introduced in Section 3.2 with different mixes of highly capable (i.e., fast or
high-endurance) and less capable (i.e., slow or low-endurance) agents. Below, we briefly
describe howwe use these values to calculate expected costs. We define the actual functions
in Chapter 4.

1. Speed: Each agent is capable of a specific maximum transit speed to travel. We
use individual speed to derive utility values that maximize system-wide efficiency by
minimizing individual search times. We combine distance to travel with each agent’s
speed to compute the required search time for a particular cell. In order to avoid
overly greedy results (e.g., fast agents dominating the entire search to the detriment of
system-wide utilization) we provide an advantage bias to agent utility calculations that
is inversely proportional to transit speed. As a result the utility costs for faster agents
grow more slowly as cell sizes increase. The ultimate outcome that this dynamic
achieves is that all agents prefer to search smaller, closer cells, but faster agents are
less averse to searching larger, more distant cells.

2. Endurance: Each agent has a specific endurance threshold arising from its charac-
teristics (e.g., battery capacity) and mission history (e.g., prior tasking). We use
endurance to derive utility values that maximize system-wide efficiency by maximiz-
ing energy conservation. We combine distance to travel with each agent’s endurance
to estimate the required power usage, or effort, associated with a particular cell.
Scaled in a manner similar to the speed utility, all agents prefer to search low-effort
cells, but high-endurance agents are less averse to conducting more of the search
workload than low-endurance agents.

3.3.4 Generating a Bid for a Cell
Once these elements are considered and the utility for each cell is generated, the maximum
utility-producing cell is selected as the preferred cell and a bid for ownership is then
computed using Equation 3.5 and communicated to the rest of the agents. Introduced in
different forms in the auction algorithm literature [26], [27], [33], this equation computes a
bid as a function of the highest-utility cell, the second-highest-utility cell, and a system-wide
“minimum bid” value, (ε).

42

bid_valuec = previous_bid + highest_utility − 2nd_highest_utility + ε

ε > 0.
(3.5)

Our implementation’s bid generation function serves two purposes. First, it provides agents
the ability to compute new bids for each round that take previous results into account.
Second, it provides the means to determine when the auction can be terminated. Below we
discuss these major elements of bid generation in AuctionSearch.

For our implementation, we assume that search areas tend to contain more cells than
there are agents to search them, given our cellular decomposition strategy. This implies
that the majority of the auctions our implementation executes are instances of asymmetric
assignment, where either the cells outnumber the agents (e.g., early in a search) or the agents
outnumber the cells (e.g., at the end of a search). As such, the bidding and assignment
phases of each round must account for this wide range of configurations.

In symmetric assignment, introduced in [27] and discussed in Chapter 2, the auction
algorithm swaps n assignments among n agents and then measures whether they are within
ε of their highest utility to determine whether to bid for a different cell or not. In our
implementation, the bidding phase consists of agents bidding for their highest net-utility
cell and checking whether any other agents submitted a higher bid for the same cell. If not,
the round moves to the assignment phase and tentatively assigns the cell to the winning
agent. If there was more than one bid for the same cell, the highest bid wins.

We manage bidding for cells by lumping agents into two bins. The first are those who won
their favorite cell in the previous round and the second are those who did not. Figure 3.9
depicts the bid generation logic our implementation follows.

43

Figure 3.9. Agent Bid Generation Logic. This figure describes the logic
that AuctionSearch agents follow when generating bids for cells. As fewer
and fewer cells are available at the end of a search, only the agents with the
highest utility values will win assignment while the others abandon cells and
ultimately submit “no bids.”

If agent a won its favorite cell in the previous round, it means that a’s bid is the maximum
value in the set of bids for a particular cell in a particular round. All agents who submitted
winning bids in the previous round are directed to submit the same bid for the same cell
again. When all participating agents have submitted the same bid twice for the same cell, and
all agent-cell pairs are unique, the auction is closed and agents commit to their assignments.

Designing the algorithm to have agents submit their winning bid twice allows each agent to
detect when all other agents are happy with their assignments, having selected net-utility-
maximizing cells that are free of conflicts. This design is equivalent to having each agent
send a specific message indicating satisfaction with the current assignment without the
overhead of additional messaging. In the next subsection we describe how this behavior
contributes to auction termination and cell assignment.

If agent a did not win its favorite cell, it means that two or more agents submitted bids for
the same cell and a’s bid is not the highest bid for its favorite cell. All losing agents are then

44

required to compute new bids that take into account the winning bids from the previous
round as well as increasing bids by at least ε . Agents compute new bids by logging the new
tentative costs for cells and determining the impact of those costs on their net utility values.
The losing agents then choose the cell with the highest associated net utility for their next
bid.

When the number of agents is larger than the number of cells, some number of agents
will necessarily fail to be assigned. In order to allow agents to abstain from bidding in a
detectable way (e.g., more than simply not bidding, which could be ambiguously interpreted
as a malfunction), non-bidding agents submit an explicit “no bid.” Agents decide to abstain
from bidding for a particular cell after they have lost the same cells multiple times back and
forth, indicating thrashing between two or more cells with similar utility values. As agents
decide to abstain from bidding as the auction proceeds, the set of cells eventually equals the
set of winning agents, producing our one-to-one mapping. As such, as the number of cells
continues to decrease at the end of a search, only the agents with the highest utility for the
last remaining cells will win them.

3.3.5 Auction Round Winner Determination in AuctionSearch
Once each agent has generated and shared its bid for its preferred cell, the next step is to
determine which bids are the highest andwhether the agents are satisfiedwith their proposed
assignments or not. Our implementation uses Algorithm 7 for this purpose.

The computational complexity of winner determination in the general case as implemented
in Algorithm 7 is O(cnm) where c is the complexity of our consolidateBids() step which
checks for cell conflicts, organizes bids into dictionaries, and determines whether our
termination criteria has been met. n is the number of agents bidding for cells and m is the
number of bids per agent. An auction is terminated once each agent has submitted the same
bid for the same, unique cell for two consecutive auction rounds.

45

Algorithm 7 Auction Round Winner Determination
all_bids← dictionary of previous round’s bids (if any)
inbound_bids← list of other bids of form [[searcher, cell, bid_value] ...]
bid← my bid of form [searcher, cell, bid_value]
same_bids← True
consolidateBids() and set same_bids← False if bids are different from last round
if same_bids == True then

Assign each searcher to cell for cost bid_value and set cell’s state to assigned
else

winner← my searcher_id
highest_bid← my bid_value
for i = 0 to length(all_bids) do

if other agent’s bid_value > my bid_value for the same cell then
highest_bid← other agent’s bid_value
winner← other agent’s searcher_id

end if
end for
if winner == my searcher_id then

submit the same bid once again
submit_same_bid← True

end if
end if

Every bid from every agent is inspected in our consolidation step to check for termination
criteria and conflicts, so this step requires n inspection operations. If the agents did
not submit the same bids, our winner determination step conducts another n inspection
operations to determine which agents won which cells. Therefore, in the worst case,
Algorithm 7 requires at least n2m inspection operations. Since our implementation follows
the single-item auction paradigm, agents only bid for one cell at a time, fixing m at 1 and
the computational complexity is therefore O(n2). The complexity of Algorithm 7 can be
reduced to O(n) if different auction termination criteria is used and the consolidation step
omitted.

46

3.4 Conduct of an Area Search after Cell Assignment
In this section we describe the second major branch of execution in our implementation of
the AuctionSearch of Figure 3.1. The IS_SEARCHER branch controls the actual search
of assigned cells by assigned agents. Depicted in Figure 3.10, this Boolean-controlled
branch is executed by each agent while there are still cells that reside in any state other than
complete, as shown in Equation 2.13 and discussed in Figure 3.6. The set_waypoint() and
test_waypoint() tasks execute every time-step and respectively set latitude, longitude, and
altitude towards which the agent is to navigate and determine whether or not the current
search waypoint has been reached.

Figure 3.10. Search Conduct in AuctionSearch. This figure shows a
deeper look at the search branch of control. IS_SEARCHER is True as long
as there are cells left that are not complete. IS_SEARCHER becomes False
when all cells are in the complete state, at which time the AuctionSearch
algorithm terminates as well.

Other steps depicted in Figure 3.10 are executed as required based on the current search
state. The current search state is a function of the collective statuses of the cells that make up
the search area. The state change logic driving AuctionSearch is depicted in Figure 3.11.

47

Figure 3.11. Agent Cell Change Logic Diagram. This figure show how
cell state transitions are managed in AuctionSearch. Agents determine
what action to take based on their current cell assignments, if any.

A more illustrative example is provided in Figure 3.12 to further clarify agent behavior
based on current cell assignments. Referencing Figure 3.11 as well, Figure 3.12 shows
how the auction process optimizes cell assignments based on cell utilities and current
cell assignments. Agents are not obligated to search a cell unless it has set its status to
in_progress, which only occurs if the agent has entered the cell and begun search. Therefore,
assigned cells are available for auction in order to achieve higher system-wide utilization
and efficiency. Searcher a decides to abandon its association with cell 5 in favor of cell 4
or 7, for example, due to its expected increase in utility for the association.

48

Figure 3.12. Agent Cell Change Example. This figure shows two agents
and their current assignments at a particular time-step of an area search.
We use cell search completion as a trigger criteria for a new auction. This
provides the opportunity for agents to increase their per-agent utilization
by reshuffling assignments to optimize system-wide utilization given current
conditions. This ultimately results in a more efficient search.

3.5 Summary
In this chapter we introduced our auction-based area search implementation through which
we experimented with various environmental and utility function considerations. We first
described the AuctionSearch three search areas with which experiments were conducted.
Each test search area provided a different scale and complexity to facilitate capture of
realistic results for auction-based assignment of area search cells in challenging scenarios.

In this chapter we also described our algorithmic implementations for major aspects our
use of auction algorithms to create cell-agent pairs for efficient execution of the area search.
Covered topics included maintenance of consistency over the course of multiple rounds,
decentralized winner and auction completion determination, and our adaptation of the
auction algorithm utility and bid equations of [26], [27], [33] to identify locally optimal
bids to maximize agent utility and avoid minimize system-wide cost. and our utilization of

49

the cell statuses of [25] for cell state tracking.

Our agent utility functions include many different variables to allow us to explore the range
of possible solutions that our implementation can produce. These variables ultimately allow
us to observe the variance across a range of utility function implementations to measure
their performance against area search benchmarks. In Chapter 4 we present the results of
our simulated experimentation and live testing of our two utility functions across system
sizes and search areas.

50

CHAPTER 4:
Analysis of Auction-Based Assignment in Area Search

In this chapterwe discuss the auction-based assignment and performance of AuctionSearch.
First, we discuss the interplay of cell utilities and their impact on agent bids. Then we in-
troduce speed and endurance utility functions that influence agent bidding strategies. We
then discuss our experimentation framework using those utility functions and our measures
of performance.

Finally, we measure how well AuctionSearch uses auction-based assignment to complete
area searches of varying complexity, and seek to draw conclusions about the use of auction
algorithms in general for area search applications. We analyze AuctionSearch perfor-
mance given various search areas, system sizes, and individual robot speed and endurance
values. Throughout this chapter we discuss the design trade-offs required to implement
AuctionSearch and the reasoning behind those decisions to inform future research in the
area of autonomous decision.

4.1 Impact of Cell Utilities on Agent Bidding Strategies
Agent bids are a function of the difference between their favorite (highest utility) cell and
their second favorite (second highest utility) cell, regardless of the utility function used to
calculate those utilities. Figure 4.1 provides a descriptive exemplar depicting how utility
costs impact cell utilities and agent bidding strategies.

51

Figure 4.1. Agent Bids Given Cell Utilities. This figure shows two agents
and the variables that effect bid creation. Agents’ bids for their favorite cells
reflect the interplay of favorite and second-favorite utility values. In this
diagram, distances are a1, a2, b1, b2, size is denoted by cell_size, and
remaining_size equals 0.

An agent’s bid for its favorite cell is dependent on how much worse its second favorite cell
is because the bid is derived from the difference between the two utility values. In other
words, as the difference between favorite and second favorite grows, the agent’s bid for its
favorite cell increases as well.

Different utility functions will generate different bidding strategies. As an initial example
of a simple utility function’s impact on agent bidding, Figure 4.1 depicts two agents that use
minimum distance to determine their favorite cell. Searcher b favors its favorite cell because
b1 < b2 with size and remaining_size utility cost components held constant. Further, b1
is much smaller than b2, making the difference between searcher b’s favorite and second-
favorite cells larger than for searcher a. Put differently, searcher b bids higher than searcher
a because (b2 − b1) > (a2 − a1). As a result, searcher b will submit a larger bid for its
favorite cell than searcher a for its favorite.

Agent utility functions use this interplay of favorite and second-favorite cell utilities to
manage the utility dropoff, referring to the rate of utility decrease as a function of utility

52

cost from Section 3.3. Different utility functions can be used to increase or decrease agent
utility dropoff rates on a per-robot basis, thus modifying individual bidding strategies using
different robot characteristics such as speed or endurance.

4.1.1 Issues Associated with Distance-Dominated Utility Functions
Using distance alone to calculate utility values generates assignment solutions that tend to
be overly greedy. By only considering distance in utility, each agent pursues its nearest
cell exclusively, with remaining_size acting as the only major differentiating factor between
individual utility_costs. In situations where multiple agents are collocated, this results in
similar utility valuations and overlapping bids for the same cell across the system. When
large numbers of agents come up with similar utility values for the same cells, multiple
agents often identify the same highest-utility option. This creates longer than desired
auction run times due to the large number of rounds required as agents seek more distant
cells.

In Sections 4.2 and 4.3, we introduce two utility functions that take into account individ-
ual robot characteristics other than just distance to calculate utility. By making utility a
function of individual capabilities, the multi-robot system is able to make better assignment
decisions based on those capabilities and ultimately achieve higher system-wide utilization
and efficiency.

4.2 Utility Function 1: AgentUtility as aFunction of Speed
In this section we introduce our first utility function which uses speed to calculate cell
utility values. By making utility a function of speed, agents use time-to-complete as the
major differentiator between cells. We first define the function and then discuss the bidding
strategy we expect from each agent given the impact of individual speed on cell utility.

4.2.1 Speed Utility Function Definition
Our first individualized utility function generates cell utility values as a function of speed.
Our speed_utility function uses Equation 4.1 to calculate cell utility.

utilitys = value −
(

distance + size + remaining_size
speed

)
− cell_cost (4.1)

53

The first term of utility, which we call value in Equation 4.1, represents a large constant
value from which the utility cost is taken. Our implementation treats all cells as equally
valuable for the value variable so it remains constant, and negative utilities are allowed. The
third term, cell_cost, is the additional cost a bidding agent is required to pay to take a cell
that is already assigned to another agent.

The second term of utility in Equation 4.1 evaluates to the time required to complete transit
and search of the prospective cell and the remainder of an in_progress cell, if any. This is
also referred to as the utility_cost of owning the candidate cell. The faster the agent, the
shorter the time it takes to complete a prospective cell. Our experiments use 15 and 23
meters per second (m/s) as the respective slow and fast speed values to provide measurable
differences while staying within the flight tolerance of our Zephyr II airframes.

4.2.2 Expected System Behavior Given Speed-based Utility
For a faster agent, the difference between the highest-utility cell and second-highest-utility
cell is less than for the slower agent. The slower agent, therefore, bids higher for the cell.
This design encourages fast agents to let slow agents have closer cells because fast agents
take less transit and search time for further cells than slow agents. By ensuring that slower
agents have an advantage bidding for closer cells, system-wide utilization is maximized.

Faster agents suffer less utility dropoff as utility_cost increases due to their increased speed,
so they are inherently capable of incurring such costs with less impact to system-wide
efficiency than slower ones. Figure 4.2 shows how a slow agent and a fast agent calculate
utilities for the same favorite cell. This figure depicts the notional bid values in Figure 4.3.
Slow agents win their favorite cell in situations where fast and slow agents have similar, or
identical, utility_costs.

54

Figure 4.2. Utility Scenario 1: Agents with the Same Utility Costs.
This figure shows how two agents with different speed or endurance values
calculate bids for their favorite cell. In the depicted case, searcher a wins
the cell because of its lower speed or endurance. For figure clarity, the
remaining_size portion of utility_cost is 0.

The graph in Figure 4.3 shows an example of the relationship between a slow and fast agent
bidding for their favorite cells based on speed utility calculated at increasing utility_costs.

Figure 4.3. Agent Bids at Increasing Speed Utility Costs. This graph
depicts how fast and slow agents’ bids differ at increasing utility costs from
their favorite cell. Agents bid less for their favorite cell the higher their utility
cost. When utility costs between slow and fast agents are equal, slow agents
outbid fast ones.

55

As expected, the higher the utility_cost associated with an agent’s favorite cell, the less
the agent is willing to bid for it. As shown in Figure 4.3, using our speed utility function
affords slower agents an advantage over fast agents for their favorite cell (given equivalent
second-favorite cell utility).

Agents rarely have the same utility costs and often have different utility dropoff values as
a result. Slower agents have a steeper utility dropoff the higher their utility cost for their
favorite cell is. Faster agents, however, experience a more gradual utility dropoff which
means they are more inclined to stop pursuit of a closer, smaller cell than their slower
counterparts. This relationship is depicted in Figure 4.4, showing how slower agents bid
for, and win, lower utility cost cells.

Figure 4.4. Utility Scenario 2: Agents with Different Capabilities.
This figure shows how two agents with different speed or endurance values
calculate bids for their favorite cell. Slow agents win their favorite cell versus
fast agents when their utility dropoff is large. In the depicted case, searcher
a wins the cell because its second-favorite cell achieves less utility than that
of searcher b’s second-favorite. For figure clarity, the remaining_size portion
of utility_cost is 0.

This utility relationship allows slow agents to be able to share in the workloads of very large
and fragmented search environments where dramatic differences in favorite and second-

56

favorite cell utilities can occur (e.g., our large-basic area introduced in Chapter 3). Figure 4.6
shows how slow and fast agents bid for the same cell when the slow agent has a much higher
utility cost than the fast agent. A pictorial example of this scenario is presented in Figure 4.5.

Figure 4.5. Utility Scenario 3: Agents with Different Utility Costs
for Same Cell. This figure shows how two agents with different speed
or endurance values calculate bids for the same favorite cell when the less-
capable agent has a higher utility cost. In the depicted case, searcher b wins
the cell because searcher a’s utility cost is excessively high. For figure clarity,
the remaining_size portion of utility_cost is 0.

The crossover point in Figure 4.6 is the point at which highly-capable agents outbid less-
capable ones for the same cell, depicted in Figure 4.5. It is not advantageous for less-capable
agents to win cells which incur much higher utility cost than for their highly-capable
counterparts. Therefore, highly-capable agents win closer, smaller cells when less-capable
agents are too far away or the cell is too large to benefit system-wide utilization or search
time.

57

Figure 4.6. Agent Bids as Slow Agent Costs Increase. This graph
depicts how fast and slow agents’ bids differ as the slow agent’s utility costs
increase.

When the speed utility function is used in homogeneous systems (e.g., all fast or all slow
agents), agents revert to greedy strategies due to their identical speeds. This maximizes
individual utility in an effort to maximize system-wide utility like when using distance
alone.

4.3 Utility Function 2: Agent Utility as a Function of En-
durance

In this sectionwe introduce our second utility functionwhich uses endurance to calculate cell
utility values. By making utility a function of endurance, agents use energy-to-complete, or
“effort required,” as the major differentiator between cells. As with the first utility function,
We will define and then discuss the function’s impact on agent bidding strategies.

4.3.1 Endurance Utility Function Definition
Our second individualized utility function generates cell utility values as a function of
agent endurance. Using endurance makes the size and distance to each cell the dominant
differentiator between agent utility values for the same cell. Our endurance_utility function

58

uses Equation 4.2 to calculate cell utility.

utilitye = value −
(

distance + size + remaining_size
10 × endurance

)
− cell_cost

0 < endurance < 1
(4.2)

The utility in Equation 4.2 represents the effort required to complete the search of the
candidate cell. Agents with lower endurance incur higher utility costs. We use 0.2 and 0.8
units as our low and high endurance values. The value and cell_cost terms are the same as
in Equation 4.1.

4.3.2 Expected System Behavior Given Endurance-based Utility
The goal of our endurance-based utility function is to allow low-endurance agents to bid
higher for smaller and closer cells than their higher-endurance counterparts. The more
endurance an agent has, the more time and energy it can devote to transit and search,
enabling it to be less averse to searching more distant or larger cells.

This design encourages high-endurance agents in much the same way our speed utility
function encourages fast agents. High endurance agents allow lower-endurance agents
to to take smaller, closer cells in an effort to get the maximum utilization possible from
them. High-endurance agents suffer less utility dropoff as utility_cost increases, so are more
inclined to find higher-cost cells acceptable than their low-endurance counterparts.

The graph in Figure 4.7 shows how low and high-endurance agents bid as utility costs for
their favorite cells increase.

59

Figure 4.7. Agent Bids as Endurance Utility Cost Increases. This
graph shows how agents’ bids are impacted by utility costs with the en-
durance utility function. Low-endurance agents have a steeper utility dropoff
and therefore outbid high-endurance agents for their favorite cells.

When low and high-endurance agents are considering cells with similar distance, size,
and remaining_size values, low-endurance agents have a steeper utility dropoff from their
favorite to the second-favorite cells. This is indicated in Figure 4.7 by the difference in slope
between the two agents. As both high and low-endurance agents’ utility costs increase, they
both bid less due to the higher effort required. The higher-endurance agent, however, incurs
less utility dropoff than the low-endurance agent because the difference between its favorite
and second-favorite cells is small. This results in high-endurance agents allowing their
low-endurance counterparts to win cells when utility costs are small. The high-endurance
agents then pursue cells with larger utility costs.

Figure 4.8 shows what happens when low-endurance agents incur higher utility costs than
high-endurance agents (e.g., low-endurance agent is at an increased distance from the
cell than the high-endurance agent). High-endurance agents eventually outbid their low-
endurance counterparts because the low-endurance agents’ advantage erodes as utility cost
increases. This causes high-endurance agents to bid for, and win, nearby and small cells if
low-endurance agents are too far away to outbid them.

60

Figure 4.8. Agent Bids as Low-Endurance Agent Cost Increases.
This graph shows how agents’ bids differ as the low-endurance agent’s utility
costs increase. The result of, and motivation for, this behavior is the same
as for the speed utility function described in Figure 4.5. Eventually, the
high-endurance agent outbids the low-endurance agent.

4.4 AuctionSearch Experiment Setup and Performance
Measurement

In this sectionwe describe our experimentmethodology. Wenowpivot from the introduction
of our implementation and its utility functions to the measurement of its performance as
an auction-based, area search driver. We first define our measures of performance that
serve as the basis of our analysis, and then we introduce the framework that we tested
AuctionSearch in to capture those measures.

4.4.1 Metrics for AuctionSearch Success
Herewe list themetrics captured during simulated and live demonstrations of AuctionSearch.
We use these metrics to quantify the variance between different runs with different config-
urations. Ultimately, these metrics allow us draw conclusions about system efficiency and
identify areas where efficiency could be improved using alternative auction implementa-
tions.

1. area search completion time: The amount of time that a multi-robot system requires

61

to search a specific area running AuctionSearch. This value is compared to the
amount of time the perfect search takes with the same search area, number, and type
of robots.

2. number of auctions: The number of auctions required to assign all cells in a given
search area with a given number of agents. The number of auctions required is a
function of the number of cells, agents, and the maximum number of cells allowed to
be won per agent per auction.

3. average auction time: The average amount of time agents spend in each auction. This
metric is a function of the number and length of the rounds per auction. Conclusions
about auction efficiency are impacted by how long each agent takes to complete each
round, while conclusions about agent bidding strategies are impacted by the number
of times agents sought the same cells as discussed in Section 4.1.

4. average rounds per auction: The number of rounds required for each auction divided
by the number of auctions. This metric is used to observe agent bidding strategies and
whether system-wide efficiency is impacted when agents are tightly bunched together.

5. average round times per auction: The seconds per round divided by the number of
rounds per auction. This metric is used to observe the efficiency of the bidding phase
of our auctions.

6. per-robot contribution: The percentage of the total search area that a particular robot
completes. This metric is used to determine if subsets of agents conducted the
majority of the search or if the workload was relatively dispersed system-wide. This
metric, combined with per-robot utilization, allows us to draw conclusions about
specific robot characteristics and their impact on the system’s search completion.

7. per-robot utilization: The ratio of time an agent is actively engaged in search related
tasks. We derive utilization for robot i searching cell j by Equation 4.3 where u =

utilization, r = run_time, t = transit_time, and l = loiter_time:

ui j = ri j − ti j − li j (4.3)

We further define transit_time as the time robot i spends moving to cell j and
search_time as the time i spends searching j (j is in_progress). We define loiter_time
as the time i spends waiting for a cell assignment or for the end of the search,
whichever comes first. More specifically, loiter_time = total_time − transit_time −

62

search_time. We analyze the different components of Equation 4.3 with regard to
search area complexity, system size, and individual robot characteristics. We use this
analysis to derive system-wide efficiency as a function of individual robot efficiency
and to draw conclusions about the system’s assignment decisions.

4.4.2 Experimentation and Data Collection
Our experimentation with AuctionSearch consisted of live and simulated flights of be-
tween three and 10 ARSENL-owned Zephyr II UAVs per run. Our live experimentation was
conducted atMcMillanAirfield, CampRoberts, CA, and our simulated experimentationwas
conducted in the ARSENL SITL simulation environment. In total, we ran AuctionSearch
326 times in simulation and live-flight against our three search areas, two utility functions,
and various system sizes. Figure 4.9 shows the breakdown of those runs per search area for
each utility function.

Figure 4.9. Total Number of Simulation Runs. This table shows the var-
ious configurations observed in SITL. Even numbered robots are fast/high-
endurance and odd numbered robots are slow/low-endurance. Agent num-
bering begins at 1. The additional six runs referenced above were live-flight
validation tests.

In addition to varying the system sizes and the utility functions in each search area, we varied

63

the mix of fast or high-endurance and slow or low-endurance for each system and we varied
the agent start locations. We modified the mix of agents by selecting even-numbered agents
in each run to be the fast or high-endurance agents, with their odd-numbered counterparts
assigned as slow or low-endurance. This allowed us to observe the effects of the utility
functions on the overall search.

We varied the agent start locations by either starting in a cluster (i.e., all n participating
agents orbiting at roughly 140 meters away from the same waypoint) or by starting each
robot in a pseudo-randomly chosen location inside the search area. By varying the start
location, we are able to observe the effects of clustered-agent competition on overall search
performance versus a more dispersed, less competitive start.

We purposefully chose to test AuctionSearch against a wide range of areas, system sizes,
utility functions, and robot dispersion levels instead of testing against a single configuration
exhaustively. We chose this in order to observe the results of auction-based assignment
across a variety of configurations. Each run of AuctionSearch generates different assign-
ment solutions and run times, even from tightly controlled starting configurations, due to
the stochastic nature of agent cell completion patterns and auction initiation trigger times.

In addition to measuring performance across different system sizes, we also measure
AuctionSearch against the perfect search as was done in [22] to provide a basis of
comparison that is independent of our implementation. We use the same equation for the
perfect search as was used in [22], rewritten here for convenience, with T = search_time,
A = area, V = velocity, W = sweep_width, and N = number_of_agents:

T =
A

VW N
(4.4)

For our perfect search calculations, we defined W = 75m, and 3 ≤ N ≤ 10. V is equal
to 15m/s for measurement against our endurance function, and V is equal to the average
system-wide speed for our speed function. While this measurement is more useful for our
speed utility function’s performance, we include it for the endurance function as well for
completeness. High-endurance agent utilization is more useful in measuring our endurance
utility function’s performance, as higher utilization indicates more system-wide efficient
use of available energy.

64

4.5 AuctionSearch Simulation Performance in Various
Search Areas

In this section we discuss the performance of our area search application in the SITL sim-
ulation environment. We used simulation for two reasons. First, physics-based simulation
allows us to gather far more iterations of data than live-flight would allow. Second, using
simulation allowed us to run the application at scale. Airspace restrictions and safety con-
cerns limited the size of the area for which we could gather live-flight data. Our simulated
large and complex areas allowed us to observe system reactions to realistic, large search
areas with many cells to auction. Figure 4.10 shows the output of a typical experiment with
the SITL simulation environment.

Figure 4.10. Screen-shot of a 10-Robot Run in SITL Simulation.
This figure shows the user interface to the SITL simulation environment.
Each terminal window displays robot-specific state information while running
the behavior, while the overhead view in the lower left shows each robot’s
location in the search area.

Each subsection below describes the results from our experimentation in each of the three
search areas utilized. We organize our results below by search area and by utility function,
with speed utility followed by endurance utility. First, we present the overall outcomes for

65

each run, then we graph the average results per-robot, per-run. We present results at the
per-robot level because our analysis in Section 5.1 is dual-focused on per-robot contribution
to the area search as well as the multi-robot system’s performance overall. We focus at both
levels because individual performance given speed and endurance impacts the system-wide
performance of auction-based assignment and search completion. In the next section we
analyze the results, draw conclusions, and explain our findings about auction-based area
search.

4.5.1 Results from Area Search in the Large Area
In this subsection we present AuctionSearch results in the large area. This environment is
the same size as the complex area, but contains 5 times the number of cells, all of uniform
size. The goal of testing our implementation in this environment is to observe how systems
react when large numbers of cells require search. In this area, distance plays a dominant
role in utility costs as cell sizes are the same. Further, agent decisions have a larger impact
on overall search efficiency in the large area because of the prevalence of orphan cells (i.e.,
those cells which have been left behind as the search progresses) which must be cleaned up
as the search draws to a close. While these factors impact overall runtime in the large area,
auction statistics and overall division of work across agent capabilities is fairly stable as
system size increases. Figure 4.11 shows auction statistics for the large area across system
sizes for both utility functions.

Figure 4.11. Auction Performance in Large Area. This figure shows how
our implementation performs in the large area with regard to average auction
and round counts and duration. The number of auctions, rounds, and their
duration (measured in seconds) indicate how much internal deliberation the
system requires to complete the search. As system size increases, auction
counts decrease due to the increased number of cells assigned per auction.

66

Average auction durations, round counts, and round durations are all relatively low compared
to the complex and basic areas. This is attributed to the fact that the cells outnumber the
agents for the vast majority of the search. Agents have many cells with similar utility values
to choose from, so the incurred utility dropoff is lower than in the complex area and suitable
replacements are pursued. This results in lower relative auction times as fewer rounds are
required to achieve unique cell-agent pairs.

The number of auctions required to complete the search in the large area generally decreases
linearly as system size increases. When more agents are conducting the search, more work
is being assigned per auction, until such time that the agents outnumber the cells. This
result is echoed in the overall runtimes, shown in Figure 4.12, as overall runtime generally
decreases with increased system size. The solid lines correspond to our implementation’s
average overall runtime for both utility functions. These include the time spent orbiting
(i.e., loiter time) waiting for assignments if agents are participating in auctions with no
in_progress cell. The dashed lines correspond to our implementation’s performance when
loiter time is removed, which we call worktime.

We compare runtime and worktime to the perfect search because our implementation incurs
high runtimes due to our auction-trigger criteria being cell completion. This strategy often
causes agents to orbit in place while conducting auctions if they do not have a follow-on
cell, increasing overall runtimes. Comparing worktime to the perfect search is a more
appropriate measure of the algorithm than our overall runtime since worktime removes this
implementation-specific factor. The graph of the perfect search runtime at each system size
is represented by the dotted line for comparison as well.

67

Figure 4.12. AuctionSearch Runtimes and Worktimes in Large Area.
This figure shows the average runtimes and worktimes for the large area
across system sizes. The time to search generally decreases as more agents
are involved in the search.

Search of the large area benefits from increased system size more than either of the other two
test environments because of the large number of cells within it. The more cells there are,
the less competition there is among agents for assignments, so assignments are generated
more quickly than in the basic or complex areas.

Another important aspect of area search is each agent’s contribution to the overall search.
We captured loiter time, transit time, and percentage searched for each agent at each system
size to measure each agent’s contribution given their specific characteristics (i.e., fast or
slow, high-endurance or low). Figure 4.13 shows the percentage split of work completed by
fast or slow agents (using the speed utility function) and by high and low-endurance agents
(using the endurance utility function) in the large area across system sizes.

68

Figure 4.13. AuctionSearch Division of Work in Large Area. This
figure shows the percentage of work completed by highly capable (i.e., fast
or high-endurance) versus less capable (i.e., slow or low-endurance) agents
across all tested system sizes in the large area. An equitable distribution
of work across system sizes is demonstrated, which is a result of the search
area consisting of uniform and relatively small cells that all agents achieve
high utility for searching.

The division of labor in the large area was roughly equal across all tested system sizes. This
is achieved because the search area consists entirely of small, uniform cells. While the cells
outnumber the agents, both highly capable and less capable agents are able to find small, and
relatively close, cells which achieve high utility. This causes all agents to contribute more or
less equally to system-wide utilization, maximizing efficiency. This equitable distribution
of labor breaks down once the agents begin to out number the cells, such as toward the end
of a given search. This breakdown is most pronounced when assignment patterns have left
distant orphan cells, which require agents to consider large distances in their utility cost
calculations.

4.5.2 Results from Area Search in the Complex Area
In this subsectionwe present AuctionSearch results in the complex area. This environment
is 16 times larger than the basic area. It is also more complex than the large area due
to its various cell sizes. In this search area, size and remaining_size have the largest
impact on agent bidding strategies given our utility functions. The large variance in cell
utility introduced by these utility cost elements enables highly capable agents (i.e., those
possessing high speed or endurance) to contribute more to the search than their less capable
counterparts. Figure 4.14 shows auction performance in the complex area across system
sizes for both utility functions.

69

Figure 4.14. Auction Performance in Complex Area. This figure shows
auction performance in the complex area with speed utility (left) and en-
durance utility (right). Average auction duration is higher in the complex
area than in other test areas due to agents adamantly wanting smaller cells
and entering bidding wars for them to avoid being assigned massive cells.

As expected, agents consistently pursued smaller cells instead of larger cells because of the
large disparity in utility cost. The higher average number of auctions (indicated by the blue
bars in Figure 4.14) is attributed to under-utilized agents initiating auctions for cells that
are assigned to, but not yet set to in-progress by, other agents. This begins to occur once
the agents outnumber the cells during the search, and the under-utilized agents (i.e., those
with no assignment) start an auction after a predefined amount of time. Under-utilized
agents continue to initiate auctions at predefined intervals as long as cells remain in either
the assigned or the available state in an effort to ensure that only agents with the highest
utility for a given cell end up searching it. Due to the large distances between cells in the
complex area, agents assigned cells can be in transit for extended periods of time, enduring
numerous auctions during which those agents must defend their assignment to the given cell
against the under-utilized agents. This ultimately leads to higher average auction counts in
the complex area, but ensures that highest utility is achieved.

70

Figure 4.15. AuctionSearch Runtimes and Worktimes in Complex
Area. This figure shows the overall runtimes and worktimes of our imple-
mentation in the complex area. Runtimes are longer than in the perfect
search across both utility functions and across all system sizes due to agent
deliberation and bidding wars for limited numbers of attractive cells. In the
complex area, small cells are generally more attractive than larger cells due
to their greatly reduced utility costs.

