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ABSTRACT 

The DoD is investing in autonomy, AI, and machine learning. Deep learning, a 

sub-field of machine learning is increasing due to newer and cheaper hardware, new 

algorithms, and big data. Deep learning uses a neural network with multiple weighted 

layers designed to learn hierarchical feature representations. This research uses the 

technique of transfer learning, which takes the well-constructed architecture of a source 

model and retrains it to a target data set—in this case, different coastal landscapes. Eight 

different classes were trained with oblique (≥ 45°) images. An average accuracy of 95% 

correct identification was achieved through validation testing. Carmel River State Beach 

is a known morphodynamic site that changes seasonally. Five different stitched together 

<10° off NADIR mosaics of this site were selected to test the model’s ability to detect 

and correctly label areas of change over time. The mosaics were broken into four 

quadrants of equal area to increase homogeneity of the features. The two landward 

quadrants showed successful label and change detection; the seaward quadrants showed 

poor results attributed to smearing and gradient distortion from the stitching process. 

Successful transfer learning was accomplished with high accuracy; angle differences and 

stitching caused mislabeling. Larger datasets with single images from multiple angles 

may reduce labeling error. Multi-label and multispectral approach will enhance and 

broaden the application of this process.
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I. MOTIVATION 

The rapid advancement of technology, along with its wide distributed availability, 

has enabled our adversaries to level the playing field in terms of fighting a modern war. In 

recognition of this, the Department of Defence (DoD) is investing heavily in autonomy, 

artificial intelligence, and machine learning to gain the military advantages the United 

States needs to remain competitive (Mattis 2018). Specifically, for the U.S. Navy, the open 

ocean’s more static environment is a much lesser a concern than the coastal and more 

confined regions of operation. These littoral regions are morphodynamic, and features can 

change rapidly causing difficulty in modeling and forecasting. It is my job as a naval 

meteorology and oceanography officer to understand these environments and produce high 

quality products for commanders to make critical decisions.  

The aim of this study is to use machine learning, specifically, neural networks to 

develop a process for high accuracy and rapid classification of images taken from an 

unmanned aerial systems (UASs) of various coastal attributes and accurately detect coastal 

morphological change. It has been shown that coastal areas with ephemeral river outflow 

cause water circulation changes and massive sediment transport drastically changing the 

beach structure (Orescanin and Scooler 2018; Young 2018). It is important that we have a 

method to detect and analyze these features for U.S. naval amphibious operations. This is 

extremely important for insertion, and extraction of small special operations teams whose 

missions often do not have long leeway for planning and where accurate environmental 

intelligence is critical. 
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II. INTRODUCTION

In recent years, the advancement of technology and its affordability has enabled the 

remote sensing field to rapidly expand. The use of remote sensing to detect coastal 

environmental change is a unique problem, especially relevant to the U.S. Navy and Marine 

Corps. A changing coastline affects many areas, such as zoning concerns with regard to 

hazards, coastal erosion and accretion prediction and studies, where to build setbacks, 

sediment budgets and difficulties in coastal morphodynamic modeling all occur (Sherman 

and Bauer 1993; Al Bakri 1996; Zurek et al. 2003; Maiti and Bhattacharya 2009). 

Another result of this advancing technology is the vast amount of imagery data 

collected. In recent years, the dataset and diversity of coastal photographic imagery has 

grown immensely, this is partly due to an increase in coastal camera stations and 

improvements in resolution and digital data storage capacity (Hoonhut et al. 2015). 

Traditional means of collecting data through manned aircraft and satellite often do not have 

the resolution, cost, or flexibility that unmanned aircraft systems (UASs) can provide 

(Hugenholtz and Whitehead 2014). New improvements of sensors and resolution, as well 

as, development of small (<15kg) UASs that are more versatile and easily accessible for 

civil, commercial, and scientific use provide the means to capture high resolution 

imagery safely from lower altitudes, further increasing the volume of coastal imagery 

datasets (Whitehead 2014). 

This huge influx of coastal imagery creates a new dilemma regarding how best to 

analyze, classify, and quantify it. The amount of human resources and man-hours of 

analysis to interpret this data will not only be time consuming but costly and subjective as 

well. A better way to engage this problem is to use machine learning, specifically the 

subcategory within it called deep learning. Machine learning is a process, where trained 

automated system searches for useful representations of some input data that is within a 

predefined space of possible outcomes using guidance from a feedback mechanism 

(Chollett2018). The deep learning, specifically convolutional neural networks, subcategory 

dives in further by exposing the machine to a representative input data set. Deep learning 

uses successive layers (Figure 1, right) of increasingly meaningful data representations 
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during the learning process, through a series of interconnected neurons. Each neuron 

specializes in feature extraction, and is a tunable parameter within the overall model 

architecture. Given the large number of tunable parameters, it is critical to have sufficiently 

large datasets (usually thousands of images) to create the best optimization of these 

parameters. These methods can often deliver highly accurate classification results, 

especially when using a large representative training data set (Marmanis et al. 2015 and 

Chollett 2018). 

 

Figure 1. Comparison of a simple neural network and the increased layers of 

a deep learning network. Source: Quora (2018). 

Machine learning and deep neural networks have quickly become the cutting-edge 

technology for computer based image recognition and classification (Krizhevsky et al. 

2012; Simonyan and Zisserman 2014; Han et al. 2016). Effective deep learning will 

produce a trained neural network that is capable of producing high accuracy (>90% correct 

identification) output to the target output results. This is the desired goal for high 

throughput classification and change identification of coastal imagery from these massive 

data sets.  

