
NAVAL 
POSTGRADUATE 

SCHOOL
MONTEREY, CALIFORNIA 

THESIS

FREQUENCY-BASED FEATURE EXTRACTION FOR 
MALWARE CLASSIFICATION 

by 

Jonathan P. Erwert 

December 2018 

Thesis Advisor: Neil C. Rowe 
Second Reader: Mikhail Auguston 

Approved for public release. Distribution is unlimited. 



THIS PAGE INTENTIONALLY LEFT BLANK 



 REPORT DOCUMENTATION PAGE  Form Approved OMB 
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of 
information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
December 2018

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
FREQUENCY-BASED FEATURE EXTRACTION FOR MALWARE 
CLASSIFICATION

5. FUNDING NUMBERS

6. AUTHOR(S) Jonathan P. Erwert

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School 
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT 
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES) 
N/A

10. SPONSORING /
MONITORING AGENCY 
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE 
A

13. ABSTRACT (maximum 200 words)
 Traditional signature-based malware detection is effective, but it can only identify known malicious 
programs. This thesis attempts to use machine-learning techniques to successfully identify 
previously unknown malware from a set of Windows executable programs. We analyzed the histogram 
of 4-, 8-, and 16-bit-sequence values contained in each program. We then analyzed the effectiveness 
of using these histograms in part or in full as feature vectors for machine learning experiments. We also 
explored the effect of an offset at the beginning of each program and its impact on classifier 
performance. We successfully show that a machine learning classifier can be learned from these features, 
with an f-measure in excess of 90% attained in one of our experiments. Using a part of the 
histogram as the feature vector did not significantly affect classifier performance up to a point, nor did 
including an offset. Our results also suggest that features derived from histograms are better suited to 
tree-based algorithms compared to Bayesian methods. 

14. SUBJECT TERMS
machine learning, malware analysis, static analysis

15. NUMBER OF
PAGES 

57
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF 
REPORT 
Unclassified

18. SECURITY
CLASSIFICATION OF THIS 
PAGE 
Unclassified

19. SECURITY
CLASSIFICATION OF 
ABSTRACT 
Unclassified

20. LIMITATION OF
ABSTRACT 

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18

i 



THIS PAGE INTENTIONALLY LEFT BLANK 

ii 



Approved for public release. Distribution is unlimited. 

FREQUENCY-BASED FEATURE EXTRACTION FOR MALWARE 
CLASSIFICATION 

Jonathan P. Erwert 
Lieutenant, United States Navy 
BS, U.S. Naval Academy, 2011 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN COMPUTER SCIENCE 

from the 

NAVAL POSTGRADUATE SCHOOL 
December 2018 

Approved by: Neil C. Rowe 
Advisor 

Mikhail Auguston 
Second Reader 

Peter J. Denning 
Chair, Department of Computer Science 

iii 



THIS PAGE INTENTIONALLY LEFT BLANK 

iv 



ABSTRACT 

Traditional signature-based malware detection is effective, but it can only identify 

known malicious programs. This thesis attempts to use machine-learning techniques to 

successfully identify previously unknown malware from a set of Windows 

executable programs. We analyzed the histogram of 4-, 8-, and 16-bit-sequence values 

contained in each program. We then analyzed the effectiveness of using these 

histograms in part or in full as feature vectors for machine learning experiments. We 

also explored the effect of an offset at the beginning of each program and its impact on 

classifier performance. We successfully show that a machine learning classifier can be 

learned from these features, with an f-measure in excess of 90% attained in one of our 

experiments. Using a part of the histogram as the feature vector did not significantly 

affect classifier performance up to a point, nor did including an offset. Our results also 

suggest that features derived from histograms are better suited to tree-based algorithms 

compared to Bayesian methods. 
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I. INTRODUCTION  

Traditional malware-detection software relies upon signatures derived from static 

analysis of the file or dynamic analysis of the program’s behavior. Though effective on 

known malware, signature-based analysis cannot identify previously unknown malicious 

programs, and when one considers that millions of new malicious programs are 

discovered every year, it becomes evident that better tools are needed. Part of United 

States Cyber Command’s most recent vision statement is hardening U.S. government 

networks (United States Cyber Command [USCYBERCOM], 2018). Critical to 

hardening of networks is speeding up the ability to detect malware on a host. This thesis 

builds on recent work in the fields of computer forensics and machine learning to detect 

malware, and explores the viability of using the frequencies of bit-sequence values 

occurring in a program to identify malware.  

Binary strings can be used to represent base-10 numbers, where the length of the 

string determines the range of values that can be represented. For example, a sequence of 

4 bits can represent base-10 numbers between 0 and fifteen. Our method examines how 

often each possible value of a bit sequence appears in a given file's raw binary. We then 

used this data as input to several machine-learning experiments to answer whether it 

possible to distinguish between malicious and benign programs by looking at their 

histograms (frequency distribution) of values for bit sequences.  

The remainder of this thesis is organized in the following way. Chapter II is an 

overview of current malware-analysis techniques, previous research attempts to increase 

the speed of malware analysis and identification, and attempts to automate malware 

classification and identification. It also includes a discussion of previous uses of 

histograms or frequency-based methods for malware classification. Chapter III describes 

our methodology, including our process for obtaining malware and non-malicious 

programs for testing, our method for generating histograms, and a description of the 

machine-learning algorithms used. Chapter IV describes results of our experiments. 

