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1. SUMMARY 

As part of the Defense Advanced Research Projects Agency (DARPA) Mining and 
Understanding Software Enclaves (MUSE) project, the Derivation Miner team, including Kestrel 
Institute, Kestrel Technology (KT), the University of Texas at Austin, and Qadium, investigated 
the question of whether large online repositories of open source computer code could be used to 
assist program synthesis in such a way that the result has high assurance.  Our results show that 
this is indeed possible.  Our work focused on two sub-questions.  First, can we search large code 
corpora and find code that performs specific desired functionality?  We developed a variety of 
indexing, analysis, and search tools and showed that, in many cases, we can use them to identify 
code in the MUSE corpus that has the desired functionality. Second, can we then verify the 
found code and incorporate it into larger programs being synthesized, in such a way that the 
resulting programs can be proved correct?  We developed tools, including our Automated 
Program Transformations (APT) toolkit and our Axe toolkit, to accomplish this, and 
demonstrated that, for many examples, we can indeed verify code found “in the wild” and use it 
to synthesize proven programs. 
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2. INTRODUCTION 

In recent years, large repositories of open source code have become available on the web, on 
sites such as Github.  Such “Big Code” corpora represent many person-decades of work and  
thus may be very valuable resources to programmers.  We set out to answer the question of 
whether such corpora can be useful in the process of software synthesis, in particular when a 
formal, mathematical proof of the synthesized code is desired. 

2.1. Background 

2.1.1. Software Synthesis 

In stepwise refinement, a program is derived from a formal specification via a sequence of 
intermediate specifications. Several refinement notions and formalisms and tools exist. In our 
approach, a derivation is a sequence s0 → s1 → … → sn → p, where the specification s0 captures 
requirements, s1 ,…, sn are intermediate specifications, p is the program that implements the 
specification, and → represents a formal refinement relation – the last step typically involves a 
code generator that compiles the suitably refined executable specification sn into a standard 
programming language like C or Java. 
Each derivation step represents a design decision, e.g., the choice of a data structure or 
algorithm, or the application of a particular optimization. As different design decisions may be 
taken at each stage, a derivation is one path in a tree whose root and other non-leaf nodes are 
specifications, whose branches are refinement steps, and whose leaf nodes are implementations. 
All the leaves are implementations of the root specification; they use different algorithms, data 
structures, library functions, etc. In practice, the tree may be a graph, as different paths may lead 
to identical nodes, e.g., if two or more “orthogonal” transformations are applied in different 
orders. 
Kestrel's research has focused on refinement-based program synthesis, where refinement steps 
are carried out via automated transformations. That is, given si, instead of writing down si+1 and 
proving si → si+1 (‘posit and prove’), an automated transformation is applied to si to generate 
both si+1 and a formal proof of the refinement si → si+1 (‘correct by construction’). Applying a 
transformation may require proving suitable applicability conditions, but these proofs are 
generally simpler than proving the top-level refinement relation si → si+1; in other words, 
transformations help reduce complex proof tasks to simpler proof tasks in a principled way. 
When specifications are restricted to particular domains, the application of transformations (and, 
in particular, the proofs of the applicability conditions) can often be made completely automatic. 
This results in a domain-specific software synthesis tool that works like a compiler and is usable 
by people without a background in formal methods, program refinement, or program 
transformation. 

2.1.2. The ACL2 Theorem Prover 

A Computational Logic for Applicative Common Lisp (ACL2) is a state-of-the-art, industrial-
strength theorem prover, developed by our teammates at the University of Teaxs at Austin. 
ACL2 combines powerful proof procedures with a sophisticated environment to develop not only 
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formal theories and proofs, but also efficient programs and meta-programs. ACL2 has been used 
in a variety of applications, in particular hardware verification, but it is increasingly used in 
software verification as well. 

2.1.3. The CodeHawk Static Analyzer 

Kestrel Technology’s CodeHawk analyzer performs static analysis of C programs, Java 
(bytecode) programs, and x86 binaries.  It aims to perform sound analysis and is based on 
abstract interpretation.  In this project, we used CodeHawk to extract features for machine 
learning.  

2.2. Research Questions 

In this project, we investigated two main research questions: 
1. Can we search large code corpora and find code that performs specific desired 

functionality? 
2. Can we then verify the found code and incorporate it into larger programs being 

synthesized, in such a way that the resulting programs can be proved correct? 
The first question was initially posed by the MUSE program announcement, and was therefore 
investigated by the other teams in the MUSE program as well. The second question was instead 
unique to our team and approach. It addresses the issue of whether code found in the wild can be 
safely used in a development. There are obvious risks in including dubious code into one’s own 
development. Our approach to mitigate these risks is to formally prove that the code has the 
desired functionality. In this project, we focused on functional requirements, but our approach 
can also address non-functional requirements, security requirements (e.g., the code does what it 
is expected to do, and critically nothing else), and so on. 
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3. METHODS, ASSUMPTIONS, AND PROCEDURES 

The Kestrel team’s research for the MUSE program focused on safely reusing Java code from 
the corpus.  Specifically, we analyzed Java bytecode present in the corpus.  The tools we 
developed can be divided into two groups: corpus-related tools and proof-related tools.  The 
corpus-related tools include tools for: 

(1) organizing corpus code; 
(2) analyzing corpus code; 
(3) querying code analysis results in a database; 
(4) applying machine learning to analysis results; and 
(5) finding similar code based on machine learning results 

The proof-related tools include: 
(1) the underlying ACL2 theorem prover, upon which our proof tools are built 
(2) the Axe Rewriter, for applying simplification rules 
(3) the Axe Lifter, for lifting code into logic 
(4) the Axe Equivalence Checker, for proving equivalence of programs and specifications 
(5) the APT toolkit, for constructing derivations linking code and specifications and for 

synthesizing code from specifications 
(6) the ACL2 in Java (AIJ), and ACL2 to Java (ATJ) tools, for generating Java code from 

ACL2 code. 
(7) Various formal specifications and supporting libraries of definitions and theorems. 

The rest of this section describes the major tools that we developed and improved over the course 
of our research, motivated by the challenge problems. 

3.1. Organizing Corpus Code 

For organizing corpus code, Kestrel has developed tools for:  
(a) measuring the corpus size, as total expanded size, and as numbers and sizes of Java-

related items 
(b) unpacking the corpus in a fault-tolerant way 
(c) removing non-Java-related files 
(d) converting filenames from old encodings to Unicode, and 
(e) deduplicating jar files and class files in the file system while retaining origin information 

3.1.1. Measuring the Corpus Size. 

The corpus started out as projects on open source sites such as Github, SourceForge, Google 
Code, and the University of California at Irvine (UCI) Maven repositories.  Leidos and other 
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performers selected C/C++ and Java projects, assigned a Universally unique identifier (UUID) to 
each project, attempted to do builds, and packaged the sources and builds into various tarballs. 
When we (Kestrel Institute) were given access to the tarballs, each project could contain tarballs 
for metadata, code, UCI_build, C_build, and buildbot.  We assigned corpus version numbers to 
specific lists of tarballs (along with their cksum hashes).  The following discussion will refer to 
version V4_2 of the corpus unless otherwise specified. 
To get an idea of the quantity of code that we needed to process, we wrote the script gather-
tarball-java-data.  For each tarball, this script records the tarball file size and cksum, the 
expanded size in the filesystem, and the numbers and size in bytes of java-related (java, class, 
and jar) files in the expanded tarball. 
For MUSE Corpus version V4_2, there are 1,462,668 tarballs, taking 10.7 TB.  The total 
expanded size of these tarballs is 23.0 TB.  Kestrel's focus for the MUSE program was on Java 
projects.  When we filtered out projects without Java content, the total expanded size of those 
tarballs was 7.1 TB. 
Within the projects with Java content, there are many other files such as code in other languages, 
image files, etc.  Just counting the Java-related files, there is a total of 1.3 TB of Java-related 
files in the expanded tarballs.  1.11 TB of that is in jar files, 182 GB is in java source files, and 
16 GB in separate class files.  Note: these numbers include a lot of duplication, and the jar files 
can contain non-java-related files. 

3.1.2.   Unpacking the Corpus. 

Unpacking the corpus, removing non-Java-related files, and deduplicating are all done in the 
script make-jcorpus. To fully unpack the Java-related corpus, we expanded the tarballs with 
Java-related content and removed the non-Java-related files, and expanded the jar files.  All 
expansion was done after checking the archive files for directory traversal vulnerabilities (e.g., 
when the archive contained a file name starting with "../"). 
For expanding the jar files, we developed the program "jarextractor".  Jar files are in a zip 
format, but there are some inconsistencies between versions of zip.  jarextractor calls the Linux 
"unzip" program first, and if it gets an error, tries to use "7za".  Any errors are recorded in the 
filesystem parallel to the jar file, and the expanded jar is also recorded parallel to the jar file.  
Within the expanded jar, non-Java-related files are removed and recursive jars expanded, until no 
jars remain.   

3.1.3. Converting Filenames from Old Encodings to Unicode. 

Some projects in the MUSE corpus were created prior to widespread use of UTF-8 for file 
names.  Since we have many downstream tools that operate on file names, we wanted to make 
sure those file names were valid Unicode strings.  We identified 206 different files whose names 
were not valid UTF-8. 
Linux allows filenames that contain any character other than slash or null.  There was one 
Brazilian project that had filenames in Code Page 850 (CP-850), and two other projects with 
filenames (and directories) in International Organization for Standardization (ISO) 8859-1.  We 
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used "convmv" to convert these files and directories to UTF-8, as part of the "make-jcorpus" 
script.  