Until recently, the primary means of high-resolution remote imaging was through 

the use of satellite imagery, which was mostly analyzed by a human operator. Coastal 

accretion and erosion, land use/cover with GIS and neural networks, and mapping of 

natural hazards and disasters have been extensively studied through examination of satellite 

imagery using various analysis techniques (Mas 2004; Joyce et al. 2009; Natesan et al. 
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2015). The popularity of unmanned aerial systems (UASs), along with their relatively low 

cost, is a commonly used tool being used to map and monitor areas of environmental 

interest including cropland and forestry (Johnson et al. 2003; Lelong et al. 2008; Dunford 

et al. 2009; Rango et al. 2009; Turner et al. 2012).  

A common approach of extracting coastlines is change detection using satellite 

imagery. A common technique is using Landsat imagery and topographic maps over 

different years and creating overlays using ArcGIS to assess change detection such as in 

erosion, accretion and construction is well documented (Li and Damen 2010; Tamassoki 

et al. 2014; Ghosh et al. 2015; Kankara et al. 2015). Satellite imagery is limited by its 

resolution, obstacles, infrequent passes, and cloud coverage (Cermakova et al. 2016); all 

of these factors can be significantly mitigated when using UASs. There has been progress 

using UASs for change detection, specifically soil erosion in Morocco where the results 

where comparable with direct fieldwork attributed to the high resolution that was achieved 

from the UAS (d’Oleir-Oltmanns et al. 2012). 

The study of coastal changes using machine-learning techniques has begun to take 

root recently. There are requirements and challenges that must be taken into consideration 

when training the neural network, especially considering the heterogeneous nature of 

landscape imagery. Classifying imagery is not trivial, and involves the human operator to 

make a decision and add a specific label to the data based on their interpretation of it. 

Classification process is a problem, especially when trying to assign one specific class to 

an image. Most imagery is not homogenous to one type of class; large images often 

capture multiple classes. There are key problem characteristics one must be aware of: 

scarcity of data, imbalanced training set, examples are naturally grouped in batches, and 

performance task where a classifier is used to decide which images go to humans for 

verification (Kubat et al. 1998). Specifically, it is imperative to have an adequate number 

of training samples that are representative (Hubert-Moy et al. 2001; Chen and Stow 2002; 

Landgrebe 2003; Mather 2004; Lu and Weng 2007). Complex heterogeneous landscapes 

make it difficult to select training samples that accurately represent the class. This problem 

is further complicated by the data’s spatial resolution that may cause large volumes of 

mixed pixels, which are recognized as a major problem of effective use of remote sensed 
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data in per-pixel classifications (Fisher 1997; Cracknell 1998; Lu and Weng 2007). The 

technique of image segmentation addresses this issue by separating the image into 

homogenous regions (Kuleli et al. 2011), and merging pixels into objects (also called 

superpixels) that are then classified based on different objects instead of the more error 

prone way of classification using individual pixels (Lu and Weng 2007).  

Recently an accurate hybrid segmentation method (Buscombe and Ritchie 2018), 

combines the ability of deep convolutional neural networks to classify small regions in an 

image plus the use of fully connected conditional random fields for fine-grained 

localization pixel-level classification. This method has achieved high accuracy 

classification results of 88–98% (F1 scores) for five datasets using a different number of 

tiles applicable to large, spatially extensive landscapes (Buscombe and Ritchie 2018) and 

can also be applied to large morphodynamic heterogeneous coastal areas. 

 In order to test, the applicability of deep learning on change detection, of coastal 

landscapes, over 10000 images of the U.S. coasts were hand classified into nine categories. 

This dataset is used to both train from scratch and to apply transfer learning using the neural 

network, Visual Geometry Group 19 (VGG19). Furthermore, a change detection algorithm 

is developed and tested at Carmel River State Beach (CRSB), CA. CRSB is a small pocket 

beach near the Carmel River that is known to breach during the transition to winter months 

(Figure 2). CRSB contains an ephemeral river that is periodically opened and closed to the 

Pacific Ocean depending on the time of year and accumulated seasonal precipitation, thus 

making CRSB a highly dynamic area prone to rapid coastal changes. By taking advantage 

of UASs, and technology the next leap forward is to take high-resolution UAS imagery and 

analyze it using deep neural networks. The goal being a product that is accurate and capable 

of identifying morphodynamic areas in the imagery through change detection.  
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Carmel River State Beach located just south of Monterey Bay along California’s Central 

Coast.  

Figure 2. Carmel River State Beach. Source: Scooler (2017). 

The hypothesis of this study is twofold. First, it is hypothesized that heterogeneous 

coastal landscapes can be used to train a deep neural network through transfer learning and 

training from scratch with a high degree of accuracy (>90% correct identification) without 

the need for image segmentation. Second, it is hypothesized that high resolution UAS 

imagery of the same coastal site over time coupled with a trained deep neural network will 

be able to accurately and affectively highlight areas through change detection that varies 

seasonally. UASs have proven successful for mapping, surveying, and monitoring terrain. 