Figure 4.15 shows the runtimes and worktimes of AuctionSearch in the complex area
across system sizes for both utility functions and as compared to the perfect search. Runtimes
are higher than in the perfect search due to the deliberation required to achieve assignment
and our implementation decision to start auctions for follow-on assignments only after a
cell is set to complete. Worktime (i.e., our runtime with time spent loitering removed)
trends lower as system size increases, mapping closer to the perfect search than our overall
runtimes.

Average runtimes are particularly high as system size increases across both utility functions
for two reasons. First, agents continually compete for cells back and forth as the search
draws to a close, with each agent competing for fewer and fewer cells until they eventually
hit the explicit “no bid” criteria discussed in Chapter 3. Once all of the small cells are

71

already in-progress or complete, agents experience very high rates of utility dropoff from
their favorite to their second-favorite cells in the complex area due to largely variant cell
sizes. This causes all agents to pursue their favorite cell more per auction than if they had
less-costly alternatives to fall back on. The second reason for large average run times is the
impact of the requirement for system-wide consensus on shared data such as the cell states
and bid values for an increasing number of agents before auctions are permitted to proceed.

Runtimes and worktimes are generally longer when using the endurance function versus the
speed function because the high-endurance agents are required to carry a majority of the
workload due to the massive utility costs associated with the majority of cells in the complex
area. This resulted in the low-endurance agents completing all of the smaller cells while
the high-endurance agents were generally responsible for searching all of the larger cells,
requiring large amounts of time to search. This result is also apparent in the percentages
searched given speed and endurance in Figure 4.16.

Figure 4.16. AuctionSearch Division of Work in Complex Area. This
figure shows the division of labor between fast and slow agents as well as
between high and low endurance agents across various system sizes. In
general, fast and high-endurance agents conduct the majority of the search
compared to their slow and low-endurance counterparts.

Figure 4.16 shows how fast and high-endurance agents generally dominate the search due
to their willingness to search larger and more distant cells. The complex area is made up
of mostly large cells, so agents searching those cells contribute a larger amount to search
utilization than agents searching small cells. Additionally, as system size increases, the
division of labor tips toward fast and high-endurance agents. This is due to more fast and
high-endurance agents being available in larger systems to take the larger cells (given that
even-numbered agents were set to high capability) which leads to those highly capable

72

agents taking more of the work as more of them participate.

4.5.3 Results from Area Search in the Basic Area
In this subsection we present AuctionSearch results in the basic area. This environment
is the same size and structure of our live-fly area, and represents the smallest and most
constrained environment in which we tested our implementation. As such, the relative
number of auctions and the overall runtime of searches in this area were small compared to
the complex and large search areas. The auction results in the basic area are presented in
Figure 4.17.

Figure 4.17. Auction Performance in Basic Area. This figure shows
the auction performance in our basic area for the speed utility (left) and
endurance utility (right) functions. The greater the number of agents par-
ticipating in the auctions, the longer the auctions take.

As system size grows, average auction runtimes grow as well. This is caused by at least
two things. First, increased competition for limited resources causes the system to require
more rounds to complete assignment. As more agents bid for fewer cells, the competition
generates bidding wars that, by definition, create a single winning bidder per round and thus
require more rounds to achieve unique cell-agent pairs. Having more auction rounds leads
to longer auction times even though round times remain low regardless of system size.

The second reason auction runtimes increase as system size increases is the increased
burden placed on the synchronization framework introduced in Section 3.3. As more agents
are cooperating in the system, more messages are transmitted and the risk of message
collisions and data loss increases. This increased messaging and re-transmission burden
increases auction times because the system can only proceed as quickly as the last agent

73

receiving a required update. Figure 4.18 shows our implementation’s runtime and worktime
performance across system sizes as compared to the perfect search.

Figure 4.18. AuctionSearch Runtimes and Worktimes in Basic Area.
This figure shows how much time is required to search the basic area. In-
creased auction times contribute to increased runtime in our implementation
as system size increases because auctions are initiated at cell completion.
Other trigger strategies that reduce time spent loitering will achieve im-
proved search times.

While our implementation requires more time than the perfect search, worktime generally
decreases with an increase in system size. This point is more apparent in the larger
environments, specifically the large area, where less competition for cells occurs. Transit
time contributes to longer runtimes as well in the basic area at system sizes seven and eight.
Our implementation seeks to maximize per-agent utilization through its utility functions’
deference to less capable agents (i.e., slow or low-endurance agents) when utility costs are
low, as in the basic area. Therefore less capable agents are allowed to transit further to
maximize their per-robot utility in the basic area, contributing to the increased runtime and
worktime. This result is less pronounced in the complex and large areas due to the larger
utility cost variances encountered.

74

In Chapter 5 we provide more detail regarding ways to mitigate auction impact on over-
all search runtimes, such as starting auctions based on different trigger criteria than cell
completion. Increased messaging has no impact on the total number of auctions, however,
which decreases as system size increases. This occurs because there are more search cells
assigned per auction, reducing the total number of auctions.

Figure 4.19. AuctionSearch Division of Work in Basic Area. This
figure shows the percentage searched by highly capable versus less capable
agents across system sizes. As discussed in 4.4, we assigned even-numbered
agents high speed and endurance and odd-numbered agents were assigned
low speed and endurance in order to achieve a roughly 50 percent split per
system size.

Figure 4.19 shows the percentages of work completed in the basic area. Our speed utility
function, shown on the left side of Figure 4.19, shows the expected result of fast agents
affording slow agents the opportunity to take lower-cost cells. The basic area is so small,
however, that fast agents defer most of the search to slow agents and, therefore, never have
the opportunity to take larger-cost cells; A behavior which is shown to be achieved in our
complex and large areas.

Our endurance utility function results, shown on the right side of Figure 4.19, show a more
equitable division of labor in the basic area. This occurs because low-endurance agents are
only presented with low cost cells due to the small area to be search, and therefore were not
penalized as harshly as in the other, larger search areas.

4.5.4 AuctionSearch Performance Against the Perfect Search
Measuring AuctionSearch against variants of itself, albeit a valuable tuning strategy,
provides no basis from which to measure its performance against other auction-based im-

75

plementations. Comparing performance to the perfect search, however, provides a common
benchmark for all auction-based area search applications to measure against.

The perfect search makes many assumptions and represents ideal circumstances which
rarely, if ever, materialize in real implementation. System dynamics such as communication
infrastructure, decentralized assignment deliberation, and orphan cell management impact
performance in less than ideal, real-world applications. Regardless, certain design decisions
make auction-based implementations perform more closely to the ideal than others.

Figure 4.20 shows how AuctionSearch’s worktimes compare to the perfect search across
all configurations.

Figure 4.20. AuctionSearch Worktimes Versus the Perfect Search.
This figure shows how many times longer our implementation took to com-
pletely search across all configurations than the theoretical perfect search.
Our implementation fared best in the large area where competition for cells
is lowest. It fared worst in the basic area where competition is highest,
especially at larger system sizes.

76

Our implementation performed closest to the perfect search in the large area where auction
durations were low due to minimal bidding conflicts among the many cells. Performance
suffered the most in the basic area where the agents quickly outnumber the cells, creating
many cell conflicts that result in increased auction duration averages.

4.5.5 Live-Fly Results
In this Subsection, we discuss and compare the results of live AuctionSearch experimen-
tation conducted at Camp Roberts, CA with the NPS ARSENL Zephyr II UAVs. We ran
AuctionSearch on two separate occasions with different system sizes and utility functions
in the basic area to validate our simulation results and verify operation with real-world
constraints. We were only able to conduct live experimentation with the basic area due to
range safety restrictions.

We conducted live-flight demonstration in August 2018 with system sizes ranging from
three to six agents to demonstrate our implementation’s real-world feasibility. We then
conducted live-flight testing in November 2018 with system sizes ranging from four to eight
agents and both utility functions to validate and compare the results against our simulation
results. Figure 4.21 shows the auction statistics for live-flight across system sizes for both
utility functions.

The trend of increased system sizes having increased average auction runtimes, overall
runtimes, and worktimes is evident in live-flight as it was in simulation. Of note, we were
only able to test each system size one time, so the results presented here do not benefit
from results averaged over time. It is assumed that live-flight results would track closer to
simulated results given more runs, as the standard deviation in values is within the same
range observed in simulation.

77

Figure 4.21. Live-Flight Performance in Basic Area. This figure shows
how our implementation performs in live experimentation conducted at Camp
Roberts, CA. The average auction runtimes increase as system-size increases,
as was seen in simulation.

Figure 4.22 shows the live-flight run times of AuctionSearch in the basic area across
system sizes for both utility functions. These runtimes are graphed with the perfect search
for comparison. Our live-flight results closely match the trend evident in simulation,
showing that average runtimes increase with system-size for our implementation.

78

Figure 4.22. AuctionSearch Live-Flight Runtimes and Worktimes
in Basic Area. This figure shows how much time is required to search
the basic area in our live-flight conducted at Camp Roberts, CA. Increased
auction times, as shown in Figure 4.22, contribute to increased runtime as
system size increases in our implementation.

Figure 4.23. Live-Flight AuctionSearch Division of Work in Basic
Area. This figure shows the percentage searched by fast or high-endurance
versus slow or low-endurance agents across system sizes during live-flight
experimentation at Camp Roberts, CA. Highly capable agents conducted
the majority of the search, but a more or less equitable split was achieved as
intended.

79

Figure 4.23 shows the percentage split of work completed by fast or slow agents (using the
speed utility function) and by high and low-endurance agents (using the endurance utility
function) in the basic area across system sizes. Again, live-flight experimentation yields
similar results to simulation.

4.6 Summary
In this chapter we introduced our speed and endurance utility functions that seek to achieve
agent bidding strategies that maximize system-wide utilization and efficiency in auction-
based area search. We also discussed the impacts that these functions have on agent bids
and the expected behavior from each. Our utility functions allow less capable agents (i.e.,
slow or low-endurance agents) the opportunity to make maximum use of their available
time and energy while more capable agents (i.e., fast or high-endurance agents) take on
larger and harder work that their less capable counterparts cannot efficiently complete.

We defined the measures of performance for our implementation and conducted 326 sim-
ulated and live runs in three different areas with system sizes ranging from three to 10
robots each. The results of these various experiment configurations provide a basis for
using auction-based cell assignment in area search applications in distributed systems. We
observed how different cellular decomposition strategies achieved different results with var-
ious system sizes and mixes of high and low-capability agents. We also observed how the
burdens of system-wide data consistency and distributed autonomy impact overall runtime
of auction-based implementations. We then validated our simulated results with live-flight
testing of our implementation.

With all data collected and results analyzed, we present our findings, conclusions, and
recommendations in Chapter 5. We also discuss the lessons learned during design, devel-
opment, and testing of AuctionSearch and outline what future research would inform the
area of autonomous decision in multi-robot systems.

80

CHAPTER 5:
Conclusion

The overarching goal of this thesis was to demonstrate the applicability of auction-based as-
signment for the autonomous execution of area search bymulti-robot systems. This research
goal was achieved by first exploring the different variations of market-based assignment
algorithms and their application to area search. We then introduced AuctionSearch; our
single-item auction-based area search behavior implemented for the ARSENL multi-UAV
system.

Wewent on to discuss the design trade-offs required to implement auction-based area search
and subject AuctionSearch to a wide range of tests, spanning three search areas, two utility
functions, and system sizes varying from three to 10 robots each. Per-robot and system-
wide statistics were collected and analyzed to measure AuctionSearch’s performance as
an auction-based area search solution. We compared our results for various configurations
to identify those aspects having the largest impact on search performance. Finally, we
validated our simulation-environment results with live-fly field experimentation to assess
performance with regard to the challenges presented by interaction with hardware the real
world.

5.1 Findings and Lessons Learned
In this section, we discuss our findings regarding auction-based area search and provide
recommendations for optimization given our implementation and research objectives. Our
AuctionSearch implementation described in Chapter 3 and its experimentation and test
results presented in Chapter 4 show that auction algorithms are well suited for autonomous
area search applications with multi-robot systems. Our research shows that satisfactory cell
assignment solutions can be achieved with auction algorithms. Our research also shows
that multi-robot systems are capable of achieving complete area search autonomously using
auction algorithms, and can do so in restrictive, lossy-communications environments of
various size and complexity.

81

5.1.1 Increasing the Number of Agents Generally Decreases Search
Times

Worktime, which we defined in Chapter 4 as our implementation’s overall runtime with the
loiter time removed, generally decreases when more agents are included in an area search.
While auction-based assignment takes a non-trivial amount of time to achieve optimal cell-
agent pairs, it can perform nearly as well as the perfect search with optimal auction-start
criteria and agent bidding (or “no-bidding”) strategies.

To achieve area search runtimes that are close to that of the perfect search, agents need to
be searching cells for as much of the area search runtime as possible. This requires that
agents always have assigned cells, implying that auctions for those assignments occur and
are concluded prior to the completion of the current in_progress cell. This can be achieved
by requiring agents to start the next auction immediately after setting a cell to in_progress
or upon reaching some remaining_length threshold for their current cell instead of waiting
until a cell is set to complete, as our implementation does. Search runtimes might also be
decreased by assigning more of the search area per auction using combinatorial auctions.

Intra-system communication frequency and message complexity can also contribute to
increased runtimes. Communication frequency directly impacts runtime based on the
amount of built-in redundancy. For systems such as ours that are required to operate in lossy-
communications environments, the allowances to account for lost data are mandatory, to
prevent data inconsistency from undermining system-wide consensus. Messaging schemes
such as ours that use requests as the fail-safe for missed messages will incur some lost
time while retransmissions occur. This equates to some level of inefficiency, but it makes
the system robust to data-loss and ensures consensus is maintained throughout execution.
We view this trade-off as acceptable and have made the intentional decision to prioritize
correctness over efficiency.

5.1.2 Increasing the Number of Agents Increases Auction Duration
Auctions take longer to achieve unique cell-agent pairs as the number of participating
agents increases. While our research shows that having more agents generally decreases
area search completion times, particularly in large areas with many search cells, individual
auction performance suffers as a result of having more agents. Increased auction times are

82

a natural byproduct of having more agents vying for the same number of cells, particularly
as the number of cells continues to decrease toward the end of a search when the agents
begin to outnumber the cells. Our research indicates that there may be an optimal number
of agents for a given search area which, if surpassed, degrades search performance. We
leave the actual identification of the optimal number given per-robot capabilities and cellular
decomposition, however, to future work.

Efforts can be undertaken to lessen the impact of increased competition, such as providing
off-ramps for subsets of agents who fall below some utility threshold or are bidding back
and forth between two cells of similar utility. This will allow highly competitive auctions to
completemore quickly butmay result inmore sub-optimal cell-agent pairs. Our experiments
indicate that some degree of sub-optimalitymay be preferable to extended auctions, however,
since it allows agents to commence work more quickly. Further, increased optimality can
once again be pursued in subsequent auctions that reshuffle any assigned or available cells.

5.1.3 HavingMany Small Cells Increases Efficiency in AuctionSearch
The results of our large-area experiments indicate that our single-item auction assignment
scheme and utility functions lend themselves best to having many small cells as opposed to
fewer larger cells. When there are large numbers of small cells, agents have many fallback
options if they do not bid successfully for their favorite cell in a given round. This leads to
shorter auction times since agents settle on cell assignments more quickly.

The opposite effect was observed in the basic- and complex-area experiments. Agents have
very few options among the 12 and 16 cells, respectively, and therefore spend large amounts
of time in auction competing for the small number of cells. The prevalence of extremely
large cells in the complex area results in steep utility dropoff rates which cause agents to
pursue their favorite cell repeatedly to avoid being forced to accept their second favorite
assignment. This extended pursuit equates to increased auction times and sometimes even
inefficient assignment solutions. As more agents are introduced, the competition for the
few small cells is exacerbated, and auction times increase.

83

5.1.4 Utility Function Modification can Achieve a Range of Bidding
Behaviors

Our results demonstrate that using agent characteristics to calculate cell utility can modify
agent bidding strategies by influencing what each agent views as a high-utility task. Mod-
ification of agent bidding strategies at the individual level appears to be the most tuneable
aspect of auction-based search implementation. A wide range of strategies can be imple-
mented to achieve efficient results across a variety of system sizes in as wide a range of
possible search areas.

For our research we used speed and endurance to achieve equitable division of labor across
all search areas to maximize per-robot utilization. Our implementation combines all aspects
of utility cost (distance, size, and remaining_size) and uses agent speed or endurance as the
differentiator between agents’ utility values for a particular cell. More nuanced variable
controlmight be used to refine bidding strategies further. For example, increases in per-robot
utilization can likely be achieved by incentivizing agents based on their particular distance
value. That is, agents can be made to favor closer cells regardless of size, producing
a greedy system response that may be desirable for certain applications. Other agent
characteristics that can be considered for more nuanced auction-based assignment include
sensor, defensive, and offensive capabilities.

5.2 Future Work
This thesis explored the technical capability of multi-robot systems to conduct area search
operations without human intervention. Our work implemented auction-based assignment
to achieve this level of autonomy, but it hardly represents the limit to which the field
of autonomous decision and distributed robotics should explore. Future research efforts
should experiment with a more broad spectrum of algorithms, system configurations, and
mission sets to identify more avenues for maturation of autonomous decision approaches.
Further, future efforts should explore how deeply these algorithms can be nested and linked
to develop ever-more robust behaviors.

84

5.2.1 Autonomous Decision Using Combinatorial Auctions
Combinatorial auctions are as well-suited as single-item auctions to area search problems, if
not more so. Future research should explore the efficiency achieved by conducting auction-
based assignment of search cells using combinatorial auctions with various numbers of cells
per awardable subset. Many of the same design trade-offs wrestled with in AuctionSearch
will need to be addressed with combinatorial auctions as well, and many more issues will
require attention as well given the subset selection difficulties discussed in Chapter 2.

5.2.2 Independent Cuing and Nesting of Auctions During Area Search
One paradigm that should be explored is the linking of autonomous decision frameworks,
like auction algorithms, to allow multi-robot systems to perform arbitrarily complex behav-
iors given operational triggers, specific and specialized agent capabilities, and knowledge of
desired end-states. Area searches, for instance, are rarely ordered as stand alone operations.
Rather, they are typically information-gathering endeavors that inform follow-on actions. If
the agents participating in the area search know what operational outcomes are desired and
have knowledge of their own capabilities, the distributed system can collectively determine
how best to execute any number of trigger-based follow-on tasks.

Auctions can be initiated via agent-to-agent cuing with the goal of assigning some number
of agents to a single objective requiring attention. While some subset of agents bids
for and executes the emergent task (e.g., attack, follow, report, or defend), the remaining
agents can detect this through the auction process and dynamically reassign area search
cells among themselves. This would push even more autonomy to the per-robot level,
testing the discovering agent’s ability to not only identify, classify, and individually execute
an objective, but to also alert any number of the other agents to come to its aid on that
objective. In this way, arbitrary linkages of tasks can be achieved to develop arbitrarily
complex behaviors in a robust and failure-tolerant fashion.

Work in this area should not be completed in a vacuum or without an overarching frame-
work to govern systems’ employment for arbitrarily complex missions. The Mission-Based
Architecture for Swarm Composability (MASC) introduced by [51] represents a mission-
focused systems engineering framework within which technical implementation and ex-
perimentation can be undertaken to avoid haphazard and unfocused autonomous systems

85

behavior development. Ultimately, the more autonomy that can be pushed to the edge of
our multi-robot systems, the more capable those systems will be for undertaking complex
behaviors.

86

APPENDIX: AuctionSearch Source Code

1 ’ ’ ’
2 −−

3
4 − Auc t i onSea r ch
5 − Matthew S . Hopchak , 2018
6
7 − Area s ea r ch behav i o r u t i l i z i n g an a u c t i o n a l g o r i t hm t o

au tonomous l y d i s t r i b u t e
8 s ea r ch c e l l s among t h e swarm p a r t i c i p a n t s .
9

10 − Th i s f i l e c o n t a i n s f o u r c l a s s e s t o run auc t i on −based area
s ea r ch

11 1 . Auc t i o nSea r ch : conduc t a u c t i o n s f o r c e l l a s s i g nmen t s
a t c e r t a i n i n t e r v a l s

12 and run an area s ea r ch g i v en a number o f a g en t s and a
s ea r ch area .

13 2 . C e l l : hold , muta te , and a c c e s s a t t r i b u t e s o f c e l l
o b j e c t s f o r conduc t o f area s ea r ch and a u c t i o n s .

14 3 . Waypoint : hold , muta te , and a c c e s s a t t r i b u t e s o f
waypo in t o b j e c t s f o r conduc t o f area s ea r ch .]

15 4 . Sea r che r : hold , muta te , and a c c e s s a t t r i b u t e s o f
s e a r c h e r o b j e c t s f o r conduc t o f area search ,

16 p a r t i c i p a t i o n i n au c t i o n s , and communica t ion w i t h
o t h e r ag en t s .

17
18 −−

19 ’ ’ ’
20 from __ f u t u r e _ _ import d i v i s i o n

87

21 import math
22 import r o spy
23 import ap_msgs . msg as apmsg
24 import s td_msgs . msg as s tdmsg
25 import a p _ l i b . g p s _ u t i l s a s gps
26 import a p _ l i b . m a t h _ u t i l s a s ro_math
27 import a p _ l i b . nodeab l e a s nodeab l e
28 import a p _ l i b . a p_enume r a t i on s as enums
29 import a p _ l i b . b i tmapped_by t e s a s b y t e s
30 import a p _ l i b . p l u g i n _ b e h a v i o r a s p l u g i n
31 import a p_m i s s i o n_p l a nn i n g . swarm_manager a s swarm
32
33 c l a s s Auc t i onSea r ch (p l u g i n . P l u g i nBehav i o r) :
34 ’ ’ ’ Area s ea r ch swarm behav i o r u s i ng a u c t i o n a l g o r i t hm s
35 Used t o d i s t r i b u t e s ea r ch c e l l s from a g i v en s ea r ch area

t o p a r t i c p a n t
36 ag en t s and t o au tonomous l y a s s i g n new c e l l s a t c e r t a i n

t r i g g e r i n t e r v a l s .
37 Auc t i o n s are i n i t i a t e d each t ime an agen t c omp l e t e s a

c e l l t o maximize
38 sys tem −wide u t i l i z a t i o n . Agen t s use e i t h e r t h e speed or

t h e endurance
39 u t i l i t y f u n c t i o n s t o compute u t i l i t y v a l u e s f o r each

c e l l , and s u b s e q u e n t l y
40 b id f o r t h e i r f a v o r i t e (h i g h e s t u t i l i t y − y i e l d i n g) c e l l .

I f t h e y are ou tb i d ,
41 ag en t s pur sue o t h e r c e l l s or t h e same c e l l again ,

i n c r e a s i n g t h e i r bid , depend ing
42 on u t i l i t y . The a l g o r i t hm t e rm i n a t e s once t h e r e are no

more c e l l s l e f t r e q u i r i n g
43 s ea r ch .
44
45 Member v a r i a b l e s :

88

46 _agen t : S ea r che r i n s t a n t i a t i o n f o r ho l d i n g s e a r c h e r
i n f o rma t i o n l i k e c e l l s owned

47 _ s e a r c h _ r o l l _ c a l l : s e t t o keep t r a c k o f a g en t s who
have r e p o r t e d c e l l s t a t u s e s

48 _ b i d _ r o l l _ c a l l : s e t t o keep t r a c k o f a g en t s who have
r e p o r t e d b i d s

49 _be en_ t h e r e : s e t t o keep t r a c k o f c e l l s t h a t have
been s ea r ched (are comp l e t ed)

50 _ c e l l s _ l e f t : s e t t o keep t r a c k o f c e l l s l e f t t o be
s ea r ched (are a v a i l a b l e or in −p r og r e s s)

51 _ round_ t r a c k e r : s e t used by syncRounds () t o t r a c k
what round a l l a g en t s are i n f o r c o n s i s t e n c y

52 _ c e l l s _ i n _ p r o g r e s s : s e t t o keep t r a c k o f c e l l s t h a t
are in −p r og r e s s

53 _c e l l s _ no t _won : s e t used t o keep t r a c k o f c e l l s an
agen t has l o s t t h i s a u c t i o n

54 _ c e l l s _ c hang e d : s e t used t o keep t r a c k o f c e l l s t h a t
have upda ted s t a t u s e s

55 _ c e l l _ u p d a t e _ s e n t : s e t t o t r a c k which c e l l s an agen t
has s e n t upda t e s f o r

56 _abandoned_c e l l s : s e t used t o keep t r a c k o f which
c e l l s an agen t has s t opped pu r s u i ng t h i s a u c t i o n

57 _ c om p l e t e _ r o l l _ c a l l : s e t used t o keep t r a c k o f
a g en t s who have r e p o r t e d a u c t i o n comp l e t e

58 _ l o i t e r _ c h e c k p o i n t : l i s t t o ho ld l a t i t u d e and
l o n g i t u d e o f l a s t waypo in t f o r l o i t e r l o c a t i o n

59 _ i n b o u n d _ s t a t u s e s : l i s t o f l i s t s o f c e l l s t a t u s e s
r e c e i v e d from o t h e r ag en t s b e f o r e p r o c e s s i n g

60 _we s t _wa l l : l i s t h o l d i n g c a r t e s i a n c o o r d i n a t e s t o
we s t e r n boundary o f t h e s ea r ch area

61 _no r t h _wa l l : l i s t h o l d i n g c a r t e s i a n c o o r d i n a t e s t o
n o r t h e r n boundary o f t h e s ea r ch area

62 _ e a s t _wa l l : l i s t h o l d i n g c a r t e s i a n c o o r d i n a t e s t o

89

e a s t e r n boundary o f t h e s ea r ch area
63 _ s ou t h _wa l l : l i s t h o l d i n g c a r t e s i a n c o o r d i n a t e s t o

s o u t h e r n boundary o f t h e s ea r ch area
64 _ o b s t a c l e _ g r i d s : l i s t h o l d i n g c a r t e s i a n c o o r d i n a t e s

t o t h e v e r t i c e s o f each o b s t a c l e i n complex area
65 _ o b s t a c l e s : l i s t o f l i s t s h o l d i n g v e r t e x −edge− v e r t e x

f o r each o b s t a c l e i n complex area
66 _ inbound_b id s : l i s t o f t u p l e s o f b i d s r e c e i v e d from

o t h e r ag en t s
67 _ c e l l _ u t i l i t i e s : l i s t o f t u p l e s o f c e l l u t i l i t i e s

w i t h i n a g i v en round o f an a u c t i o n
68 _cu r r _b i d : l i s t c o n t a i n i n g t h e c e l l _ i d and b i d _ v a l u e

f o r a g i v en c e l l i n a c u r r e n t a u c t i o n round
69 _p r e v_b i d : l i s t c o n t a i n i n g t h e c e l l _ i d and b i d _ v a l u e

o f my p r e v i o u s b i d t o a l l ow agen t s t o ca t c h up
70 _ p r e v _ c e l l s : l i s t o f c e l l _ i d s t h a t changed l a s t

a u c t i o n round which r e q u i r e communica t ion o f
upda t e s

71 _ a l l _ b i d s : d i c t i o n a r y o f b i d s f o r a round where key
== s e a r c h e r _ i d and va l u e == (c e l l _ i d : b i d _ v a l u e)

72 _ c e l l s : d i c t i o n a r y t o ho ld a l l c e l l o b j e c t s
73 _message_coun t : c o un t e r o f number o f c e l l s t a t u s

r e q u e s t s t h e agen t has s e n t t h i s a u c t i o n
74 _b id_msg_coun t : c o un t e r o f number o f b i d s t a t u s

r e q u e s t s t h e agen t has s e n t t h i s round
75 _auc_msg_count : c o un t e r o f number o f a u c t i o n

comp l e t e r e q u e s t s t h e agen t has s e n t t h i s a u c t i o n
76 _sync_msg_coun t : c o un t e r o f number o f s ync r e q u e s t s

t h e agen t has s e n t t h i s round
77 _auc t ion_number : c oun t e r o f number o f a u c t i o n s
78 _round_number : c o un t e r o f number o f rounds f o r a

p a r t i c u l a r a u c t i o n
79 _wa i t : c o un t e r used t o me ter how o f t e n u n d e r u t i l i z e d

90

ag en t s r e q u e s t a u c t i o n
80 _ce l l_memory : c oun t e r used t o me ter how many

p r e v i o u s rounds o f c e l l changes ag en t s ma i n t a i n
81 _sensor_sweep : l i s t c o n t a i n i n g t h e waypo in t sp read

by s t e p (m) and s t r i d e (m)
82 _sea rch_area : Geobox o b j e c t c o n t a i n i n g t h e s o u t hwe s t

l a t / long , wid th , and h e i g h t o f s ea r ch area
83 _rounds_synced : boo lean f l a g f o r whe ther ag en t s can

proceed w i t h round
84 _ l o i t e r _ w a i t : boo lean f l a g f o r whe ther agen t must

s t a y a t c u r r e n t waypo in t
85 _b i d s_upda t ed : boo lean f l a g f o r whe ther agen t has

r e c e i v e d upda ted b i d s from a l l a g en t s
86 _ i n i t i a l _ a s s i g n : boo lean f l a g f o r whe ther i t i s t h e

v e r y f i r s t a u c t i o n
87 _w inne r s _p i c k ed : boo lean f l a g f o r whe ther agen t has

comp l e t ed winner d e t e rm i n a t i o n
88 _mid_search_b id : boo lean f l a g f o r whe ther agen t has

s u bm i t t e d a bid , c omp l e t i n g o b l i g a t i o n
89 _submi t_ same_b id : boo lean f l a g f o r whe ther agen t won

i t s l a s t round and needs t o subm i t same b id
90 _same_bids : boo lean f l a g f o r whe ther a l l a g en t s

s u bm i t t e d t h e same b i d s
91 _ a u c t i o n _ s t a r t e d : boo lean f l a g f o r whe ther agen t i s

i n an a u c t i o n
92 _b i dd i ng_ comp l e t e : boo lean f l a g f o r whe ther agen t

has s u bm i t t e d a b id
93 _au c t i o n _ comp l e t e : boo lean f l a g f o r whe ther agen t

has comp l e t ed an a u c t i o n
94 _ c e l l _ c omp l e t e : boo lean f l a g f o r whe ther agen t has

comp l e t ed an in −p r og r e s s c e l l
95 _ i _ f i n i s h e d _ l a s t : boo lean f l a g f o r whe ther agen t

f i n i s h e d t h e l a s t c e l l o f t h e search , t o t e l l

91

o t h e r s
96 _agen t . _IS_SEARCHER : boo lean f l a g f o r whe ther

b ehav i o r i s a c t i v e w i t h c e l l s l e f t t o s ea r ch
97 _ c e l l _ u p d a t e _ c omp l e t e : boo lean f l a g f o r whe ther

agen t has r e c e i v e d upda ted c e l l s t a t u s e s from
o t h e r s

98 _agen t . _IS_SEARCH_AUCTION : boo lean f l a g f o r whe ther
agen t i s i n an a u c t i o n

99 _choose_ sea r ch_area : Auc t i onSea r ch enumera t i on f o r
bas i c , l a rge −bas i c , or complex s ea r ch area

100 _ c h o o s e _ u t i l i t y _ f u n c t i o n : Auc t i onSea r ch enumera t i on
f o r speed or endurance u t i l i t y f u n c t i o n

101 _ d a t a _ a u c t i o n _ d u r a t i o n s : da ta c ap t u r e : no bea r i ng on
Auc t i onSea r ch o p e r a t i o n

102 _da t a_ r ound_du ra t i o n s : da ta c ap t u r e : no bea r i ng on
Auc t i onSea r ch o p e r a t i o n

103 _da t a _ r ound_ i n f o rma t i o n : da ta c ap t u r e : no bea r i ng on
Auc t i onSea r ch o p e r a t i o n

104 _da t a _ r o bo t _ s e a r c h i n g : da ta c ap t u r e : no bea r i ng on
Auc t i onSea r ch o p e r a t i o n

105 _ d a t a _ r o b o t _ l o i t e r i n g : da ta c ap t u r e : no bea r i ng on
Auc t i onSea r ch o p e r a t i o n

106 _ d a t a _ r o b o t _ u t i l i z a t i o n : da ta c ap t u r e : no bea r i ng on
Auc t i onSea r ch o p e r a t i o n

107 _ d a t a _ t o t a l _ r u n t i m e : da ta c ap t u r e : no bea r i ng on
Auc t i onSea r ch o p e r a t i o n

108 _da ta_ round_ t ime : da ta c ap t u r e : no bea r i ng on
Auc t i onSea r ch o p e r a t i o n

109 _da t a _ a u c t i o n _ t im e : da ta c ap t u r e : no bea r i ng on
Auc t i onSea r ch o p e r a t i o n

110 _da t a_a r ea_ s ea r ched : da ta c ap t u r e : no bea r i ng on
Auc t i onSea r ch o p e r a t i o n

111 _ t o t a l _ s e a r c h _wa y p o i n t s : da ta c ap t u r e : no bea r i ng on

92

Auc t i onSea r ch o p e r a t i o n
112 _am_search ing : da ta c ap t u r e : no bea r i ng on

Auc t i onSea r ch o p e r a t i o n
113 _ am_ l o i t e r i n g : da ta c ap t u r e : no bea r i ng on

Auc t i onSea r ch o p e r a t i o n
114
115 I n h e r i t e d member v a r i a b l e s (P l ug i nBehav i o r) :
116 i d : Unique i n t e g e r i d e n t i f i e r f o r t h i s b ehav i o r
117 manager : BehaviorManager o b j e c t t o which t h i s

b ehav i o r b e l ong s
118
119 Member f u n c t i o n s :
120 pa r ame t e r i z e : imp l emen t a t i o n o f t h e Behav io r v i r t u a l

f u n c t i o n
121 compute_command : runs one i t e r a t i o n o f t h e b ehav i o r ’

s c o n t r o l l oop
122 s a f e t y _ c h e c k s : c omp l e t e s behav io r − s p e c i f i c s a f e t y

check s
123 p r o c e s s _ b e ha v i o r _ da t a : p r o c e s s v a r i o u s b ehav i o r

messages
124 auc t i o nComp l e t eReque s t : e x e c u t e r e q u e s t s f o r a u c t i o n

comp l e t i o n (l o s s y comms p r o t e c t i o n)
125 a u c t i o n S t a t u s R e q u e s t : e x e c u t e r e q u e s t s f o r a u c t i o n

s t a t u s (l o s s y comms p r o t e c t i o n)
126 b i d S t a t u sUpda t e : send b i d s t o o t h e r ag en t s
127 b i d S t a t u s R e q u e s t : e x e c u t e r e q u e s t s f o r b i d s (l o s s y

comms p r o t e c t i o n)
128 c a l c u l a t e U t i l i t y : c a l c u l a t e t h e u t i l i t y f o r a g i v en

c e l l f o r a g i v en agen t
129 c a l c u l a t e U t i l i t y C o s t : c a l c u l a t e d i s t a n c e , s i z e , and

r ema i n i n g _ s i z e f o r a g i v en c e l l
130 c a l c T o t a l A r e a : used f o r da ta c o l l e c t i o n . No bea r i ng

on Auc t i onSea r ch e x e c u t i o n

93

131 c a p t u r e R o b o tU t i l i z a t i o nDa t a : used f o r da ta
c o l l e c t i o n . No bea r i ng on Auc t i onSea r ch
e x e c u t i o n

132 captureRoundData : used f o r da ta c o l l e c t i o n . No
bea r i ng on Auc t i onSea r ch e x e c u t i o n

133 c ap t u r eTh e s i sDa t a : used f o r da ta c o l l e c t i o n . No
bea r i ng on Auc t i onSea r ch e x e c u t i o n

134 c e l l S t a t u sU p d a t e : send c e l l s t a t u s upda t e s t o o t h e r
ag en t s

135 c e l l S t a t u s R e q u e s t : e x e c u t e r e q u e s t s f o r c e l l
s t a t u s e s (l o s s y comms p r o t e c t i o n)

136 c h e c k I f A u c t i o nComp l e t e : check i f a u c t i o n i s comp l e t e
and t e l l o t h e r ag en t s i f so

137 c h e c k I f C e l l C omp l e t e : check i f agen t comp l e t ed an in −
p r og r e s s c e l l , and s t a r t an a u c t i o n f o r new c e l l s

138 ch e c k I f S e a r c hComp l e t e : check i f t h e s ea r ch i s
comple te , and s t a r t an a u c t i o n t o n o t i f y o t h e r s
i f so

139 c h e c k U t i l i z a t i o n : check i f t h e r e are c e l l s a v a i l a b l e
even though agen t has none . S t a r t an a u c t i o n .

