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ABSTRACT 

 This thesis studies the performance of a machine-learning-based DTN routing 

protocol, QGeo. QGeo is based on the reinforcement learning model called Q-learning 

whereby an agent in some context takes an action, gains a reward and adapts its 

decision-making policy based on the reward’s value. QGeo is implemented in the ns-3 

simulator, and the implementation in this work is based on the previously implemented 

GAPR protocols. QGeo is then tested in ns-3 alongside GAPR, GAPR2 and GAPR2a, as 

well as the more commonly known Epidemic, Vector and Centroid DTN protocols. 

Testing is performed rigorously across four simulation scenarios. The Helsinki scenario 

simulates mobile traffic in a city, the Omaha and Bold Alligator scenarios simulate 

amphibious military exercises with various properties, and the Swarm scenario simulates 

the behavior of a drone swarm based on real-world sensor flight data. 

 This thesis ultimately shows that QGeo is a highly selective protocol in terms of 

making forwarding decisions, based primarily in the Q-learning mechanism. This thesis 

also advances the research previously done at the Naval Postgraduate School in DTN 

research and development by furthering the testing effort of the protocols that have been 

implemented. Finally, an added benefit of this study is the incorporation of the Swarm 

scenario to the DTN testbed, increasing the range of testing capability for comparison of 

DTN routing protocol characteristics. 
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CHAPTER 1:
Introduction

This chapter discusses the motivation, objectives, scope, limitations and overall structure
of this thesis. This thesis attempts to combine three unique fields with major implications
for future technological capabilities, both within the context of this study, and the broader
networking field overall. This chapter frames the thesis to ensure the context of the study is
well understood, while the final chapter presents conclusions and a short discussion of the
implications of this study more broadly.

1.1 Motivation
This section explains the motivation for this study through a short discourse on the current
state of technology in three unique fields within the broad category of research related to
computing technologies. Discussion of robotic swarms, Disruption/Delay Tolerant Network
(DTN) routing, and machine learning techniques are each provided.

1.1.1 Robotic Swarms
Drones have become a pervasive technology in modern societies. A quick search on the
Internet reveals many uses of commercially available drones, from surveillance to package
delivery to hobby sports. The military has begun to test the usability of this technology
in various configurations. One of the most promising uses is through swarm deployment
of multiple drones. The term swarm generally means that all nodes in the group follow a
similar pattern and are controlled centrally; however, it can also be used to encompass multi-
robot systems where each node acts independently, cooperating with other robots (nodes)
in the system. At the Naval Postgraduate School (NPS) a drone swarm of 50 unmanned
aerial vehicle (UAV)s was flown in 2015, with all of the nodes intercommunicating and
operating as multiple teams within the 50-node configuration. This has become a testbed
for military testing of the usefulness of drone technology, and has promising potential for
military operations. Drone swarms rely on efficient communication between all of the
nodes in order to interact without collisions, and combine their actions toward a common
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goal. This thesis explores useful communication methodologies for this type of interacting
system.

1.1.2 DTN Routing
DTN routing is a network routing paradigm described in [1]. Presented as an extension
of the Interplanetary Internet, RFC 4838 is meant to describe the architecture of a pro-
totypical DTN. While traditional Internet Protocol (IP) message transport protocols like
Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) have been well
documented, studied, and employed, they fail to accommodate networks in highly mobile
scenarios well. TCP relies on well defined, stable connections, and UDP uses excessive
bandwidth. With the advent of high-speed processors, and the use of modern radio tech-
nologies, it is apparent that users can connect to a network across a wide variety of mobility
scenarios including heterogeneous radios, node movement types and applications. For this
reason, it is the belief of this study that DTN research is a field worth pursuing, as it promises
a high-upside potential that could prove invaluable not only to commercial users, but in
particular the military. In contested or arduous environments where traditional networking
schemes are unavailable or not able to be employed, it is very useful to have a network that
can accommodate potential disruptions or delays and service many mobile nodes. DTN
protocols ultimately represent another step forward in the push for ubiquitous communica-
tions availability, which is an invaluable trait for military communications infrastructure,
and highly desirable for the everyday user.

While typical routing strategies rely on the connectedness of networks utilizing the TCP/IP
framework, DTN routing strategies have significant alternative considerations. In particular,
end-to-end (e2e) connectivity is often not immediately available. While a message may
have a delivery path from one node across the network to another, that path may be broken
at times only to be recovered later. Additionally when a node transmits a message to another
node for forwarding to a distant-end destination, the hop-by-hop connectivity may change
throughout the lifetime of the message, meaning new routes can open midway through
a message’s propagation through the network. A message that may have originally been
destined to travel through nodes 1, 2, 4, 6 and so on, may end up traveling through nodes 1, 2,
3, 5, 7, and on to its destination. For this reason, DTN strategies tend to make decisions on a
hop-by-hop basis, preferring immediate connectivity to e2e paths that may not exist at a later
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time in the message’s propagation through the network. Because the TCP/IP framework is
designed for fully connected networks with dedicated, typically unchanging routing paths,
the routing strategies that work on top of that framework are typically unsuitable for DTN
routing. Instead, a methodology that takes into account the variable connectivity of the
network’s nodes is necessary for DTN routing strategies.

1.1.3 Machine Learning
The field of machine learning encompasses a subset of the artificial intelligence community.
Machine learning often relies on the concept of a machine learning a policy that is mathe-
matically described to represent the best possible values based on potential decision-making
schemes. Often represented by a Markov Model which represents a chain of state-action
definitions, the learned policy is implemented in such a way that the machine can au-
tonomously take actions that take the burden off of humans for decision-making. Machine
learning can further be split into many subsets to include: supervised vs. unsupervised
learning, neural networks, genetic algorithms, and reinforcement learning, to name a few.
As it applies to networking paradigms, the focus of this study is to take an in-depth look at
reinforcement learning techniques. Reinforcement learning teaches a machine a decision
policy by allowing the machine to make a random decision from a distribution of choices,
and then administering a reward to shape the bank of possible decisions. This technique can
be employed in various ways, but enables the machine to operate without having knowledge
of the system in which it is operating prior to execution. Because DTN encompasses such
a wide range of independent variables, including various radios, mobility models, etc. it is
the belief of this study that reinforcement learning is one of the most promising machine
learning techniques for this field.

1.2 Objectives
The main objective of this thesis is to study the application of machine learning techniques
to networking strategies, with the intent of discovering whether or not proposed machine
learning techniques are a viable option for routing in highly mobile networking environ-
ments. The recent growth of interest in machine learning techniques makes it pertinent to
study these techniques and their applicability to network science. It is the aim of this study
to rigorously test one proposed machine learning routing technique, QGeo, against well

3



established protocols as a baseline, and against a complex advanced protocol as a measure
of its capability.

Since QGeo was initially designed for drone swarms [2], it follows that it should be ap-
plicable to any highly mobile network, provided the underlying radio capability exists to
support transmission within that network. The initial study tested QGeo’s delivery success
ratio, overhead, hop count, etc. but the testing was done against other similar protocols, and
the scenario in which it was tested was limited. The scenario in the initial paper described
testing with a single radio interface, a random mobility scenario, and a single node density
parameter [2]. With that in mind, this study tests QGeo as a DTN protocol in the same test
environment as other DTN protocols with widely varied parameters and in a larger scope
than the initial testing described in [2]. In particular, this study explores QGeo’s ability to
deliver messages. This encompasses the success rate and delay with which QGeo is able
to deliver messages to their destination, QGeo’s use of control-level messaging to track
topology and connection information, and the associated computational requirements of
employing QGeo, to name a few. Further explanation of the specific metrics to be used in
testing is encompassed in Section 3.4

1.3 Scope
This thesis tests the effectiveness of a machine-learning-based DTN routing protocol,
namely QGeo, against six other protocols across four mobility models, each with unique
features. One mobility model is a widely used example of a heterogenous mobile network.
Two of the models exhibit military-historical mobility properties with varying node types.
The final model exhibits high-speed aerial nodes with high application-level data usage.
These scenarios provide a wide-ranging testbed for rigorous testing of new protocols.

In order to effectively accomplish the goals of this thesis, the study only implements QGeo
as described in its original presentation [2]. To the keen reader, however, it is an easy
transition to incorporate other reinforcement learning schemes into the algorithm, or make
slight potential improvements to the reward function. This study did not attempt to model
those changes, but leaves them for further study.
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1.4 Limitations
One of the main contributions of this study is to implement the QGeo routing protocol in
Network Simulator 3 (ns3) from scratch. Since the code from the paper that originally
presented QGeo [2] was unavailable, this thesis uses the Geolocation Assisted Predictive
Routing (GAPR) protocol implementation as a basis for QGeo. Despite the similarities
between them, the paradigms in these two routing protocols are significantly different.
GAPR relies on probabilistic inferences, while QGeo bases its decisions on information
gained through machine learning based calculations. This study’s implementation of QGeo
attempts to be consistent with the original presentation; however, it is likely that significant
differences exist based on the described differences between GAPR and QGeo. Acknowl-
edgment of the specific differences that are likely to exist is made in Section 3.2.5. All other
protocols used in testing were unmodified versions of previously implemented protocols in
ns3.

Killeen, Pospischil and Mauldin all acknowledge the difficulty in implementation of the
respective mobility models that they employed in their studies, whether it was due to
availability of only public data [3], [4] or potential flaws in the utilized real-world data [5].
This study refers the reader to those works for explanation of those difficulties. Based on this
study’s improvements to the swarm scenario, however, it is noteworthy that a new mobility
helper was used in implementing simulator-scheduled mobility events. What that means is
that since this study used a new mobility helper to create interpolation of movement points
for nodes, the actual node locations are likely to be slightly different from Pospischil’s
original implementation. However, the data files for the updated swarm mobility helper
were built using the same raw data used in [5], so the same challenges exist in that regard. In
addition to the mobility helper, this study also employed a new application helper type in the
ns3 simulator, which led to challenges in the operation of the DTN protocols. In particular,
two of the four applications in the swarm scenario rely on broadcast operation. When
the DTNHelper is used for applications, an error occurs every time the destination is the
broadcast address. For this reason, it is the belief of this study that the DTN implementation
in ns3 is lacking some functionality with regard to broadcast; however, it is unknown if that
issue lies with the specific routing protocol implementations, or with a more fundamental
DTN module in ns3’s source code. For scoping purposes, this study was unable to identify
the root cause of this issue.
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Finally, as described in [3], [4], this study ran at least a thousand simulation runs in testing.
Because of the size of overall data produced by all of these runs, it is intractable to analyze
each of the output files visually. Therefore, parsing scripts were employed that pulled out
the necessary data from the output files and generated plots and charts based on the results.
It is necessary to mention, then, that the data described in the analyses of this study is only
representative of the raw data, and is not the raw data itself.

1.5 Significant Findings
This study finds that QGeo performs well in scenarios where protocols that excel have the
characteristics of long message holding time, and opportunistic forwarding mechanisms.
QGeo has a better buffer management scheme than the GAPR protocols because it does not
sort the messages in its buffer, but its buffer management suffers compared to Epidemic,
Vector, and Centroid because it performs a computation to update the Q-value for every
message at every node interaction.

Additionally, this study presents improvements to the Swarm scenario, and ultimately
improves the rigor for a growing testbed of simulations for DTN testing. Preliminary results
for Swarm improvements were published in [6]. The Helsinki, Omaha, Bold Alligator and
Swarm scenarios used for testing all exhibit unique network characteristics to include
varying node type, radio parameters and messaging characteristics. This study finds that
the growing testbed of simulation scenarios tests a wide range of characteristics and proves
to be a rigorous test for all protocols tested.

1.6 Structure of Thesis
Chapter 2 of this thesis discusses the background research related to drone swarm technology
and deployment, current DTN routing protocols and strategies, and the current state of
Machine Learning technologies with a specific focus on their application to networking
technology. The background presentation contains a thorough literature review in each of
the respective fields that this study attempts to bring together.

Chapter 3 of this thesis discusses the implementation method for the experimentation setup
of this study. In particular, a background and reasoning for the choice of network simulator
is explained, and an explanation of previous implementations of protocols and mobility
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scenarios is given. After the explanation of the previously implemented routing protocols
and mobility scenarios is made clear, a detailed explanation of the implementation method
that this study employed is presented.

Chapter 4 of this thesis presents an analysis of the testing and experimentation conducted by
this study. In particular, results of the various routing protocols’ performance is discussed
across all mobility scenarios employed, as discussed in Chapter 3. Findings are presented
with graphs and charts in an attempt to support and/or clarify any conclusions drawn from
the analyzed data. Conclusions and future work are presented in Chapter 5.
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CHAPTER 2:
Background

This chapter provides a high-level background in the fields of mobile networking (with
specific regard to drone swarm networks), DTN routing techniques, and machine learning
(with specific focus on Q-learning). The end of this chapter focuses on recent research
published that combines each of these fields in specific ways in order to improve the routing
capability of DTN protocols for drone swarm technology and multi-robot systems.

2.1 Highly Mobile Networks
Amobile network is one where the various nodes throughout the network do not maintain a
fixed topology. Generally, mobile networks rely on wireless communication infrastructure
and the devices must have some embedded or onboard power source. Because of the
changing topology and resource-constrained environment, mobile networks have unique
communications infrastructure requirements. For instance in aerial networks depending on
the scenario (commercial, military, hobby, etc.), node velocity, mobility type (scheduled,
predictable, unpredictable), and link layer setup, various networking paradigms may be
needed [7]. While the aforementioned parameters are specific to aerial networks, mobile
networks in general are each unique and require different communications infrastructure.
The distinction of being highlymobile only increases the challenging properties of this class
of mobile networks.

Highly mobile networks’ routing performance is often negatively impacted due to a lack
of reliability in data transmission. A DTN architecture is defined as one that “embraces
the concepts of occasionally-connected networks that may suffer from frequent partitions
and that may be comprised of more than one divergent set of protocols or protocol fam-
ilies” [1]. In multi-robot systems and robotic swarms, the communications infrastructure
exhibits characteristics complicit with this definition of a DTN. As has been illustrated by
NPS faculty in [8] and [9] and former NPS students in [5] and [3], drone swarm technol-
ogy in particular suffers from a lack of scalable, reliable communications infrastructure.
Power management, network bandwidth, e2e path availability and per-node computational
capability are among the many factors that influence a swarm’s ability to communicate
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reliably. Management of the various factors within an autonomous node has the ability to
highly impact the communications capability of each node, thus motivating the need for a
low-impact communications infrastructure. In particular, as the size of the drone swarm
scales up in node count, the need to reliably communicate efficiently becomes paramount,
as discussed in [5].

In observing the operation of communications within a highly mobile disruption-prone
network, the characteristics often exhibiting the most influence over the observed poor
networking performance include packet latency between nodes (power management and
bandwidth availability considerations), short contact times (lack of e2e availability), and
high transmission overhead (computation and bandwidth limitations). These issues are
common to many MANET and DTN scenarios, and it is noteworthy to mention that in
the context of a drone swarm network, the density of aerial nodes determines network
type that is employed (DTN or MANET) [7]. Various methods have been introduced
to improve network performance in similar environments, to include predictive handover
via Hidden Markov Model (HMM) learning in Vehicular Ad Hoc Network (VANET)
[10], Ad-Hoc (Mobile Ad Hoc Network (MANET)) protocol development in aerial swarm
environments [8], and the application of machine learning (reinforcement learning) to
protocol development for mobile robotic networks [2] and wireless sensor networks [11].
In the context of this study, the employment of a routing protocol in a tactical drone swarm
network for military application requires the same, if not greater, capability for scalable,
reliable communications.

2.2 DTN Routing Protocols
Recent progress in DTN routing protocols has been made through various methods. This
section discusses some of those routing protocols as they apply to the testing done in this
thesis. In particular, each of the routing protocols discussed highlights the characteristics
of a different class, or family, of DTN routing methodologies.

2.2.1 Epidemic
Epidemic is a flooding or “replica based” [12] DTN routing protocol. Proposed by Vahdat
and Becker [13] with the goals of “i) maximize message delivery rate, ii) minimize message
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latency, and iii) minimize the total resources consumed in message delivery” [13], Epidemic
is a wireless protocol that floods messages throughout the network in order to provide e2e
connectivity between nodes. As described in Epidemic Routing for Partially-Connected
Ad Hoc Networks [13], the algorithm utilizes “transitive distribution of messages” between
nodes to accomplish its goals i) and ii). When a node generates a message for delivery
to another node in the network, it adds that message to its local buffer, which contains
a summary vector of every message it has generated or is holding for further delivery
(generated by another node). A key point that differentiates Epidemic flooding from a
simple broadcast is that this message buffer is constrained in order to limit message delivery
latency and resource requirements. In the buffer, each message is identified by a global
identifier that is hashed into the summary vector table. In addition to the message buffer,
each node maintains a list of hosts with which it has recently been in contact. When two
nodes come into contact, they exchange summary vectors in order to decide which messages
they have already seen, and which messages need to be exchanged. Once summary vectors
are exchanged, each node requests the messages it has not yet seen from the other node.
Once summary vectors are exchanged, each node can decide whether it wants to receive the
messages it has requested based on various factors such as available local buffer space and
incoming message size, etc.