Chapter V provides our major findings and makes recommendations for future work.  
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II. BACKGROUND AND RELATED WORK

A. EXECUTABLES 

Programs are used to make computers do things. Programs are written in human 

readable languages that computers cannot understand. To make these programs 

understandable to computers, the high-level source code is input to a compiler, which 

outputs a binary representation of the program known as the executable image (Anderson 

& Dahlin, 2011). The executable image, also known simply as the executable, is a series 

of machine code instructions written in binary, which can be immediately understood and 

executed by the computer’s central processing unit. Running executable files of unknown 

origin is dangerous from a security perspective, because the advertised behavior and 

actual behavior of the program may not be the same. However, it is difficult to examine a 

program and determine if it is malicious.  

B. MALWARE ANALYSIS 

The goal of our research is to improve automated malware identification, 

specifically for Windows executables. This research is built upon the analytical 

techniques used to dissect and understand malware. Malware analysis can be static or 

dynamic (Sikorski & Honig, 2012). Static analysis is performed by passive examination 

of the file. This usually means an examination of the raw binary machine language using 

a disassembler program or, if it is available, the source code of a malicious program. 

However, less technical observations such as the file name and file path can also provide 

insight or clues to identify malicious files (Rowe, 2015b). Dynamic analysis is conducted 

in a safe forensic environment known as a sandbox and looks for adverse behavior as the 

suspected malicious program executes.  

Static analysis can develop signatures such as hashes of known malicious 

programs or parts of programs, which can be used to identify previously analyzed 

examples of malware. Hashes are generated using a mathematical function that takes 

input data, such as a program or data file, and generates a unique alphanumeric output. 

Other things that can be extracted from programs are signatures, sequences of distinctive 
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bytes appearing in the program. Antivirus programs rely heavily on these signatures to 

identify files of concern. Unfortunately, malware developers have adapted by 

manipulating or obfuscating their code so that signatures are often changing.  

Signatures generated from dynamic analysis are sequences of system calls or 

other significant events observed in a malicious program. Dynamic analysis should be 

superior to static analysis because it allows the analyst to directly observe the behavior of 

the suspected malware. However, countermeasures for dynamic analysis can check to see 

if the program is being run in a forensic environment. This can be done by looking for 

common plugins associated with virtual machines, or checking if the execution 

environment has limited resources, which would indicate the use of a virtual machine as a 

sandbox (Sikorski & Honig, 2012). Another potential problem with dynamic analysis is 

that it relies on actually running the program. This is a time- and resource-intensive 

process that also risks infecting the machine with malware.  

C. CODE REUSE AND PROGRAM COMPARISON 

Understanding how similar two programs are is important for malware 

classification. Similarities between examples of malware can occur because the malware 

exploits the same vulnerability, is intended to perform a similar function, or displays the 

habits and idiosyncrasies of the individual malware developer. Similarities in malware 

also can occur due to the sharing and reuse of source code (Benjamin & Chen, 2013). 

Source code is shared and reused among authors to save effort and to expand the lifespan 

of particular malware. Malware authors will also often generate permutations of the same 

piece of malware to evade signature detection. All of these factors contribute to the rapid 

production rate of malware. 

Several studies have examined how different variants of the same malware can be 

compared (Adkins, Jones, Carlisle, & Upchurch, 2013; Hongyuan & Osorio, 2013; 

Seideman, Vargas, & Khan, 2014; Casey & Shelmire, 2014; Sarntinos, Benzaid, Arabiat, 

& Al-Nemrat, 2016)). These studies differ in what they are specifically comparing and 

how the two samples are compared. Adkins et al. (2014) and Sarantinos et al. (2016) 

generated composite hashes of programs and compared files based on the differences 
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between their composite hashes. Adkins et al. (2014) used a technique called basic block 

comparison which hashes parts of the file and then creates a composite hash-digest, while 

Sarantinos (2016) et al. used the ssdeep implementation of the fuzzy hashing algorithm to 

create a similar composite hash. Seideman et al. (2014) took a different approach, 

generating a system call trace and comparing programs based on the similarities of the 

programs' traces. Once the original program was summarized, statistical methodologies 

were used to compare the two files. One such method of comparison is the Jacquard 

index, which compares the intersection and the union of two sets and gives the fraction or 

percentage of the elements the two sets have in common. The Jacquard index can be used 

to determine how many common elements two files have (Adkins et al., 2013). It can also 

be used to identify code reuse in malware (Casey & Shelmire, 2014). A similar 

technique, the Jensen-Shannon distance, has been used to determine similarity in system 

call traces to classify malware in categories similar to biological genera (Seideman et al., 

2014). Entropy can also be used as a measure of comparison (Sarantinos et al., 2016). 

There are limits to these kinds of pattern matching because two programs with the 

same purpose can be represented many ways depending on the author, language, or 

compiler used. If pattern matching cannot be used to compare two programs, dynamic 

analysis is necessary to determine semantic equivalence. A program is said to be 

semantically equivalent to another if they execute identically. This is determined by 

observing the execution of each program to see if they both start and stop in the same 

state. This technique can be used on sections of programs to identify common functions 

or methods that are commonly reused (Hongyuan & Osorio, 2013). However, it is very 

difficult to apply. 