However, research using UAS imagery and deep neural networks to detect landscape 

change is still in its infancy. The applications of an efficient coastal landscape change 

detection technique is far reaching, from recreational beaches erosion and accretion, coastal 

construction project planning, natural disaster evaluation and relief efforts. 
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III. METHODOLOGY: MODEL TRAINING, DATA

COLLECTION AND ANALYSIS

A. VGG-19 MODEL ARCHITECTURE AND TRAINING 

The model used for this study was Visual Geometry Group’s 19 (VGG19) model, 

which is a 19 layer convolutional neural network that is pre-trained on millions of images 

from the ImageNet database, described by K. Simonyan and A. Zisserman (2014). The 

architecture for the VGG19 model relies primarily on convolutional layers, where 2D 

convolutions are performed on the input image with kernels of various sizes. These layers 

are known to preserve the stationarity of statistics and locality of pixel dependencies. These 

type of network architectures having convolutional layers are also known as Convolutional 

Neural Networks (CNN). Compared to standard feed-forward (fully connected) networks 

of similar size, CNN networks have fewer parameters making them easier to train. 

Additionally, linearly rectified units (ReLU) are used for neuron activations, and pooling 

operations are used to summarize the group of neurons in the same kernel map in non-

overlapping regions (effectively reducing the size of feature maps deeper into the network). 

These layers (Figure 3) are applied in an alternating manner, resulting in each layer being 

a nonlinear filter bank with complexity increasing depending on the position of the layer 

in the network (Gatys et al. 2015). 
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Figure 3. Model architecture for VGG19 based model used in this work 

Remarkable progress in machine-based image classification tasks was made due to 

the availability of large annotated datasets (e.g., ImageNet) and the advances made with 
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deep learning methods with Convolutional Neural Networks (CNN). However, large 

annotated datasets in heterogeneous coastal landscapes do not exist. Building a dataset on 

the scale of ImageNet requires significant efforts. An additional challenge is single class 

identification owing to the presence of overlapping class traits in the same image. 

Furthermore, several coastal landscapes, such as beaches, have few identifiable features 

that define the class as compared with other landscapes such as rocky coasts. Owing to 

limited annotated datasets, it is difficult to train a neural network from scratch, due to the 

large number of parameters that architectures like VGG19 have. 

In order to overcome limited quantities of labeled data for coastal landscapes, a 

process called transfer learning can be used that relies on using pre-trained weights for 

VGG19 that is trained on ImageNet. In transfer learning, low-level features are transferred 

from pre-trained CNN’s on very large datasets like ImageNet to a large CNN model 

(VGG19) trained on the small dataset without extensive overfitting, which is monitored via 

a validation dataset. The basic assumption of this process is that the low-level features that 

the model has learned from ImageNet classification are similar to those of the smaller 

image database, in this case coastal landscapes. 

The transfer learning approach used here is to take a pre-trained network on 

ImageNet and copy it without the top classification layers to the target network. The target 

network on top of the transferred layers has two fully connected layers with a rectified 

linear unit (ReLU) as activation functions and 50% dropout. The fully connected layers, 

where each neuron is connected to every neuron on a following layer, are part of the neural 

network classifier based on feature maps extracted by the previous convolutional layers. 

The ReLU activation function adds nonlinearity to the model, which is required in order to 

solve anything more complex than a linear fit. The 50% dropout is a common approach to 

regularizing neural networks, where only 50% of neurons in the fully connected layers are 

active in each computation, and is used to control overfitting. The remaining layers of the 

target network are then randomly initialized and trained toward the target task. The choice 

is made to back propagate errors from the new task into the mid layers of the base (copied) 

features to fine-tune them to the new task while the very bottom transferred feature layers 

are left frozen, meaning that they do not change during training on the new task. If the 
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target dataset is small and the number of parameters is large, fine-tuning may result in 

overfitting, which is monitored via validation dataset. 

The target network is developed using Keras with Tensorflow backend. Amazon 

Web Services (AWS) Elastic Compute Cloud (EC2) with GPU instances are used for 

training and inference. The best result with the VGG19 architecture was with five bottom 

frozen layers and the rest of the layers including classification layers on the top of the 

network trainable. Models with zero frozen layers to 12 frozen layers were tested to 

optimize model performance.  

From each coastal category class 850 images were used to train the VGG19 to a 

level of 90% or greater accuracy of successful classification. A further 200 images from 

each distinct class were used for the validation VGG19 to determine the accuracy of the 

training phase. There were 90 randomly selected images from each coastal class bin that 

were hidden from the entire training and validation accuracy processes. These unseen 

images were the true “test” and yielded unbiased machine results depicting the binned 

coastal classes.  

B. MODEL CONFIDENCE LEVEL 

Performance of the classification task is summarized with the use of a confusion 

matrix (Figure 4), which presents counts of all testing instances based on their actual class 

and the class predicted by the model. Model confidence level is achieved through the 

validation process and can be used to confirm the model’s accuracy but also as a diagnostic 

tool to indicate areas where the model performance is less than the desired outcome. Output 

categories with poor accuracy (defined as a class prediction that is not present in the image) 

can be addressed in a couple ways. For example, a model output of 33% sandy beach, 33% 

salt marsh, and 33% dunes, for the validation of 200 pre-classified sandy beach images 

indicates the model has equal confidence that salt marshes, dunes, and sandy beach are all 

present in the image. A second example, is a model output of 80% sandy beach, 10% salt 

marsh, and 10% dunes, for the validation of 200 pre-classified sandy beach images is still 

not at the desired 90% accuracy, but in this case further training with new sandy beach 

images might be a tactic to try, which may increase the output accuracy to the desired 90% 
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instead of dismissing the category completely or merging it with another. Confusion 

matrices during the testing phase are extremely important tools to show where model 

deficiencies might be occurring and what methods can be used to correct the problems. 