The key points related to Epidemic are that each node maintains a buffer of the messages
that it is waiting to flood to other nodes, and when two nodes meet they exchange summary
vectors (summary of messages being held) and then the actual messages that each node
does not already have. Vahdat and Becker propose First In First Out (FIFO) queuing as the
methodology for buffer management in Epidemic [13]; however, they acknowledge that any
queue management framework would suffice, provided that the management of messages is
done with the summary vector table and correlated buffer. Because this is the case, buffer
size is a very important factor in Epidemic. Ultimately, it is fairly straightforward to see
that as node count increases, buffer size necessarily increases as well which directly implies
a heavy network load for large networks. In Delay Tolerant Networks, many methodologies
for limiting resource consumption are discussed, to include adding Time to live (TTL) or
Time to send (TTS) thresholds, Drop Oldest (DOA) and Drop Least Encountered (DLE)
buffer control mechanisms, or an “immunity” list to prevent duplication of store-and-
forward behavior for in-contact nodes who have the same buffered messages [14]. Each

11



of these methodologies addresses a different characteristic of Epidemic’s performance, but
Epidemic ultimately relies on the assumption of unlimited resources which are not available
in practical network systems, especially those characterized as DTN.

2.2.2 Vector
Vector is a “geographic based”DTN routing protocol [14]. Proposed byKang andKim [15],
Vector employed the use of a node’s location and movement history to determine its move-
ment vector. In particular, a node receives its location every ∆t seconds and calculates
its motion vector for comparison with neighbor nodes’ vectors. A determination of the
packets that need to be replicated is made based on the two nodes’ direction and velocity.
Equation 2.1 describes generally how a node determines the number of packets that need to
be shared with another node.

nFwd(x) = γ f (|Θx − Θy |) + (1 − γ)g(|dx − dy |)nData(x) (2.1)

In Equation 2.1, nFwd(x) is the number of packets to be replicated, nData(x) is the number
of packets that node x is already holding, Θx and Θy are the directions of movement of
nodes x and y, dx and dy are the velocities of nodes x and y, function f (Θ) is the normalized
function of Θ and function g(d) is the normalized function of d [15].

Because Vector calculates the number of packets that need to be shared between nodes based
on the movement of each node in an interaction, Kang and Kim demonstrated that Vector
has a “similar delivery success ratio compared with Epidemic routing, but with 28% less
traffic than random way-point model and 38% less traffic than Manhattan mobility model”
[14]. In particular, nodes that travel in orthogonal directions transfer the most messages due
to their likelihood of contacting different nodes. Additionally, when two nodes are traveling
in the same direction at different speeds, packets can be transferred to the faster node.
Ultimately Vector provides improvement in node resource consumption through the use of
movement information without losing significant performance (compared with Epidemic)
in terms of message delivery.
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2.2.3 Centroid
Centroid is another geolocation-based routing protocol that adds an improvement in the
calculation of a node’s location. Proposed by Rohrer [16], Centroid calculates the “center of
mass” of a node’s position history, rather than trusting the accuracy of the instantaneousGPS-
reported location of that node. Rohrer’s implementation relies on a time-based calculation
that effectively averages out the GPS error over the lifetime of travel of a particular node.
Equations 2.2 and 2.3 describe the calculation.

Cx(tp) =

tp∑
t=1

Cx(t − 1) × (t − 1)
t

+
xt

t
(2.2)

∆Cx(tp) =
xtp − Cx(tp − 1)

tp
(2.3)

In Equations 2.2 and 2.3, Cx is the centroid, ∆Cx is the change in centroid since the last
time increment, x is the one-dimensional (x, y or z) component of node position, and tp

is the current time increment. ∆Cx is the primary tool used to account for noise factored
into historical location data due to GPS errors. [16]. Centroid’s performance is comparable
to that of Vector, as it is based on the same concepts. Just like Vector, Centroid uses
geographic movement information to determine message sharing requirements and limit
replicated messages, however it does address Vector’s sensitivity to GPS errors. [4].

2.2.4 PRoPHET
Probability Routing Protocol using History of Encounters and Transitivity (PRoPHET) is a
probability-based routing protocol. Proposed by Lindgren, Doria and Schelen as a way to
improve the delivery rate over Epidemic, while lowering the overall network overhead [17],
PRoPHET determines its best next hop per-node by employing a delivery probability metric,
and a transitivity factor. Namely, the delivery probability is a measure of how frequently two
nodes interact, which has a constant decay rate until the next interaction. The transitivity
factor correlates three nodes such that if nodes 1 and 2 are likely to interact, and nodes 2 and
3 are likely to interact, then there is a strong probability that node 1 can transmit messages
whose destination are at or through node 3. Equations 2.4, 2.5 and 2.6 represent the main
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factors in determining a node’s probability of transmission to a single other node.

P(a,b) = P(a,b)old + (1 − P(a,b)old ) × Pinit (2.4)

P(a,b) = P(a,b)old × γ
k (2.5)

P(a,c) = P(a,c)old + (1 − P(a,c)old ) × P(a,b) × P(b,c) × β (2.6)

For PRoPHET’s probability equations, P(a,n) represents the probability of node a delivering
to node n, where n is some valid node in the network. Pinit is either 0 or 1, γ is a constant
between 0 and 1, but not including 1, k is a number representing the elapsed time since
the last update to P(a, b), and β is a constant between 0 and 1. Equation 2.4 describes the
probability of delivery between two nodes, as a function of their previous probability of
delivery and is updated at every interaction. Equation 2.5 represents the aging factor to
measure the frequency of interaction of two nodes. Frequently interacting nodes have a
higher probability metric, while nodes that meet less frequently have a lower metric, due
to the aging equation. Finally, Equation 2.6 handles the transitivity factor in determining
follow-on delivery [17].

While this thesis does not implement PRoPHET, it is noteworthy that as a representative of
the class of probability-based routing protocols, PRoPHET outperforms Epidemic in terms
of reduced network overhead and decreased network delay. PRoPHET performs similarly
to Epidemic in terms of message delivery, but it also increases the complexity of routing
decisions by adding historical node encounter metrics to determine probability of encounter
and performs transitivity calculations.

2.2.5 CAR
Context-Aware Routing (CAR) is an example of a social-based routing protocol. Proposed
byMusolesi andMascolo [18], CAR attempts to solve DTN routing challenges by predicting
future system contexts in order to maximize the efficiency of routing decisions. In their
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paper, Musolesi and Mascolo define context to be “the set of attributes that describe the
aspects of the system that can be used to drive the process of message delivery” [18].
This definition of context allows the flexibility for CAR to measure a system state as a
combination of the items in the context set and their corresponding utility values. Based on
these values, CAR predicts an overall delivery probability for a given node that attempts to
maximize the future context utilities, and sends the calculated probabilities out to connected
nodes for routing table updates.

While this thesis does not implement CAR, its benefits as an example of a social-based
routing protocol include low network overhead, specifically due to the single-copy nature of
the protocol, meaning messages are only forwarded once (in contrast to a flooding scheme,
like in Epidemic) [18]. Additionally, CAR illustrates a routing strategy that is resilient to
poorly connected networks as locality of nodes is part of the context set. In particular, this
methodology allows CAR to outperform many other protocols when a low buffer size is
employed because each message does not need to be held for more than one forwarding
transmission. Ultimately, the most efficient

2.2.6 GAPR
GAPR is the first in a family of iterated hybrid protocols developed at NPS, each imple-
menting a new feature derived from other protocols or routing methodologies. Proposed
by Rohrer and Killeen [19], the initial implementation of GAPR was based on the fact that
many routing protocols’ performance varies across a range of mobility scenarios. In partic-
ular, each protocol has characteristic behaviors that perform better than others in different
scenarios. For this reason, GAPR attempted to incorporate the beneficial characteristics
of the various protocols and incorporate them into a single protocol, while also adding the
benefit of geolocation information to improve performance.

In particular, GAPR employs the following features from various routing protocols as a
basis for desirable performance [19]:

• ACK flooding: acknowledgement messages sent out upon successful delivery use
flooding to replicate to all nodes in order for buffer space to be made available at each
node holding the original message.

• Encounter probability calculation: each node calculates a delivery probability based
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on direct encounters with other nodes. When two nodes meet, they use a modified
Dijkstra’s algorithm to calculate the transitive probability of delivering a message to
its destination.

• Short contact exploitation: nodes forward message to a peer node based on a descend-
ing order of probability values. In other words, node 1 transmits messages to node 2
in order of the higher probability of a message being delivered to its destination node.

• Buffer management: nodes only delete messages from their buffer when necessary
and messages are deleted in order of lowest probability of being delivered. In this
way, messages that are more likely to be delivered are held, while messages that are
less likely to be delivered are deleted, when necessary.

• Geographic location: upon an encounter, two nodes exchange their current geographic
locations and the timestamp of the interaction. The received location information is
then entered and saved in a table of encounters for determining a sense of network
topology. In addition to the encounter table, nodes maintain and exchange transitive
location tables for the purpose of understanding transitive network connectivity.

The above features are implemented by each node running GAPR in the following order of
operations upon encountering another network node [19]:

1. Exchange ACK messages and clear local buffers.
2. Forward messages whose destination is the peer node.
3. Exchange location information and routing tables including probability values
4. Modify probability values based on node movement for nodes who have moved

suddenly since the last update.
5. Forward messages for whom the peer has a higher probability value in descending

order.

The original implementation and testing of GAPR was completed in the ONE simulator [3],
[19], with follow-on testing conducted in ns3 [4]. Simulators are discussed in Chapter 3;
however, the original findings showed that on average, GAPR performed with better Packet
Delivery Ratio (PDR), lower latency and lower overhead. Follow-on testing in ns3 revealed
that GAPR is actually doing a lot of background work to build and maintain its various
features which ultimately revealed that the measured network overhead increased from the
original findings.
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Geolocation Assisted Predictive Routing 2 (GAPR2) was proposed by Killeen as a follow-
on to GAPR that employed the flooding mechanism of Vector in order to reduce overhead
and maintain PDR. Original results showed that GAPR2 reduced GAPR’s overhead by
five times, and only dropped in delivery ratio by 10%. Further testing in ns3 revealed that
depending on the mobility scenario GAPR2 lost about 3%-10% delivery ratio from GAPR
and latency increased by 400s to 3100s [4].

Geolocation Assisted Predictive Routing 2a (GAPR2a) was proposed by Mauldin as an
improvement to GAPR2 by employing the Centroid mechanism introduced by Rohrer [16].
By introducing the Centroid mechanism to GAPR2’s capability, Mauldin demonstrated con-
sistent performance across a range of scenarios, measuring Message Delivery Ratio (MDR)
within 1% of GAPR and latency within 600s of GAPR’s performance. The performance
of GAPR2a is significant; however, Mauldin acknowledges that the drawbacks of GAPR2a
include higher network overhead and increased power consumption when compared to
GAPR2. Nonetheless, both GAPR2 and GAPR2a perform better than GAPR in terms of
overhead and power consumption [4].

2.3 Machine Learning
Various machine learning techniques exist to support the development of decision behaviors
by a machine, and many advances in machine learning have been achieved in recent years
due to the computational power now available. Most techniques rely on a recorded dataset,
either annotated (supervised learning) or non-annotated (unsupervised learning) and train
a computer to recognize instances of desired outcomes, in a general sense. For example,
Neural Networks (NN) and Deep Learning methods can be applied to train a machine to
recognize images for improvements in computer vision technology [20]. Another promising
application of machine learning, in this case two techniques – Naïve Bayes and HMM –
is in natural language processing [21] by training a machine to automatically differentiate
spam email from desired relevant content. The problem with using these methods (and
many other machine learning techniques) in automated network routing decision-making
is that the fundamental requirement for training is a prescribed data set. In networking, an
optimal network design that could be used as a baseline for training a recognition machine
is often unavailable, and when applied to highly mobile networks, the variable geographic
topology often makes it impossible to have a predefined dataset useful for training [22].
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2.3.1 Reinforcement Learning
Despite the challenge of training amachinewithout a prescribed dataset, it is widely believed
that reinforcement learning has promising applications to network optimization primarily
because of its ability to develop a policy for an unknown environment [22]. Reinforcement
learning is based on the principle of a reward system that guides a trainee to an optimal
decision path. As described in the seminal dissertation exploring formal algorithms for
reinforcement learning byC. J. C.H.Watkins [23], training amachine through reinforcement
learning could be accomplished much like animal training by applying a specific reward
loop. In principle, if the trainee makes a correct decision, a positive reward is gained,
while an incorrect decision earns the trainee a negative reward. Extrapolating this idea to
a more general sense, making decisions that improve the overall system state is analogous
to making the “correct” behavioral decision and garner a positive reward, while decisions
that degrade the overall system state are analogous to “incorrect” behavioral decisions and
decrease the reward factor. Because of this principle of iterative rewards based on system
state improvement, predefined examples of the “right choice” are not necessary, thus freeing
the requirement of having a prescribed dataset.

Recent examples of the capability of reinforcement learning include training a computer
to master a centuries-old board game called Go, and successfully defeating the world
champion human player by combining Deep Neural Networks and reinforcement learning
techniques [24]. A different system used reinforcement learning and computer vision
techniques to view the pixels on the screen and iterate through thousands of attempts to play
an Atari 2600 video game, eventually achieving “a level comparable to that of a professional
human games tester across a set of 49 game” [25]. Reinforcement learning has demonstrated
promising capabilities for training computer systems to complete sequential and constrained
problems.

A subset of the broad field of reinforcement learning, as explained in [26], is described as
a temporal difference methodology. For scope, this review focuses on the temporal differ-
ence family of reinforcement learning strategies; however, other families of reinforcement
learning include dynamic programming as policy iteration and rollout-based Monte Carlo
methods [26]. Temporal strategies are based on a value function and seek to update their
primary value indicator at each time step. All of the temporal strategies rely on a Markov
Decision Process (MDP) that characterizes the system as a set of state, action, reward val-
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ues. In these methodologies an action in state s takes some action a and gets a reward r.
These values are utilized in each algorithm’s reward function to update the reward value,
which each algorithm seeks to maximize. Equations 2.7, 2.8, and 2.9 describe the reward
functions used by common temporal difference learning algorithms.

V ′(s) = V(s) + α(R(s, a) − R̄ + V(s′) − V(s)) (2.7)

Q′(s, a) = Q(s, a) + α(R(s, a) − R̄ +Q(s′, a′) −Q(s, a)) (2.8)

Q′(s, a) = Q(s, a) + α(R(s, a) − R̄ +max
a′

Q(s′, a′) −Q(s, a)) (2.9)

In Equations 2.7 - 2.9, the following variables are used:

• s describes a state
• a describes an action
• R̄ is the average reward when starting in state s and taking optimal actions a*
• R(s, a) is the reward function
• α is the learning rate. In some literature, this is described as the decay rate.
• V(s) is the function describing the old temporal difference value estimate.
• V’(s) is the function describing the updated (new) temporal difference value estimate.
• Q(s) is the function describing the old state-action Q-value.
• Q’(s) is the function describing the updated (new) state-action Q-value.

Equation 2.7 describes the value update function for the TD(0)-learning algorithm, a gener-
alized temporal difference learning algorithm [26]. Equation 2.8 is the value update function
used in the State-action-reward-state-action (SARSA) algorithm [26]. Finally, Equation 2.9
is an alternative notation [26] for the value update function for the one-step Q-learning
algorithm proposed by Watkins [23]. While these commonly used temporal difference
based reinforcement learning algorithms have been employed in various implementations
for a range of machine learning scenarios, they hold promising implications for application
in network routing, due to their ability to handle varying states through frequently updating

19



value functions. Of note, the major difference between SARSA and Q-learning lies in the
max function used in Q-learning. While SARSA and TD(0) update their value function
based on a randomly chosen action, Q-learning attempts to choose the action that results in
the maximum reward, thus maximizing Its value function.

2.3.2 Q-Routing
Q-routing is a reinforcement learning based network routing algorithm. Proposed by
Boyan and Littman [27] as an initial application of Q-learning to network routing tasks,
it employed an irregular 6x6 grid network topology and showed promising results for the
use of reinforcement learning, generally, in the networking field. However, because it was
implemented on a non-changing topology, this particular algorithm has no implications for
DTN, but acts as a good reference baseline for further reinforcement learning based network
routing algorithms.

2.3.3 QGrid
QGrid is a reinforcement learning based network routing algorithm. Proposed by Li et al.
in 2014 [28], it attempted to apply the Q-learning algorithm to VANET routing. Qgrid
employs unicast routing strategies and geographic location information in order to constrain
its routing strategy and make efficient routing decisions. In QGrid, the Q-learning portion,
or training, is done before any network routing is implemented. Outside of any networking
scenario implementation, the Q-Learning function is defined as follows:

Q(st, at) ← (1 − α)Q(st, at) + α( fR(st, at) + γmax
a′

Q( fS(st, at), a′)) (2.10)

• S: a discrete set of environment states st , where each state represents a grid-box
which is an equal division of the total geographic environment in which the network
operates.

