
[Distribution Statement A] Approved for public release and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

Formal Methods of Assurance for CPS

Dionisio de Niz

CPS Initiative Lead

[Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2019 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-
0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as
an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT
TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please
see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other use. Requests for permission should be
directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-0289

[Distribution Statement A] Approved for public release and unlimited distribution.

Assurance Automation for Safe-Critical Cyber-Physical Systems

• The DoD requires rapid fielding of critical capabilities to remain competitive with

ongoing, urgent and emerging threats.

Challenge:

• Traditional Verification Does Not Scale

• Unpredictable Algorithms like machine learning (Autonomous CPS)

• Timely Interaction with Environment: correct actions at correct time

Our Solution:

• Add simpler (verifiable) runtime enforcer to make algorithms predictable

• Formally: specify, verify, and compose multiple enforcers:

- Logic: Enforcer intercepts/replaces unsafe action

- Timing: at right time

- In sync with Physics (Control Verification)

• Protect enforcers against failures/attacks

Formal Assurance of DoD Systems

Controller
Logical

Enforcer

at(x,y)

moveTo(x,y)

[Distribution Statement A] Approved for public release and unlimited distribution.

Logical Model

Statespace

• 𝑆 = {𝑠}

• 𝜙 ⊆ 𝑆

Periodic actions

• Transition: 𝑅𝑃 𝛼 ⊆ 𝑆 × 𝑆

• Destination state: 𝑅𝑃 𝛼, 𝑠 = 𝑠′ 𝑠, 𝑠′ ∈
𝑅(𝛼)}

Identify states too close to safety border

• Inertia lead to unsafe state even if enforced

• Enforceable states:

𝐶𝜙 = {𝑠|∃𝛼: 𝑅𝑃 𝛼, 𝑠 ∈ 𝐶𝜙}

Safe actions:

• 𝑆𝑎𝑓𝑒𝐴𝑐𝑡 𝑠 = {𝛼|𝑅𝑃 𝛼, 𝑠 ∈ 𝐶𝜙}

𝑆

𝜙𝑠1 𝑠2

𝑠3

𝛼1
𝛼2

𝑠4

𝛼3

𝐶𝜙

𝑠5

Inertia+𝛼∗

[Distribution Statement A] Approved for public release and unlimited distribution.

Logical Enforcer

Statespace & actions

• 𝑆 = 𝑠 , 𝜙 ⊆ 𝑆

• 𝑅𝑃 𝛼 ⊆ 𝑆 × 𝑆; 𝑅𝑃 𝛼, 𝑠 = 𝑠′ 𝑠, 𝑠′ ∈ 𝑅(𝛼)}

Enforceable states

• 𝐶𝜙 = {𝑠|∃𝛼: 𝑅𝑃 𝛼, 𝑠 ∈ 𝐶𝜙}

Safe actions:

• 𝑆𝑎𝑓𝑒𝐴𝑐𝑡 𝑠 = {𝛼|𝑅𝑃 𝛼, 𝑠 ∈ 𝐶𝜙}

Logical Enforcer: 𝐸 = (𝑃, 𝐶𝜙 , 𝜇)

• Set of safe actions:

𝜇 𝑠 ⊆ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡(𝑠)

• Monitor and enforce safe action:

 𝛼 =
𝛼, 𝛼 ∈ 𝜇(𝑠)

𝑝𝑖𝑐𝑘(𝜇 𝑠), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑆

𝜙𝑠1 𝑠2

𝑠3

𝛼1
𝛼2

𝑠4

𝛼3

𝐶𝜙

𝑠5

Inertia+𝛼∗

[Distribution Statement A] Approved for public release and unlimited distribution.