 

Machine predicted classifier on the horizontal axis and the actual true value for the image 

on the vertical axis. 

 

Figure 4. Basic schematic of a confusion matrix. 

Source: Banda et al. (2013). 

Model confidence level relies heavily on training and validation images, with a high 

degree of homogeneity, these images need to have captured the desired coastal feature, and 

at the same time minimize features of other coastal categories of interest. Ideally, an image 

of a rocky coast would be only rocky coast; however, most coastlines exhibit multiple 

landscapes that represent more than one category. For example, a heterogeneous image 

may have a forefront of sandy beach and dunes but also have a coastal waterway and or 

marshes in the background. In this instance, we would have four categories expressed in 

one image. Images captured from elevation whether from a coastal camera on a building, 

or hillside to a low slow flying aircraft usually encompass a large dynamic area that is not 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjznITF0d7dAhVTHjQIHRBuAOkQjRx6BAgBEAU&url=https://www.researchgate.net/figure/Confusion-matrix-example_fig1_256418526&psig=AOvVaw3Kz8LCPCv_S1OKepF0Ke1Z&ust=1538256265872254
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homogeneous to any one type of coastal classification category. They may also capture 

areas of the sky and open water, which may be undesirable for coastline classification 

purposes.  

A tiling technique, better known as image segmentation was developed as a means 

to combat these issues by breaking an image up into smaller more homogeneous regions 

(Kuleli et al. 2011) to be classified. Image segmentation is a form of supervised training 

that consists of learning how to map input data to a known data set (Chollett 2018).  

The use of image segmentation was applied to a large morphodynamic region in 

California’s Central Coast, specifically Carmel River State Beach (CRSB). There are five 

large mosaics of CRSB represented over a six-month period from December 2017 through 

May 2018. During this time, Carmel River was opened and closed to the Pacific Ocean, 

which was captured in the different mosaics. Dynamic differences in the lagoon water level 

can easily be depicted by the eye and exposure of coastal rock formations from sand erosion 

and many other easily discernable macro feature changes that are identifiable. By applying 

image segmentation, breaking CRSB into smaller pieces and using the machine learning 

coastal image classification model, the goal is to identify areas of significant beach change 

(e.g., Carmel River breached vs non breached and lagoon full vs lagoon drained).  

C. AERIAL DATA COLLECTION AND DATA BASES 

The coastal imagery used in this study was primarily collected from 2002 through 

2018, by a low slow-flying fixed wing aircraft and remote piloted UASs using digital 

cameras along the United States coastlines, including West, East, and Gulf Coasts, 

representing various types of coastal landscape categories. The majority of the imagery 

was taken at camera angles that captures 50% or greater the coastal features desired but 

also contains portions of open water and the sky. Photographic images of the East, 

Southeast, and West coasts of the United States were all examined; both rural and 

developed areas are present in most of the respective areas. The imagery library datasets 

were composed of three sources: West Coast (California Coastal Records Project, 

https://www. californiacoastline.org/), Gulf Coast (Mara Orescanin, NPS), and East Coast 

(NOAA, Coastal Imagery Viewer). 
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The individual images in this library represent a heterogeneous mix with major 

influencing factors including, their variability attributed to the temporal scale of when the 

images were taken, different camera types, differences in flight level, sun angle, intensity, 

glint change, and camera angle variation.  

D. CLASSIFICATION OF COASTAL IMAGERY 

Eight original different categories were chosen to bin this data based off of 

sufficient representation from the collected aerial imagery and expected landscapes 

observed at the Carmel River system. The bins were broken down into the following 

descriptive coastal landscape classes: coastal cliff, coastal rocky, coastal waterway, dunes, 

man-made structures, salt marshes, sandy beaches, and tidal flats based off of NOAA 

classification for coastal landforms (NOAA 2013). Each bin contains 1100 class specific 

images. All heterogeneous images were manually examined and classified based on the 

predominant class-defining feature. For example, a large sandy recreational beach with 

some lesser areas of salt marsh inland would be classified into the sandy beach category. 

The idea behind this is that if the dataset is expansive enough (shows diverse representation 

of each class), the neural network will be able to identify the areas of the image that 

correspond to each class, regardless of the presence of other classes in each image. 

Borderline images and images with multiple features represented, such as a 50% (+/- 10%) 

coastal waterway and salt marsh were discarded. It was thought that two or more dominant 

features would result in confusing the model during the training process, and cause 

increased levels of both type I (false positive) and type II (false negative) error that would 

lower the accuracy of successful classification.  

E. CARMEL RIVER STATE BEACH TILING AND CLASSIFICATION 

There were five mosaics of CRSB composed using data collected on December 7, 

2017, January 11, 2018, January 23, 2018, February 28, 2018, and May 17, 2018. The data 

was collected by a Da Jiang Innovations (DJI) Phantom III Advanced quadcopter equipped 

with a twelve-megapixel camera having a ½.3” sensor and f/2.8 prime lens. The UAS was 

flown at ~60m elevation and at a speed of 5 m/s, the camera set to 10 degrees off nadir and 
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fast mode triggering was enabled. The images collected from each date were stitched 

together using Agisoft Photoscan version 1.4 software. 