D. DISTRIBUTION OF MALWARE 

Looking at the extent of code reuse and the rapid rates of malware production 

might lead one to believe that our systems are inundated with malware. This is not 

necessarily the case. The Naval Postgraduate School (NPS) maintains a large corpus of 

drives for the purpose of research in digital forensics. The corpus consists of 4000 drives 

containing 290 million files. Out of the files only about 0.11 percent of the files were 



6 

identified as malicious by one of five representative malware detection methods (Rowe, 

2015b). Several projects have used machine learning to recognize characteristics of 

malware executables (Choi, J., Kim, H., Choi, C., & Kim, H., 2011; Mira, Huang, & 

Brown, 2017). 

E. ATTRIBUTE EXTRACTION 

Feature (or attribute) extraction is the process of finding and defining the 

interesting phenomena contained in each element of a data set. For malware, this is the 

process of taking a file's binary and finding patterns by which a machine-learning 

algorithm can reach useful classifications or conclusions. These patterns are usually 

represented as ordered lists or vectors. Just as malware analysis can be static or dynamic, 

so too can the process of attribute extraction. Dynamic analysis observes the execution of 

the malicious program. This generates an attribute vector of system calls, libraries loaded, 

and other observable events. For example, one study extracted file-system writes, register 

operations, and network-access operations as its attributes (Cabau, Buhu, & Oprisa, 

2016). However, most malware studies use static analysis for attribute extraction due to 

its significant speed advantage. The most common static analysis technique is n-gram 

extraction, a technique from natural-language processing research which seeks to capture 

the dependencies between items in succession in a sequence (Russell & Norvig, 2010). 

When applied to malware detection, n-gram analysis can be performed using either the 

raw binary or the assembly language instructions. In their study, Zak, Raff, and Nichols 

(2017) found that byte code n-grams generalized better than n-grams using assembly 

language. Despite these findings, assembly language n-gram analysis remains popular 

with recent studies using “shingling” to increase performance (Hassen, Carvalho, & 

Chan, 2017). Shingling improves on n-gram analysis by introducing the concept of a 

break point in the dependency chain. It can be thought of like a paragraph break in 

writing where the last word of one paragraph and the first word of the next paragraph 

may or may not be related. Shingling reduces the length of the attribute vector.  

Another method of attribute extraction uses frequency of byte values. Two studies 

which used this method focused on sorting malware into families. Singh and Khurmi 
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(2016) analyzed portions of files, focusing on unique and likely repeated sequences of 

code, to create the attribute vectors while Yu et al. (2010) analyzed the entire file. The 

first compared the sum of Euclidian distances between attributes in two malicious 

programs to create a baseline for triaging malware into clusters, while the second 

leveraged a Symbolic Aggregation Approximation (SAX) to determine similarity 

between programs. 

F. MACHINE-LEARNING APPROACHES IN MALWARE ANALYSIS 

Machine learning is the process of programming computers to improve their 

performance without human assistance. Given the frequency of code reuse in malware, it 

is unsurprising that many studies have used machine learning to create classifiers that can 

differentiate between types of malware. Machine learning can also be used to distinguish 

malware from benign programs. Both of these problems require learning a classifier from 

a set of training data which includes examples of malicious and benign programs or 

examples of all of the types of malware being classified.  

Most machine learning is supervised, meaning that the training data are labeled 

with the correct classifications. Popular supervised learning techniques include support-

vector machines, tree-based classifiers, and Bayesian networks. Support-vector machines 

try to find an optimal decision boundary between two classes. Tree-based classifiers 

derive a series of yes-or-no questions based on the values of the attributes in the training 

data. Bayesian networks use compounding probabilities to predict the correct 

classification (Russell & Norvig, 2010). All these techniques have been used to derive 

classifiers for malware identification, and are often used as baselines when evaluating 

new techniques (Fuyong & Tiezhu, 2017). N-gram attributes derived from dynamic 

analysis have been used to train support-vector machines to distinguish between malware 

and benign software (Okane, Sezer, & McLaughlin, 2014). Similarly, n-gram attributes 

derived from static analysis machine code have been used to train the decision-tree 

random-forest algorithm to create a malware classifier (Usaphapanus & Piromsopa, 

2017).  
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Unsupervised learning differs from supervised learning in that the training data is 

not labeled with the correct classifications. Instead, unsupervised learning seeks to find 

patterns that exist in the data naturally. Unsupervised techniques include clustering and 

unsupervised neural networks (Kalash et al., 2018; Kargaard, Drange, Kor, Twafik, & 

Butterfield, 2018). In both of these studies, malicious binaries were converted to picture 

files prior to classification because there is much software available for picture 

processing by neural networks.  
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III. METHODOLOGY

The code we wrote appears in the Appendix. 