3.1.4. Deduplicating Jar Files and Class Files. 

After make-jcorpus expands a top-level jar file (including all nested jars), if there are no java 
source files in the expansion, then the jar file and its expansion are moved to "jarcentral" and 
renamed to the MD5 hash of the jar file, and replaced by symlinks in the original project 
directory.  Parallel to the jar file and its expansion in jarcentral there is a file which we call the 
"original-files" file containing the original jar file name.  When make-jcorpus sees another copy 
of this same top-level jar file, it does not need to expand it again.  Instead, it replaces the jar file 
by a symlink to the same jar file in jarcentral, adds a directory symlink to the expanded jar in 
jarcentral, and adds the original file name to the "original-files" file in jarcentral.  This allows 
any tool to look up a jar file by its MD5 hash and to find out all the projects that it was in. 
In a similar way, the class files in the project directories and the class files in the expansions of 
jar files are deduplicated to "classcentral". 
For MUSE corpus version V4_2, the size of jarcentral is 682 GB, and the size of classcentral is 
280 GB. 
gather-tarball-java-data and make-jcorpus have been made open source and published on Github 
under the Berkeley Software Distribution (BSD) 3-clause license.  The documentation there goes 
into much more detail about the file organization and other aspects.  See 
https://github.com/KestrelInstitute/big-code-corpus. 

3.2. Analyzing Corpus Code 

For analyzing corpus code, one simple step is to collect metadata information on each project; 
another step is to parse all the class files in classcentral using the ObjectWeb ASM library to 
gather a list of all the methods in the corpus. 
The collect-project-metadata script scans all the project directories created by expanding the 
corpus tarballs, collects certain property-value pairs from the project-level Javascript Object 
Notation (JSON) metadata files, and outputs them to a summary file for later uploading project-
level information into a graph database. 
The collect-metadata script, besides calling collect-project-metadata, also parses all the class 
files in classcentral using the ObjectWeb ASM library to gather a list of all the classes and 
methods in the corpus.  This list is used later for creating the class and method vertices in a graph 
database. 

3.2.1. Feature Extraction. 

Kestrel Technology developed a variety of analyses to extract features from corpus code, 
including features for loops, methods, and classes.  Loop features currently include: 

bc: bytecode frequencies of instructions within the loop, with conditional jumps that jump 
out of the loop distinguished from conditional jumps that stay within the loop; 

bc-cat: bytecode frequencies grouped by category (arithmetic, comparison, control, etc); 
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libcalls: count of library calls made from within the loop 
sizes/counts: 

– number of instructions within the loop
– depth of the loop
– number of exits out of the loop

Features extracted from methods currently include: 
bc: byte code frequencies of instructions within the method 
bc2: frequencies of byte code pairs (two consecutive instructions) 
bc3: frequencies of byte code triples (three consecutive instructions 
libcalls: count of library calls made within the method 
api-types: count of types of arguments and return value 
op-types: frequency of types operated on by instructions 
ksubgraphs: frequency of 4-subgraphs of the control flow graph 
literals: count of integral and floating point literals used in the method 
attrs: boolean (1/0) values for method attributes such as static, final, synchronized, etc. 
sizes/counts: 

– instrs: number of instructions in the method
– i-calls: number of interface calls made
– v-calls: number of virtual calls made
– loops: number of loops in the method
– args: number of arguments passed to the method
– max-depth: maximum depth of the loops in the method
– exn-handlers: number of exception handlers
– checked-exns: number of checked exceptions thrown by the method
– subgraphs: number of 4-subgraphs of the control flow graph
– cfg-edges: number of edges in the control flow graph
– cfg-nodes: number of nodes in the control flow graph
– complexity: control flow graph complexity (edges - nodes + 2)

Features extracted from classes are mostly an accumulation of method features and currently 
include: 

bc: accumulated byte code frequencies over all methods 
bc2: accumulated byte code pair frequencies over all methods 
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bc3: accumulated byte code triple frequencies over all methods 
libcalls: accumulated library call counts over all methods 
api-types: frequency of all method argument and return value types 
op-types: frequency of all types operated on by instructions 
ksubgraph: accumulated 4-subgraph frequencies over all methods 
literals: accumulated integral and floating point literals over all methods 
attrs: class attributes such as final, interface, immutable, dispatch, etc. 
sizes/counts: 

– methods: number of methods with byte code defined in the class 
– native-methods: number of native methods defined in the class 
– fields: number of fields defined in the class 
– max-depth: maximum loop depth over all methods in the class 
– loops: number of loops in all methods combined 
– instrs: number of instructions in all methods combined 
– subgraphs: number of distinct subgraphs in all methods combined 
– max-complexity: maximum control flow graph complexity over all methods 

The features for each artifact analyzed are output in Extensible Markup Language (XML) format 
for easy consumption by other tools.  The features used for the method similarity tool based on 
Non-negative Matrix Factorization (NMF) clustering (described below) are the bytecode 
frequencies and the instrs, v-calls, i-calls, loops, max-depth, subgraphs, cfg-nodes, and 
complexity features for each method. 

3.3. Querying Code and Analysis Results in a Database 

For querying code analysis results in a database, Kestrel has developed 
(a) a Titan graph database schema 
(b) a tool to load project, class and method information into vertices and edges in the 

database 
(c) tools to load analysis results into properties in the database 
(d) documentation on how to use Gremlin to query the database, and 
(e) a tool that relates query results back to Java source files in the file system 

3.3.1. Titan Graph Database Schema. 

TitanDB is a graph database that can use various storage backends and various search backends.  
(Since we started the project, the company that developed TitanDB was purchased by Aurelius 
and TitanDB was used to build the commercial product DataStax Enterprise Graph, while the 
original TitanDB was forked into JanusGraph, now a Linux Foundation project.)  We use 
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Cassandra for the storage backend and Elasticsearch for the search backend.  Titan also supports 
the Apache TinkerPop stack including the Gremlin graph query language. 
The schema we developed defines Project, Class, and Method vertices along with various 
properties on them.  The schema also defines edges connecting methods to their classes.  Project 
vertices are primarily indexed by their UUIDs.  Class vertices are primarily indexed by the MD5 
hash of the class file.  Method vertices are primarily indexed by "methodidx", which 
concatenates the classhash, method name, and method signature.  In addition, there are 
Elasticsearch full text search indexes (for doing searches using regular expressions) for project 
name, method name, and method signature.  

3.3.2. A Tool to Load Project, Class and Method Information into the Database. 

After defining the schema, we run the "ingest-metadata" script to create the project, class, and 
method vertices in the Titan graph database. 

3.3.3. Tools to Load Analysis Results into the Database. 

The CodeHawk Java analyzer creates an XML output file for each class file, with the results of 
analysis (the features described above) for all methods in that class file. 
To load these results into Titan, we developed the tool "ingest-features".  Given a user-
specifiable number N of processes, it organizes the XML files into N chunks and processes the 
chunks of files in parallel.  The XML files are parsed to extract the analysis feature values we 
want, and then the feature values are ingested into the database. 
In particular, for each method we load frequencies for the 256 Java bytecodes, along with 8 other 
features: number of instructions, number of virtual calls made, number of interface calls made, 
number of loops in the method, maximum depth of the loops in the method, number of 4-
subgraphs of the control flow graph, number of nodes in the control flow graph, and control flow 
graph cyclomatic complexity. 
For the MUSE corpus V4_2, there were 26,521,669 analysis results files processed, containing 
data for a total of 243,293,975 methods. 

3.3.4. Documentation on Gremlin and the Show Soures Tool 

Gremlin is a graph query language that has been implemented for many graph databases.  
However, it is not similar to Structured Query Language (SQL).  Kestrel has developed notes on 
how to use Gremlin on our particular graphs, along with examples.  We developed a tool, 
"show_sources" in Groovy Shellscript that can be loaded into a Gremlin interactive session that 
looks up query results (bytecode methods) in the filesystem to find possible matching source 
files. 

3.4. Applying Machine Learning to Analysis Results 

For applying machine learning to analysis results, Kestrel has developed 
(a) a tool that assembles analysis results into sparse matrix form 
(b)  a tool that deduplicates feature vectors while retaining origin information 
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(c) a tool that uses Smallk NMF to reduce each unique feature vector to a shorter cluster 
vector 

3.4.1. Creating the Sparse Matrix Form. 

In order to convert the analysis data to matrix form, we developed the build-matrix tool.  The 
analysis data is initially in the form of XML files generated by the CodeHawk analyzer, but the 
dimension-reduction tools we use expect Matrix Market Coordinate Format, which is a text 
format for matrices that is sparse in both dimensions.  build-matrix spins up N processes to parse 
the XML files in parallel to generate N bare matrix files and then combines them into a single 
full sparse matrix file.  build-matrix also creates row label (method index) and column label 
(feature index) files. 
After building the matrix file, build-matrix normalizes the feature values (all of which are in a 
range [0 .. N]) by scaling them to the range [0 .. 1].  The maximum raw value for each feature is 
recorded in a file. 
For the MUSE corpus V4_2, there were 26,521,669 analysis results files processed, containing 
data for a total of 243,293,975 methods.  The resulting matrix has 3,122,724,156 nonzero feature 
values.   