Drone Example
Statespace

• 𝑆 = {𝑠|𝑠 = 𝑥, 𝑦, 𝜃 }

• 𝜙 = 𝑥, 𝑦, 𝜃 𝑥, 𝑦 ∈ 𝑍}

Enforceable states

• 𝛿𝑃: Max distance in one period 𝑃

• 𝛿𝐵: Max distance in opposite direction

of enforcement

• 𝐶𝜙 = {(𝑥, 𝑦, 𝜃)| 𝑥 + 𝛿𝐵, 𝑦 + 𝛿𝐵 ∈ 𝑍 ∧ 𝑥 − 𝛿𝐵, 𝑦 − 𝛿𝐵 ∈ 𝑍}

Action: constant speed at angle 𝜃

Enforcement: 𝜃 =

 𝜃 ∈ 𝜃1, 𝑖𝑓 𝑌𝑚𝑎𝑥 − 𝑦 ≤ 𝛿𝐵 + 𝛿𝑃
 𝜃 ∈ 𝜃2, 𝑖𝑓 𝑥 − 𝑋𝑚𝑖𝑛 ≤ 𝛿𝐵 + 𝛿𝑃
 𝜃 ∈ 𝜃3, 𝑖𝑓 𝑦 − 𝑌𝑚𝑖𝑛 ≤ 𝛿𝐵 + 𝛿𝑃
 𝜃 ∈ 𝜃4, 𝑖𝑓 𝑋𝑚𝑎𝑥 − 𝑥 ≤ 𝛿𝐵𝜃 + 𝛿𝑃

𝜃, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑍

[Distribution Statement A] Approved for public release and unlimited distribution.

Composing Enforcers

Enforcer Details: E: 𝑃, 𝐶𝜙, 𝜇, 𝑈

• ∀𝑠 ∈ 𝐶𝜙: 𝜇 𝑠 ⊆ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡 𝑠

• 𝑈: utility

Composition without conflict

• 𝐸1: 𝑃1, 𝐶𝜙1
, 𝜇1, 𝑈1

• 𝐸2: 𝑃2, 𝐶𝜙2
, 𝜇2, 𝑈2

• 𝜇1,2: 𝜇1 ∩ 𝜇2

Conflicting: Priority:

• 𝜇1,2: 𝜇1 ∩ 𝜇2 ≠ ∅ ? 𝜇1 ∩ 𝜇2 ∶ 𝜇1

Conflicting: Utility

• 𝜇1,2: 𝜇1 ∩ 𝜇2 ≠ ∅ ? 𝑎𝑟𝑔𝑚𝑎𝑥𝛼∈𝜇1∩𝜇2
∑𝑈𝑖 𝑠, 𝛼′ ∶ 𝑎𝑟𝑔𝑚𝑎𝑥𝛼∈𝜇1

∑𝑈𝑖 𝑠, 𝛼′

[Distribution Statement A] Approved for public release and unlimited distribution.

8

[Distribution Statement A] Approved for public release and unlimited distribution.

Are We Done Yet?
Timing Assumption:

• Unverified software + enforcer finish before end of every 𝑃 period.

- Unverified software executes for less than its Worst-Case Execution Time (WCET)

- Other software running executes for less than its WCET

- Schedulability analysis successful

What can go wrong?

• Unbounded preemption

- High priority software executes longer than WCET

- Can make other software miss deadlines: late actions with old sensing

• Unbounded execution

- Software executes longer than WCET

- Misses its own deadline: Does NOT produce output on time: late action + old sensing

• Inertia takes it to unsafe state

[Distribution Statement A] Approved for public release and unlimited distribution.

Fixed-Priority Scheduling + Rate Monotonic

High Priority

Med. Priority

Low Priority

𝛼 𝛼 𝛼

𝛼

𝛼

𝑠 𝑠 𝑠

𝑠

𝑠

Preempted by higher
priority task

Does not run until higher
priority tasks finish

Preempted by higher
priority task

S
c
h

e
d

u
le

r

[Distribution Statement A] Approved for public release and unlimited distribution.

Overload -> old sensed data + late actuation

S
c
h

e
d

u
le

r

High Priority

Med. Priority

Low Priority

𝛼 𝛼

𝛼

𝛼

𝑠 𝑠

𝑠

𝑠

Old sensing, late
actuation

Old sensing, late
actuation

late actuation

Missed deadlinesMissed deadlinesMissed deadlines

overload

[Distribution Statement A] Approved for public release and unlimited distribution.

