

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

VIRTUAL MACHINE DETECTION IN
SOFTWARE-DEFINED NETWORKS

by

Timothy D. Bihl

December 2018

Thesis Advisor: John C. McEachen
Co-Advisor: Murali Tummala

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 December 2018 3. REPORT TYPE AND DATES COVERED
 Master's thesis

 4. TITLE AND SUBTITLE
VIRTUAL MACHINE DETECTION IN SOFTWARE-DEFINED NETWORKS 5. FUNDING NUMBERS

 6. AUTHOR(S) Timothy D. Bihl

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 In this thesis, we evaluate a means of determining whether or not a network host is a virtual machine
from the perspective of a network administrator using software-defined networking infrastructure.
Virtualization presents a user with a desktop and computing environment identical to what is normally
expected while also permitting them to be unwittingly controlled from outside the desktop environment. The
added complexity of virtual environments causes extra computing delays, which may be observed in traffic
round-trip times. In this thesis, we demonstrate how the observed round-trip times may be used to determine
which machines were virtualized and which were running natively directly atop the hardware. Two versions
of the experiment were performed. The first substantiated that the approach was feasible. The second, using
a more realistic software-defined networking infrastructure, showed that delay measurement must be done
by methods that minimize unnecessary hops before measurement, though the experiment still succeeded in
differentiating virtual machines in the majority of cases.

 14. SUBJECT TERMS
SDN, virtualization, virtual machine 15. NUMBER OF

PAGES
 57
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

VIRTUAL MACHINE DETECTION IN SOFTWARE-DEFINED NETWORKS

Timothy D. Bihl
Lieutenant Junior Grade, United States Navy

BS, United States Naval Academy, 2015

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2018

Approved by: John C. McEachen
Advisor

Murali Tummala
Co-Advisor

Clark Robertson
Chair, Department of Electrical and Computer Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 In this thesis, we evaluate a means of determining whether or not a network host

is a virtual machine from the perspective of a network administrator using

software-defined networking infrastructure. Virtualization presents a user with a desktop

and computing environment identical to what is normally expected while also permitting

them to be unwittingly controlled from outside the desktop environment. The added

complexity of virtual environments causes extra computing delays, which may be

observed in traffic round-trip times. In this thesis, we demonstrate how the observed

round-trip times may be used to determine which machines were virtualized and which

were running natively directly atop the hardware. Two versions of the experiment were

performed. The first substantiated that the approach was feasible. The second, using a

more realistic software-defined networking infrastructure, showed that delay

measurement must be done by methods that minimize unnecessary hops before

measurement, though the experiment still succeeded in differentiating virtual machines in

the majority of cases.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. OBJECTIVES ..1
C. RELATED WORK ..3
D. THESIS ORGANIZATION ..4

II. BACKGROUND AND PRIOR WORK...5
A. VIRTUAL MACHINES ..5

1. Implementations ...5
2. Security Concerns ..7

B. SOFTWARE–DEFINED NETWORKS ..7
1. Traditional Networks...8
2. Software-Defined Networking ..8

C. VIRTUAL MACHINE DETECTION ...9

III. APPROACH ...13
A. ADVANTAGE OF TIMING ANALYSIS ...13
B. UTILITY OF SDN FOR TIMING ANALYSIS14
C. EXPERIMENTAL METHOD ..15

IV. EXPERIMENTATION AND RESULTS ..21
A. SDN TESTBED ..21
B. SDN RESULTS ..28

V. CONCLUSIONS ..33
A. SIGNIFICANT RESULTS ..33
B. FUTURE WORK ...34

LIST OF REFERENCES ..37

INITIAL DISTRIBUTION LIST ...39

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Protection rings of Intel architecture. Source: [9].6

Figure 2. Network topography for technique validation on bare metal.16

Figure 3. Network topography for technique validation on VM.16

Figure 4. Network topography for experimental setup to bare-metal host.17

Figure 5. Network topography for experimental setup to VM.18

Figure 6. SDN testbed equipment. ..21

Figure 7. Histogram of RTTs for bare-metal host. ..24

Figure 8. Histogram of RTTs for bare-metal host, extreme outliers removed.24

Figure 9. Histogram of RTTs for VM pings. ..25

Figure 10. Histogram of RTTs for VM pings, extreme outliers removed...................25

Figure 11. Histograms of RTTs for bare metal and VM. ..26

Figure 12. Confidence interval for bare-metal RTTs, with 100-ping samples
plotted for VM and bare metal. ..28

Figure 13. Histograms of bare-metal and VM RTTs on SDN, extreme outliers
removed..30

Figure 14. Length of all RTTs for ICMP echoes in SDN. ..30

Figure 15. Confidence interval for bare-metal RTTs, with 100 ping samples
plotted. ...32

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Directly connected ICMP echoes, summary. ...23

Table 2. Summary of SDN ICMP echo timestamps ..29

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

API application programming interface

ARP address resolution protocol

BGP border gateway protocol

CPU central processing unit

ICMP internet control message protocol

IDT interrupt descriptor table

IP internet protocol

NIC network interface card

OS operating system

QoS quality-of-service

RTT round trip time

SIDT store interrupt descriptor table

SDN software-defined networking

TCP transmission control protocol

VM virtual machine

VMM virtual machine monitor

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to thank my advisors for their guidance throughout the writing process.

In addition, I would like to thank my wonderful wife for her endless patience and

encouragement.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A fundamental tenet of network security is knowing one’s network, with all its

hardware, software, and connections, better than an adversary [1]. Part of knowing the

network is having lowest-level access to the machines on the network. Where virtualization

is unwittingly allowed to persist on machines, this access to the machines can be

interrupted; thus, blind spots may be present in the network, leaving network administrators

with no ability to detect the anomalies.

A. BACKGROUND

Virtualization has a wide range of productive uses that justify its continued

presence on networks by adding flexibility to the employment of hardware resources. On

the other hand, the presence of virtualization presents a unique set of challenges in terms

of maintaining the security of a network. The same features supporting misdirection and

limited direct access to the central processing unit (CPU) instruction set can make virtual

environments more difficult to authenticate, adding to the difficulty of maintaining a trust

relationship to hosts utilizing virtualization [2]. Attributes used to fingerprint hosts can be

affected by virtual machine hypervisors, whether inadvertently in the process of

virtualization or by intentional spoofing.

If virtual environments are not tightly controlled and limited in use, such a relaxed

policy raises the chance that an attacker can put an unwitting user within a virtual

environment while having complete visibility of that user’s actions. If such a situation were

permitted, it would afford persistent access to the network. In the case that the

compromised user had elevated permissions on the network, this access could also serve

as a source of credentials that would facilitate lateral movement to other portions of the

organization’s network.

