
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS

FREQUENCY-BASED FEATURE EXTRACTION FOR
MALWARE CLASSIFICATION

by

Jonathan P. Erwert

December 2018

Thesis Advisor: Neil C. Rowe
Second Reader: Mikhail Auguston

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
December 2018

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
FREQUENCY-BASED FEATURE EXTRACTION FOR MALWARE
CLASSIFICATION

5. FUNDING NUMBERS

6. AUTHOR(S) Jonathan P. Erwert

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
 Traditional signature-based malware detection is effective, but it can only identify known malicious
programs. This thesis attempts to use machine-learning techniques to successfully identify
previously unknown malware from a set of Windows executable programs. We analyzed the histogram
of 4-, 8-, and 16-bit-sequence values contained in each program. We then analyzed the effectiveness
of using these histograms in part or in full as feature vectors for machine learning experiments. We also
explored the effect of an offset at the beginning of each program and its impact on classifier
performance. We successfully show that a machine learning classifier can be learned from these features,
with an f-measure in excess of 90% attained in one of our experiments. Using a part of the
histogram as the feature vector did not significantly affect classifier performance up to a point, nor did
including an offset. Our results also suggest that features derived from histograms are better suited to
tree-based algorithms compared to Bayesian methods.

14. SUBJECT TERMS
machine learning, malware analysis, static analysis

15. NUMBER OF
PAGES

57
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

FREQUENCY-BASED FEATURE EXTRACTION FOR MALWARE
CLASSIFICATION

Jonathan P. Erwert
Lieutenant, United States Navy
BS, U.S. Naval Academy, 2011

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2018

Approved by: Neil C. Rowe
Advisor

Mikhail Auguston
Second Reader

Peter J. Denning
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Traditional signature-based malware detection is effective, but it can only identify

known malicious programs. This thesis attempts to use machine-learning techniques to

successfully identify previously unknown malware from a set of Windows

executable programs. We analyzed the histogram of 4-, 8-, and 16-bit-sequence values

contained in each program. We then analyzed the effectiveness of using these

histograms in part or in full as feature vectors for machine learning experiments. We

also explored the effect of an offset at the beginning of each program and its impact on

classifier performance. We successfully show that a machine learning classifier can be

learned from these features, with an f-measure in excess of 90% attained in one of our

experiments. Using a part of the histogram as the feature vector did not significantly

affect classifier performance up to a point, nor did including an offset. Our results also

suggest that features derived from histograms are better suited to tree-based algorithms

compared to Bayesian methods.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1

II. BACKGROUND AND RELATED WORK ..3
A. EXECUTABLES ..3
B. MALWARE ANALYSIS...3
C. CODE REUSE AND PROGRAM COMPARISON4
D. DISTRIBUTION OF MALWARE ...5
E. ATTRIBUTE EXTRACTION ..6
F. MACHINE-LEARNING APPROACHES IN MALWARE

ANALYSIS ...7

III. METHODOLOGY ..9
A. THE DATA SET STUDIED ...9
B. ATTRIBUTE EXTRACTION AND ARFF FILE

GENERATION ..10
C. MACHINE-LEARNING METHODS ...13
D. PRECISION, RECALL, AND F-SCORE ...14

IV. DISCUSSION OF RESULTS ...15
A. CLASSIFIER PERFORMANCE USING FULL-ATTRIBUTE

ARFF FILES ..15
B. THE IMPACT OF OFFSETS ON CLASSIFIER

PERFORMANCE ..17
C. REDUCING ATTRIBUTE VECTOR LENGTH18

1. Classifier Performance on 4-Bit Reduced-Attribute
ARFF Files ..20

2. 8-Bit Reduced-Attribute Experiments21
3. 16-Bit Reduced-Attribute Experiments23

V. CONCLUSIONS ..27

APPENDIX. PROGRAM CODE ...29
A. PROGRAM TO GENERATE BASH FILE TO RETRIEVE

FILES FROM NPS REAL DRIVE CORPUS29
B. PROGRAM TO GENERATE 8-BIT FULL-ATTRIBUTE

DATA ..30
C. PROGRAM TO GENERATE 16-BIT REDUCED-ATTRIBUTE

DATA ..31

viii

D. PROGRAM TO GENERATE REDUCED-ATTRIBUTE 8-BIT
DATA ..33

LIST OF REFERENCES ..37

INITIAL DISTRIBUTION LIST ...41

ix

LIST OF FIGURES

Figure 1. Precision Performance of Full-Attribute Classifiers15

Figure 2. Recall Performance of Full-Attribute Classifiers16

Figure 3. F-score Performance of Full-Attribute Classifiers16

Figure 4. Classifiers’ Precision Performance for 4-bit Full-Attribute-Offset
Experiments ...17

Figure 5. Classifiers’ Recall Performance for 4-bit Full-Attribute-Offset
Experiments ...18

Figure 6. Classifiers’ F-score Performance for 4-bit Full-Attribute-Offset
Experiments ...18

Figure 7. Comparison of the Number of Executables Captured in Our
Reduced-Attribute Data Sets ..19

Figure 8. Classifiers’ Precision Performance for 4-bit Reduced-Attribute
Experiments ...20

Figure 9. Classifiers’ Recall Performance for 4-bit Reduced-Attribute
Experiments ...21

Figure 10. Classifiers’ F-score Performance for 4-bit Reduced-Attribute
Experiments ...21

Figure 11. Classifiers’ Precision Performance for 8-bit Reduced-Attribute
Experiments ...22

Figure 12. Classifiers’ Recall Performance for 8-bit Reduced-Attribute
Experiments ...22

Figure 13. Classifiers’ F-score Performance for 8-bit Reduced-Attribute
Experiments ...23

Figure 14. Classifiers’ Precision Performance for 16-bit Reduced-Attribute
Experiments ...24

Figure 15. Classifiers’ Recall Performance for 16-bit Reduced-Attribute
Experiments ...24

Figure 16. Classifiers’ F-score Performance for 16-bit Reduced-Attribute
Experiments ...25

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF TABLES

Table 1. List of Full-Attribute ARFF Files ..11

Table 2. List of Reduced-Attribute ARFF Files Generated13

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Neil Rowe, and my wife, Caitlin, for their

infinite patience throughout this entire process.