Unbounded preemption
Solution: Enforce timing budgets (timing
enforcement)

S
c
h

e
d

u
le

r

Only executed in given
periodic time budget

Only executed in given
periodic time budget

Only executed in given
periodic time budget

Only executed in given
periodic time budget

[Distribution Statement A] Approved for public release and unlimited distribution.

Unbounded preemption
Solution: Enforce timing budgets (timing
enforcement)

S
c
h

e
d

u
le

r

Only executed in given
periodic time budget

Only executed in given
periodic time budget

Only executed in given
periodic time budget

Only executed in given
periodic time budget

𝑠 𝛼 𝛼𝑠 𝑠 𝛼 STILL: Old sensing, late
actuation if overload

Prevented from
delaying other tasks

if overload

𝛼

𝛼

Other tasks’
actuation on time

Other tasks’
actuation on time

𝛼𝑠

𝑠

[Distribution Statement A] Approved for public release and unlimited distribution.

Unbounded Execution:
Solution: safe actuation on timing enforcement

S
c
h

e
d

u
le

r

Only executed in given
periodic time budget

Only executed in given
periodic time budget

Only executed in given
periodic time budget

Only executed in given
periodic time budget

𝑠 𝛼 𝛼𝑠 𝑠 𝛼 Decide if calculated 𝛼
used too old 𝑠 or not

Prevented from
delaying other tasks

if overload

𝛼∗

𝛼
𝛼

𝛼

Calculate a default safe fast
actuation executed “just

before” timing budget
expires: kernel informs task

𝑠

𝑠

[Distribution Statement A] Approved for public release and unlimited distribution.

Are we done yet?

Unverified software may corrupt Logical Enforcer

• It can even be malicious

Unverified software uses

• Unverified OS/kernel

• Unverified libraries

Temporal Enforcer relies on

• Unverified kernel / scheduler

[Distribution Statement A] Approved for public release and unlimited distribution.

Mixed-Trust Computing

System composed of trusted (verified) and untrusted (unverified) components

• Trusted : Verified Enforcers

• Untrusted: Unverified software

Untrusted should not corrupt trusted

Trusted should not depend on untrusted

• Cannot depend on unverified kernel / scheduler

Trusted components

• Preserve safety

Untrusted components

• Provide mission capability / performance

• Potential spurious failures

[Distribution Statement A] Approved for public release and unlimited distribution.

Uber XMHF: Verified Micro-Hypervisor Protection

VM Accessible XMHF Protected

HARDWARE

KERNEL

Application1 Application2 Application3

XMHF

HypApp1 HypApp2 HypApp3

VM

Verified
Protection of

HypApps

[Distribution Statement A] Approved for public release and unlimited distribution.

Uber XMHF: Verified Micro-Hypervisor Protection

VM Accessible XMHF Protected

HARDWARE

KERNEL

Untrusted1 Untrusted2 Untrusted3

XMHF

Enforcer1 Enforcer2 Enforcer3

VM

Verified
Protection of

HypApps

Only temporal enforcer can be protected if untrusted does not finish

[Distribution Statement A] Approved for public release and unlimited distribution.

Uber XMHF: Verified Micro-Hypervisor Protection

VM Accessible XMHF Protected

HARDWARE

KERNEL

Untrusted1 Untrusted2 Untrusted3

XMHF

TE1 TE2 TE3

VM

Verified
Protection of

HypApps

L
E

L
E

L
E

[Distribution Statement A] Approved for public release and unlimited distribution.

Two schedulers: VM scheduler + XHMF Scheduler

𝑠 𝛼 𝛼𝑠 𝑠 𝛼𝛼∗

𝛼
𝛼𝑠

VM

XMHF

𝜏1

𝜏2

𝜅1

𝜅2

Mixed-trust task: 𝜇𝑖 = (𝜏𝑖 , 𝜅𝑖)
g
u

e
s
t

ta
s
k
s

H
y
p

e
r

ta
s
k
s

[Distribution Statement A] Approved for public release and unlimited distribution.