The large mosaics of CRSB represent a wide range of coastal features, and it would 

be difficult to assign any one class to the large image because of its heterogeneity. In order 

to make images of similar scale to the training dataset and easier to classify, image tiling 

was applied to the larger mosaic, breaking it into smaller more manageable pieces. The 

large mosaic was broken down using a script written in MathWorks MATLAB software 

into 2 by 2 and 3 by 3 rows and columns. Each tile was equal with respect to the amount 

of area it represented when compared to another tile of the same dimension. The tiled 

images were labeled using an alphanumeric scheme (Figure 5), numbers represented the 

columns and letters represent the rows. Each tiled image was individually examined, and 

classified into one of the nine previously described bins based solely on the user identifying 

the most dominate feature. In some instances, lesser features were noted but a label was 

not applied to the image with regard to these notes. 
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Rows are numeric in descending order starting from 1. Columns are letters starting at A 

and increasing from left to right.  

Figure 5. Two-by-two image tiling naming scheme, depicting CRSB on May 

17, 2018.  

F. PROCESSING OF MOSAICS TILED IMAGES 

Both the 2x2 and 3x3 tiled images sets for the CRSB mosaics were processed 

identically. The Python programming language and VGG19 model architecture was used 

to classify the tiles into one of eight coastal categories. The VGG19 assigns values to each 

of the eight categories that it was trained on, even though each category had some value, 

the highest assigned value wins and the tile is labeled to reflect that.   

Once all mosaics were tiled and classified into one coastal category by VGG19 and 

the user, these results were compared over the five different dates, and the labeling was 
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assessed to determine how the areas prone and known to seasonal change were classified 

by VGG19 and the user. By using 2x2 and 3x3 tiling strategies, it was thought that the 3x3 

tiling would provide better homogeneity to specific coastal features when compared to 2x2 

tiling, and therefore be better able to identify through change detection the different 

morphodynamic areas of CRSB.  

MathWorks MATLAB software was used to display the tiled mosaics and 

associated output graphs. This method provided an effective means to analyze the tile with 

its respective machine learning output bar graph, allowing the user to easily identify what 

each tile was labeled.  
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IV. RESULTS 

A. TESTING OF THE COASTAL IMAGERY IN THE DEEP LEARNING 

NEURAL NETWORK 

Upon completion on the neural network training and validation, the test images, 

comprised of 90 randomly selected images per class were used to assess model accuracy. 

In addition, new images of Carmel River State Beach, completely outside the image 

database, were used to further test the neural network and to develop change detection 

algorithms. The accuracy of the trained model was assessed using the remaining 10% of 

images from the labeled database that were not used in the training and validation of the 

model parameters. Label output by the model was compared to the hand-classified label. 

The result of this test is a confusion matrix (Figure 6), where the blue diagonal squares 

show the accuracy of the model using the testing images sets for each coastal class. Perfect 

accuracy would be a diagonal matrix with all 1.0 values on the diagonal. This matrix is 

normalized by the number of images in each class to denote a percent accuracy, but all 

categories had 90 images to test. Sand dunes was the most accurate and salt marshes the 

least accurate at 100% and 88% respectively. A closer examination shows salt marshes and 

tidal flats classes were being mislabeled at a rate of 5-6%, which was higher than the other 

classes. 
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Diagonal blue boxes represent percent accuracy with respect to image class labeling. 1.00 

is 100% and other decimal values represent percentage accuracy in similar fashion.  

Figure 6. Confusion matrix constructed from test image results 

One way to determine where a certain class exists within an image is to use a class 

activation map, or heat map. This algorithm highlights the percentage that regions within 

an image belong to the class in question. The labeling of the classes (Figure 7, left) chosen 

through deep learning was confirmed using a heat map program (Figure 7, right) designed 

to make visually recognizable where the neural network identified a feature or gradient it 

recognized as attributable to the labels it chose.  
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Left side deep learning labeling and right side heat map verification. Warmer colors on 

heat map indicate areas where features and gradients were identified and associated with 

the label assigned. 

Figure 7. December 20, 2016, CRSB, oblique single camera image  

B. CHANGE DETECTION AT CARMEL RIVER STATE BEACH 

The five different mosaics (Figure 8) of CRSB capture the typical seasonal 

variability of coastal landscapes found at this ephemeral river. In the six and a half month 

period spanning from early December 2017 through mid-May 2018 there is an increase in 

water level forming a lagoon owing to increased precipitation. When the water height is 

level with the surrounding barrier beach, there is a breach into the Pacific Ocean emptying 

the lagoon and exposing coastal rocks, tidal flats, and creating a new coastal waterway 

between the lagoon and the Ocean seen in the January 11 image. The January 23 mosaic 

the lagoon is drained and the breach is closed, and within roughly one-month time, the 

lagoon begins refilling and on May 17. There is another breach that again drains the lagoon 

completely.  
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Mosaics from early December 2017 through mid-May 2018. Mosaics progress in time from 

left to right and top to bottom.  

Figure 8. Five CRSB mosaics 

Mosaics of CRSB were tiled into 2x2 matrices to break up the large area for two 

reasons. First, to divide equally CRSB into 4 tiles results in smaller sections with a more 

representative area and features of the same scale when compared to the images used to 

train the neural network. Second, it was thought that this approach would make the images 

more homogenous and resulting in better labeling results from deep learning. All 5 mosaics 

had this approach. Results for January 11 and 23, 2018, and February 28, 2018, are in 

Appendix A.  