• A: a discrete set of possible actions at that an agent in the network can take. These
are routing decisions between grids.

• fR(st, at): The reward function describing the immediate reward an agent receives
after taking action at in state st at time t.
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• fS(st, at): The transfer function describing the resulting state of an agent when action
at is taken at time t.

Since Equation 2.10 is learned offline prior to any networking scenario implementation,
the Q-value is recorded and known prior to the scenario. The Q-learning function is used
offline to generate a Q-value table. When nodes in a networking scenario for which the set
of states are applicable (ie, a geographically similar region to the region in which the system
was trained) attempt to route a packet, the Q-value table is employed to determine the next
best direction in which to route the packet in order to transmit it to its required destination
in the most effective manner. Li et al. state that an “agent infers the environment from the
reward R” [28] meaning that the Q-value table is derived from the reward R for routing from
one grid to each of the possible next grids. For instances when the packet’s destination
is in the grid represented by the next best direction, the reward R in QGrid is set to 100.
Otherwise, the discount factor γ determines the relative value of the possible directions
for routing, which is based on the number of vehicles in each of the possible grids for
routing [28]. Ultimately the learning portion of this algorithm relies on the grid-breakdown
of the geographic environment rather than on the topology of the network. Then, when
the Q-value table is employed in the networking scenario, it is a simple lookup table that
each node must query in order to determine its next best grid for routing, followed by a
determination of what is the best node in that grid for routing. Determination of the node
in the best next grid is made by what Li et al. call the Vehicle Selection Strategy [28]. The
Vehicle Selection Strategy is accomplished by determining if the node who needs to route a
pack has only one neighbor. If so, that node is chosen as the node to which the packet will
be forwarded. If otherwise, the Q-value table is queried to determine the best next grid for
routing. For all of the nodes in the best next grid a conditional probability is determined
that is a calculation of all of the possible vehicles’ Q-values for their next-hop route. In this
calculation, the highest probability calculated wins the routing decision [28] because the
highest probability corresponds to the node that is most likely to propagate the packet to its
destination.

QGrid was tested against other geolocation-based and grid-based routing protocols. Testing
showed that QGrid performed better than all other protocols against which it was tested,
specifically HarpiaGrid and Greedy Perimeter Stateless Routing (GPSR). Regardless of
its performance, QGrid is intended for VANET implementation, which is a limited set of
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DTN scenarios. VANETs describe valid networks for nodes who follow specific routes
(in particular, roads and rail tracks). To generalize to the broader class of DTN routing
protocols, a different implementation is necessary.

2.3.4 QGeo
QGeo is a reinforcement learning based network routing algorithm. Proposed by Jung,
Yim and Ko [2], QGeo takes link packet travel speed into account in order to increase
reliability of delivery. QGeo relies on in-scenario training rather than offline training,
citing the potential for unstable node distribution as a potential cause for errors in the Q-
value calculation when training is performed offline. Additionally, rather than breaking the
geography into a grid and assigning each grid a Q-value, QGeo assigns each node a Q-value
during an online exploration (training) phase, followed by the exploitation phase after Q-
learning convergence [2]. The Q-value update equation is described by Equation 2.10, the
same as in QGrid. However, the reward function for QGeo is defined as follows:

fR(st, at) =


Rmax when st+1 is destination

−Rmax when st is local maximum
fpts
Rpts

otherwise

In the QGeo reward function, Rmax is the maximum reward value, Rpts is a normalized
reward value based on the communication range between two nodes and the probability of
delivery, and fpts is defined as follows:

fpts(diffi, j, P) =
diffi, j

Ti, j(P)
(2.11)

Ti, j(P) = (O +
P
r
) ×

1
1 − Elink

×
1

1 − Eloc
(2.12)

fpts is the function describing the packet travel speed where diffi, j is the difference between
nodes i and j distances to the packet destination. Ti, j(P) is the travel packet time calculated
in Equation 2.12, where O is the overhead incurred for channel access, P is the packet size, r
is the data rate, and Elink describes link state error, while Eloc describes geo-location error.
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The final factor in the Q-value update equation that is distinct to QGeo is the decay factor
γ. QGeo allocates γ dynamically utilizing the neighbor distance between neighbor nodes i
and j E[di, j] as:

γ =

{
0.6 when E[di, j] < dcomm.

0.4 otherwise

Similarly to QGrid, QGeo utilizes the Q-value update equation, shown in Equation 2.10,
for training the system and creating a Q-value lookup table which is employed during the
exploitation phase (equivalent to QGrid online scenario phase) to make routing decisions.
Jung, Yim and Ko report that testing revealed QGeo’s performance had lower delay, higher
control message overhead, lower total network overhead, lower total retransmissions and
higher MDR than QGrid and GPSR. Testing was performed in a drone swarm scenario with
25 nodes in a 250m x 250m region with various networking parameters set as described
in [2].
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CHAPTER 3:
Implementation and Testing Methodology

This Chapter discusses the implementation of the routing protocols and mobility scenarios
used in testing, as well as the method for testing. Specifically, Section 3.1 discusses the
reasons behind choosing ns3 for testing, and Section 3.2 discusses the implementation of
the routing protocols tested, including parameters used, with more elaboration of QGeo as
it is a newly implemented protocol in ns3. Section 3.3 discusses the mobility scenarios
implemented, presenting a specific case study on the swarm scenario. Finally, Section 3.4
discusses the metrics evaluated in testing.

3.1 Choice of Simulator
Many network simulators exist for testing various DTN networking characteristics. Ulti-
mately, while the ideal scenario is to be able to test any network feature with a simulator that
accurately implements all aspects of a given network, it is often intractable or unnecessary
to utilize the computing power that would be required to implement every characteristic
of a network in a simulation environment. Without a fully-implemented network, then, a
desirable characteristic of a simulator to use for testing is the ability to modify the base
implementation of the simulator. Of the publicly available simulators that exhibit the char-
acteristic of being modular, or at least modifiable to suit testing needs, two that have been
widely used are the ONE and ns3.

3.1.1 The ONE Characteristics
The ONE is a discrete-event network simulator that is widely used for DTN testing. Ac-
cording to Keranen, Ott and Karkkainen, “At its core, ONE is an agent-based discrete event
simulation engine” [29]. This means that the ONE implements network characteristics on a
per-node basis, and it uses movement modules, routing modules and message generators to
build a simulated network. The ONE abstracts the physical and data layers of the network
stack in order to efficiently implement network routing along with accurate node mobility
in a lightweight package that is easily used for many scenarios.
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Figure 3.1. The ONE implements DTN routing, using events and movements
to drive the simulator engine. Source: [4].

Figure 3.1 illustrates how the ONE simulator uses movements and event generators to drive
the mobility engine for the simulator, which feeds the routing module. One of the other
helpful features of the ONE simulator is the visual output. The simulator has options to
output a mobility map for the nodes’ movement in the scenario, as well as network traces at
the IP layer, and graphs or charts for easier analysis.

3.1.2 ns3 Characteristics
According to the ns3 manual, "ns3 is a discrete-event network simulator...implemented in
C++" [30]. As such, ns3 is implemented as a modular library of C++ modules that can
be enabled/disabled, modified or created from scratch. ns3 implements all layers of the
network stack through two main modules, called /core and /network [30]. Both of these
modules live in the /src directory of the ns3 simulator library. From these modules, many
others are implemented to simulate various network implementations, ranging from various
routing protocol classes to different network topologies. For the purpose of testing DTN
routing protocols, this is a very useful construct because it enables the implementation of
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heterogeneous routing, mobility and application models all on top of a common networking
core. Figure 3.2 depicts the organization of ns3’s software modules.

Figure 3.2. The software organization of ns3 implements the entire network
stack. Source: [4].

Since ns3 is entirely implemented as a software library, it uses a build tool called Waf to
compile all relevant files for a specific simulation, and commence the actual simulation.
Waf is comparable to the C language’s cmake command. ns3 does not include anyGraphical
User Interface (GUI) tools so the learning curve to using the simulator is somewhat steep
for users unfamiliar with using tools that only have a Command Line Interface (CLI).

3.1.3 Choice of ns3
According to Mauldin’s research, ns3’s implementation of the entire network stack revealed
up to 33% of data transmitted is due to control messaging, which is not implemented in the
ONE [4], meaning ns3 is a more realistic network implementation. On the other hand, while
ns3’s implementation may include more realistic data, it includes no embedded analysis
tools, simulations take up to 50 times longer than in the ONE and prototyping new modules
is significantly more challenging due to the build environment [4]. Nonetheless, Mauldin’s
recommendation to test new DTN protocols in ns3 is a useful one as his findings point to
the comparison of the realistic nature of the output between the ONE and ns3. Because
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ns3 includes the lower layers of the network stack, its output can be interpreted as more
realistic; therefore, this study implemented protocol testing in ns3.

3.2 DTN Routing Protocols Implementation
The focus of this study was to test a machine learning based network routing protocol,
namely, QGeo. In this study QGeo was implemented in ns3 and tested against Epidemic,
Vector, Centroid, and the GAPR family of protocols. This section provides a background to
the coding structure of the tested protocols, and an in-depth explanation of the implemen-
tation of QGeo.

The ns3 file structure follows common naming conventions. For the DTN protocols, each
unique protocol is given a separate folder in the /src directory, identifiable by the name of
the protocol. Within each protocol’s folder, the following folders are implemented: /doc,
/examples, /helper, /model, and /test. Each routing protocol’s implementation is contained
in the /model folder, and the /helper folder contains files that can be easily used in other
models to install the protocol in various simulations. The /doc folder ideally contains an
explanation of the protocol including documentation references, /examples contains helpful
ns3 tutorial-level examples, and /test contains files for testing the validity of the install
for the respective protocol. Within the /model folder, the following naming convention is
used for the files corresponding to the DTN protocols that have been implemented ("proto"
should be replaced with the name of the protocol being implemented):

• proto-packet.cc(.h): implements the protocol’s required packet headers, and serializa-
tion/deserialization functions for writing the headers for packet transmission/receipt.

• proto-packet-queue.cc(.h): implements the protocol’s queue management scheme.
This file also calls proto-packet.cc to access some of the features of the protocol’s
packet header types. This file implements two classes: PacketQueue which is the
protocol’s buffer, and QueueEntry which is an element contained in the buffer.

• proto-routing-protocol.cc(.h): implements the message exchange sequence and re-
quired routing functions. This file also calls proto-packet.cc and proto-packet-
queue.cc to access various features of the packet headers and queue elements.

• proto-tag.cc(.h): implements simulator-specific metadata tagging utilized by the pro-
tocol.
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Due to ns3’s core implementation, each routing protocol must implement its own version
of characteristics that are common to each protocol. In particular, node discovery, ac-
knowledgement messaging, and application-level message handling must be implemented
by each protocol. In ns3, these functions were implemented in the same way for each of the
tested protocols. Alternatively, each protocol must also implement an exchange sequence,
message queueing method, and packet headers corresponding to each protocol’s message
types. Exchange sequence and headers were implemented in ns3, generally speaking, in
unique ways for each of the tested protocols. While there are many commonalities in the
queue management scheme of each protocol, there are significant differences in the way
that the queue is used, so discussion of each protocol’s queue is handled separately. The
unique implementations are discussed in each of the protocols’ respective descriptions in
the following sections.

In the ns3 implementation of the tested DTN protocols, beacon messaging was the method
used for node discovery. A node sends out a simple beacon message that is composed of
an 8-bit timestamp and 16-bit node identification number. Beacons use node identification
number rather than node IP address because a node may have more than one interface, and
each interface has an IP address. In order for receiving nodes to know which node sent the
beacon, node identification is more useful than one of the node’s IP addresses. Beacons
are sent by nodes at a regular interval, defined through the scenario-defined parameter
BeaconInterval. Since a regular beacon interval means nodes transmit at regular times,
beacon interval randomness is necessary in order to avoid beacon collisions, since all nodes
are transmitting on the same channel. Interval randomness is implemented by the scenario-
defined parameter BeaconRandomness, which adds an offset to the transmission time of
scheduled beacons. All ns3 DTN protocols implement beacons in the same way with the
exception of QGeo, which uses a modified beacon header. Details for the QGeo beacon
header modifications are explained in Section 3.2.5.

Ack handling in ns3 is implemented by each DTN protocol uniformly. Ack headers are
composed of a 64-bit message identification number, 16-bit node identification number, and
16-bit message status field set to Ack. The node identification number in the Ack header
is the number of the node that received the message. As mentioned in Mauldin’s work,
it is noteworthy to recognize that the ns3 DTN Ack is sent each time a node receives a
complete message from another node, rather than only sending acks when the destination
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receives the messages [4]. This is significant because it is characteristic of the behavior of
DTN protocols, where e2e connectivity is often not able to be established; therefore, this
Ack behavior can be used to ensure common DTN paradigms such as store-and-forward
or flooding are being maintained as nodes receive messages for further transmission when
they are not the message’s destination. Ack transmission is implemented in the SendAck
function, which is distinct from the SendAckSum function which is used by DTN protocols
to reduce overhead by ensuring messages are not retransmitted to a node having already
received them.

Finally, the application messaging implementation at the IP layer in ns3 is common among
DTN implementations. Each message uses a DTN data packet header, consisting of a 64-bit
message identification number, a 16-bit last hop number, a 32-bit total packets number to
notify the receiver of how many packets to expect for the current message, and a 32-bit
packet index that describes where in the total number of packets expected the current packet
fits. For message generation, each node’s application generates a UDP message, which is
then given a DTN data packet header by the local node before entering the outbound queue.
Further details regarding the data packet generation and handling can be found in [4].

3.2.1 Epidemic Implementation
Epidemic was originally implemented in ns3 by Mohammed J. F. Alenazi [31]. Improve-
ments weremade byMauldin in order to improve adherence to the original Epidemic design.
Specifically, "the control packet headers, node discovery, and data handling is different" [4].

Epidemic’s exchange sequence is handled in the RecvEpidemic function and is executed
as follows: first, nodes exchange beacons. Upon receipt of a beacon, the two involved nodes
determinewhich one has the lower IP address asmeans to ensure they don’t both send replies
at the same time. After deconfliction, the node with the lower IP address sends a Reply,
including a SummaryVectorHeader. Once a node receives a Reply it sends a Reply_back.
Upon receipt of the respective replies, the nodes begin transmitting data messages, based
on the SummaryVectorHeader exchanged. The SummaryVectorHeader contains a list
of message identification numbers from the sender’s buffer, and it ensures that the sending
node does not send data packets that the receiving node already has in its buffer. Nodes
send data packets from their message buffer using the SendDisjointMessages function,
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for which Acks are sent as a reply. Data packets are sent without a control header, and the
data packet - ack exchange represents the final state of two nodes’ exchange sequence.

As a flooding protocol, Epidemic’s queue management scheme is FIFO, meaning messages
are entered into the node’s buffer in the order they are received, and later those same
messages are transmitted in the order that they were received. Queueing of received data
packets is handled in the RouteInput function. This occurs when a node receives data
packets, indicated by the lack of a control header, from another node that has an active
connection with a local interface. Packets that are received that contain the Epidemic data
packet header are entered into the queue immediately upon receipt.

Epidemic’s unique headers are the TypeHeader, which defines the packet as an Epidemic
packet, and the SummaryVectorHeader. Epidemic implements the following headers:

• Beacon: Used for node discovery. Composed of an 8-bit message type field set to
Beacon, and a 16-bit node identification number.

• SummaryVectorHeader: Used to identify Reply and Reply_Backmessages. Com-
posed of a 16-bit fragmentation block, a 16-bit length block to identify how long
this message header will be, and a list of 64-bit message identification numbers
corresponding to messages that the sending node already has in its buffer.

• Ack: Used formessage receipt acknowledgment on a per-connection basis. Composed
of a 64-bit message identification number, 16-bit node identification number, and 16-
bit message status field set to Ack.

3.2.2 Vector Implementation
Vector was initially implemented in the ONE simulator by Kevin Killeen [3], and later
transferred to ns3 by Andrew Mauldin [4]. It is also worth noting that the original Vector
implementation was built in the ns-2 simulator by Kang and Kim [15]; however, that code
is unavailable, so Killeen’s implementation was original.

Vector’s exchange sequence is handled in the RecvVector_dtn function. Beginning with
node discovery, when a node receives a beacon, it sends an AckSum, which is a list of
message identification numbers that have been delivered to their destination. Differing
from the SummaryVectorHeader in Epidemic, the AckSum is a way to more efficiently
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reduce overhead incurred by per-connection acknowledgements. Instead of exchanging
Acks on a per-connection basis in order to prevent transmission ofmessages the node already
has, nodes send the AckSum to tell the other node to remove those messages from its buffer
altogether because they have already been delivered. After receiving an AckSum, nodes send
anAckSum_Reply, and anymessages in their bufferwhose destination is the connected node.
The AckSum_Reply is the same message format as an AckSum. After AckSums are shared
and destination messages are sent, nodes exchange Vector and Vector_Reply messages.
These contain the node’s movement vector, as well as a list of message identification
numbers contained in its buffer. The node receiving a Vector or Vector_Reply calculates
the number of messages to transmit based on the connected node’s movement vector. Once
the calculation is complete, a node uses the SendDisjointMessages function to transmit
messages to the connected node for further forwarding through the network.