140 c o n s o l i d a t e B i d s : p l a c e b i d s from inbound_b i d s l i s t
i n t o a d i c t i o n a r y f o r p r o c e s s i n g

141 d e f i n eGeome t r i e s : d e f i n e t h e edges o f o b s t a c l e s i n
t h e complex area

142 d e t e rm i n eO f f L im i t s : d e t e rm i n e which c e l l s are no t
a v a i l a b l e f o r a u c i t o n

143 de t e rm ineWaypo in t : d e t e rm i n e which waypo in t t o
t r a v e l to , or l o i t e r a t

144 d i s p l a yR e p o r t : d i s p l a y a u c t i o n and a s s i gnmen t
i n f o rma t i o n

145 d i s p l a y S h o r t R e p o r t : d i s p l a y round and b id
i n f o rma t i o n

146 e x t e r na lUpda t eMyCe l l s : upda t e knowledge o f c e l l s

94

f rom o t h e r ag en t s ’ knowledge
147 f i n a l A u c t i o n : s t a r t s one more a u c t i o n i f agen t was

l a s t t o f i n i s h s ea r ch
148 f i n i s h A u c t i o n : c l e an up da ta s t r u c t u r e s a f t e r an

a u c t i o n has f i n i s h e d
149 f romWaypoin t : d e t e rm i n e g r i d t o use as l a s t waypo in t

f o r u t i l i t y c o s t c a l c u l a t i o n s
150 genera t eAd jacencyGraph : c r e a t e s n e i g hbo r s l i s t s f o r

each c e l l
151 g e n e r a t e B a s i cC e l l s : c r e a t e s c e l l o b j e c t s o f

r e c t a n g u l a r shape o f s p e c i f i e d h e i g h t / w id th (m)
152 gen e r a t eBa s i c S ea r chAr ea : f i l l s boundary da ta

s t r u c t u r e s g i v e n bas i c , l a rge , or complex area
153 g e n e r a t eC e l l A s s i g nmen t : a s s i g n a c e l l won i n a u c t i o n

t o an agen t
154 g e n e r a t e C e l l U t i l i t i e s : c a l c u l a t e t h e u t i l i t y an

agen t ga i n s f o r owning a c e l l
155 gene ra t eComp l e xS ea r chCe l l s : c r e a t e s c e l l o b j e c t s o f

p o l y gona l shape g i v en o b s t a c l e l o c a t i o n s
156 gen e r a t e S ea r c hB i d : c a l c u l a t e an agen t ’ s b i d f o r a

c e l l g i v e n u t i l i t y c a l c u l a t i o n s
157 gene ra t eWaypo i n t s : c r e a t e waypo in t o b j e c t s i n a c e l l

g i v e n sweep w id th (spread , s t r i d e) (m)
158 g e t I nTh eAu c t i o n : s t a r t an a u c t i o n and r e i n i t i a l i z e

a l l a s s o c i a t e d da ta s t r u c t u r e s
159 i n t e r n a lU p d a t eC e l l s : upda t e l o c a l c e l l knowledge

g i v en winn ing b i d s from an au c t i o n
160 makeCe l lA c t i v e : s e t an a s s i g n e d c e l l t o in −p r og r e s s

once a waypo in t has been reached
161 moveToNex tCe l l : move t o an a s s i g n e d c e l l upon

comp l e t i o n o f in −p r og r e s s c e l l
162 r e a s s i g nC e l l : change a s s i gnmen t o f a c e l l from one

agen t t o ano t h e r

95

163 r emoveCe l lA s s i gnmen t : change c e l l s t a t u s t o
as s ignmen t −removed so o t h e r ag en t s can d e t e c t i t

164 r e v e r t C e l l : change c e l l s t a t u s from ass ignmen t −
removed t o a v a i l a b l e

165 s endAuc t i onComp l e t e : send a s i n g l e message t e l l i n g
o t h e r ag en t s t h a t agen t i s f i n i s h e d w i t h a u c t i o n

166 s e tWaypo i n t : send a speed waypo in t command message
w i t h l a t / l on / a l t / speed i n f o rma t i o n

167 s ha r eAuc t i onComp l e t e : l o s s y −comms t o l e r a n t way t o
r e l i a b l y communicate a u c t i o n s t a t u s w i t h ag en t s

168 s ha r eB i d s : l o s s y −comms t o l e r a n t way t o r e l i a b l y
communicate b i d s w i t h ag en t s

169 s h a r e S t a t u s e s : l o s s y −comms t o l e r a n t way t o r e l i a b l y
communicate c e l l s t a t u s e s w i t h ag en t s

170 s t a r t A u c t i o n : send a b u r s t o f a u c t i o n s t a r t messages
t o o t h e r ag en t s

171 s t a y I nMyCe l l : command agen t t o l o i t e r a t l a s t
waypo in t a f t e r f i n i s h i n g i t s c e l l

172 s ubm i t S ea r chB id : send a s i n g l e message t e l l i n g o t h e r
ag en t s b i d i n f o rma t i o n

173 syncRounds : check whe ther a l l a g en t s are i n t h e same
round , behind , or ahead i n an a u c t i o n

174 t e s tWa y p o i n t : check whe ther an agen t has a r r i v e d a t
a s p e c i f i e d waypo in t

175 winne rDe t e rm i na t i o n : d e t e rm i n e h i g h e s t b i d d e r from a
s e t o f b i d s and d i r e c t a u c t i o n t e rm i n a t i o n

176
177 I n h e r i t e d member f u n c t i o n s (P l ug i nBehav i o r)
178 s e t _ r e a d y : s a f e l y s e t s t h e ready s t a t e t o True or

Fa l s e
179 i s _ r e a d y : r e t u r n s t h e b ehav i o r ’ s c u r r e n t r e a d i n e s s

s t a t e
180 ’ ’ ’

96

181
182 # Class − s p e c i f i c enumera t i on s and c o n s t a n t s
183 # Bas i c r e c t a n g u l a r s ea r ch area enumera t i on s (no

o b s t a c l e s)
184 BASIC_LIVE_FLY = 0
185 BASIC_LARGER = 1
186 # Complex po l y gona l s ea r ch area enumera t i on (w i t h

o b s t a c l e s)
187 COMPLEX = 2
188
189 # U t i l i t y Func t i on enumera t i on s
190 SPEED_UTIL = 3
191 ENDURANCE_UTIL = 4
192
193 # Search area s o u t hwe s t l o c a t i o n
194 AREA_SW_LAT = 35.721147 # t h e s e v a l u e s w i l l be

mod i f i e d when g en e r a t e s ea r ch area i s c a l l e d
195 AREA_SW_LON = −120.773008
196
197 # o t h e r enumera t i on s
198 AREA_MIN_ALT = 354
199 AREA_MAX_ALT = 854
200 CAPTURE_DIST = 65
201 MESSAGE_COUNT = 20
202 EPSILON = 300
203 NUM_CELLS = 12 # t h i s i s mod i f i e d by t h e c e l l

g e n e r a t i o n methods below
204 NOT_BIDDING = NUM_CELLS
205 CELLS_PER_AUCTION = 2
206 CELL_STATUS_MEMORY= 4
207
208 def _ _ i n i t _ _ (s e l f , b e h av i o r _ i d , behavior_name , manager=

None) :

97

209 ’ ’ ’ C la s s i n i t i a l i z e r i n i t i a l i z e s c l a s s v a r i a b l e s .
210 @param beha v i o r _ i d : un ique i d e n t i f i e r f o r t h i s

b ehav i o r
211 @param behav ior_name : s t r i n g name o f t h i s b ehav i o r
212 @param manager : BehaviorManager o b j e c t t o which t h i s

b ehav i o r b e l ong s
213 ’ ’ ’
214 p l u g i n . P l u g i nBehav i o r . _ _ i n i t _ _ (s e l f , b e h av i o r _ i d ,

behavior_name , manager)
215 s e l f . _ agen t = S e a r c h e r (r o spy . ge t_param (" a i r c r a f t _ i d "

))
216 s e l f . _ s e a r c h _ r o l l _ c a l l = s e t ()
217 s e l f . _ b i d _ r o l l _ c a l l = s e t ()
218 s e l f . _ b e e n_ t h e r e = s e t ()
219 s e l f . _ c e l l s _ l e f t = s e t ()
220 s e l f . _ r o u n d _ t r a c k e r = s e t ()
221 s e l f . _ c e l l s _ i n _ p r o g r e s s = s e t ()
222 s e l f . _ c e l l s _no t _won = s e t ()
223 s e l f . _ c e l l s _ c h a n g e d = s e t ()
224 s e l f . _ c e l l _ u p d a t e _ s e n t = s e t ()
225 s e l f . _ a b a ndon ed_ c e l l s = s e t ()
226 s e l f . _ c om p l e t e _ r o l l _ c a l l = s e t ()
227 s e l f . _ l o i t e r _ c h e c k p o i n t = []
228 s e l f . _ i n b o u n d _ s t a t u s e s = []
229 s e l f . _wes t _wa l l = []
230 s e l f . _ n o r t h _wa l l = []
231 s e l f . _ e a s t _w a l l = []
232 s e l f . _ s o u t h _wa l l = []
233 s e l f . _ o b s t a c l e _ g r i d s = []
234 s e l f . _ o b s t a c l e s = []
235 s e l f . _ i nbound_b id s = []
236 s e l f . _ c e l l _ u t i l i t i e s = []
237 s e l f . _ c u r r _ b i d = []

98

238 s e l f . _ p r ev_b i d = []
239 s e l f . _ p r e v _ c e l l s = []
240 s e l f . _ a l l _ b i d s = { }
241 s e l f . _ c e l l s = { }
242 s e l f . _message_coun t = 0
243 s e l f . _b id_msg_count = 0
244 s e l f . _auc_msg_count = 0
245 s e l f . _sync_msg_count= 0
246 s e l f . _auc t i on_number= 0
247 s e l f . _round_number = 0
248 s e l f . _wa i t = 0
249 s e l f . _ce l l_memory = 0
250 s e l f . _ senso r_sweep = [75 , 75]
251 s e l f . _ s e a r c h _ a r e a = None
252 s e l f . _ rounds_synced = True
253 s e l f . _ l o i t e r _ w a i t = F a l s e
254 s e l f . _ b i d s _upd a t e d = F a l s e
255 s e l f . _ i n i t i a l _ a s s i g n = True
256 s e l f . _w inne r s _p i ck ed = F a l s e
257 s e l f . _m id_ sea r ch_b id = F a l s e
258 s e l f . _ submi t_same_b id = F a l s e
259 s e l f . _same_bids = F a l s e
260 s e l f . _ a u c t i o n _ s t a r t e d = F a l s e
261 s e l f . _ b i dd i ng_comp l e t e = F a l s e
262 s e l f . _ a u c t i o n _ comp l e t e = F a l s e
263 s e l f . _ c e l l _ c omp l e t e = F a l s e
264 s e l f . _ i _ f i n i s h e d _ l a s t = F a l s e
265 s e l f . _ agen t . _IS_SEARCHER = True
266 s e l f . _ c e l l _ u p d a t e _ c omp l e t e = F a l s e
267 s e l f . _ agen t . _IS_SEARCH_AUCTION = True
268 s e l f . _ c h oo s e _ s e a r c h _ a r e a = Auc t i onSea r ch .

BASIC_LIVE_FLY
269 s e l f . _ c h o o s e _ u t i l i t y _ f u n c t i o n = Auc t i onSea r ch .

99

SPEED_UTIL
270 # da ta c ap t u r e i n s t r um e n t a t i o n f o l l o w s : no bea r i ng

on Auc t i onSea r ch o p e r a t i o n
271 s e l f . _ d a t a _ a u c t i o n _ d u r a t i o n s = []
272 s e l f . _ d a t a _ r o u n d _ d u r a t i o n s = []
273 s e l f . _ d a t a _ r o u n d _ i n f o rma t i o n = []
274 s e l f . _ d a t a _ r o b o t _ s e a r c h i n g = []
275 s e l f . _ d a t a _ r o b o t _ l o i t e r i n g = []
276 s e l f . _ d a t a _ r o b o t _ u t i l i z a t i o n = []
277 s e l f . _ d a t a _ t o t a l _ r u n t i m e = []
278 s e l f . _ d a t a _ r ound_ t ime = []
279 s e l f . _ d a t a _ a u c t i o n _ t im e = []
280 s e l f . _ d a t a _ a r e a _ s e a r c h e d = 0 . 0
281 s e l f . _ t o t a l _ s e a r c h _w a y p o i n t s = 0
282 s e l f . _am_sea rch ing = F a l s e
283 s e l f . _ am_ l o i t e r i n g = F a l s e
284
285 #−−−
286 # Imp l emen t a t i o n o f p a r e n t c l a s s v i r t u a l f u n c t i o n s
287 #−−−
288
289 def p a r am e t e r i z e (s e l f , params) :
290 ’ ’ ’ S e t s b ehav i o r pa rame t e r s based on s e t s e r v i c e

pa rame t e r s and speed / endurance v a l u e s
291 Parame ter s f o r Auc t i onSea r ch i n c l u d e :
292 _choose_ sea r ch_area : enumera t i on i d e n t i f y i n g which

s ea r ch area i t b e i ng used
293 _ c h o o s e _ u t i l i t y _ f u n c t i o n : enumera t i on i d e n t i f y i n g

which u t i l i t y f u n c t i o n ag en t s shou l d use
294 @param params : pa rame t e r s from t h e s e t s e r v i c e

r e q u e s t
295 @return True i f s e t w i t h v a l i d pa rame t e r s
296 ’ ’ ’

100

297 s e l f . manager . l o g _ i n f o (" i n i t i a l i z i n g ␣ a u c t i o n ␣ s e a r c h e r
")

298
299 # r e i n i t i a l i z e a l l _ _ i n i t _ _ parame t e r s f o r

s ub s e qu en t run
300 s e l f . _ s e a r c h _ r o l l _ c a l l . c l e a r ()
301 s e l f . _ b i d _ r o l l _ c a l l . c l e a r ()
302 s e l f . _ b e e n_ t h e r e . c l e a r ()
303 s e l f . _ c e l l s _ l e f t . c l e a r ()
304 s e l f . _ r o u n d _ t r a c k e r . c l e a r ()
305 s e l f . _ c e l l s _ i n _ p r o g r e s s . c l e a r ()
306 s e l f . _ c e l l s _no t _won . c l e a r ()
307 s e l f . _ c e l l s _ c h a n g e d . c l e a r ()
308 s e l f . _ c e l l _ u p d a t e _ s e n t . c l e a r ()
309 s e l f . _ a b a ndon ed_ c e l l s . c l e a r ()
310 s e l f . _ c om p l e t e _ r o l l _ c a l l . c l e a r ()
311 s e l f . _ l o i t e r _ c h e c k p o i n t = []
312 s e l f . _ i n b o u n d _ s t a t u s e s = []
313 s e l f . _wes t _wa l l = []
314 s e l f . _ n o r t h _wa l l = []
315 s e l f . _ e a s t _w a l l = []
316 s e l f . _ s o u t h _wa l l = []
317 s e l f . _ o b s t a c l e _ g r i d s = []
318 s e l f . _ o b s t a c l e s = []
319 s e l f . _ i nbound_b id s = []
320 s e l f . _ c e l l _ u t i l i t i e s = []
321 s e l f . _ c u r r _ b i d = []
322 s e l f . _ p r ev_b i d = []
323 s e l f . _ p r e v _ c e l l s = []
324 s e l f . _ a l l _ b i d s = { }
325 s e l f . _ c e l l s = { }
326 s e l f . _message_coun t = 0
327 s e l f . _b id_msg_count = 0

101

328 s e l f . _auc_msg_count = 0
329 s e l f . _sync_msg_count= 0
330 s e l f . _auc t i on_number= 0
331 s e l f . _round_number = 0
332 s e l f . _wa i t = 0
333 s e l f . _ce l l_memory = 0
334 s e l f . _ senso r_sweep = [75 , 75] # [waypo in t spread

, c e i l i n g / f l o o r d i s t a n c e s]
335 s e l f . _ s e a r c h _ a r e a = None
336 s e l f . _ rounds_synced = True
337 s e l f . _ l o i t e r _ w a i t = F a l s e
338 s e l f . _ b i d s _upd a t e d = F a l s e
339 s e l f . _ i n i t i a l _ a s s i g n = True
340 s e l f . _w inne r s _p i ck ed = F a l s e
341 s e l f . _m id_ sea r ch_b id = F a l s e
342 s e l f . _ submi t_same_b id = F a l s e
343 s e l f . _same_bids = F a l s e
344 s e l f . _ a u c t i o n _ s t a r t e d = F a l s e
345 s e l f . _ b i dd i ng_comp l e t e = F a l s e
346 s e l f . _ a u c t i o n _ comp l e t e = F a l s e
347 s e l f . _ c e l l _ c omp l e t e = F a l s e
348 s e l f . _ i _ f i n i s h e d _ l a s t = F a l s e
349 s e l f . _ agen t . _IS_SEARCHER = True
350 s e l f . _ agen t . _IS_SEARCH_AUCTION = True
351 s e l f . _ c e l l _ u p d a t e _ c omp l e t e = F a l s e
352 s e l f . _ agen t . r e s e tCu r rWaypo i n t I d ()
353 s e l f . _ agen t . r emoveAl lAss ignmen t s ()
354 s e l f . _ c h oo s e _ s e a r c h _ a r e a = Auc t i onSea r ch .

BASIC_LIVE_FLY
355 s e l f . _ c h o o s e _ u t i l i t y _ f u n c t i o n = Auc t i onSea r ch .

SPEED_UTIL
356 # da ta c ap t u r e i n s t r um e n t a t i o n f o l l o w s : no bea r i ng

on Auc t i onSea r ch o p e r a t i o n

102

357 s e l f . _ d a t a _ a u c t i o n _ d u r a t i o n s = []
358 s e l f . _ d a t a _ r o u n d _ d u r a t i o n s = []
359 s e l f . _ d a t a _ r o u n d _ i n f o rma t i o n = []
360 s e l f . _ d a t a _ r o b o t _ s e a r c h i n g = []
361 s e l f . _ d a t a _ r o b o t _ l o i t e r i n g = []
362 s e l f . _ d a t a _ r o b o t _ u t i l i z a t i o n = []
363 s e l f . _ d a t a _ t o t a l _ r u n t i m e = []
364 s e l f . _ d a t a _ r ound_ t ime = []
365 s e l f . _ d a t a _ a u c t i o n _ t im e = []
366 s e l f . _ d a t a _ a r e a _ s e a r c h e d = 0 . 0
367 s e l f . _ t o t a l _ s e a r c h _w a y p o i n t s = 0
368 s e l f . _am_sea rch ing = F a l s e
369 s e l f . _ am_ l o i t e r i n g = F a l s e
370
371
372 # −−−−−−−−−− EXPERIMENT VARIABLES . MODIFY THESE

−−−−−−−−−−−−−−−−−−−−−−

373
374
375 # 1 . Choose Search Area .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

376 # BASIC_LIVE_FLY : l i v e − f l y area (Camp Robe r t s
McMillan A i r f i e l d geo− f e n c e s a f e)

377 # BASIC_LARGER : la rge −ba s i c area , un i f o rm
r e c t a n g u l a r c e l l s

378 # COMPLEX: la rge −complex area , p o l y gona l
e n v i r o n w i t h o b s t a c l e s and i r r e g u l a r c e l l s i z e s

379 # −−−−− SELECT ONE OF THE BELOW OPTIONS −−−−
380 s e l f . _ c h oo s e _ s e a r c h _ a r e a = Auc t i onSea r ch .

BASIC_LIVE_FLY
381 # s e l f . _ choose_ sea r ch_area = Auc t i onSea r ch .

BASIC_LARGER
382 # s e l f . _ choose_ sea r ch_area = Auc t i onSea r ch .COMPLEX

103

383
384 # 2 . Choose U t i l i t y Func t i on .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

385 # SPEED_UTIL : Genera te p r i v a t e v a l u e (
u t i l i t y) u s i n g i n d i v i d u a l s p e ed s

386 # ENDURANCE_UTIL: Genera te p r i v a t e v a l u e (
u t i l i t y) u s i n g i n d i v i d u a l endurance

387 # −−−−− SELECT ONE OF THE BELOW OPTIONS −−−−
388 s e l f . _ c h o o s e _ u t i l i t y _ f u n c t i o n = Auc t i onSea r ch .

SPEED_UTIL
389 # s e l f . _ c h o o s e _ u t i l i t y _ f u n c t i o n = Auc t i onSea r ch .

ENDURANCE_UTIL
390
391
392 # −−−−−−−−−− END EXPERIMENT VARIABLES . DO NOT MODIFY

BELOW −−−−−−−−−−−
393
394 s e l f . _ d a t a _ t o t a l _ r u n t i m e . append (ro spy . Time . now ())
395 # g en e r a t e t h e o u t e r s ea r ch area boundary f o r any

chosen s ea r ch area
396 s e l f . g e n e r a t eB a s i c S e a r c hA r e a ()
397
398 # I f s ea r ch area i s complex (i n c l u d e s o b s t a c l e s) ,

conduc t bous t rophedon c e l l u l a r d e compo s i t i o n
399 i f s e l f . _ c h oo s e _ s e a r c h _ a r e a >= Auc t i onSea r ch .

COMPLEX:
400 s e l f . manager . l o g _ i n f o (" Gen e r a t i n g ␣Complex␣ Sea rch

␣Area␣ Pa r ame t e r s ")
401 Auc t i onSea r ch .NUM_CELLS = s e l f .

g e n e r a t eComp l exSe a r c hCe l l s ()
402 Auc t i onSea r ch .NOT_BIDDING = Auc t i onSea r ch .

NUM_CELLS
403 s e l f . g ene r a t eAd j a c encyGraph ()

104

404 s e l f . s e t _ r e a d y (True)
405 e l i f s e l f . _ c h oo s e _ s e a r c h _ a r e a in [Auc t i onSea r ch .

BASIC_LIVE_FLY , Auc t i onSea r ch . BASIC_LARGER] :
406 s e l f . manager . l o g _ i n f o (" Gen e r a t i n g ␣ Bas i c ␣ Sea rch ␣

Area␣ Pa r ame t e r s ")
407 s e l f . g ene r a t eAd j a c encyGraph ()
408 s e l f . s e t _ r e a d y (True)
409 e l s e :
410 s e l f . manager . l o g _ i n f o (" Unrecogn ized ␣ s e a r c h ␣ a r e a ␣

enume r a t i on ␣ used . ␣␣ S h u t t i n g ␣down . ")
411 s e l f . s e t _ r e a d y (F a l s e)
412
413 # s e t t o t a l number o f waypo i n t s f o r t h e s i s da ta

c ap t u r e
414 s e l f . c a l c T o t a lA r e a ()
415
416 # s e t i n d i v i d u a l u t i l i t y v a r i a b l e s based on user −

s e l e c t e d u t i l i t y f u n c t i o n
417 i f s e l f . _ c h o o s e _ u t i l i t y _ f u n c t i o n == Auc t i onSea r ch .

SPEED_UTIL :
418 s e l f . manager . l o g _ i n f o (" Speed␣ U t i l i t y ␣ Func t i o n ␣

Chosen . ␣␣ S e t t i n g ␣Agent ␣ Speeds . ")
419 # A l l a g en t s w i t h an even s e a r c h e r _ i d are f a s t e r

than odds
420 i f s e l f . _ agen t . g e t S e a r c h e r I d () % 2 == 0 :
421 s e l f . _ agen t . s e t Sp e ed (2 3)
422 e l s e :
423 s e l f . _ agen t . s e t Sp e ed (1 5)
424 s e l f . s e t _ r e a d y (True)
425 e l i f s e l f . _ c h o o s e _ u t i l i t y _ f u n c t i o n == Auc t i onSea r ch .

ENDURANCE_UTIL :
426 s e l f . manager . l o g _ i n f o (" Endurance ␣ U t i l i t y ␣

Func t i o n ␣Chosen . ␣␣ S e t t i n g ␣Agents ’ ␣ Endurance . "

105

)
427 # A l l a g en t s w i t h an even s e a r c h e r _ i d have

h i g h e r endurance than odds
428 i f s e l f . _ agen t . g e t S e a r c h e r I d () % 2 == 0 :
429 s e l f . _ agen t . s e tEndu r an c e (0 . 8)
430 e l s e :
431 s e l f . _ agen t . s e tEndu r an c e (0 . 2)
432 s e l f . _ agen t . s e t Sp e ed (1 5)
433 s e l f . s e t _ r e a d y (True)
434 e l s e :
435 s e l f . manager . l o g _ i n f o (" Unrecogn ized ␣ u t i l i t y ␣

f u n c t i o n ␣ enume r a t i on ␣ used . ␣␣ S h u t t i n g ␣down . ")
436 s e l f . s e t _ r e a d y (F a l s e)
437
438 # i f t h e number o f a g en t s i s g r e a t e r than h a l f t h e

number o f c e l l s ,
439 # change how many c e l l s per a u c t i o n t o e x p e c t (

p igeon ho l e)
440 i f Auc t i onSea r ch .NUM_CELLS / 2 < l en (s e l f . manager .

subswarm_keys) :
441 Auc t i onSea r ch . CELLS_PER_AUCTION = 1
442
443 # i n i t i a l i z e f i r s t waypo in t
444 s e l f . _ l o i t e r _ c h e c k p o i n t = [s e l f . manager .

g e t _ own_ s t a t e () . s t a t e . pose . pose . p o s i t i o n . l a t ,
445 s e l f . manager .

g e t _ own_ s t a t e () . s t a t e .
pose . pose . p o s i t i o n . l on
]

446 s e l f . _ d a t a _ a u c t i o n _ t im e . append (ro spy . Time . now ())
447
448 re turn s e l f . i s _ r e a d y ()
449

106

450
451
452 def p r o c e s s _ b e h a v i o r _ d a t a (s e l f , da ta_msg) :
453 ’ ’ ’ r e c e i v e and d i r e c t a c t i o n based on da ta messages

r e c e i v e d from o t h e r ag en t s
454 Par s e r s f o r t h e s e da ta messages are c o n t a i n e d i n

b i tmapped_by t e s . py
455 ’ ’ ’
456 i f data_msg . id == by t e s . AUCTION_BID :
457 # I have r e c e i v e d a message c o n t a i n i n g a b id f o r

a c e l l
458 p a r s e d = by t e s . Au c t i o nS e a r c hB i dP a r s e r ()
459 p a r s e d . unpack (data_msg . params)
460 s e l f . _ r o u n d _ t r a c k e r . add (p a r s e d . r ound_ id)
461 i f pa r s e d . r ound_ id == s e l f . _round_number or

pa r s e d . b i d _ v a l u e == Auc t i onSea r ch .NOT_BIDDING
:

462 i f pa r s e d . s o u r c e _ i d not in s e l f .
_ b i d _ r o l l _ c a l l and not s e l f . _ b i d s _upd a t e d
and \

463 s e l f . _ b i dd i ng_comp l e t e :
464 i f pa r s e d . b i d _ c e l l _ i d == Auc t i onSea r ch .

NOT_BIDDING :
465 s e l f . manager . l o g _ i n f o (" a g en t ␣%d␣ say s

␣ hes ␣ no t ␣ b i d d i n g . " % pa r s e d .
s o u r c e _ i d)

466 b i d _ v a l = i n t (round (p a r s e d . b i d _ v a l u e))
467 s e l f . _ i nbound_b id s . append ([p a r s e d .

s ou r c e_ i d , p a r s e d . b i d _ c e l l _ i d ,
b i d _ v a l])

468 s e l f . _ b i d _ r o l l _ c a l l . add (p a r s e d . s o u r c e _ i d
)

469 i f s e l f . _ i _ f i n i s h e d _ l a s t :

107

470 s e l f . _ i _ f i n i s h e d _ l a s t = F a l s e
471
472 e l i f data_msg . id == by t e s . AUCTION_BIDS_REQUEST :
473 # see i f t h e r e q u e s t i s f o r t h e p r e v i o u s round

or no t t o a l l ow an agen t t o ca t c h up
474 p a r s e d = by t e s . USho r t P a r s e r ()
475 p a r s e d . unpack (data_msg . params)
476 i f pa r s e d . v a l u e >= s e l f . _round_number :
477 i s _ p r e v i o u s = F a l s e
478 e l s e :
479 i s _ p r e v i o u s = True
480 f o r i in range (2) :
481 s e l f . b i d S t a t u sUpd a t e (i s _ p r e v i o u s)
482
483 e l i f data_msg . id == by t e s .AUCTION_STATUS :
484 p a r s e d = by t e s . A u c t i o n S t a t u s P a r s e r ()
485 p a r s e d . unpack (data_msg . params)
486 i f pa r s e d . auc t i on_numbe r >= s e l f . _auc t i on_number

:
487 s e l f . _ r o u n d _ t r a c k e r . add (p a r s e d . round_number)
488
489 e l i f data_msg . id == by t e s .AUCTION_NEW:
490 p a r s e d = by t e s . NewAuct ionParse r ()
491 p a r s e d . unpack (data_msg . params)
492 i f not s e l f . _ a u c t i o n _ s t a r t e d and s e l f .

_ a u c t i o n _ comp l e t e and \
493 s e l f . _auc t i on_number == pa r s e d . auc t i on_numbe r :
494 s e l f . g e t I nTheAuc t i on ()
495 # i f agen t who s t a r t e d t h e a u c t i o n c l a im s

n e x t c e l l , s e t i t t o IN_PROGRESS l o c a l l y
496 i f pa r s e d . c l a im _ n e x t _ c e l l :
497 s e l f . _ c e l l s [p a r s e d . n e x t _ c e l l _ i d] .

s e t S t a t u s (C e l l . IN_PROGRESS)

108

498 # t h e s i s da ta c ap t u r e l i n e
499 i f l en (s e l f . _ d a t a _ r o b o t _ s e a r c h i n g) == 0 :
500 s e l f . _ d a t a _ r o b o t _ s e a r c h i n g . append (

ro spy . Time . now ())
501 s e l f . _am_sea rch ing = True
502 s e l f . _ c e l l s _ c h a n g e d . add (p a r s e d .

n e x t _ c e l l _ i d)
503 s e l f . _ c e l l s _ i n _ p r o g r e s s . add (p a r s e d .

n e x t _ c e l l _ i d)
504
505 e l i f data_msg . id == by t e s .AUCTION_CELLS :
506 p a r s e d = by t e s . A u c t i o n S e a r c hC e l l s P a r s e r ()
507 p a r s e d . unpack (data_msg . params)
508 i f pa r s e d . s o u r c e _ i d not in s e l f .

_ s e a r c h _ r o l l _ c a l l :
509 s e l f . _ i n b o u n d _ s t a t u s e s . append ([p a r s e d .

s ou r c e_ i d , p a r s e d . c e l l _ l i s t])
510 s e l f . _ s e a r c h _ r o l l _ c a l l . add (p a r s e d . s o u r c e _ i d)
511
512 e l i f data_msg . id == by t e s .AUCTION_CELLS_REQUEST :
513 p a r s e d = by t e s . A u c t i o n S t a t u s P a r s e r ()
514 p a r s e d . unpack (data_msg . params)
515 auc t ion_num = pa r s e d . auc t i on_numbe r
516 round_num = pa r s e d . round_number
517 # I f I m i s sed t h e a u c t i o n s t a r t message , s e t

a u c t i o n s t a r t (r edundency f o r l o s s y comms)
518 i f pa r s e d . round_number == 0 and not s e l f .

_ a u c t i o n _ s t a r t e d :
519 s e l f . manager . l o g _ i n f o (" missed ␣ t h e ␣ a u c t i o n ␣

s t a r t ␣message . ␣␣ Ca t ch i ng ␣up . ")
520 s e l f . manager . l o g _ i n f o (" s end i ng ␣ r e q u e s t e d ␣

c e l l ␣ s t a t u s . ")
521 s e l f . c e l l S t a t u sU p d a t e ()

109

522 s e l f . g e t I nTheAuc t i on ()
523 e l s e :
524 s e l f . c e l l S t a t u sU p d a t e ()
525
526 e l i f data_msg . id == by t e s .AUCTION_COMPLETE:
527 p a r s e d = by t e s . USho r t P a r s e r ()
528 p a r s e d . unpack (data_msg . params)
529 a g e n t _ i d = p a r s e d . v a l u e
530 i f a g e n t _ i d not in s e l f . _ c om p l e t e _ r o l l _ c a l l :
531 s e l f . _ c om p l e t e _ r o l l _ c a l l . add (a g e n t _ i d)
532 s e l f . manager . l o g _ i n f o (" Agent ␣%d␣ r e p o r t s ␣

a u c t i o n ␣ comple t e " % pa r s e d . v a l u e)
533
534 e l i f data_msg . id == by t e s .AUCTION_COMPLETE_REQUEST:
535 p a r s e d = by t e s . USho r t P a r s e r ()
536 p a r s e d . unpack (data_msg . params)
537 am_complete = F a l s e
538 i f l en (s e l f . _ agen t . g e tMyCe l l I d s ()) ==

Auc t i onSea r ch . CELLS_PER_AUCTION and \
539 s e l f . _ i n i t i a l _ a s s i g n :
540 am_complete = True
541 e l i f s e l f . _m id_ sea r ch_b id :
542 am_complete = True
543 e l i f not s e l f . _ i n i t i a l _ a s s i g n and not s e l f .

m id sea r ch_b id and \
544 p a r s e d . v a l u e < s e l f . _auc t i on_number :
545 am_complete = True
546 i f am_complete :
547 f o r i in range (Auc t i onSea r ch .MESSAGE_COUNT) :
548 s e l f . s endAuc t ionComple t e ()
549
550
551

110

552 def compute_command (s e l f) :
553 ’ ’ ’ E x e cu t e s one i t e r a t i o n o f t h e b ehav i o r
554 Agen t s s t a r t o f f r e q u i r i n g an a u c t i o n f o r c e l l s .