Two schedulers: VM scheduler + XHMF Scheduler

𝑠 𝛼 𝛼𝑠 𝑠 𝛼

𝛼
𝛼𝑠

𝛼∗

VM

XMHF
System safe even if VM dies

𝛼∗ 𝛼∗ 𝛼∗

𝜏1

𝜏2

𝜅1

𝜅2

g
u

e
s
t

ta
s
k
s

H
y
p

e
r

ta
s
k
s

Mixed-trust task: 𝜇𝑖 = (𝜏𝑖 , 𝜅𝑖)

[Distribution Statement A] Approved for public release and unlimited distribution.

Simulation Demo
Drone Protection (VM Crash) – Hardware in the loop

[Distribution Statement A] Approved for public release and unlimited distribution.

Application to Security Intrusion: Controller Rejuvenation
ONR Project

Problem:

• Controller compromised by security attack

• Difficult to detect

Solution:

• Reboot (rollback to previous safe state)

• Re-establish stability of system

• Track mission progress

[Distribution Statement A] Approved for public release and unlimited distribution.

Software Rejuvenation
Operating Modes

1. Tracking Control (TC)

2. Software Refresh (SR)

3. Secure Control (SC)

• The switch from TC to SR is triggered by a timer (unsecure information)

• From SR to TC or SC there is a condition to be satified (secure information)

𝑇𝑈𝐶

[Distribution Statement A] Approved for public release and unlimited distribution.

Software Rejuvenation
Secure Control

Lyapunov Theory and Positively

Invariant Sets

• Recoverable Set

• Safety Set

R. Romagnoli, B.H. Krogh, and B. Sinopoli, Design of software rejuvenation for cps security using invariant
sets, accepted to 2019 American Control Conference (ACC).

[Distribution Statement A] Approved for public release and unlimited distribution.

Software Rejuvenation
Secure Control

[Distribution Statement A] Approved for public release and unlimited distribution.

Software Rejuvenation
Secure Control

• Prop1. We can always recover in a finite time

• Prop2. Given a reduced version of the Safety Set we can always find a period of time

where is allowed uncertain control.

[Distribution Statement A] Approved for public release and unlimited distribution.

Software Rejuvenation
Analysis of mission progress

Idea:

Provide a sequence of way points that

represent a sequence of equilibrium points

around which we define the Safe Set.

Goal:

• Safety transition from one way point to the

next one.

• Liveness (in the case of no attack)

switch to xj

switch to xj+1

switch to xj+2

[Distribution Statement A] Approved for public release and unlimited distribution.

Software Rejuvenation
Analysis of mission progress

• Safety

• Liveness

R. Romagnoli, B.H. Krogh, and B. Sinopoli. Safety and

liveness of software rejuvenation for secure tracking

control, accepted to 2019 European Control

Conference (ECC).

switch to xj

[Distribution Statement A] Approved for public release and unlimited distribution.

Software Rejuvenation
Drone experiment

6 DOF  12 state variables

Linear design:

• linearize at equilibrium

• assume full state available

• LQ state feedback design

• reference points =

equilibrium states

[Distribution Statement A] Approved for public release and unlimited distribution.

Software Rejuvenation: Drone experiment

[Distribution Statement A] Approved for public release and unlimited distribution.

Software Rejuvenation
Analysis of mission progress

6 DOF  12 state variables

Linear design:

• linearize at equilibrium

• assume full state available

• LQ state feedback design

• reference points =

equilibrium states

[Distribution Statement A] Approved for public release and unlimited distribution.

Current Experiments
Micro-reboot in indoor drone

[Distribution Statement A] Approved for public release and unlimited distribution.

Summary

Scalable formal verification

• Using enforcers

• Untrusted components guarded by trusted (verified) ones

Full verification of CPS

• Control

• Logical

• Time

Protected verification

• Enables building trusted system with untrusted components

• Protection verified down to the metal