In terms of buffer management, since Kang and Kim’s paper did not discuss a queueing
management scheme [15], Killeen’s [3], and later Mauldin’s [4], implementation employed
a FIFO scheme. As with Epidemic, the RouteInput function handles the enqueuing of
messages, and the order of message receipt is the only priority given to messages entering
and leaving the queue. The RouteOutput function handles the dequeuing of messages
when they are being sent from a node’s buffer, and in Vector the order of sending is based
on the oldest-message-first, according to the FIFO management scheme.

Vector’s unique headers are the Vector_dtn TypeHeader which identifies the message as
a Vector message, the AckSumVectorHeader, and the VectorVectorHeader. Vector
implements the following headers:

• Beacon: Used for node discovery. Composed of an 8-bit message type field set to
Beacon, and a 16-bit node identification number.

• AckSumVectorHeader: Used for buffer clearing. Composed of a 16-bit fragmen-
tation block, a 16-bit length block to identify how long this message header will be,
and a list of paired 64-bit message identification numbers followed by 32-bit message
timestamps corresponding to messages that the sending node knows have already
been acknowledged by their destination node (meaning they were delivered to their
destination).

• VectorVectorHeader: Used for notifying the receiving node of the sender’s move-
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ment vector and contained messages for forwarding. Composed of a 16-bit frag-
mentation block, a 16-bit length block to identify how long this message header will
be, a 32-bit movement vector x-component block and a 32-bit movement vector y-
component block for communicating the sending node’s movement vector, and a list
of 64-bit message identification numbers corresponding to messages in the sending
node’s buffer that are destined for further forwarding.

• Ack: Used formessage receipt acknowledgment on a per-connection basis. Composed
of a 64-bit message identification number, 16-bit node identification number, and 16-
bit message status field set to Ack.

3.2.3 Centroid Implementation
Centroid was implemented in ns3 by Andrew Mauldin [4]. Based on similarities in op-
eration between Vector and Centroid, Mauldin’s ns3 implementation used the ns3 Vector
implementation as the baseline for Centroid, making slight modifications based on unique
operating characteristics.

Centroid’s exchange sequence begins with beacons for node discovery. After a node re-
ceives a beacon from another node, nodes exchange AckSum and AckSum_replymessages.
AckSums in Centroid are the same mechanism as in Vector. After a node receives an
AckSum_reply, it sends a MsgSum. MsgSum and MsgSum_reply messages are the same
mechanism as Vectors Vector messages; however, instead of using the nodes movement
vector, Centroid sends the node’s centroid location x and y components. The centroid
location is the average traversed location in accordance with the node’s movement history.
The canonical example of a centroid is that of a node that completes one circular path. The
centroid is the center point of the circle that the node made. Alternatively, for a linear move-
ment, the centroid is the middle point on the line between the node’s starting location and
current location. A detailed explanation of the calculation of a node’s centroid can be found
in [16]. The receiving node uses the sender’s reported centroid to calculate the distance be-
tween the two nodes’ centroids, and uses that information to determine how many messages
to send at the end of the exchange sequence that are purposed for further forwarding. Other
than the difference in which location item is sent, Centroid’s MsgSum and Vector’s Vector
messages are the same. In addition to sending the MsgSum or MsgSum_reply, nodes also
send messages from their buffer whose destination is the connected node at this point in the
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exchange sequence. Finally, after transmitting messages destined for the connected node,
nodes exchange messages for forwarding purposes that are intended for destinations other
than the two connected nodes using the SendDisjointMessages.

Centroid’s buffer management scheme is the same as Vector’s and Epidemic’s. Cen-
troid uses FIFO for routing incoming messages in the RouteInput function, as well as
for routing outgoing messages in the RouteOutput function. Because Centroid’s FIFO
scheme, and message exchange sequence are the same as Vector’s, the only significant
difference between Vector and Centroid is the message limit calculation performed for the
SendDisjointMessages function. Vector uses node movement direction, while Centroid
uses node centroid location. This is intended to improve reliability of transmission of for-
warding messages because the calculation is based on location history, rather than predicted
location (based on node vector).

Centroid’s unique headers are the Centroid TypeHeader which identifies packets to be
Centroid messages. The AckSumHeader and the MsgSumHeader are shared with the GAPR
family of protocols. Centroid implements the following headers:

• Beacon: Used for node discovery. Composed of an 8-bit message type field set to
Beacon, and a 16-bit node identification number.

• AckSumHeader: Used for removing messages from a node’s buffer. Composed of a
16-bit fragmentation block, a 16-bit length block to identify how long this message
header will be, and a list of paired 64-bit message identification numbers followed by
32-bit message timestamps corresponding to messages that the sending node knows
have already been acknowledged by their respective destination node.

• MsgSumHeader: Used for notifying the receiving node of the sender’s centroid
location and contained messages for forwarding. Composed of a 16-bit fragmentation
block, a 16-bit length block to identify how long this message header will be, a
32-bit centroid x-component block and a 32-bit centroid y-component block for
communicating the sending node’s centroid location, and a list of 64-bit message
identification numbers corresponding to messages in the sending node’s buffer that
are destined for further forwarding.

• Ack: Used formessage receipt acknowledgment on a per-connection basis. Composed
of a 64-bit message identification number, 16-bit node identification number, and 16-
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bit message status field set to Ack.

3.2.4 GAPR Implementation
GAPR and GAPR2 were initially implemented in the ONE simulator by Rohrer and
Killeen [3], [19]. Mauldin’s work transferred the implementation to the ns3 simulator
and also implemented GAPR2a in ns3. Because the GAPR protocols use principles from
Vector and Centroid, Vector was used as the basis for the GAPR protocols.

GAPR’s exchange sequence begins with the standard beacon node discovery mechanism.
After receiving another node’s beacon, nodes running one of the GAPR protocols send an
AckSum message, the same as Vector and Centroid. Following AckSum exchanges, nodes
send Probs and Probs_reply messages which contain a list of interaction probabilities.
The list of probabilities is a running database that each node keeps locally and updates when
another node is encountered. The probabilities are incremented based on frequency of
encounter between two nodes and are normalized. In addition to Probs and Probs_reply
messages, nodes send messages whose destination is the connected node at this point in
their exchange sequence. After receiving the Probs and Probs_reply messages, nodes
exchange their local transitive probability tables for deconfliction via a Trans_Probs
or Trans_Probs_reply message. Trans_Probs and Trans_Probs_reply messages
include the sending node’s table of probabilities that it has received via interaction with
other nodes. When a node receives another node’s transitive probability table, if the same
record exists in both tables, then the record with themost recent timestamp between the local
and received tables is chosen. After exchanging Trans_Probs and Trans_Probs_reply
messages, nodes exchange MsgSum and MsgSum_replymessages, which are the same as the
Centroid MsgSum and Vector’s Vectormessages. GAPR and GAPR2 send the node vector
components in the MsgSum headers, while GAPR2a send the node centroid components.
After exchanging MsgSum messages, nodes finally send messages that are intended for
further forwarding, based on varying schemes between the different GAPR protocols, as
explained below.

When a node running one of the GAPR protocols receives a MsgSum, certain calculations
are performed based on the version of GAPR that is running. GAPR nodes perform
no calculation with the information, and proceed to send all messages in the buffer that
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require further forwarding. GAPR2 nodes use the provided vector components to calculate
the message forwarding limit based on predicted movement and angle of incidence, as
is done in Vector. GAPR2a nodes use the provided centroid location components to
calculate the message forwarding limit based on centroid location as is done in the Centroid
protocol. With these mechanisms, it is easy to see a strong parallel in the development of
the GAPR2 and GAPR2a protocols with the Vector and Centroid protocols, respectively.
Namely, GAPR establishes protocol uniqueness based on the exchange of probability and
transitive probability tables, while GAPR2 implements Vector’s message limit calculation
for forwarding messages with non-local destinations, and GAPR2a implements Centroid’s
modification to the message limit calculation.

One of the main features that differentiates GAPR from the previously described protocol
implementations is its queue management scheme. Instead of FIFO, GAPR protocols all
implement a queue prioritization based on hop count and delivery probability. Delivery
probability information is calculated based on the exchanged transitive probability tables.
The local node’s transitive probability tables is managed by a class that is unique to GAPR
called MeetingProbabilitySet, which is found in the file gapr-meeting-prob.cc(h). Hop
count is used to determine the threshold for calculating which messages to prioritize.
Message prioritization and queue re-organization is conducted in the gaprMergeSort
function, which is called in the last step of the exchange sequence, when nodes determine
which messages to send for further forwarding (SendDisjointMessages).

GAPR’s unique headers are the GAPR TypeHeader which identifies packets as GAPR
messages, the Probs header and the Trans_Probs header. GAPR protocols implement the
following headers:

• Beacon: Used for node discovery. Composed of an 8-bit message type field set to
Beacon, and a 16-bit node identification number.

• AckSumHeader: Used for removing messages from a node’s buffer. Composed of a
16-bit fragmentation block, a 16-bit length block to identify how long this message
header will be, and a list of paired 64-bit message identification numbers followed by
32-bit message timestamps corresponding to messages that the sending node knows
have already been acknowledged by their respective destination node.

• ProbsHeader: Used for notifying another node of the sending node’s probability of
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encounter for each node in its local probability table. Composed of a 32-bit local
node’s location x coordinate, 32-bit local node’s location y coordinate, 32-bit local
node’s time of last probability update, 16-bit fragmentation block, 16-bit record count
block to notify the receiver of the length of this message, and a list of record blocks
which are defined as follows. A single record in the ProbsHeader contains the
sending node’s knowledge of another node in the form of a 32-bit node IP address,
32-bit node location x coordinate, 32-bit node location y coordinate, 32-bit node time
of contact, and 32-bit node delivery probability.

• TransProbsHeader: Used for sharing transitive probability tables with the pur-
pose of deconfliction and updating more recent information. The TransProbs
stage of the exchange sequence is composed of groups of records corresponding
to other nodes’ knowledge of other nodes. Each record is transmitted with a separate
TransProbsHeader composed as follows. 32-bit record node’s IP address, 32-bit
record node’s time of last probability update, a More Records flag to notify the re-
ceiver if more records are contained in the sending node’s transitive probability table,
a Fragmentation flag to notify the receiver if there are more messages corresponding
to this record, a 16-bit number of probabilities that notifies the receiver of how to de-
serialize this record, and a list of 32-bit transitive node IP address and 32-bit delivery
probability pairs.

• MsgSumHeader: Used for notifying the receiving node of the sender’s vector/centroid
location and contained messages for forwarding. Composed of a 16-bit fragmentation
block, a 16-bit length block to identify how long this message header will be, a 32-bit
vector/centroid x-component block and a 32-bit vector/centroid y-component block
for communicating the sending node’s centroid location, and a list of 64-bit message
identification numbers corresponding to messages in the sending node’s buffer that
are destined for further forwarding.

• Ack: Used formessage receipt acknowledgment on a per-connection basis. Composed
of a 64-bit message identification number, 16-bit node identification number, and 16-
bit message status field set to Ack.

3.2.5 QGeo Implementation
The original implementation of QGeo was written by Jung, Yim and Ko [2]; however,
none of the code described in their paper is available. Therefore, one of the main efforts
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of this study was to translate the description into a viable and consistent implementation.
Additionally, the testing described in [2] was minimal, but showed promise, so this study
aimed to expand on that testing. Based on the original paper, and previous work in ns3, this
study implemented QGeo by using Mauldin’s GAPR implementation as a baseline. The
similarities between QGeo and GAPR are the predominance of a geolocation factor in the
protocol’s behavior, as well as a separate metric: Q-value (QGeo) and Meeting Probability
(GAPR), in the next-hop calculation, when a node is transmitting messages. However
similar these protocols may be, significant differences exist. As the primary example of the
difference in the protocols, the operations on the buffer are completely different between
GAPR and QGeo. QGeo calculates Q-values based on the buffer’s current values (explained
below), while GAPR sorts the messages in the buffer based on their probability comparison.

QGeo shortens the exchange sequence from GAPR by removing the Probs and
Trans_Probs messages from the exchange. However, it adds initial overhead by mod-
ifying the beacon header. It is important to understand the way that QGeo uses Q-values
prior to understanding the entire exchange sequence. Node discovery in QGeo starts with
beacons; however, the beacon in QGeo includes the sending nodes’ list of local Q-values,
which represents the relative likelihood of a node to be able to transmit to each other node in
the network. Many times the Q-value of a single node in the local Q-value table is 0. When
nodes receive beacons, the transmitted Q-value table is used to update the receiving node’s
transitive Q-value table, which is managed by the QValueSet class, maintained in the file
qgeo-qtable.cc(.h). The transitive Q-value table is a node’s map of all other nodes and their
known Q-values to each other destination. In this way, the QValueSet is very similar to
GAPR’s MeetingProbabilitySet. The difference is in the method of implementation,
and use of the associated Q-values (QGeo) or probabilities (GAPR). In addition to the
Q-value table, the QGeo beacon header also includes location information, link error and
location error [2]. To implement link error, this study utilized the WifiNetDevice classes
GetFrameErrorRatemethod, and to implement location error, this study used a hard value
of 20%, which is the max value in the initial paper for QGeo [2]. Because the local Q-value
table and other values are included in the beacon header, beacons in QGeo have a higher
bit-size, which is dependent on the size of the network. Additionally, it is worth noting
that Q-values received via a beacon are directly entered into the receiving node’s transitive
Q-value table. Local Q-values are updated via the Q-value update equation, described in
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Equation 2.3.4, later in the message exchange sequence, when nodes calculate the messages
to be sent for forwarding purposes.

With an understanding of how Q-values are used in QGeo, it is easy to understand the
protocol’s exchange sequence. First node discovery is implemented via the modified bea-
cons. Once a node receives a beacon and updates its transitive Q-value table, it sends an
AckSummessage. Once nodes exchange AckSum and AckSum_Replymessages, nodes send
messages whose destination is the connected node, and MsgSummessages. Finally, after ex-
changing MsgSum and MsgSum_Reply messages, nodes use the SendDisjointMessages
function to send messages for further forwarding. This point of the exchange sequence also
notes a difference from GAPR’s operation, as GAPR uses a queue management scheme that
implements a reorganization of the buffer for each connection state and is based on each
message’s destination at this point. QGeo, on the other hand, does not sort the buffer here,
thus making computational requirements at this point in the exchange sequence significantly
lower.

As noted above, QGeo does not implement a buffer scheme based on message delivery
probability as in GAPR. Instead, QGeo relies on the FIFO management scheme like
Epidemic, Vector and Centroid. While QGeo does no sorting on its buffer, it does update
the qvalue for each node based on the each message’s destination using the Q-value update
equation described in Section 2.3.4. One area where this implementation may significantly
differ from the initial implementation by Jung, Yim and Ko is that this study summed the
WifiMac classes GetSlot and GetSifs methods to define the overhead term. This may
not be a completely accurate model of the network access overhead between two nodes, but
it is the belief of this study that the performed calculation gives at least a minimum overhead
access requirement value that is valid. Due to QGeo’s buffer update behavior, computational
requirements are higher in QGeo’s buffer management scheme than a simple FIFO scheme,
but does not require sorting, which allows it to be less complex than that of management
schemes that do require sorting. This is an important note in the use of reinforcement
learning for networking: while it is more computationally complex than traditional, simpler
schemes like FIFO, it attempts tomanage that complexity by incorporating a reward function
for learning a good selection policy. In the case of QGeo, the reward-based selection policy
is implemented in the buffer, and only used when searching the buffer for messages whose
best next hop is the node to which the sender is connected.
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QGeo’s only uniquely named header is the QGeo TypeHeader, which identifies packets
as QGeo messages; however, QGeo’s Beacon header is very different than the previously
discussed protocols’ implementations. QGeo implements the following headers:

• Beacon: Used for node discovery, Q-value sharing and reporting of node location,
location error, and estimated link error. Composed of an 8-bit message type field set
to Beacon, a 16-bit node identification number, a 64-bit node location x coordinate,
a 64-bit node location y coordinate, a list of pairs composed of known 32-bit node
identification number followed by a 32-bit Q-value, and finally a 32-bit link error
estimate and 32-bit location error. **The original QGeo paper removed nodes from
the known local list of Q-values if a beacon was not received from that node within
two beacon intervals [2]; however, this study did not remove nodes from the known
Q-value list. This implementation means that if a message’s best Q-value belongs to
a node that is out of range, the message is held in the sender’s buffer until a better
Q-value is found. Additionally, if the best value is shared between two nodes, this
study’s implementation chooses the node whose Q-value was seen first.