Once c e l l s are a s s i gned , a g en t s can
555 e x e c u t e a u c t i o n s and s ea r ch a t t h e same t ime .

Behav io r i s f i n i s h e d once a l l c e l l s have
556 been s ea r ched
557 ’ ’ ’
558 # cap t u r e t h e s i s da ta
559 s e l f . c a p t u r e R o b o tU t i l i z a t i o nD a t a ()
560
561 num_agents = l en (s e l f . manager . subswarm_keys)
562 # au c t i o n f o r s ea r ch c e l l s s t a t e f u n c t i o n a l i t y below

#
563 i f s e l f . _ agen t . _IS_SEARCH_AUCTION :
564 s e l f . _ rounds_synced = s e l f . syncRounds (num_agents

)
565 i f s e l f . _ rounds_synced :
566 i f not s e l f . _ c e l l _ u p d a t e _ c omp l e t e :
567 s e l f . s h a r e S t a t u s e s (num_agents)
568 e l i f s e l f . _ c e l l _ u p d a t e _ c omp l e t e and not s e l f

. _m id_ sea r ch_b id :
569 i f not s e l f . _ a u c t i o n _ comp l e t e :
570 i f not s e l f . _ b i dd i ng_comp l e t e :
571 s e l f . g e n e r a t e S e a r c hB i d ()
572 i f s e l f . _ b i dd i ng_comp l e t e :
573 i f not s e l f . _ b i d s _upd a t e d :
574 s e l f . s h a r eB i d s (num_agents)
575 e l i f s e l f . _ b i d s _upd a t e d :
576 s e l f . w i nn e rDe t e rm i n a t i o n ()
577 i f not s e l f . _ a u c t i o n _ comp l e t e :
578 s e l f . c h e ck I fAuc t i onComp l e t e (num_agents)
579 i f s e l f . _ a u c t i o n _ comp l e t e and s e l f .

111

_ c e l l _ u p d a t e _ c omp l e t e :
580 s e l f . f i n i s hA u c t i o n ()
581 s e l f . d i s p l a yR e p o r t ()
582 e l i f not s e l f . _ rounds_synced :
583 s e l f . manager . l o g _ i n f o (" I ␣am␣ ahead ␣and␣ need ␣

t o ␣ wa i t . ␣ a g en t ␣%d , ␣ round ␣ i s ␣%d . ␣ " \
584 % (s e l f . _ agen t .

g e t S e a r c h e r I d () ,
s e l f . _round_number)
)

585
586 # area s e a r c h e r s t a t e f u n c t i o n a l i t y below #
587 i f s e l f . _ agen t . _IS_SEARCHER :
588 s e l f . c h e c k I fCe l lComp l e t e ()
589 s e l f . c h e ck I fS e a r chComp l e t e ()
590 waypo i n t _d a t a = s e l f . de t e rmineWaypo in t ()
591 s e l f . s e tWaypo in t (waypo i n t _da t a [1])
592 s e l f . t e s tWaypo i n t (waypo i n t _da t a [1])
593 s e l f . c h e c kU t i l i z a t i o n ()
594
595 # i f t h e s ea r ch i s comple te , t h e l a s t agen t s t a r t s a

f i n a l a u c t i o n t o en su r e
596 # a l l a g en t s t e rm i n a t e g r a c e f u l l y
597 s e l f . f i n a l A u c t i o n ()
598 re turn s e l f . manager . spd_wp_cmd_msg
599
600
601
602 def s a f e t y _ c h e c k s (s e l f) :
603 ’ ’ ’ Conduc ts behav io r − s p e c i f i c s a f e t y check s
604 @return True i f t h e b ehav i o r pa s s e s a l l s a f e t y

check s (Fa l s e o t h e rw i s e)
605 ’ ’ ’

112

606 # i f agen t i s i n one o f t h e s e f o u r s t a t e s , r e t u r n
True .

607 i f s e l f . _ agen t . _IS_SEARCHER or s e l f . _ agen t .
_IS_SEARCH_AUCTION or \

608 l en (s e l f . _ b e e n_ t h e r e) == Auc t i onSea r ch .NUM_CELLS:
609 re turn True
610 # or as long as t h e agen t i s s t i l l i n t h e sub−swarm ,

r e t u r n True
611 e l i f s e l f . _ agen t . g e t S e a r c h e r I d () in s e l f . manager .

subswarm_keys :
612 re turn True
613 e l s e :
614 s e l f . manager . log_warn (" a g en t ␣ f a i l e d ␣

Auc t i onSea r ch ␣ s a f e t y ␣ checks . ")
615 re turn Fa l s e
616 re turn True
617
618
619
620 #−−
621 # Behav ior − s p e c i f i c methods i n a l p h a b e t i c a l o rde r
622 #−−
623
624
625 def auc t i onComp l e t eReque s t (s e l f) :
626 ’ ’ ’ e x e c u t e r e q u e s t s f o r a u c t i o n comp l e t i o n (l o s s y

comms p r o t e c t i o n)
627 ’ ’ ’
628 p a r s e r = b y t e s . USho r t P a r s e r ()
629 p a r s e r . v a l u e = s e l f . _auc t i on_number
630 r e p o r t = s e l f . manager . b ehav i o r_da t a_msg
631 r e p o r t . id = by t e s .AUCTION_COMPLETE_REQUEST
632 r e p o r t . params = p a r s e r . pack ()

113

633 s e l f . manager . b e h a v i o r _ d a t a _ p u b l i s h e r . p u b l i s h (r e p o r t)
634
635
636
637 def a u c t i o n S t a t u sR e q u e s t (s e l f) :
638 ’ ’ ’ e x e c u t e r e q u e s t s f o r a u c t i o n s t a t u s (l o s s y comms

p r o t e c t i o n)
639 ’ ’ ’
640 p a r s e r = b y t e s . A u c t i o n S t a t u s P a r s e r ()
641 p a r s e r . auc t i on_numbe r = s e l f . _auc t i on_number
642 p a r s e r . round_number = s e l f . _round_number
643 r e p o r t = s e l f . manager . b ehav i o r_da t a_msg
644 r e p o r t . id = by t e s .AUCTION_STATUS
645 r e p o r t . params = p a r s e r . pack ()
646 s e l f . manager . b e h a v i o r _ d a t a _ p u b l i s h e r . p u b l i s h (r e p o r t)
647
648
649
650 def b i dS t a t u sUpd a t e (s e l f , i s _ p r e v i o u s) :
651 ’ ’ ’ send b i d s t o o t h e r ag en t s du r i ng an a u c t i o n
652 @param i s _ p r e v i o u s : boo lean f l a g f o r whe ther t h e

r e q u e s t i n g agen t i s a round beh ind
653 ’ ’ ’
654 p a r s e r = b y t e s . Au c t i o nS e a r c hB i dP a r s e r ()
655 p a r s e r . s o u r c e _ i d = s e l f . _ agen t . g e t S e a r c h e r I d ()
656 # i f an agen t has f a l l e n beh ind and i s t r y i n g t o

ca t c h up , send p r e v i o u s b i d
657 i f i s _ p r e v i o u s :
658 b id = s e l f . _ p r ev_b i d
659 round_ id = s e l f . _round_number − 1
660 e l s e :
661 b id = s e l f . _ c u r r _ b i d
662 round_ id = s e l f . _round_number

114

663 i f l en (b i d) > 0 :
664 p a r s e r . r ound_ id = round_ id
665 p a r s e r . b i d _ c e l l _ i d = b id [0]
666 p a r s e r . b i d _ v a l u e = i n t (round (b i d [1]))
667 r e p o r t = s e l f . manager . b ehav i o r_da t a_msg
668 r e p o r t . id = by t e s . AUCTION_BID
669 r e p o r t . params = p a r s e r . pack ()
670 s e l f . manager . b e h a v i o r _ d a t a _ p u b l i s h e r . p u b l i s h (

r e p o r t)
671
672
673
674 def b i d S t a t u sR e q u e s t (s e l f) :
675 ’ ’ ’ e x e c u t e r e q u e s t s f o r b i d s (l o s s y comms

p r o t e c t i o n)
676 ’ ’ ’
677 p a r s e r = b y t e s . USho r t P a r s e r ()
678 p a r s e r . v a l u e = s e l f . _round_number
679 r e p o r t = s e l f . manager . b ehav i o r_da t a_msg
680 r e p o r t . id = by t e s . AUCTION_BIDS_REQUEST
681 r e p o r t . params = p a r s e r . pack ()
682 s e l f . manager . b e h a v i o r _ d a t a _ p u b l i s h e r . p u b l i s h (r e p o r t)
683
684
685
686 def c a l c u l a t e U t i l i t y (s e l f , c e l l _ i d , l a s t _w a y p o i n t) :
687 ’ ’ ’ c a l c u l a t e t h e u t i l i t y f o r a g i v en c e l l f o r a

g i v en agen t
688 @param c e l l _ i d : i d o f t h e c e l l
689 @param l a s t _wa y p o i n t : t h e waypo in t t o s t a r t d i s t a n c e

c a l c u l a t i o n s from
690 @return t h e u t i l i t y f o r t h e s p e c i f i e d c e l l from t h e

s p e c i f i e d waypo in t

115

691 ’ ’ ’
692 u t i l i t y _ c o s t = s e l f . c a l c u l a t e U t i l i t y C o s t (c e l l _ i d ,

l a s t _w a y p o i n t)
693 i f c e l l _ i d == s e l f . _ agen t . g e t C u r r C e l l I d () :
694 c e l l _ c o s t = 0 . 0
695 e l s e :
696 c e l l _ c o s t = s e l f . _ c e l l s [c e l l _ i d] . g e tCo s t ()
697 p r i v a t e _ v a l u e = s e l f . _ c e l l s [c e l l _ i d] . g e tVa lu e ()
698 i f s e l f . _ c h o o s e _ u t i l i t y _ f u n c t i o n == Auc t i onSea r ch .

SPEED_UTIL :
699 u t i l _ c o s t _ t i m e = u t i l i t y _ c o s t / s e l f . _ agen t .

ge tSpeed ()
700 c e l l _ u t i l i t y = round (p r i v a t e _ v a l u e −

u t i l _ c o s t _ t i m e − c e l l _ c o s t , 3)
701 e l i f s e l f . _ c h o o s e _ u t i l i t y _ f u n c t i o n == Auc t i onSea r ch .

ENDURANCE_UTIL :
702 u t i l _ c o s t _ e n d u r = u t i l i t y _ c o s t / (10 ∗ s e l f .

_ agen t . g e tEndu r ance ())
703 c e l l _ u t i l i t y = round (p r i v a t e _ v a l u e −

u t i l _ c o s t _ e n d u r − c e l l _ c o s t , 3)
704 re turn c e l l _ u t i l i t y
705
706
707
708
709 def c a l c u l a t e U t i l i t y C o s t (s e l f , c e l l _ i d , l a s t _w a y p o i n t) :
710 ’ ’ ’ used by g e n e r a t e C e l l U t i l i t i e s () t o g e n e r a t e a l l

r e l e v a n t components
711 f o r t h e u t i l i t y c a l c u l a t i o n
712 @param c e l l _ i d : i d o f t h e c e l l
713 @param l a s t _wa y p o i n t : t h e waypo in t t o s t a r t d i s t a n c e

c a l c u l a t i o n s from
714 @return t h e u t i l i t y c o s t f o r s p e c i f i e d c e l l

116

715 ’ ’ ’
716 s e l f . _ c e l l s [c e l l _ i d] . d e l e t eWaypo i n t s ()
717 s e l f . g en e r a t eWaypo i n t s (c e l l _ i d , l a s t _w a y p o i n t)
718 c e l l _ l o c a t i o n = s e l f . _ c e l l s [c e l l _ i d] . ge tWaypo in t s ()

[0] . g e tLa tLonLoca t i o n ()
719 c e l l _ s i z e = s e l f . _ c e l l s [c e l l _ i d] . g e t S i z e ()
720 i f l en (s e l f . _ agen t . g e tMyCe l l I d s ()) > 0 :
721 i f s e l f . _ c e l l s [s e l f . _ agen t . g e t C u r r C e l l I d ()] .

g e t S t a t u s () == Ce l l . ASSIGNED :
722 c u r r _ c e l l _ l e f t = l en (s e l f . _ c e l l s [s e l f . _ agen t

. g e t C u r r C e l l I d ()] . ge tWaypo in t s ()) \
723 ∗ s e l f . _ senso r_sweep [1]
724 e l s e :
725 c u r r _ c e l l _ l e f t = (l en (s e l f . _ c e l l s [s e l f .

_ agen t . g e t C u r r C e l l I d ()] . g e tWaypo in t s ()) \
726 − s e l f . _ agen t .

g e tCu r rWaypo in t I d ()) ∗
s e l f . _ senso r_sweep [1]

727 d i s t _ t o _ c e l l = gps . g p s _ d i s t a n c e (c e l l _ l o c a t i o n
[0] , c e l l _ l o c a t i o n [1] , \

728 l a s t _w a y p o i n t
[0] ,
l a s t _w a y p o i n t
[1])

729 e l s e :
730 c u r r _ c e l l _ l e f t = 0
731 d i s t _ t o _ c e l l = gps . g p s _ d i s t a n c e (c e l l _ l o c a t i o n

[0] , c e l l _ l o c a t i o n [1] , \
732 l a s t _w a y p o i n t

[0] ,
l a s t _w a y p o i n t
[1])

733 # sum te rms t o produce t h e g ro s s u t i l i t y (b e f o r e

117

s u b t r a c t i n g c e l l c o s t)
734 u t i l i t y _ c o s t = d i s t _ t o _ c e l l + c e l l _ s i z e +

c u r r _ c e l l _ l e f t
735 re turn u t i l i t y _ c o s t
736
737
738
739 def c a l cT o t a lA r e a (s e l f) :
740 ’ ’ ’ f o r da ta c o l l e c t i o n . d e t e rm i n e t o t a l number o f

waypo i n t s i n any c e l l .
741 ’ ’ ’
742 bo t = s e l f . manager . g e t _ own_ s t a t e () . s t a t e . pose . pose .

p o s i t i o n
743 s t a r t _ p o s i t i o n = (bo t . l a t , bo t . l on)
744 f o r c e l l _ i d in range (l en (s e l f . _ c e l l s)) :
745 s e l f . g en e r a t eWaypo i n t s (c e l l _ i d , s t a r t _ p o s i t i o n)
746 s e l f . _ t o t a l _ s e a r c h _w a y p o i n t s += l en (s e l f . _ c e l l s [

c e l l _ i d] . ge tWaypo in t s ())
747 s e l f . _ c e l l s [c e l l _ i d] . d e l e t eWaypo i n t s ()
748
749
750
751 def c a p t u r e R o b o tU t i l i z a t i o nD a t a (s e l f) :
752 ’ ’ ’ f o r da ta c o l l e c t i o n . d e t e rm i n e l o i t e r , t r a n s i t ,

and s ea r ch t im e s f o r each agen t .
753 ’ ’ ’
754 i f s e l f . _ rounds_synced :
755 i f not s e l f . _ i n i t i a l _ a s s i g n :
756 # i f i ’m no t s ea r ch i ng , I ’m e i t h e r

t r a n s i t i n g or I ’m l o i t e r i n g
757 i f not s e l f . _am_sea rch ing :
758 # i f l o i t e r _ w a i t i s t r u e , I ’m l o i t e r i n g
759 i f s e l f . _ l o i t e r _ w a i t and not s e l f .

118

_ am_ l o i t e r i n g :
760 s e l f . _ d a t a _ r o b o t _ l o i t e r i n g . append (

ro spy . Time . now ())
761 # s e t am_ l o i t e r i n g t o t r u e t o make

su r e we on l y append once
762 s e l f . _ am_ l o i t e r i n g = True
763 # i f l o i t e r _ w a i t i s f a l s e , I ’m no l ong e r

l o i t e r i n g
764 e l i f not s e l f . _ l o i t e r _ w a i t and s e l f .

_ agen t . g e t C u r r C e l l I d () != None and \
765 s e l f . _ am_ l o i t e r i n g :
766 s e l f . _ d a t a _ r o b o t _ l o i t e r i n g . append (

ro spy . Time . now ())
767 # s e t am_ l o i t e r i n g t o f a l s e t o make

su r e we on l y append once
768 s e l f . _ am_ l o i t e r i n g = F a l s e
769 # i f I don ’ t have a c u r r e n t c e l l , I am

l o i t e r i n g
770 e l i f s e l f . _ agen t . g e t C u r r C e l l I d () == None

and l en (s e l f . _ c e l l s _ l e f t) > 0 and \
771 not s e l f . _ am_ l o i t e r i n g :
772 s e l f . _ d a t a _ r o b o t _ l o i t e r i n g . append (

ro spy . Time . now ())
773 # s e t am_ l o i t e r i n g t o t r u e t o make

su r e we on l y append once
774 s e l f . _ am_ l o i t e r i n g = True
775 # i f s ea r ch i s ove r and I was s t i l l

l o i t e r i n g , append second l o i t e r v a l u e
776 i f l en (s e l f . _ c e l l s _ l e f t) == 0 and not

s e l f . _ agen t . _IS_SEARCH_AUCTION and \
777 s e l f . _ am_ l o i t e r i n g :
778 s e l f . _ d a t a _ r o b o t _ l o i t e r i n g . append (

ro spy . Time . now ())

119

779 s e l f . _ am_ l o i t e r i n g = F a l s e
780 # i f I ’ ve s t a r t e d s ea r ch i ng , I ’m no t

l o i t e r i n g or t r a n s i t i n g
781 e l i f s e l f . _am_sea rch ing :
782 # i f am_ l o i t e r i n g i s s t i l l t r u e , need t o

append second l o i t e r t ime
783 i f s e l f . _ am_ l o i t e r i n g :
784 s e l f . _ d a t a _ r o b o t _ l o i t e r i n g . append (

ro spy . Time . now ())
785 # s e t am_ l o i t e r i n g t o f a l s e t o make

su r e we on l y append once
786 s e l f . _ am_ l o i t e r i n g = F a l s e
787 e l i f s e l f . _ i n i t i a l _ a s s i g n :
788 # i f we have j u s t s t a r t e d t h e behav io r ,

append t h e f i r s t l o i t e r v a l u e
789 i f not s e l f . _ am_ l o i t e r i n g :
790 s e l f . _ d a t a _ r o b o t _ l o i t e r i n g . append (ro spy .

Time . now ())
791 s e l f . _ am_ l o i t e r i n g = True
792 # append d u r a t i o n s when t h e y become a v a i l a b l e
793 i f l en (s e l f . _ d a t a _ r o b o t _ l o i t e r i n g) == 2 :
794 s t a r t _ t i m e = s e l f . _ d a t a _ r o b o t _ l o i t e r i n g [0]
795 end_ t ime = s e l f . _ d a t a _ r o b o t _ l o i t e r i n g [1]
796 t o t a l _ l o i t e r _ t i m e = end_ t ime − s t a r t _ t i m e
797 s e l f . _ d a t a _ r o b o t _ u t i l i z a t i o n . append ((" l " ,

t o t a l _ l o i t e r _ t i m e))
798 s e l f . _ d a t a _ r o b o t _ l o i t e r i n g = []
799 i f l en (s e l f . _ d a t a _ r o b o t _ s e a r c h i n g) == 2 :
800 s t a r t _ t i m e = s e l f . _ d a t a _ r o b o t _ s e a r c h i n g [0]
801 end_ t ime = s e l f . _ d a t a _ r o b o t _ s e a r c h i n g [1]
802 t o t a l _ s e a r c h _ t i m e = end_ t ime − s t a r t _ t i m e
803 s e l f . _ d a t a _ r o b o t _ u t i l i z a t i o n . append ((" s " ,

t o t a l _ s e a r c h _ t i m e))

120

804 s e l f . _ d a t a _ r o b o t _ s e a r c h i n g = []
805
806
807
808 def cap tu reRoundDa ta (s e l f) :
809 ’ ’ ’ f o r da ta c o l l e c t i o n . c a p t u r e s t a r t and end

t im e s o f rounds .
810 ’ ’ ’
811 s e l f . _ d a t a _ r ound_ t ime . append (ro spy . Time . now ())
812 i f l en (s e l f . _ d a t a _ r ound_ t ime) > 1 :
813 s t a r t _ t i m e = s e l f . _ d a t a _ r ound_ t ime [0]
814 end_ t ime = s e l f . _ d a t a _ r ound_ t ime [1]
815 round_ t ime = end_ t ime − s t a r t _ t i m e
816 s e l f . _ d a t a _ r o u n d _ d u r a t i o n s . append (round_ t ime)
817 s e l f . _ d a t a _ r ound_ t ime = []
818 i f s e l f . _ a u c t i o n _ comp l e t e :
819 # c a l c u l a t e number o f rounds and average round

r un t ime s
820 num_rounds = l en (s e l f . _ d a t a _ r o u n d _ d u r a t i o n s)
821 # i t e r a t e t h rough ro spy t ime d u r a t i o n i n s t a n c e s
822 round_ t imes = ro spy . Du r a t i o n (0)
823 f o r d u r a t i o n in s e l f . _ d a t a _ r o u n d _ d u r a t i o n s :
824 round_ t imes += d u r a t i o n
825 i f num_rounds > 0 :
826 ave r age_ r ound_ t ime = round_ t ime s /

num_rounds
827 e l s e :
828 ave r age_ r ound_ t ime = ro spy . Du r a t i o n (0)
829 s e l f . _ d a t a _ r o u n d _ i n f o rma t i o n . append ((num_rounds ,

a v e r ag e_ r ound_ t ime))
830 s e l f . _ d a t a _ r ound_ t ime = []
831 s e l f . _ d a t a _ r o u n d _ d u r a t i o n s = []
832

121

833
834
835 def c a p t u r e T h e s i sD a t a (s e l f) :
836 ’ ’ ’ f o r da ta c o l l e c t i o n . comp i l e and d i s p l a y

i t e r a t i o n da ta f o r c o l l e c t i o n
837 ’ ’ ’
838 # c a l c u l a t e t o t a l Auc t i onSea r ch run t ime
839 s t a r t _ t i m e = s e l f . _ d a t a _ t o t a l _ r u n t i m e [0]
840 end_ t ime = s e l f . _ d a t a _ t o t a l _ r u n t i m e [1]
841 t o t a l _ r u n t i m e = end_ t ime − s t a r t _ t i m e
842 # c a l c u l a t e number o f a u c t i o n s and average a u c t i o n

r u n t ime s
843 num_auc t ions = l en (s e l f . _ d a t a _ a u c t i o n _ d u r a t i o n s)
844 # i t e r a t e t h rough ro spy t ime d u r a t i o n i n s t a n c e s
845 a u c t i o n _ t im e s = ro spy . Du r a t i o n (0)
846 f o r d u r a t i o n in s e l f . _ d a t a _ a u c t i o n _ d u r a t i o n s :
847 a u c t i o n _ t im e s += d u r a t i o n
848 a v e r a g e _ a u c t i o n _ t im e = a u c t i o n _ t im e s / num_auc t ions
849 # c a l c u l a t e rounds per a u c t i o n and o t h e r round−coun t

i n f o rma t i o n
850 t o t a l _ r o u n d s = 0
851 t o t a l _ r o u n d _ t im e s = ro spy . Du r a t i o n (0)
852 f o r i n f o in s e l f . _ d a t a _ r o u n d _ i n f o rma t i o n :
853 t o t a l _ r o u n d s += i n f o [0]
854 t o t a l _ r o u n d _ t im e s += i n f o [1]
855 ave r ag e_ r ound s = t o t a l _ r o u n d s / l en (s e l f .

_ d a t a _ r o u n d _ i n f o rma t i o n)
856 ave r a g e_ r ound_ t ime s = t o t a l _ r o u n d _ t im e s / l en (s e l f .

_ d a t a _ r o u n d _ i n f o rma t i o n)
857 # c a l c u l a t e per− r obo t u t i l i z a t i o n
858 t o t a l _ l o i t e r = ro spy . Du r a t i o n (0)
859 t o t a l _ s e a r c h = ro spy . Du r a t i o n (0)
860 t o t a l _ t r a n s i t = ro spy . Du r a t i o n (0)

122

861 f o r c a p t u r e in s e l f . _ d a t a _ r o b o t _ u t i l i z a t i o n :
862 i f c a p t u r e [0] == " s " :
863 t o t a l _ s e a r c h += c a p t u r e [1]
864 e l s e :
865 t o t a l _ l o i t e r += c a p t u r e [1]
866 t o t a l _ t r a n s i t = t o t a l _ r u n t i m e − t o t a l _ s e a r c h −

t o t a l _ l o i t e r
867 p e r c e n t _ i _ s e a r c h e d = s e l f . _ d a t a _ a r e a _ s e a r c h e d / s e l f

. _ t o t a l _ s e a r c h _w a y p o i n t s
868 s e l f . manager . l o g _ i n f o (" S e a r c h e r _ i d ␣=␣%d" % s e l f .

_ agen t . g e t S e a r c h e r I d ())
869 s e l f . manager . l o g _ i n f o ((" number␣ o f ␣ a u c t i o n s : ␣ " ,

num_auc t ions))
870 s e l f . manager . l o g _ i n f o ((" av e r ag e ␣ a u c t i o n ␣ d u r a t i o n : ␣ " ,

a v e r a g e _ a u c t i o n _ t im e . s e c s))
871 s e l f . manager . l o g _ i n f o ((" av e r ag e ␣ rounds ␣ pe r ␣ a u c t i o n : ␣

" , round (ave r age_ rounds , 2)))
872 s e l f . manager . l o g _ i n f o ((" av e r ag e ␣ round ␣ t ime ␣ pe r ␣

a u c t i o n : ␣ " , a v e r a g e_ r ound_ t ime s . s e c s))
873 s e l f . manager . l o g _ i n f o ((" t o t a l ␣ r un t ime : ␣ " ,

t o t a l _ r u n t i m e . s e c s))
874 s e l f . manager . l o g _ i n f o (" ")
875 s e l f . manager . l o g _ i n f o ((" t o t a l ␣ t ime ␣ s p e n t ␣ l o i t e r i n g : ␣

" , t o t a l _ l o i t e r . s e c s))
876 s e l f . manager . l o g _ i n f o ((" t o t a l ␣ t ime ␣ s p e n t ␣ t r a n s i t i n g :

␣ " , t o t a l _ t r a n s i t . s e c s))
877 s e l f . manager . l o g _ i n f o ((" p e r c e n t a g e ␣ of ␣ a r e a ␣ I ␣

s e a r c h e d : ␣ " , round (p e r c e n t _ i _ s e a r c h e d , 3)))
878
879
880
881 def c e l l S t a t u sU p d a t e (s e l f) :
882 ’ ’ ’ send c e l l s t a t u s upda t e s t o o t h e r ag en t s

123

883 ’ ’ ’
884 p a r s e r = b y t e s . A u c t i o n S e a r c hC e l l s P a r s e r ()
885 p a r s e r . c e l l _ l i s t = []
886 p a r s e r . s o u r c e _ i d = s e l f . _ agen t . g e t S e a r c h e r I d ()
887 p a r s e r . r ound_ id = s e l f . _round_number
888 p a r s e r . auc t i on_numbe r = s e l f . _auc t i on_number
889 # send c u r r e n t c e l l upda t e s as we l l as t h e most

r e c e n t p r e v i o u s upda t e s
890 c e l l s _ t o _ t r a n s m i t = s e l f . _ c e l l s _ c h a n g e d . un ion (s e l f .

_ p r e v _ c e l l s)
891 i f l en (c e l l s _ t o _ t r a n s m i t) != 0 :
892 f o r c e l l _ i d in c e l l s _ t o _ t r a n s m i t :
893 s e l f . _ c e l l _ u p d a t e _ s e n t . add (c e l l _ i d)
894 p a r s e r . c e l l _ l i s t . append ([s e l f . _ c e l l s [

c e l l _ i d] . g e t C e l l I d () , \
895 s e l f . _ c e l l s [

c e l l _ i d] .
g e t S t a t u s () , \

896 s e l f . _ c e l l s [
c e l l _ i d] .
getOwner () , \

897 s e l f . _ c e l l s [
c e l l _ i d] .
g e tCo s t ()])

898 r e p o r t = s e l f . manager . b ehav i o r_da t a_msg
899 r e p o r t . id = by t e s .AUCTION_CELLS
900 r e p o r t . params = p a r s e r . pack ()
901 s e l f . manager . b e h a v i o r _ d a t a _ p u b l i s h e r . p u b l i s h (r e p o r t)
902
903
904
905 def c e l l S t a t u s R e q u e s t (s e l f) :
906 ’ ’ ’ e x e c u t e r e q u e s t s f o r c e l l s t a t u s e s (l o s s y comms

124

p r o t e c t i o n)
907 ’ ’ ’
908 p a r s e r = b y t e s . A u c t i o n S t a t u s P a r s e r ()
909 p a r s e r . auc t i on_numbe r = s e l f . _auc t i on_number
910 p a r s e r . round_number = s e l f . _round_number
911 r e p o r t = s e l f . manager . b ehav i o r_da t a_msg
912 r e p o r t . id = by t e s .AUCTION_CELLS_REQUEST
913 r e p o r t . params = p a r s e r . pack ()
914 s e l f . manager . b e h a v i o r _ d a t a _ p u b l i s h e r . p u b l i s h (r e p o r t)
915
916
917
918 def check I fAuc t i onComp l e t e (s e l f , num_agents) :
919 ’ ’ ’ check i f a u c t i o n i s comp l e t e and t e l l o t h e r

ag en t s i f so
920 @param num_agents : t h e number o f a g en t s i n t h e

subswarm e x e c u t i n g Auc t i onSea r ch
921 ’ ’ ’
922 i f s e l f . _w inne r s _p i ck ed :
923 i f l en (s e l f . _ agen t . g e tMyCe l l I d s ()) ==

Auc t i onSea r ch . CELLS_PER_AUCTION and \
924 s e l f . _ i n i t i a l _ a s s i g n :
925 s e l f . s h a r eAuc t i onComp l e t e (num_agents)
926 e l i f s e l f . _m id_ sea r ch_b id :
927 s e l f . s h a r eAuc t i onComp l e t e (num_agents)
928
929
930
931 def c h e ck I fCe l lComp l e t e (s e l f) :
932 ’ ’ ’ check i f agen t comp l e t ed an in −p r og r e s s c e l l ,

and s t a r t an a u c t i o n f o r new c e l l s
933 ’ ’ ’
934 i f l en (s e l f . _ agen t . g e tMyCe l l I d s ()) > 0 :

125

935 c e l l _ i n d e x = s e l f . _ agen t . g e t C u r r C e l l I d ()
936 # i f I have comp l e t ed s e a r c h i n g my c e l l , move t o

n e x t c e l l or wa i t u n t i l I g e t a new c e l l
937 i f s e l f . _ agen t . g e tCu r rWaypo in t I d () > 0 and l en (

s e l f . _ c e l l s [c e l l _ i n d e x] . ge tWaypo in t s ()) > 0 \
938 and s e l f . _ c e l l s [c e l l _ i n d e x] . g e t S t a t u s () ==

Ce l l . IN_PROGRESS :
939 i f s e l f . _ agen t . g e tCu r rWaypo in t I d () > l en (

s e l f . _ c e l l s [c e l l _ i n d e x] . ge tWaypo in t s ())−1
\

940 and not s e l f . _ c e l l _ c omp l e t e and not s e l f .
_ l o i t e r _ w a i t :

941 s e l f . _ c e l l s [c e l l _ i n d e x] . s e t S t a t u s (C e l l .
COMPLETE)

942 # t h e s i s da ta c ap t u r e
943 i f l en (s e l f . _ d a t a _ r o b o t _ s e a r c h i n g) == 1 :
944 s e l f . _ d a t a _ r o b o t _ s e a r c h i n g . append (

ro spy . Time . now ())
945 s e l f . _am_sea rch ing = F a l s e
946 s e l f . _ c e l l s _ c h a n g e d . add (c e l l _ i n d e x)
947 s e l f . _ l o i t e r _ c h e c k p o i n t = s e l f . _ c e l l s [

c e l l _ i n d e x] . ge tWaypo in t s () [−1] .
g e tLa tLonLoca t i o n ()

948 s e l f . _ c e l l _ c omp l e t e = True
949 s e l f . _ agen t . r e s e tCu r rWaypo i n t I d ()
950 s e l f . manager . log_warn (" I ␣ have ␣ comple t ed ␣

s e a r c h ␣ of ␣ c e l l ␣%d " % c e l l _ i n d e x)
951 # i f I have f i n i s h e d t h e l a s t c e l l i n

t h e s ea r ch area , remember i t t o s t a r t
a u c t i o n

952 i f c e l l _ i n d e x in s e l f . _ c e l l s _ l e f t and
l en (s e l f . _ c e l l s _ l e f t) in [0 , 1] :

953 s e l f . _ i _ f i n i s h e d _ l a s t = True

126

954 # cap t u r e t h e s i s da ta
955 s e l f . _ d a t a _ a r e a _ s e a r c h e d += l en (s e l f .

_ c e l l s [c e l l _ i n d e x] . ge tWaypo in t s ())
956 i f l en (s e l f . _ agen t . g e tMyCe l l I d s ()) <= 1 :
957 s e l f . s t ay InMyCe l l ()
958
959
960
961 def che ck I fS e a r chComp l e t e (s e l f) :
962 ’ ’ ’ check i f t h e s ea r ch i s comple te , and s t a r t an

a u c t i o n t o n o t i f y o t h e r s i f so
963 ’ ’ ’
964 i f l en (s e l f . _ c e l l s _ l e f t) == 0 and not s e l f .

_ i n i t i a l _ a s s i g n and \
965 not s e l f . _ a u c t i o n _ s t a r t e d and s e l f . _ agen t .

_IS_SEARCHER :
966 s e l f . manager . l o g _ i n f o (" Sea r ch ␣ i s ␣ comple t e . ␣␣

D e a c t i v a t e ␣ Behav io r . ")
967 s e l f . _ c e l l s _ i n _ p r o g r e s s . c l e a r ()
968 # s t a r t a f i n a l a u c t i o n t o f o r c e a c e l l s t a t u s

upda t e i n f o rm i n g a l l a g en t s o f c omp l e t i o n
969 mor e_ t o_ s e a r ch = F a l s e
970 s e l f . s t a r t A u c t i o n (mo r e_ t o_ s e a r ch)
971 s e l f . _ agen t . r e s e tCu r rWaypo i n t I d ()
972 s e l f . _ agen t . _IS_SEARCHER = Fa l s e
973
974
975
976 def c h e c kU t i l i z a t i o n (s e l f) :
977 ’ ’ ’ check i f t h e r e are c e l l s a v a i l a b l e even though

agen t has none . S t a r t an a u c t i o n .
978 ’ ’ ’
979 i f not s e l f . _ a u c t i o n _ s t a r t e d and not s e l f .

127

_ i n i t i a l _ a s s i g n and \
980 l en (s e l f . _ agen t . g e tMyCe l l I d s ()) == 0 :
981 # i f t h e r e are c e l l s l e f t t o s ea r ch t h a t are no t

i n p rogre s s , s t a r t an a u c t i o n
982 i f l en (s e l f . _ c e l l s _ l e f t) > l en (s e l f .