B. OBJECTIVES

Many virtual machine monitors (VMMs) leave small telltale signs of their

intervention underneath the operating system [3]. Often, these signs manifest as uncommon

 2

values in packet headers originating from the virtual machines. Most networking protocols

contain enough infrequently used fields in their headers that the treatment of those fields

constitutes a fingerprint and afford the recipient some information about the sender. VMMs

tend to check or switch several header fields to match the VMM’s default values while

leaving other fields unchanged. The resulting packet header often contains a fingerprint

that does not match common configurations for either the virtual machine’s operating

system or the application being run.

While this fingerprinting approach can detect some virtual machines, it relies on a

blacklist approach that utilizes a set of known anomalies. This list could presumably also

be known, and consequently defeated, by an informed adversary. A whitelist model that

indicates when each individual host is not virtualized, based on slower round-trip times

(RTTs) for virtual machines (VMs), would be more robust. This is done by leveraging the

additional complexity that is inherent in virtualization when compared to an identical

configuration that is being run natively on hardware. The delays from processing packets

should be distributed in a way that can be modelled statistically. A single round-trip time

measurement can be analyzed as the sum of several component delays, commonly

separated into processing, queueing, transmission, and propagation delays for each hop of

the trip.

For VM traffic, a component of the processing delay results from the overhead

associated with virtualization. If the distribution of extra delays from virtualization has a

sufficiently large mean and small variance, the added delay should be detectable, even in

the presence of statistical noise from the variation in other component delays in the round

trip. Reducing jitter in RTTs to keep variance small also minimizes the need for large

samples. Short trips, as well as other means of reducing jitter in RTTs, can be supported

by software-defined networking (SDN).

SDN is a paradigm of networking in which the de-centralized, best-effort protocols

from the early years of the internet, which are still in wide use, can be selectively

augmented, clarified, or overridden by communication with a controller having a more

complete understanding of the performance and topology [4]. This better understanding

also puts the controller in a position to arbitrate amongst the competing demands for service

 3

on the network. By leveraging SDNs, it should be possible to measure RTTs within just a

few hops of any device on the network, raising the precision of the measurement of

processing delay and allowing detection of higher-performance VMMs on the network.

The goal of this thesis is to achieve a reliable whitelist model for VM detection

based on the inherent delay of virtualization. SDN supports this goal by affording shorter

and more consistent network delays to the monitoring infrastructure. The delay from

virtualization is expected to provide a sufficient signal to be detected over network traffic

when the precision afforded by large sample sizes and SDN is utilized.

C. RELATED WORK

Most work on the topic of detecting virtualization has taken place on the device

itself rather than from the perspective of the network. There has been some discussion of

‘red pill’ instructions, which cause a CPU to respond in one of several ways depending

upon which VMM, if any, is present and interfering with normal execution of the

instructions [5]. This method has the same disadvantage of fingerprinting in that it is

specific to particular implementations of virtualization and would be pursuing the doubly-

weak tactic of attempting to play defense by utilizing zero-day vulnerabilities in the

implementation of the VMM. Zero days, so named because they are not known until being

exploited (on the zeroth day), are expensive, elusive, and cannot be expected to come along

regularly. Additionally, the use of zero-day exploits demands an understanding of CPU

behavior, which requires more in-depth analysis than simply finding uncommon

combinations of header values; thus, ‘red pill’ instructions and zero days are not good

candidates for a comprehensive VM detection strategy.

There has also been some work to compare the delays caused by various

virtualization products. The conclusions suggest that VMMs running directly on the

hardware tend to be faster than hosted VMMs running within operating systems. Network

interface card (NIC) throughput was compared, and VMWare’s ESXi hypervisor achieved

nearly twice the bandwidth of Virtualbox in a netperf test [6]. Source [6] also found

significant disparities amongst various VMMs from several vendors. VMWare released a

white paper quantifying the delay of their virtual server product, vSphere; they found that

 4

pinging from another host to a vSphere VM added approximately 20 µs compared to

sending the same pings between two physical machines over several packet sizes ranging

from 64 to 1024 bytes [7]. It was also shown in [7] that, as CPU utilization rose, the mean

time for the pings from the VM rose by a factor of approximately three. Jitter rose

dramatically, as the 99th percentile RTT rose by a factor of five, whereas it had been nearly

equal to the mean RTT in low utilization cases. Added delay for a particular VMWare

product was demonstrated and quantified in [7] in a small network specifically set up for

monitoring delay from a minimum distance across the network. In this thesis, we aim to

establish the efficacy of monitoring similar delays from a data or analysis plane of a

software-defined network so that a similar result can be achieved even in a complex

production environment. A virtual server’s characteristics may be used as an

approximation of minimal delay from virtualization since the customers for such a product

would be very interested in minimizing latency and jitter and maximizing bandwidth; thus,

if a particular detection technique were effective at detecting the delay from a server VMM,

it would probably suffice for a lightweight VMM built to avoid detection.

D. THESIS ORGANIZATION

This thesis is organized as follows. In Chapter II, the risks of virtual machines, the

capabilities of software-defined networking, and a discussion of several possible methods

for detecting virtual machines through network traffic monitoring are discussed. The utility

of monitoring delays for detecting virtual machines, the value added by software-defined

networking for measuring those delays, and the experimental method that is used to

validate the concept are all discussed in Chapter III. The collection of data is further

clarified, and the results of the experiment are given in Chapter IV. Finally, significant

outcomes of the experiment and recommendations for future work are contained in

Chapter V.

 5

II. BACKGROUND AND PRIOR WORK

Virtual machines pose unique threats to network security that can be mitigated by

awareness and management of virtual environments where necessary. Software-defined

networking presents the opportunity for network monitoring schemes that have greater

flexibility and less dependence on physical topology. Both virtual machines and software-

defined networking, as well as several methods for detection of virtual machines, are

discussed in Chapter II.

A. VIRTUAL MACHINES

Virtualization is a method of managing computing resources by splitting or joining

the resources of one or many machines into abstract allotments of computing resources

known as virtual machines [8]. Virtualization offers many benefits. It allows for

containerization of software suites (e.g., Docker), secure testing of files and software via

sandboxing, workspace flexibility, and dynamic allocation of computing resources to name

just a few ways that organizations benefit from virtualization.

1. Implementations

Computers consist of many layers of abstractions: applications abstract the

underlying functionality of an operating system’s (OS) application programming interface

(API) libraries for a specific purpose; operating systems abstract the functions of the

system’s hardware drivers to coordinate amongst programs and facilitate user interaction;

programming languages abstract the instructions given to processors; and instruction sets

for processors are themselves abstractions of complex circuits [8]. At any of these layers,

a virtual machine monitor can be interposed between the layers above and below it, creating

a virtual machine. In many ways, virtualization methods could be said to exist in all

systems. For example, processes on a modern computer, rather than being allowed to

consume all resources, receive rationed processing time from the operating system

scheduler to achieve various goals of per-process quality-of-service (QoS) or fairness [8].

Large loads on processors, rather than being allowed to run at full speed, are throttled down

 6

by processors to control temperature spikes, denying them full functionality of the

underlying technology (though for a good reason [8]).

