Formal Methods of Assurance for CPS

Dionisio de Niz

CPS Initiative Lead

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[b 0 i Distribution Statement A] Approved for public release and unlimited distribution
Carnegie Mellon U niversity I J App 2

software Engineenng Insttute

Copyright 2019 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-
0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as
an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT
TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please
see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other use. Requests for permission should be
directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM19-0289

Carnegie Mellon U niversity [Distribution Statement A] Approved for public release and unlimited distribution.

Software Engineenng Instute

Formal Assurance of DoD Systems

Assurance Automation for Safe-Critical Cyber-Physical Systems
» The DoD requires rapid fielding of critical capabilities to remain competitive with
ongoing, urgent and emerging threats.
Challenge:
» Traditional Verification Does Not Scale
» Unpredictable Algorithms like machine learning (Autonomous CPS)
 Timely Interaction with Environment: correct actions at correct time

Our Solution:
« Add simpler (verifiable) runtime enforcer to make algorithms predictable %%

» Formally: specify, verify, and compose multiple enforcers:
- Logic: Enforcer intercepts/replaces unsafe action _ fore 8[| moveTo(xy)
- Timing: at right time
- In sync with Physics (Control Verification) (
* Protect enforcers against failures/attacks

Carnegie Mellon | niversity [Distribution Statement A] Approved for public release and unlimited distribution
Software Engineenng Instute

Logical Model

Statespace

* S = {s}
chpCS
Periodic actions
* Transition: Rp(a) €S S X S
* Destination state: Rp(a,s) = {s'|(s,s") €
R(a)}
Identify states too close to safety border
* Inertia lead to unsafe state even if enforced
» Enforceable states:

Co = {s|qa:Rp(a,s) € Cyp}

Safe actions:
* SafeAct(s) = {a|Rp(a,s) € Cy}

Carnegie Mellon University
software Engineenng Insttute

Logical Enforcer

Statespace & actions

eS={s},p S

*Rp(a) €S XS; Rp(a,s) ={s'|(s,s") € R(a)}
Enforceable states

*Cp = {s|Fa:Rp(a,s) € Cp}

Safe actions:
* SafeAct(s) = {a|Rp(a,s) € Cyp}

Logical Enforcer: E = (P, Cy, 1)

» Set of safe actions:
u(s) € SafeAct(s)

* Monitor and enforce safe action:

< a, a € u(s)
= pick(u(s)), otherwise

- 2 'l '] Distribution Statement A] Approved for public release and unlimited distribution.
Carnegie Mellon | niversity 0 Appr p
software Ergineenng Inst wite

Drone Example

Statespace
e S={s|s=(x,y,06

(xmaxl ymax)

)} 165 :~

*d={(xy0)|(xy) €Z} %

Enforceable states
* §p: Max distance

* §5. Max distance
of enforcement

*Cp ={(x,y,0)|(x

in one period P \Q/

in opposite direction @

(xmuxr ymin)

+ 65,y +05) EZAN(x— 385,y —) € Z}

Action: constant speed at angle 6

Enforcement: 6 = <

(0 €8, if Vo — v < 85 + 6p
€0, if x—Xpin <05+ 6p
0 €b;, ify—Ynm <05+ 6p
0 €0, if Xppgy — X < 650 + 5p

8 otherwise

180 (xmin'}/max)
<) 90,
== p > 195
_ 285 61 75 0 T Y
compass 2 axis
=
i 7
15 N 345
6
255 o, 105
X axis (xminvymin)

Carnegie Mellon University
software Engineenng Instiute

Composing Enforcers

Enforcer Details: E: (P, Cy, 1, U)
* Vs € Cyp: u(s) € SafeAct(s)
* U: utility

Composition without conflict
® El: (Pl, C¢1, U1, Ul)

Byt (Py, Cy ity Uz)

* Uyt M1 N Uy
Conflicting: Priority:

CUipiHg N FD?2U Ny ¢y
Conflicting: Utility

180 k (xmin: ymax)
165 < AELR 195 .
285 61 75 0 _
0,4 compass 6,
15 6+255/] | SNl 345
255 gr 105 Q2
b 3 »

X axis

* Uity N Uy F 0? argmaxaEulnuzzui (s,a') : argmaxaEulei (s,a')

(xmin' Ymin)

Carnegie Mellon University
software Engineenng Instute

[Distribution Statement A] Approved for public release and unlimited distribution.