_ c e l l s _ i n _ p r o g r e s s) and \
983 s e l f . _wa i t >= (Auc t i onSea r ch .MESSAGE_COUNT ∗

20) :
984 s e l f . manager . l o g _ i n f o (" C e l l s ␣ a r e ␣ a v a i l a b l e ␣

and␣ I ␣ have ␣none . ␣ S t a r t i n g ␣ a u c t i o n . ")
985 mor e_ t o_ s e a r ch = F a l s e
986 s e l f . s t a r t A u c t i o n (mo r e_ t o_ s e a r ch)
987 e l s e :
988 s e l f . _wa i t += 1 # s e l f . _wa i t g i v e s o t h e r

ag en t s a chance t o f i n i s h A u c t i o n ()
989
990
991
992 def c o n s o l i d a t e B i d s (s e l f) :
993 ’ ’ ’ p l a c e b i d s from inbound_b i d s l i s t i n t o a

d i c t i o n a r y f o r p r o c e s s i n g
994 ’ ’ ’
995 c e l l s _ b i d _ o n = { } # member− t e s t c e l l _ i d s t o

check f o r c o n f l i c t s
996 # c o n s o l i d a t e o t h e r ag en t s ’ b i d s i n _ a l l _ b i d s

d i c t i o n a r y
997 f o r upda t e in s e l f . _ i nbound_b id s :
998 agen t_key = upda t e [0]
999 c e l l _ k e y = upda t e [1]

1000 b i d _ v a l = upda t e [2]
1001 # check f o r c e l l c o n f l i c t s (two or more ag en t s

b i d d i n g f o r same c e l l)
1002 i f c e l l _ k e y in c e l l s _ b i d _ o n :

128

1003 s e l f . _same_bids = F a l s e
1004 e l s e :
1005 i f c e l l _ k e y != Auc t i onSea r ch .NOT_BIDDING :
1006 c e l l s _ b i d _ o n [c e l l _ k e y] = 0 # we on l y

care abou t f a s t l ookup o f c e l l _ i d
1007 # i f f i r s t t ime s e e i n g agen t ’ s b i d or i t s f o r a

new c e l l , c r e a t e agen t : { c e l l _ i d : b i d } p a i r
1008 i f agen t_key not in s e l f . _ a l l _ b i d s or c e l l _ k e y

not in s e l f . _ a l l _ b i d s [agen t_key] :
1009 s e l f . _same_bids = F a l s e # agen t s u bm i t t e d a

new b id
1010 s e l f . _ a l l _ b i d s [agen t_key] = { }
1011 s e l f . _ a l l _ b i d s [agen t_key] [c e l l _ k e y] =

b i d _ v a l
1012 # i f agen t has b i d h i g h e r f o r same c e l l , i t i s

s t i l l no t happy .
1013 e l i f b i d _ v a l != s e l f . _ a l l _ b i d s [agen t_key] [

c e l l _ k e y] :
1014 s e l f . _same_bids = F a l s e # agen t s u bm i t t e d a

new b id
1015 s e l f . _ a l l _ b i d s [agen t_key] [c e l l _ k e y] =

b i d _ v a l
1016 e l s e :
1017 s e l f . _ a l l _ b i d s [agen t_key] [c e l l _ k e y] =

b i d _ v a l
1018 # i n c l u d e agen t ’ s b i d i n t o _ a l l _ b i d s , f o l l o w i n g same

l o g i c as o t h e r ag en t s ’ b i d s
1019 agen t_key = s e l f . _ agen t . g e t S e a r c h e r I d ()
1020 c e l l _ k e y = s e l f . _ c u r r _ b i d [0]
1021 b i d _ v a l = s e l f . _ c u r r _ b i d [1]
1022 # check f o r c e l l c o n f l i c t s w i t h my b id i n c l u d e d
1023 i f c e l l _ k e y in c e l l s _ b i d _ o n :
1024 s e l f . _same_bids = F a l s e

129

1025 e l s e :
1026 i f c e l l _ k e y != Auc t i onSea r ch .NOT_BIDDING :
1027 c e l l s _ b i d _ o n [c e l l _ k e y] = 0 # we on l y care

abou t f a s t l ookup o f c e l l _ i d
1028 i f agen t_key not in s e l f . _ a l l _ b i d s or c e l l _ k e y not

in s e l f . _ a l l _ b i d s [agen t_key] :
1029 s e l f . _same_bids = F a l s e
1030 s e l f . _ a l l _ b i d s [agen t_key] = { }
1031 s e l f . _ a l l _ b i d s [agen t_key] [c e l l _ k e y] = b i d _ v a l
1032 e l i f b i d _ v a l != s e l f . _ a l l _ b i d s [agen t_key] [c e l l _ k e y] :
1033 s e l f . _same_bids = F a l s e
1034 s e l f . _ a l l _ b i d s [agen t_key] [c e l l _ k e y] = b i d _ v a l
1035 e l s e :
1036 s e l f . _ a l l _ b i d s [agen t_key] [c e l l _ k e y] = b i d _ v a l
1037 # conduc t one more s a n i t y check f o r c e l l c o n f l i c t s
1038 i d s = []
1039 c e l l _ c o n f l i c t = F a l s e
1040 f o r ag en t in s e l f . _ a l l _ b i d s :
1041 f o r c e l l in s e l f . _ a l l _ b i d s [a g en t] :
1042 i f c e l l not in i d s :
1043 i f c e l l != Auc t i onSea r ch .NOT_BIDDING :
1044 i d s . append (c e l l)
1045 e l s e :
1046 c e l l _ c o n f l i c t = True
1047 break
1048 i f c e l l _ c o n f l i c t :
1049 s e l f . _same_bids = F a l s e
1050
1051
1052 def d e f i n eGeome t r i e s (s e l f , o b j e c t s) :
1053 ’ ’ ’
1054 De f i n e s edges o f g e ome t r i e s i n COMPLEX env i r onmen t s

(o b s t a c l e s , n o_ f l y _ z on e s , e t c .)

130

1055 @param o b j e c t s : l i s t o f o b s t a c l e g r i d s
1056 @return l i s t o f node−node c o n n e c t i o n s f o r each

o b s t a c l e
1057 ’ ’ ’
1058 g e ome t r i e s = []
1059 each_geomet ry = []
1060 f o r geo in o b j e c t s :
1061 i = 0
1062 each_geomet ry = []
1063 whi le i < l en (geo) −1:
1064 each_geomet ry . append ((geo [i] , geo [i +1]))
1065 i += 1
1066 each_geomet ry . append ((geo [0] , geo [−1]))
1067 g e ome t r i e s . append (each_geomet ry)
1068 re turn g e ome t r i e s
1069
1070
1071
1072 def d e t e rm i n eO f fL im i t s (s e l f) :
1073 ’ ’ ’
1074 used by s e l f . g e n e r a t e C e l l U t i l i t i e s () t o d e c i d e which

c e l l s s hou l d be o f f l i m i t s
1075 du r i ng a g i v en a u c t i o n . in −p r og r e s s and comp l e t e

c e l l s are no t a u c t i o n a b l e
1076 @return l i s t o f c e l l _ i d s t h a t are no t a v a i l a b l e f o r

a u c t i o n
1077 ’ ’ ’
1078 i f s e l f . _ i n i t i a l _ a s s i g n :
1079 o f f _ l i m i t s = (C e l l . IN_PROGRESS , Ce l l .COMPLETE,

Ce l l . ASSIGNED)
1080 e l s e :
1081 o f f _ l i m i t s = (C e l l . IN_PROGRESS , Ce l l .COMPLETE)
1082 re turn o f f _ l i m i t s

131

1083
1084
1085
1086 def de t e rmineWaypo in t (s e l f) :
1087 ’ ’ ’ d e t e rm i n e which waypo in t t o t r a v e l to , or l o i t e r

a t
1088 ’ ’ ’
1089 c l a im_my_nex t _ c e l l = F a l s e
1090 # i f s ea r ch i s comple te , o r b i t i n p l a c e
1091 i f not s e l f . _ agen t . _IS_SEARCHER :
1092 waypo i n t _ l o c = s e l f . _ l o i t e r _ c h e c k p o i n t
1093 e l i f s e l f . _ i n i t i a l _ a s s i g n and s e l f . _ agen t .

g e t C u r r C e l l I d () == None :
1094 waypo i n t _ l o c = s e l f . _ l o i t e r _ c h e c k p o i n t
1095 # i f I comp l e t ed my c e l l , d e c i d e t o move t o n e x t

c e l l or wa i t
1096 e l i f s e l f . _ c e l l _ c omp l e t e :
1097 # i f we ’ re i n t h e midd l e o f an a u c t i o n and I

have f i n i s h e d a c e l l , s t a y pu t
1098 i f s e l f . _ a u c t i o n _ s t a r t e d :
1099 s e l f . s t ay InMyCe l l ()
1100 waypo i n t _ l o c = s e l f . _ l o i t e r _ c h e c k p o i n t
1101 e l s e :
1102 # o t h e rw i s e , i f my n e x t c e l l i s s t i l l

op t ima l , move t o i t
1103 i f l en (s e l f . _ agen t . g e tMyCe l l I d s ()) > 1 \
1104 and s e l f . _ agen t . g e tMyCe l l I d s () [1] in s e l f .

_ c e l l s [s e l f . _ agen t . g e t C u r r C e l l I d ()] .
g e tNe i ghbo r s () :

1105 s e l f . moveToNextCell ()
1106 c l a im_my_nex t _ c e l l = True
1107 waypo i n t _ l o c = s e l f . _ c e l l s [s e l f . _ agen t .

g e t C u r r C e l l I d ()] . g e tWaypo in t s () [s e l f .

132

_agen t . g e tCu r rWaypo in t I d ()] .
g e tLa tLonLoca t i o n ()

1108 e l s e :
1109 s e l f . s t ay InMyCe l l ()
1110 waypo i n t _ l o c = s e l f . _ l o i t e r _ c h e c k p o i n t
1111 # s t a r t a new au c t i o n f o r c e l l s , and b roadca s t

whe ther I c l a im my n e x t c e l l or no t (i f i t i s
s t i l l o p t ima l)

1112 i f not s e l f . _ a u c t i o n _ s t a r t e d :
1113 s e l f . manager . l o g _ i n f o ((" s t a r t i n g ␣an␣ a u c t i o n .

␣␣ c l a im _ n e x t _ c e l l : ␣ " , c l a im_my_nex t _ c e l l)
)

1114 s e l f . s t a r t A u c t i o n (c l a im_my_nex t _ c e l l)
1115 s e l f . _ c e l l _ c omp l e t e = F a l s e
1116 # i f I have no t comp l e t ed my c u r r e n t c e l l , s t a y on

t h e pa th t o my c u r r e n t waypo in t
1117 e l s e :
1118 i f s e l f . _ agen t . g e t C u r r C e l l I d () != None and \
1119 s e l f . _ agen t . g e tCu r rWaypo in t I d () > l en (s e l f .

_ c e l l s [s e l f . _ agen t . g e t C u r r C e l l I d ()] .
g e tWaypo in t s ()) :

1120 waypo i n t _ l o c = s e l f . _ l o i t e r _ c h e c k p o i n t
1121 e l i f s e l f . _ agen t . g e t C u r r C e l l I d () != None and \
1122 l en (s e l f . _ c e l l s [s e l f . _ agen t . g e t C u r r C e l l I d ()] .

g e tWaypo in t s ()) > 0 :
1123 waypo i n t _ l o c = s e l f . _ c e l l s [s e l f . _ agen t .

g e t C u r r C e l l I d ()] . g e tWaypo in t s () [s e l f .
_ agen t . g e tCu r rWaypo in t I d ()] .
g e tLa tLonLoca t i o n ()

1124 # i f I don ’ t have any a s s i g n e d c e l l s , l o i t e r
u n t i l I have a c e l l or u n t i l t h e s ea r ch i s
comp l e t e

1125 e l s e :

133

1126 waypo i n t _ l o c = s e l f . _ l o i t e r _ c h e c k p o i n t
1127 # i f I ’ ve s t a r t e d s e a r c h i n g my c u r r e n t c e l l , s e t i t

t o IN_PROGRESS
1128 i f s e l f . _ agen t . g e tCu r rWaypo in t I d () > 0 and not s e l f .

_ a u c t i o n _ s t a r t e d :
1129 s e l f . makeCe l lAc t i ve ()
1130 s e l f . _same_bids = F a l s e
1131 re turn (s e l f . _ agen t . g e tCu r rWaypo in t I d () ,

waypo i n t _ l o c)
1132
1133
1134
1135 def d i s p l a yR e p o r t (s e l f) :
1136 ’ ’ ’ d i s p l a y a u c t i o n and a s s i gnmen t i n f o rma t i o n
1137 ’ ’ ’
1138 s e l f . manager . l o g _ i n f o (" ␣ ")
1139 s e l f . manager . l o g _ i n f o (" ␣ ")
1140 s e l f . manager . l o g _ i n f o (" ␣−−−−−−−−−−−−−−−−−−−−−−−−−␣ ")
1141 s e l f . manager . l o g _ i n f o (" ###␣###␣NEW␣UPDATE␣###␣### ")
1142 s e l f . manager . l o g _ i n f o (" S e a r c h e r _ i d ␣=␣%d" % s e l f .

_ agen t . g e t S e a r c h e r I d ())
1143 s e l f . manager . l o g _ i n f o (" Auc t ion ␣number␣=␣%d" % s e l f .

_auc t i on_number)
1144 s e l f . manager . l o g _ i n f o (" Auc t ion ␣ round ␣number␣=␣%d" %

s e l f . _round_number)
1145 i f s e l f . _ c h oo s e _ s e a r c h _ a r e a in [Auc t i onSea r ch .

BASIC_LIVE_FLY , Auc t i onSea r ch .COMPLEX] :
1146 s e l f . manager . l o g _ i n f o (" Sea r ch ␣ Ce l l ␣ S t a t u s e s ␣ a r e ␣

below . ")
1147 s e l f . manager . l o g _ i n f o (" Format ␣ o f ␣ each ␣ Ce l l ␣

S t a t u s ␣ i s : ␣ [c e l l _ i d , ␣ c e l l _ s t a t u s , ␣ ce l l _owne r ,
␣ c e l l _ c o s t] ")

1148 r ep = []

134

1149 f o r i in range (l en (s e l f . _ c e l l s)) :
1150 r ep . append ([s e l f . _ c e l l s [i] . g e t C e l l I d () ,

s e l f . _ c e l l s [i] . g e t S t a t u s () , \
1151 s e l f . _ c e l l s [i] . getOwner () ,

round (s e l f . _ c e l l s [i] . g e tCo s t
())])

1152 s e l f . manager . l o g _ i n f o (r ep)
1153 s e l f . manager . l o g _ i n f o ((" c e l l s _ l e f t : ␣ " , s e l f .

_ c e l l s _ l e f t))
1154 s e l f . manager . l o g _ i n f o ((" b e e n _ t h e r e : ␣ " , s e l f .

_ b e e n_ t h e r e))
1155 s e l f . manager . l o g _ i n f o ((" c e l l s _ i n _ p r o g r e s s " , s e l f .

_ c e l l s _ i n _ p r o g r e s s))
1156 i f s e l f . _ agen t . g e t C u r r C e l l I d () != None :
1157 s e l f . manager . l o g _ i n f o ((" waypo in t s : ␣ " , l en (s e l f .

_ c e l l s [s e l f . _ agen t . g e t C u r r C e l l I d ()] .
g e tWaypo i n t I d s ())))

1158 s e l f . manager . l o g _ i n f o ((" c u r r _waypo i n t : ␣ " , s e l f .
_ agen t . g e tCu r rWaypo in t I d ()))

1159 s e l f . manager . l o g _ i n f o ((" c u r r _ c e l l : ␣ " , s e l f . _ agen t .
g e t C u r r C e l l I d ()))

1160 s e l f . manager . l o g _ i n f o (("my␣ c e l l s : ␣ " , s e l f . _ agen t .
g e tMyCe l l I d s ()))

1161 s e l f . manager . l o g _ i n f o (" ␣#␣#␣#␣#␣#␣#␣#␣#␣#␣#␣#␣#␣#␣#␣
")

1162 s e l f . manager . l o g _ i n f o (" ␣−−−−−−−−−−−−−−−−−−−−−−−−−␣ ")
1163 s e l f . manager . l o g _ i n f o (" ␣ ")
1164 s e l f . manager . l o g _ i n f o (" ␣ ")
1165 i f l en (s e l f . _ c e l l s _ l e f t) == 0 and not s e l f .

_ i n i t i a l _ a s s i g n :
1166 s e l f . _ d a t a _ t o t a l _ r u n t i m e . append (ro spy . Time . now ()

)
1167 s e l f . _ agen t . r e s e tCu r rWaypo i n t I d ()

135

1168 s e l f . manager . l o g _ i n f o (" Sea r ch ␣ i s ␣ comple t e . ␣␣
D e a c t i v a t e ␣ Behav io r . ")

1169 # cap t u r e l a s t l o i t e r t ime f o r any o r b i t i n g
ag en t s f o r t h e s i s da ta

1170 s e l f . c a p t u r e R o b o tU t i l i z a t i o nD a t a ()
1171 s e l f . manager . l o g _ i n f o (" ␣ ")
1172 s e l f . manager . l o g _ i n f o (" ␣ ")
1173 s e l f . c a p t u r e T h e s i sD a t a ()
1174 s e l f . manager . l o g _ i n f o (" ␣ ")
1175 s e l f . manager . l o g _ i n f o (" ␣ ")
1176
1177
1178
1179 def d i s p l a y S h o r t R e p o r t (s e l f) :
1180 ’ ’ ’ d i s p l a y round and b id i n f o rma t i o n
1181 ’ ’ ’
1182 # p r o v i d e a qu i c k r e p o r t o f agen t ’ s i n f o rma t i o n

du r i ng each round
1183 s e l f . manager . l o g _ i n f o (" Bid␣ i n f o ␣ i n s i d e ␣ o f ␣

w i nn e rDe t e rm i n a t i o n () ␣ i s ␣ below ")
1184 s e l f . manager . l o g _ i n f o (" Auc t ion ␣number␣=␣%d" % s e l f .

_auc t i on_number)
1185 s e l f . manager . l o g _ i n f o (" Auc t ion ␣ round ␣number : ␣%d " %

s e l f . _round_number)
1186 s e l f . manager . l o g _ i n f o ((" my_cur r_b id : ␣ " , s e l f .

_ c u r r _ b i d))
1187 s e l f . manager . l o g _ i n f o (("my␣ c e l l s : ␣ " , s e l f . _ agen t .

g e tMyCe l l I d s ()))
1188 s e l f . manager . l o g _ i n f o ((" a l l _ b i d s _ d i c t : ␣ " , s e l f .

_ a l l _ b i d s))
1189 s e l f . manager . l o g _ i n f o ((" c e l l s _ c h a n g e d : ␣ " , s e l f .

_ c e l l s _ c h a n g e d))
1190 s e l f . manager . l o g _ i n f o ((" p r e v _ c e l l s : ␣ " , s e l f .

136

_ p r e v _ c e l l s))
1191 s e l f . manager . l o g _ i n f o (" ")
1192
1193
1194
1195 def ex t e r n a lUpda t eMyCe l l s (s e l f) :
1196 ’ ’ ’ upda t e knowledge o f c e l l s from o t h e r ag en t s ’

knowledge
1197 ’ ’ ’
1198 removed_as s ignmen t s = []
1199 f o r upda t e in s e l f . _ i n b o u n d _ s t a t u s e s :
1200 i f l en (upda t e [1]) > 0 :
1201 f o r i in range (l en (upda t e [1])) :
1202 c e l l _ i d = upda t e [1] [i] [0]
1203 c e l l _ s t a t u s = upda t e [1] [i] [1]
1204 c e l l _ owne r = upda t e [1] [i] [2]
1205 c e l l _ c o s t = upda t e [1] [i] [3]
1206 # assume new i n f o based on ano t h e r agen t

’ s h i g h e r c e l l s t a t u s
1207 i f c e l l _ s t a t u s > s e l f . _ c e l l s [c e l l _ i d] .

g e t S t a t u s () :
1208 s e l f . _ c e l l s [c e l l _ i d] . s e t S t a t u s (

c e l l _ s t a t u s)
1209 s e l f . _ c e l l s [c e l l _ i d] . se tOwner (

c e l l _ owne r)
1210 s e l f . _ c e l l s [c e l l _ i d] . s e t C o s t (

c e l l _ c o s t)
1211 # i f ano t h e r agen t s a y s a c e l l i s

comple te , s e t t h a t c e l l t o
comp l e t e

1212 i f c e l l _ s t a t u s == Ce l l .COMPLETE:
1213 s e l f . _ b e e n_ t h e r e . add (c e l l _ i d)
1214 s e l f . _ c e l l s _ i n _ p r o g r e s s . d i s c a r d (

137

c e l l _ i d)
1215 s e l f . _ c e l l s _ l e f t . d i s c a r d (c e l l _ i d

)
1216 # i f t h e agen t owning t h i s c e l l i s

no t a c t i v e anymore , remove t h e i r
a s s i gnmen t

1217 i f c e l l _ s t a t u s == Ce l l . IN_PROGRESS :
1218 i f c e l l _ owne r not in s e l f .

manager . subswarm_keys :
1219 s e l f . _ c e l l s [c e l l _ i d] .

se tOwner (C e l l .NO_OWNER)
1220 s e l f . _ c e l l s [c e l l _ i d] . s e t C o s t

(C e l l .NO_COST)
1221 s e l f . _ c e l l s _ i n _ p r o g r e s s .

d i s c a r d (c e l l _ i d)
1222 s e l f . _ c e l l s _ l e f t . add (c e l l _ i d

)
1223 removed_as s ignmen t s . append (

c e l l _ i d)
1224 e l s e :
1225 s e l f . _ c e l l s _ i n _ p r o g r e s s . add (

c e l l _ i d)
1226 e l i f c e l l _ s t a t u s == Ce l l .

ASSIGNMENT_REMOVED \
1227 and c e l l _ i d not in

r emoved_as s ignmen t s :
1228 removed_as s ignmen t s . append (

c e l l _ i d)
1229 # t o make c e l l s a v a i l a b l e f o r a u c t i o n again , upda t e

s t a t u s e s .
1230 f o r c e l l _ i d in r emoved_as s ignmen t s :
1231 s e l f . r e v e r t C e l l (c e l l _ i d)
1232 removed_as s ignmen t s = []

138

1233 s e l f . _ i n b o u n d _ s t a t u s e s = []
1234
1235
1236
1237 def f i n a l A u c t i o n (s e l f) :
1238 ’ ’ ’ s t a r t s one more a u c t i o n i f agen t was l a s t t o

f i n i s h s ea r ch
1239 ’ ’ ’
1240 i f s e l f . _ i _ f i n i s h e d _ l a s t and not s e l f .

_ a u c t i o n _ s t a r t e d :
1241 i f l en (s e l f . _ c e l l s _ l e f t) == 0 :
1242 i f s e l f . _wa i t >= Auc t i onSea r ch .MESSAGE_COUNT

∗ 3 :
1243 s e l f . _wa i t = 0
1244 mor e_ t o_ s e a r ch = F a l s e
1245 s e l f . s t a r t A u c t i o n (mo r e_ t o_ s e a r ch)
1246 # s e l f . _ i _ f i n i s h e d _ l a s t = Fa l s e
1247 e l s e :
1248 s e l f . _wa i t += 1
1249
1250
1251
1252 def f i n i s hA u c t i o n (s e l f) :
1253 ’ ’ ’ c l e an up da ta s t r u c t u r e s a f t e r an a u c t i o n has

f i n i s h e d
1254 ’ ’ ’
1255 s e l f . _ i n i t i a l _ a s s i g n = F a l s e
1256 s e l f . _ a u c t i o n _ s t a r t e d = F a l s e
1257 s e l f . _ l o i t e r _ w a i t = F a l s e
1258 s e l f . _ agen t . _IS_SEARCH_AUCTION = Fa l s e
1259 s e l f . _ p r e v _ c e l l s = [e f o r e in s e l f . _ c e l l s _ c h a n g e d]
1260 temp = s e l f . _ c e l l s _ c h a n g e d . d i f f e r e n c e (s e l f .

_ c e l l _ u p d a t e _ s e n t)

139

1261 # c l e a r t h e r e co rd o f c e l l changes a f t e r a few
a u c t i o n s

1262 i f s e l f . _ce l l_memory >= Auc t i onSea r ch .
CELL_STATUS_MEMORY:

1263 s e l f . _ c e l l s _ c h a n g e d . c l e a r ()
1264 s e l f . _ce l l_memory = 0
1265 e l s e :
1266 s e l f . _ce l l_memory += 1
1267 f o r e in temp :
1268 s e l f . _ c e l l s _ c h a n g e d . add (e)
1269 s e l f . _ c e l l _ u p d a t e _ s e n t . c l e a r ()
1270 s e l f . _ s e a r c h _ r o l l _ c a l l . c l e a r ()
1271 s e l f . _ c om p l e t e _ r o l l _ c a l l . c l e a r ()
1272 s e l f . _ b i d _ r o l l _ c a l l . c l e a r ()
1273 s e l f . _ a b a ndon ed_ c e l l s . c l e a r ()
1274 s e l f . _ c e l l s _no t _won . c l e a r ()
1275 s e l f . _ a l l _ b i d s = { }
1276 s e l f . _wa i t = 0
1277 s e l f . _auc_msg_count = 0
1278 s e l f . _auc t i on_number += 1
1279 # da ta c ap t u r e i n s t r um e n t a t i o n below
1280 s e l f . _ d a t a _ a u c t i o n _ t im e . append (ro spy . Time . now ())
1281 a u c t i o n _ s t a r t _ t i m e = s e l f . _ d a t a _ a u c t i o n _ t im e [0]
1282 au c t i o n_ end_ t ime = s e l f . _ d a t a _ a u c t i o n _ t im e [1]
1283 a u c t i o n _ r u n t im e = au c t i o n_ end_ t ime −

a u c t i o n _ s t a r t _ t i m e
1284 s e l f . _ d a t a _ a u c t i o n _ d u r a t i o n s . append (a u c t i o n _ r u n t im e)
1285 s e l f . _ d a t a _ a u c t i o n _ t im e = []
1286 s e l f . manager . l o g _ i n f o (" t h e ␣ a u c t i o n ␣ i s ␣ comple t e ␣ and␣

c e l l s ␣ a r e ␣ upda t ed ")
1287
1288
1289

140

1290 def f romWaypoint (s e l f , f i r s t _ c e l l) :
1291 ’ ’ ’ d e t e rm i n e g r i d t o use as l a s t waypo in t f o r

u t i l i t y c o s t c a l c u l a t i o n s
1292 @return t h e waypo in t from which d i s t a n c e

c a l c u l a t i o n s are s t a r t e d
1293 ’ ’ ’
1294 i f s e l f . _ i n i t i a l _ a s s i g n :
1295 i f l en (s e l f . _ agen t . g e tMyCe l l I d s ()) > 0 and \
1296 l en (s e l f . _ c e l l s [f i r s t _ c e l l] . g e tWaypo in t s ()) >

0 :
1297 l a s t _w a y p o i n t = s e l f . _ c e l l s [f i r s t _ c e l l] .

g e tWaypo in t s () [−1] . g e tLa tLonLoca t i o n ()
1298 e l s e :
1299 bo t = s e l f . manager . g e t _ own_ s t a t e () . s t a t e .

pose . pose . p o s i t i o n
1300 l a s t _w a y p o i n t = (bo t . l a t , bo t . l on)
1301 e l i f l en (s e l f . _ agen t . g e tMyCe l l I d s ()) >= 1 and \
1302 s e l f . _ c e l l s [f i r s t _ c e l l] . g e t S t a t u s () == Ce l l .

ASSIGNED :
1303 bo t = s e l f . manager . g e t _ own_ s t a t e () . s t a t e . pose .

pose . p o s i t i o n
1304 l a s t _w a y p o i n t = (bo t . l a t , bo t . l on)
1305 e l i f l en (s e l f . _ agen t . g e tMyCe l l I d s ()) >= 1 \
1306 and s e l f . _ c e l l s [f i r s t _ c e l l] . g e t S t a t u s () == Ce l l .

IN_PROGRESS \
1307 and l en (s e l f . _ c e l l s [f i r s t _ c e l l] . g e tWaypo in t s ()) >

0 :
1308 l a s t _w a y p o i n t = s e l f . _ c e l l s [f i r s t _ c e l l] .

g e tWaypo in t s () [−1] . g e tLa tLonLoca t i o n ()
1309 e l s e :
1310 bo t = s e l f . manager . g e t _ own_ s t a t e () . s t a t e . pose .

pose . p o s i t i o n
1311 l a s t _w a y p o i n t = (bo t . l a t , bo t . l on)

141

1312 re turn l a s t _w a y p o i n t
1313
1314
1315
1316 def gene r a t eAd j a c encyGraph (s e l f) :
1317 ’ ’ ’ c r e a t e s 8−way ad j a c e n t n e i g hbo r s l i s t s f o r each

c e l l
1318 ’ ’ ’
1319 # Finds t h e 8−way ad j a c ency r e l a t i o n s h i p s o f c e l l s

g i v e n a l i s t o f c e l l s
1320 f o r i in range (l en (s e l f . _ c e l l s)) :
1321 c e l l = s e l f . _ c e l l s [i]
1322 f o r j in range (l en (s e l f . _ c e l l s)) :
1323 o t h e r = s e l f . _ c e l l s [j]
1324 common_bounds = F a l s e
1325 i f c e l l . g e t C e l l I d () != o t h e r . g e t C e l l I d () :
1326 f o r g r i d in c e l l . g e tBounda ryGr id s () :
1327 i f g r i d in o t h e r . g e tBounda ryGr id s () :
1328 common_bounds = True
1329 break
1330 # i f c e l l and o the r − c e l l s ha re 1 boundary

gr id , t h e y are 8−way ad j a c e n t
1331 i f common_bounds == True :
1332 c e l l . addNeighbor (o t h e r . g e t C e l l I d ())
1333 common_bounds = F a l s e
1334
1335
1336
1337 def g e n e r a t e B a s i c C e l l s (s e l f , a r e a _ l e n g t h , a r e a_wid th ,

c _ l eng t h , c_wid th) :
1338 ’ ’ ’ c r e a t e s c e l l o b j e c t s o f r e c t a n g u l a r shape o f

s p e c i f i e d h e i g h t / w id th (m)
1339 Ce l l s w i l l be i n t e g e r numbered s t a r t i n g a t 0 .

142

1340 ’ ’ ’
1341 # De f i n e c e l l d imen s i on s
1342 l _ d i v i s o r = i n t (math . c e i l (a r e a _ l e n g t h / c _ l e n g t h))
1343 w_d i v i s o r = i n t (math . c e i l (a r e a _w i d t h / c_wid th))
1344 c e l l _ l e n g t h = a r e a _ l e n g t h / l _ d i v i s o r
1345 c e l l _w i d t h = a r e a _w i d t h / w_d i v i s o r
1346 # Make t h e s e mod i f i e d v a l u e s p u b l i c l y a v a i l a b l e
1347 Auc t i onSea r ch .NUM_CELLS = l _ d i v i s o r ∗ w_d i v i s o r
1348 Auc t i onSea r ch .NOT_BIDDING = Auc t i onSea r ch .NUM_CELLS
1349 # De f i n e l e n g t h _ l i n e s as g u i d e l i n e s f o r c e l l

bounda r i e s a long t h e l e n g t h o f t h e area
1350 num_ l e ng t h _ l i n e s = l _ d i v i s o r − 1
1351 l e n g t h _ l i n e s = []
1352 c h a l k _ l i n e = []
1353 l e n g t h _ l i n e s . append (s e l f . _ s ou t h _wa l l)
1354 f o r i in range (0 , n um_ l e ng t h _ l i n e s) :
1355 temp = l e n g t h _ l i n e s [−1]
1356 c h a l k _ l i n e = [(temp [0] [0] + c e l l _ l e n g t h , temp

[0] [1]) , \
1357 (temp [1] [0] + c e l l _ l e n g t h , temp

[1] [1])]
1358 l e n g t h _ l i n e s . append (c h a l k _ l i n e)
1359 l e n g t h _ l i n e s . append (s e l f . _ n o r t h _wa l l)
1360 # De f i n e w i d t h _ l i n e s as g u i d e l i n e s f o r c e l l

bounda r i e s a long t h e w id th o f area
1361 num_wid th_ l i n e s = w_d i v i s o r − 1
1362 w i d t h _ l i n e s = []
1363 c h a l k _ l i n e = []
1364 w i d t h _ l i n e s . append (s e l f . _wes t _wa l l)
1365 f o r i in range (0 , num_wid th_ l i n e s) :
1366 temp = w i d t h _ l i n e s [−1]
1367 c h a l k _ l i n e = [(temp [0] [0] , temp [0] [1] +

c e l l _w i d t h) , \

143

1368 (temp [1] [0] , temp [1] [1] +
c e l l _w i d t h)]

1369 w i d t h _ l i n e s . append (c h a l k _ l i n e)
1370 w i d t h _ l i n e s . append (s e l f . _ e a s t _w a l l)
1371 # Genera te Ce l l o b j e c t s u s i n g t h e l e n g t h _ l i n e s (j)

and w i d t h _ l i n e s (k) g u i d e l i n e s
1372 c e l l _ i d , j , k = 0 , 0 , 0
1373 t emp_c e l l = None
1374 whi le c e l l _ i d < Auc t i onSea r ch .NUM_CELLS:
1375 f o r r in range (0 , n um_ l e ng t h _ l i n e s + 1) :
1376 # c e l l sou th −wes t co rne r
1377 sw_width_norm = ro_math .

no rma l_ fo rm_pa r ame t e r s (w i d t h _ l i n e s [k] [0] ,
w i d t h _ l i n e s [k] [1])

1378 sw_length_norm = ro_math .
no rma l_ fo rm_pa r ame t e r s (l e n g t h _ l i n e s [j
] [0] , l e n g t h _ l i n e s [j] [1])

1379 sw = ro_math . l i n e _ i n t e r s e c t (sw_width_norm
[1] , sw_width_norm [0] , \

1380 sw_length_norm
[1] ,
sw_length_norm
[0])

1381 # c e l l nor th −wes t co rne r
1382 j += 1
1383 nw_width_norm = ro_math .

no rma l_ fo rm_pa r ame t e r s (w i d t h _ l i n e s [k] [0] ,
w i d t h _ l i n e s [k] [1])

1384 nw_length_norm = ro_math .
no rma l_ fo rm_pa r ame t e r s (l e n g t h _ l i n e s [j
] [0] , l e n g t h _ l i n e s [j] [1])

1385 nw = ro_math . l i n e _ i n t e r s e c t (nw_width_norm
[1] , nw_width_norm [0] , \

144

1386 nw_length_norm
[1] ,
nw_length_norm
[0])

1387 # c e l l nor th − e a s t co rne r
1388 k += 1
1389 ne_width_norm = ro_math .

no rma l_ fo rm_pa r ame t e r s (w i d t h _ l i n e s [k] [0] ,
w i d t h _ l i n e s [k] [1])

1390 ne_ leng th_norm = ro_math .
no rma l_ fo rm_pa r ame t e r s (l e n g t h _ l i n e s [j
] [0] , l e n g t h _ l i n e s [j] [1])

1391 ne = ro_math . l i n e _ i n t e r s e c t (ne_width_norm
[1] , ne_width_norm [0] , \

1392 ne_ leng th_norm
[1] ,
ne_ l eng th_norm
[0])

1393 # c e l l sou th − e a s t co rne r
1394 j −= 1
1395 se_wid th_norm = ro_math .

no rma l_ fo rm_pa r ame t e r s (w i d t h _ l i n e s [k] [0] ,
w i d t h _ l i n e s [k] [1])

1396 se_ l eng th_no rm = ro_math .
no rma l_ fo rm_pa r ame t e r s (l e n g t h _ l i n e s [j
] [0] , l e n g t h _ l i n e s [j] [1])

1397 se = ro_math . l i n e _ i n t e r s e c t (se_wid th_norm
[1] , se_wid th_norm [0] , \

1398 se_ l eng th_no rm
[1] ,
s e_ l eng th_no rm
[0])

1399 # Crea t e Ce l l o b j e c t

145

1400 t emp_c e l l = Ce l l (c e l l _ i d , [(sw , nw) , (nw , ne
) , (ne , s e) , (sw , se)])

1401 s e l f . _ c e l l s [c e l l _ i d] = t emp_ c e l l
1402 s e l f . _ c e l l s [c e l l _ i d] . se tWestBound ((sw , nw))
1403 s e l f . _ c e l l s [c e l l _ i d] . s e tEa s tBound ((ne , s e))
1404 s e l f . _ c e l l s _ l e f t . add (t emp_ c e l l . g e t C e l l I d ())
1405 k −= 1
1406 j += 1
1407 c e l l _ i d += 1
1408 k += 1
1409 j = 0
1410
1411
1412
1413 def g e n e r a t eB a s i c S e a r c hA r e a (s e l f) :
1414 ’ ’ ’ f i l l s boundary da ta s t r u c t u r e s g i v e n bas i c ,

l a rge , or complex area
1415 ’ ’ ’
1416 i f s e l f . _ c h oo s e _ s e a r c h _ a r e a == Auc t i onSea r ch .