In the same way that the processor holds itself back to keep from overheating and

destroying itself, VMMs at higher abstraction levels have to maintain control of the way

VMs are addressing the underlying hardware; this behavior is seen with privileged

instructions. These instructions allow programs to take priority on, or entirely control,

underlying hardware. In Intel processors, this tiered strategy of managing permission is

depicted as a four ring model in which applications only get into the outer-most ring, and

only operating systems can function in the inner ring, as shown in Figure 1. VMs can have

difficulty adhering to this paradigm since, for example, there may be operating systems

running unwittingly within an application; whereas the OS may demand special privileges,

granting those permissions would not work when many VMs may be competing for the

same resources [6]. This interception allows VMs to be used for sandboxing in which a

VM can be considered a safe environment to run malicious code because its reach can be

tightly controlled.

Figure 1. Protection rings of Intel architecture. Source: [9].

 7

2. Security Concerns

The use of virtualization for sandboxing is noteworthy because it takes direct

advantage of the paradigm, in concept, if perhaps not always in truth, that the virtual

machine sits fully atop the layer of the computing stack where it is built. The virtual

machine should not be able to penetrate through the abstractions of this layer, whether that

be escaping the browser into the operating system (as in attacks on the Tor browser) or

achieving direct execution on the CPU (as might happen on a workstation if an escape

attack were performed from a virtual operating system). If a virtual environment is used, it

is probably safe to say that its contents are intended to remain within the control of the

VMM, whether for stability or security reasons. So, while there are some virtual

environments that communicate somewhat openly with underlying software and hardware

to achieve performance boosts or support greater functionality, those connections from

virtual machine to the outside environment are the exceptions to the rule of virtualization.

By this separation and quarantining of tasks, virtualized environments can offer

protection against various threats that require low-level access to system resources by

stopping software from achieving malicious goals. On the other hand, virtualization makes

possible the disastrous scenario of being unknowingly caught within someone else’s virtual

environment. In computer security it is commonly accepted that physical security

necessarily underlies computer security, but having ultimate physical control of the

machine is made meaningless if malware can be made to intervene between the software

and hardware without a user’s knowing it [10]. If an organization cannot definitively say

that its users are not unwittingly sandboxed, then a malicious actor controlling a system

with a lightweight VMM can effectively have more control of the machine than the

organization that purports to own it. The thinner that layer of virtualization, the more

unobtrusive the attack may be, allowing it the further advantage of persistence.

B. SOFTWARE–DEFINED NETWORKS

Software-defined networking augments the performance of traditional networks

and affords a richer feature set for optimizing security and performance.

 8

1. Traditional Networks

Many networking protocols used widely today—transmission control protocol

(TCP), internet protocol (IP), address resolution protocol (ARP), border gateway protocol

(BGP)—have, since their inception, relied on decentralized control [11], [12], [13], [14].

When many of these protocols were designed in the 1980s, bandwidth and processing were

expensive, and the number of devices connected to networks was relatively small.

Decentralized protocols accommodate unpredictable growth and configuration; as long as

packets have correct headers and are destined for properly configured computers, they can

be reasonably assured of eventually arriving at the correct machine. There are some means

of optimization of path length and other variables to achieve a higher level of performance

than can be achieved by random propagation across all available connections. In many

protocols, such as BGP, optimization is done by sharing inter-nodal link distances amongst

the various nodes making decisions, with the goal of all nodes converging to a common

understanding and routing algorithm for the network. The iterative nature of such processes

requires time to develop full network pictures; in some cases, networks change too rapidly

for convergence ever to be reached [15].

2. Software-Defined Networking

Software-defined networking is an answer to that problem of sub-optimal network

performance from decentralized control (as well as an answer to many other problems). In

SDN, the routing devices use traditional protocols as their basis for directing traffic but can

also be customized to achieve various goals by communicating with a central controller.

The controller, which can communicate with all routing devices, is able to view network

traffic holistically and make smarter decisions as a result. SDN can also be used to facilitate

network virtualization in which an abstraction of the physical network can be provided to

give simpler network topologies or provide multiple separate virtual networks on the same

physical infrastructure [16]. More generally, SDN is a toolset, rather than a feature in itself,

which can support advanced network functionality.

 9

C. VIRTUAL MACHINE DETECTION

There are two promising methods of virtual machine detection that were considered

for this research; detection of virtualization through the use of anomalous headers and

detection through timing variations. There are many header fields in various networking

protocols in which default values are heavily used, and in many of these fields the particular

value is of minimal importance (typically because the creators envisioned use cases that

never materialized). In these cases, implementations for default values are commonly

determined by the operating system, and applications seldom find cause to change those

default values. These header values are consistent enough that they are used in web

applications to allow the server to guess attributes of the hosts making requests [17]. This

process is called fingerprinting.

When the host operating system is different from the operating system on the virtual

machine, this may result in a set of default headers that do not fit an expected set of header

values. If this set of header values is fingerprinted, the host sending the packets may stand

out from hosts using more common combinations of default headers. Several of these

anomalies have been discovered and documented and can be used as telltales for virtual

machines [18].

One similar method (utilizing lower-level CPU instructions) is the use of ‘red pill’

instructions, named after the red pill used to escape simulated consciousness in The Matrix.

Red pill instructions rely on flawed implementations (usually unintentional) of

virtualization software to find a particular instruction or set of instructions that causes a

computer to behave differently in the virtualized case from how it would if the environment

were running natively. For example, the Conficker worm was known to use a store interrupt

descriptor table (SIDT) instruction to check for virtual environments, going to sleep

indefinitely upon detecting one in order to resist attempts at analysis and mitigation [19].

The interrupt descriptor table (IDT) is used to locate the code that handles various

interrupts; SIDT, or store IDT, stores the IDT register, giving the address of the IDT. In

virtual environments, this table is stored at different locations than in native environments.

Use of the SIDT instruction could thus tip off malware that it was in a virtual environment.

When red pill instructions work, they are ideal because they work reliably. From a security

 10

perspective, however, they are not very helpful because they function as a blacklist model

in which it is only possible to defend against known problems. While these one-off exploits

are powerful when used in malware, they lose almost all potency in defense.

The second approach considered was to inspect for differences in round-trip times

that set virtual machines apart from their natively-installed equivalents. Virtualization has

several sources of delay inherent in the technology as compared to the same operating

system or application running on a bare-metal platform. There are several processes of

virtualization that result in added delays, such as the actual added processing involved in

handling the packets through virtual network interface cards [7]. Another delay comes from

scheduling by the VMM that accumulates some minimum number of packets before getting

CPU time or network interface card (NIC) time, causing uneven delays for some packets

[7]. Also, competition for bandwidth with other applications, especially if those other

applications have been given higher priority, increases RTTs [7]. Manipulation of

processes by VMMs to handle privileged instructions slows communication [7]. Finally, a

disconnect may be present between the VMM scheduler and the CPU scheduler, causing

time-sensitive packets to be unnecessarily delayed based on suboptimal coordination [7].