3.4.2. A Tool to Deduplicate Feature Vectors. 

Many methods have identical feature vectors.  This does not necessarily mean the methods are 
identical, since differences in the constant pool or in the order of bytecode instructions will not 
affect the feature vector.  However, feature vector duplicates are not useful, and it slows down 
downstream tools.  To deduplicate the feature vectors in the matrix, we developed the "remove-
duplicate-documents" tool.  This tool creates a new matrix file and a new row label (method 
index) file, as well as augmenting the old row label file with a new column that maps each old 
method to the representative new method with the same feature vector. 
For the MUSE corpus V4_2, the 243,293,975 method vectors were deduplicated to 21,026,181 
different method vectors.  The 3,122,724,156 nonzero feature values in the original matrix were 
reduced to 507,343,064 nonzero feature values in the new matrix. 

3.4.3. A Tool for Nonnegative Matrix Factorization Clustering. 

Nonnegative Matrix Factorization is a class of dimension reduction methods similar to Principal 
Component Analysis, but resulting in nonnegative weights and derived features that can be more 
obvious in meaning.  Kestrel Institute developed a Docker image that drives the open source 
Smallk "fuzzy clustering" implementation of NMF.  The number of clusters is a parameter N that 
defaults to 32. 
The result is a new matrix in dense Comma Separated Value (CSV) format with one row for 
each method and one column for each cluster.  The cluster weights are all in the range [0 .. 1], 
and the cluster weights for a method sum to 1.0.  The cluster weights can be viewed as a 
probability mass function.  This also means that the shape of cluster space (the reduced data) is 
an N-dimensional simplex rather than an N-dimensional cube, so distance measures and nearest-
neighbors calculations within are less impacted by the "curse of dimensionality". 
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3.5. Finding Similar Code 

For finding similar code based on machine learning results, our team has developed 
(a) a Nearest-Neighbors tool that shows Java methods with high similarity to a given query 

Java method, using the cluster vectors from NMF 
(b)  a tool based on term-frequency inverse document frequency (TF-IDF) for detecting 

similar code 

3.5.1. Finding Similar Code Based on Clustering. 

The similarity tool, "find-similar-methods", is a tool that, given either an existing method in the 
corpus or a point in cluster space, lists the closest N methods in cluster space, from nearest to 
farthest.  The default distance metric is L1, the sum of the coordinate differences.  The tool has 
parameters for restricting the results to those within a certain distance, for specifying the distance 
metric, and for limiting the number of results shown. 
To improve efficiency for later calls, the first time the tool is called on a cluster matrix CSV file, 
it creates an equivalent array in a binary file that can be memory-mapped into the process for 
quick lookups. 
The "find-similar-methods" tool has had extensive use finding interesting methods in the Corpus 
that would not have been findable using text-based methods.  For example, methods for which 
there was no source code in the Corpus and/or whose names were obfuscated. 
The similarity tool has been made open source and published on Github under the BSD 3-clause 
license.  See https://github.com/KestrelInstitute/big-code-similarity 

3.5.2. Finding Similar Code Based on TF-IDF. 

Introduction: An Example 
The primary purpose of the kt-semantic-code-search tool is to enable searching for an 
implementation of an algorithm for which we have some description of its operations. Let us 
start with a simple example.  Suppose we need an iterative implementation of factorial. As a first 
approximation of the tests and operations involved in factorial we can take: 

 
where i stands for any integer variable. The first term is a guard against a negative input value. 
The second and third terms indicate that the computation can start either with a variable 
(presumably the input value) or with the value 1, indicating a decrementing or incrementing 
computation, respectively (we leave out the increment/decrement operations themselves, as these 
have not been canonicalized at this point and therefore show too much variation).  The last term 
indicates an assignment of the product of two variables. 
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Furthermore we want an integer implementation, so we specify a method signature of (I)I, which 
takes an integer as argument and returns an integer. Finally, we want an iterative 
implementation, so we specify the presence of a loop.  From these six elements we construct a 
query, shown in Figure 1 (the feature set keys will be explained later),  

 
Figure 1.  JSON file that encodes the query for factorial 

 
and submit it to the semantic-code-search tool with an indexed corpus of 7 million methods. The 
results are shown in Figure 2. 

 
Figure 2. Relative weights for the search terms for factorial 
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Figure 3. Ranked results for the semantic search for factorial 

 
Figure 2 shows the weights assigned to each of the six search terms: a higher weight is assigned 
to a term that is less common.  Figure 2 shows that the assignment of the product has the highest 
weight, thus assigned because it is the least common term in the corpus, relative to the other 
terms used in the query; the presence of the loop contributes the least to the result, as loops are 
fairly common (they are present in roughly 8-10% of all methods). 
Figure 3 shows the ranked results of the query. Figure 3 shows that the query is surprisingly 
specific, considering its simplicity: the first twelve results are all, judging by their method name, 
implementations of the factorial function. Of course, we do not know how many 
implementations of factorial were not reported, so we can say we have high precision, but 
unknown recall. 

Document Indexing 
The kt-semantic-code-search tool is based on the theory and practice of Information Retrieval, 
described by Christopher Manning and others, which was developed primarily for text retrieval.  
Below we describe how we adapt each of the stages and concepts described there to semantic 
code search.  We closely follow the organization and description in Manning’s book Introduction 
to Information Retrieval [6]. 
From Manning: “Information retrieval is finding documents without a clear, semantically overt 
structure that satisfy an information need from within large collections.” 
The information need is encoded in a query; a document from the collection is relevant if it 
contains information of value with respect to the need.  The first task is to decide what terms can 
be used in a query and what constitutes a document.  In the context of text retrieval the terms 
used in the query are usually words that correspond (not necessarily one-to-one) to words in the 
documents; documents are pieces of text, ranging from paragraphs to chapters or books, or other 
forms of text such as blogs or web pages. In the context of semantic code search, we choose Java 
methods as our document units and expressions (and a few other features) as our terms. Below 
we describe the four stages of constructing an inverted index to facilitate the search. 
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Document Collection: In the context of text retrieval, the documents are typically bytes in a file 
or on a web server, where the bytes correspond to American Standard Code for Information 
Interchange (ASCII) characters or perhaps Unicode points. In the context of code search the 
documents are the streams of bytes that constitute the Java class files (Java bytecode). In contrast 
with text retrieval, these sequences of bytes do not directly map to meaningful entities related to 
the information need. A class file can contain multiple methods (our chosen document unit), each 
of which consists of a sequence of byte code instructions.  These instructions, however, refer to a 
shared constant pool, which adds to the meaning of the instructions and thus must also be 
considered part of the document.  Even with the constant pool information included, byte code 
instructions are still too low level to directly map to reasonable query terms. 
The purpose of the semantic code search is to search for implementations of algorithms for 
which we have a high-level description. Suitable terms in a query for such an algorithm are then 
the terms that appear in its high-level description, which are typically expressions that occur in 
assignments and expressions that occur in conditions (decisions). Thus we raise the level of 
interpretation of the bytecode from a sequence of single bytecode instructions to a sequence of 
assignments and branch conditions to match the terms likely to appear in a query. 
Tokenization: In the context of text search, tokenization is the process of chopping character 
streams (that make up the documents) into tokens. In the context of code search, the tokens are 
the assignments and branch conditions that are implied by the bytecode. These assignments and 
branch conditions can span from one to more than a dozen bytecode instructions and need to be 
reconstructed from the bytecode. 
Normalization: Manning defines token normalization as the process of canonicalizing tokens so 
that matches occur despite superficial differences in the character sequences of the tokens. It is 
typically achieved by creating equivalence classes of tokens that are then named after one 
member of the set. In the context of code search, there is a similar need for canonicalization. 
Whereas in text retrieval one may want to map the words “email” and “e-mail” both to the token 
email, in code search we may want to map the integer assignments a := a + 1 and b := b + 1 to 
the assignment i := i + 1, as variable names are irrelevant for the behavior of an algorithm. 
However, we may want to go beyond variable names in our normalization to reduce the size of 
the term vocabulary. For example, we could also normalize on method names and map the 
branch condition expressions a.isLower() and b.isHigher() to the token b.m(), with b standing for 
the generic object. 
We have chosen to have the option of multiple levels of normalization where terms can be either 
fully explicit (apart from variable names) or where we reduce one or more components of the 
expression to the generic version of that component. The expression components that can thus be 
reduced are:  

variable names (v): always reduced: integer variables are denoted by i, float and double 
variables are denoted by x, and object variables are denoted by b.   

method names (m): can either be present explicitly or reduced to m.   
class names (c): can either be present explicitly (with fully qualified name) or reduced to c.   
field names (f): can either be present explicitly or reduced to f.   
string literals (s): can either be present explicitly or reduced to s.   
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integer literals: can either be present explicitly or reduced to n, with the exception of 0 and 
1, which will always be included explicitly. 

We currently generate three different feature sets: v (which only reduces variable names), vmcfs 
(which reduces variable names, method names, class names, field names, and string literals), and 
vmcfsi (which reduces all components). 
Stemming and Lemmatization: Part of the normalization process in text retrieval is to group 
families of words with similar meanings that have a shared core stem, for example algorithm and 
algorithmic. Stemming and lemmatization reduce inflectional forms and derivationally related 
forms to a common base form, where stemming is a rather crude form that chops off characters 
and lemmatization is a more informed approach based on language characteristics. 
Semantic code search can benefit from a similar process based on algebraic equivalences such as 
i+1 = 1+i, reducing terms to a canonical form. The present version of our code search does not 
yet perform this form of canonicalization. 
Indexing: Indexing is the process of creating a data structure that contains the relationship 
between documents and tokens present in those documents that facilitates efficient document 
retrieval based on a query. The most common data structure used in information retrieval is the 
inverted index. An inverted index keeps, for each term in the vocabulary, a list of documents in 
which that term appears (also called a posting list). 
At the indexing stage, the semantic code search is mostly indistinguishable from text retrieval 
with the only difference being that we use multiple vocabularies, one for each expression 
reduction level, as described above (and a few more).  Figure 4 gives an idea of the sizes of the 
different vocabularies for a corpus of just over 7 million documents. 