BASIC_LIVE_FLY :
1417 c e l l _ l e n g t h = 200
1418 c e l l _w i d t h = 200
1419 e l i f s e l f . _ c h oo s e _ s e a r c h _ a r e a == Auc t i onSea r ch .

BASIC_LARGER :
1420 c e l l _ l e n g t h = 325
1421 c e l l _w i d t h = 325
1422 i f s e l f . _ c h oo s e _ s e a r c h _ a r e a == Auc t i onSea r ch .

BASIC_LIVE_FLY :
1423 Auc t i onSea r ch .AREA_SW_LAT = 35.721147
1424 Auc t i onSea r ch .AREA_SW_LON = −120.773008
1425 AREA_ORIENT = 25.183537917993224
1426 AREA_LENGTH = 575
1427 AREA_WIDTH = 750

146

1428 e l i f s e l f . _ c h oo s e _ s e a r c h _ a r e a == Auc t i onSea r ch .
BASIC_LARGER :

1429 Auc t i onSea r ch .AREA_SW_LAT = 35.721147
1430 Auc t i onSea r ch .AREA_SW_LON = −120.773008
1431 AREA_ORIENT = 0
1432 AREA_LENGTH = 2300
1433 AREA_WIDTH = 3000
1434 e l i f s e l f . _ c h oo s e _ s e a r c h _ a r e a == Auc t i onSea r ch .

COMPLEX:
1435 Auc t i onSea r ch .AREA_SW_LAT = 35 .72102
1436 Auc t i onSea r ch .AREA_SW_LON = −120.79111
1437 AREA_ORIENT = 0
1438 AREA_LENGTH = 2300
1439 AREA_WIDTH = 3000
1440 e l s e :
1441 s e l f . manager . l o g _ i n f o (" s e l f . _ c h oo s e _ s e a r c h _ a r e a ␣

va l u e ␣ un r e cogn i z e d . ␣␣Area␣ no t ␣ c r e a t e d . ")
1442 a r e a = by t e s . Au c t i o nS e a r c hBa s i cA r e aP a r s e r ()
1443 a r e a . l a t i t u d e = Auc t i onSea r ch .AREA_SW_LAT
1444 a r e a . l o n g i t u d e = Auc t i onSea r ch .AREA_SW_LON
1445 a r e a . l e n g t h = AREA_LENGTH
1446 a r e a . wid th = AREA_WIDTH
1447 a r e a . o r i e n t a t i o n = AREA_ORIENT
1448 s e l f . _ s e a r c h _ a r e a = gps . GeoBox (a r e a . l a t i t u d e , a r e a .

l o n g i t u d e , a r e a . l e ng t h , a r e a . width , a r e a .
o r i e n t a t i o n)

1449 c o r n e r s = s e l f . _ s e a r c h _ a r e a . _ c a r t _ c o r n e r s
1450 s e l f . _ n o r t h _wa l l = (c o r n e r s [1] , c o r n e r s [2])
1451 s e l f . _ s ou t h _wa l l = (c o r n e r s [0] , c o r n e r s [3])
1452 s e l f . _wes t _wa l l = (c o r n e r s [0] , c o r n e r s [1])
1453 s e l f . _ e a s t _w a l l = (c o r n e r s [2] , c o r n e r s [3])
1454 s e l f . manager . l o g _ i n f o (" Oute r ␣ s e a r c h ␣ a r e a ␣ boundary ␣

g e n e r a t e d . ")

147

1455 i f s e l f . _ c h oo s e _ s e a r c h _ a r e a in [Auc t i onSea r ch .
BASIC_LIVE_FLY , Auc t i onSea r ch . BASIC_LARGER] :

1456 s e l f . g e n e r a t e B a s i c C e l l s (AREA_LENGTH, AREA_WIDTH,
c e l l _ l e n g t h , c e l l _w i d t h)

1457
1458
1459
1460 def g e n e r a t eCe l lA s s i g nmen t (s e l f) :
1461 ’ ’ ’ a s s i g n a c e l l won i n a u c t i o n t o an agen t
1462 ’ ’ ’
1463 bo t = s e l f . manager . g e t _ own_ s t a t e () . s t a t e . pose . pose .

p o s i t i o n
1464 c e l l _ i d = s e l f . _ c u r r _ b i d [0]
1465 c e l l _ c o s t = s e l f . _ c u r r _ b i d [1]
1466 i f l en (s e l f . _ agen t . g e tMyCe l l I d s ()) > 0 :
1467 a s s i g n e d _ c e l l = s e l f . _ agen t . g e tMyCe l l I d s () [−1]
1468 # i f t h e c e l l I j u s t won i s a l r e ad y a s s i g n e d t o me ,

upda t e i t s c o s t w i t h my c u r r e n t v a l u e
1469 i f c e l l _ i d in s e l f . _ agen t . g e tMyCe l l I d s () :
1470 s e l f . manager . l o g _ i n f o (" C e l l _ i d ␣matches ␣a␣ c e l l ␣ I ␣

own . ␣␣ S e t t i n g ␣new␣ c o s t . ")
1471 s e l f . _ c e l l s [a s s i g n e d _ c e l l] . s e t C o s t (c e l l _ c o s t)
1472 s e l f . _ c e l l s _ c h a n g e d . add (a s s i g n e d _ c e l l)
1473 i f s e l f . _ agen t . g e t C u r r C e l l I d () == a s s i g n e d _ c e l l :
1474 s e l f . _ agen t . r e s e tCu r rWaypo i n t I d ()
1475 # i f t h e c e l l I j u s t won i s d i f f e r e n t t han my

a s s i g n e d c e l l , r e a s s i g n t o i t
1476 e l s e :
1477 s e l f . manager . l o g _ i n f o ("New␣ c e l l _ i d ␣ a s s i g n e d . ")
1478 i f l en (s e l f . _ agen t . g e tMyCe l l I d s ()) > 1 and not

s e l f . _ i n i t i a l _ a s s i g n \
1479 and s e l f . _ c e l l s [a s s i g n e d _ c e l l] . g e t S t a t u s () !=

Ce l l . IN_PROGRESS :

148

1480 s e l f . manager . l o g _ i n f o (" Removing␣ p r e v i o u s ␣
a s s i gnmen t . ")

1481 s e l f . _ c e l l s [a s s i g n e d _ c e l l] . d e l e t eWaypo i n t s ()
1482 s e l f . r emoveCe l lAss ignmen t (a s s i g n e d _ c e l l)
1483 s e l f . _ c e l l s _ c h a n g e d . add (a s s i g n e d _ c e l l)
1484 s e l f . _ agen t . r emoveCe l l (a s s i g n e d _ c e l l)
1485 i f l en (s e l f . _ agen t . g e tMyCe l l I d s ()) == 0 :
1486 s e l f . _ agen t . r e s e tCu r rWaypo i n t I d ()
1487 s e l f . _ agen t . a ddCe l l (c e l l _ i d)
1488 s e l f . _ c e l l s [c e l l _ i d] . s e t S t a t u s (C e l l . ASSIGNED)
1489 s e l f . _ c e l l s [c e l l _ i d] . se tOwner (s e l f . _ agen t .

g e t S e a r c h e r I d ())
1490 s e l f . _ c e l l s [c e l l _ i d] . s e t C o s t (c e l l _ c o s t)
1491 s e l f . _ c e l l s _ c h a n g e d . add (c e l l _ i d)
1492 i f l en (s e l f . _ agen t . g e tMyCe l l I d s ()) == 1 and s e l f .

_ c e l l s [c e l l _ i d] . g e t S t a t u s () == Ce l l . ASSIGNED :
1493 s e l f . _ agen t . r e s e tCu r rWaypo i n t I d ()
1494 s e l f . manager . l o g _ i n f o (" I ’ ve␣ been ␣ a s s i g n e d ␣a␣new␣

c e l l . ␣␣Moving␣ t o ␣ c e l l . ")
1495 s e l f . _ l o i t e r _ w a i t = F a l s e
1496
1497
1498
1499 def g e n e r a t e C e l l U t i l i t i e s (s e l f) :
1500 ’ ’ ’ c a l c u l a t e t h e u t i l i t y an agen t ga i n s f o r owning

a c e l l
1501 ’ ’ ’
1502 s e l f . _ c e l l _ u t i l i t i e s = []
1503 f i r s t _ c e l l = s e l f . _ agen t . g e t C u r r C e l l I d () # i f no

c u r r e n t c e l l , f i r s t _ c e l l == None
1504 l a s t _w a y p o i n t = s e l f . f romWaypoint (f i r s t _ c e l l)
1505 o f f _ l i m i t s = s e l f . d e t e rm i n eO f fL im i t s ()
1506 f o r c e l l _ i d in s e l f . _ c e l l s _ l e f t :

149

1507 i f s e l f . _ c e l l s [c e l l _ i d] . g e t S t a t u s () not in
o f f _ l i m i t s and c e l l _ i d not in s e l f .
_ a b a ndon ed_ c e l l s :

1508 i f s e l f . _ c e l l s [c e l l _ i d] . g e t S t a t u s () == Ce l l .
ASSIGNMENT_REMOVED:

1509 s e l f . r e v e r t C e l l (c e l l _ i d)
1510 c e l l _ u t i l i t y = s e l f . c a l c u l a t e U t i l i t y (c e l l _ i d

, l a s t _w a y p o i n t)
1511 s e l f . _ c e l l s [c e l l _ i d] . s e t U t i l i t y (c e l l _ u t i l i t y

)
1512 s e l f . _ c e l l _ u t i l i t i e s . append ((c e l l _ u t i l i t y ,

c e l l _ i d))
1513 # s o r t u t i l i t y v a l u e s . H i ghe s t u t i l i t y (most

v a l u a b l e) i n t u p l e (va lue , c e l l _ i d) a t i n d e x [−1]
1514 s e l f . _ c e l l _ u t i l i t i e s . s o r t ()
1515
1516
1517
1518 def gen e r a t eComp l exSe a r c hCe l l s (s e l f) :
1519 ’ ’ ’
1520 Ca l c u l a t e s Bous t raphedon Decompos i t i on g i v en s e l f .

o b s t a c l e s l i s t i n t h e f o l l o w i n g s t e p s :
1521 1 . F inds t h e o u t e r p e r im e t e r o f t h e env i r onmen t
1522 2 . F inds c r i t i c a l p o i n t s and s o r t s them on x−va l u e
1523 3 . C e l l s are manua l l y g en e r a t e d t h en i n s t a n t i a t e d

as o b j e c t s o f a Ce l l c l a s s
1524 @return t h e number o f c e l l s t o be s ea r ched
1525 ’ ’ ’
1526 b o u s _ v e r t i c e s = { }
1527 b o u s _ c e l l s = []
1528 # o b s t a c l e l a t _ l o n co rne r l o c a t i o n s
1529 o b s t a c l e _ l o c a t i o n s = [((3 5 . 73800 , −120.78375) ,

(3 5 . 73918 , −120.78545) , (3 5 . 74049 , −120.78332) ,

150

(3 5 . 73938 , −120.78160)) , \
1530 ((35 . 73270 , −120.78571) ,

(3 5 . 73408 , −120.78702) ,
(3 5 . 73558 , −120.77891) ,
(3 5 . 73319 , −120.78005)) ,
\

1531 ((35 . 72678 , −120.78152) ,
(3 5 . 72800 , −120.78146) ,
(3 5 . 72796 , −120.77364) ,
(3 5 . 72554 , −120.77332)) ,
\

1532 ((35 . 73110 , −120.77050) ,
(3 5 . 73627 , −120.76903) ,
(3 5 . 73205 , −120.76780)) ,
\

1533 ((35 . 72184 , −120.76102) ,
(3 5 . 72695 , −120.76488) ,
(3 5 . 72878 , −120.76422) ,
(3 5 . 72345 , −120.75987)) ,
\

1534]
1535 # c o n v e r t l a t _ l o n o b s t a c l e c o r n e r s t o c a r t e s i a n x_y

c o r n e r s
1536 e a c h _ o b s t a c l e = []
1537 f o r o b s t a c l e in o b s t a c l e _ l o c a t i o n s :
1538 f o r l a t _ l o n in o b s t a c l e :
1539 x_y = gps . c a r t e s i a n _ o f f s e t (Auc t i onSea r ch .

AREA_SW_LAT, Auc t i onSea r ch .AREA_SW_LON,
l a t _ l o n [0] , l a t _ l o n [1])

1540 e a c h _ o b s t a c l e . append (x_y)
1541 s e l f . _ o b s t a c l e _ g r i d s . append (e a c h _ o b s t a c l e)
1542 e a c h _ o b s t a c l e = []
1543 s e l f . _ o b s t a c l e s = s e l f . d e f i n eGeome t r i e s (s e l f .

151

_ o b s t a c l e _ g r i d s)
1544 # f i n d t h e l e f t and r i g h t c r i t i c a l p o i n t s on each

o b s t a c l e f o r bous t rophedon c e l l bounda r i e s
1545 l e f t = [0 , 0]
1546 r i g h t = [0 , 0]
1547 f o r o b s t a c l e in s e l f . _ o b s t a c l e _ g r i d s :
1548 l e f t = [s e l f . _ e a s t _w a l l [0] [0] , s e l f . _ e a s t _w a l l

[0] [1]]
1549 r i g h t = [s e l f . _wes t _wa l l [0] [0] , s e l f . _wes t _wa l l

[0] [1]]
1550 f o r c o r n e r in o b s t a c l e :
1551 i f c o r n e r [1] <= l e f t [1] :
1552 l e f t [1] = c o r n e r [1]
1553 l e f t [0] = c o r n e r [0]
1554 i f c o r n e r [1] >= r i g h t [1] :
1555 r i g h t [1] = c o r n e r [1]
1556 r i g h t [0] = c o r n e r [0]
1557 # add t h e bous t raphedon c r i t i c a l v e r t i c e s t o a

d i c t i o n a r y
1558 b o u s _ v e r t i c e s [l e f t [0]] = (l e f t [0] , l e f t [1])
1559 b o u s _ v e r t i c e s [r i g h t [0]] = (r i g h t [0] , r i g h t [1])
1560 # g e t t h e bous t raphedon v e r t i c e s i n t o s o r t e d o rde r
1561 v e r t s = []
1562 s i z e = l en (b o u s _ v e r t i c e s)
1563 i = 0
1564 whi le i < s i z e :
1565 min i = min (b o u s _ v e r t i c e s . keys ())
1566 v e r t s . append (b o u s _ v e r t i c e s [min i])
1567 de l b o u s _ v e r t i c e s [min i]
1568 i += 1
1569 # f i n d t h e o b s t a c l e i n t e r s e c t i o n s g i v e n t h e s ea r ch

area and o b s t a c l e s
1570 i n t e r 1 = ro_math . s e gm e n t _ i n t e r s e c t ((s e l f .

152

_no r t h _wa l l [0] [0] , v e r t s [8] [1]) , \
1571 (s e l f .

_ s o u t h _wa l l
[0] [0] , v e r t s
[8] [1]) , \

1572 s e l f . _ o b s t a c l e s
[1] [1] [0] ,
s e l f .
_ o b s t a c l e s
[1] [1] [1])

1573 i n t e r 2 = ro_math . s e gm e n t _ i n t e r s e c t ((s e l f .
_ n o r t h _wa l l [0] [0] , v e r t s [9] [1]) , \

1574 (s e l f .
_ s o u t h _wa l l
[0] [0] , v e r t s
[9] [1]) , \

1575 s e l f . _ o b s t a c l e s
[1] [1] [0] ,
s e l f .
_ o b s t a c l e s
[1] [1] [1])

1576 i n t e r 3 = ro_math . s e gm e n t _ i n t e r s e c t ((s e l f .
_ n o r t h _wa l l [0] [0] , v e r t s [2] [1]) , \

1577 (s e l f .
_ s o u t h _wa l l
[0] [0] , v e r t s
[2] [1]) , \

1578 s e l f . _ o b s t a c l e s
[1] [3] [0] ,
s e l f .
_ o b s t a c l e s
[1] [3] [1])

1579 i n t e r 4 = ro_math . s e gm e n t _ i n t e r s e c t ((s e l f .

153

_no r t h _wa l l [0] [0] , v e r t s [7] [1]) , \
1580 (s e l f .

_ s o u t h _wa l l
[0] [0] , v e r t s
[7] [1]) , \

1581 s e l f . _ o b s t a c l e s
[2] [1] [0] ,
s e l f .
_ o b s t a c l e s
[2] [1] [1])

1582 # c r e a t e t h e COMPLEX c e l l bounda r i e s g i v e n o b s t a c l e
l o c a t i o n s

1583 c e l l _ 0 = [s e l f . _wes t_wa l l , (s e l f . _ n o r t h _wa l l [0] , (
s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [6] [1])) , \

1584 ((s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [6] [1]) , (
s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [6] [1])) ,
\

1585 (s e l f . _ s ou t h _wa l l [0] , (s e l f . _ s o u t h _wa l l
[0] [0] , v e r t s [6] [1]))]

1586 c e l l _ 1 = [(v e r t s [6] , (s e l f . _ n o r t h _wa l l [0] [0] , v e r t s
[6] [1])) , \

1587 ((s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [6] [1]) , (
s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [8] [1])) ,
\

1588 ((s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [8] [1]) ,
i n t e r 1) , (i n t e r 1 , v e r t s [6])]

1589 c e l l _ 2 = [(v e r t s [8] , (s e l f . _ n o r t h _wa l l [0] [0] , v e r t s
[8] [1])) , \

1590 ((s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [8] [1]) , (
s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [9] [1])) ,
\

1591 ((s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [9] [1]) ,
v e r t s [9]) , s e l f . _ o b s t a c l e s [0] [2] , s e l f .

154

_ o b s t a c l e s [0] [1]]
1592 c e l l _ 3 = [(i n t e r 1 , v e r t s [8]) , s e l f . _ o b s t a c l e s [0] [0] ,

s e l f . _ o b s t a c l e s [0] [3] , \
1593 (v e r t s [9] , i n t e r 2) , (i n t e r 2 , i n t e r 1)]
1594 c e l l _ 4 = [((s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [6] [1]) ,

v e r t s [6]) , \
1595 s e l f . _ o b s t a c l e s [1] [0] , (s e l f . _ o b s t a c l e s

[1] [0] [0] , i n t e r 3) , \
1596 (i n t e r 3 , (s e l f . _ s o u t h _wa l l [0] [0] , v e r t s

[2] [1])) , \
1597 ((s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [2] [1]) , (

s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [6] [1]))]
1598 c e l l _ 5 = [((s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [2] [1]) ,

v e r t s [2]) , \
1599 (v e r t s [2] , v e r t s [1]) , (v e r t s [1] , (s e l f .

_ s o u t h _wa l l [0] [0] , v e r t s [1] [1])) , \
1600 ((s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [1] [1]) , (

s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [2] [1]))]
1601 c e l l _ 6 = [(v e r t s [2] , i n t e r 3) , (i n t e r 3 , s e l f .

_ o b s t a c l e s [1] [2] [1]) , \
1602 (s e l f . _ o b s t a c l e s [1] [2] [1] , v e r t s [7]) , (

v e r t s [7] , i n t e r 4) , \
1603 (i n t e r 4 , s e l f . _ o b s t a c l e s [2] [0] [1]) , (s e l f .

_ o b s t a c l e s [2] [0] [1] , v e r t s [2])]
1604 c e l l _ 7 = [(i n t e r 2 , (s e l f . _ n o r t h _wa l l [0] [0] , v e r t s

[9] [1])) , \
1605 ((s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [9] [1]) , (

s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [7] [1])) ,
\

1606 ((s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [7] [1]) ,
v e r t s [7]) , (v e r t s [7] , i n t e r 2)]

1607 c e l l _ 8 = [(i n t e r 4 , (s e l f . _ n o r t h _wa l l [0] [0] , v e r t s
[7] [1])) , \

155

1608 ((s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [7] [1]) , (
s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [1] [1])) ,
\

1609 ((s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [1] [1]) ,
v e r t s [1]) , \

1610 s e l f . _ o b s t a c l e s [2] [2] , (s e l f . _ o b s t a c l e s
[2] [1] [1] , i n t e r 4)]

1611 c e l l _ 9 = [((s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [1] [1]) , (
s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [1] [1])) , \

1612 ((s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [1] [1]) , (
s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [4] [1])) ,
\

1613 ((s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [4] [1]) , (
s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [4] [1])) ,
\

1614 ((s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [4] [1]) , (
s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [1] [1]))]

1615 c e l l _ 1 0 = [(v e r t s [4] , (s e l f . _ n o r t h _wa l l [0] [0] , v e r t s
[4] [1])) , \

1616 ((s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [4] [1]) , (
s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [5] [1])) ,
\

1617 ((s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [5] [1]) ,
v e r t s [5]) , \

1618 s e l f . _ o b s t a c l e s [3] [1] , s e l f . _ o b s t a c l e s
[3] [0]]

1619 c e l l _ 1 1 = [((s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [4] [1]) ,
v e r t s [4]) , \

1620 (v e r t s [4] , v e r t s [5]) , (v e r t s [5] , (s e l f .
_ s o u t h _wa l l [0] [0] , v e r t s [5] [1])) , \

1621 ((s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [5] [1]) , (
s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [4] [1]))]

1622 c e l l _ 1 2 = [((s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [5] [1]) , (

156

s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [5] [1])) , \
1623 ((s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [5] [1]) , (

s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [3] [1])) ,
\

1624 ((s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [3] [1]) , (
s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [3] [1])) ,
\

1625 ((s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [3] [1]) , (
s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [5] [1]))]

1626 c e l l _ 1 3 = [(v e r t s [3] , (s e l f . _ n o r t h _wa l l [0] [0] , v e r t s
[3] [1])) , \

1627 ((s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [3] [1]) , (
s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [0] [1])) ,
\

1628 ((s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [0] [1]) ,
v e r t s [0]) , \

1629 s e l f . _ o b s t a c l e s [4] [2] , s e l f . _ o b s t a c l e s
[4] [1]]

1630 c e l l _ 1 4 = [((s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [3] [1]) ,
v e r t s [3]) , \

1631 s e l f . _ o b s t a c l e s [4] [0] , s e l f . _ o b s t a c l e s
[4] [3] , \

1632 (v e r t s [0] , (s e l f . _ s o u t h _wa l l [0] [0] , v e r t s
[0] [1])) , \

1633 ((s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [0] [1]) , (
s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [3] [1]))]

1634 c e l l _ 1 5 = [((s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [0] [1]) , (
s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [0] [1])) , \

1635 ((s e l f . _ n o r t h _wa l l [0] [0] , v e r t s [0] [1]) ,
s e l f . _ n o r t h _wa l l [1]) , \

1636 s e l f . _ e a s t _wa l l , (s e l f . _ e a s t _w a l l [0] , (
s e l f . _ s o u t h _wa l l [0] [0] , v e r t s [0] [1]))]

1637 t emp_ c e l l s = [c e l l _ 0 , c e l l _ 1 , c e l l _ 2 , c e l l _ 3 , c e l l _ 4

157

, c e l l _ 5 , \
1638 c e l l _ 6 , c e l l _ 7 , c e l l _ 8 , c e l l _ 9 ,

c e l l _ 10 , c e l l _ 11 , \
1639 c e l l _ 12 , c e l l _ 13 , c e l l _ 14 , c e l l _ 1 5]
1640 # c r e a t e c e l l o b j e c t s from t h e Ce l l c l a s s (

f i n a l _ c e l l s _ c l a s s . py) g i v e n t h e l i s t o f c e l l s
above

1641 c o n c a v e _ n o r t h _w a l l e d _ c e l l s = [3 , 4 , 6 , 14]
1642 f o r c e l l _ i d in range (l en (t emp_ c e l l s)) :
1643 s e l f . _ c e l l s [c e l l _ i d] = Ce l l (c e l l _ i d , t emp_ c e l l s [

c e l l _ i d])
1644 s e l f . _ c e l l s [c e l l _ i d] . se tWestBound (s e l f . _ c e l l s [

c e l l _ i d] . ge tBoundary () [0])
1645 i f c e l l _ i d in c o n c a v e _ n o r t h _w a l l e d _ c e l l s :
1646 s e l f . _ c e l l s [c e l l _ i d] . s e tEa s tBound (s e l f .

_ c e l l s [c e l l _ i d] . ge tBoundary () [3])
1647 e l s e :
1648 s e l f . _ c e l l s [c e l l _ i d] . s e tEa s tBound (s e l f .

_ c e l l s [c e l l _ i d] . ge tBoundary () [2])
1649 s e l f . _ c e l l s _ l e f t . add (s e l f . _ c e l l s [c e l l _ i d] .

g e t C e l l I d ())
1650 re turn l en (s e l f . _ c e l l s)
1651
1652
1653
1654 def g e n e r a t e S e a r c hB i d (s e l f) :
1655 ’ ’ ’ c a l c u l a t e an agen t ’ s b i d f o r a c e l l g i v e n

u t i l i t y c a l c u l a t i o n s
1656 ’ ’ ’
1657 # t h e s i s da ta c ap t u r e
1658 s e l f . c ap tu reRoundDa ta ()
1659 s e l f . _ p r ev_b i d = [e f o r e in s e l f . _ c u r r _ b i d]
1660 # i f agen t won i t s c e l l i n w i nn e rDe t e rm i na t i o n () ,

158

subm i t t h e same b id aga in
1661 i f s e l f . _ submi t_same_b id :
1662 s e l f . _ submi t_same_b id = F a l s e
1663 e l s e :
1664 # i f agen t has no v i a b l e c e l l s t o b i d fo r ,

s ubm i t e x p l i c i t " no_b id "
1665 n o _ c e l l s = s e l f . _ c e l l s _ l e f t . d i f f e r e n c e (s e l f .

_ c e l l s _ i n _ p r o g r e s s) == s e l f . _ a b a ndon ed_ c e l l s
1666 i f n o _ c e l l s and not s e l f . _ i n i t i a l _ a s s i g n :
1667 s e l f . _ c u r r _ b i d = []
1668 s e l f . _ c u r r _ b i d = [Auc t i onSea r ch .NOT_BIDDING ,

Ce l l .NO_COST]
1669 e l s e :
1670 # i f agen t d i d no t win a c e l l i n

w i nn e rDe t e rm i na t i o n () , g e n e r a t e u t i l i t i e s
and a new b id

1671 s e l f . manager . l o g _ i n f o (" Gene r a t i n g ␣a␣new␣ b id "
)

1672 s e l f . g e n e r a t e C e l l U t i l i t i e s ()
1673 # i f I have c e l l s a v a i l a b l e , bu t have l o s t

t w i c e i n a row f o r each one , concede t h e
round .

1674 i f l en (s e l f . _ c e l l _ u t i l i t i e s) == 0 :
1675 s e l f . manager . l o g _ i n f o ("No␣ u t i l i t y ␣ i n ␣

b i d d i n g ␣ t h i s ␣ round . ␣␣Submit ␣ e x p l i c i t ␣
no−b id . ")

1676 b i d _ c e l l _ i d = Auc t i onSea r ch .NOT_BIDDING
1677 b i d _ v a l u e = Ce l l .NO_COST
1678 e l i f l en (s e l f . _ c e l l _ u t i l i t i e s) > 1 :
1679 h i g h e s t _ u t i l = s e l f . _ c e l l _ u t i l i t i e s

[−1] [0]
1680 s e c ond_b e s t = s e l f . _ c e l l _ u t i l i t i e s

[−2] [0]

159

1681 b i d _ c e l l _ i d = s e l f . _ c e l l _ u t i l i t i e s
[−1] [1]

1682 # a l l ow n e g a t i v e u t i l i t i e s
1683 i f s e c ond_b e s t < 0 :
1684 b i d _ v a l u e = s e l f . _ c e l l s [b i d _ c e l l _ i d

] . g e tCo s t () + h i g h e s t _ u t i l \
1685 + s e c ond_b e s t +

Auc t i onSea r ch . EPSILON
1686 e l s e :
1687 b i d _ v a l u e = s e l f . _ c e l l s [b i d _ c e l l _ i d

] . g e tCo s t () + h i g h e s t _ u t i l \
1688 − s e c ond_b e s t +

Auc t i onSea r ch . EPSILON
1689 e l s e :
1690 b i d _ c e l l _ i d = s e l f . _ c e l l _ u t i l i t i e s

[−1] [1]
1691 h i g h e s t _ u t i l = s e l f . _ c e l l _ u t i l i t i e s

[−1] [0]
1692 b i d _ v a l u e = s e l f . _ c e l l s [b i d _ c e l l _ i d] .

g e tCo s t () \
1693 + h i g h e s t _ u t i l +

Auc t i onSea r ch . EPSILON
1694 i f b i d _ c e l l _ i d in s e l f . _ c e l l s _no t _won :
1695 b i d _ v a l u e += Auc t i onSea r ch . EPSILON
1696 # i f my new b id i s e x a c t l y t h e same as my

p r e v i o u s bid ,
1697 # and I d idn ’ t mean f o r t h a t t o happen (

NOT s e l f . _ submi t_ same_b id)
1698 # i n c r e a s e i t by e p s i l o n aga in . (t h i s

o c cu r s v e r y r a r e l y)
1699 i f l en (s e l f . _ p r ev_b i d) > 0 and b i d _ c e l l _ i d

== s e l f . _p r ev_b i d [0] \
1700 and b i d _v a l u e == s e l f . _ p r ev_b i d [1] and

160

b i d _ c e l l _ i d != Auc t i onSea r ch .
NOT_BIDDING :

1701 b i d _ v a l u e += Auc t i onSea r ch . EPSILON
1702 s e l f . _ c u r r _ b i d = []
1703 s e l f . _ c u r r _ b i d . append (b i d _ c e l l _ i d)
1704 s e l f . _ c u r r _ b i d . append (i n t (round (b i d _ v a l u e)))
1705 i f s e l f . _ c h oo s e _ s e a r c h _ a r e a in [Auc t i onSea r ch .

BASIC_LIVE_FLY , Auc t i onSea r ch .COMPLEX] :
1706 s e l f . manager . l o g _ i n f o (" U t i l i t i e s ␣ c a l c u l a t e d ␣ and␣

below . ␣␣ Index [−1] ␣==␣ h i g h e s t ␣ u t i l i t y ␣ c e l l : ")
1707 s e l f . manager . l o g _ i n f o (s e l f . _ c e l l _ u t i l i t i e s)
1708 s e l f . manager . l o g _ i n f o (("My␣ b id : ␣ f o rma t ␣ [␣ c e l l , ␣ b i d ␣

] : ␣ " , s e l f . _ c u r r _ b i d))
1709 i f s e l f . _ c u r r _ b i d [0] != Auc t i onSea r ch .NOT_BIDDING :
1710 s e l f . manager . l o g _ i n f o ((" b i d _ c e l l _ c o s t : ␣ " , s e l f .

_ c e l l s [s e l f . _ c u r r _ b i d [0]] . g e tCo s t ()))
1711 s e l f . _ b i dd i ng_comp l e t e = True
1712 s e l f . _round_number += 1
1713
1714
1715
1716 def gene r a t eWaypo i n t s (s e l f , c e l l _ i d , s t a r t _ l o c a t i o n) :
1717 ’ ’ ’ Genera tes , d i s t r i b u t e s , and p r i o r i t i z e s waypo in t

o b j e c t s i n a g i v en c e l l
1718 @param c e l l _ i d : t h e c e l l hav ing waypo i n t s c r e a t e d
1719 @param s t a r t _ l o c a t i o n : t h e c l o s e s t co rne r t o

l a s t _w a y p o i n t from which t o s t a r t waypo i n t s
1720 ’ ’ ’
1721 g r i d = gps . c a r t e s i a n _ o f f s e t (Auc t i onSea r ch .