The sum of these effects results in a measurable rise in network latency.

Each operating system tends to have its network stack implemented slightly

differently, leading to different delays from when packets are formed to when they leave

the machine to begin transiting to their destinations. The same is true of hypervisor

software; this can be seen especially when comparing multi-purpose software like

VirtualBox to enterprise server virtualization products. In the first case, the development

effort is likely pulled in many different directions at once, sacrificing specific performance

for wide compatibility and functionality, thus compromising network delay time. In the

case of enterprise server virtualization, the solutions are more finely tuned to provide short

delays, as shown in NIC throughput comparisons of [6].

Regardless of this variation among virtualization products, the hypervisor should

always introduce some delay to the network stack, even for high-performance enterprise

versions. There is always some amount of redundancy as packets are created in the virtual

machine’s networking stack and then propagated outward to the real hardware and finally

 11

transmitted. Another delay is added upon the arrival of a response packet, when the process

of moving into the virtual space is repeated in reverse. If there is little enough variation in

round trip-time for a particular protocol (internet control message protocol (ICMP) echo

performs a simple and consistent task, for example) and the added time cost of

virtualization is sufficiently large, it may be possible to observe a round trip or sequence

of round trips and determine whether the traffic is originating from a virtualized or native

host. Such an approach may be applicable widely over slightly differing configurations of

machines (different machines running a common operating system) but may also be far

more limited, requiring ground truth data for each specific combination of hardware and

software or perhaps even every specific host.

In addition to the need for simple traffic to keep processing times in the host to a

minimum, networking delays must be minimized in order to also minimize their variations.

The delays inherent in virtualization can readily be obscured by wireless communication

or queueing, where the variation in delay can be substantial. A relatively rough-spun

implementation of virtualization, such as VirtualBox, should be easily detectable in noisy

networking environments, whereas server virtualization products may require very

predictable networks with minimal traffic and very few hops to avoid obscuring the

underlying difference.

In this chapter, virtual machines were described, including the risks associated with

them and the consequent need to prevent unexpected virtual machine use. Then, traditional

and software-defined networks were contrasted to highlight the added capability of SDN.

Finally, a brief discussion was given of possible methods for detecting VMs. This

information is used to support the choice of method in Chapter III and to explain the

presence of the virtualization seen in the results of Chapter IV.

 12

THIS PAGE INTENTIONALLY LEFT BLANK

 13

III. APPROACH

In this chapter, we describe the advantages offered by using timing analysis for

detecting virtual machines as well as explaining how such a setup is aided by SDN

infrastructure. We then lay out the format of the experimentation that produced the results

to be discussed in the next chapter.

A. ADVANTAGE OF TIMING ANALYSIS

The significant problem with the header anomaly method is that it offers very

limited coverage of the set of all 3-tuples of host OS, VM OS, and hypervisor program

along which the anomalies would be expected to exist. Anomalies may only be relevant

for particular versions of an operating system or may appear only in particular hypervisors

(whereas other hypervisors handle the transition from guest to host more gracefully,

without changing header fields). The testing of even the few most common operating

systems and hypervisors would be tedious, and a comprehensive solution is impossible. In

this setup, packet captures from the device being inspected might be run through a

fingerprinting application to check for known combinations, but falling through the cracks

of this blacklist would be common even in the case of normal users, to say nothing of

malicious actors with knowledge of the detection system.

Analysis of round-trip times, on the other hand, has the potential to achieve VM

detection in a more comprehensive manner by avoiding the pitfalls of searching for header

anomalies. Unlike mismatched header fields, which are little more than serendipitous and

(presumably) rare tip offs of virtual machines, round-trip delay from virtualization is a fact

of the underlying technology that is probably immutable; even the fastest enterprise and

server virtualization solutions have some delay from virtualization. By keeping track of the

systems on a network, and their associated round-trip time statistics for a sample packet, it

should be possible to create a whitelist against which network hosts can be compared. With

this whitelist, it should be possible to disprove the possibility of virtualization for any given

host by taking a sample packet or series of packets and measuring delay at that host.

 14

B. UTILITY OF SDN FOR TIMING ANALYSIS

The test of round-trip times, as presented above, could theoretically be implemented

on a traditional network. Variation in networking delays, however, might obscure any

virtualization delay by requiring an impractically long series of packets to make a decision

about whether a given host is virtualized. As more hops are added to the round trip being

measured, the potential for variable delays increases; while the virtualization delay should

always be present with a virtualized host, it could become prohibitive to send enough traffic

to reliably ascertain the status of a machine due to use of both computing and networking

resources. In fact, a similar method was proposed in 2006 and showed promise for wired

connections [20]. The technique was largely written off by [20] because the timing analysis

was deemed too dependent upon network topology.

SDN, on the other hand, affords network administrators the ability to reduce the

noise in the measurement of round-trip times by inspecting the traffic from the controller.

The control plane (of which the controller is a part) can have a connection to each switch

in the network and can issue on-the-fly commands for those switches to forward any

packets to it. By inspection of the traffic sent to, and returning from, the host of concern as

it receives an ICMP echo request (or other traffic), it is possible to observe the response

time of that host at a consistent distance of only two hops (host to switch, then switch to

controller). This should reduce the timing variation to manageable levels and also give

consistent networking delays from host to the point of observation, regardless of where the

host exists in a network’s topology. That consistent delay should allow for a shorter

whitelist, including only each type of host (hardware and software configuration) on the

network rather than each individual host.

If the variation of delays within the network can be kept to low levels, then this

monitoring scheme for virtual machines in a network may be viable. When connected hosts

are periodically tested, it would be possible to have positive confirmation that no user has

been unwittingly virtualized.

 15

C. EXPERIMENTAL METHOD

To test the efficacy of the approach described in the previous chapter, two basic

networks were used: one, with no SDN component; the other, having an OpenFlow switch

and controller sitting atop a similarly simple network topography.

In the first experimental setup, two computers were directly connected to a router

to validate the approach. Each computer was running the same operating system, Ubuntu

14.04. One computer sent ICMP echoes to a receiving computer, which in one case was

running Ubuntu (see Figure 2) and in the other was running Ubuntu inside a VirtualBox

virtual machine which was running atop Ubuntu (see Figure 3). The virtual machine was

operating in bridged network mode. In both cases, the data were collected immediately

after restarting the machines as a means to limit the impact that other processes might have

on the results. A total of 40,000 ICMP echo messages were sent using the ping command

(with an option set to reduce the interval between pings to 0.1 s, down from the default one

second). While the ping command was run, a Wireshark capture was performed on the

machine originating the traffic. This capture would be analogous to the monitoring that

would be performed by a machine on an analysis plane on an SDN. Because the network

topography was ideally simple and there was little or no demand on either the network

infrastructure or the processors on the two machines, these trials were expected to show an

ideal case for how detectable the virtualization delay could be. Virtualbox is also a fairly

slow virtualization tool, so the underlying delay was expected to be significant.