• AckSumHeader: Used for removing messages from a node’s buffer. Composed of a
16-bit fragmentation block, a 16-bit length block to identify how long this message
header will be, and a list of paired 64-bit message identification numbers followed by
32-bit message timestamps corresponding to messages that the sending node knows
have already been acknowledged by their respective destination node.

• MsgSumHeader: Used for notifying the receiving node of the sender’s movement
vector and contained messages for forwarding. Composed of a 16-bit fragmentation
block, a 16-bit length block to identify how long this message header will be, a 32-bit
vector x-component block and a 32-bit vector y-component block for communicat-
ing the sending node’s centroid location, and a list of 64-bit message identification
numbers corresponding to messages in the sending node’s buffer that are destined for
further forwarding.

• Ack: Used formessage receipt acknowledgment on a per-connection basis. Composed
of a 64-bit message identification number, 16-bit node identification number, and 16-
bit message status field set to Ack.
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3.3 Mobility Scenarios
A significant contribution of this study was to test DTN protocols in a robotic swarm
scenario. Previous swarm implementation by Pospischil [5] was improved and utilized for
testing all DTN protocols. This section gives a background to the Helsinki, Omaha, Bold
Alligator and Swarm mobility scenarios as well as a short, yet detailed case study for the
improvements made to the swarm scenario.

The mobility scenarios described below have various roots. Nonetheless, as map-based
models, each scenario utilizes the Network Simulator 2 (ns2) mobility format to generate
node mobility. The Helsinki, Omaha and Bold Alligator scenarios’ ns2 mobility files were
all generated as standard output files from the ONE simulator as described in [4]. Killeen
initially implemented the Helsinki and Bold Alligator scenarios in the ONE [3], while
Mauldin implemented the Omaha scenario in the ONE [4], and utilized the output files
from all three scenarios in the original ns3 implementations of these mobility models. The
Swarm scenario, initially implemented by Pospischil, translated real-world drone swarm
flight Global Positioning Satellite (GPS) logs into the ns2 mobility files necessary for drone
mobility implementation in ns3 [5].

3.3.1 Helsinki
The Helsinki scenario is the canonical mobility model in DTN simulation testing. Based
on the city of Helsinki, Finland, the scenario employs three types of nodes that represent
real-world urban radios. Pedestrians are the slowest-moving nodes and they move on the
map’s sidewalks. Cars are the nodes with the moderate speeds and they move on the map’s
roads. Finally, trams are the fastest moving node types and they only move on the map’s
tram tracks.
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Figure 3.3. The Helsinki mobility scenario base implementation map.
Source: [4].

Figure 3.3 is the map used in the ONE simulator to conceptually initiate node movement
according to the previously identified node types [29]. Based on themap, nodes are assigned
movement commands along the lines of the map which correspond to tram tracks and roads.
Pedestrians move along the road lines, at a slower speed than the cars. For testing purposes,
ten different mobility scenarios are used with the Helsinki map implementation.

For consistency of testing in order to thoroughly examine the performance of QGeo, testing
parameters in the Helsinki scenario are the same as previous testing on DTN protocols in
ns3 as conducted in [4]. Table 3.1 is taken from [4] and describes the radio parameters used
in the Helsinki scenario.
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Table 3.1. Helsinki scenario parameters. Adapted from [4].

Parameter Values
Simulation Duration 12 hrs
Simulator Seed 717, 718
Warmup Time 1000 s
Timestamp Resolution 0.1 s
Beacon Interval 5 s
Number of Pedestrians 80
Number of Cars 40
Number of Trams 6
Base Radio Bandwidth (Mbps) 54
Tram Radio Bandwidth (Mbps) 526.5
Base Radio Transmit Range 10 m
Tram Radio Transmit Range 1000 m
Base Buffer Size (MB) 5
Tram Buffer Size (MB) 50
Message Rate 1 / 25 - 35 s
Message Size 0.5 - 1.0 MB
Message TTL 5 hrs
Hop Limit 50
Protocols Epidemic, Vector, Centroid, GAPR, GAPR2, GAPR2a, QGeo

3.3.2 Omaha
The Omaha scenario is a custom mobility scenario that implements a model of the World
War II D-day invasion of Normandy, at the Omaha beachhead. The Omaha scenario is
unique because it presents an historical event as the basis for mobility. While specific
movements were not recorded, numbers of troops, vehicles and vessels are known, and the
geography of the area is known, so approximate movements are implemented, as described
in [4]. The initial implementation by Mauldin was completed in the ONE simulator, with
the resulting ns2 mobility file being the basis for the ns3 scenario implementation. The node
types in the scenario are infantry troops that move on foot, ships that move over water, and
smaller vessels that move along the water and land at the beachhead, which carry the troops.
For this reason, the smaller vessels move at the same speed as the troops. Troop ground
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movement (after debarking from the vessel) maintains the same speed. In this scenario, all
nodes use the same radio and associated parameters.

Figure 3.4. The Omaha mobility scenario base implementation map.
Source: [4].

Figure 3.4 is the map used in the Omaha scenario implementation. The labeled ship patrol
boxes represent areas that ships and smaller vessels traverse over water, while the labeled
troop patrol routes are followed by infantry troop nodes over land. In testing, ten different
mobility files are used on the same map, with the same number of nodes. Table 3.2 is taken
from [4] and describes the radio parameters used in the Omaha scenario.
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Table 3.2. Omaha scenario parameters. Adapted from [4].

Parameter Values
Simulation Duration 12 hrs
Simulator Seed 717, 718
Warmup Time 1000 s
Timestamp Resolution 0.1 s
Beacon Interval 5 s
Number of Soldiers 44
Number of Ships 17
Radio Bandwidth 12 Mbps
Radio Transmit Range 550 m
Soldier Node Buffer Size (MB) 5
Ship Node Buffer Size (MB) 50
Message Rate 1 / 25 - 35 s
Message Size 0.5 - 1.0 MB
Message TTL 5 hrs
Protocols Epidemic, Vector, Centroid, GAPR, GAPR2, GAPR2a, QGeo

3.3.3 Bold Alligator
The Bold Alligator scenario is another custom built, military-based scenario. The Bold
Alligator scenario attempts to model the movements of a military-assisted humanitarian
extraction operation in a disaster scenario. It does this by using modified plans from a
real-world military exercise to generate node movements. The original implementation was
built by Killeen in the ONE simulator [3]. His implementation used ships, Landing Craft
Air Cushion (LCAC), Humvees, ground troops and helicopters for node types. Mauldin
transferred the ONE’s ns2 output file as the ns3 base model.
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Figure 3.5. The Bold Alligator mobility scenario base implementation map.
Source: [3].

While Bold Alligator’s mobility concept is similar to the Omaha scenario, it implements
more node types with greater mobility variation. In addition to different mobility, Bold
Alligator also implements radios with longer transmission ranges. During testing, Bold Al-
ligator, like Helsinki and Omaha, makes use of ten variations of node mobility implemented
on the same map in the form of ten mobility files. Table 3.3 is taken from [4] and describes
the radio parameters used in the Bold Alligator scenario.
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Table 3.3. Bold Alligator scenario parameters. Adapted from [4].

Parameter Values
Simulation Duration 24 hrs
Simulator Seed 717, 718
Warmup Time 10800 s
Timestamp Resolution 0.1 s
Beacon Interval 5 s
Number of Marines 70
Number of Humvees 20
Number of Drones 2
Number of Helicopters 8
Number of LCACs 2
Number of Ships 3
Base Radio Bandwidth 12, 24, 36, 54 Mbps
Humvee Radio Bandwidth 54 Mbps
Drone Radio Bandwidth 6 Mbps
Ship Radio Bandwidth 54 Mbps
Base Radio Transmit Range 100 m
Humvee Radio Transmit Range 3000 m
Drone Radio Transmit Range 3000 m
Ship Radio Transmit Range 10000 m
Marine Node Buffer Size (MB) 5
Drone Node Buffer Size (MB) 5
Humvee Buffer Size (MB) 50
LCAC Buffer Size (MB) 50
Helo Buffer Size (MB) 50
Ship Buffer Size (MB) 500
Marine Message Size 250 - 500 KB
Humvee Message Size 0.5 - 1.0 MB
Ship Message Size 0.5 - 1.0 MB
Marine Message Rate 1 / 5 - 10 s
Humvee Message Rate 1 / 10 - 20 s
Ship Message Rate 1 / 25 - 35 s
Message TTL 5 hrs
Protocols Epidemic, Vector, Centroid, GAPR, GAPR2, GAPR2a, QGeo
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3.3.4 Swarm
The Swarm scenario presents a unique testbed for mobile nodes because it uses real-world
recorded data, without significantmodification or generalization. The initial implementation
was built by Pospischil using GPS logs from recorded flight data in 2015 at NPS when the
Advanced Robotics System Engineering Laboratory (ARSENL) group flew multiple flights
of drones in swarms of various size [5]. The swarms were composed of aerial nodes and
a ground station that acted as an arbiter for the swarms. Each flight test simulated an
adversarial pair of sub-swarms of equal sizes. While this scenario illustrates the potential
military use of the swarms, the reality is that the communications infrastructure did not
differentiate between the opposing swarms. The network for a scenario of two six-drone
swarms was a 13-node network composed of 12 aerial nodes and one ground station.
Because the drones are aerial nodes by nature, they do not rely on map features, and all
nodes have the same flight speed. However, the initial ns3 implementation translated the
real-world GPS logs into ns2 format using the ConstantPositionMobilityModel so
that a node was assigned a position at some time. Then at the next recorded GPS log for
that node, an ns2 statement was implemented to automatically move the node to its next
recorded position, with no continuous motion correlating the two positions.

Figure 3.6. The Swarm mobility scenario base implementation graphic.
Source: [5].

ns3 contains many built-in mobility models; however, none of them are directly map based.
All of the built-inmodels rely on some type of randommovement, constant position (discrete
movement), or constant velocity vector (linear movement). In order to implement a real-
world mobility model, an external format must be used. ns3 supports the ns2 mobility
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model. An ns2 mobility file contains single-line commands pertaining to specific nodes, as
described in the ns3 documentation [32]. The ns2 mobility format allows three canonical
statements, from which the ns3 class Ns2MobilityHelper translates simulator mobility
events. The ns3 model library lists the following command types:

• $node set X_ x1 : Sets the local [X_, Y_ or Z_] position of node to [x1, y1 or z1].
• $ns at $time $node setdest x2 y2 speed: Commands node to move at time toward the
location described by [x2, y2] with velocity speed.

• $ns at $time $node set X_ x1: Commands node to immediately change its current
[X_, Y_ or Z_] position at time to [x1, y1 or z1].

This study introduces a new Ns3MobilityHelper format that modifies the built-
in ns2 mobility format used by the previously mentioned scenarios. ns3’s built-in
Ns2MobilityHelper can assign static x, y and z positions, but can only use the "set-
dest" command format to assign an x and y component for the destination, as described
previously. The new Ns3MobilityHelper implements a z-component for "setdest" com-
mands that schedule a node beginning continuous motion toward the assigned destination.
With the z-component enabled in the Ns3MobilityHelper, the GPS logs were converted
to the new ns3 format and form the basis for mobility for the Swarm scenario. Following
Pospischil’s implementation, swarms are implemented in 6v6 (12-node), 10v10 (20-node),
15v15 (30-node) and 25v25 (50-node) groups. Subsection 3.3.5 provides more detailed
information and analysis of the impact of the Ns3MobilityHelper implementation on
swarm mobility behavior.

The initial Swarm implementation used four applications based on the ns3 built-in
OnOffHelper, which implements an on/off timer for application message generation. This
application model worked for MANET testing, as recorded in [5]; however, for DTN proto-
cols, the DTNHelper class is necessary for application compatibility. Another contribution
of this study is the implementation of the DTNHelper at the application level which allows
testing of DTN protocols in the Swarm scenario. Testing of the Swarm scenario is con-
ducted with four base mobility files corresponding to the four swarm sizes previously listed.
Table 3.4 describes the radio parameters used in the Swarm scenario.
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Table 3.4. Swarm scenario parameters

Parameter Values
Simulation Duration 25 min
Simulator Seed 1
Warmup Time 0 s
Timestamp Resolution 0.001 s
Beacon Interval 5 s
Number of Drones 12 - 50
Radio Transmit Gain (Relative) 0, 3, 6, 9, 12, 20
Radio Transmit Range 550 m
Node Buffer Size (MB) 5MB
Message Rate 1 / 1 - 2 s
Message Size 20b, 56b
Message TTL N/A
Protocols Epidemic, Vector, Centroid, GAPR, GAPR2, GAPR2a, QGeo

3.3.5 Swarm Case Study and Analysis
In order to validate the updated swarm mobility model, a test was performed that compared
recorded mobility logs as well as actual network performance for each of the implemented
swarm sizes. This section discusses the specific method of translation for the mobility
baseline datasets, parameters of the validation experiment, and describe the results of the
experiment.

Dataset Translation Methodology
This study modified the raw datasets used in Pospischil’s original implementation [5] by
using a Python script to take each line of data and convert it to the ns3 format described in
Section 3.3.4. Since each raw data file had thousands of lines of recorded location data, it
was necessary to automate this process rather than doing it by hand. The first iterations of
this automation revealed that there were multiple lines in each file with inconsistent GPS
data. Further explanation is revealed in Section 3.3.5, but as an example illustrating the
inconsistent data, the following list reveals a GPS error. Each line has the following format:
time, swarm_number, node_number, x_location, y_location, z_location.
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• 1488250647.969,2,20,12043819.229455,4186523.341756,0
• 1488250648.069,2,20,47.58144,18.675451,275.38

The two lines shown above were taken from the raw 10v10 swarm data file. These
lines state that node 20 moved from (x, y, z) = (12043819.229455, 4186523.341756, 0)
to (x, y, z) = (47.58144, 18.675451, 275.38) in 0.9 seconds exactly. This means that node
20 moved 12750657.11664923 meters in 0.9 seconds, which is equivalent to a speed of
14167396.796276921m/s. This is 4% of the speed of light, which is approximately 30,000x
the speed of the earth’s rotation at the equator. This is clearly an error in the recorded data.
What likely happened when the drone was recording GPS logs is that the GPS receiver was
recycled or calibrated between the two recorded times.

With the above explanation of the dataset errors in mind, the automated script used to build
the ns3-formatted datasets was written to skip lines from the raw files that revealed this
GPS error. Therefore, there are slightly less lines in the ns3-formatted mobility data files
than there are in the raw files. Additionally, times from the raw format were offset by the
first time, in order to make the starting time of the ns3-formatted files start at time 0. The
raw files were still tested without modification against the translated ns3-formatted files.

In order to capture the effect of the employed basemobility data files, ns3’sMakeBoundCallback
function was used to track node course change movements. The MakeBoundCallback
function is effectively a listener that operates in ns3’s simulation background and can be
configured to listen to various parameters, then making a callback to a function written
inside the running simulation file. For the purposes of swarm mobility tracking, the call-
back function employed in the swarm simulation records useful information for each course
change detected. To explain further, every time a node changes location, the callback
function records the time, nodeID, location and velocity of that node.

Mobility Study Test Parameters
Themobility testwas performed for the 12, 20, 30 and 50 node swarms using theDestination-
Sequenced Distance Vector (DSDV) routing protocol. DSDV was chosen as the routing
protocol because it was previously implemented in [5], so network performance comparison
has an independently recorded baseline, and simulations running MANET protocols tend
to run faster than those using DTN protocols. In addition to the routing protocol, the
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applications implemented for this test were the heartbeat and pose applications (no broadcast
applications), radio gain was set to 6 and 12 for diversity, and mobility files used were
the original raw (cleaned) datasets and translated ns3-formatted datasets for comparison.
All other experimentation parameters such as simulation duration, warmup time, beacon
interval, etc. were the same as the parameters described for the swarm scenario testing at
the end of Section 3.3.4.

Mobility Test Analysis and Findings
For analysis of the effects of the employed mobility models, a Python script was written to
parse the output file from the callback function described in Section 3.3.5. The callback
function for each simulation run outputs a movement log file corresponding to the number
of nodes and base mobility data file used. The Python analysis script written for the mobility
analysis compared the two movement log files with the same number of nodes, but different
base mobility data file. The output from the Python analysis script is illustrated in Table 3.5.