1. December 6, 2017, Mosaic 

In the December 6 mosaic (Figure 9), the lagoon is full, the coastal water way is 

very pronounced, and there is no river breach into the Pacific Ocean. Column A shows the 

ocean side of CRSB and deep learning results indicates strong outputs of coastal water way 

and salt marsh for tiles A1 and A2 respectively. These results were not the expected results; 

the main eye catching feature is a beach in both tiles. However, the deep learning method 

picks up on gradients and features that caused these tiles to be labeled differently than one 
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would expect. The B column is the inland portion of the mosaic and is tiled in similar 

fashion as the A column. The B1 tile had a dominant label of coastal waterway, which is a 

major feature that is dead center in the tile. The B2 column showed mixed result of coastal 

cliffs, rocky coast, sandy beaches and tidal flats. This result with no dominate label for the 

image indicates that the deep learning process has seen features and gradients of the four 

classes in almost equal proportions and labeled them accordingly. 

 

Mosaic tiled into 2x2 matrix (left) and graphical representation (right) of deep learning 

outputs with respect to each tile. 

Figure 9. December 6, 2017, CRSB mosaic 

2. May 17, 2018, Mosaic 

May 17 mosaic (Figure 10) is strikingly different from the December 6 mosaic. 

However, column A had, in similar fashion to December 6, strong indications of the salt 

marsh class for A1 and of the tidal flats class for A2. The model picked up on features and 

gradients in a similar fashion to December 6 that resulted in mislabeling. The predicted 

classes for these two images were sandy beach and sandy beach or coastal waterway 

respectively. The landward portion of this image is drastically different from December 6, 

owing to the breach that caused drainage in the lagoon and reduced the extent of coastal 
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waterway. Column B had class labels matching the predicted labels of salt marsh for B1 

and tidal flats for B2  

 
 

Mosaic tiled into 2x2 matrix (left) and graphical representation (right) of deep learning 

outputs with respect to each tile. 

Figure 10. May 17, 2018, CRSB mosaic 

C. ANALYSIS OF TILED CRSB MOSAICS IN 3X3 MATRICES 

All 5 CRSB mosaics were also tiled into 3x3 matrices in a similar fashion to the 

2x2 tiling scheme in order to assess whether the model performs better with a smaller field 

of view. The 3x3-matrix scheme was thought that the increased homogeneity and slightly 

smaller images would produce more definitive labeling to match predicted labeling through 

the deep learning process. Results for January 11 and 23, 2018, and February 28, 2018, are 

in Appendix B. 

1. December 6, 2017, Mosaic 

A visual inspection of the 3x3 matrix for December 6, 2017, (Figure 11) 

immediately reveals a more homogenous landscape for each tile. Column A depicts really 

well three images of a sandy beach with visually what appears to be very little influence 

from then other 7 classes. Column B yielded similar results sandy beach transitioning into 
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a salt marsh in images B1-B3, respectively. Column C, which represents the most inland 

portion of the image, visually shows the tiling process’s ability increase homogeneity. It is 

easy to detect a change from coastal waterway to a salt marsh and tidal flat landscape.  

The deep learning results had some significant differences than the expected 

outcome using qualitative inspection of the images. Column A had sandy beach 

representation in all three tiles; however, this was not the dominant feature that would have 

matched the prediction. Column B did much better with the exception of B1, which was 

predicted to be sandy beach. However, instead B1 showed equal or higher values of 

representation of coastal cliff and rocky coast, as well as, a significant measure of coastal 

waterway when compared to sandy beach result. Column C had surprisingly difficulty 

identifying the coastal waterway in C1. The C2 image also had mixed results showing good 

representation of tidal flats in conjunction with equal or greater values coastal cliff, rocky 

coast, and sandy beach.  

 

Mosaic tiled into 3x3 matrix (left) and graphical representation (right) of deep learning 

outputs with respect to each tile. 

Figure 11. December 6, 2017, CRSB mosaic 
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2. May 17, 2018, Mosaic 

The May 17, 2018, tiling process (Figure 12) yielded results visually similar to 

December 6, 2017, increased homogeneity while still capturing one or more of the targeted 

classes. Column A differs from the December 6, 2017, most noticeably in tile A3 where 

the Carmel River has breached into the Pacific Ocean. In column B, the striking difference 

is the salt marsh has drained resulting in what appears to be sandy beach and tidal flat with 

exposed rock for tiles B2 and B3, respectively. Column C, in the same fashion as Column 

B, shows the results of the drained salt marsh. The coastal waterway in tile C1 has reduced 

in size and appears to be more salt marsh like. The C2 tile has also been significantly 

drained from the breach with little water left visually indicting a salt marsh and tidal flat 

appearance. C3 has strong visual indications of tidal flats with possibly some sandy beach.  

Deep learning results for column A showed a strong deviation to the salt marsh and 

tidal flat classes with little or sandy beach and coastal waterway representation from A1-

A3 tiles. The B column with the exception of B3 showed different results then predicted, 

B1 and B2 were both predicted to be sandy beach. However, salt marsh and tidal flats were 

the labels assigned through deep learning. B3 was label tidal flat which is what was 

predicted but it did miss the exposed rocks at the bottom of the tile. The C column was 

successful for all three tiles; C1 and C2 were labeled as salt marsh as the dominant class 

with negligible representation from any other class. C3 was very confident with tidal flats 

with no other classes having significance.  
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Mosaic tiled into 3x3 matrix (left) and graphical representation (right) of deep learning 

outputs with respect to each tile. 