 16

Figure 2. Network topography for technique validation on bare metal.

Figure 3. Network topography for technique validation on VM.

In the second set of trials, the same experimentation was performed using the SDN

infrastructure of the testbed. The two computers were interfacing this time with one another

through an Openflow-enabled switch, which coordinated the passing of packets between

the two machines on a case-by-case basis. In this case, it was not precisely a round-trip

time that was being calculated; but the basic idea, observing time for a packet to enter into

and return from the machine, was preserved. In a sense, the monitoring infrastructure could

be thought of as a permissive man-on-the-side interaction. This is done because the data

plane, where the ping is occurring, is meant to be kept separate from the control plane,

where decisions are made and passed about the flow of traffic through the network. In the

 17

case of this experiment, the packets were forced to go to the controller by repeatedly

deleting flow information for the destination address. Faced with no knowledge of the

correct forwarding action, the switch passed the packet to the controller, where a routing

decision was made and passed back to the switch. On the way back to the originator, the

same process occurred. In Figures 4 and 5, where all packet traversals are numbered, all

eight labelled segments of the trips happened sequentially. The interval recorded was from

the transmission of 3 until the receipt of 6.

Figure 4. Network topography for experimental setup to bare-metal host.

 18

In a sense, passing this information to the controller was not a realistic portrayal of

how the collection would occur since the controller would quickly become bogged down

by the extra traffic. On the other hand, the control plane was a sufficiently close stand-in

for an analysis plane that would actually be used to achieve the same data collection in a

network with loading concerns. The analysis plane, like the control plane, would be a

mostly separate plane where timing and other characteristics could be collected in close

proximity to the source of the signals, then sent to a central analysis machine or cluster of

machines to analyze various aspects of the traffic for more effective load balancing,

security, and implementation of other network priorities. Given that there was no regular

traffic loading the network, timing with the control plane was considered a viable means

of testing.

Figure 5. Network topography for experimental setup to VM.

 19

Aside from the administrative difference in which plane was being used for timing,

there was also an added, and possibly highly variable, delay from forcing the packets to all

go to the controller for forwarding instructions.

On the SDN, because the side trip to the controller added significant delay, pings

were left at one-second increments, and samples of 500 pings were taken. Two samples

were taken for each of the bare-metal and VM setups. The first sample of each type was

used to create a model for the delays, whereas the second sets were used for testing the

models created from the first sets. The same was done in the case of the conventionally

networked computers, except in that case the two samples of each setup were 40,000 pings

each. Aside from supporting larger testing sample sizes and improved confidence intervals,

the sample sizes had no effect on the overall results of the testing.

In this chapter, the proposed experimental scheme was presented. Then, a

description of the extra monitoring capability offered by SDN was given. Finally, the

method for the experimentation was delineated. This method is used to yield the results

found in Chapter IV, and its limitations are the basis for recommendations for future work

in Chapter V.

 20

THIS PAGE INTENTIONALLY LEFT BLANK

 21

IV. EXPERIMENTATION AND RESULTS

The method for detecting virtual machines on the network was proposed in the

previous chapter. Results collected from implementing this method are presented below.

A. SDN TESTBED

Experimentation was performed on a network with Raspberry Pi hosts as well as

several desktop computers running Ubuntu 14.04 (see Figure 6). A subset of a single

Raspberry Pi one desktop computer running Ubuntu 14.04 was used, with the Raspberry

Pi sending ICMP echo requests and the desktop replying. In the bare metal experiment, the

network traffic went directly to the Ubuntu OS on the desktop host. In the VM experiment,

network traffic went to a VirtualBox instance within the desktop PC; the VM also ran

Ubuntu 14.04, and networking on the VM was set to bridged mode. The hosts were

connected to an HP 3800 OpenFlow-capable switch. This switch was connected to a

controller: in this case, another desktop (not connected to the data plane of the network)

running Ubuntu 14.04. This desktop used Ryu for a northbound SDN interface to

communicate commands to the Openflow switches on the network. All network

connections were made with 100-Mbps wired Ethernet connections.

Figure 6. SDN testbed equipment.

 22

First, a series of 40,000 pings was conducted twice with a single switch between

them: once, to a non-virtualized host; second, to a virtualized host within VirtualBox

running an identical operating system (on the same system as was used for the bare-metal

host). These tests were performed to validate the timing discrepancy between virtual and

bare-metal hosts that would subsequently be used to detect virtual machines in an SDN

framework. The case of a single switch separating the two hosts was used because it is the

best-case scenario in which noise from transmission and propagation delays is minimized.

The pings were performed with 0.1-s delays between each (default delay is one

second) to significantly reduce time for data collection while still giving reasonable

assurance that the times observed would not be affected by network congestion. Typical

round-trip times were well below 0.001 s, suggesting that the reduced interval between

pings would not contribute significantly to networking or processor congestion.

Timestamps were obtained at both the sending and receiving hosts, with

Wireshark’s timestamps being used to provide precision. Because there is no assurance

that the two machines’ clocks are synchronized, each machine’s timestamps were only

compared against other timestamps from that same machine. In this way, it was possible

to obtain round-trip time (elapsed time between the sending the request and receiving the

reply at the sender), processing time (elapsed time between receiving the request and

sending the reply at the receiver), and travel time (difference between round trip and

processing times).

For the virtual machine run, the timestamps at the receiving side were collected on

the bare-metal OS outside the hypervisor in order to encompass virtualization delays within

the other processing delays at the receiver.

In a production environment, a controller (or parallel device in an analysis plane)

would be the single point for data collection since the host cannot be trusted. In this

analysis, however, trying to separate the various components of the delay provides insight

into how much delay occurs on the host as opposed to in transit.

Extreme outliers (beyond five standard deviations) were removed from the data

sets. These outliers represented less than 0.2% of both virtual and physical cases, and

 23

removing them allowed the data to be treated as a Gaussian distribution for simplicity of

analysis. When the resulting data were analyzed, with extreme outliers removed, the

summary statistics in Table 1 resulted.

Table 1. Directly connected ICMP echoes, summary.

 Bare Metal Virtual Machine

 Full data set

Extreme
outliers
removed Full data set

Extreme
outliers
Removed

N 40000 39997 40000 39934
Mean
(seconds) 1.5929 × 10−4 1.5923 × 10−4 5.2055 × 10−4 5.1882 × 10−4
Standard
deviation
(seconds) 3.5063 × 10−5 3.4433 × 10−5 1.0055 × 10−4 8.8425 × 10−5
Skewness 0.743 −0.100 3.514 −0.839
Kurtosis 22.211 1.815 102.617 3.173

With extreme outliers removed, each set has kurtosis and skewness values that

indicate a good fit for a Gaussian distribution. For each of bare metal and VM data sets,

how the removal of extreme outliers changed the size of the data set, the mean, and the

standard deviation estimate are seen in Table 1. Kurtosis and skewness, which provide a

metric of how closely the data sets fit a Gaussian distribution, were also improved by the

removal of extreme outliers.