Table 3.5. Recorded mobility comparison
Data Recorded 6v6 10v10 15v15 25v25
Total recorded location times 83362 243998 341768 289365
Matched location times 42965 97592 136338 117460
Percent matched (%) 54% 40% 40% 41%
Raw average difference in recorded location (m) 3.447 2682690.927 10.028 534915.345
Number of GPS errors (difference > 100m) 0 20546 0 5308
Average difference in location (GPS errors removed) (m) 3.447 9.629 10.028 20.213
Max difference in location (m) 13.849 12750682.480 35.628 12750682.520
Min difference in location (m) 0.0 0.0 0.0 0.0
Number of exact location matches 15037 786 12522 2041

Table 3.5 shows the recorded data from the mobility output log comparison. Difference in
location between recorded node locations when using the old mobility base data file versus
the ns3 mobility format data file was only calculated for records with matching times for
the same node. As Table 3.5 illustrates, roughly 40% of recorded locations actually had
matching times for the same node. This is significant because it is impossible to compare the
location of a node unless the location was recorded by the course change callback function
at the exact same time. The percent matched field in Table 3.5 gives the baseline of the
relative amount of data compared in this experiment, compared to the total available data.
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The raw average difference in recorded location was calculated with a cartesian distance
calculation. The average location difference for the 20 and 50 node swarms clearly had a
large divergence due to locations recorded from GPS errors. In testing, the number of GPS
errors was the same when the threshold was set to 100m as it was when the threshold was
set to 100,000m. For this reason, it is clear that the recorded locations came from the GPS
error described in Section 3.3.5. Maximum and minimum recorded location difference was
included to illustrate the range of location differences. The recorded minimum location
difference of 0.0 for all scenarios illustrates that there were always locations recorded at the
same time for the same node in every scenario that were the exact same location. The last
row in Table 3.5 shows the number of times that recorded locations were exactly the same
in each scenario.

Another useful measure of the effect of the modified mobility base files used for the swarm
scenario is the change in networking performance while using the modified base files.
Since DSDV was used in testing the mobility implementations, the network trace files
output by each scenario are not reflective of any DTN performance; however, as mentioned
in Section 3.3.5 the original mobility model implemented in [5] tested MANET protocols,
so testing the new mobility model with DSDV is useful for comparing against Pospischil’s
baseline output. Metrics collected for this testing are: MDR, goodput, overhead and latency.
A general description of each of these metrics can be found in Section 3.4.

As a brief overview of the results, Figures 3.7 and 3.8 show results for the 12-node scenario
using DSDV with radio gain set to 6 and 12. The similarity of the results, and in particular
the similarity in the trends across almost all of the results are a good indicator that the
performance of the routing protocol is not greatly effected by the change in mobility
model implementation. The collection of output charts and plots describing the networking
performance change incurred when using the modified mobility base files can be found in
the swarm mobility appendix. Generally, each of the swarm scenarios shows consistent
network characteristic outputs, and the data represented in the graphs show consistent trends.
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With the modified mobility model showing consistent trends across all networking results
and revealing some significant differences across recorded location metrics, it is useful to
note that the principle employed in the modified mobility model is the interpolation of
location commands. In particular, since the Ns3MobilityHelper gives nodes movement
commands, ns3 simulations using this mobility model interpolate node locations, rather
than assigning constant positions and discrete location changes. This means that the nodes
using this mobility model, in particular for the swarm scenario tested, nodes exhibit more
realistic movement behavior.

3.4 Metrics
This section discusses the metrics used for analysis across all testing. MDR, overhead,
goodput, latency and hop count were used, and each simulation was run multiple times in
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order to acquire statistically significant data. Since ns3 can output network trace data in
a format that is effectively comparable to a tcpdump, and rather than reading through the
tens of thousands of lines of output for every single scenario, these metrics were analyzed
through the employment of a parsing script written in the Python language. All analysis
statistics and graphs were generated by this script, using multiple Python libraries to include
numpy for statistical analysis and matplotlib for plot generation.

While power consumption was not analyzed, it is desirable for DTN protocols to have
low power consumption because mobile nodes usually need to manage power consumption
efficiently across the various levels of node operation. It is noteworthy that routing protocols
that transmit messages across more hops inherently use more power across the network.
From a per-node basis this is also relevant because more hops-per-message implies higher
total number of nodes transmitting that message than would otherwise be transmitted;
therefore, each node inherently uses more power throughout the given scenario. It can be
concluded then that protocols with a higher overhead are generally less power-efficient.

3.4.1 MDR
MDR is a calculation of the delivery success rate of a given protocol. It is a useful
metric because it describes how well a protocol performed in terms of getting messages to
their destination, regardless of e2e connectivity. MDR is calculated by Equation 3.1 on a
network-wide basis. It can be calculated on a per-node basis, but as it relates to this study,
it makes more sense to view MDR as a network-wide metric. Since MDR is a ratio, there
is no unit of measurement for the calculation.

MDR =
# Messages delivered
# Messages transmitted

(3.1)

3.4.2 Message Overhead
Overhead is a general term that can describe many levels of extraneous data. It is often used
to describe data or time required for connectivity, data delivered that is not relevant to the
application being measured (control messages), or data that is replicated. For the purpose
of this study, Message Overhead is measured as replicated data messages. Only messages
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sent with a payload, or application-level data, is considered useful traffic; control messages
are not considered. Message Overhead is measured by Equation 3.2.

Message Overhead =
Total packets transmitted − Total packets delivered

Total packets delivered
(3.2)

3.4.3 Goodput
Goodput, like the more commonly used throughput, is a measure of total useful data
delivered during protocol operation. The difference between throughput and goodput is
that throughput looks at total data received while goodput removes duplicate messages and
retransmissions from its calculation. Goodput is measured on a per-node basis in Bytes-
per-second (B/s). For this study, Goodput is measured as an average of all nodes’ goodput
and is described by Equation 3.3.

Average Goodput =
Average unique bytes received per node
Average delivery time per message

(3.3)

3.4.4 Latency
Latency is a measure of delay for a given message delivery. It is a useful metric in studying
DTN protocols because it gives helpful insight to the protocol’s efficiency in delivering
application-level messages. Many applications require messages to be delivered quickly, so
protocols that induce high latency are not helpful for those types of applications. Latency
is typically calculated on a per-message basis, but for this study, is measured as an average
across all messages. Latency is calculated as:

Time of message delivery − Time of message transmission (3.4)

3.4.5 Hop Count
HopCount is the record of howmany hops a singlemessage took from transmission to arrival
at its assigned destination. It is a useful metric in understanding the effectiveness of node-
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to-node routing decisions, especially when viewed alongside latency and/or throughput.
For the purposes of this study, hop count is taken as an average measurement across all
nodes in the network. The average hop count is a floating point value, and the units are
hops per message.
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CHAPTER 4:
Results and Analysis

This Chapter discusses the results of testing data, and in-depth analysis of the gathered data
in a summarized format. For the purpose of compressing the large amount of raw data
analyzed, charts and tables are used to illustrate the various routing protocols’ performance
for each evaluated metric. Each section contains a table that illustrates the associated values
with the various metrics for each protocol tested, as well as charts and/or plots that describe
the performance of each protocol for a specific metric in greater detail. A brief comparison
of this study’s analyzed datawithMauldin’s findings [4] for similar experimental parameters,
as illustrated in Section 3.3.1, reveals that the protocols’ relative performance is generally
matched for the Helsinki scenario. In other words, after an analysis of the obtained data
for the Helsinki tests, it is reasonable to have confidence in the data because it matches the
trends of data found in previous studies with similar experimental parameters. This proves
the fidelity of the findings of this study, and is illustrated throughout the Helsinki analysis.
Because of the consistency, the Omaha and Bold Alligator performances are not directly
compared, but left for the reader to make the direct comparison of protocol performance
between the studies.

4.1 Helsinki Results
Table 4.1 represents the summarized data for the Helsinki scenario. Each column represents
the data for a specific protocol. The average unique messages transmitted and delivered
describe the average unique message ID numbers that were recorded across each simulation
run for all transmissions and deliveries. The average unique messages transmitted for each
protocol are very similar but not the same. The reason these values are not the same,
despite running on the same application framework in the simulation scenario is that each
protocol has different forwarding schemes, and when new messages are generated, they are
put in a node’s buffer for later transmission. Therefore, the messages generated will be
the same for each protocol, and is dependent on the simulation, but the unique messages
transmitted illustrates the protocol’s behavior of determining which messages are released
from its queue for transmission, at each node interaction. The MDR row represents the

59



average of the calculated MDR value for each simulation run, not the result of dividing
the unique received messages by the unique transmitted messages. Further discussion of
the MDR is provided in Subsection 4.1.1. The average total transmissions and receptions
illustrates each protocol’s message replication traffic. The average data transmitted and
received rows correspond to the calculation of each unique message multiplied by its size in
bytes, summed across all transmissions and destination receptions, respectively, as recorded
throughout each simulation run. The average goodput is the average of all recorded goodput
values. Similar to the MDR values, the average goodput values are an average of averages,
so they will not directly correspond to a calculation done on the average data received,
divided by the total simulation time for the Helsinki scenario. Subsection 4.1.3 elaborates
this discussion. Finally, the average latency mean, median, and max, as well as the average
hop count mean, median, and max were calculated for each simulation run, and Table 4.1
describes the averages of those values in the correspondingly named rows. The hop count
values for Epidemic, Vector, and Centroid are not accurate, but approximate the hop count
values based on adjusted averages. Elaboration on the errors with the hop counts for those
protocols is provided in Subsection 4.1.5.

Table 4.1. Helsinki results
Parameter Epidemic Vector Centroid GAPR GAPR2 GAPR2a QGeo
Average Unique Messages Transmitted (K) 1.39 1.29 1.02 1.3 1.24 1.21 1.14
Average Unique Messages Delivered (K) 0.49 0.91 0.8 1.03 0.91 1.03 0.86
Average MDR 0.35 0.71 0.78 0.79 0.73 0.85 0.76
Average Total Transmissions (K) 33,846.37 5,338.44 10,690.24 50,414.41 4,700.21 11,939.86 4,065.13
Average Total Receptions (K) 31,516.52 4,963.97 10,171.71 47,582.48 4,359.54 11,384.12 4,017.05
Average Data Transmitted (GB) 69.32 10.93 21.89 103.25 9.63 24.45 8.33
Average Data Received (GB) 64.55 10.17 20.83 97.45 8.93 23.31 8.23
Average Overhead (GB) 69.31 10.93 21.89 103.25 9.62 24.45 8.32
Average Goodput (B/s) 23.74 44.38 38.69 50.07 44.31 50.05 41.92
Average Latency Mean (s) 1,064.07 4,658.9 3,660.86 4,315.26 4,706.72 3,783.89 2,569.49
Average Latency Median (s) 929.88 3,869.43 3,160.76 3,367.91 3,850.07 2,908.26 574.2
Average Latency Max (s) 5,457.49 17,147.81 15,725.02 17,386.43 16,903.22 17,135.24 17,090.99
Average Hop Count Mean 5.0 4.0 4.7 1.05 1.0 1.0 1.0
Average Hop Count Median (4.65)* (3.0)* (3.55)* 2.0 1.05 1.25 1.0
Average Max Hop Count (1.0)* (1.0)* (1.0)* 6.25 4.25 4.65 4.7

4.1.1 MDR
Figure 4.1 represents the calculated MDR averages for the Helsinki scenario. The average
MDR is the average of all of the MDR values calculated across each simulation run. For
that reason, with regard to Table 4.1, the value resulting from the division of the average
unique messages delivered by average unique messages transmitted is not exactly the same
because the MDR values represented are an average of previously calculated averages. For

60



centroidepidemic gapr gapr2 gapr2a qgeo vector
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
M

e
ss

a
g
e
 D

e
liv

e
ry

 R
a
ti

o

Figure 4.1. Helsinki MDR

the Helsinki scenario, the representedMDRs are very close to the value of average delivered
messages divided by average transmitted messages.

One peculiarity about the Helsinki results is that Epidemic shows such a low MDR. This
result is consistent with Mauldin’s findings [4], so it is not unexpected, but since Epidemic
is a flooding-based protocol, its main goal is to get all of the messages to their destinations,
regardless of the cost. It follows that Epidemic should have a high MDR. Nonetheless,
the other protocols provide a higher MDR, which is likely because of their queue control
schemes. Since Epidemic floods all messages and has no forwarding limitation mechanism,
while all of the other protocols do have methods for controlling message forwarding,
Epidemic generally delivers fewer unique messages, while transmitting as many, or more
than the other protocols. This is consistent across the majority of the scenarios. In addition
to Epidemic’s performance, GAPR2a has the highest MDR, while QGeo’s performance is
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generally comparable to the other protocols.
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Figure 4.2. Helsinki overhead

4.1.2 Overhead
Figure 4.2 depicts the Helsinki overhead findings. In terms of message replication overhead,
QGeo offered a relatively low value. This is a significant finding for QGeo, as it does not
implement the message forwarding limitations that Vector, Centroid, or the corresponding
GAPR protocols implement. Instead, QGeo controls which messages are transmitted by
viewing each message’s destination, and the corresponding Q-values. The other protocols
generally use the queue order to determine which messages are transmitted, instead of a
per-message determination. Notably, comparison of the other protocols with Mauldin’s
findings [4] shows consistent relative results, with GAPR and Epidemic having the high-
est overhead, while GAPR2 and Vector were the lowest. It is notable that in terms of
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message replication overhead, there is somewhat of a pairing of like protocols, exclud-
ing QGeo. Epidemic and GAPR have the highest overhead, and they do not implement
a message forwarding limitation for their queue, during a given interaction. Vector and
GAPR2 have similar overhead values, and GAPR2 implements Vector’s forwarding limita-
tion mechanism. Similarly, Centroid and GAPR2a have similarly paired overhead values,
and GAPR2a implements Centroid’s message forwarding limitation calculation. An impor-
tant finding from this comparison is that when comparing message forwarding limitation
schemes, Vector’s calculation limits message replication overhead better than Centroid’s, or
having none. Additionally, QGeo’s per-message limitation performs similarly to Vector’s
calculation.
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Figure 4.3. Helsinki goodput
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4.1.3 Goodput
Figure 4.3 describes the Helsinki goodput results. The values represented in the figure
correspond to the average goodput values depicted in Table 4.1. However, these values do
not correspond to the value determined by calculating the average data received divided by
the total application running time in the simulation. The Helsinki scenario applications ran
for 42200 seconds. Dividing average data received by 42200 seconds does not give the same
average goodput value represented in Figure 4.3 because, as withMDR, the average goodput
is an average of averages. An additional factor contributing to the difference in values is
that goodput measured as an average can diverge greatly from goodput values recorded for
a certain interval within a simulation. Just like a protocol’s average throughput does not
represent the constant rate of transmission of the protocol, a protocol’s average goodput
does not represent a constant rate of data delivery. Instead, average goodput represents
the overall average of data delivered to the required destination on a per-message basis
throughout the scenario, divided by the amount of time each unique message was in flight.
Therefore, average goodput is not depicting a constant rate of delivery, but the average of
each unique message’s size divided by how long it took to get to its destination, averaged
for all unique message deliveries in the simulation. If the average goodput is multiplied by
the entire simulation time, the total data delivered is orders of magnitude higher than the
result, because it is measured for unique messages, and only for the time they are in flight.
This is consistent with the data in Table 4.1.

Since goodput is calculated based on unique messages delivered, it follows that the goodput
results should have similar trends to the MDR results. A comparison of the two plots shows
that they do, in fact, have many similarities. Namely, Epidemic performs the worst in both,
while the GAPR protocols generally perform the best, with QGeo slightly worse. The
goodput performance can be attributed to the same buffer control and message forwarding
mechanisms employed by each protocol, as the buffer control is determined based on total
byte size, rather than number of messages alone. Goodput was not used in Mauldin’s or
Killeen’s works, which are the most comparable to this study’s work, so no useful direct
comparison is available for the goodput charts; however, the similarity in the MDR results
validates the data.
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4.1.4 Latency
Figure 4.4 represents the Helsinki latency results. As expected, Epidemic performs the
best of the protocols, likely due to its flooding mechanism. As with Overhead, there is a
distinct correlation between Vector and GAPR2’s performance, and between Centroid and
GAPR2a’s performance, due to their message forwarding limitation mechanisms. These
mechanisms ensure that nodes’ buffers aremanaged through limitingmessage transmissions.
However, unlike with Overhead, GAPR and Epidemic show a very different performance.
Though GAPR does not implement a message forwarding limitation, it forwards messages
based on interaction probability, as with all of the GAPR protocols. This means that it
forwards messages based on prioritized order after determining the probability of delivery
for each message. These results show that the forwarding prioritization mechanism slows
down the delivery of messages significantly, as compared to a pure flooding mechanism, as
in Epidemic. Alternatively, QGeo mitigates some of this delay by learning which messages
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are likely to be delivered based on Q-values, and only forwarding those messages at a given
interaction. These results show that the learning mechanism aids to deliver messages faster
than a queue-based limitation. Nonetheless, Epidemic’s flooding mechanism outperforms
all of the other protocols. As in Mauldin’s findings [4], Vector and GAPR2 have the highest
latency, while Epidemic has the lowest.
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4.1.5 Hop Count
Figure 4.5 represents the Helsinki hop count measurement. The GAPR, GAPR2, GAPR2a,
and QGeo hop count values were accurately measured; however, the values for Epidemic,
Vector, and Centroid were not correctly recorded. The ns3 implementations of Epidemic,
Vector, and Centroid use the max allowable hop count value (hop count limit) as the hop
count value to record in the IP-layer trace callback, which are the trace files that this study
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used to measure the recorded metrics. Mauldin’s study used a different trace callback at
the application layer [4], that subtracts the max hop count from the current header’s hop
count value for each message, to report the hop count accurately in the application layer
trace files. In order to approximate the corresponding hop count values for Epidemic,
Vector, and Centroid for this study, the calculation was performed after the trace files were
parsed, so the maximum hop count value was subtracted from the average hop count values
recorded, rather than from each line of the trace file as done in the application layer trace
file. Therefore, while the Epidemic, Vector, and Centroid average hop count values are
not entirely accurate, they do approximate the correct values. The mean, median, and max
hop count values recorded in Table 4.1 for Epidemic, Vector, and Centroid are calculated
based on the approximate averages, rather than on a per-message basis, unlike for QGeo
and the GAPR protocols, comparison across the protocols should be informed by those
approximations. The reader is referred to Mauldin’s study [4] for a more accurate hop count
measurement for Epidemic, Vector, and Centroid.