AREA_SW_LAT, Auc t i onSea r ch .AREA_SW_LON, \
1722 s t a r t _ l o c a t i o n [0] ,

s t a r t _ l o c a t i o n [1])
1723 c h a l k _ l i n e = []

161

1724 west_bound = s e l f . _ c e l l s [c e l l _ i d] . getWestBound ()
1725 ea s t _bound = s e l f . _ c e l l s [c e l l _ i d] . ge tEas tBound ()
1726 bot_ to_nw = ro_math . c a r t e s i a n _ d i s t a n c e (g r i d ,

west_bound [1])
1727 bo t_ to_sw = ro_math . c a r t e s i a n _ d i s t a n c e (g r i d ,

west_bound [0])
1728 bo t _ t o _n e = ro_math . c a r t e s i a n _ d i s t a n c e (g r i d ,

e a s t _bound [0])
1729 b o t _ t o _ s e = ro_math . c a r t e s i a n _ d i s t a n c e (g r i d ,

e a s t _bound [1])
1730 waypo in t _ i d = 1
1731 s i z e = 0
1732 # de t e rm i n e where t o s t a r t waypo i n t s based on bot −

c e l l r e l a t i v e l o c a t i o n
1733 # i f bo t c l o s e s t t o e a s t s i d e , s t a r t waypo i n t s from

e a s t s i d e
1734 i f bo t _ t o _n e < bot_ to_nw or b o t _ t o _ s e < bo t_ to_sw :
1735 f r om_ea s t = True
1736 # i f bo t c l o s e s t t o n o r t h e a s t corner , s t a r t

waypo i n t s from no r t h
1737 i f bo t _ t o _n e < bo t _ t o _ s e :
1738 f r om_no r t h = True
1739 e l s e :
1740 f r om_no r t h = F a l s e
1741 e l s e :
1742 f r om_ea s t = F a l s e
1743 # i f bo t c l o s e s t t o n o r t hwe s t corner , s t a r t

waypo i n t s from no r t h
1744 i f bot_ to_nw < bo t_ to_sw :
1745 f r om_no r t h = True
1746 e l s e :
1747 f r om_no r t h = F a l s e
1748 # i f bo t i s approach ing from t h e ea s t , g e n e r a t e ea s t

162

− to −wes t sweep l i n e
1749 i f f r om_ea s t :
1750 sweep_ l i n e = ((e a s t _bound [0] [0] , e a s t _bound

[0] [1] − s e l f . _ senso r_sweep [1]) , \
1751 (e a s t _bound [1] [0] , e a s t _bound

[1] [1] − s e l f . _ senso r_sweep [1])
)

1752 # g en e r a t e a " sweeper " l i n e t h a t g u i d e s a "
c h a l k _ l i n e " f o r p l a n t i n g waypo i n t s

1753 sweeper = [[sweep_ l i n e [0] [0] + (1 . 5∗ s e l f .
_ senso r_sweep [0]) , sweep_ l i n e [0] [1]] , \

1754 [sweep_ l i n e [1] [0] − (1 . 5∗ s e l f .
_ senso r_sweep [0]) , sweep_ l i n e
[1] [1]]]

1755 # i f bo t i s approach ing from t h e west , g e n e r a t e west
− to − e a s t sweep l i n e

1756 e l s e :
1757 sweep_ l i n e = ((west_bound [0] [0] , west_bound

[0] [1] + s e l f . _ senso r_sweep [1]) , \
1758 (west_bound [1] [0] , west_bound

[1] [1] + s e l f . _ senso r_sweep [1])
)

1759 # g en e r a t e a " sweeper " l i n e t h a t g u i d e s a "
c h a l k _ l i n e " f o r p l a n t i n g waypo i n t s

1760 sweeper = [[sweep_ l i n e [0] [0] − (1 . 5∗ s e l f .
_ senso r_sweep [0]) , sweep_ l i n e [0] [1]] , \

1761 [sweep_ l i n e [1] [0] + (1 . 5∗ s e l f .
_ senso r_sweep [0]) , sweep_ l i n e
[1] [1]]]

1762 # i f bo t i s n e a r e s t t h e nor th , l a y waypo i n t s from
no r t h t o s ou t h t o s t a r t " lawnmower " p a t t e r n

1763 i f f r om_no r t h :
1764 i n f l e c t i o n = 1

163

1765 e l s e :
1766 i n f l e c t i o n = 0
1767 # sweep a v e r t i c a l " c h a l k _ l i n e " a c r o s s t h e c e l l as a

gu ide f o r p l a n t i n g waypo i n t s
1768 i f f r om_ea s t :
1769 whi le sweeper [0] [1] >= west_bound [0] [1] :
1770 f o r bound in s e l f . _ c e l l s [c e l l _ i d] .

ge tBoundary () :
1771 i n t e r s e c t i o n = ro_math . s e gm e n t _ i n t e r s e c t

(bound [0] , bound [1] , \
1772 sweeper

[0] ,

sweeper
[1])

1773 i f i n t e r s e c t i o n != None :
1774 c h a l k _ l i n e . append (i n t e r s e c t i o n)
1775 # p l a c e waypo i n t s a t s p e c i f i e d i n t e r v a l s

a long t h e c h a l k _ l i n e
1776 i f l en (c h a l k _ l i n e) < 2 :
1777 break
1778 y = c h a l k _ l i n e [0] [1]
1779 max_x = c h a l k _ l i n e [0] [0] − s e l f .

_ senso r_sweep [1]
1780 min_x = c h a l k _ l i n e [1] [0] + s e l f .

_ senso r_sweep [1]
1781 i n v e r t e r = divmod (i n f l e c t i o n , 2) [1]
1782 # p l a c e waypo i n t s from sou t h t o no r t h
1783 i f i n v e r t e r == 0 :
1784 x = min_x
1785 whi le x <= max_x :
1786 waypo in t = Waypoint (s e l f . _ c e l l s [

164

c e l l _ i d] . g e t C e l l I d () , waypo in t_ id
, \

1787 (x , y) , (
Auc t i onSea r ch
.AREA_SW_LAT,

Auc t i onSea r ch
.AREA_SW_LON)
)

1788 s e l f . _ c e l l s [c e l l _ i d] . addWaypoint (
waypo in t)

1789 x += s e l f . _ senso r_sweep [1]
1790 s i z e += s e l f . _ senso r_sweep [1]
1791 waypo in t _ i d += 1
1792 # p l a c e waypo i n t s from no r t h t o s ou t h
1793 e l i f i n v e r t e r == 1 :
1794 x = max_x
1795 whi le x >= min_x :
1796 waypo in t = Waypoint (s e l f . _ c e l l s [

c e l l _ i d] . g e t C e l l I d () , waypo in t_ id
, (x , y) , \

1797 (
Auc t i onSea r ch
.
AREA_SW_LAT
,
Auc t i onSea r ch
.
AREA_SW_LON
))

1798 s e l f . _ c e l l s [c e l l _ i d] . addWaypoint (
waypo in t)

1799 x −= s e l f . _ senso r_sweep [1]

165

1800 s i z e += s e l f . _ senso r_sweep [1]
1801 waypo in t _ i d += 1
1802 c h a l k _ l i n e = []
1803 i n f l e c t i o n += 1
1804 s i z e += s e l f . _ senso r_sweep [0]
1805 # move t h e cha lk − l i n e waypo in t gu ide t o t h e

l e f t by one sensor −sweep (e a s t t o wes t)
1806 sweeper [0] [1] −= s e l f . _ senso r_sweep [0]
1807 sweeper [1] [1] −= s e l f . _ senso r_sweep [0]
1808 e l s e :
1809 whi le sweeper [0] [1] <= ea s t _bound [0] [1] :
1810 f o r bound in s e l f . _ c e l l s [c e l l _ i d] .

ge tBoundary () :
1811 i n t e r s e c t i o n = ro_math . s e gm e n t _ i n t e r s e c t

(bound [0] , bound [1] , \
1812 sweeper

[0] ,

sweeper
[1])

1813 i f i n t e r s e c t i o n != None :
1814 c h a l k _ l i n e . append (i n t e r s e c t i o n)
1815 # p l a c e waypo i n t s a t s p e c i f i e d i n t e r v a l s

a long t h e c h a l k _ l i n e
1816 i f l en (c h a l k _ l i n e) < 2 :
1817 break
1818 y = c h a l k _ l i n e [0] [1]
1819 max_x = c h a l k _ l i n e [0] [0] − s e l f .

_ senso r_sweep [1]
1820 min_x = c h a l k _ l i n e [1] [0] + s e l f .

_ senso r_sweep [1]
1821 i n v e r t e r = divmod (i n f l e c t i o n , 2) [1]

166

1822 # p l a c e waypo i n t s from sou t h t o no r t h
1823 i f i n v e r t e r == 0 :
1824 x = min_x
1825 whi le x <= max_x :
1826 waypo in t = Waypoint (s e l f . _ c e l l s [

c e l l _ i d] . g e t C e l l I d () , waypo in t_ id
, (x , y) , \

1827 (Auc t i onSea r ch .
AREA_SW_LAT,
Auc t i onSea r ch
.AREA_SW_LON)
)

1828 s e l f . _ c e l l s [c e l l _ i d] . addWaypoint (
waypo in t)

1829 x += s e l f . _ senso r_sweep [1]
1830 s i z e += s e l f . _ senso r_sweep [1]
1831 waypo in t _ i d += 1
1832 # p l a c e waypo i n t s from no r t h t o s ou t h
1833 e l i f i n v e r t e r == 1 :
1834 x = max_x
1835 whi le x >= min_x :
1836 waypo in t = Waypoint (s e l f . _ c e l l s [

c e l l _ i d] . g e t C e l l I d () , waypo in t_ id
, (x , y) , \

1837 (Auc t i onSea r ch .
AREA_SW_LAT,
Auc t i onSea r ch
.AREA_SW_LON)
)

1838 s e l f . _ c e l l s [c e l l _ i d] . addWaypoint (
waypo in t)

1839 x −= s e l f . _ senso r_sweep [1]
1840 s i z e += s e l f . _ senso r_sweep [1]

167

1841 waypo in t _ i d += 1
1842 c h a l k _ l i n e = []
1843 i n f l e c t i o n += 1
1844 # move t h e cha lk − l i n e waypo in t gu ide t o t h e

r i g h t by one sensor −sweep (wes t t o e a s t)
1845 sweeper [0] [1] += s e l f . _ senso r_sweep [0]
1846 sweeper [1] [1] += s e l f . _ senso r_sweep [0]
1847 s i z e += s e l f . _ senso r_sweep [0]
1848 s e l f . _ c e l l s [c e l l _ i d] . s e t S i z e (s i z e)
1849
1850
1851 def ge t I nTheAuc t i on (s e l f) :
1852 ’ ’ ’ s t a r t an a u c t i o n and r e i n i t i a l i z e a l l a s s o c i a t e d

da ta s t r u c t u r e s
1853 ’ ’ ’
1854 s e l f . manager . log_warn (" Auc t ion ␣ s t a r t ␣message ␣

r e c e i v e d ")
1855 s e l f . _ agen t . s e t S e a r c hAu c t i o n ()
1856 s e l f . _ d a t a _ a u c t i o n _ t im e . append (ro spy . Time . now ())
1857 s e l f . _round_number = 0
1858 s e l f . _ i nbound_b id s = []
1859 s e l f . _ i n b o u n d _ s t a t u s e s = []
1860 s e l f . _ s e a r c h _ r o l l _ c a l l . c l e a r ()
1861 s e l f . _ b i d _ r o l l _ c a l l . c l e a r ()
1862 s e l f . _ r o u n d _ t r a c k e r . c l e a r ()
1863 s e l f . _ c om p l e t e _ r o l l _ c a l l . c l e a r ()
1864 s e l f . _ a u c t i o n _ s t a r t e d = True
1865 s e l f . _m id_ sea r ch_b id = F a l s e
1866 s e l f . _ a u c t i o n _ comp l e t e = F a l s e
1867 s e l f . _ b i dd i ng_comp l e t e = F a l s e
1868 s e l f . _ b i d s _upd a t e d = F a l s e
1869 s e l f . _ c e l l _ u p d a t e _ c omp l e t e = F a l s e
1870

168

1871
1872
1873 def i n t e r n a l U p d a t e C e l l s (s e l f) :
1874 ’ ’ ’ upda t e l o c a l c e l l knowledge g i v en winn ing b i d s

from an au c t i o n
1875 ’ ’ ’
1876 f o r agen t_key in s e l f . _ a l l _ b i d s :
1877 f o r c e l l _ k ey , c o s t in s e l f . _ a l l _ b i d s [agen t_key] .

i t ems () :
1878 i f c e l l _ k e y in s e l f . _ c e l l s :
1879 # i f owning agen t i s no l o ng e r a l i v e ,

a bo r t a s s i gnmen t
1880 i f agen t_key not in s e l f . manager .

subswarm_keys :
1881 s e l f . r e v e r t C e l l (c e l l _ k e y)
1882 s e l f . _ c e l l s _ i n _ p r o g r e s s . d i s c a r d (

c e l l _ k e y)
1883 s e l f . _ c e l l s _ l e f t . add (c e l l _ k e y)
1884 e l s e :
1885 # i f ano t h e r agen t won a c e l l I ’m

a s s i g n e d to , remove a s s i gnmen t
1886 i f c e l l _ k e y in s e l f . _ agen t .

g e tMyCe l l I d s () and \
1887 agen t_key != s e l f . _ agen t .

g e t S e a r c h e r I d () :
1888 i f c e l l _ k e y == s e l f . _ agen t .

g e t C u r r C e l l I d () :
1889 s e l f . _ agen t .

r e s e tCu r rWaypo i n t I d ()
1890 s e l f . r emoveCe l lAss ignmen t (

c e l l _ k e y)
1891 s e l f . _ c e l l s [c e l l _ k e y] . s e t S t a t u s (C e l l

. ASSIGNED)

169

1892 s e l f . _ c e l l s [c e l l _ k e y] . se tOwner (
agen t_key)

1893 s e l f . _ c e l l s [c e l l _ k e y] . s e t C o s t (c o s t)
1894 s e l f . _ c e l l s _ c h a n g e d . add (c e l l _ k e y)
1895
1896
1897
1898 def makeCe l lAc t i ve (s e l f) :
1899 ’ ’ ’ s e t an a s s i g n e d c e l l t o in −p r og r e s s once a

waypo in t has been reached
1900 ’ ’ ’
1901 my_ce l l = s e l f . _ agen t . g e t C u r r C e l l I d ()
1902 i f my_ce l l != None :
1903 i f s e l f . _ c e l l s [my_ce l l] . g e t S t a t u s () != Ce l l .

IN_PROGRESS :
1904 s e l f . manager . log_warn (" t h i s ␣ i s ␣where ␣ I ␣ s e t ␣

c e l l ␣%d␣ t o ␣IN_PROGRESS" % my_ce l l)
1905 s e l f . _ c e l l s [my_ce l l] . s e t S t a t u s (C e l l .

IN_PROGRESS)
1906 # t h e s i s da ta c ap t u r e l i n e
1907 i f l en (s e l f . _ d a t a _ r o b o t _ s e a r c h i n g) == 0 :
1908 s e l f . _ d a t a _ r o b o t _ s e a r c h i n g . append (ro spy .

Time . now ())
1909 s e l f . _am_sea rch ing = True
1910 s e l f . _ c e l l s _ c h a n g e d . add (my_ce l l)
1911 s e l f . _ c e l l s _ i n _ p r o g r e s s . add (my_ce l l)
1912
1913
1914
1915 def moveToNextCell (s e l f) :
1916 ’ ’ ’ move t o an a s s i g n e d c e l l upon comp l e t i o n o f in −

p r og r e s s c e l l
1917 ’ ’ ’

170

1918 s e l f . manager . l o g _ i n f o (" f i n i s h e d ␣ c e l l ␣%d , ␣moving␣ t o ␣
c e l l ␣%d . " \

1919 % (s e l f . _ agen t . g e t C u r r C e l l I d ()
, s e l f . _ agen t . g e tMyCe l l I d s
() [1]))

1920 bo t = s e l f . manager . g e t _ own_ s t a t e () . s t a t e . pose . pose .
p o s i t i o n

1921 s e l f . _ b e e n_ t h e r e . add (s e l f . _ agen t . g e t C u r r C e l l I d ())
1922 s e l f . _ c e l l s _ i n _ p r o g r e s s . d i s c a r d (s e l f . _ agen t .

g e t C u r r C e l l I d ())
1923 s e l f . _ c e l l s _ l e f t . d i s c a r d (s e l f . _ agen t . g e t C u r r C e l l I d ()

)
1924 # g e tCu r rC e l l I d () i s now t h e n e x t c e l l i n

g e tMyCe l l I d s ()
1925 s e l f . _ agen t . r emoveCe l l (s e l f . _ agen t . g e t C u r r C e l l I d ())
1926 s e l f . _ agen t . r e s e tCu r rWaypo i n t I d ()
1927 s e l f . _ c e l l s _ c h a n g e d . add (s e l f . _ agen t . g e t C u r r C e l l I d ())
1928 s e l f . _ c e l l s [s e l f . _ agen t . g e t C u r r C e l l I d ()] .

d e l e t eWaypo i n t s ()
1929 s e l f . g en e r a t eWaypo i n t s (s e l f . _ agen t . g e t C u r r C e l l I d () ,

(bo t . l a t , bo t . l on))
1930 s e l f . _ c e l l s [s e l f . _ agen t . g e t C u r r C e l l I d ()] . s e t S t a t u s (

C e l l . IN_PROGRESS)
1931 # t h e s i s da ta c ap t u r e l i n e
1932 i f l en (s e l f . _ d a t a _ r o b o t _ s e a r c h i n g) == 0 :
1933 s e l f . _ d a t a _ r o b o t _ s e a r c h i n g . append (ro spy . Time . now

())
1934 s e l f . _am_sea rch ing = True
1935 s e l f . _ c e l l s _ c h a n g e d . add (s e l f . _ agen t . g e t C u r r C e l l I d ())
1936 s e l f . _ c e l l s _ i n _ p r o g r e s s . add (s e l f . _ agen t .

g e t C u r r C e l l I d ())
1937
1938

171

1939
1940 def r e a s s i g n C e l l (s e l f , c e l l _ i d , a g en t _ i d , a g e n t _ b i d) :
1941 ’ ’ ’ change a s s i gnmen t o f a c e l l from one agen t t o

ano t h e r
1942 @param c e l l _ i d : t h e i d o f t h e c e l l b e i ng r e a s s i g n e d
1943 @param agen t _ i d : t h e i d o f t h e agen t be i ng

r e a s s i g n e d t h e c e l l
1944 @param agen t _b i d : t h e b i d amount t h a t a g e n t _ i d won

c e l l _ i d f o r
1945 ’ ’ ’
1946 i f c e l l _ i d in s e l f . _ agen t . g e tMyCe l l I d s () :
1947 s e l f . _ c e l l s [c e l l _ i d] . d e l e t eWaypo i n t s ()
1948 s e l f . _ agen t . r emoveCe l l (c e l l _ i d)
1949 s e l f . _ c e l l s _ c h a n g e d . add (c e l l _ i d)
1950 s e l f . _ c e l l s [c e l l _ i d] . s e t S t a t u s (C e l l . ASSIGNED)
1951 s e l f . _ c e l l s [c e l l _ i d] . se tOwner (a g e n t _ i d)
1952 i f a g e n t _ b i d > s e l f . _ c e l l s [c e l l _ i d] . g e tCo s t () :
1953 s e l f . _ c e l l s [c e l l _ i d] . s e t C o s t (a g e n t _ b i d)
1954 s e l f . _ c e l l s _ c h a n g e d . add (c e l l _ i d)
1955 e l s e :
1956 s e l f . manager . l o g _ i n f o (" R e a s s i g nCe l l () ␣ f a i l e d : ␣

c e l l _ i d ␣ no t ␣ i n ␣MyCel l Ids () ")
1957
1958
1959
1960 def r emoveCe l lAss ignmen t (s e l f , c e l l _ i d) :
1961 ’ ’ ’ change c e l l s t a t u s t o as s ignmen t −removed so

o t h e r ag en t s can d e t e c t i t
1962 @param c e l l _ i d : t h e i d o f t h e c e l l b e i ng

d i s a s s o c i a t e d
1963 ’ ’ ’
1964 i f c e l l _ i d in s e l f . _ agen t . g e tMyCe l l I d s () :
1965 s e l f . _ c e l l s [c e l l _ i d] . d e l e t eWaypo i n t s ()

172

1966 s e l f . _ agen t . r emoveCe l l (c e l l _ i d)
1967 s e l f . r e v e r t C e l l (c e l l _ i d)
1968
1969
1970
1971 def r e v e r t C e l l (s e l f , c e l l _ i d) :
1972 ’ ’ ’ change c e l l s t a t u s from ass ignmen t −removed t o

a v a i l a b l e
1973 S e t t i n g a c e l l t o " as s ignmen t_removed " a l l ow s o t h e r

ag en t s t o
1974 d e t e c t t h a t an " a s s i g n e d " c e l l s hou l d now be

c on s i d e r e d " a v a i l a b l e . "
1975 @param c e l l _ i d : t h e i d o f t h e c e l l b e i ng s e t t o

a v a i l a b l e
1976 ’ ’ ’
1977 s e l f . _ c e l l s [c e l l _ i d] . se tOwner (C e l l .NO_OWNER)
1978 s e l f . _ c e l l s [c e l l _ i d] . s e t C o s t (C e l l .NO_COST)
1979 s e l f . _ c e l l s _ i n _ p r o g r e s s . d i s c a r d (c e l l _ i d)
1980 i f s e l f . _ c e l l s [c e l l _ i d] . g e t S t a t u s () != Ce l l .

ASSIGNMENT_REMOVED:
1981 s e l f . _ c e l l s [c e l l _ i d] . s e t S t a t u s (C e l l .

ASSIGNMENT_REMOVED)
1982 s e l f . _ c e l l s _ c h a n g e d . add (c e l l _ i d)
1983 e l s e :
1984 s e l f . _ c e l l s [c e l l _ i d] . s e t S t a t u s (C e l l .AVAILABLE)
1985 s e l f . _ c e l l s _ c h a n g e d . add (c e l l _ i d)
1986
1987
1988
1989 def sendAuc t ionComple t e (s e l f) :
1990 ’ ’ ’ send a s i n g l e message t e l l i n g o t h e r ag en t s t h a t

agen t i s f i n i s h e d w i t h a u c t i o n
1991 ’ ’ ’

173

1992 p a r s e r = b y t e s . USho r t P a r s e r ()
1993 p a r s e r . v a l u e = s e l f . _ agen t . g e t S e a r c h e r I d ()
1994 r e p o r t = s e l f . manager . b ehav i o r_da t a_msg
1995 r e p o r t . id = by t e s .AUCTION_COMPLETE
1996 r e p o r t . params = p a r s e r . pack ()
1997 s e l f . manager . b e h a v i o r _ d a t a _ p u b l i s h e r . p u b l i s h (r e p o r t)
1998
1999
2000
2001 def s e tWaypo in t (s e l f , waypo i n t _ l o c) :
2002 ’ ’ ’ send a speed waypo in t command message w i t h l a t /

l on / a l t / speed i n f o rma t i o n
2003 @param waypo i n t _ l o c : t h e waypo in t t o s e t a u t o p i l o t

t o
2004 ’ ’ ’
2005 i f not s e l f . _ l o i t e r _ w a i t :
2006 s e l f . _ l o i t e r _ c h e c k p o i n t = waypo i n t _ l o c
2007 s e l f . manager . spd_wp_cmd_msg . l a t = waypo i n t _ l o c [0]
2008 s e l f . manager . spd_wp_cmd_msg . l on = waypo i n t _ l o c [1]
2009 s e l f . manager . spd_wp_cmd_msg . a l t = s e l f . manager .

ap_wpt . z
2010 s e l f . manager . spd_wp_cmd_msg . speed = s e l f . _ agen t .

ge tSpeed ()
2011
2012
2013
2014 def sha r eAuc t i onComp l e t e (s e l f , num_agents) :
2015 ’ ’ ’ l o s s y −comms t o l e r a n t way t o r e l i a b l y communicate

a u c t i o n s t a t u s w i t h ag en t s
2016 @param num_agents : t h e number o f a g en t s i n t h e

subswarm e x e c u t i n g Auc t i onSea r ch
2017 ’ ’ ’
2018 i f s e l f . _auc_msg_count < Auc t i onSea r ch .MESSAGE_COUNT

174

:
2019 i f s e l f . _auc_msg_count == 0 :
2020 s e l f . _ c om p l e t e _ r o l l _ c a l l . c l e a r ()
2021 i f divmod (s e l f . _auc_msg_count , 3) [1] == 0 :
2022 s e l f . s endAuc t ionComple t e ()
2023 s e l f . _auc_msg_count += 1
2024 # I f s e a r c h e r has no t heard from a l l o t h e r s , r e q u e s t

a u c t i o n s t a t u s from them
2025 e l i f s e l f . _auc_msg_count >= Auc t i onSea r ch .

MESSAGE_COUNT and \
2026 l en (s e l f . _ c om p l e t e _ r o l l _ c a l l) < (num_agents − 1) :
2027 i f divmod (s e l f . _auc_msg_count , 5) [1] == 0 :
2028 s e l f . a u c t i o nComp l e t eReque s t ()
2029 s e l f . manager . l o g _ i n f o (" r e q u e s t i n g ␣ comple t e ␣

s t a t u s e s , ␣ a u c t i o n ␣%d" % s e l f .
_auc t i on_number)

2030 s e l f . _auc_msg_count += 1
2031 # I f s e a r c h e r has heard from a l l o t h e r a c t i v e agen t s

, f i n i s h a u c t i o n
2032 i f l en (s e l f . _ c om p l e t e _ r o l l _ c a l l) >= (num_agents − 1)

and \
2033 s e l f . _auc_msg_count >= Auc t i onSea r ch .MESSAGE_COUNT

:
2034 s e l f . _auc_msg_count = 0
2035 s e l f . _ a u c t i o n _ comp l e t e = True
2036 s e l f . _w inne r s _p i ck ed = F a l s e
2037 # cap t u r e t h e s i s da ta
2038 s e l f . c ap tu reRoundDa ta ()
2039 s e l f . manager . l o g _ i n f o ("−␣−␣−␣−␣ a u c t i o n ␣ i s ␣

comple t e ␣−␣−␣−␣−␣ ")
2040
2041
2042

175

2043 def s h a r eB i d s (s e l f , num_agents) :
2044 ’ ’ ’ l o s s y −comms t o l e r a n t way t o r e l i a b l y communicate

b i d s w i t h ag en t s
2045 ’ ’ ’
2046 i f s e l f . _ b i dd i ng_comp l e t e :
2047 i f s e l f . _b id_msg_count < Auc t i onSea r ch .

MESSAGE_COUNT:
2048 i f divmod (s e l f . _b id_msg_count , 3) [1] == 0 :
2049 s e l f . b i d S t a t u sUpd a t e (F a l s e)
2050 s e l f . _b id_msg_count += 1
2051 # I f s e a r c h e r has no t heard from a l l o t h e r s ,

r e q u e s t s t a t u s from them
2052 e l i f s e l f . _b id_msg_count >= Auc t i onSea r ch .

MESSAGE_COUNT and \
2053 l en (s e l f . _ b i d _ r o l l _ c a l l) < (num_agents − 1) :
2054 i f divmod (s e l f . _b id_msg_count , 3) [1] == 0 :
2055 s e l f . b i d S t a t u sR e q u e s t ()
2056 s e l f . manager . l o g _ i n f o (" r e q u e s t i n g ␣ b i d s . ␣

␣ round ␣%d" % s e l f . _round_number)
2057 s e l f . _b id_msg_count += 1
2058 # I f s e a r c h e r has heard from a l l o t h e r a c t i v e

agen t s , r e p o r t ready s t a t u s
2059 i f l en (s e l f . _ b i d _ r o l l _ c a l l) >= (num_agents − 1)

and \
2060 s e l f . _b id_msg_count >= Auc t i onSea r ch .

MESSAGE_COUNT:
2061 s e l f . _b id_msg_count = 0
2062 s e l f . _ b i d _ r o l l _ c a l l . c l e a r ()
2063 s e l f . _ b i d s _upd a t e d = True
2064 s e l f . _ r o u n d _ t r a c k e r . c l e a r ()
2065 s e l f . manager . l o g _ i n f o ("−␣−␣−␣−␣ b id ␣ upda t e ␣

comple t e ␣−␣−␣−␣−␣ ")
2066 s e l f . manager . l o g _ i n f o (" ")

176

2067
2068
2069
2070 def s h a r e S t a t u s e s (s e l f , num_agents) :
2071 ’ ’ ’ l o s s y −comms t o l e r a n t way t o r e l i a b l y communicate

c e l l s t a t u s e s w i t h ag en t s
2072 @param num_agents : t h e number o f a g en t s i n t h e

subswarm e x e c u t i n g Auc t i onSea r ch
2073 ’ ’ ’
2074 i f s e l f . _message_coun t < Auc t i onSea r ch .MESSAGE_COUNT

:
2075 i f divmod (s e l f . _message_count , 3) [1] == 0 :
2076 s e l f . c e l l S t a t u sU p d a t e ()
2077 s e l f . _message_coun t += 1
2078 # I f s e a r c h e r has no t heard from a l l o t h e r s , r e q u e s t

s t a t u s from them
2079 e l i f s e l f . _message_coun t >= Auc t i onSea r ch .

MESSAGE_COUNT and \
2080 l en (s e l f . _ s e a r c h _ r o l l _ c a l l) < (num_agents − 1) :
2081 i f divmod (s e l f . _message_count , 5) [1] == 0 :
2082 s e l f . c e l l S t a t u s R e q u e s t ()
2083 s e l f . manager . l o g _ i n f o (" r e q u e s t i n g ␣ c e l l ␣

s t a t u s e s , ␣ a u c t i o n ␣%d , ␣ round ␣%d" \
2084 % (s e l f .

_auc t ion_number ,
s e l f . _round_number)
)

2085 s e l f . _message_coun t += 1
2086 # I f s e a r c h e r has heard from a l l o t h e r a c t i v e agen t s

, upda t e c e l l s
2087 i f l en (s e l f . _ s e a r c h _ r o l l _ c a l l) >= (num_agents − 1)

and \
2088 s e l f . _message_coun t >= Auc t i onSea r ch .MESSAGE_COUNT

177

:
2089 s e l f . e x t e r n a lUpda t eMyCe l l s ()
2090 s e l f . _message_coun t = 0
2091 s e l f . _ c e l l _ u p d a t e _ c omp l e t e = True
2092 s e l f . manager . l o g _ i n f o ("−␣−␣−␣−␣ c e l l ␣ upda t e ␣

comple t e ␣−␣−␣−␣−␣ ")
2093
2094
2095
2096 def s t a r t A u c t i o n (s e l f , n e x t _ c e l l _ c l a im e d) :
2097 ’ ’ ’ send a b u r s t o f a u c t i o n s t a r t messages t o o t h e r

ag en t s
2098 ’ ’ ’
2099 p a r s e r = b y t e s . NewAuct ionParse r ()
2100 p a r s e r . s o u r c e _ i d = s e l f . _ agen t . g e t S e a r c h e r I d ()
2101 i f n e x t _ c e l l _ c l a im e d :
2102 p a r s e r . n e x t _ c e l l _ i d = s e l f . _ agen t . g e t C u r r C e l l I d

()
2103 e l s e :
2104 p a r s e r . n e x t _ c e l l _ i d = Auc t i onSea r ch .NOT_BIDDING
2105 p a r s e r . auc t i on_numbe r = s e l f . _auc t i on_number
2106 p a r s e r . s e a r c h _ a u c t i o n = True
2107 s e l f . c l a im _ n e x t _ c e l l = n e x t _ c e l l _ c l a im e d
2108 f o r i in range (Auc t i onSea r ch .MESSAGE_COUNT) :
2109 i f i == 0 :
2110 s e l f . manager . log_warn (" s end i ng ␣ a u c t i o n ␣ s t a r t

␣message . ")
2111
2112 r e p o r t = s e l f . manager . b ehav i o r_da t a_msg
2113 r e p o r t . id = by t e s .AUCTION_NEW
2114 r e p o r t . params = p a r s e r . pack ()
2115 s e l f . manager . b e h a v i o r _ d a t a _ p u b l i s h e r . p u b l i s h (

r e p o r t)

178

2116 s e l f . _ s t a r t _ a u c t i o n = F a l s e
2117 s e l f . _ a u c t i o n _ comp l e t e = F a l s e
2118 s e l f . g e t I nTheAuc t i on ()
2119
2120
2121
2122 def s t ay InMyCe l l (s e l f) :
2123 ’ ’ ’ command agen t t o l o i t e r a t l a s t waypo in t a f t e r

f i n i s h i n g i t s c e l l
2124 ’ ’ ’
2125 w a i t _ f o r _ c e l l = F a l s e
2126 i f l en (s e l f . _ agen t . g e tMyCe l l I d s ()) > 1 :
2127 s e l f . manager . l o g _ i n f o (" f i n i s h e d ␣my␣ c e l l , ␣ bu t ␣am␣

wa i t i n g ␣ f o r ␣a␣ p o t e n t i a l l y ␣ b e t t e r ␣ nex t ␣ c e l l . ")
2128 e l s e :
2129 s e l f . manager . l o g _ i n f o (" f i n i s h e d ␣my␣ l a s t ␣ c e l l . ␣␣

S t a nd i ng ␣by . ")
2130 i f s e l f . _ agen t . g e t C u r r C e l l I d () != None :
2131 s e l f . _ b e e n_ t h e r e . add (s e l f . _ agen t . g e t C u r r C e l l I d ()

)
2132 s e l f . _ c e l l s _ i n _ p r o g r e s s . d i s c a r d (s e l f . _ agen t .

g e t C u r r C e l l I d ())
2133 s e l f . _ c e l l s _ l e f t . d i s c a r d (s e l f . _ agen t . g e t C u r r C e l l I d ()

)
2134 # so Cu r rCe l l I d () now co r r e s pond s t o my n e x t c e l l ,

i f any
2135 s e l f . _ agen t . r emoveCe l l (s e l f . _ agen t . g e t C u r r C e l l I d ())
2136 s e l f . _ agen t . r e s e tCu r rWaypo i n t I d ()
2137 i f s e l f . _ agen t . g e t C u r r C e l l I d () != None :
2138 s e l f . _ c e l l s _ c h a n g e d . add (s e l f . _ agen t .

g e t C u r r C e l l I d ())
2139 s e l f . _ l o i t e r _ w a i t = True
2140

179

2141
2142
2143 def submi tSea r chB id (s e l f , s e a r c h e r _ i d , c e l l _ i d ,

b i d _ v a l u e) :
2144 ’ ’ ’ send a s i n g l e message t e l l i n g o t h e r ag en t s b i d

i n f o rma t i o n
2145 @param s e a r c h e r _ i d : i d o f t h e s e a r c h e r s u bm i t t i n g

t h e b id
2146 @param c e l l _ i d : i d o f t h e c e l l s e a r c h e r _ i d b i d f o r
2147 @param b i d _ v a l u e : amount t h a t s e a r c h e r _ i d b i d s f o r

c e l l _ i d
2148 ’ ’ ’
2149 p a r s e r = b y t e s . Au c t i o nS e a r c hB i dP a r s e r ()
2150 p a r s e r . my_id = s e a r c h e r _ i d
2151 p a r s e r . c e l l _ i d = c e l l _ i d
2152 p a r s e r . b i d _ v a l = b i d _ v a l u e
2153 r e p o r t = s e l f . manager . b ehav i o r_da t a_msg
2154 r e p o r t . id = by t e s . AUCTION_BID
2155 r e p o r t . params = p a r s e r . pack ()
2156 s e l f . manager . b e h a v i o r _ d a t a _ p u b l i s h e r . p u b l i s h (r e p o r t)
2157
2158
2159
2160 def syncRounds (s e l f , num_agents) :
2161 ’ ’ ’ check whe ther a l l a g en t s are i n t h e same round ,

behind , or ahead i n an a u c t i o n
2162 @param num_agents : t h e number o f a g en t s i n t h e

subswarm e x e c u t i n g Auc t i onSea r ch
2163 ’ ’ ’
2164 synced = F a l s e
2165 s e l f . _ r o u n d _ t r a c k e r . add (s e l f . _round_number)
2166 d i f f _ round_nums = l en (s e l f . _ r o u n d _ t r a c k e r)
2167 # i f a l l a g en t s are i n t h e same round , l e n g t h o f

180

t h i s s e t w i l l be 1 ,
2168 # so r e t u r n t r u e because ag en t s are synced .
2169 i f d i f f _ round_nums == 0 or d i f f _ round_nums == 1 :
2170 synced = True
2171 e l s e :
2172 i f d i f f _ round_nums == 0 :
2173 max_round_num = 0
2174 e l s e :
2175 max_round_num = max (s e l f . _ r o u n d _ t r a c k e r)
2176 # i f t h e r e i s more than one number i n s e l f .