A. THE DATA SET STUDIED 

We derived our data set from the NPS “Real Drive Corpus.” The corpus consists 

of 4000 images of drives storing 290 million files. The corpus was compiled by 

purchasing secondhand drives from around the world. The primary purpose of this corpus 

is to facilitate research in computer forensics, with identification of malware being a 

significant focus (Garfinkel, Farrell, Roussev, & Dinolt, 2009). It enabled us to compile 

both our data set of malicious and benign executable files from a single source.  

The primary tool we used for working with the forensic corpus was the SleuthKit 

program developed by Brian Carrier (2018). SleuthKit includes a tool developed at NPS 

called Fiwalk which automatically extracts file directory information and associated file 

metadata (Garfinkel, 2009). We used Fiwalk to compile a list of executable files in the 

corpus with DLL and EXE extensions. After selecting a random subset from this list, we 

retrieved the actual files from the drive images in Expert Witness Disk Image Format 

(EWF) in the corpus using Sleuthkit's “icat” command. EWF is a popular file format for 

forensic images which meets the legal requirements of evidence preservation (Library of 

Congress, 2017). EWF files accurately preserve the total content of a drive, including 

deleted files and data stored in slack space. The icat command retrieves one file at a time, 

so we automated the collection process by writing a Bash shell script with a separate icat 

command for every file sought. Our final data set included 4835 Windows executables, 

of which 4436 were classified as benign and 399 were classified as malicious.  

Previous research on the corpus revealed that roughly 0.11 percent of the files in 

the corpus were malware, with a bit higher percentage for executables (Rowe, 2015b). 

We deliberately selected malware randomly with a higher percentage, so our random 

sample included roughly 8 percent malware. This is significantly different from earlier 

research which used approximately equal numbers of benign and malicious files in their 

data sets or used a majority of malicious files (Choi et al., 2011; Mira et al., 2017). 



10 

Having an equal number of malicious and benign programs in the data set reduces the 

chances the classifier would be biased toward malicious or benign programs. However, 

given the real-world origins of the NPS corpus, we thought it better to use a data set 

which reflected the corpus' ratio of malicious to benign programs. 

B. ATTRIBUTE EXTRACTION AND ARFF FILE GENERATION 

We needed to extract a set of attributes from each executable file in our data set so 

that it could be input to our machine-learning platform Weka. Weka is a machine-

learning workbench developed by the University of Waikato in New Zealand. It uses an 

input format known as Attribute Relation File Format or ARFF (Witten, Frank, & Hall, 

2011). An ARFF file has two parts. The first part is a header which includes the name of 

the data set, the attributes extracted from each executable in the data set, and the type of 

the data for the attribute (integer, real, string, or list of values). The second part is the data 

values of the attributes extracted from each executable. This set of values is called an 

attribute vector and is represented as an ordered list. To generate our ARFF files we 

wrote programs in Python 3 and ran them on a MacBook Pro running the MacOS High 

Sierra Operating system.  

A histogram is a set of counts on elements of a set. We generated histograms for 

bit sequences of 4, 8, and 16 bits within each executable file, and used those for the data 

in our ARFF files. To generate these histograms for 8-bit and 16-bit sequences, we used a 

program written by Prof. Rowe (2015a). To generate the histogram of 4-bit sequences, 

we wrote our own program using the Python Bitstring library. This library was necessary 

because Python will only work with byte-aligned data and will only process binary data 

at the byte level. The Bitstring library allowed us to create histograms of 4-bit values at 

offsets of 0-bit, 1-bit, 2-bits, and 3-bits. Because our data was byte-aligned, this left us 

with nonzero offsets with a final set of bits less than four which we ignored. The reason 

for generating multiple 4-bit histograms with varying offsets was that we hypothesized 

that including an offset would create a different distribution of counts, and wanted to see 

if including a given offset would provide significantly better or worse classifier 
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performance. We only generated offset ARFF files for the 4-bit sequence values as a 

proof of concept. 

Once we had generated our histograms, we generated our attribute vectors using 

two different methods. The first method normalized the counts in the histogram by 

dividing by the total count of the executable. We used this first method to generate six 

ARFF files: one for the 8-bit sequence, one for the 16-bit sequence, and one for each of 

the four 4-bit sequence offsets. We will refer to ARFF files generated using this first 

method as full-attribute because they contain an attribute vector which includes a value 

for each value represented in the executables' full histogram. Table 1 provides specific 

details on the six full-attribute ARFF files created using this first method. As the length 

of the bit-sequence, we were examining increased, so too did the length of the attribute 

vector, so that our full-attribute ARFF file contained an attribute vector of 65536 values. 

Though Weka was generally capable of handling this large number of attributes, the 

performance was slow and often required multiple tries to get Weka to successfully run 

the machine-learning algorithms using such a large input file. For this reason, we also 

experimented with a second method of attribute selection that explicitly tried to reduce 

the size of the attribute vector.  