 
Figure 4. Sizes of the vocabulary for different feature sets for a corpus of 7 million documents (methods) 
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Document Retrieval 
In response to a query, the expectation is to receive a list of documents ranked by relevance to 
the query. Hence we need a mechanism to rank documents based on how well they match the 
terms in the query, that is, we need to compute a score for each document based on the query.  
Several such mechanisms have been developed and studied in the field of Information Retrieval. 
We choose to adopt one of those, named term-frequency – inverse frequency (TF-IDF)  
weighting. We briefly explain the motivation and the calculation, based on Manning’s approach. 
 
TF-IDF:  Term frequency (tf) counts how often a term from the query appears in a document; 
the assumption is that if a term appears more frequently in a document, that document is more 
relevant than documents in which the term appears less frequently or not at all. Document 
frequency (df) counts how many documents in the collection contain at least one occurrence of a 
term in the query.  The reason to use document frequency rather than collection frequency (cf), 
the total number of occurrences of the term in the document collection, is that document 
frequency is a more effective document discriminator: a term that appears once in every 
document does not have any discriminative power whereas a term that has the same number of 
occurrences, but all of them in the same document, has high discriminative power and thus 
should be given higher weight. The actual weighting in the computation of the score uses the 
inverse document frequency (idf): the higher the document frequency, the lower the 
discriminative power of that term. 
 
The TF-IDF score of a document d for a given term t is thus given by 
 

 
Figure 5. TF-IDF score of d for t 

 
and the score of a document d for a query q is the sum of the scores for each term: 
 

 
Figure 6. TF-IDF score of d for q 

 
Cosine Similarity: A problem with the TF-IDF score is that it is biased towards larger 
documents because of the term frequency factor. One way to reduce this effect is to represent 
each document as a vector in term space (one dimension per term in the query), where each 
element of the document vector is the TF-IDF score for the corresponding term: vd[t] = tf-idfd(t).  
Two documents can then be compared using cosine similarity: 
 

 
Figure 7. Cosine Similarity 

 
The denominator provides a form of document length normalization: it cancels out the effect of 
larger term frequency for larger documents. 
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To compute the relevance of a document to a query we can simply reduce the vector space to the 
terms in the query, represent the query by the vector with all elements equal to 1, and compute 
the cosine similarity value between this vector and the document vector in the query term space. 
Note that documents that do not include all terms can still have a high score if some of the terms 
they contain have a very low document frequency (and thus a very high idf, and hence a high 
scaled TF-IDF value). 

Implementation 
The semantic code search implementation consists of three stand-alone components with 
artifacts passed between them via a file interface. We describe each of the components below. 
Feature Extraction: The CodeHawk Java Analyzer is used to extract the features from java 
class files (bytecode). It reconstructs expressions from expression stack operations, canonicalizes 
the expressions, and classifies them as assignments, conditionals, and function arguments. The 
analyzer also extracts structural features such as loops and various other statistics about methods. 
All of these features are saved in textual form in XML files. 
Feature extraction has to be performed only once and can be done off-line.  Currently the 
CodeHawk Java Analyzer can process about 1 million methods per hour on a single processor. 
No interaction between class files, however, is present in the extraction of features, and thus this 
step can be parallelized over as many processors as are available (memory usage is low), or 
probably better, distributed over many different systems, as on a single system the file system 
may become a bottleneck. Computation time is essentially linear in the number of documents. 
Feature Indexing: The goal of the second step, feature indexing, is to produce an index of all 
documents in the collection to enable efficient query processing. This step is implemented in 
python. It takes as input the XML files produced by the feature extraction step and creates the 
following files: 

vocabulary files: for each feature set, indices are assigned to all terms in the feature set, 
captured in JSON files; 

document cross-references: documents (java bytecode methods) are indexed by MD5 hash 
(to exclude duplicates) and cross-referenced to jar, package, class, method name, and method 
signature, captured in JSON files. 

postings: for each package, for each feature set, a postings (JSON) file is created that maps 
document indices to a mapping of term indices to term frequency. These files are saved in a 
hierarchical directory structure according to package MD5. 

package digest: for each feature set, a list of the terms present in each package is 
constructed to allow selective loading of postings files: only postings files belonging to packages 
with a non-empty intersection with the set of terms in the query need to be loaded. Depending on 
the query, this may reduce the amount of data to be loaded for a query by a factor of 20 or more.  
All of these files are compressed into a jar file, which is then used as the input for query 
processing. 
The construction of the index is incremental. New feature files can be integrated into an existing 
feature index, producing a new index file.  This step, also performed off-line, cannot be easily 
parallelized because of the need to construct single indexes for all components Computation time 
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is slightly super-linear due to the effect of dictionaries increasing in size; the implementation, 
however, can still efficiently handle indexes of millions of methods (documents). 
Query Processing: This step computes the response to a query, and is the only step performed 
on-line. It takes as input a query, consisting of a set of terms, each associated with a particular 
feature set, and a pre-computed index of the document collection.  The query can be provided in 
the form of a JSON file, or the terms can be entered directly via command-line arguments. 
This step produces a list of methods (identified by jar, class file, method name, and method 
signature) with their associated computed similarity score to the query. 
This step is also implemented in python; it makes use of the python library sklearn for text 
feature extraction, part of the scikit-learn machine learning library, to compute the TF-IDF 
values and cosine-similarity scores.  For an index of a million methods, response times vary from 
a few seconds for queries with only a few terms, to several minutes for queries containing 
several hundred terms. 
Vocabulary Generalization and Scaling Up: The implementation described above limits the 
code search to a set of predefined feature sets that are determined by the feature extraction step. 
The reason is that the feature extraction step converts expressions to text strings and assigns 
these text strings to a particular feature set (e.g., conditional or assignment). This is attractive, as 
the downstream process can be treated more or less as a standard text retrieval procedure with 
feature sets playing the role of zones. The disadvantage, however, is that there is very little 
opportunity in the downstream process for customization, because the expression strings have 
lost their meaning as expressions: they have become the elements of a vocabulary in which each 
element only has its name, without any other associated properties. This is perfectly acceptable 
in text search where, in general, the search engine does not need to know that a table and a chair 
are both types of furniture. For code search, however, this is rather limiting, as the feature 
extraction essentially limits the types of queries that can be handled, because that step determines 
the feature set and the vocabulary. In particular, the feature extraction step was implemented to 
support the search for algorithms, given a high-level description of the algorithm. The features 
thus generated, however, do not very well support a search for other code patterns, e.g., the use 
of database access procedures or patterns of resource usage. Furthermore the CodeHawk Java 
Analyzer is proprietary, thus making it impossible for an end user to change the features 
extracted. 
To lift this limitation, we decided to split the feature extraction step into two steps. The first step, 
performed by the CodeHawk Java Analyzer, extracts a large number of code constructs from the 
Java byte code, including expressions, control flow graph, method calls, arguments to method 
calls, but instead of saving these constructs as text, it saves them as indexed structured data, thus 
preserving the possibility to take them apart and recombine them later in any way necessary. 
The second step, implemented in python, takes as input the structured pre-features saved by the 
CodeHawk Java Analyzer, and a python object that defines how these structured pre-features are 
to be transformed into features. The python object allows the user to define: 

the feature sets, and 
the vocabulary of the feature sets, and 
for each indexed pre-feature, whether and how the pre-feature is to be transformed into a 

feature as part of one or more of the feature sets  
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This approach provides an end user much more flexibility to customize the search to a particular 
area of interest, e.g., SQL-queries, or use of measurement units, or resource-use patterns, etc. 
Example implementations of this transformation are provided for algorithms (recreating the 
features that were originally created directly by the CodeHawk Java Analyzer), for SQL-calls, 
and for resource consumption patterns. 
The new approach also contributes to increased scalability. The original approach required all 
possible features of interest to be explicitly (as text) saved and indexed. The pre-features are 
much more concise, and the transformation step can be selective about what to include in the 
different feature sets when tailoring for a particular end-user information need, thus resulting in a 
smaller and likely more relevant index as a basis for the search. 
The new python implementation including the transformers mentioned are provided open-source 
in the public GitHub repository kestreltechnology/kt-semantic-code-search. 