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Traditional malware-detection software relies upon signatures derived from static

analysis of the file or dynamic analysis of the program’s behavior. Though effective on

known malware, signature-based analysis cannot identify previously unknown malicious

programs, and when one considers that millions of new malicious programs are

discovered every year, it becomes evident that better tools are needed. Part of United

States Cyber Command’s most recent vision statement is hardening U.S. government

networks (United States Cyber Command [USCYBERCOM], 2018). Critical to

hardening of networks is speeding up the ability to detect malware on a host. This thesis

builds on recent work in the fields of computer forensics and machine learning to detect

malware, and explores the viability of using the frequencies of bit-sequence values

occurring in a program to identify malware.

Binary strings can be used to represent base-10 numbers, where the length of the

string determines the range of values that can be represented. For example, a sequence of

4 bits can represent base-10 numbers between 0 and fifteen. Our method examines how

often each possible value of a bit sequence appears in a given file's raw binary. We then

used this data as input to several machine-learning experiments to answer whether it

possible to distinguish between malicious and benign programs by looking at their

histograms (frequency distribution) of values for bit sequences.

The remainder of this thesis is organized in the following way. Chapter II is an

overview of current malware-analysis techniques, previous research attempts to increase

the speed of malware analysis and identification, and attempts to automate malware

classification and identification. It also includes a discussion of previous uses of

histograms or frequency-based methods for malware classification. Chapter III describes

our methodology, including our process for obtaining malware and non-malicious

programs for testing, our method for generating histograms, and a description of the

machine-learning algorithms used. Chapter IV describes results of our experiments.

Chapter V provides our major findings and makes recommendations for future work.

2

THIS PAGE INTENTIONALLY LEFT BLANK

3

II. BACKGROUND AND RELATED WORK

A. EXECUTABLES

Programs are used to make computers do things. Programs are written in human

readable languages that computers cannot understand. To make these programs

understandable to computers, the high-level source code is input to a compiler, which

outputs a binary representation of the program known as the executable image (Anderson

& Dahlin, 2011). The executable image, also known simply as the executable, is a series

of machine code instructions written in binary, which can be immediately understood and

executed by the computer’s central processing unit. Running executable files of unknown

origin is dangerous from a security perspective, because the advertised behavior and

actual behavior of the program may not be the same. However, it is difficult to examine a

program and determine if it is malicious.

B. MALWARE ANALYSIS

The goal of our research is to improve automated malware identification,

specifically for Windows executables. This research is built upon the analytical

techniques used to dissect and understand malware. Malware analysis can be static or

dynamic (Sikorski & Honig, 2012). Static analysis is performed by passive examination

of the file. This usually means an examination of the raw binary machine language using

a disassembler program or, if it is available, the source code of a malicious program.

However, less technical observations such as the file name and file path can also provide

insight or clues to identify malicious files (Rowe, 2015b). Dynamic analysis is conducted

in a safe forensic environment known as a sandbox and looks for adverse behavior as the

suspected malicious program executes.

Static analysis can develop signatures such as hashes of known malicious

programs or parts of programs, which can be used to identify previously analyzed

examples of malware. Hashes are generated using a mathematical function that takes

input data, such as a program or data file, and generates a unique alphanumeric output.

Other things that can be extracted from programs are signatures, sequences of distinctive

4

bytes appearing in the program. Antivirus programs rely heavily on these signatures to

identify files of concern. Unfortunately, malware developers have adapted by

manipulating or obfuscating their code so that signatures are often changing.

Signatures generated from dynamic analysis are sequences of system calls or

other significant events observed in a malicious program. Dynamic analysis should be

superior to static analysis because it allows the analyst to directly observe the behavior of

the suspected malware. However, countermeasures for dynamic analysis can check to see

if the program is being run in a forensic environment. This can be done by looking for

common plugins associated with virtual machines, or checking if the execution

environment has limited resources, which would indicate the use of a virtual machine as a

sandbox (Sikorski & Honig, 2012). Another potential problem with dynamic analysis is

that it relies on actually running the program. This is a time- and resource-intensive

process that also risks infecting the machine with malware.

C. CODE REUSE AND PROGRAM COMPARISON

Understanding how similar two programs are is important for malware

classification. Similarities between examples of malware can occur because the malware

exploits the same vulnerability, is intended to perform a similar function, or displays the

habits and idiosyncrasies of the individual malware developer. Similarities in malware

also can occur due to the sharing and reuse of source code (Benjamin & Chen, 2013).

Source code is shared and reused among authors to save effort and to expand the lifespan

of particular malware. Malware authors will also often generate permutations of the same

piece of malware to evade signature detection. All of these factors contribute to the rapid

production rate of malware.

Several studies have examined how different variants of the same malware can be

compared (Adkins, Jones, Carlisle, & Upchurch, 2013; Hongyuan & Osorio, 2013;

Seideman, Vargas, & Khan, 2014; Casey & Shelmire, 2014; Sarntinos, Benzaid, Arabiat,

& Al-Nemrat, 2016)). These studies differ in what they are specifically comparing and

how the two samples are compared. Adkins et al. (2014) and Sarantinos et al. (2016)

generated composite hashes of programs and compared files based on the differences

5

between their composite hashes. Adkins et al. (2014) used a technique called basic block

comparison which hashes parts of the file and then creates a composite hash-digest, while

Sarantinos (2016) et al. used the ssdeep implementation of the fuzzy hashing algorithm to

create a similar composite hash. Seideman et al. (2014) took a different approach,

generating a system call trace and comparing programs based on the similarities of the

programs' traces. Once the original program was summarized, statistical methodologies

were used to compare the two files. One such method of comparison is the Jacquard

index, which compares the intersection and the union of two sets and gives the fraction or

percentage of the elements the two sets have in common. The Jacquard index can be used

to determine how many common elements two files have (Adkins et al., 2013). It can also

be used to identify code reuse in malware (Casey & Shelmire, 2014). A similar

technique, the Jensen-Shannon distance, has been used to determine similarity in system

call traces to classify malware in categories similar to biological genera (Seideman et al.,

2014). Entropy can also be used as a measure of comparison (Sarantinos et al., 2016).

There are limits to these kinds of pattern matching because two programs with the

same purpose can be represented many ways depending on the author, language, or

compiler used. If pattern matching cannot be used to compare two programs, dynamic

analysis is necessary to determine semantic equivalence. A program is said to be

semantically equivalent to another if they execute identically. This is determined by

observing the execution of each program to see if they both start and stop in the same

state. This technique can be used on sections of programs to identify common functions

or methods that are commonly reused (Hongyuan & Osorio, 2013). However, it is very

difficult to apply.