Table 1. List of Full-Attribute ARFF Files 
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The second method used the bit sequences with the lowest nonzero counts as our 

attributes since these more likely indicate unique properties of an executable. To select 

the values for our attribute vector, we sorted the histograms by count from lowest to 

highest. We then selected increasingly large, but overlapping, subsets of the sorted 

histogram. Our selection criteria were simple in that we selected the value in the 

histogram with the smallest count greater than zero and then took the next specified 

number of values. This gave us a subset of the least frequently occurring values from the 

histogram which occurred at least one time. From the histogram of 4-bit sequence values, 

we selected three subsets. These subsets consisted of 4, 8 and 12 values. As previously 

stated these subsets were overlapping, so all of the attributes included in a smaller subset 

were included in any larger subsets. Each of these subsets was used as the attribute vector 

for its own ARFF file. We repeated this process using the histogram of 8-bit sequence 

values selecting subsets of 8, 16, 32, 64, and 128 values, and for the histogram of 16-bit 

sequence values selecting subsets of 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, and 

16384. We will refer to ARFF files generated using our second method as reduced-

attribute because they contain a subset of the executables' histogram. Table 2 details the 

18 reduced-attribute ARFF files generated using this second method. We did not generate 

any reduced-attribute ARFF files from the histograms which included an offset.  
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Table 2. List of Reduced-Attribute ARFF Files Generated 

After the attribute vectors were generated, the associated executables needed to be 

tagged as malicious or benign. This was done by comparing an executable’s hashcode to 

those in the malware libraries of Bit9, Open Malware, Virus Share, Symantec, and Clam 

AV using the data on from the NPS Real Drive Corpus (Rowe, 2015b).  

C. MACHINE-LEARNING METHODS 

Weka implements a wide range of well-known machine-learning algorithms. Our 

experiments primarily used tree-based classifiers. We used the J48, logistic-model-tree 

(LMT), random-tree, random-forest, and reduced-error-pruning (REP) tree classifiers. 
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We also experimented with the Naïve-Bayes and Bayesian-network classifiers. All 

classifiers were trained using 66 percent of the data set and evaluated on the remaining 34 

percent; this approach could be easily extended to do cross-validation to obtain more 

accurate performance measures. We use the term “experiment” to describe a pairing of an 

input ARFF file and a machine-learning algorithm. We paired each of our 24 ARFF files 

with each of the 7 classifiers, for a total of 168 experiments. Five of these experiments 

did not return results, either due to raising an error or failing to fully execute.  

D. PRECISION, RECALL, AND F-SCORE 

Precision is the proportion of correctly classified instances of a class compared to 

the total number of instances classified as the class (Witten et al., 2016). In our 

experiments, this meant the number of malicious files identified divided by the number of 

total files classified as malicious. Recall is the proportion of correctly classified instances 

of a class compared to the total number of instances of that class in the data set (Witten et 

al., 2016). In our experiments, this meant the number of malicious files correctly 

identified as malicious divided by the total number of malicious files in the data set. 

Precision and recall are generally viewed as competing statistics, where maximizing one 

minimizes the other (Witten et al., 2016). To get a kind of average of these competing 

metrics, we also used the F-score which is their harmonic mean. It is calculated as two 

times the product of the recall and precision divided by their sum.  
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IV. DISCUSSION OF RESULTS

A. CLASSIFIER PERFORMANCE USING FULL-ATTRIBUTE ARFF FILES 

Figures 1, 2, and 3 display the precision, recall, and F-score for experiments we 

conducted using the histogram of values generated for 4, 8, and 16-bit values. The Naïve 

Bayes classifier provided the highest recall but the lowest precision. Across all bit-

sequence lengths, the five tree classifiers of J48, random-tree, random-forest, LMT, and 

REP outperformed the two Bayesian classifiers, with the random-forest classifier 

performing best across all bit-sequence lengths in both precision and F-score. This is 

likely due to random-forest being the only classifier which uses bagging, or training using 

multiple independent data sets, to boost performance (Russell & Norvig, 2010). Of note, 

the best overall performance for F-score was from the 4-bit ARFF file using the random-

forest classifier. This was the best F-score noted for all experiments performed and the 

only F-score that exceeded 90 percent. With this exception, the overall performance of all 

classifiers remained consistent across bit-sequence length.  

Figure 1. Precision Performance of Full-Attribute Classifiers 



16 

 

Figure 2. Recall Performance of Full-Attribute Classifiers  

 

Figure 3. F-score Performance of Full-Attribute Classifiers  

We were not able to get results for all seven of the classifiers for all three full-

attribute ARFF files that did not include an offset. When we tested both the 16-bit and 8-

bit full-attribute ARFF files using the Bayesian-network classifier, Weka raised an error 

for overlapping bin ranges, which is strange because Weka automatically selects bin 

ranges based on the range of values observed in the attribute vector. When we tested the 

16-bit full-attribute ARFF file using both the LMT and REP classifiers, Weka interrupted 

program execution without raising an exception or outputting any results.  
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B. THE IMPACT OF OFFSETS ON CLASSIFIER PERFORMANCE 

Figures 4, 5, and 6 show the precision, recall, and F-score statistics for using the 

four 4-bit-full-attribute ARFF files that were generated with the varying 0-bit, 1-bit, 2-bit, 

or 3-bit offsets. Overall, the results of the offset experiments follow the same trend noted 

in the other full-attribute experiments. Tree classifiers outperformed Bayesian classifiers, 

with random-forest providing the best results for both precision and F-score. No clear 

benefit from offsetting the start point of the binary string is evident from the data, except 

that the Bayesian-network classifier saw an increase in precision as the offset was 

increased. This did not generate a corresponding increase in F-score.  