Examples 
We illustrate the code search on a few example algorithms for which we obtained a high-level 
description from the internet. For each we experimented by creating a few different queries to 
determine the terms that served best as discriminators.  The results shown in Figures 8, 9, 10 and 
11 are obtained from a corpus of about half a million methods that was constructed with a bias 
towards applications with high algorithmic content. 
Murmurhash: An example implementation (in C) of MurmurHash can be found at 
https://en.wikipedia.org/wiki/MurmurHash. 
 

https://en.wikipedia.org/wiki/MurmurHash


Approved for Public Release; Distribution Unlimited. 
20 

 

 
Figure 8. Relative weights for the search terms for murmurhash 

 

 
Figure 9. Ranked results for the semantic search for murmurhash 

 
RIPEMD-160: A description of the RIPEMD-160 hash function is provided at 
https://en.bitcoin.it/wiki/RIPEMD-160. 
 

https://en.bitcoin.it/wiki/RIPEMD-160
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Figure 10. Relative weights for the search terms for RIPEMD-160 

 

 
Figure 11. Ranked results for the semantic search for RIPEMD-160 

3.6. The ACL2 Theorem Prover 

The main focus of Kestrel's research is on proving existing code correctness as well as 
synthesizing provably-correct code.  Kestrel has developed and improved many tools that work 
within the ACL2 theorem proving framework.  ACL2 is a powerful, mature, open-source, 
industrial-strength theorem prover.  It has been developed at UT-Austin since 1989.  The  current 
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version, Version 8.1, was released in September, 2018.  See 
http://www.cs.utexas.edu/users/moore/acl2/. 
During the MUSE project, Kestrel's partner UT-Austin made a variety of improvements to the 
ACL2 theorem prover and its supporting libraries, to support the team’s work on MUSE.  The 
ACL2 system, and its supporting libraries, is available from https://github.com/acl2/acl2. 

3.7. The Axe Rewriter and Lifter 

The Axe Lifter lifts the functionality of Java code into a logical representation.  It does so by 
applying the Axe Rewriter to perform symbolic simulation of the Java Virtual Machine (JVM) 
model as its executes the program on symbolic input.  The result is a mathematical term that 
represents the effect of the code, expressing the code's output in terms of its symbolic inputs.  
For compactness, terms are represented as structure-shared directed acyclic graphs (DAGs) in 
which each unique node is represented only once.  Each node in a DAG is either a constant, a 
variable, or a function application of a named function to arguments represented by other nodes. 
There are two main approaches to lifting code, depending on how loops are handled.  In some 
cases, loops can be fully unrolled, because their iteration counts are fixed or bounded by a known 
bound (either in all cases, or under assumptions supplied by the user to the lifter).  The result of 
lifting is then a loop-free representation of the code's functionality in logic.  This is implemented 
in the tool unroll-java-code.  When loops cannot be unrolled, they can often be lifted into tail 
recursive functions.  This style of lifting is implemented in the tool lift-java-code, which we call 
the non-unrolling lifter.  Note that this style of lifting is less automatic, because typically loop 
invariants are needed, e.g., to show that exceptions do not occur in the loop body or that different 
storage locations manipulated by the loop do not alias.  The lifter can automatically guess and 
check simple invariants. 
Normally, unroll-java-code and lift-java-code effectively inline any subroutines encountered.  It 
may be desirable to instead lift code compositionally (one subroutine at a time).  This is 
implemented for the unrolling lifter as the tool unroll-java-code2 and for the loop lifter as lift-
java-code2. A related tool, lift-java-code-segment can lift a fragment of Java code that does not 
form a complete method. 
Some restrictions apply to lifting.  First, recursion is only supported in the unrolling lifters 
(though we may add support for it in the non-unrolling lifters as well).  Second, the non-
unrolling lifters can only lift loops that touch (read or write) a finite set of heap objects.  This is 
because each field touched by the loop becomes a parameter of the function that represents the 
loop.  Furthermore, the lifter must be able to show that the object fields touched by the loop 
cannot alias.  This is eased somewhat by the fact that fields whose names or types differ cannot 
possibly alias each other. 
The lifters allow the user to indicate which part of the JVM state holds the output of interest after 
execution. Typically, this is the return value of the function or the final value of some field (e.g., 
the contents of one of the array objects passed into the function).  This becomes the return value 
of the function produced by the lifter. 
The lifters, perhaps with guidance from the user, determine which JVM state components affect 
the output of the program to be lifted.  These become parameters of the function produced by the 
lifter. 

http://www.cs.utexas.edu/users/moore/acl2/
https://github.com/acl2/acl2
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The lifters allow assumptions about the inputs to be supplied and allow rewrite rules to be passed 
in for simplifying the terms that arise during lifting.  The loop lifters allow the user to supply 
information about the loops to be lifted, including invariants, type information, and termination 
measures.  The user can also supply arbitrary properties (in the form of ACL2 theorems called 
loop postludes) to be proven after one loop before lifting the next loop; these are needed because 
values from one loop may flow into a subsequent loop, and the lifter may need to show that such 
values satisfy the invariant of the second loop. 
The loop lifter requires a loop body to provably never throw an exception or error (assuming that 
the loop invariant holds), but settings are available to discard execution paths that result in 
exceptions or errors.  Doing so is unsound but sometimes helpful in quickly lifting a loop. 
The loop lifter attempts to lift a loop using a set of candidate invariants (some generated by tool 
and some supplied by the user).  This includes lifting any nested loops.  It then tries to show that 
the invariants assumed are in fact preserved by the loop body (assuming the loop does not exit).  
If this proof fails, the lifter discards the invariants that failed to prove and attempts again to lift 
the loop.  The process continues until an inductive set of loop invariants is found. 
The function that represents a lifted loop contains an exit test (representing the conditions under 
which the loop terminates) and an update function (representing the change made to the loop 
variables by the loop body).  The loop function repeatedly executes the update function until the 
exit test is true, whereupon it returns the loop parameters as a tuple. 
After lifting, the term (actually a DAG) representing the lifted program can be subjected to 
further analysis (e.g., theorem proving, equivalence checking, or test generation).  Often the 
result of the unrolling lifter contains only simple operators over bit-vectors and arrays, allowing 
highly automated reasoning using the Axe Equivalence Checker and its connection to the Simple 
Theorem Prover (STP) Satisfiability Modulo Theories (SMT) solver.  The output of the non-
unrolling lifter contains recursive functions that model the loops; these can be transformed using 
our APT transformation toolkit and subjected to analysis by theorem proving.  When a loop 
contains no nested loops, the loop body itself is loop-free and can thus be subjected to highly 
automated SMT-based reasoning. 

3.8. The Axe Equivalence Checker 

The Axe Equivalence Checker is a tool for proving equivalence of terms (actually DAGs) 
representing (lifted) programs and their specifications, given a set of assumptions about their 
inputs.  If the checker reports success, it guarantees that the two DAGs have equal output values 
for all input values that satisfy the assumptions.  The equivalence checker operates by forming a 
single DAG (called a “miter”) representing the equality of the two input DAGs.  The goal of 
equivalence checking is then to prove that this miter always evaluates to true (for any input that 
satisfies the assumptions).  The following description describes the basic equivalence checking 
process.  If loop functions are present in the miter, extra steps are performed, as discussed in Dr. 
Smith's Ph.D. thesis [3]. 
 
Equivalence checking begins by rewriting the miter DAG.  If rewriting fails to transform the 
miter into true, random test cases are used to discover probable equalities involving internal 
nodes.  These internal equalities are used to break down the equivalence proof into a sequence of 
smaller proofs, which are attempted via rewriting and calls to the STP solver 
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(http://stp.github.io/) for bit-vectors and arrays. The Axe Equivalence Checker sweeps up the 
DAG, attempting to prove the probable equalities and, when successful, using the proven facts to 
transform the DAG.  If the sweeping process fails to reduce the miter to true, the equivalence 
checker attempts to split the miter into two cases and then attempts to perform equivalence 
checking on each case, recursively. 
During the MUSE project, we also developed a new, tactic-based equivalence checker which is a 
variant of the Axe Equivalence Checker that provides more user control.  Supported tactics 
include rewriting, pruning unreachable branches (by rewriting and by calling STP), splitting into 
cases, calling STP on the current goal, and calling ACL2 on the current goal. 
We also developed a formal code query tool that can answer questions about simple programs, 
such as “Is there any input that can cause X to occur?”. This can be applied to code found in the 
corpus to begin exploring its behavior, before a formal proof is attempted. 