Keeping in mind the issue with the calculated hop count values for Epidemic, Vector, and
Centroid, and after comparing their values to Mauldin’s study [4], it is clear that QGeo
significantly reduces the number of hops that messages require, on average, to reach their
destination. This likely indicates, along with Goodput and MDR measurements, that QGeo
holds messages longer than other protocols, only forwarding them at the most opportune
times.

4.2 Omaha Results
The Omaha results are mostly consistent with the trends shown in the Helsinki results. The
Omaha scenario employs a lower radio bandwidth and lower total number of nodes than
the Helsinki scenario, which has a significant impact on the various protocols’ performance
for each recorded metric. Table 4.2 shows the averaged aggregate results for the Omaha
scenario. Like the Helsinki table, Table 4.2 is separated into columns to represent each
protocol’s results. The MDR average of averages representation issue is the same for the
Omaha scenario as for the Helsinki scenario, as described in Section 4.1. The average
unique messages transmitted and received represent unique message IDs recorded, while
the average total messages transmitted and received correspond to the message replication
per protocol in the Omaha scenario. Average goodput describes the average of measured

67



goodput across each simulation run for the Omaha scenario, while average data transmitted
and received is the average of the number of messages transmitted and received, multiplied
for each message by the byte-size of each message. As in the Helsinki scenario, latency
mean, median, and max is measured as the average end-to-end delay in delivering each
message. Finally, mean, median, and max hop count was measured the same way as in
the Helsinki scenario, and has the same protocol implementation issues for hop count in
Epidemic, Vector, and Centroid as in Helsinki.

Table 4.2. Omaha results
Parameter Epidemic Vector Centroid GAPR GAPR2 GAPR2a QGeo
Average Unique Messages Transmitted (K) 1.28 1.19 0.87 0.96 0.94 0.83 0.48
Average Unique Messages Delivered (K) 0.25 0.27 0.16 0.29 0.28 0.28 0.21
Average MDR 0.19 0.23 0.19 0.3 0.3 0.34 0.43
Average Total Transmissions (K) 21,869.39 20,478.68 9,698.67 57,061.3 33,081.48 32,685.46 15,826.71
Average Total Receptions (K) 21,003.41 19,992.32 9,532.19 54,797.54 32,382.63 32,153.89 14,654.81
Average Data Transmitted (GB) 44.79 41.94 19.86 116.86 67.75 66.94 32.41
Average Data Received (GB) 43.01 40.94 19.52 112.23 66.32 65.85 30.01
Average Overhead (GB) 44.79 41.94 19.86 116.86 67.75 66.94 32.41
Average Goodput (B/s) 11.95 13.34 8.0 14.11 13.46 13.68 10.08
Average Latency Mean (s) 1,588.37 4,116.47 2,534.47 4,615.68 4,757.48 3,423.57 2,045.67
Average Latency Median (s) 1,091.58 2,264.08 718.6 2,756.29 3,041.12 1,519.92 322.22
Average Latency Max (s) 10,265.98 17,337.15 16,135.45 17,646.31 17,415.41 17,194.83 15,946.44
Average Hop Count Mean 4.3 9.25 8.75 1.2 1.0 1.0 1.0
Average Hop Count Median (3.55)* (2.77)* (2.48)* 1.75 1.1 1.45 1.05
Average Max Hop Count (1.0)* (1.0)* (1.0)* 6.6 5.35 5.25 3.55

4.2.1 MDR
Figure 4.6 displays the Omaha MDR output. Notably, the actual MDR values are much
lower in the Omaha scenario than the Helsinki scenario. Every protocol has a lower MDR
in Omaha, and on average, the protocols’ (with the exception of Epidemic) MDR in the
Omaha scenario is about half that of the Helsinki scenario, for each protocol. This speaks to
the reduced bandwidth. In the Omaha scenario, nodes interact less often and have a lower
available bandwidth, which means that when they do interact, they can forward fewer mes-
sages. Unlike in the Helsinki scenario, the protocols show a slight grouping in the Omaha
scenario. QGeo and the GAPR protocols all have relatively improved performance over
Epidemic, Vector, and Centroid, whereas in the Helsinki scenario, they were all relatively
grouped together, except for Epidemic. This speaks to the buffer management techniques
of the GAPR protocols and QGeo. The reduced opportunity to forward messages in the
Omaha scenario implies that in order to successfully propagate messages to their desti-
nations, nodes must opportunistically forward messages. QGeo and the GAPR protocols
have buffer mechanisms for choosing which messages (Q-values and buffer reorganization
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Figure 4.6. Omaha MDR

based on transitive probability, respectively) are forwarded at each interaction. Due to these
mechanisms, QGeo and the GAPR protocols are able to better perform in terms of MDR in
the Omaha scenario than Epidemic, Vector, and Centroid, and Figure 4.6 shows a relatively
clear break in their performance.

4.2.2 Overhead
Figure 4.7 shows the measured overhead values for the Omaha scenario. Unlike the Helsinki
scenario, the protocols do not show a correlation in terms of the message forwarding
mechanism in theOmaha scenario. This is likely due to the lower node interaction frequency.
It is surprising that the GAPR protocols all have a significantly higher overhead than the
other protocols, as they do not flood their messages; however, they are still multi-copy
routing protocols, so it is likely that the lower number of nodes in the Omaha scenario leads
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Figure 4.7. Omaha overhead

to the GAPR protocols replicating forwarded messages more frequently than in the Helsinki
scenario. Notably, QGeo has one of the lowest overhead values, and when comparing
QGeo’s relative MDR and relative overhead, both with respect to the other protocols, these
results show that QGeo is particularly selective about forwarding messages. The Q-values
work to determine that QGeo only forwards messages to the nodes that are most likely
to propagate each message to its destination, and limits the likelihood of replicating that
message to nodes that have low Q-values.

4.2.3 Goodput
Figure 4.8 shows the goodput results for the Omaha scenario. As in the Helsinki scenario,
goodput was calculated as the message size for each message delivered, divided by the
amount of time it traveled from transmission to arrival at its destination node, and then
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Figure 4.8. Omaha goodput

averaged for all unique messages delivered in one simulation. Those averages were then
recorded and averaged to provide the aveage goodput value displayed in Table 4.2 and Fig-
ure 4.8. The GAPR protocols and Vector have the same relative performance in Omaha as
in Helsinki, but Epidemic, Centroid, and QGeo do not. QGeo’s worse relative performance
is consistent with expectations based on the scenario differences and its performance mea-
sured in the other metrics. Higher MDR, lower overhead and lower goodput all correspond
to QGeo holding onto messages longer than the other protocols due to the fewer node
interactions and QGeo’s use of learned Q-values for message forwarding decisions.

4.2.4 Latency
Figure 4.9 shows the latency results for the Omaha scenario. The distribution of latency
values in the Omaha scenario is almost identical to that in the Helsinki scenario, with
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Figure 4.9. Omaha latency

Epidemic having the lowest latency, likely due to its flooding mechanism, and the GAPR
protocols having the highest likely due to their queue-based decision making schemes for
forwarding messages. As in the Helsinki scenario, QGeo has a low latency, which is likely
due to its forwarding and replication decision-making being based on learned Q-values on
a per-message basis, rather than based on the queue order overall. This mechanism proves
effective to manage overhead, and forward messages in a highly opportunistic manner,
which ultimately reduces overall average latency. However, viewing the max latency values
described in Table 4.2 reveals that DTNs tend to be highly latent protocols, as is expected
considering their design [1]. Since this is the case both for the Omaha and Helsinki
scenarios, it is not likely that the average latency is increased solely due to the lower number
of nodes in the Omaha scenario.
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4.2.5 Hop Count
Figure 4.10 shows the hop count results for the Omaha scenario. As in the Helsinki scenario,
the hop count representation for Epidemic, Vector, and Centroid is skewed by the averages
being approximated rather than calculated for each simulation and then averaged. The
reader is again referred to Mauldin’s findings [4] for a more accurate description of the three
protocols’ performance in the Omaha scenario. As with Helsinki, despite the approximation
of Epidemic, Vector, and Centroid, QGeo and the GAPR protocols show greatly reduced
hop counts, which are consistent with their message forwarding prioritization schemes
(Q-values for QGeo and transitive probability of interaction for GAPR).
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4.3 Bold Alligator Results
The Bold Alligator scenario results differ in presentation from the Helsinki and Omaha
results, because the Bold Alligator scenario tested the Extended Rate Physical Orthogonal
Frequency Division Multiple Access (ERP-OFDM) radio setting in addition to the typical
scenario parameters. This study chose Bold Alligator for testing this parameter because
the Bold Alligator scenario has the most variation in node radio types, as opposed to the
Omaha scenario which only employed one radio type, and Helsinki which only employed
two. Bold Alligator employs four heterogeneous radio types, and varying the base radio
bandwidth provided data for each protocol’s performance over varying radio capabilities
while interacting with multiple other nodes that had different radio bandwidth parameters.
Subsection 3.3.3 discusses the scenario details. Like the aggregate data displayed in
Tables 4.1 and 4.2, Table 4.3 represents the aggregate average statistics for each protocol
over all Bold Alligator runs. This representation condenses significantly more data as each
Bold Alligator trace file was on average one order of magnitude larger than the Omaha
or Helsinki files, and there were four times as many total simulation runs. In its entirety,
the Bold Alligator simulation produced almost 6TB of trace file data, while the Omaha,
Helsinki and Swarm scenarios produced a total of around 0.75TB of trace data combined.
For all data displayed in the Bold Alligator results, the reader should be aware that the
GAPR routing protocols had errors when running over the 36Mbps ERP-OFDM rate due to
an implementation error in this study, so no data was collected for that parameter on those
protocols. All other data in the Bold Alligator scenario is complete. Table 4.3 represents
the scenario data in the same manner as all other scenarios.

Table 4.3. Bold Alligator results
Parameter Epidemic Vector Centroid GAPR GAPR2 GAPR2a QGeo
Average Unique Messages Transmitted (K) 13.87 9.18 9.94 8.76 8.81 8.81 4.75
Average Unique Messages Delivered (K) 1.01 1.47 1.46 1.41 1.64 1.5 1.62
Average MDR 0.07 0.16 0.14 0.15 0.19 0.17 0.34
Average Total Transmissions (M) 125,997.97 99,564.06 153,390.79 238,123.28 136,553.76 179,677.23 10,826.93
Average Total Receptions (M) 123,016.26 99,000.53 152,500.33 236,667.26 135,940.53 178,697.03 10,742.21
Average Data Transmitted (GB) 258.04 203.91 314.14 487.68 279.66 367.98 22.17
Average Data Received (GB) 251.94 202.75 312.32 484.69 278.41 365.97 22.0
Average Overhead (GB) 262.81 203.89 314.12 448.12 254.22 352.3 22.16
Average Goodput (B/s) 27.31 39.8 39.51 38.08 44.38 40.68 44.02
Average Latency Mean (s) 1,266.34 3,487.47 3,895.97 5,916.44 5,957.16 3,657.03 2,120.32
Average Latency Median (s) 966.86 2,195.43 2,734.62 4,857.64 4,814.1 1,873.77 0.0
Average Latency Max (s) 14,777.96 16,748.22 16,443.74 16,707.42 17,702.72 16,942.54 17,364.69
Average Hop Count Mean 2.91 15.13 15.53 1.03 1.0 1.0 1.0
Average Hop Count Median (2.27)* (10.32)* (11.38)* 1.06 1.0 1.0 1.0
Average Max Hop Count 1.03 1.0 1.0 4.41 4.0 4.11 3.95
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Figure 4.11. Bold Alligator MDR

4.3.1 MDR
Figure 4.11 shows the MDR results for the Bold Alligator scenario. The Bold Alligator
MDR results show that each protocol delivers a relatively consistent ratio of messages
across all base radio bandwidths. This implies that varying the bandwidth does not increase
or decrease the protocols’ performance significantly. As with the Omaha scenario, QGeo
breaks out above the other protocols in terms of MDR, while Epidemic has a significantly
lower average MDR than the other protocols. Similar to Helsinki, all protocols other
than QGeo are roughly grouped together, with Epidemic performing significantly worse.
Overall, the MDR values of all of the protocols are significantly lower for the Bold Alligator
scenario than in the other scenarios. It is likely that this is due to node separation, as the
Bold Alligator scenario has the largest operating area of all of the simulation scenarios, and
the median number of nodes.
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Figure 4.12. Bold Alligator overhead

4.3.2 Overhead
Figure 4.14 represents the Bold Alligator overhead measurements. The Bold Alligator
overhead results are most similar to the Helsinki results; however, they exhibit unique
characteristics apart from the similarities. Similar to Helsinki, Vector and GAPR2 have
similar overhead measurements, and Centroid and GAPR2a are also similar to one another.
Alternatively, the most unique feature of the Bold Alligator overhead results is that QGeo
severely outperforms the other protocols, maintaining a low overhead around one half of
the second-best performing protocol, Vector. QGeo’s overhead performance value in the
Bold Alligator scenario is very similar to its value in the Helsinki scenario, while all of the
other protocols have significantly increased overhead values in the Bold Alligator scenario.
As with the Helsinki scenario, these results point to the message forwarding and replication
control schemes employed by each of the protocols. In particular, it shows that QGeo’s use
of learned Q-values significantly aid in message replication and forwarding, while the other
protocols’ queue management and forwarding limitations do not scale well.
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Figure 4.13. Bold Alligator goodput

4.3.3 Goodput
Figure 4.13 depicts the goodput results for the Bold Alligator scenario. The Bold Alligator
scenario goodput measurements most closely resemble the Helsinki results as all protocols
have goodput values between 25 and 50 B/s, generally. As with overhead, there is no
direct correlation or trend across the varied radio bandwidths; however, the same variation
per protocol exists in the overhead measurements as in the goodput measurements. In
general, Epidemic has the lowest overall average goodput, andQGeo has themost consistent.
However, apart from Epidemic, all other protocols perform comparably in terms of goodput.

4.3.4 Latency
Figure 4.14 shows the results for the latency measurements in the Bold Alligator scenario.
Similar to the overhead and goodput measurements, latency shows no direct trend across
ERP-OFDM rates; however, the relative performance per-protocol for each radio bandwidth
are the same at each bandwidth across the overhead, goodput and latency measurements.
Broadly speaking, the relative latency performance of the measured protocols matches the
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Figure 4.14. Bold Alligator latency

distributions in the Helsinki and Omaha scenario, with Epidemic recording the best (lowest)
latencies measured, likely due to its flooding behavior, while GAPR has the worst (highest)
latencies measured. QGeo has better latency measurements than all protocols with the
exception of Epidemic, which implies that its per-message forwarding decisions, rather than
the queue-based scheme used by the other protocols (except for Epidemic), is an effective
method for reducing the average latency.

4.3.5 Hop Count
Figure 4.15 depicts the hop count results for the Bold Alligator scenario. As in the Helsinki
and Omaha scenarios, the hop count measurements for Epidemic, Vector, and Centroid are
all approximate values. QGeo and the GAPR protocols all significantly reduce the total
number of hops required to deliver a message, on average. As in the Omaha scenario,
Epidemic maintains a low average hop count. Vector and Centroid have significantly higher
hop counts than the other protocols. Since Epidemic floods messages, a low hop count is
expected, and the GAPR protocols, as well as QGeo use selective forwardingmethods where
one of the main goals is to reduce the average hop count required for message delivery, so
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Figure 4.15. Bold Alligator hop count

their behavior is expected as well.