Figure 4. Classifiers’ Precision Performance for 4-bit Full-Attribute-Offset 
Experiments 
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Figure 5. Classifiers’ Recall Performance for 4-bit Full-Attribute-Offset 
Experiments 

Figure 6. Classifiers’ F-score Performance for 4-bit Full-Attribute-Offset 
Experiments 

C. REDUCING ATTRIBUTE VECTOR LENGTH 

To test whether a reduced number of attributes changed the performance of a 

classifier, we used the 18 ARFF files generated using our second method of attribute 

selection. When we examined those files, we noticed, particularly in ARFF files that had 

more than 512 values in their attribute vector, that the number of executables represented 

in the ARFF file did match with the total number of executables in our data set. To 
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investigate this phenomenon further, we generated a bar chart, Figure 7, displaying the 

number of executables included in each ARFF file.  

 

Figure 7. Comparison of the Number of Executables Captured in Our 
Reduced-Attribute Data Sets 

A sharp drop-off in the number of executables included in each ARFF file is 

evident in the 16-bit-reduced-attribute ARFF files with an attribute vector containing 

greater than 512 values. This drop-off is concerning because it is indicative of a logical 

flaw in our attribute extraction methodology. None of the reduced-attribute ARFF files 

contains the full set of executables contained in our data set. The likely cause of this is 

that our program included a check to see if each attribute vector generated by our 

program contained a sufficient number of values to be included in an ARFF file. If an 

attribute vector failed that check, it was not included in the ARFF file. For example, if we 

wanted to generate an ARFF file containing an attribute vector with 32 values, but only 

31 specific bit-sequences had a count greater than zero, that executable would not be 

included in the ARFF file. This casts significant doubts on how effective our attribute 
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reduction method is. If every executable cannot be represented using our attribute 

selection method then not every executable can be classified using our methodology. 

Practically this means that some malicious files may not even make it to the classification 

stage and thus have no chance of being detected by our methodology.  

1. Classifier Performance on 4-Bit Reduced-Attribute ARFF Files 

Figures 8, 9, and 10 display the results for our 4-bit reduced-attribute 

experiments. The overall trend of tree classifiers outperforming Bayesian classifiers is 

evident in this data and consistent with the previous experiments using the full-attribute 

vector length. Random-forest continued to provide the best results in precision and F-

score, while random-tree provided the best results for recall. By contrast, in the full-

attribute experiments the Naïve-Bayes classifier provided the best results for recall. 

Reducing the attribute vector length from 12 to 8 did not cause a decline in performance 

across all classifiers and metrics, but reducing the attribute vector length from 8 to 4 

caused a greater than 50 percent drop in F-score across all classifiers.  

 

Figure 8. Classifiers’ Precision Performance for 4-bit Reduced-Attribute 
Experiments  
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Figure 9. Classifiers’ Recall Performance for 4-bit Reduced-Attribute 
Experiments  

 

Figure 10. Classifiers’ F-score Performance for 4-bit Reduced-Attribute 
Experiments  

Precision and F-score could not be calculated for the 4-bit-reduced-attribute-4 and 

4-bit-reduced-attribute-8 Naïve-Bayes experiments and the 4-bit-reduced-attribute-4 

Bayesian-network experiments because in all three of these experiments the classifier 

identified all executables as benign resulting in a divide by zero error.  

2. 8-Bit Reduced-Attribute Experiments 

Figures 11, 12, and 13 show the results for our 8-bit reduced-attribute 

experiments. The tree classifiers outperformed Bayesian classifiers in these experiments 
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as well. Random-forest continued to provide the best performance in precision and F-

score, while random-tree provided the best results for recall. In both random-tree and 

random-forest, reducing the attribute vector length had very limited effects on the 

classifier's performance.  

 

Figure 11. Classifiers’ Precision Performance for 8-bit Reduced-Attribute 
Experiments  

 

Figure 12. Classifiers’ Recall Performance for 8-bit Reduced-Attribute 
Experiments  
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Figure 13. Classifiers’ F-score Performance for 8-bit Reduced-Attribute 
Experiments  

3. 16-Bit Reduced-Attribute Experiments 

Figures 14, 15, and 16 show the results for precision, recall, and F-score for our 

16-bit reduced-attribute experiments. There was considerable variability in the precision 

and recall performance for all the classifiers as the attribute vector length increased from 

32 to 16384. Despite this variability, the results for F-score were relatively constant and 

consistent with the results from the full-attribute and 8-bit and 16-bit reduced-attribute 

experiments. Tree-based classifiers continued to outperform Bayesian classifiers and 

random-forest provided the best performance in terms of F-score and precision. The 

Naïve-Bayes classifier provided the best results in terms of recall.  
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Figure 14. Classifiers’ Precision Performance for 16-bit Reduced-Attribute 
Experiments 

 

Figure 15. Classifiers’ Recall Performance for 16-bit Reduced-Attribute 
Experiments 
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Figure 16. Classifiers’ F-score Performance for 16-bit Reduced-Attribute 
Experiments  
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V. CONCLUSIONS  

The data from our experiments suggests that histograms of bit-sequence values 

can distinguish between malware and benign programs. However, classifier performance 

must be improved if it is to be a useful tool in the fight against malware. One way could 

be to expand or balance the data set used to train our data. In our experiments, we had 92 

percent benign programs and 8 percent malware.  