Below, histograms of the data with extreme outliers included and omitted show

how the data sets were altered by this alteration. The bare metal trial is shown in Figures 7

and 8, and the VM trials are shown in Figures 9 and 10. The vast majority of bare metal

RTTs were 0.08 and 0.3ms, with several RTTs well above 0.3 ms, as shown in Figure 7.

When extreme outliers were removed from this data set, only the three largest values were

removed out of 40,000, as seen in Figure 8. In the VM case, a similar pattern was seen,

with most RTTs between 0.3 and 1ms and several higher RTTs as high as 4.3 ms, shown

in Figure 9. When the extreme outliers were removed, all RTTs above 1.0 ms were

 24

removed, which amounted to 66 of 40,000 RTTs. A truncated histogram resulted, as shown

in Figure 10.

The y-axis is truncated to show the detail of outliers.

Figure 7. Histogram of RTTs for bare-metal host.

The y-axis is truncated to show the detail of outliers.

Figure 8. Histogram of RTTs for bare-metal host, extreme outliers removed.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time, seconds 10 -3

0

5

10

15

20

25

30

35

40

45

50

fre
qu

en
cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time, seconds 10 -3

0

5

10

15

20

25

30

35

40

45

50

fre
qu

en
cy

 25

The y-axis is truncated to show detail of outliers.

Figure 9. Histogram of RTTs for VM pings.

The y-axis is truncated to show the detail of outliers.

Figure 10. Histogram of RTTs for VM pings, extreme outliers removed.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

time, seconds 10 -3

0

5

10

15

20

25

30

35

40

45

50

fre
qu

en
cy

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

time, seconds 10 -3

0

5

10

15

20

25

30

35

40

45

50

fre
qu

en
cy

 26

In Figure 11, the histograms of RTTs give a better sense of the extent to which the

round-trip times resemble Gaussian distributions while also showing how they deviate

from a Gaussian distribution with strong non-central modes in both VM and bare-metal

runs. The resemblance to Gaussian distributions means that a Gaussian distribution can be

used as a model for the data. The separation of the two histograms, which have almost no

overlap, indicates that correct sampling technique and statistical handling should yield a

conclusive model for which traffic comes from VMs.

Figure 11. Histograms of RTTs for bare metal and VM.

Though the histograms show deviation from Gaussian distributions, confidence

intervals for Gaussian distributions were nonetheless useful for the data with direct

connection and measurement of RTTs. A 99.9% confidence solution with a single RTT

gives the confidence intervals:

Bare metal: [0.0459 ms, 0.273 ms]

Virtual machine: [0.228 ms, 0.810 ms].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time, seconds 10 -3

0

500

1000

1500

2000

2500

3000

3500

fre
qu

en
cy

VM RTT

Bare Metal RTT

 27

The overlap in these two ranges indicates that a single RTT from an ICMP echo

will not suffice to determine whether a given host is virtualized at the intended confidence

level. When the sample size is raised, the standard error of the sample is lowered in

proportion to the square root of the sample size. When the lower bound of the VM

confidence interval is set equal to the upper bound of the bare metal confidence interval at

the 99.9% confidence level, a sample size of two is sufficient to provide non-overlapping

confidence intervals:

Bare metal: [0.0791 ms, 0.239 ms]

Virtual machine: [0.313 ms, 0.725 ms].

At a conservative 0.1-s separation between pings, a 100-ping sample only takes

10.0 s. Non-overlapping confidence intervals result at the 99.9% confidence level:

Bare metal: [0.148 ms, 0.171 ms]

Virtual machine: [0.490 ms, 0.548 ms].

The lack of overlap in these two ranges means that a 100-ping sample should be

able to say definitively whether a host is virtualized. Applying these confidence intervals

to 10,000 more RTTs from the same testbed on each of bare-metal and VM hosts, shown

in Figure 12, yields 100 sets of bare-metal pings correctly identified out of 100. Using the

same confidence interval correctly identifies all 100 sets of pings from a VM. All samples

of RTTs from both categories were correctly categorized, indicating that the detection

method was successful. The minimal variance of bare metal RTTs results in a narrower

confidence interval that includes no RTTs from VMs, and the VM confidence interval is

also sufficiently narrow to preclude inclusion of a bare metal RTT.

 28

Figure 12. Confidence interval for bare-metal RTTs, with 100-ping samples
plotted for VM and bare metal.

B. SDN RESULTS

When the simulation was run on an SDN, it used the setup of an Openflow switch,

administered with Ryu as the Northbound API. ICMP pings were sent between two hosts

on the network, both directly connected to the Openflow switch. The switch stored no flows

so that it would be forced to send its packets to the controller for analysis and routing at

each packet forwarding step. In this way, the packets were all sent to the Openflow

controller, where timing data could be collected. Due to the significant delay produced by

this method of collection, ICMP echo messages were separated by the normal one-second

interval, and only two runs of 500 ICMP echoes were recorded. The first run of 500 pings,

each of VM and physical cases, was used to define a model, with the second runs in each

category being used to evaluate the model.

0 10 20 30 40 50 60 70 80 90 100

ordinal number

1

2

3

4

5

6

7

tim
e,

se
co

nd
s

10 -4

upper bound of bare metal confidence interval
lower bound of bare metal confidence interval

upper bound of VM confidence interval
lower bound of VM confidence interval

bare metal RTTs

VM RTTs

 29

For the pings conducted through the SDN, 5-standard-deviation extreme outliers

were once again removed. Summary statistics are shown below in Table 2.

Table 2. Summary of SDN ICMP echo timestamps

 Bare Metal Virtual Machine

 Full data set

Extreme
outliers
removed Full data set

Extreme
outliers
Removed

N 500 499 500 498
Mean
(seconds) 0.001120 0.001113 0.001319 0.001315
Standard
deviation
(seconds) 1.6906 × 10−4 5.9323 × 10−5 7.5513 × 10−5 5.1284 × 10−5
Skewness 18.5559 5.9910 7.2937 −0.4197
Kurtosis 384.115 68.297 110.109 3.743

Once again, removing the extreme outliers yields data sets much closer to Gaussian

distributions and only slightly reduces the number of RTTs included. In the case of pings

to the bare-metal host, there is significant skew, and the distribution is too narrow and high-

peaked (indicated by high kurtosis value) to fit a Gaussian distribution. For simplicity of

analysis, confidence intervals of Gaussian distributions were used again.

From Figure 13, a greater degree of overlap can be seen between the two versions'

RTTs in the SDN testbed than was observed in the simpler setup. The overlapping region

includes much more of the RTTs for both bare metal and VM cases, indicating that a

random VM RTT could be harder to distinguish from a bare metal RTT than in the previous

experimental setup. The similarity of the RTTs can be seen again in Figure 14;

distinguishing between VM and bare metal RTT by a single RTT is clearly not possible in

this instance. Nonetheless, the use of multiple-ping series allowed the distributions to be

narrowed to the point where definitive results were possible.