_ r o und_ t r a c k e r s e t , t h en ag en t s are ou t o f s ync
2177 i f d i f f _ round_nums > 1 :
2178 # i f my round number i s t h e same as max , I am

ahead o f o t h e r ag en t s and need t o wa i t .
2179 i f s e l f . _round_number == max_round_num :
2180 min_num = min (s e l f . _ r o u n d _ t r a c k e r)
2181 i f max_round_num − min_num > 2 :
2182 synced = True
2183 e l i f divmod (s e l f . _sync_msg_count , 3) [1] ==

0 :
2184 s e l f . _ r o u n d _ t r a c k e r . c l e a r ()
2185 s e l f . a u c t i o n S t a t u sR e q u e s t ()
2186 s e l f . manager . l o g _ i n f o (" I ’m␣ ahead . ␣␣

Reque s t i ng ␣ round ␣numbers . ")
2187 synced = F a l s e
2188 s e l f . _sync_msg_count += 1
2189 # i f my round number i s no t t h e same as max , I

need t o c o n t i n u e i n o rde r t o ca t c h up .
2190 e l s e :
2191 synced = True
2192 i f synced :
2193 s e l f . _sync_msg_count = 0
2194 re turn synced

181

2195
2196
2197
2198 def t e s tWaypo i n t (s e l f , waypo i n t _ l o c) :
2199 ’ ’ ’ check whe ther an agen t has a r r i v e d a t a

s p e c i f i e d waypo in t
2200 @param waypo i n t _ l o c : t h e waypo in t agen t i s t r a v e l i n g

toward
2201 ’ ’ ’
2202 i f not s e l f . _ i n i t i a l _ a s s i g n :
2203 # i f agen t i s a t waypoin t , go t o n e x t waypo in t
2204 i f not s e l f . _ l o i t e r _ w a i t :
2205 bo t = s e l f . manager . g e t _ own_ s t a t e () . s t a t e .

pose . pose . p o s i t i o n
2206 d i s t _ t o _wp = gps . g p s _ d i s t a n c e (waypo i n t _ l o c

[0] , waypo i n t _ l o c [1] , bo t . l a t , bo t . l on)
2207 i f d i s t _ t o _wp < Auc t i onSea r ch . CAPTURE_DIST

and s e l f . _ agen t . g e t C u r r C e l l I d () != None :
2208 i f s e l f . _ c e l l s [s e l f . _ agen t . g e t C u r r C e l l I d

()] . g e t S t a t u s () == Ce l l . IN_PROGRESS :
2209 s e l f . _ agen t . i n c r emen tCu r rWaypo in t I d

()
2210 e l i f s e l f . _ agen t . g e tCu r rWaypo in t I d () ==

0 and not s e l f . _ agen t .
_IS_SEARCH_AUCTION \

2211 and s e l f . _ c e l l s [s e l f . _ agen t .
g e t C u r r C e l l I d ()] . g e t S t a t u s () ==
Ce l l . ASSIGNED :

2212 s e l f . _ agen t . i n c r emen tCu r rWaypo in t I d
()

2213
2214
2215

182

2216 def winn e rDe t e rm i n a t i o n (s e l f) :
2217 ’ ’ ’ d e t e rm i n e h i g h e s t b i d d e r from a s e t o f b i d s and

d i r e c t a u c t i o n t e rm i n a t i o n
2218 ’ ’ ’
2219 w inne r_ i d = s e l f . _ agen t . g e t S e a r c h e r I d ()
2220 h i g h e s t _ b i d = 0 . 0
2221 s e l f . _same_bids = True # i f a l l a g en t s s ubm i t t h e

same b i d s a second t ime , a l l are happy .
2222 # c o n s o l i d a t e a l l b i d i n f o rma t i o n from o t h e r s and

my s e l f
2223 s e l f . c o n s o l i d a t e B i d s ()
2224 s e l f . d i s p l a y S h o r t R e p o r t ()
2225 # i f a l l a g en t s are happy and no c o n f l i c t s remain ,

commit t o a s s i g nmen t s .
2226 i f s e l f . _same_bids :
2227 i f not s e l f . _ a u c t i o n _ comp l e t e :
2228 i f s e l f . _ c u r r _ b i d [0] != Auc t i onSea r ch .

NOT_BIDDING :
2229 s e l f . g e n e r a t eCe l lA s s i g nmen t ()
2230 s e l f . i n t e r n a l U p d a t e C e l l s ()
2231 i f not s e l f . _ i n i t i a l _ a s s i g n :
2232 s e l f . _m id_ sea r ch_b id = True
2233 s e l f . _ c e l l _ u p d a t e _ c omp l e t e = F a l s e
2234 s e l f . _ s e a r c h _ r o l l _ c a l l . c l e a r ()
2235 s e l f . _ submi t_same_b id = F a l s e
2236 s e l f . _w inne r s _p i ck ed = True
2237 s e l f . manager . l o g _ i n f o ("SAME_BIDS␣==␣TRUE, ␣ and␣no

␣ c e l l ␣ c o n f l i c t s . ␣␣Commit t ing ␣ a s s i g nmen t s . ")
2238 # i f a g en t s are no t happy , d e t e rm i n e who ’ s b i d won
2239 e l s e :
2240 w inne r_ i d = s e l f . _ agen t . g e t S e a r c h e r I d ()
2241 h i g h e s t _ b i d = s e l f . _ c u r r _ b i d [1] # assume agen t

s u bm i t t e d h i g h e s t b i d u n l e s s proven o t h e rw i s e

183

2242 c e l l _ k e y = s e l f . _ c u r r _ b i d [0]
2243 f o r agen t_key in s e l f . _ a l l _ b i d s :
2244 # i f ano t h e r agen t p l a c ed a b id f o r t h e same

c e l l as me , h i g h e s t b i d i s winner
2245 i f c e l l _ k e y in s e l f . _ a l l _ b i d s [agen t_key] and

agen t_key != s e l f . _ agen t . g e t S e a r c h e r I d ()
\

2246 and c e l l _ k e y != Auc t i onSea r ch .NOT_BIDDING :
2247 a g e n t _ b i d = s e l f . _ a l l _ b i d s [agen t_key] [

c e l l _ k e y]
2248 i f s e l f . _ a l l _ b i d s [agen t_key] [c e l l _ k e y] >

h i g h e s t _ b i d :
2249 h i g h e s t _ b i d = a g e n t _ b i d
2250 w inne r_ i d = agen t_key
2251 # i f ano t h e r agen t b i d h i g h e r f o r a

c e l l I am as s i gned , I r e l i n q u i s h
i t

2252 i f c e l l _ k e y in s e l f . _ agen t .
g e tMyCe l l I d s () :

2253 i f c e l l _ k e y == s e l f . _ agen t .
g e t C u r r C e l l I d () :

2254 s e l f . _ agen t .
r e s e tCu r rWaypo i n t I d ()

2255 s e l f . r e a s s i g n C e l l (c e l l _ k ey ,
agen t_key , a g e n t _ b i d)

2256 s e l f . _ c e l l s _ c h a n g e d . add (c e l l _ k e y
)

2257 i f s e l f . _ a l l _ b i d s [agen t_key] [c e l l _ k e y]
== h i g h e s t _ b i d :

2258 i f winne r_ i d < agen t_key :
2259 h i g h e s t _ b i d = s e l f . _ a l l _ b i d s [

agen t_key] [c e l l _ k e y]
2260 w inne r_ i d = agen t_key

184

2261 i f c e l l _ k e y in s e l f . _ agen t .
g e tMyCe l l I d s () :

2262 i f c e l l _ k e y == s e l f . _ agen t .
g e t C u r r C e l l I d () :

2263 s e l f . _ agen t .
r e s e tCu r rWaypo i n t I d ()

2264 s e l f . r e a s s i g n C e l l (c e l l _ k ey ,
agen t_key , a g e n t _ b i d)

2265 s e l f . _ c e l l s _ c h a n g e d . add (
c e l l _ k e y)

2266 # i f I won t h e c e l l I b i d f o r t h i s round , s ubm i t
t h e same b id n e x t round

2267 i f winne r_ i d == s e l f . _ agen t . g e t S e a r c h e r I d () :
2268 i f c e l l _ k e y != Auc t i onSea r ch .NOT_BIDDING :
2269 s e l f . _ submi t_same_b id = True
2270 i f s e l f . _ c u r r _ b i d [1] > s e l f . _ c e l l s [

c e l l _ k e y] . g e tCo s t () :
2271 s e l f . _ c e l l s [c e l l _ k e y] . s e t C o s t (s e l f .

_ c u r r _ b i d [1])
2272 s e l f . _ c e l l s _ c h a n g e d . add (c e l l _ k e y)
2273 # I d i d no t win t h e c e l l I b i d f o r
2274 e l s e :
2275 # i f I ’ ve l o s t t h e same c e l l m u l t i p l e t imes ,

conc l ude I won ’ t win i t
2276 i f c e l l _ k e y in s e l f . _ c e l l s _no t _won and

c e l l _ k e y != Auc t i onSea r ch .NOT_BIDDING :
2277 s e l f . manager . l o g _ i n f o (" c e l l ␣%d␣ i s ␣

o u t s i d e ␣ o f ␣ t h r e s h o l d . ␣Abandon␣ p u r s u i t
␣ f o r ␣ o t h e r ␣ c e l l s . " \

2278 % c e l l _ k e y)
2279 s e l f . _ a b a ndon ed_ c e l l s . add (c e l l _ k e y)
2280 i f h i g h e s t _ b i d > s e l f . _ c e l l s [c e l l _ k e y] .

g e tCo s t () :

185

2281 s e l f . _ c e l l s [c e l l _ k e y] . s e t C o s t (
h i g h e s t _ b i d)

2282 # i f I l o s t t h e round , keep t r a c k o f t h e
c e l l _ i d

2283 e l s e :
2284 s e l f . manager . l o g _ i n f o (" I ␣ l o s t , ␣ bu t ␣

keep ing ␣ t r a c k ␣ of ␣ c e l l ␣%d . " % c e l l _ k e y
)

2285 s e l f . _ c e l l s _no t _won . add (c e l l _ k e y)
2286 i f h i g h e s t _ b i d > s e l f . _ c e l l s [c e l l _ k e y] .

g e tCo s t () :
2287 s e l f . _ c e l l s [c e l l _ k e y] . s e t C o s t (

h i g h e s t _ b i d)
2288 s e l f . _ c e l l s _ c h a n g e d . add (c e l l _ k e y)
2289 s e l f . _ i nbound_b id s = []
2290 s e l f . _ b i d s _upd a t e d = F a l s e
2291 s e l f . _ b i dd i ng_comp l e t e = F a l s e
2292
2293
2294
2295 c l a s s Ce l l (ob j e c t) :
2296 ’ ’ ’
2297 Clas s f o r ma i n t a i n i n g a t t r i b u t e s o f each c e l l c r e a t e d by

d e compo s i t i o n .
2298 Each Ce l l r e p r e s e n t s a b i d dab l e r e s o u r c e i n Au c t i o n s .
2299 ’ ’ ’
2300 # CELL s t a t u s enumera t i on s
2301 AVAILABLE = 0
2302 ASSIGNED = 1
2303 IN_PROGRESS = 2
2304 ASSIGNMENT_REMOVED = 3
2305 COMPLETE = 4
2306

186

2307 # o t h e r enumera t i on s
2308 NO_OWNER = 255
2309 NO_COST = 0 . 0
2310 PRIVATE_VALUE = 8000
2311
2312 def _ _ i n i t _ _ (s e l f , c e l l _ i d , boundary) :
2313 s e l f . _ c e l l _ i d = c e l l _ i d
2314 s e l f . _boundary = boundary
2315 s e l f . _west_bound= []
2316 s e l f . _ ea s t _bound= []
2317 s e l f . _waypo in t s = []
2318 s e l f . _ n e i g hbo r s = []
2319 s e l f . _ s i z e = 0
2320 s e l f . _ u t i l i t y = Ce l l .NO_COST
2321 s e l f . _b id_amts = Ce l l .NO_COST
2322 s e l f . _ c o s t = Ce l l .NO_COST
2323 s e l f . _ s t a t u s = Ce l l .AVAILABLE
2324 s e l f . _owner = Ce l l .NO_OWNER
2325 s e l f . _ p r i v a t e _ v a l = Ce l l . PRIVATE_VALUE
2326
2327 def g e t C e l l I d (s e l f) :
2328 re turn s e l f . _ c e l l _ i d
2329
2330 def ge tBoundary (s e l f) :
2331 re turn s e l f . _boundary
2332
2333 def ge tBounda ryGr id s (s e l f) :
2334 bound a r y_g r i d s = []
2335 f o r bound in s e l f . ge tBoundary () :
2336 bound a r y_g r i d s . append (bound [0])
2337 bound a r y_g r i d s . append (bound [1])
2338 re turn bound a r y_g r i d s
2339

187

2340 def ge tWaypo in t s (s e l f) :
2341 re turn s e l f . _waypo in t s
2342
2343 def ge tNe i ghbo r s (s e l f) :
2344 re turn s e l f . _ n e i g hbo r s
2345
2346 def g e t S i z e (s e l f) :
2347 re turn s e l f . _ s i z e
2348
2349 def g e t S t a t u s (s e l f) :
2350 re turn s e l f . _ s t a t u s
2351
2352 def getOwner (s e l f) :
2353 re turn s e l f . _owner
2354
2355 def getBidAmounts (s e l f) :
2356 re turn s e l f . _b id_amts
2357
2358 def g e tCo s t (s e l f) :
2359 re turn s e l f . _ c o s t
2360
2361 def ge tVa lue (s e l f) :
2362 re turn s e l f . _ p r i v a t e _ v a l
2363
2364 def g e t U t i l i t y (s e l f) :
2365 re turn s e l f . _ u t i l i t y
2366
2367 def getWestBound (s e l f) :
2368 re turn s e l f . _west_bound
2369
2370 def ge tEas tBound (s e l f) :
2371 re turn s e l f . _ ea s t _bound
2372

188

2373 def g e tWaypo i n tCa r t Lo c a t i o n s (s e l f) :
2374 l o c a t i o n s = []
2375 f o r waypo in t in s e l f . _waypo in t s :
2376 l o c a t i o n s . append (waypo in t . g e t C a r t e s i a n L o c a t i o n ()

)
2377 re turn l o c a t i o n s
2378
2379 def ge tWaypo in tLa tLonLoca t i on s (s e l f) :
2380 l o c a t i o n s = []
2381 f o r waypo in t in s e l f . _waypo in t s :
2382 l o c a t i o n s . append (waypo in t . g e tLa tLonLoca t i o n ())
2383 re turn l o c a t i o n s
2384
2385 def ge tWaypo i n t I d s (s e l f) :
2386 waypo i n t _ i d s = []
2387 f o r waypo in t in s e l f . _waypo in t s :
2388 waypo i n t _ i d s . append (waypo in t . g e tWaypo in t I d ())
2389 re turn waypo i n t _ i d s
2390
2391 def addWaypoint (s e l f , waypo in t) :
2392 s e l f . _waypo in t s . append (waypo in t)
2393
2394 def d e l e t eWaypo i n t s (s e l f) :
2395 s e l f . _waypo in t s = []
2396
2397 def addNeighbor (s e l f , n e i g h bo r _ i d) :
2398 s e l f . _ n e i g hbo r s . append (n e i g h b o r _ i d)
2399
2400 def d e l e t eNe i g h b o r (s e l f , n e i g h bo r _ i d) :
2401 s e l f . _ n e i g hbo r s . remove (n e i ghbo r)
2402
2403 def de l e t eB idAmoun t s (s e l f) :
2404 s e l f . _b id_amts = Ce l l .NO_COST

189

2405
2406 def se tBidAmounts (s e l f , amt) :
2407 s e l f . _b id_amts = amt
2408
2409 def s e t S i z e (s e l f , s i z e) :
2410 s e l f . _ s i z e = s i z e
2411
2412 def s e t S t a t u s (s e l f , n ew_ s t a t u s) :
2413 s e l f . _ s t a t u s = n ew_ s t a t u s
2414
2415 def se tOwner (s e l f , owner_ id) :
2416 s e l f . _owner = owner_ id
2417
2418 def s e t C o s t (s e l f , p r i c e) :
2419 s e l f . _ c o s t = p r i c e
2420
2421 def s e tVa l u e (s e l f , v a l u e) :
2422 s e l f . _ p r i v a t e _ v a l = va l u e
2423
2424 def s e t U t i l i t y (s e l f , u t i l) :
2425 s e l f . _ u t i l i t y = u t i l
2426
2427 def se tWestBound (s e l f , w) :
2428 s e l f . _west_bound = w
2429
2430 def s e tEa s tBound (s e l f , e) :
2431 s e l f . _ ea s t _bound = e
2432
2433
2434
2435 c l a s s Waypoint (ob j e c t) :
2436 ’ ’ ’
2437 Clas s f o r ma i n t a i n i n g a t t r i b u t e s o f each waypo in t w i t h i n

190

a c e l l
2438 ’ ’ ’
2439 def _ _ i n i t _ _ (s e l f , c e l l _ i d , waypo in t_ id , l o c a t i o n ,

sw_corne r) :
2440 s e l f . _waypo in t _ i d = waypo in t _ i d
2441 s e l f . _ c a r t _ l o c = l o c a t i o n
2442 s e l f . _ l a t _ l o n _ l o c = gps . g p s _ o f f s e t (sw_co rne r [0] ,

sw_co rne r [1] , \
2443 l o c a t i o n [1] ,

l o c a t i o n [0])
2444
2445 def ge tWaypo in t I d (s e l f) :
2446 re turn s e l f . _waypo in t _ i d
2447
2448 def g e t C a r t e s i a n L o c a t i o n (s e l f) :
2449 re turn s e l f . _ c a r t _ l o c
2450
2451 def ge tLa tLonLoca t i o n (s e l f) :
2452 re turn s e l f . _ l a t _ l o n _ l o c
2453
2454
2455
2456 c l a s s Se a r c h e r (ob j e c t) :
2457 ’ ’ ’
2458 Clas s f o r ma i n t a i n i n g a t t r i b u t e s o f each s e a r c h e r
2459 ’ ’ ’
2460 def _ _ i n i t _ _ (s e l f , s e a r c h e r _ i d) :
2461 s e l f . _ s e a r c h e r _ i d = s e a r c h e r _ i d
2462 s e l f . _IS_SEARCHER = True
2463 s e l f . _IS_SEARCH_AUCTION = True
2464 s e l f . _ cu r r _waypo i n t = 0
2465 s e l f . _speed = 0
2466 s e l f . _ endu rance = 0 . 0

191

2467 s e l f . _my_c e l l _ i d s = []
2468 s e l f . _ b e e n_ t h e r e = []
2469
2470 def g e t S e a r c h e r I d (s e l f) :
2471 re turn s e l f . _ s e a r c h e r _ i d
2472
2473 def ge tMyCe l l I d s (s e l f) :
2474 re turn s e l f . _my_c e l l _ i d s
2475
2476 def g e t C u r r C e l l I d (s e l f) :
2477 i f l en (s e l f . _my_ce l l _ i d s) > 0 :
2478 re turn s e l f . _my_c e l l _ i d s [0]
2479 e l s e :
2480 re turn None
2481
2482 def ge tCu r rWaypo in t I d (s e l f) :
2483 re turn s e l f . _ cu r r _waypo i n t
2484
2485 def ge tEndu r ance (s e l f) :
2486 re turn s e l f . _ endu rance
2487
2488 def ge tSpeed (s e l f) :
2489 re turn s e l f . _ speed
2490
2491 def s e t S e a r c hAu c t i o n (s e l f) :
2492 s e l f . _IS_SEARCH_AUCTION = True
2493
2494 def s e tEndu r an c e (s e l f , endu r ance) :
2495 s e l f . _ endu rance = endu r ance
2496
2497 def s e t Sp e ed (s e l f , speed) :
2498 s e l f . _speed = speed
2499

192

2500 def addCe l l (s e l f , c e l l _ i d) :
2501 s e l f . _my_c e l l _ i d s . append (c e l l _ i d)
2502
2503 def r emoveCe l l (s e l f , c e l l _ i d) :
2504 i f c e l l _ i d in s e l f . _my_c e l l _ i d s :
2505 s e l f . _my_c e l l _ i d s . remove (c e l l _ i d)
2506
2507 def r emoveAss i gnedCe l l s (s e l f) :
2508 c u r r _ c e l l = s e l f . g e t C u r r C e l l I d ()
2509 i f c u r r _ c e l l == None :
2510 s e l f . _my_c e l l _ i d s = []
2511 e l s e :
2512 s e l f . _my_c e l l _ i d s = [c u r r _ c e l l]
2513
2514 def r emoveAl lAss ignmen t s (s e l f) :
2515 s e l f . _my_c e l l _ i d s = []
2516
2517 def i n c r emen tCu r rWaypo in t I d (s e l f) :
2518 s e l f . _ cu r r _waypo i n t += 1
2519
2520 def r e s e tCu r rWaypo i n t I d (s e l f) :
2521 s e l f . _ cu r r _waypo i n t = 0

193

THIS PAGE INTENTIONALLY LEFT BLANK

194

List of References

[1] J. Bellingham, M. Tillerson, A. Richards, and J. How,Multi-Task Allocation and
Path Planning for Cooperating UAVs. New York City, NY, USA: Springer, 2003,
ch. 1, pp. 23–41.

[2] P. Scharre, “Robotics on the battlefield part ii: The coming swarm,” Washington,
DC, USA, 2014. Available: https://www.cnas.org/publications/reports/robotics-on-
the-battlefield-part-ii-the-coming-swarm

[3] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm robotics: A review
from the swarm engineering perspective,” Swarm Intelligence, vol. 7, no. 1, pp. 1–
41, 2013, doi: 10.1007/s11721-012-0075-2.

[4] A. Burkle, F. Segor, and M. Kollmann, “Towards autonomous micro uav
swarms,” Journal on Intelligent Robotic Systems, vol. 61, pp. 339–353, 2011, doi:
10.1007/s10846-010-9492-x.

[5] M. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot coordination:
A survey and analysis,” in Proceedings of the IEEE, no. 7, 2006, vol. 94, pp. 1257–
1270, doi: 10.1109/JPROC.2006.876939.

[6] S. Edwards, “Swarming and the future of warfare,” Ph.D. dissertation, Public Policy
Analysis, Pardee RAND Graduate School, Santa Monica, CA, USA, 2005.

[7] P. Sujit and R. Beard, “Distributed sequential auctions for multiple uav task allo-
cation,” in Proceedings of the American Control Conference, New York City, NY,
2007, pp. 3955–3960, doi: 10.1109/ACC.2007.4282558.

[8] J. McLurkin, “Stupid robot tricks: A behavior-based distributed algorithm library for
programming swarms of robots,” M.S. thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, Cambridge, MA,
2004.

[9] G. Vasarhelyi, C. Viragh, G. Somorjai, N. Tarcai, T. Szorenyi, T. Nepusz, and
T. Vicsek, “Outdoor flocking and formation flight with autonomous aerial robots,” in
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, no. 1,
2014, vol. 7, pp. 3866–3873, doi: 10.1109/IROS.2014.6943105.

[10] A. Stranieri, E. Ferrante, A. Turgut, V. Trianni, C. Pinciroli, M. Birattari, and
M. Dorigo, “Self-organized flocking with a heterogeneous mobile robot swarm,”
Universite Libre De Bruxelles, Bruxelles, Belgium, Tech. Rep. TR/IRIDIA/2011-
012, apr 2011.

195

https://www.cnas.org/publications/reports/robotics-on-the-battlefield-part-ii-the-coming-swarm
https://www.cnas.org/publications/reports/robotics-on-the-battlefield-part-ii-the-coming-swarm

[11] L. Hunsaker. (2015). ARSENL reaches its ultimate goal of 50 autonomous UAVs in
flight. [Online]. Available: https://my.nps.edu/-/arsenl-reaches-its-ultimate-goal-of-
50-autonomous-uavs-in-flig-1

[12] M. Rubenstein, A. Christian, and N. Radhika, “Kilobot: A low cost scalable robot
system for collective behaviors,” in 2012 IEEE International Conference on Robotics
and Automation, 2012, pp. 3293–3298, doi: 10.1109/ICRA.2012.6224638.

[13] M. Senanayake, I. Senthooran, J. Barca, H. Chung, J. Kamruzzaman, and
M. Murshed, “Search and tracking algorithms for swarms of robots: A sur-
vey,” Robotics and Autonomous Systems, vol. 75, no. 1, pp. 422–434, 2015, doi:
10.1016/j.robot.2015.08.010.

[14] B. Gerkey and M. Mataric, “Sold!: Auction methods for multirobot coordination,” in
IEEE Transactions on Robotics and Automation, no. 5, 2002, vol. 18, pp. 758–768,
doi: 10.1109/TRA.2002.803462.

[15] H. Choset and et al, Principles of Robot Motion: Theory, Algorithms, and Imple-
mentation, 1st ed. Massachusetts Institute of Technology, Cambridge, MA, USA:
MIT Press, 2005.

[16] T. Chung, G. Hollinger, and V. Isler, “Search and pursuit-evasion in mobile
robotics: A survey,” Autonomous Robots, vol. 31, no. 4, pp. 299–316, 2011, doi:
10.1007/s10514-011-9241-4.

[17] T. Chung and T. Stevens, “Autonomous search and counter-targeting using levy
search models,” in 2013 IEEE International Conference on Robotics and Automa-
tion, 2013, pp. 3953–3960.

[18] T. Chung and J. Burdick, “A decision-making framework for control strategies in
probabilistic search,” in 2007 IEEE International Conference on Robotics and Au-
tomation, 2007, pp. 4386–4393, doi: 10.1109/ROBOT.2007.364155.

[19] P. Almeida, G. Goncalves, and J. Sousa, “Multi-uav platform for integration in
mixed-initiative coordinated missions,” in First IFAC Workshop on Multivehicle Sys-
tems, 2006, vol. 1, pp. 70–75, doi: 10.3182/20061002-2-BR-4906.00013.

[20] D. Dionne and C. Rabbath, “Multi-uav decentralized task allocation with
intermittent communications: The dtc algorithm,” in Proceedings of the
2007 American Control Conference, 2007, vol. 26, pp. 5406–5411, doi:
10.1109/ACC.2007.4282637.

[21] T. Stirling, J. Roberts, J.-C. Zufferey, and D. Floreano, “Indoor navigation with a
swarm of flying robots,” in International Conference on Robotics and Automation,
2012, vol. 3, pp. 4641–4647, doi: 10.1109/ICRA.2012.6224987.

196

https://my.nps.edu/-/arsenl-reaches-its-ultimate-goal-of-50-autonomous-uavs-in-flig-1
https://my.nps.edu/-/arsenl-reaches-its-ultimate-goal-of-50-autonomous-uavs-in-flig-1

[22] D. Lau, “Investigation of coordination algorithms for swarm robotics conducting
area search,” M.S. thesis, Graduate School of Operations and Information Sciences,
Naval Postgraduate School, 2015.

[23] T. Chung, M. Kress, and J. Royset, “Probabilistic search optimization and mis-
sion assignment for heterogeneous autonomous agents,” in 2009 IEEE Inter-
national Conference on Robotics and Automation, 2009, pp. 939–945, doi:
10.1109/ROBOT.2009.5152215.

[24] T. Shima, S. .Rasmussen, and P. Chandler, “Uav team decision and control using
efficient collaborative estimation,” in 2005 American Control Conference, no. 129,
2005, vol. 6, pp. 4107–4112, doi: 10.1109/ACC.2005.1470621.

[25] Y. Jin, A. Minai, and M. Polycarpou, “Cooperative real-time search and task allo-
cation in uav teams,” in Proceedings of the 42nd IEEE Conference on Decision and
Control, 2003, vol. 1, pp. 7–12, doi: 10.1109/CDC.2003.1272527.

[26] D. Bertsekas, “Auction algorithms for network flow problems: A tutorial introduc-
tion,” Computational Optimization and Applications, vol. 1, no. 1, pp. 7–66, 1992,
doi: 10.1007/BF00247653.

[27] D. Bertsekas, “The auction algorithm: A distributed relaxation method for the as-
signment problem,” Annals of Operations Research, vol. 14, no. 1, pp. 105–123,
1988, doi: 10.1007/BF02186476.

[28] L. Brunet, H. Choi, and J. How, “Consensus-based auction approaches for decentral-
ized task assignment,” in American Institute of Aeronautics and Astronautics Guid-
ance, Navigation and Control Conference and Exhibit, 2008, vol. 1, pp. 1–24, doi:
10.2514/6.2008-6839.

[29] M. Day, “Multi-agent task negotiation among uavs to defend against swarm attacks,”
M.S. thesis, Graduate School of Operational and Information Sciences, Naval Post-
graduate School, Monterey, CA, 2012.

[30] L. Hunsberger and B. Grosz, “A combinatorial auction for collaborative planning,”
in International Conference on Multi-Agent Systems, no. 1, 2000, vol. 4, pp. 151–
158, 10.1109/ICMAS.2000.858447.

[31] R. Olfati-Saber and R. Murray, “Consensus problems in networks of agents with
switching topology and time-delays,” IEEE Transactions on Automatic Control,
vol. 49, no. 9, 2004.

197

[32] M. Berhault, H. Huang, P. Keskinocak, S. Koenig, W. Elmaghraby, P. Griffin, and
A. Kleywegt, “Robot exploration with combinatorial auctions,” in IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, no. 1, 2003, vol. 2, pp.
1957–1962, doi: 10.1109/IROS.2003.1248932.

[33] M. Lagoudakis, M. Berhault, S. Koenig, P. Keskinocak, and A. Kleywegt, “Simple
auctions with performance guarantees for multi-robot task allocation,” in Proceed-
ings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems,
no. 1, 2004, vol. 1, pp. 698–705, doi: 10.1109/IROS.2004.1389434.

[34] S. Parsons, J. Rodriguez-Aguilar, and M. Klein, “Auctions and bidding: A guide
for computer scientists,” ACM Computing Surveys, vol. 43, no. 10, 2011, doi:
10.1.1.332.1259.

[35] A. Kwasnica, J. Ledyard, D. Porter, and C. DeMartini, “A new and improved design
for multiobject iterative auctions,” Management Science, vol. 51, no. 3, pp. 419–434,
2005, doi: 10.1287/mnsc.1040.0334.

[36] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. Upper
Saddle River, NJ, USA: Prentice Hall, 2010.

[37] M. Alighanbari and J. How, “Decentralized task assignment for unmanned aerial
vehicles,” in IEEE Conference on Decision and Control, European Control Confer-
ence, no. 1, 2005, vol. 44, pp. 5669–5673, doi: 10.1109/CDC.2005.1583066.

[38] S. Sariel and T. Balch, “Real time auction based allocation of tasks for multi-robot
exploration problem in dynamic environments,” in National Conference on Artificial
Intelligence, 2005.

[39] G. Prasad, A. Prasad, and S. Rao, “A combinatorial auction mechanism for multiple
resource procurement in cloud computing,” IEEE Transactions on Cloud Comput-
ing, vol. 3, 2016, doi: 10.1109/TCC.2016.2541150.

[40] G. Zhu, S. Sangwan, and T. Lu, “Mechanism design of online multi-attribute reverse
auction,” in Hawaii International Conference on Systems Sciences, 2009, vol. 42, pp.
1–7, doi: 10.1109/HICSS.2009.306.

[41] P. Milgrom, “Putting auction theory to work: The simultaneous ascending auc-
tion,” Journal of Political Economy, vol. 108, no. 2, pp. 245–272, 1999, doi:
10.1086/262118.

[42] K. Sherstyuk, “Complexity and bidder behavior in iterative auctions,” in Economics
Bulletin, no. 4, 2011, vol. 31, pp. 2769–2776.

198

[43] S. Vries and R. Vohra, “Combinatorial auctions: A survey,” Informs Journal on
Computing, vol. 15, no. 3, pp. 284–309, 2003, doi: 10.1287/ijoc.15.3.284.16077.

[44] T. Sandholm, S. Suri, A. Gilpin, and D. Levine, “Winner determination in combi-
natorial auction generalizations,” Adaptive Agents and Multi-Agent Systems, vol. 1,
no. 1, pp. 69–76, 2002, doi: 10.1145/544741.544760.

[45] J. Fax and R. Murray, “Information flow and cooperative control of vehicle forma-
tions,” in IEEE Transactions on Automatic Control, no. 9, 2004, vol. 49, pp. 1465–
1476, doi: 10.1109/TAC.2004.834433.

[46] C. Schumacher and P. Chandler, “Task allocation for wide area search munitions,”
in Proceedings of the American Control Conference, no. 1, 2002, vol. 3, pp. 1917–
1922, doi: 10.1109/ACC.2002.1023915.

[47] D. Davis, T. Chung, M. Clement, and M. Day, “Consensus-based data sharing for
large-scale aerial swarm coordination in lossy communications environments,” pre-
sented at 2016 International Conference on Intelligent Robots and Systems, Daejeon,
Korea, 2016.

[48] W. Ren, R. Beard, and D. Kingston, “Multi-agent kalman consensus with relative
uncertainty,” in Proceedings of the American Control Conference, no. 1, 2005,
vol. 3, pp. 1865–1870.

[49] E. Frew and T. Brown, “Networking issues for small unmanned aircraft systems,”
Journal of Intelligent and Robotic Systems, vol. 54, no. 1–3, pp. 21–37, 2009, doi:
10.1007/s10846-008-9253-2.

[50] H. Choset, “Coverage of known spaces: The boustrophedon cellular de-
composition,” in Autonomous Robots, no. 3, 2007, vol. 9, pp. 247–253, doi:
10.1023/A:1008958800904.

[51] K. Giles, “Mission-based architecture for swarm composability,” Ph.D. dissertation,
Graduate School of Engineering and Applied Sciences, Naval Postgraduate School,
Monterey, CA, 2018.

199

THIS PAGE INTENTIONALLY LEFT BLANK

200

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

201

	18Dec_Hopchak_Matthew_First8
	18Dec_Hopchak_Matthew
	Introduction
	Motivation
	Research Objectives
	Related Work
	Thesis Organization

	Approach
	Methodology
	Auction Algorithm Overview
	Application of Auction Algorithms to Autonomous Area Search
	Summary

	Implementation and Experiment Design
	AuctionSearch Top-Level Flow of Control
	Search Area Decomposition
	Assignment of Search Cells via Auction
	Conduct of an Area Search after Cell Assignment
	Summary

	Analysis of Auction-Based Assignment in Area Search
	Impact of Cell Utilities on Agent Bidding Strategies
	Utility Function 1: Agent Utility as a Function of Speed
	Utility Function 2: Agent Utility as a Function of Endurance
	AuctionSearch Experiment Setup and Performance Measurement
	AuctionSearch Simulation Performance in Various Search Areas
	Summary

	Conclusion
	Findings and Lessons Learned
	Future Work

	Appendix: AuctionSearch Source Code
	List of References
	Initial Distribution List