3.9. The APT (Automated Program Transformations) Toolkit 

Under this and other projects, we have been building APT, a library of tools, built on the ACL2 
theorem prover, to transform programs and program specifications with a high degree of 
automation. The APT transformation tools operate on artifacts (e.g. functions) and generate 
corresponding transformed artifacts along with formal proofs of the relationship (e.g. 
equivalence) between old and new artifacts; all the proofs generated by APT are checked by the 
theorem prover. APT includes transformations to apply algorithm schemas, turn data into 
isomorphic representations, apply rewrite rules, incrementalize computations, turn recursion into 
tail recursion, and many others. 
APT can be used in program synthesis, to derive provably correct implementations from formal 
specifications via sequences of refinement steps carried out via transformations. The 
specifications may be declarative or executable. The APT transformations can synthesize 
executable implementations from declarative specifications, as well as optimize executable 
specifications or implementations. The APT transformations can also be used to generate a 
variety of diverse implementations of the same specification. 
APT can also be used in program analysis, to help verify existing programs, suitably embedded 
in the ACL2 logic, by raising their level of abstraction via transformations that are inverses of 
the ones used in stepwise program refinement. The two kinds of transformations (for program 
synthesis and for program analysis) can be used together in an integrated way. This is, in fact, the 
analysis-by-synthesis approach that we have developed and used in this project.  Picture the 
specification and the code linked by a sequence of APT transformations, including “top-down” 
transformations that transform the specification to be more like the code and “bottom-up” 
transformations that transform the code to be more like the specification.  By chaining together 
the proofs of the individual steps, one can obtain a derivation formally connecting the code with 
the specification, of which it is proved to be a correct implementation.  Such a derivation is often 
possible to construct for code found in the wild (assuming it is correct) even though not much 
code in the wild was actually derived from a specification using synthesis techniques.  The 
derivation we create in such cases elucidates how and why the code is correct. 
APT enables the user to focus on the creative parts of the program synthesis or analysis process, 
leaving the more mechanical parts to the automation provided by the tools. The user guides the 
process by choosing which transformation to apply at each point and by supplying key theorems 
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(e.g. applicability conditions of transformations), while APT takes care of the lower-level, error-
prone details with speed and assurance. We are also working on incorporating into APT 
heuristics to provide further automated support, e.g. to explore and automatically choose 
transformations. Besides automation, APT’s goals include robustness and practicality. 
One of APT’s important contributions is to realize the classic ideas of program transformation 
and stepwise program refinement in the state-of-the-art, industrial-strength theorem prover 
ACL2 (which is used at AMD, Centaur, Oracle, Rockwell Collins, and others). Thus, when 
developing correct-by-construction programs, users can seamlessly take advantage of the 
theorem prover's powerful reasoning tools, vast proof libraries, and vital user community. 
APT currently includes about 40 transformations, all of which generate proofs that are checked 
by the ACL2 theorem prover. All of these transformations generate ACL2 proofs of correctness, 
have been tested, and have been used to develop various correct-by-construction programs as 
well as to verify numerous existing programs, particularly in this project. 
APT builds on decades of experience in program synthesis. APT's novelty is that the 
transformations are tightly integrated with the widely used, industrial-strength theorem prover 
ACL2. This tight integration has several benefits: the extensive libraries of formal definitions 
and proofs, and the ACL2-based tools, developed by the ACL2 community over many years, are 
readily available for use in new correct-by-construction developments; and the powerful proof 
automation of ACL2 greatly reduces the effort to discharge the proof obligations (e.g., 
applicability conditions of transformations) that arise in correct-by-construction developments. 
Generating proofs in transformations is eased by the fact that we operate inside one logic and 
system, without the need for translators. Our transformations are readily available to the ACL2 
community for experimentation, feedback, and collaboration. 

3.9.1. Some Example Transformations. 

The tail recursion transformation turns certain non-tail-recursive functions into tail-recursive 
versions. It provides several variants, which apply to non-tail-recursive functions that satisfy 
different properties (i.e., the applicability conditions of these transformation variants). For 
instance, the monoid variant turns a non-tail-recursive function of the form 

f(x) = if a(x) then b else c(d(x), f(e(x))) 
into a tail-recursive version with an accumulator y 
 g(x, y) = if a(x) then y else g(e(x), c(d(x), y))) 
provided that the operator c that combines the result of the recursive call with (a function of) the 
argument is associative and has b as left and right identity (i.e., c and b form a monoid, hence the 
name of the transformation variant). 
The transformation also generates a theorem of the form 
 f(x) = g(x, b) 
that asserts the correctness of g with respect to f. 
Tail recursion in logical and functional languages corresponds to iteration (i.e., loops) in 
imperative languages. Thus, the tail recursion transformation is important to formally bridge the 
gap between specifications that often use non-tail-recursive functions (which are often clearer 
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and easier to prove properties of, compared to their tail-recursive counterparts) and imperative 
code. 
The finite differencing transformation caches partial results to speed up repeated 
computations. As a very simple example, consider a function that recursively computes the sum 
of the squares of the numbers up to some limit. The transformation can automatically generate a 
version of the function that incrementalizes the squaring of the argument, computing the square 
of each value from the square of the preceding value, and avoiding multiplications (which could 
be useful on a platform where multiplication is more expensive than addition and subtraction). 
This is just a simple demonstrative example. 
The data isomorphism transformation changes the representation of data (e.g., the arguments 
of a function) into isomorphic representations. This transformation can carry out a large class of 
data type refinements. 

3.9.2. Publication and Availability. 

More details on the simplification transformation can be found in the paper “A Versatile, Sound 
Tool for Simplifying Definitions”, by Alessandro Coglio, Matt Kaufmann, and Eric Smith, 
published at the 14th International Workshop on the ACL2 Theorem Prover and Its Applications 
(ACL2-2017), May 2017, EPTCS (Electronic Proceedings in Theoretical Computer Science) 
Volume 249, https://arxiv.org/abs/1705.01228v1 
Some APT transformations are available, open-source, in the ACL2 community books. We are 
actively working on open-sourcing the rest of the transformations to the ACL2 community books 
as well. 

3.10. ACL2 in Java, and ACL2 to Java 

The analysis-by-synthesis approach that we developed and employed in this project may involve 
not only the (safe) re-use of existing code, but also the generation of new code that interoperates 
with the existing code. The new code is generated from low-level, executable, formal 
specifications, which in turn are derived from high-level, declarative (possibly non-executable, 
or inefficiently executable), formal specifications via a sequence of transformation steps. 
The ACL2 theorem prover’s tight integration with the underlying Lisp platform enables the 
executable subset of the ACL2 logical language to run readily and efficiently as Lisp, without the 
need for explicit code generation facilities. Nonetheless, some situations may call for running 
ACL2 code in other programming languages: specifically, when the ACL2 code must 
interoperate with external code in those programming languages in a more integrated and 
efficient way than afforded by inter-language communication via foreign function interfaces or 
by inter-process communication with the ACL2/Lisp runtime. Using Lisp implementations 
written in the target programming languages involves not only porting ACL2 to them, but also 
including much more runtime code than necessary for the target applications. Compilers from 
Lisp to the target programming languages may need changes or wrappers, because executable 
ACL2 is not quite a subset of Lisp; furthermore, the ability to compile non-ACL2 Lisp code is an 
unnecessary complication as far as ACL2 compilation is concerned, making potential 
verification harder. 

https://arxiv.org/abs/1705.01228v1
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Indeed, for the analysis-by-synthesis approach, it is desirable to generate code from ACL2 in the 
more widely used programming languages that the existing found code is likely to be written in. 
In particular, in this project, we focused on Java code. Therefore, we built a Java code generation 
facility for ACL2. This facility consists of two parts: 

• ATJ is a Java code generator for ACL2. ATJ translates executable, side-effect-free, non-
stobj-accessing ACL2 functions, without their guards, into Java. It does so in a simple 
way, by turning the functions into deeply embedded Java representations that are 
executed by an ACL2 evaluator written in Java. 

• AIJ is a deep embedding in Java of an executable, side-effect-free, non-stobj-accessing 
subset of the ACL2 language without guards. AIJ consists of (i) a Java representation of 
the ACL2 values, terms, and environment, (ii) a Java implementation of the ACL2 
primitive functions, and (iii) an ACL2 evaluator written in Java. AIJ executes the deeply 
embedded Java representations of ACL2 functions generated by ATJ. AIJ is of 
independent interest and can be used without ATJ. 

The ACL2 language subset supported by ATJ and AIJ includes all the values, all the primitive 
functions, and many functions with raw Lisp code. 

3.10.1. AIJ: The Deep Embedding. 

AIJ is a Java package whose public classes and methods provide an API to (i) build and unbuild 
representations of ACL2 values, (ii) build representations of ACL2 terms and of an ACL2 
environment, and (iii) evaluate calls of ACL2 primitive and defined functions, without checking 
guards. By construction, the ACL2 code represented and evaluated by AIJ is executable, has no 
side effects, does not access stobjs, and has no guards. 
AIJ consists of a few thousand lines of Java code (including blank and comment lines), 
thoroughly documented with Javadoc comments. The implementation takes advantage of object-
oriented features like encapsulation, polymorphism, and dynamic dispatch. 
AIJ represents ACL2 values as immutable objects of a number of Java classes organized in a 
hierarchy. Each class corresponds to a set of values. The subset relationships match the 
inheritance relationships. The sets of values that are unions of other sets of values correspond to 
abstract classes; the other sets correspond to concrete classes. The information about the 
represented ACL2 values is stored in private fields of the non-abstract classes. The value classes 
provide public static factory methods to build objects of these classes (there are no public Java 
constructors, thus encapsulating the details of object creation and re-use, which is essentially 
transparent to external code because these objects are immutable). The value classes provide 
public instance getter methods to unbuild (i.e., extract information from) objects of these classes. 
AIJ represents ACL2 terms in a manner similar to ACL2 values, as immutable objects of a 
number of Java classes organized in a hierarchy. The superclasses are abstract, while the 
subclasses are concrete. The information about the represented ACL2 terms is stored in private 
fields of the non-abstract classes. The term classes provide public static factory methods to build 
objects of these classes, but no public Java constructors, similarly to the classes for ACL2 values. 
The term classes currently provide no public instance getter methods to unbuild (i.e., extract 
information from) objects of these classes, as they are not needed for the purpose of Java code 
generation from ACL2. 
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ACL2 terms are evaluated in an environment that includes function definitions, package 
definitions, etc. AIJ stores information about part of this environment in a Java class. Since there 
is just one environment at a time in ACL2, this class has no instances and only static fields and 
methods. 
Since the ACL2 primitive functions have no definitions, AIJ cannot evaluate their calls via their 
bodies as described below. AIJ implements these functions “natively” in Java, in a package-
private class. Each primitive function (except if, whose calls are evaluated non-strictly as 
described below), is implemented by a private static method in this class. 
AIJ recursively evaluates ACL2 terms via methods in the term classes. The methods take as 
argument a Java map that binds values to variables, and return the result of evaluating the target 
object with respect to the supplied binding. Function calls are evaluated by first recursively 
evaluating all the arguments, and then either (i) calling the method that natively implement the 
primitive function (if the called function is primitive) or (ii) recursively evaluating the defining 
body of the function with respect to a binding that associates the actual arguments to the formal 
arguments (if the called function is not primitive). However, if the called function is if, it is 
evaluated non-strictly: the first argument is evaluated, and then either the second or the third one 
is evaluated, based on the value of the first argument. 