Figure 12. May 17, 2018, CRSB mosaic 

D. MOSAIC STITCHING ANALYSIS USING HEATMAP FOCUSING 

Further analysis was needed for the 2x2 matrices in an effort to locate the source of 

the gross errors in labeling when compared to the predicted labels. Tile A1 was selected 

from each mosaic for examination using a heat map. Tile A1 is a good representation of a 

homogenous sandy beach at both December and May mosaics and serves as a control 

between the two dates. Heat map gives a visual focal point to where the deep learning 

process has identified certain features and gradients that belong to a certain class. 

A closer examination of the tile A1 using a heat map for each mosaic revealed 

hotspots in areas that were not consistent with the training labeled data set for the respective 

category. Figure 13 is the December 6 A1 tile and shows this inconsistency where hotspots 

for salt marsh are visually located over the surf zone and sandy beach.  
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Demonstrating using a heat map (right) to identify marsh areas through deep learning. 

Warmer colors on heat map indicate areas where features and gradients were identified and 

associated with the label assigned.  

Figure 13. December 6, 2017, tile A1 from 2x2 matrix 

Focusing in on the salt marsh in the surf zone hotspot (Figure 14), there are stitching 

issues evident that are not seen from a farther out view. This smearing and gradient 

distortion from the stitching process in areas where there was significant surface motion 

were observed consistently in the water and surface zone regions in tile A1.The creation of 

these artificial gradients biased model prediction toward other non-homogenous classes, as 

a result incorrect labels were assigned. 
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Using a heat map (left) and zoomed in hot spot area (right) highlighting image stitching 

and gradient concerns. 

Figure 14. December 6, 2017, tile A1 

May 17 A1 tile showed a similar miss labeling of salt marsh (Figure 15). A salt 

marsh hotspot was located off the beach in this case and in a residential area. Using the 

same approach as December 6, the hotspot marsh area was focused in on (Figure 16) and 

again noticeable stitching issues were apparent. The wind was blowing on shore during the 

capture of the images and a similar effect to December 6 A1 tile in the surf zone was see 

inland in the May 17 A1 tile.  
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Demonstrating using a heat map (right) to identify marsh areas through deep learning. 

Warmer colors on heat map indicate areas where features and gradients were identified and 

associated with the label assigned. 

Figure 15. May 17, 2018, tile A1 from 2x2 matrix 

 

Use of a heat map (left) and zoomed in hot spot area (right) highlighting image stitching 

and gradient concerns.  

Figure 16. May 17, 2018, tile A1 
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E. OBLIQUE SINGLE IMAGE ANALYSIS OF CRSB CHANGE 

DETECTION 

CRSB was also analyzed at an oblique angle similar to images used to train and test 

the VGG19 model. Two significantly distinct images were used to test the mode for change 

detection. Figure 17 is a comparison of non-breached Carmel River (December 20, 2016) 

and breached Carmel River (January 23, 2017). Coastal water way was properly and 

accurately labeled in both images and confirmed using heat maps. The breached image 

shows a new hot spot correctly placed and labeled for coastal waterway when compared 

with the non-breached image. 

Depiction of oblique single camera image. Left side deep learning labeling and right side 

heat map verification. Warmer colors on heat map indicate areas where features and 

gradients were identified and associated with the label assigned. 

Figure 17. December 20, 2016, (top) and January 23, 2017, (bottom) CRSB 
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V. DISCUSSION 

The results indicate that using deep neural networks, specifically through transfer 

learning, is an effective method to classify heterogeneous coastal landscapes without the 

need for semantic segmentation. Despite the heterogeneity of the training dataset and its 

relative small size compared to ImageNet (10000 images vs. over 1 million images), there 

is enough difference between each coastal class implying correct identification is possible. 

This method shows potential for automatic classification of coastal landscapes, which can 

help increase efficiency for identifying areas of change. 

It was noticed that images where the dominant feature was sandy beach or tidal 

flats were difficult to correctly identify in the unseen test images, especially at Carmel 

River State Beach. One possible explanation for this is the lack of gradients within these 

landscapes compared to those within rocky coastlines, marshes, and coastal waterways. 

Therefore, it is expected that these areas will be under-identified, which highlights a need 

to weight these classes differently for future training efforts.  

The coastal change detection algorithm using deep learning detection can be 

improved upon in a number of ways. First, given the inherent heterogeneity of coastal 

landscapes, it would be advantageous to use a multi-label approach to increase the sample 

size of each class. This could, in turn, allow variable image sizes to be classified by the 

model. Second, in this study, large images (tifs) compiled through Structure from Motion 

were broken down into 2x2 and 3x3 matrices in an effort to increase homogeneity within 

the sub-images and create sections of the larger image that were comparable in size to the 

imagery used to train the deep neural network. This method was determined to be 

inadequate owing to artifacts from stitching the UAS imagery together. Instead, it would 

be worthwhile to attempt this method on larger scale images from satellites. Future work 

could include a finer tiling scheme to target change over smaller areas. Third, it would be 

advantageous to add more classes of water, such as surfzone, as this is a ubiquitous feature 

in coastal imagery. In addition, adding classes that include human infrastructure, such as 

roads, buildings, and boats, would be useful so the model does not classify these areas 

incorrectly. This micro level (< 1km areas) approach is what is needed for small-scale 
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tactical military operations and areas where there a rapidly changing environment. The 

ability to capture large and small-scale changes provides commanders with essential 

information for the planning stage. 