D. DISTRIBUTION OF MALWARE

Looking at the extent of code reuse and the rapid rates of malware production

might lead one to believe that our systems are inundated with malware. This is not

necessarily the case. The Naval Postgraduate School (NPS) maintains a large corpus of

drives for the purpose of research in digital forensics. The corpus consists of 4000 drives

containing 290 million files. Out of the files only about 0.11 percent of the files were

6

identified as malicious by one of five representative malware detection methods (Rowe,

2015b). Several projects have used machine learning to recognize characteristics of

malware executables (Choi, J., Kim, H., Choi, C., & Kim, H., 2011; Mira, Huang, &

Brown, 2017).

E. ATTRIBUTE EXTRACTION

Feature (or attribute) extraction is the process of finding and defining the

interesting phenomena contained in each element of a data set. For malware, this is the

process of taking a file's binary and finding patterns by which a machine-learning

algorithm can reach useful classifications or conclusions. These patterns are usually

represented as ordered lists or vectors. Just as malware analysis can be static or dynamic,

so too can the process of attribute extraction. Dynamic analysis observes the execution of

the malicious program. This generates an attribute vector of system calls, libraries loaded,

and other observable events. For example, one study extracted file-system writes, register

operations, and network-access operations as its attributes (Cabau, Buhu, & Oprisa,

2016). However, most malware studies use static analysis for attribute extraction due to

its significant speed advantage. The most common static analysis technique is n-gram

extraction, a technique from natural-language processing research which seeks to capture

the dependencies between items in succession in a sequence (Russell & Norvig, 2010).

When applied to malware detection, n-gram analysis can be performed using either the

raw binary or the assembly language instructions. In their study, Zak, Raff, and Nichols

(2017) found that byte code n-grams generalized better than n-grams using assembly

language. Despite these findings, assembly language n-gram analysis remains popular

with recent studies using “shingling” to increase performance (Hassen, Carvalho, &

Chan, 2017). Shingling improves on n-gram analysis by introducing the concept of a

break point in the dependency chain. It can be thought of like a paragraph break in

writing where the last word of one paragraph and the first word of the next paragraph

may or may not be related. Shingling reduces the length of the attribute vector.

Another method of attribute extraction uses frequency of byte values. Two studies

which used this method focused on sorting malware into families. Singh and Khurmi

7

(2016) analyzed portions of files, focusing on unique and likely repeated sequences of

code, to create the attribute vectors while Yu et al. (2010) analyzed the entire file. The

first compared the sum of Euclidian distances between attributes in two malicious

programs to create a baseline for triaging malware into clusters, while the second

leveraged a Symbolic Aggregation Approximation (SAX) to determine similarity

between programs.

F. MACHINE-LEARNING APPROACHES IN MALWARE ANALYSIS

Machine learning is the process of programming computers to improve their

performance without human assistance. Given the frequency of code reuse in malware, it

is unsurprising that many studies have used machine learning to create classifiers that can

differentiate between types of malware. Machine learning can also be used to distinguish

malware from benign programs. Both of these problems require learning a classifier from

a set of training data which includes examples of malicious and benign programs or

examples of all of the types of malware being classified.

Most machine learning is supervised, meaning that the training data are labeled

with the correct classifications. Popular supervised learning techniques include support-

vector machines, tree-based classifiers, and Bayesian networks. Support-vector machines

try to find an optimal decision boundary between two classes. Tree-based classifiers

derive a series of yes-or-no questions based on the values of the attributes in the training

data. Bayesian networks use compounding probabilities to predict the correct

classification (Russell & Norvig, 2010). All these techniques have been used to derive

classifiers for malware identification, and are often used as baselines when evaluating

new techniques (Fuyong & Tiezhu, 2017). N-gram attributes derived from dynamic

analysis have been used to train support-vector machines to distinguish between malware

and benign software (Okane, Sezer, & McLaughlin, 2014). Similarly, n-gram attributes

derived from static analysis machine code have been used to train the decision-tree

random-forest algorithm to create a malware classifier (Usaphapanus & Piromsopa,

2017).

8

Unsupervised learning differs from supervised learning in that the training data is

not labeled with the correct classifications. Instead, unsupervised learning seeks to find

patterns that exist in the data naturally. Unsupervised techniques include clustering and

unsupervised neural networks (Kalash et al., 2018; Kargaard, Drange, Kor, Twafik, &

Butterfield, 2018). In both of these studies, malicious binaries were converted to picture

files prior to classification because there is much software available for picture

processing by neural networks.

9

III. METHODOLOGY

The code we wrote appears in the Appendix.

A. THE DATA SET STUDIED

We derived our data set from the NPS “Real Drive Corpus.” The corpus consists

of 4000 images of drives storing 290 million files. The corpus was compiled by

purchasing secondhand drives from around the world. The primary purpose of this corpus

is to facilitate research in computer forensics, with identification of malware being a

significant focus (Garfinkel, Farrell, Roussev, & Dinolt, 2009). It enabled us to compile

both our data set of malicious and benign executable files from a single source.

The primary tool we used for working with the forensic corpus was the SleuthKit

program developed by Brian Carrier (2018). SleuthKit includes a tool developed at NPS

called Fiwalk which automatically extracts file directory information and associated file

metadata (Garfinkel, 2009). We used Fiwalk to compile a list of executable files in the

corpus with DLL and EXE extensions. After selecting a random subset from this list, we

retrieved the actual files from the drive images in Expert Witness Disk Image Format

(EWF) in the corpus using Sleuthkit's “icat” command. EWF is a popular file format for

forensic images which meets the legal requirements of evidence preservation (Library of

Congress, 2017). EWF files accurately preserve the total content of a drive, including

deleted files and data stored in slack space. The icat command retrieves one file at a time,

so we automated the collection process by writing a Bash shell script with a separate icat

command for every file sought. Our final data set included 4835 Windows executables,

of which 4436 were classified as benign and 399 were classified as malicious.

Previous research on the corpus revealed that roughly 0.11 percent of the files in

the corpus were malware, with a bit higher percentage for executables (Rowe, 2015b).

We deliberately selected malware randomly with a higher percentage, so our random

sample included roughly 8 percent malware. This is significantly different from earlier

research which used approximately equal numbers of benign and malicious files in their

data sets or used a majority of malicious files (Choi et al., 2011; Mira et al., 2017).