 30

Figure 13. Histograms of bare-metal and VM RTTs on SDN, extreme outliers
removed.

Figure 14. Length of all RTTs for ICMP echoes in SDN.

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

time,seconds 10 -3

0

20

40

60

80

100

120

of

 o
cc

ur
en

ce
s

Bare Metal RTT

VM RTT

0 50 100 150 200 250 300 350 400 450 500

ordinal number

0.5

1

1.5

2

2.5

se
co

nd
s

10 -3

Physical
VM

 31

When the same strategy of producing non-overlapping confidence intervals for VM

and bare-metal RTTs was revisited, this time in the SDN environment, 99.9% confidence

intervals for a single RTT are

Bare metal: [0.918 ms, 1.31 ms]

Virtual machine: [1.15 ms, 1.48 ms].

The overlapping regions show that single-ping samples are ambiguous for

determination of whether there was virtualization. When the lower bound of the VM

confidence interval is set equal to the upper bound of the bare metal confidence interval at

the 99.9% confidence level, a sample size of four is sufficient to provide non-overlapping

confidence intervals:

Bare metal: [1.02 ms, 1.21 ms]

Virtual machine: [1.23 ms, 1.40 ms].

The use of 100-RTT samples again gives unambiguous 99.9% confidence intervals:

Bare metal: [1.09 ms, 1.13 ms]

Virtual machine: [1.30 ms, 1.33 ms].

Evaluation of the remaining 500 RTTs for each of the VM and bare-metal host,

plotted in Figure 15, shows these confidence intervals to encapsulate all bare-metal samples

correctly, while no VM samples are permitted to pass for a bare-metal run.

 32

Figure 15. Confidence interval for bare-metal RTTs, with 100 ping samples
plotted.

In both the simply connected and separately monitored SDN cases, it was possible

to determine which samples were from the VM and which were from the bare-metal host

when a Gaussian distribution is used. In both cases, the distinction was achieved with 100-

ping samples, which could be considered an acceptable amount of additional traffic to

generate for periodic verification of many machines on a network.

The experimentation in this chapter validated a concept in that it is possible to set

confidence intervals for all data sets that encompassed all pings of their respective

categories while being mutually exclusive. The data had several shortcomings that made

the experiment unrealistic which are discussed in Chapter V. Some of those experimental

limitations aided the task of categorization compared to a real-world scenario, whereas

others made the experimentation unrealistically difficult.

1 1.5 2 2.5 3 3.5 4 4.5 5

ordinal number

1.05

1.1

1.15

1.2

1.25

1.3

1.35

tim
e,

se
co

nd
s

10 -3

upper bound C.I.
lower bound C.I.

bare metal RTTs

VM RTTs

 33

V. CONCLUSIONS

Experimentation confirmed the ability of the proposed method to detect the delay

imposed by a VM hypervisor in an SDN environment. The results also show how larger

samples could be used to achieve this this goal even as the hypervisor delay is reduced.

Several approaches are suggested for future work. These approaches would expand

the applicability of the conclusions reached in this thesis. The applicability could be

expanded both by iterative future work exploring many possibilities of network and host

configuration and use and by generalization and mathematical modelling of the delays

observed.

A. SIGNIFICANT RESULTS

The results of this experimentation showed that VM traffic can be distinguished

from traffic originating on a bare metal host. In an ideal measuring environment, where the

originating system measures the RTTs, this distinction is made with no ambiguity in the

results. This distinction was demonstrated in the first experimental setup. In an SDN

environment where RTTs are measured by a controller inspecting traffic at a switch, the

difference exists between bare metal and VM RTTs, but a greater number of RTT

measurements is needed to conclusively distinguish between the two cases. Finally, the

low sample sizes needed for the experimentation, coupled with the low cost of large

samples, shows significant potential for detection in situations with less delay or more

network jitter.

An ideal measurement was given by two hosts connected to a common switch with

timing measurements taken at the host sending the ICMP echo messages and receiving the

replies. The situation was further optimized for successful detection by the use of

VirtualBox for the VM case; as discussed in Chapter I, VirtualBox introduces more delay

than many other virtualization products. In this ideal case, a sample size of only two RTTs

was needed to separate VM from bare metal RTTs at the 99.9% confidence level.

An SDN environment was given by two hosts connected to a common OpenFlow

switch with a controller, directly connected to the same switch, interrogating the traffic at

 34

the switch to measure RTTs. In this environment, the mean RTTs were significantly slower

due to processing being performed in the controller, and the standard deviation for bare

metal RTTs rose by 72%, though the standard deviation for VM RTTs decreased by 42%

compared to the ideal-measurement environment. In this SDN case, a sample size of four

was needed to distinguish between VM and bare metal RTTs at the 99.9% confidence level.

The sample sizes needed in the two versions of the experiment were two and four

for the ideal and SDN cases, respectively, to achieve separate confidence intervals between

bare metal and VM cases. The low cost of simple traffic such as ICMP echo messages

makes large sample sizes feasible on production networks, especially if testing for

virtualization is infrequent. This potential for larger sample sizes means that detection

would continue to be possible by the method in this thesis even for virtualization software

that adds significantly less delay.

B. FUTURE WORK

In this thesis, we demonstrated a concept for VM detection, but many permutations

of the problem remain unproven for this detection scheme. Future work could determine

the extent to which this technique is applicable to varied systems. Particularly, it could be

tested against faster virtualization software or generalized to provide an estimate for the

fastest VM that could be detected with the proposed technique. More complex

environments, both in terms of the connections and devices on the network and in terms of

how heavily the devices are utilized, could be used for assessing this technique. Finally,

refinement of the statistical model used to describe virtualization delay could result in more

complete isolation and understanding of the delays.

First, the virtualization software used for the experiment, VirtualBox, is not

strongly optimized for latency, and experimentation with VirtualBox might not align with

the difficulties of detecting a lightweight virtualization layer, whether it be purpose-built

or just faster software, such as latency-centric server virtualization clients [6]. VirtualBox

is a hosted VMM, as opposed to a bare-metal VMM running directly atop the hardware;

bare-metal VMs give consistently higher performance than hosted VMMs [6]. This finding

is corroborated by [7], which also gives an example of a VMWare product with typical

 35

added latencies on the order of tens to hundreds of microseconds. The detection of such a

short delay might require a more finely tuned process; nonetheless, it may be attainable

when an analysis plane built atop OpenFlow is used. Future work could be done to

generalize the variance of RTTs so that a limit could be hypothesized for the minimum

virtualization delay detectable by this technique.