Our data suggests that bit-sequence length is a relatively unimportant factor. 

Reducing the attribute space, to a point, did not seem to degrade classifier performance. 

Future work to identify the best way to reduce the attribute vector length and file size 

would be useful. Our experiments only looked at two types of machine-learning 

algorithms, tree and Bayesian classifiers. Our data suggests that tree algorithms learn 

from frequency-based attributes better than Bayesian algorithms do. Our experiments 

also used only Windows-executable files. Future work should use a more diverse data set.  
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APPENDIX. PROGRAM CODE 

A. PROGRAM TO GENERATE BASH FILE TO RETRIEVE FILES FROM 
NPS REAL DRIVE CORPUS 

def BashGenerator(inputFile, outputFile): 
    offsets = open(inputFile, "r", encoding = "UTF-8") 
    out = open(outputFile, "w", encoding = "UTF-8") 
    out.write("echo OFF\n") 
    out.write("echo Retrieving Files\n") 
    for line in offsets: 
        a = line.split("|") 
        out.write('icat -r -i ewf -o '+ a[3][:-1] + ' "/corp/nus/
drives/'+a[1][0:2]+"/"+a[1]+"/"+a[1]+'.E01" ' + a[2] +' >"erwert/'+a[0]+'.exe"\n') 
    out.write("echo Finished") 
    offsets.close() 
    out.close() 
    return print("Done") 

def MergeFunction(input1, input2, output1): 
    a = open(input1, "r", encoding = "UTF-8") 
    b = open(input2, "r", encoding = "UTF-8") 
    c = open(output1, "w", encoding = "UTF-8") 
    a1 = a.readlines() 

a.close()
    b1 = b.readlines() 

b.close()
    for line1 in a1: 
        for line2 in b1: 
            aa = line1.split("|") 
            bb = line2.split("|") 
            if bb[1] == aa[0]: 

c.write(bb[0] + "|" + bb[1] + "|" + bb[3] + "|" + aa[1])
    c.close() 
    return print("Done") 

print("Running Function 3") 
function3("best_offsets_for_drives.txt", "exe_inode_data_rdc.txt",
"ReadyForFunction1.txt") 
print("Done Running Function 3") 
print("Running Function 1") 
function1("ReadyForFunction1.txt", "erwert_long_test.txt") 
print("Done!@#$") 
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B. PROGRAM TO GENERATE 8-BIT FULL-ATTRIBUTE DATA 

import sys, math, hashlib, os 

def endclean(OS): 
    S = OS 

 M = len(S) 
    while ((M > 0) and \ 
           (S[M-1] in ['\n','\r','\t','\f','\a','\b','\v',' ']) ): 
        S = S[0:M-1] 
        M = M-1 
    return S 

def bytedistrib(filename):   
    bytedist = [0 for i in range(256)] 
    count = 0 
    fid = open(filename, 'rb') 
    byte = fid.read(1) 
    while byte: 
        k = int(ord(byte)) 
        bytedist[k] = bytedist[k] + 1 
        byte = fid.read(1) 
        count = count + 1 
    fid.close() 
    line = "" 
    for x in bytedist: 
        line += str(x/count) + ", " 
    return line 

if __name__=="__main__": 
    benign_dir = sys.argv[1] 
    mal_list = sys.argv[2] 
    out = sys.argv[3] 
    outputdir = {} 
    outfile = open(out, 'w') 
    outfile.write("@RELATION Single_Byte\n") 
    mal1 = open(mal_list, "r", encoding = "UTF-8") 
    mal2 = mal1.readlines() 
    mal_files = set() 

    for line in mal2: 
        mal3 = line.split("|") 
        mal_files.add(mal3[1][:-1]) 

    for i in range(256): 
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        outfile.write("@ATTRIBUTE " + str(i) + " NUMERIC\n") 
    outfile.write("@ATTRIBUTE class {benign, malware}\n") 
    outfile.write("@data\n") 
    for filename in os.listdir(benign_dir): 
        full_path = str(benign_dir) +"/"+ str(filename) 

  if os.path.isfile(full_path): 
            outputdir[full_path] = bytedistrib(full_path) 

        if full_path in mal_files: 
            outputdir[full_path] += "malware\n" 

        else: 
            outputdir[full_path] += "benign\n" 

    for key in outputdir: 
        outfile.write(outputdir[key]) 