10

Having an equal number of malicious and benign programs in the data set reduces the

chances the classifier would be biased toward malicious or benign programs. However,

given the real-world origins of the NPS corpus, we thought it better to use a data set

which reflected the corpus' ratio of malicious to benign programs.

B. ATTRIBUTE EXTRACTION AND ARFF FILE GENERATION

We needed to extract a set of attributes from each executable file in our data set so

that it could be input to our machine-learning platform Weka. Weka is a machine-

learning workbench developed by the University of Waikato in New Zealand. It uses an

input format known as Attribute Relation File Format or ARFF (Witten, Frank, & Hall,

2011). An ARFF file has two parts. The first part is a header which includes the name of

the data set, the attributes extracted from each executable in the data set, and the type of

the data for the attribute (integer, real, string, or list of values). The second part is the data

values of the attributes extracted from each executable. This set of values is called an

attribute vector and is represented as an ordered list. To generate our ARFF files we

wrote programs in Python 3 and ran them on a MacBook Pro running the MacOS High

Sierra Operating system.

A histogram is a set of counts on elements of a set. We generated histograms for

bit sequences of 4, 8, and 16 bits within each executable file, and used those for the data

in our ARFF files. To generate these histograms for 8-bit and 16-bit sequences, we used a

program written by Prof. Rowe (2015a). To generate the histogram of 4-bit sequences,

we wrote our own program using the Python Bitstring library. This library was necessary

because Python will only work with byte-aligned data and will only process binary data

at the byte level. The Bitstring library allowed us to create histograms of 4-bit values at

offsets of 0-bit, 1-bit, 2-bits, and 3-bits. Because our data was byte-aligned, this left us

with nonzero offsets with a final set of bits less than four which we ignored. The reason

for generating multiple 4-bit histograms with varying offsets was that we hypothesized

that including an offset would create a different distribution of counts, and wanted to see

if including a given offset would provide significantly better or worse classifier

11

performance. We only generated offset ARFF files for the 4-bit sequence values as a

proof of concept.

Once we had generated our histograms, we generated our attribute vectors using

two different methods. The first method normalized the counts in the histogram by

dividing by the total count of the executable. We used this first method to generate six

ARFF files: one for the 8-bit sequence, one for the 16-bit sequence, and one for each of

the four 4-bit sequence offsets. We will refer to ARFF files generated using this first

method as full-attribute because they contain an attribute vector which includes a value

for each value represented in the executables' full histogram. Table 1 provides specific

details on the six full-attribute ARFF files created using this first method. As the length

of the bit-sequence, we were examining increased, so too did the length of the attribute

vector, so that our full-attribute ARFF file contained an attribute vector of 65536 values.

Though Weka was generally capable of handling this large number of attributes, the

performance was slow and often required multiple tries to get Weka to successfully run

the machine-learning algorithms using such a large input file. For this reason, we also

experimented with a second method of attribute selection that explicitly tried to reduce

the size of the attribute vector.

Table 1. List of Full-Attribute ARFF Files

12

The second method used the bit sequences with the lowest nonzero counts as our

attributes since these more likely indicate unique properties of an executable. To select

the values for our attribute vector, we sorted the histograms by count from lowest to

highest. We then selected increasingly large, but overlapping, subsets of the sorted

histogram. Our selection criteria were simple in that we selected the value in the

histogram with the smallest count greater than zero and then took the next specified

number of values. This gave us a subset of the least frequently occurring values from the

histogram which occurred at least one time. From the histogram of 4-bit sequence values,

we selected three subsets. These subsets consisted of 4, 8 and 12 values. As previously

stated these subsets were overlapping, so all of the attributes included in a smaller subset

were included in any larger subsets. Each of these subsets was used as the attribute vector

for its own ARFF file. We repeated this process using the histogram of 8-bit sequence

values selecting subsets of 8, 16, 32, 64, and 128 values, and for the histogram of 16-bit

sequence values selecting subsets of 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, and

16384. We will refer to ARFF files generated using our second method as reduced-

attribute because they contain a subset of the executables' histogram. Table 2 details the

18 reduced-attribute ARFF files generated using this second method. We did not generate

any reduced-attribute ARFF files from the histograms which included an offset.

13

Table 2. List of Reduced-Attribute ARFF Files Generated

After the attribute vectors were generated, the associated executables needed to be

tagged as malicious or benign. This was done by comparing an executable’s hashcode to

those in the malware libraries of Bit9, Open Malware, Virus Share, Symantec, and Clam

AV using the data on from the NPS Real Drive Corpus (Rowe, 2015b).

C. MACHINE-LEARNING METHODS

Weka implements a wide range of well-known machine-learning algorithms. Our

experiments primarily used tree-based classifiers. We used the J48, logistic-model-tree

(LMT), random-tree, random-forest, and reduced-error-pruning (REP) tree classifiers.

14

We also experimented with the Naïve-Bayes and Bayesian-network classifiers. All

classifiers were trained using 66 percent of the data set and evaluated on the remaining 34

percent; this approach could be easily extended to do cross-validation to obtain more

accurate performance measures. We use the term “experiment” to describe a pairing of an

input ARFF file and a machine-learning algorithm. We paired each of our 24 ARFF files

with each of the 7 classifiers, for a total of 168 experiments. Five of these experiments

did not return results, either due to raising an error or failing to fully execute.

D. PRECISION, RECALL, AND F-SCORE

Precision is the proportion of correctly classified instances of a class compared to

the total number of instances classified as the class (Witten et al., 2016). In our

experiments, this meant the number of malicious files identified divided by the number of

total files classified as malicious. Recall is the proportion of correctly classified instances

of a class compared to the total number of instances of that class in the data set (Witten et

al., 2016). In our experiments, this meant the number of malicious files correctly

identified as malicious divided by the total number of malicious files in the data set.

Precision and recall are generally viewed as competing statistics, where maximizing one

minimizes the other (Witten et al., 2016). To get a kind of average of these competing

metrics, we also used the F-score which is their harmonic mean. It is calculated as two

times the product of the recall and precision divided by their sum.