The simple network topography used for this experiment might be optimistically

reductive. The experiment was performed on a network where no more than a single switch

ever sat between the two hosts. Depending on the setup of a network, it may not always be

feasible to collect timing data at a machine connected to the same switch. As the number

of hops increases, the evaluation will tend to become less reliable at determination since

the jitter from the extra hops will partially obscure the underlying timing difference. While

proximity to the hosts being evaluated, in terms of network topography, is one of the

advantages unlocked in this scenario by SDN, the network used for experimentation was

an ideal case, and real-life versions would be more complex. Future work could be directed

toward determining how well the detection technique performs when multiple switches lie

between the two hosts.

Other processes running on computers could cause legitimate, bare-metal hosts to

show delays comparable to those from virtualization, with a false positive as a result. In

the rest of the discussion, the network is presumed to be the limiting factor in providing a

clear signal for analysis. Processors can be subject to similar queueing in the face of high

utilization, and this effect would obscure any virtualization delay. This processing delay

could be even more difficult to work around than the network delays, since CPUs are so

much more complex and varied than forwarding hardware in switches. Future work could

focus on how RTTs and variance of RTTs vary with both CPU and network utilization.

Finally, identification of the correct distribution model would allow the model to

more closely mirror the data. Though the Gaussian distribution provided an approximate

fit after removing extreme outliers, [21] has indicated that other distributions exist which

more accurately portray network and processing delays. Through the combination of high-

accuracy modelling with smaller granularity of models (to encompass the variety of delays

that comprise a single round trip), it could be possible to achieve reliable differentiation

 36

with small samples, even while robustness against lightweight virtualization software is

shown. Future work could be done to assess for a better statistical model or pursue a

machine learning model.

 37

LIST OF REFERENCES

[1] R. E. Joyce, “Disrupting nation state hackers,” presented at USENIX Enigma
2016, San Francisco, CA, Jan. 27, 2016. [Online]. Available:
https://www.usenix.org/node/194636

[2] N. A. Quynh, “Operating system fingerprinting for virtual machines,” presented at
DEFCON 18, Las Vegas, NV, July 30, 2010.

[3] O. Bazhaniuk, Y. Bulygin, A. Furtak, M. Gorobets, J. Loucaides, and M. Shkatov,
“Reaching the far corners of MATRIX: generic VMM fingerprinting,” presented
at Source Security Conference, 2015. [Online]. Available: www.c7zero.info/stuff/
source-seattle-2015-generic_vmm_fingerprinting.pdf

[4] D. Kreutz, P. E. Verissimo, and S. Azodolmolky, “Software-defined networking:
a comprehensive survey,” in Proceedings of the IEEE, vol. 103, no. 1, Jan. 2015.
[Online]. Available: https://ieeexplore.ieee.org/document/6994333/

[5] J. Rutkowska, “Red pill... or how to detect VMM using (almost) one CPU
instruction,” Wayback Machine, November 2004. [Online]. Available:
http://web.archive.org/web/20110726182809/http://invisiblethings.org/papers/
redpill.html

[6] W. Graniszewski and A. Arciszewski, “Performance analysis of selected
hypervisors (virtual machine monitors – VMMs),” International Journal of
Electronics and Telecommunications, vol. 62, no. 3, pp. 231–236, Sept. 2016.
[Online]. Available: https://content.sciendo.com/view/journals/eletel/62/3/article-
p231.xml

[7] S. Agarwal. “Network I/O latency on VMWare Vsphere 5,” VMWare, Palo Alto,
CA, 2012. [Online]. Available: https://www.vmware.com/content/dam/
digitalmarketing/vmware/en/pdf/techpaper/network-io-latency-perf-vsphere5-
white-paper.pdf

[8] S. Nanda and T. Chiueh, “A survey on virtualization technologies,” Department
of Computer Science, SUNY Stony Brook, Stony Brook, NY, 2005. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74
.371&rep=rep1&type=pdf

[9] Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, Intel,
Santa Clara, CA, 2018. [Online] Available: https://software.intel.com/sites/
default/files/managed/7c/f1/253668-sdm-vol-3a.pdf

[10] G. White, Security+ Certification All-in-One Exam Guide. New York: McGraw-
Hill, 2003.

 38

[11] Transmission Control Protocol, RFC 793, 1981. [Online]. Available:
https://tools.ietf.org/html/rfc793

[12] Internet Protocol, RFC 791, 1981. [Online]. Available: https://tools.ietf.org/html/
rfc791

[13] A Border Gateway Protocol (BGP), RFC 1105, 1989. [Online]. Available:
https://tools.ietf.org/html/rfc1105

[14] An Ethernet Address Resolution Protocol, RFC 826, 1982. [Online]. Available:
https://tools.ietf.org/html/rfc826

[15] P. Lapukhov, “Understanding BGP convergence,” INE Blog, 22 November 2010.
[Online]. Available: http://blog.ine.com/2010/11/22/understanding-bgp-
convergence/

[16] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN,” ACMQueue, vol. 11,
no. 12, Dec. 2013. [Online]. Available: https://queue.acm.org/
detail.cfm?id=2560327

[17] M. Zalewski, “OS fingerprinting tool,” Bugtraq Mailing List. 10 June 2000.
[Online] Available: http://seclists.org/bugtraq/2000/Jun/141

[18] T. Liston, E. Skoudis, “On the cutting edge: thwarting virtual machine detection,”
presented at SANS@Night, 2006. [Online]. Available: https://handlers.sans.org/
tliston/ThwartingVMDetection_Liston_Skoudis.pdf

[19] “Conficker’s virtual machine detection,” Naked Security by Sophos, 27 March
2009. [Online]. Available: https://nakedsecurity.sophos.com/2009/03/27/
confickers-virtual-machine-detection/

[20] P. Defibaugh-Chavez, R. Veeraghattam, M. Kannappa, S. Mukkamala, and A. H.
Sung, “Network based detection of virtual environments and low interaction
honeypots,” in Proceedings of the 2006 IEEE Workshop on Information
Assurance, West Point, NY, 2006. [Online]. Available:
https://www.cs.nmt.edu/~rbasnet/research/DetectingHoneypots.pdf

[21] Y. Chen, “Mathematical modelling of end-to-end packet delay in multi-hop
wireless networks and their applications to QoS provisioning,” Ph.D. dissertation,
Department of Electronic and Electrical Engineering, University College London,
London, U.K., 2013. [Online]. Available: http://discovery.ucl.ac.uk/1415093/
1/yuchen_phd_thesis.PDF

 39

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	18Dec_Bihl_Timothy_First8
	18Dec_Bihl_Timothy
	I. Introduction
	A. Background
	B. Objectives
	C. Related work
	D. Thesis Organization

	II. Background and Prior Work
	A. Virtual Machines
	1. Implementations
	2. Security Concerns

	B. Software–Defined Networks
	1. Traditional Networks
	2. Software-Defined Networking

	C. virtual machine Detection

	III. Approach
	A. Advantage of Timing analysis
	B. Utility of SDN for timing analysis
	C. EXPERIMENTAL Method

	IV. EXPERIMENTATION and results
	A. SDN testbed
	B. SDN Results

	V. Conclusions
	A. Significant results
	B. Future Work

	List of References
	initial distribution list