This study specifically focuses on low altitude photographic imagery. The 

advancements of satellite technology adds to the already large database of imagery. Optical 

satellites have limitations especially with cloud coverage; however, synthetic aperture 

Radar satellites (SAR) do not need the Sun to function and are capable in all weather 

conditions (Costa 2004). The SAR satellite capabilities provides new avenues to take 

advantage of transfer learning and deep learning techniques discussed in this paper.  

This study focuses heavily on the visible light range and optical photography 

images. The use of other media (infrared) needs to be explored to take further advantage 

of deep learning. Different vegetation species have their own their own unique infrared 

spectral features, specifically reflectance and emission, which can be used to classify areas 

of vegetation according to their spectral characteristics (Xie et al. 2008). The ability to 

accurately map and categorize vegetation types is important, the growth, decline, and 

location of species is important for forestry management and location of animal species 

that are particular to a certain type of vegetation.  

The results of this study are driven by proper identification of gradients and features 

used to flag regions specific to the unique classes. The output for the labeling is verifiable 

using the heat map. A different approach maybe to use the feature and gradient recognition 

to label areas for rejection. If this process can be coupled with a multiple reading of the 

same image at different levels, perhaps a more fined tuned process could be developed with 

multiple reads of the same image focusing on specific areas selected by the user. 
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VI. CONCLUSION 

It was possible to use heterogeneous coastal landscapes to train a deep neural 

network through transfer learning and training from scratch with a high degree of accuracy 

(>90% correct identification) without the need for image semantic segmentation. Overall, 

95% accuracy with test images was achieved.  

The use of high-resolution UAS imagery of the same coastal site over time coupled 

with a trained deep neural network will be able to accurately and effectively highlight areas 

that varies seasonally. The CSRB study site is dynamic and overhead stitched mosaics were 

effective in labelling and detecting change in the landward part to the mosaic. The 

mislabeling problems for the ocean side of the mosaics were located using heat mapping, 

and upon further inspection of the flagged areas, there was noticeable image stitching 

seams. The seams created false gradients and features not attributable to the actual 

landscape. These imaging artifacts caused a gross mislabeling of both tiles in the A column 

for both mosaics.  

CRSB mosaics were all comprised of overhead images with little or no offset from 

nadir. The images used to train, validate, and test the deep learning neural network were 

captured from oblique angles. This drastic difference in view point and lack of training 

with overhead images in conjunction with image stitching problems is attributable to 

labelling errors. In an effort to increase accuracy, much larger datasets will be needed to 

encompass the different types of coastal landscape on the continental and regional scales. 

Data set increase coupled with a multi-angle approach for image capture should enhance 

the deep learning network by giving different visual perspectives and allowing for 

gradients and features to be extracted from each class.  
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APPENDIX A. ADDITIONAL 2X2 MOSAIC MATRICES 

A. JANUARY 11, 2018, MOSAIC 

 
Mosaic tiled into 2x2 matrix (left) and graphical representation (right) of deep learning 

outputs with respect to each tile. A1 = sandy beach, A2 = sandy beach and rocky coast, B1 

= coastal waterway and marsh and B2 = coastal waterway and sandy beach. 

Figure 18. January 11, 2018, CRSB mosaic  
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B. JANUARY 23, 2018, MOSAIC 

 
Mosaic tiled into 2x2 matrix (left) and graphical representation (right) of deep learning 

outputs with respect to each tile. A1 = sandy beach, A2 = sandy beach and coastal rocky, 

B1 = coastal waterway and marsh, and B2 = tidal flat and coastal rocky. 

Figure 19. January 23, 2018, CRSB mosaic  
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C. FEBRUARY 28, 2018, MOSAIC 

 
Mosaic tiled into 2x2 matrix (left) and graphical representation (right) of deep learning 

outputs with respect to each tile. A1 = sandy beach, A2 = sandy beach, B1 = coastal 

waterway, and B2 = marsh. 

Figure 20. February 28, 2018, CRSB mosaic 
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APPENDIX B. ADDITIONAL 3X3 MOSAIC MATRICES 

A. JANUARY 11, 2018, MOSAIC 

 

Mosaic tiled into 3x3 matrix (left) and graphical representation (right) of deep learning 

outputs with respect to each tile. A1 = sandy beach, A2 = sandy beach, A3 = sandy beach 

and coastal waterway, B1 = man made, B2 = tidal flat, B3 = rocky coast, C1 = coastal 

waterway, C2 = coastal waterway, and C3 = tidal flat and sandy beach. 

Figure 21. January 11, 2018, CRSB mosaic  
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B. JANUARY 23, 2018, MOSAIC 

 

Mosaic tiled into 3x3 matrix (left) and graphical representation (right) of deep learning 

outputs with respect to each tile. A1 = sandy beach, A2 = sandy beach, A3 = sandy beach, 

B1 = man made, B2 = tidal flat, B3 = rocky coast and tidal flat, C1 = coastal waterway, C2 

= tidal flat and marsh, and C3 = tidal flat and sandy beach. 

Figure 22. January 23, 2018, CRSB mosaic 
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C. FEBRUARY 28, 2018, MOSAIC 

 

Mosaic tiled into 3x3 matrix (left) and graphical representation (right) of deep learning 

outputs with respect to each tile. A1 = sandy beach, A2 = sandy beach, A3 = sandy beach, 

B1 = man made, B2 = sandy beach, B3 = sandy beach and rocky coast, C1 = coastal 

waterway, C2 = coastal waterway and marsh, and C3 = tidal flat and sandy beach. 

Figure 23. February 28, 2018, CRSB mosaic 
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