15

IV. DISCUSSION OF RESULTS

A. CLASSIFIER PERFORMANCE USING FULL-ATTRIBUTE ARFF FILES

Figures 1, 2, and 3 display the precision, recall, and F-score for experiments we

conducted using the histogram of values generated for 4, 8, and 16-bit values. The Naïve

Bayes classifier provided the highest recall but the lowest precision. Across all bit-

sequence lengths, the five tree classifiers of J48, random-tree, random-forest, LMT, and

REP outperformed the two Bayesian classifiers, with the random-forest classifier

performing best across all bit-sequence lengths in both precision and F-score. This is

likely due to random-forest being the only classifier which uses bagging, or training using

multiple independent data sets, to boost performance (Russell & Norvig, 2010). Of note,

the best overall performance for F-score was from the 4-bit ARFF file using the random-

forest classifier. This was the best F-score noted for all experiments performed and the

only F-score that exceeded 90 percent. With this exception, the overall performance of all

classifiers remained consistent across bit-sequence length.

Figure 1. Precision Performance of Full-Attribute Classifiers

16

Figure 2. Recall Performance of Full-Attribute Classifiers

Figure 3. F-score Performance of Full-Attribute Classifiers

We were not able to get results for all seven of the classifiers for all three full-

attribute ARFF files that did not include an offset. When we tested both the 16-bit and 8-

bit full-attribute ARFF files using the Bayesian-network classifier, Weka raised an error

for overlapping bin ranges, which is strange because Weka automatically selects bin

ranges based on the range of values observed in the attribute vector. When we tested the

16-bit full-attribute ARFF file using both the LMT and REP classifiers, Weka interrupted

program execution without raising an exception or outputting any results.

17

B. THE IMPACT OF OFFSETS ON CLASSIFIER PERFORMANCE

Figures 4, 5, and 6 show the precision, recall, and F-score statistics for using the

four 4-bit-full-attribute ARFF files that were generated with the varying 0-bit, 1-bit, 2-bit,

or 3-bit offsets. Overall, the results of the offset experiments follow the same trend noted

in the other full-attribute experiments. Tree classifiers outperformed Bayesian classifiers,

with random-forest providing the best results for both precision and F-score. No clear

benefit from offsetting the start point of the binary string is evident from the data, except

that the Bayesian-network classifier saw an increase in precision as the offset was

increased. This did not generate a corresponding increase in F-score.

Figure 4. Classifiers’ Precision Performance for 4-bit Full-Attribute-Offset
Experiments

18

Figure 5. Classifiers’ Recall Performance for 4-bit Full-Attribute-Offset
Experiments

Figure 6. Classifiers’ F-score Performance for 4-bit Full-Attribute-Offset
Experiments

C. REDUCING ATTRIBUTE VECTOR LENGTH

To test whether a reduced number of attributes changed the performance of a

classifier, we used the 18 ARFF files generated using our second method of attribute

selection. When we examined those files, we noticed, particularly in ARFF files that had

more than 512 values in their attribute vector, that the number of executables represented

in the ARFF file did match with the total number of executables in our data set. To

19

investigate this phenomenon further, we generated a bar chart, Figure 7, displaying the

number of executables included in each ARFF file.

Figure 7. Comparison of the Number of Executables Captured in Our
Reduced-Attribute Data Sets

A sharp drop-off in the number of executables included in each ARFF file is

evident in the 16-bit-reduced-attribute ARFF files with an attribute vector containing

greater than 512 values. This drop-off is concerning because it is indicative of a logical

flaw in our attribute extraction methodology. None of the reduced-attribute ARFF files

contains the full set of executables contained in our data set. The likely cause of this is

that our program included a check to see if each attribute vector generated by our

program contained a sufficient number of values to be included in an ARFF file. If an

attribute vector failed that check, it was not included in the ARFF file. For example, if we

wanted to generate an ARFF file containing an attribute vector with 32 values, but only

31 specific bit-sequences had a count greater than zero, that executable would not be

included in the ARFF file. This casts significant doubts on how effective our attribute

20

reduction method is. If every executable cannot be represented using our attribute

selection method then not every executable can be classified using our methodology.

Practically this means that some malicious files may not even make it to the classification

stage and thus have no chance of being detected by our methodology.

1. Classifier Performance on 4-Bit Reduced-Attribute ARFF Files

Figures 8, 9, and 10 display the results for our 4-bit reduced-attribute

experiments. The overall trend of tree classifiers outperforming Bayesian classifiers is

evident in this data and consistent with the previous experiments using the full-attribute

vector length. Random-forest continued to provide the best results in precision and F-

score, while random-tree provided the best results for recall. By contrast, in the full-

attribute experiments the Naïve-Bayes classifier provided the best results for recall.

Reducing the attribute vector length from 12 to 8 did not cause a decline in performance

across all classifiers and metrics, but reducing the attribute vector length from 8 to 4

caused a greater than 50 percent drop in F-score across all classifiers.

Figure 8. Classifiers’ Precision Performance for 4-bit Reduced-Attribute
Experiments

21

Figure 9. Classifiers’ Recall Performance for 4-bit Reduced-Attribute
Experiments

Figure 10. Classifiers’ F-score Performance for 4-bit Reduced-Attribute
Experiments

Precision and F-score could not be calculated for the 4-bit-reduced-attribute-4 and

4-bit-reduced-attribute-8 Naïve-Bayes experiments and the 4-bit-reduced-attribute-4

Bayesian-network experiments because in all three of these experiments the classifier

identified all executables as benign resulting in a divide by zero error.

2. 8-Bit Reduced-Attribute Experiments

Figures 11, 12, and 13 show the results for our 8-bit reduced-attribute

experiments. The tree classifiers outperformed Bayesian classifiers in these experiments

22

as well. Random-forest continued to provide the best performance in precision and F-

score, while random-tree provided the best results for recall. In both random-tree and

random-forest, reducing the attribute vector length had very limited effects on the

classifier's performance.

Figure 11. Classifiers’ Precision Performance for 8-bit Reduced-Attribute
Experiments

Figure 12. Classifiers’ Recall Performance for 8-bit Reduced-Attribute
Experiments

23

Figure 13. Classifiers’ F-score Performance for 8-bit Reduced-Attribute
Experiments

3. 16-Bit Reduced-Attribute Experiments

Figures 14, 15, and 16 show the results for precision, recall, and F-score for our

16-bit reduced-attribute experiments. There was considerable variability in the precision

and recall performance for all the classifiers as the attribute vector length increased from

32 to 16384. Despite this variability, the results for F-score were relatively constant and

consistent with the results from the full-attribute and 8-bit and 16-bit reduced-attribute

experiments. Tree-based classifiers continued to outperform Bayesian classifiers and

random-forest provided the best performance in terms of F-score and precision. The

Naïve-Bayes classifier provided the best results in terms of recall.