C. PROGRAM TO GENERATE 16-BIT REDUCED-ATTRIBUTE DATA 

import sys, math, hashlib, os 

def endclean(OS): 
    S = OS 
    M = len(S) 
    while ((M > 0) and \ 
           (S[M-1] in ['\n','\r','\t','\f','\a','\b','\v',' ']) ): 
        S = S[0:M-1] 
        M = M-1 
    return S 

def bytedistrib(filename):        
    bytedist = [0 for i in range(65536)] 
    bigramLib = {} 
    count = 0 
    features_List = [] 
    fid = open(filename, 'rb') 
    byte1 = fid.read(1) 
    while byte1: 
        byte2 = fid.read(1) 
        if byte2: 
            k = (int(ord(byte1))*256)+int(ord(byte2)) 
            bytedist[k] = bytedist[k] + 1 
            byte1 = fid.read(1) 
        else: 
            byte1 = byte2 
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        count = count + 1 
    fid.close() 
 
    for i in list(range(65536)): 
        a = bytedist[i] 
        if a not in bigramLib: 
            bigramLib[a] = [i] 
        else: 
            bigramLib[a] += [i] 
     
    for i in range(1,count): 
        if i in bigramLib: 
            features_List += bigramLib[i] 
    #features_list returns a list of bigrams which 
    # had the lowest non 0 count in the file (smallest keys) 
    return features_List 
        
 
if __name__=="__main__": 
    benign_dir = sys.argv[1] 
    mal_list = sys.argv[2] 
    out = sys.argv[3] 
    outputdir = {} 
    mal1 = open(mal_list, "r", encoding = "UTF-8") 
    mal2 = mal1.readlines() 
    mal_files = set() 
    Feature_count = int(sys.argv[4]) 
    outfile = open(out, 'w') 
    outfile.write("@RELATION BIGRAMS "+str(Feature_count)+"\n") 
                   
    for line in mal2: 
        mal3 = line.split("|") 
        mal_files.add(mal3[1][:-1]) 
         
    for i in range(Feature_count): 
        outfile.write("@ATTRIBUTE " + str(i) + " NUMERIC\n") 
    outfile.write("@ATTRIBUTE class {benign, malware}\n") 
    outfile.write("@data\n") 
    for filename in os.listdir(benign_dir): 
        full_path = str(benign_dir) +"/"+ str(filename) 
        if os.path.isfile(full_path): 
            write = False 
            a = bytedistrib(full_path) 
            b = [] 
            if len(a) > Feature_count: 
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                write = True 
                for i in range(Feature_count): 
                    b += [a[i]] 
                line = "" 
                for x in b: 
                    line += str(x) + ", " 
 
                outputdir[full_path] = line 
 
        if write == True: 
            if full_path in mal_files: 
                outputdir[full_path] += "malware\n" 
 
            else: 
                outputdir[full_path] += "benign\n" 
             
    for key in outputdir: 
        outfile.write(outputdir[key])  
 

D. PROGRAM TO GENERATE REDUCED-ATTRIBUTE 8-BIT DATA 

import sys, math, hashlib, os 
 
def endclean(OS): 
    S = OS 
    M = len(S) 
    while ((M > 0) and \ 
           (S[M-1] in ['\n','\r','\t','\f','\a','\b','\v',' ']) ): 
        S = S[0:M-1] 
        M = M-1 
    return S 
 
def bytedistrib(filename):    
    bytedist = [0 for i in range(256)] 
    count = 0 
    fid = open(filename, 'rb') 
    byte = fid.read(1) 
    ByteLib = {} 
    features_List = [] 
    while byte: 
        k = int(ord(byte)) 
        bytedist[k] = bytedist[k] + 1 
        byte = fid.read(1) 
        count = count + 1 
    fid.close() 
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    #print('Analyzing file',filename,'pf',count,'bytes') 
    #print('Byte distribution:',bytedist) 
    for i in list(range(256)): 
        a = bytedist[i] 
        if a not in ByteLib: 
            ByteLib[a] = [i] 
        else: 
            ByteLib[a] += [i] 
     
    for i in range(1,count): 
        if i in ByteLib: 
            features_List += ByteLib[i] 
    #features_list returns a list of bigrams which 
    # had the lowest non 0 count in the file (smallest keys) 
    return features_List 
         
  
if __name__=="__main__": 
    benign_dir = sys.argv[1] 
    mal_list = sys.argv[2] 
    out = sys.argv[3] 
    outputdir = {} 
    mal1 = open(mal_list, "r", encoding = "UTF-8") 
    mal2 = mal1.readlines() 
    mal_files = set() 
    Feature_count = int(sys.argv[4]) 
    outfile = open(out, 'w') 
    outfile.write("@RELATION SingleByte "+str(Feature_count)+"Feature\n") 
                   
    for line in mal2: 
        mal3 = line.split("|") 
        mal_files.add(mal3[1][:-1]) 
         
    for i in range(Feature_count): 
        outfile.write("@ATTRIBUTE " + str(i) + " NUMERIC\n") 
    outfile.write("@ATTRIBUTE class {benign, malware}\n") 
    outfile.write("@data\n") 
    for filename in os.listdir(benign_dir): 
        full_path = str(benign_dir) +"/"+ str(filename) 
        if os.path.isfile(full_path): 
            write = False 
            a = bytedistrib(full_path) 
            b = [] 
            if len(a) > Feature_count: 
                write = True 
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      for i in range(Feature_count): 
b += [a[i]] 

line = "" 
for x in b: 

line += str(x) + ", " 

outputdir[full_path] = line 

        if write == True: 
            if full_path in mal_files: 

outputdir[full_path] += "malware\n" 
            else: 

outputdir[full_path] += "benign\n" 

    for key in outputdir: 
        outfile.write(outputdir[key]) 
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