3.10.2. ATJ: The Code Generator. 

ATJ is an ACL2 tool that provides an event macro to generate Java code from specified ACL2 
functions. The generated Java code provides a public API to (i) build an AIJ representation of the 
ACL2 functions and other parts of the ACL2 environment and (ii) evaluate calls of the functions 
on ACL2 values via AIJ. 
ATJ consists of a few thousand lines of ACL2 code (including blank lines, implementation-level 
documentation, and comments), accompanied by a few hundred lines of user-level 
documentation in XDOC. The implementation is thoroughly documented as well. 
ATJ generates a single Java file containing a single class. The file has the same name as the 
class; it is (over)written in the current working directory, unless the user specifies a directory. 
ATJ directly generates Java concrete syntax, via formatted printing to the ACL2 output channel 
associated to the file, without going through a Java abstract syntax and pretty printer. 
As part of building an AIJ representation of the ACL2 environment, the Java code generated by 
ATJ builds AIJ representations of ACL2 values and terms: function definitions include terms as 
bodies, and constant terms include values. It does so via the factory methods discussed earlier. In 
principle, ATJ could turn each ACL2 value or term into a single Java expression with an 
“isomorphic” structure. However, values and terms of even modest size (e.g., function bodies) 
would lead to large expressions, which are not common in Java. Thus, ATJ breaks them down 
into sub-expressions assigned to local variables. In general, ATJ turns each ACL2 value or term 
into (i) zero or more Java statements that incrementally build parts of it and (ii) one Java 
expression that builds the whole of it from the parts. ATJ does so recursively: the expression for 
a sub-value or sub-term is assigned to a new local variable that is used in the expression for the 
containing super-value or super-term. To generate new local variable names, ATJ keeps track of 
three numeric indices (for values, terms, and lambda expressions – recall that the latter are 
mutually recursive with terms) as it recursively traverses values and terms. The appropriate index 
is appended to ‘value’, ‘term’, or ‘lambda’ and then incremented. 
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The Java code generated by ATJ builds an AIJ definition of each ACL2 package known when 
ATJ is invoked. The names of the known packages are the keys of the alist returned by the built-
in function known-package-alist, in reverse chronological order. 
The Java code generated by ATJ builds an AIJ definition of each (non-primitive) ACL2 function 
specified via one or more function symbols supplied to ATJ. Each function symbol implicitly 
specifies not only itself, but also all the functions called directly or indirectly by it, ensuring the 
“closure” of the generated Java code under ACL2 calls. 
ATJ uses a worklist algorithm, initialized with the list of functions supplied by the user, to 
calculate a list of their closure under calls. Each iteration removes the first function fn from the 
worklist, adds it to the result list, and extends the worklist with all the functions directly called 
by fn that are not already in the result list. Here ‘directly called by’ means ‘occurring in the 
unnormalized-body property of’. If fn has no unnormalized-body property, it must be primitive, 
otherwise ATJ stops with an error – this happens if fn is a constrained, not defined, function. If fn 
has raw Lisp code, it must be in a whitelist of functions that are known to have no side effects. If 
fn has input or output stobjs, ATJ stops with an error – this may only happen if fn is not 
primitive. 

3.10.3. Publication and Availability. 

More details on AIJ and ATJ can be found in the paper “A Simple Java Code Generator for 
ACL2 Based on a Deep Embedding of ACL2 in Java”, by Alessandro Coglio, published at the 
15th International Workshop on the ACL2 Theorem Prover and Its Applications (ACL2-2018), 
November 2018, EPTCS (Electronic Proceedings in Theoretical Computer Science) Volume 
280, https://cgi.cse.unsw.edu.au/~eptcs/paper.cgi?ACL22018.1 
Both AIJ and ATJ are open-source, in the ACL2 community books. 

https://cgi.cse.unsw.edu.au/%7Eeptcs/paper.cgi?ACL22018.1
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4. RESULTS AND DISCUSSION 

During the MUSE project, we solved a variety of challenge problems.  A typical problem 
involved the desire to implement particular functionality, using code from the corpus to do much 
of the work and to save time over writing new code by hand.  We used our corpus tools to search 
the corpus for relevant code and analyzed the results using our formal tools to ensure correctness.  
When the desired functionality was not available in the corpus as a single program, we used our 
formal tools to synthesize larger systems that included the code from one or more corpus 
projects.  We then proved, again using our formal tools, that the found / synthesized code was 
correct.  The proofs performed about the corpus code can be broken down into two groups:  
When the loops were unrollable, we usually applied Axe to perform highly automated 
equivalence checking against a specification.  When the loops were not unrollable, we usually 
applied APT to the lifted code to construct an analysis-by-synthesis derivation formally linking 
the code to its specification.  All told, we created several dozen derivations of corpus code.  The 
rest of this section describes some of our major accomplishments, in the form of examples. 

4.1. Bresenham Example 

Bresenham’s line drawing algorithm calculates a discrete best-fit line between two integer-
coordinate points, using only integer addition. This algorithm is useful to draw a line on a screen. 
The algorithm was first published in a paper in 1965; the paper describes the algorithm and 
proves its correctness. The algorithm is relatively short and seemingly simple, but at first sight it 
is not at all obvious why the algorithm works and how it was devised. 
Bresenham’s line drawing algorithm was chosen, by the Evaluation Team, as one of the 
Benchmark Problems in Phase 1 of the MUSE project. Our team used the analysis-by-synthesis 
approach to find Java code in the corpus that implements this algorithm and to formally prove it 
functionally correct. 

4.1.1. Specification. 

We wrote a high-level, non-executable specification, in ACL2, of the input/output behavior of 
the algorithm. Essentially, the input is a pair of points with integer coordinates, and the output is 
a list of discrete points, also with integer coordinates, that is a best fit to the “continuous” line 
between the two points. (We use the indeterminate article ‘a’ because the best fit is not 
necessarily unique; sometimes the ideal point falls right in the middle of two discrete points, 
which are therefore equally acceptable.) This specification is expressed via a precondition and a 
postcondition; it makes use of quantifiers and is therefore not immediately executable. 

4.1.2. Code Search. 

With the specification in hand, we searched the corpus for implementations of Bresenham’s line 
drawing algorithm. We started with a very simple search for the text ‘bresenham’, which sufficed 
to find a good number of potential candidates. 
We proceeded to examine the candidates. Some were quickly excluded because they just 
mentioned the word ‘bresenham’ but did not actually contain any discernible implementation of 
the algorithm. Others were excluded because they actually implemented Bresenham’s circle 
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drawing algorithm – an algorithm based on similar principles, but not fitting our specification for 
a straight line. Additional ones were excluded after some manual examination, which revealed 
that they did not actually implement Bresenham’s algorithm, but rather something perhaps 
related to it. Eventually, we picked one of a few candidates that were left as the one to verify. 

4.1.3. Invariant Generation. 

We ran the CodeHawk static analyzer on the code that we chose (as described above). The 
purpose was to infer an invariant for the loop of the algorithm (the invariant was used as 
described below). Given the relative complexity of the algorithm, inferring a loop is not 
immediate. Helpfully, CodeHawk automatically generated and proved an invariant, which we 
translated into the ACL2 language. 

4.1.4. Code Lifting. 

In order to verify the code against the specification, which is written in ACL2, the code had to be 
suitably represented in the ACL2 language as well. We did that via the Axe lifter, which turns 
Java bytecode into a representation in ACL2 as a collection of functions. 
We supplied, to the Axe lifter, the loop invariant inferred by CodeHawk (see above). This was 
necessary for the Axe lifter to prove the termination of the loop (under the preconditions of the 
specification). 

4.1.5. Top-Down Derivation Steps. 

With the code, found in the corpus, now represented in the ACL2 logical language, we 
proceeded to construct a derivation that links the code to the specification described above. We 
did that by first performing several top-down derivation steps from the high-level specification 
towards the code. 
First, we used the APT narrowing transformation to resolve the under-specification inherent in 
the best-fit requirements. We did that by choosing a specific rounding function for the ideal point 
(one that rounds numbers of the form n.5, where n is an integer, up), and by narrowing the 
postcondition [abs(yinteger – yideal) ≤ 1/2] to [yinteger = round(yideal)], where yinteger is the integer, 
approximating ordinate and yideal is the ideal ordinate. 
Second, we turned the bounded universal quantification in the postcondition into a recursive 
function. (We did that step manually because the APT transformation to do that had not been 
implemented yet. However, it was already clear then how to implement that transformation.) 
Third, we used the APT finite differencing transformation to cache the value of integer ordinate 
yinteger in the loop. This way, at each loop iteration, this ordinate either stayed the same or got 
incremented by 1 (Bresenham’s basic algorithm assumes that the line is in the first octant of the 
plane, since lines in the other octants can be drawn symmetrically to the first octant). In this way, 
the non-integer operations to calculate the integer ordinate at each iteration got replaced with 
integer operations (do nothing or add 1). We note that this finite differencing step also involves 
algebraic simplification steps, carried out using the APT simplification transformation. 
Fourth, we use again the APT finite differencing transformation to cache the value of the test 
used to decide whether the integer ordinate stays the same or gets incremented by one. We also 
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used the APT simplification transformation to carry out some algebraic simplification steps that 
resulted in integer operations being exclusively used in the loop iterations. 
The result of the above transformation is an executable implementation of Bresenham’s 
algorithm in ACL2. Interestingly, this top-down derivation provides a rational reconstruction of 
how Bresenham’s algorithm works and why. 