24

Figure 14. Classifiers’ Precision Performance for 16-bit Reduced-Attribute
Experiments

Figure 15. Classifiers’ Recall Performance for 16-bit Reduced-Attribute
Experiments

25

Figure 16. Classifiers’ F-score Performance for 16-bit Reduced-Attribute
Experiments

26

THIS PAGE INTENTIONALLY LEFT BLANK

27

V. CONCLUSIONS

The data from our experiments suggests that histograms of bit-sequence values

can distinguish between malware and benign programs. However, classifier performance

must be improved if it is to be a useful tool in the fight against malware. One way could

be to expand or balance the data set used to train our data. In our experiments, we had 92

percent benign programs and 8 percent malware.

Our data suggests that bit-sequence length is a relatively unimportant factor.

Reducing the attribute space, to a point, did not seem to degrade classifier performance.

Future work to identify the best way to reduce the attribute vector length and file size

would be useful. Our experiments only looked at two types of machine-learning

algorithms, tree and Bayesian classifiers. Our data suggests that tree algorithms learn

from frequency-based attributes better than Bayesian algorithms do. Our experiments

also used only Windows-executable files. Future work should use a more diverse data set.

28

THIS PAGE INTENTIONALLY LEFT BLANK

29

APPENDIX. PROGRAM CODE

A. PROGRAM TO GENERATE BASH FILE TO RETRIEVE FILES FROM
NPS REAL DRIVE CORPUS

def BashGenerator(inputFile, outputFile):
 offsets = open(inputFile, "r", encoding = "UTF-8")
 out = open(outputFile, "w", encoding = "UTF-8")
 out.write("echo OFF\n")
 out.write("echo Retrieving Files\n")
 for line in offsets:
 a = line.split("|")
 out.write('icat -r -i ewf -o '+ a[3][:-1] + ' "/corp/nus/
drives/'+a[1][0:2]+"/"+a[1]+"/"+a[1]+'.E01" ' + a[2] +' >"erwert/'+a[0]+'.exe"\n')
 out.write("echo Finished")
 offsets.close()
 out.close()
 return print("Done")

def MergeFunction(input1, input2, output1):
 a = open(input1, "r", encoding = "UTF-8")
 b = open(input2, "r", encoding = "UTF-8")
 c = open(output1, "w", encoding = "UTF-8")
 a1 = a.readlines()

a.close()
 b1 = b.readlines()

b.close()
 for line1 in a1:
 for line2 in b1:
 aa = line1.split("|")
 bb = line2.split("|")
 if bb[1] == aa[0]:

c.write(bb[0] + "|" + bb[1] + "|" + bb[3] + "|" + aa[1])
 c.close()
 return print("Done")

print("Running Function 3")
function3("best_offsets_for_drives.txt", "exe_inode_data_rdc.txt",
"ReadyForFunction1.txt")
print("Done Running Function 3")
print("Running Function 1")
function1("ReadyForFunction1.txt", "erwert_long_test.txt")
print("Done!@#$")

30

B. PROGRAM TO GENERATE 8-BIT FULL-ATTRIBUTE DATA

import sys, math, hashlib, os

def endclean(OS):
 S = OS

 M = len(S)
 while ((M > 0) and \
 (S[M-1] in ['\n','\r','\t','\f','\a','\b','\v',' '])):
 S = S[0:M-1]
 M = M-1
 return S

def bytedistrib(filename):
 bytedist = [0 for i in range(256)]
 count = 0
 fid = open(filename, 'rb')
 byte = fid.read(1)
 while byte:
 k = int(ord(byte))
 bytedist[k] = bytedist[k] + 1
 byte = fid.read(1)
 count = count + 1
 fid.close()
 line = ""
 for x in bytedist:
 line += str(x/count) + ", "
 return line

if __name__=="__main__":
 benign_dir = sys.argv[1]
 mal_list = sys.argv[2]
 out = sys.argv[3]
 outputdir = {}
 outfile = open(out, 'w')
 outfile.write("@RELATION Single_Byte\n")
 mal1 = open(mal_list, "r", encoding = "UTF-8")
 mal2 = mal1.readlines()
 mal_files = set()

 for line in mal2:
 mal3 = line.split("|")
 mal_files.add(mal3[1][:-1])

 for i in range(256):

31

 outfile.write("@ATTRIBUTE " + str(i) + " NUMERIC\n")
 outfile.write("@ATTRIBUTE class {benign, malware}\n")
 outfile.write("@data\n")
 for filename in os.listdir(benign_dir):
 full_path = str(benign_dir) +"/"+ str(filename)

 if os.path.isfile(full_path):
 outputdir[full_path] = bytedistrib(full_path)

 if full_path in mal_files:
 outputdir[full_path] += "malware\n"

 else:
 outputdir[full_path] += "benign\n"

 for key in outputdir:
 outfile.write(outputdir[key])

C. PROGRAM TO GENERATE 16-BIT REDUCED-ATTRIBUTE DATA

import sys, math, hashlib, os

def endclean(OS):
 S = OS
 M = len(S)
 while ((M > 0) and \
 (S[M-1] in ['\n','\r','\t','\f','\a','\b','\v',' '])):
 S = S[0:M-1]
 M = M-1
 return S

def bytedistrib(filename):
 bytedist = [0 for i in range(65536)]
 bigramLib = {}
 count = 0
 features_List = []
 fid = open(filename, 'rb')
 byte1 = fid.read(1)
 while byte1:
 byte2 = fid.read(1)
 if byte2:
 k = (int(ord(byte1))*256)+int(ord(byte2))
 bytedist[k] = bytedist[k] + 1
 byte1 = fid.read(1)
 else:
 byte1 = byte2