4.4 Swarm Results
TheSwarm scenario is significantly different than the other three scenarios. Abrief reviewof
Section 3.3 shows that nodes in the Swarm scenario transmit significantly smaller messages
at a much faster rate than the other scenarios. The Swarm scenario is also significantly
shorter in total scenario time than the other scenarios, due to the limitations of the captured
real-world data. Additionally, the nodes maintain the same 5MB buffer limit, so the swarm
scenario does not test the buffer management mechanism of the protocols. Instead, the
Swarm scenario primarily tests the forwarding and replication decision mechanisms of each
of the protocols. Since the Swarm scenario is based on real-world sensor-captured data
and real-world radio configurations, the scenario approximates real-world behavior more
closely than the other scenarios. In addition to the real-world node behavior, as well as
testing the forwarding mechanisms, the Swarm scenario employs a unique parameter among
the tested simulations in this study called gain. Gain represents the amplification of the

79



radio capability, or the attenuation, of the radio. This was first employed in Pospischil’s
work [5] as a means to enforce multi-hop behavior, because the nodes in the real-world
scenario were all one hop away from the destination for every message sent. In other words,
every node was always within one-hop communication range of all other nodes. Finally,
the Swarm scenario is also unique in that it uses node density as a parameter. Section 3.3
describes the scenario parameters; however, these changes from the Helsinki, Omaha and
Bold Alligator scenarios make the Swarm scenario unique, so one of the minor hypotheses
of this study was that the protocols would have significant performance differences for this
scenario. Table 4.4 illustrates the total aggregate Swarm scenario average data. The table
illustrates the aggregate data in the same manner that the other scenarios represent their
aggregate data, for comparison purposes, with the exception that the total data transmitted
and received values are recorded in megabytes, rather than in gigabytes due to the small
message sizes in the scenario. The tables in the subsections that follow are broken into
unique plots for each node density parameter, as illustrated by the title "NvN" where "N" is
half of the total nodes in the simulation and "v" stands for "versus."

Table 4.4. Swarm results
Parameter Epidemic Vector Centroid GAPR GAPR2 GAPR2a QGeo
Average Unique Messages Transmitted (K) 171.8 139.26 111.66 119.17 120.04 119.5 11.05
Average Unique Messages Delivered (K) 24.38 18.14 13.37 11.37 11.44 11.24 3.44
Average MDR 0.15 0.17 0.12 0.11 0.12 0.11 0.57
Average Total Transmissions (K) 815.89 697.83 529.92 588.93 473.33 526.17 15.49
Average Total Receptions (K) 647.25 567.96 425.08 470.38 361.19 413.51 6.58
Average Data Transmitted (MB) 44.6 38.15 28.97 32.19 25.88 28.76 0.85
Average Data Received (MB) 35.38 31.05 23.24 25.71 19.75 22.61 0.36
Average Overhead (MB) 26.29 19.59 15.69 19.25 12.61 15.16 0.31
Average Goodput (B/s) 866.85 644.81 475.14 404.17 406.67 399.44 122.22
Average Latency Mean (s) 209.6 157.4 34.17 47.84 27.69 23.55 25.27
Average Latency Median (s) 188.26 121.3 7.01 25.44 7.28 4.14 1.15
Average Latency Max (s) 629.62 576.88 260.09 222.51 223.67 218.67 601.22
Average Hop Count Mean 3.25 1.94 2.06 1.33 1.0 1.0 1.0
Average Hop Count Median (2.61)* (1.28)* (1.19)* 1.67 1.03 1.03 1.0
Average Max Hop Count (1.0)* (1.0)* (1.0)* 4.0 1.94 3.39 1.89

Two caveats need to be disclosed for the reader concerning the data for the Swarm scenario.
First, there was an implementation error with the Centroid protocol in the Swarm scenario
simulation file. This was realized late in testing, so the Centroid protocols did not fully
complete their testing. At the time of publishing, 40% of the simulations for Centroid were
totally complete, and the rest of each of the remaining simulation runs were at least halfway
complete (complete up to 750s). Second, the GAPR protocols run significantly slower in
the Swarm scenario than the other protocols in the scenario, and significantly slower than
in other scenarios. No GAPR runs completed running, and were cut off after roughly one
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month of running, for each simulation run. In one month of real-world running time, on
average, each filemade it roughly half way. It was observed that Swarm simulation runs with
the GAPR protocols installed would get to a point between 600s and 800s in simulation time
in about one day in real world time. After that point, each simulation ceased to progress
at a reasonable rate, and only made another 100-200s progress in the following month.
After significant testing, this study believes that the cause for this issue lies in the rate and
total number of messages that the Swarm scenario generates, combined with the GAPR
protocols’ sorting behavior. None of the other protocols sort their buffer, but the GAPR
protocols sort their buffer at every node interaction, as a means for determining which
messages will be forwarded to the interacting node. Since the Swarm scenario generates
multiple messages at each node every second, it is likely that the nodes addmessages to their
buffers so quickly that the total number of messages to sort is intractable for the protocol to
handle in a reasonable timeframe. Finally, GAPR2a runs failed for the 12 and 20 gain tests,
while all other simulations utilizing the GAPR protocols were simply unable to complete
in a reasonable time. Further testing of the Swarm scenario and/or the GAPR protocols
should focus on this challenge.

4.4.1 MDR
Figure 4.16 represents the average Swarm MDR measurements for each node density. The
Swarm MDR measurements, as with all of the other metrics, were measured over multiple
gain values, represented on the x-axis of the plots. The line plots show how the protocols
either increase or decrease in MDR performance with changing gain values. The trends
in each of the unique node density plots are generally similar to one another with QGeo
outperforming the other protocols at higher gains, and the rest of the protocols generally
clustering as node density and gain both increase. QGeo’s performance in terms of MDR
is consistent with the other scenarios, indicating that in general, QGeo forwards messages
most opportunistically, when compared with the other tested protocols.

4.4.2 Overhead
Figure 4.17 depicts the average overhead values of the protocols measured in the Swarm
scenario. The reader should note that the Swarm overhead plots are depicted in log scale,
whereas the Helsinki, Omaha, and Bold Alligator overhead plots are in linear scale. Gener-
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Figure 4.16. Swarm MDR

ally speaking, the protocols tend to have very slightly decreasing overhead as gain increases,
with the exception of QGeo. QGeo has the lowest overhead values of all the protocols, with
averages generally two orders of magnitude lower than the other protocols. This is indicative
of QGeo’s selective behavior in terms of message forwarding and replication. Similar to the
other scenarios, QGeo exhibits a strong limitation on forwarding messages except in node
interactions that are likely to deliver the message to its destination. Notably, the overhead
data shows that past the 12-node simulation, no protocols are able to successfully transmit
data for the lower gains (below 6).

4.4.3 Goodput
Figure 4.18 represents the average goodput values measured for each of the protocols
in the Swarm scenario. As with the overhead measurements, the goodput values show
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Figure 4.17. Swarm overhead

an increasing trend as gain increases, except for QGeo, which seems to have an inverse
relationship with increasing gain. Additionally, variations in the Centroid and GAPR
protocols’ trends can be attributed to issues with their simulation runs. Beyond the trends
for each of the protocols, QGeo has a distinctly lower goodput value for all gains in all
node densities than all of the other protocols. As node density increases, Epidemic tends
to break out above the other protocols in terms of average goodput. These goodput values
make sense when compared to the MDR results and total data transmitted and delivered as
described by Table 4.4. QGeo has a high MDR, but very little overall data delivered when
compared to the other protocols. This corresponds to the low average goodput shown in
Figure 4.18. Alternatively, Epidemic has an improving MDR as node density increases,
and has the highest average data delivered value of all of the protocols. This corresponds
to Epidemic’s increasingly dominant performance in the goodput results.
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Figure 4.18. Swarm goodput

4.4.4 Latency
Figure 4.19 shows the average latency values measured for the Swarm scenario. The 12-
node simulations show a clear trend that as gain increases, so does latency. The other
simulations do not follow the same trend, and in general, all of the protocols tend to perform
generally within an order of magnitude of one another in terms of message delivery latency.
Vector seems to perform slightly better in the 50-node scenario than the other protocols,
but the other node density scenarios do not show the same trend, so the reason for this
performance is unclear.

4.4.5 Hop Count
Figure 4.19 depicts the average hop count values for the Swarm scenario. As with all of
the other scenarios, Epidemic, Vector, and Centroid hop count values are approximated
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Figure 4.19. Swarm latency

due to implementation issues. However, even with approximated values and comparing the
plots to Table 4.4, the Swarm scenario exhibits very low average hop count values. This
is likely due to the real-world behavior of the swarm. Since all nodes were one hop from
their destination, it is likely that the gain values employed did not significantly impact the
routing protocols ability to transmit messages from the aerial nodes to the ground station.
Ultimately, this indicates that at various times, each node was able to pass close enough
to the ground station to transmit messages without relying on multi-hop forwarding. This
result indicates that further work should encompass other gain values to potentially enforce
multi-hop behavior in a more effective manner for DTN protocols.
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Figure 4.20. Swarm hop count
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CHAPTER 5:
Conclusions and Future Work

This Chapter discussions conclusions taken from the analysis portion of this study, as well
as potential follow-on future work. No data is presented in this chapter; however, all
conclusions are drawn from the data presented in Chapter 4 and the general findings from
this study.

This thesis conducted rigorous testing for a machine-learning-based routing protocol,
namely QGeo. Additionally, this thesis implemented improvements to the Swarm sce-
nario to increase its realism. Section 5.1 presents conclusions for QGeo’s performance
compared to the other protocols, specific notable attributes of the other protocols, and
the benefits of the testing framework employed in this study. Future work is presented in
Section 5.2 correllating to the two major efforts of this study: the Swarm scenario and
machine-learning-based network routing protocols.

5.1 Conclusions
In general, QGeo did not stand out in performance in the Helsinki and Omaha scenarios.
QGeo’s performance in the Helsinki and Omaha scenarios was generally most similar to the
GAPR protocols; however, in the Bold Alligator scenario, QGeo had more desirable overall
attributes than all of the other protocols. It had a higherMDR and comparable goodput, with
a lower average overhead than all other protocols and lower latency than all other protocols
except Epidemic. In the Swarm scenario on the other hand, QGeo had better MDR and
overhead averages for all gains, but lower goodput and comparable average latency and hop
count values. In general, QGeo’s performance indicates that it is better than other protocols
in scenarios with low node density where interactions are infrequent and messages need to
be held until opportune interactions for forwarding to their destinations. Another general
finding for QGeo is that it seems to exhibit direct contact behavior. In other words, while
QGeo does not have a constant hop count rate of one, meaning it does forward messages,
the low hop counts observed across all scenarios indicate QGeo is likely sending messages
directly to their destination, more often than not. A possible cause of this behavior is that
the learning mechanism is prioritizing the destination Q-Values for each message to the
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extent that it is inducing the direct contact behavior. It is possible that the learning rate is
not learning best forwarding nodes, but that the highest Q-Value belongs to the destination,
and destination contact is frequent enough to allow nodes to transmit messages directly to
their destinations.

It is hard to compare QGeo’s performance to Jung, Yim and Ko’s original introduction [2],
as their original implementation is unavailable to this study and the swarm scenario they
employed was not tested in this study. This study attempted to validate the tested imple-
mentation of QGeo by ensuring the reported Q-Values were within expected limitations.
This means that during the implementation phase, the running Q-Values were printed out
with their corresponding message destination, and the node from which they were being
printed. Once these values were within the normalized range [-1, 1], this study assumed
the Q-Value update mechanism worked, as there were no expected values described in [2].
For this reason, there is potential room for the QGeo implementation tested in this study to
be refined: further testing could be done to validate that the implemented version of QGeo
in this study produces the same or similar performance using the context described in [2].
Nonetheless, since QGeo was designed to be useful for drone swarms, its high relativeMDR
and overhead performance is encouraging, while its low goodput performance leaves room
for further improvements.

The main conclusion from this study concerning QGeo is that its message forwarding de-
termination, based on Q-values on a per-message basis, is an efficient method that results
in highly selective forwarding behavior. The learning mechanism that employs the deter-
mined Q-values seems to greatly decrease protocol overhead without significantly reducing
average goodput when compared to the other protocols tested. The other significant result
from this study concerning QGeo indicate that QGeo’s buffer management is better than
the GAPR protocols’ scheme because it does not perform any buffer sorting. Alternatively,
QGeo is worse than Epidemic, Vector, and Centroid in terms of buffer management because
it performs a calculation for every message at each interaction to determine the updated
Q-value for that message, rather than simply forwarding messages based on a FIFO scheme.
This illustrates the tradeoff nature of complex protocols. Where improvement is seen in one
area, there is generally a decrease in performance in another area. Overall, it is the belief
of this study that the tested QGeo implementation provides a good platform for designing
and testing machine-learning-based protocols in a simulation environment.
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This study provides further rigor to previous testing in Mauldin’s [4] and Killeen’s [3]
work in validating the GAPR protocols’ improved performance over Epidemic, Vector, and
Centroid in terms ofMDRand controllingmessage replication overhead. WhileGAPRhas a
consistently higher overhead, GAPR2 and GAPR2a significantly reduce the overhead below
all of the other protocols. Since they use the message forwarding limitation mechanisms of
Vector and Centroid, respectively, it makes sense that they reduce overhead significantly,
because the forwarding limitation schemes are designed to reduce the total number of
messages transmitted. Additionally, Epidemic generally has low latency and low hop count
values across all simulation scenarios, despite its high overhead. This makes sense because
its flooding mechanism replicates messages at every interaction in order to quickly and
effectively get messages to their destinations, which is what MDR and latency measure,
respectively. Vector and Centroid do not have notable performance in any of the metrics in
general, but serve as useful comparisons in particular for GAPR2 and GAPR2a.

Finally, one of the major contributions of this study was to add an improved Swarm scenario
to the testbed of simulations used to study DTNs. This ultimately takes the pattern of testing
DTNs from Killeen’s study [3], furthered in Mauldin’s study [4], and continues to push
it forward with an extension of Pospischil’s study [5]. This testbed provides rigorous
testing through the use of various node densities, several mobility models including many
node types and velocities, and varying radio parameters and types. These variations are
highly useful for testing a wide range of potential applications for implemented routing
methodologies. Beyond routing, ns3 allows for various network characteristic modifications
such as propagation delay and jamming that can be used in these scenarios to test other
network performance characteristics not even mentioned in this study.

5.2 Recommended Future Work
There are many improvements that can be made to the work of this study, in order to further
the testing of the routing protocols employed, or to allow for further network characteristic
testing in general. In particular, in terms of the simulation scenarios, the Swarm scenario
could be improved by a refinement of the gain parameter. The current findings seem to
suggest that the tested gains may not be taking advantage of the full effect of modifying
the radio attenuation for the purpose of inducing multi-hop behavior in a network that
does not naturally require multiple hops for message delivery. This is evidenced by the
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Swarm hop count results in Subsection 4.4.5. Future work could also incorporate more
real-world data and new node types. Collaboration with outside organizations could provide
more real-world flight log data that would enable the realistic nature of the tested Swarm
scenario to continue, while increasing the sensor data diversity and refining the acquired
sensor data by obfuscation of errant data. This will also likely increase the operating range
of the swarm, and in turn, decrease node density. Decreased node density is a highly
desirable characteristic for the Swarm scenario, as the results in Section 4.4 indicate that the
nodes have many interactions and generate messages at too high a rate for more advanced
protocols like QGeo and the GAPR protocols to be highly effective. While it is not a
negative result that those protocols are less effective in the Swarm scenario, the scenario
is from a small set of flight data that is likely not representative of potential drone swarm
operations in a real-world contested environment. NPS continues to pursue research in
advances in drone swarm technology, and as drones become more prevalent, it will be
useful to know how varying radio types can be used in various swarm configurations with
specific routing methodologies to the greatest effect. The potential for further research in
this field is widespread.

In terms of the usefulness of machine-learning-based protocols, it is the view of this study
that in certain scenarios QGeo is more effective than other more common protocols, and
performs comparably at worst to an advanced hybrid family of protocols, GAPR. In
particular, scenarios that need routing protocols with the characteristics of long message
holding times, and opportunistic forwarding would benefit from the use of QGeo. For
commonly used reinforcement learning schemes like Q-learning or SARSA, this finding
can be extrapolated, but with the advent of many different machine learning schemes, it
is impossible to extract the same routing methodology. With that in mind, the easiest
follow-on work to this study would be to implement other more modern protocols in ns3
and continue this testing framework to compare how QGeo performs against the most
modern DTN routing protocols. Another direct extension of this thesis’ work would be to
examine total simulation time as a parameter to see if it induces a different behavior from
QGeo based on the protocol’s learning mechanism. A more original follow-on work could
easily implement a SARSA learning-based protocol based on the QGeo implementation
from this study, while a more challenging study could attempt to extrapolate the simulation
testbed onto a Deep Q network and use a similar Q-learning scheme over multiple layers of
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learning to develop a policy-based protocol that would operate optimally for a wide range
of scenarios. These opportunities for further work were outside the scope of this study, but
are reasonable for an improvement to the work conducted in this thesis.
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APPENDIX: Swarm Mobility Data

A.1 6v6 Mobility Case Study (DSDV) Results
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Figure A.1. 6v6 goodput
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Figure A.3. 6v6 overhead
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A.2 10v10 Mobility Case Study (DSDV) Results
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Figure A.5. 10v10 goodput
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Figure A.6. 10v10 MDR
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Figure A.7. 10v10 overhead
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A.3 15v15 Mobility Case Study (DSDV) Results
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Figure A.9. 15v15 goodput
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Figure A.10. 15v15 MDR
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