4.1.6. Bottom-Up Derivation Steps. 

While the result of the top-down derivation steps described above is an executable ACL2 
implementation of Bresenham’s algorithm, there is still some distance between that and the result 
of lifting the Java code into the ACL2 logic. In particular, the lifted code uses bit vectors and 
modular arithmetic operations to represent the Java integer type and operations. Thus, we carried 
out a few bottom-up steps to turn this lifted code into a form that is close to the executable ACL2 
implementation of Bresenham’s algorithm obtained via the top-down steps. 
We used the APT simplification transformation, with a specific set of rewrite rules, to turn the 
modular arithmetic operations into non-modular arithmetic operations. Note that this is correct 
only if the modular operations do not wrap around. In the application of the rewrite rules by the 
APT simplification transformation, this condition manifests as proof obligations. These were all 
automatically proved by ACL2, and thus the arithmetic operations were successfully 
transformed. 
Then we used the APT data isomorphism transformation to change the representation of the 
values manipulated by the lifted code from bit vectors to ACL2 integers (in suitable ranges). This 
introduced conversion functions, which we removed via the APT simplification transformation 
with another specific set of rewrite rules; this also involved some proof obligations to show that 
the conversions can be eliminated because the values of the expressions are in suitable ranges, 
which again ACL2 proved automatically. 
The result of these bottom-up steps is almost the same as the result of the top-down steps. ACL2 
easily proved their equivalence, thus completing the formal proof chain from the high-level 
specification to the code. 

4.2. Micro Air Vehicle Link (MAVLink) Example 

In Phase 2 of the MUSE program, the Kestrel team solved a Challenge Problem (CP) regarding 
the MAVLink protocol. 

4.2.1. Problem Statement. 

Kestrel's MAVLink CP was to create a formally verified implementation, using code from the 
corpus, of the MAVLink message parsing and creation needed by the client of the MUSE Phase 
2 CP ecosystem: The client generates MAVLink messages in response to graphical user interface 
(GUI) events from the user (they then get wrapped in hypertext transfer protocol (HTTP) 
messages and sent by the code Kestrel created for the HTTP challenge problem). When 
MAVLink responses come back (after being extracted from the HTTP messages by the code for 
the HTTP challenge problem), the client parses the MAVLink responses and shows the results in 
the GUI. 
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4.2.2. MAVLink Specification. 

Kestrel wrote a formal specification for MAVLink message creation and parsing.  The 
specification uses the XML description (common.XML) of the MAVLink message types. 
Kestrel downloaded it from the official MAVLink GitHub page.  It also formalizes the 
MAVLink field types, packet layout, serialization and deserialization, field reordering (required 
by the protocol to increase alignment, e.g., with 2-byte and 4-byte boundaries), and the cyclic 
redundancy check (CRC) checksum calculation (including the inclusion of an extra byte that 
depends on the message descriptor). 
For message creation, Kestrel specified a function for each message type.  Each of these 
functions takes arguments representing all of the fields of its message type (and all of the 
standard MAVLink fields) and returns an array of bytes representing the MAVLink message.  
For message parsing, Kestrel specified a single function that takes a MAVLink message (of 
unknown type) as an array of bytes, performs various well-formedness checks, and returns a 
structured representation of its contents. 

4.2.3. Corpus Code. 

Kestrel found a corpus project, called "ghelle" after the GitHub username of its creator, that 
included the ability to generate code to process MAVLink messages.  Of course, this code did 
not come with any formal specifications or proofs.  It also provided a somewhat different API 
than was desired for the challenge problem.  Kestrel ran ghelle's generator to obtain code for 
creating and parsing various kinds of MAVLink messages. 

4.2.4. Glue Code Generation. 

Kestrel generated glue code to wrap ghelle's code to provide the desired APIs: one glue code 
function for creation of each type of message and a single function (with a switch statement on 
the message type) for parsing a message of unknown type.  The generated code relies on ghelle's 
code to do most of the actual work in message processing. 
Note: 12 types of messages are not dealt with by ghelle's code.  In addition, ghelle's code used 
'incorrect' data types for the fields of 5 additional message types.  We believe both of these issues 
are due to the ghelle project using an older version of common.XML.  These message types were 
excluded when the code and proof generators were run. (Also excluded were 13 message types 
with IDs greater than 255, since these are not legal in MAVLink 1.0.)  This leaves 119 types of 
messages whose code was synthesized / verified. 

4.2.5. Formal Proof Generation. 

For both message parsing and creation, Kestrel wrote small tools that automatically generate the 
proofs (as sequences of events submitted to the theorem prover to invoke code unrolling and 
equivalence checking).  The generators spare the user from having to write 119 proofs, one for 
each message type.  Each proof shows that the code matches the spec for that message type.  The 
proof for parsing is a bit more involved than for message creation, due to the need to handle the 
various kinds of ill-formed messages coming in. 
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These generators run automatically in less than 1 second.  ACL2 then takes about an hour to 
check the message creation proofs and another hour for the message parsing proofs. 
Kestrel analyzed the rewrite rules used in the proofs about message creation and found that the 
set of rules used rapidly 'converges'.  After the first few proofs, new rules were rarely needed to 
verify additional message types. 

4.2.6. Size of the Synthesized Artifacts. 

A quick estimate of the size of the MAVLink challenge problem solution is that it contains 
13,795 lines, including corpus code and generated glue code. (Disclaimer: Some of the corpus 
code counted here may not actually be called, but we think that most of it is.) 

4.3. Bitcoin Public Key To Address Example 

In Phase 3 of the MUSE project, we set out to synthesize an implementation of an important 
operation in the Bitcoin cryptocurrency: the computation of  Bitcoin address from a public key.  
This operation, depicted in Figure 12, is fairly complicated, involving 3 calls of the SHA-256 
hash function, a call of the RIPEMD-160 hash function, and the use of Base58 encoding. 
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Figure 12. Bitcoin's Public Key to Address Computation 

 
 
Our goal was to use code from the corpus to obtain a verified implementation of this operation.  
We began by specifying its correct behavior in the ACL2 logic, including writing formal 
specifications for the SHA-256 and RIPEMD-160 hash functions and for Base58 encoding. We 
then identified suitable components from two projects on Github: we took implementations of 
SHA-256 and RIPEMD-160 from the bouncycastle project, and we took the implementation of 
Base58 encoding from the bitcoinj project.  From these components, we wrote a bit of “glue” 
code to create an implementation of the public-key-to-address functionality.  Almost all of the 
work in the implementation is done by the corpus code. 
It remained to verify the implementation that used the components from the corpus, proving it 
equivalent to our formal specification in ACL2.  This we did by lifting the code into logic using 
the Axe Lifter, applying the Axe equivalence checker to verify the cryptographic hash functions, 
creating an APT derivation to connect the Base58 code to its specification, and using Axe to 
combine these various proofs into a proof of the whole operation. 
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5. CONCLUSIONS 

The DARPA MUSE project set out to investigate the hypothesis that large online corpora of 
open source code can be helpful for a variety of programming and software maintenance tasks.  
Our team’s research effort focused on the use of code found in such corpora for the purpose of 
program synthesis.  The idea of incorporating code found on the internet into a program being 
synthesized carries risks in that the found code may contain bugs or security vulnerabilities.  Our 
effort thus focused on high-assurance code reuse, in which the found code, and often the entire 
synthesized artifact, is proven correct.  The examples described in the previous section, which 
we solved using tools developed and improved during the MUSE project, served as a 
confirmation of the MUSE hypothesis.  In particular, our tools for corpus processing, indexing 
and analysis, together with our database and machine learning tools for code search (including 
similarity search) allowed us to find code in the MUSE corpus that implements a variety of 
different kinds of desired functionality.  Our formal proof tools, including the APT and Axe 
toolkits based on the ACL2 theorem prover, allowed us to reuse the found code safely, providing 
proofs of its functional correctness and providing high assurance in the synthesized programs. 
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7. LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS  

ACL2  A Computational Logic for Applicative Common Lisp 
AIJ   ACL2 in Java 
API   Application Programming Interface 
APT  Automated Program Transformations 
ASCII  American Standard Code for Information Interchange 
ATJ  ACL2 to Java 
BSD  Berkeley Software Distribution 
CF   Collection Frequency 
CP   Challenge Problem 
CRC  Cyclic Redundancy Check 
CP-850  Code Page 850 
DAG  Directed Acyclic Graphs 
DARPA  Defense Advanced Research Projects Agency 
DF   Document Frequency 
GUI   Graphical User Interface 
IDF   Inverse Document Frequency 
ISO   International Organization for Standardization 
JSON  Javascript Object Notation 
JVM  Java Virtual Machine 
KT   Kestrel Technology 
MAVLink Micro Air Vehicle Link 
MUSE  Mining and Understanding Software Enclaves 
NMF  Non-negative Matrix Factorization 
SMT  Satisfiability Modulo Theories 
SQL  Structured Query Language 
STP  Simple Theorem Prover 
TF   Term Frequency 
TF-IDF  Term Frequency - Inverse Document Frequency 
UCI  University of California at Irvine 
UUID  Universally Unique Identifier 
XML  Extensible Markup Language 
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