32

 count = count + 1
 fid.close()

 for i in list(range(65536)):
 a = bytedist[i]
 if a not in bigramLib:
 bigramLib[a] = [i]
 else:
 bigramLib[a] += [i]

 for i in range(1,count):
 if i in bigramLib:
 features_List += bigramLib[i]
 #features_list returns a list of bigrams which
 # had the lowest non 0 count in the file (smallest keys)
 return features_List

if __name__=="__main__":
 benign_dir = sys.argv[1]
 mal_list = sys.argv[2]
 out = sys.argv[3]
 outputdir = {}
 mal1 = open(mal_list, "r", encoding = "UTF-8")
 mal2 = mal1.readlines()
 mal_files = set()
 Feature_count = int(sys.argv[4])
 outfile = open(out, 'w')
 outfile.write("@RELATION BIGRAMS "+str(Feature_count)+"\n")

 for line in mal2:
 mal3 = line.split("|")
 mal_files.add(mal3[1][:-1])

 for i in range(Feature_count):
 outfile.write("@ATTRIBUTE " + str(i) + " NUMERIC\n")
 outfile.write("@ATTRIBUTE class {benign, malware}\n")
 outfile.write("@data\n")
 for filename in os.listdir(benign_dir):
 full_path = str(benign_dir) +"/"+ str(filename)
 if os.path.isfile(full_path):
 write = False
 a = bytedistrib(full_path)
 b = []
 if len(a) > Feature_count:

33

 write = True
 for i in range(Feature_count):
 b += [a[i]]
 line = ""
 for x in b:
 line += str(x) + ", "

 outputdir[full_path] = line

 if write == True:
 if full_path in mal_files:
 outputdir[full_path] += "malware\n"

 else:
 outputdir[full_path] += "benign\n"

 for key in outputdir:
 outfile.write(outputdir[key])

D. PROGRAM TO GENERATE REDUCED-ATTRIBUTE 8-BIT DATA

import sys, math, hashlib, os

def endclean(OS):
 S = OS
 M = len(S)
 while ((M > 0) and \
 (S[M-1] in ['\n','\r','\t','\f','\a','\b','\v',' '])):
 S = S[0:M-1]
 M = M-1
 return S

def bytedistrib(filename):
 bytedist = [0 for i in range(256)]
 count = 0
 fid = open(filename, 'rb')
 byte = fid.read(1)
 ByteLib = {}
 features_List = []
 while byte:
 k = int(ord(byte))
 bytedist[k] = bytedist[k] + 1
 byte = fid.read(1)
 count = count + 1
 fid.close()

34

 #print('Analyzing file',filename,'pf',count,'bytes')
 #print('Byte distribution:',bytedist)
 for i in list(range(256)):
 a = bytedist[i]
 if a not in ByteLib:
 ByteLib[a] = [i]
 else:
 ByteLib[a] += [i]

 for i in range(1,count):
 if i in ByteLib:
 features_List += ByteLib[i]
 #features_list returns a list of bigrams which
 # had the lowest non 0 count in the file (smallest keys)
 return features_List

if __name__=="__main__":
 benign_dir = sys.argv[1]
 mal_list = sys.argv[2]
 out = sys.argv[3]
 outputdir = {}
 mal1 = open(mal_list, "r", encoding = "UTF-8")
 mal2 = mal1.readlines()
 mal_files = set()
 Feature_count = int(sys.argv[4])
 outfile = open(out, 'w')
 outfile.write("@RELATION SingleByte "+str(Feature_count)+"Feature\n")

 for line in mal2:
 mal3 = line.split("|")
 mal_files.add(mal3[1][:-1])

 for i in range(Feature_count):
 outfile.write("@ATTRIBUTE " + str(i) + " NUMERIC\n")
 outfile.write("@ATTRIBUTE class {benign, malware}\n")
 outfile.write("@data\n")
 for filename in os.listdir(benign_dir):
 full_path = str(benign_dir) +"/"+ str(filename)
 if os.path.isfile(full_path):
 write = False
 a = bytedistrib(full_path)
 b = []
 if len(a) > Feature_count:
 write = True

35

 for i in range(Feature_count):
b += [a[i]]

line = ""
for x in b:

line += str(x) + ", "

outputdir[full_path] = line

 if write == True:
 if full_path in mal_files:

outputdir[full_path] += "malware\n"
 else:

outputdir[full_path] += "benign\n"

 for key in outputdir:
 outfile.write(outputdir[key])

36

THIS PAGE INTENTIONALLY LEFT BLANK

37

LIST OF REFERENCES

Adkins, F., Jones, L., Carlisle, M., & Upchurch, J. (2013). Heuristic malware detection
via basic block comparison. 2013 8th International Conference on Malicious and
Unwanted Software: The Americas (MALWARE),11–18. https://doi.org/10.1109/
MALWARE.2013.6703680

Anderson, T., & Dahlin M. (2011). Operating systems principles and practice (2nd ed.).
Charleston, SC: Recursive Books, Ltd.

Benjamin, V., & H. Chen. (2013). Machine learning for attack vector identification in
malicious source code. 2013 IEEE International Conference on Intelligence and
Security Informatics (ISI), 21–23. https://doi.org/10.1109/ISI.2013.6578779

Cabau, G., Buhu, M., & Oprisa, C. (2016). Malware classification based on dynamic
behavior. 2016 18th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), 315–318. https://doi.org/10.1109/
SYNASC.2016.057

Carrier, B. (2018). The Sleuth Kit (Version 4.6.4) [Computer Program]. Retrieved from
https://www.sleuthkit.org

Casey, W., & Shelmire, A. (2014.). Signature limits: An entire map of clone features and
their discovery in nearly linear time (Report Num. arXiv:1407.2877). Retrieved
from arXiv website: https://arxiv.org/abs/1407.2877

Choi, J., Kim, H., Choi, C., & Kim, P. (2011). Efficient malicious code detection using n-
gram analysis and SVM. 2011 14th International Conference on Network-Based
Information Systems, 618–621. https://doi.org/10.1109/NBiS.2011.104

Fuyong, Z., & Tiezhu, Z. (2017.). Malware detection and classification based on n-grams
attribute similarity. 2017 IEEE International Conference on Computational
Science and Engineering (CSE) and IEEE International Conference on Embedded
and Ubiquitous Computing (EUC), 1, 793–796. https://doi.org/10.1109/CSE-
EUC.2017.157

Garfinkel, S. (2009). Automating Disk Forensic Processing with SleuthKit, XML and
Python. 2009 Fourth International IEEE Workshop on Systematic Approaches to
Digital Forensic Engineering, 73–84. https://doi.org/10.1109/SADFE.2009.12

Garfinkel, S., Farrell, P., Roussev, V., & Dinolt, G. (2009). Bringing science to digital
forensics with standardized forensic corpora. Digital Investigation, 6(S), S2–S11.
https://doi.org/10.1016/j.diin.2009.06.016

https://doi.org/10.1109/SYNASC.2016.057
https://doi.org/10.1109/SYNASC.2016.057
https://arxiv.org/abs/1407.2877

38

Hassen, M., Carvalho, M., & Chan, P. (2017). Malware classification using static
analysis based features. 2017 IEEE Symposium Series on Computational
Intelligence (SSCI), 1–7. https://doi.org/10.1109/SSCI.2017.8285426

Hongyuan Qiu, F., & Osorio, F. (2013). Static malware detection with segmented
sandboxing. 2013 8th International Conference on Malicious and Unwanted
Software: The Americas (MALWARE), 132–141. https://doi.org/10.1109/
MALWARE.2013.6703695

Kalash, M., Rochan, M., Mohammed, N., Bruce, N., Wang, Y., & Iqbal, F. (2018).
Malware classification with deep convolutional neural networks. 2018 9th IFIP
International Conference on New Technologies, Mobility and Security (NTMS),
1–5). https://doi.org/10.1109/NTMS.2018.8328749

Kargaard, J., Drange, T., Kor, A., Twafik, H., & Butterfield, E. (2018.). Defending IT
systems against intelligent malware. 2018 IEEE 9th International Conference on
Dependable Systems, Services and Technologies (DESSERT), 411–417.
https://doi.org/10.1109/DESSERT.2018.8409169

Library of Congress. (2017, February 27). Expert witness disk image format (EWF)
family. Retrieved from https://www.loc.gov/preservation/digital/formats/fdd/
fdd000406.shtml

Mira, F., Huang, W., & Brown, A. (2017). Improving malware detection time by using
RLE and N-gram. 2017 23rd International Conference on Automation and
Computing (ICAC), 1–5. https://doi.org/10.23919/IConAC.2017.8082001

O’Kane, P., Sezer, S., & Mclaughlin, K. (2015). N-gram density based malware
detection. 2014 World Symposium on Computer Applications and Research
(WSCAR), 1–6. https://doi.org/10.1109/WSCAR.2014.6916806

Rowe, N. (2015a). Bytedistrib.py [Computer Program] Retrieved from
http://faculty.nps.edu/ncrowe/coursematerials/bytedistrib.py.txt

Rowe, N. (2015b). Finding contextual clues to malware using a large corpus. 2015 IEEE
Symposium on Computers and Communication (ISCC), 229–236. https://doi.org/
10.1109/ISCC.2015.7405521

Rowe, N. (2016). Identifying forensically uninteresting files in a large corpus. EAI
Endorsed Transactions on Security and Safety, 3(7), 1-15. 10.4108/eai.8-12-
2016.151725

Russell, S., & Norvig, P. (2010). Artificial intelligence: a modern approach (3rd ed.).
Upper Saddle River, NJ: Prentice Hall.

39

Sarantinos, N., Benzaid, C., Arabiat, O., & Al - Nemrat, A. (2016). Forensic malware
analysis: The value of fuzzy hashing algorithms in identifying similarities. 2016
IEEE Trustcom/BigdataSE/ISPA, 1782-1787. http://roar.uel.ac.uk/5710/
1/Forensic%20Malware%20Analysis.pdf

Seideman, J., Khan, B., & Vargas, A. (2014). Identifying malware genera using the
Jensen-Shannon distance between system call traces. 2014 9th International
Conference on Malicious and Unwanted Software: The Americas (MALWARE),
1–7. https://doi.org/10.1109/MALWARE.2014.6999409

Sikorski, M., & Honig, A. (2012). Practical malware analysis the hands-on guide to
dissecting malicious software. San Francisco, CA: No Starch Press.

Singh, N., & Khurmi, S. (2016.). ByteFreq: Malware clustering using byte frequency.
2016 5th International Conference on Reliability, Infocom Technologies and
Optimization (Trends and Future Directions) (ICRITO), 333–337. https://doi.org/
10.1109/ICRITO.2016.7784976

United States Cyber Command. (2018). Achieve and Maintain Cyberspace Superiority:
Command Vision for US Cyber Command USCYBERCOM Fort Meade, MD.
Retrieved from https://www.cybercom.mil/Portals/56/Documents/
USCYBERCOM%20Vision%20April%202018.pdf?ver=2018-06-14-152556-010

Usaphapanus, P., & Piromsopa, K. (2017). Classification of computer viruses from
binary code using ensemble classifier and recursive feature elimination. 2017
Twelfth International Conference on Digital Information Management (ICDIM),
27–31. https://doi.org/10.1109/ICDIM.2017.8244670

Witten, I., Frank, E., & Hall, M. (2011). Data mining practical machine learning tools
and techniques (3rd ed.). Amsterdam: Elsevier/Morgan Kaufmann.

Yu, S., Zhou, S., Liu, L., Yang, R., & Luo, J. (n.d.). Malware variants identification
based on byte frequency. 2010 Second International Conference on Networks
Security, Wireless Communications and Trusted Computing, 2, 32–35.
https://doi.org/10.1109/NSWCTC.2010.145

Zak, R., Raff, E., & Nicholas, C. (n.d.). What can N-grams learn for malware detection?.
2017 12th International Conference on Malicious and Unwanted Software
(MALWARE), 109–118. https://doi.org/10.1109/MALWARE.2017.8323963

40

THIS PAGE INTENTIONALLY LEFT BLANK

41

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

	18Dec_Erwert_Jonathan_First8
	18Dec_Erwert_Jonathan
	I. Introduction
	II. Background and Related Work
	A. Executables
	B. Malware Analysis
	C. Code Reuse and Program Comparison
	D. Distribution of malware
	E. Attribute Extraction
	F. Machine-learning Approaches in Malware Analysis

	III. Methodology
	A. The Data Set Studied
	B. Attribute Extraction and arff file generation
	C. Machine-learning Methods
	D. PRecision, recall, and F-Score

	IV. Discussion of Results
	A. classifier performance using Full-attribute arff files
	B. the impact of OFFSETS on classifier performance
	C. Reducing Attribute vector length
	1. Classifier Performance on 4-Bit Reduced-Attribute ARFF Files
	2. 8-Bit Reduced-Attribute Experiments
	3. 16-Bit Reduced-Attribute Experiments

	V. Conclusions
	APPENDIX. PROGRAM code
	A. Program to generate bash file to retrieve files from nps REAL DRIVE corpus
	B. program to generate 8-BIT- full-attribute data
	C. program to generate 16-BIT-reduced-attribute data
	D. program to generate reduced-attribute 8-BIT data

	List of References
	initial distribution list