—Proene-piloted by human
Virtual Fence.Marked by Black Posts
~ -- No Enforcers Active --

3>

Carnegie Mellon University
Software Engineenng Instiute

Are We Done Yet?
Timing Assumption:
 Unverified software + enforcer finish before end of every P period.
- Unverified software executes for less than its Worst-Case Execution Time (WCET)
- Other software running executes for less than its WCET
- Schedulability analysis successful

What can go wrong?

» Unbounded preemption
- High priority software executes longer than WCET
- Can make other software miss deadlines: late actions with old sensing

* Unbounded execution
- Software executes longer than WCET
- Misses its own deadline: Does NOT produce output on time: late action + old sensing

* Inertia takes it to unsafe state

Care Ir‘;’_ir‘ \ l.-l lonl niv it) [Distribution Statement A] Approved for public release and unlimited distribution
Software Engineenng Instute

Fixed-Priority Scheduling + Rate Monotonic

a a a

§

High Priority

Med. Priority

Low Priority

Preempted by higher
priority task

Preempted by higher Does not run until higher
priority task priority tasks finish

(-:;]rneglv Mellon | niversit ¥ [Distribution Statement A] Approved for public release and unfimited distribution.

Software Engineenng Instute

Overload -> old sensed data + late actuation

a
High Priority .

Med. Priority

Old sensing, late
overload actuation

Old sensing, late
f actuation

t

Low Priority

t

late actuation

Missed deadlines

(:;]rnvglp Mellon | niversit ¥ [Distribution Statement A] Approved for public release and unfimited distribution.
Software Ergineenng Inst e

Unbounded preemption
Solution: Enforce timing budgets (timing
enforcement) — [~ — —

Carnegie Mellon University
Software Engineenng Instute

Unbounded preemption

Solution: Enforce timing budgets (timing

enforcement)

STILL: Old sensing, late
actuation if overload

Prevented from
delaying other tasks
if overload

Other tasks’
actuation on time

Only executed in given
periodic time budget

Carnegie Mellon University
Software Epgineenng Instute

Unbounded Execution:

Solution: safe actuation on timing enforcement

a ’a .

a

Only executed in given
periodic time budget

Carnegie Mellon University
Software Engineenng Instute

Decide if calculated «
used too old s or not

Prevented from
delaying other tasks
if overload

Calculate a default safe fast
actuation executed “just
before” timing budget
expires: kernel informs task

[Distribution Statement A] Approved for public release and unlimited distribution.

Are we done yet?

Unverified software may corrupt Logical Enforcer
* It can even be malicious

Unverified software uses
* Unverified OS/kernel
* Unverified libraries

Temporal Enforcer relies on
» Unverified kernel / scheduler

Carnegie Mellon University
software Ergineenng Inst wite

Mixed-Trust Computing

System composed of trusted (verified) and untrusted (unverified) components
* Trusted : Verified Enforcers
» Untrusted: Unverified software

Untrusted should not corrupt trusted

Trusted should not depend on untrusted
« Cannot depend on unverified kernel / scheduler

Trusted components
* Preserve safety

Untrusted components
* Provide mission capability / performance
» Potential spurious failures

(‘ ar It"‘_'_ir Mellon | niversity [Distribution Statement A] Approved for public release and unlimited distribution.
Software Engineenng Instute

Uber XMHF: Verified Micro-Hypervisor Protection

VM
Applicationl Application2 Application3
Protection of

‘ HypApps

Verified

HypAppl | HypApp2 HypApp3

XMHF

VM Accessible XMHF Protected

HARDWARE

Ca rnegie Mellon U niversit ¥ [Distribution Statement A] Approved for public release and unlimited distribution,
software Engineenng Insttute

Uber XMHF: Verified Micro-Hypervisor Protection

Only temporal enforcer can be protected if untrusted does not finish

VM
Untrustedl Untrusted?2 Untrusted3
Protection of

‘ HypApps

Verified

XMHF t
VM Accessible XMHF Protected
HARDWARE

Carnegie Mellon | niversity [Distribution Statement A] Approved for public release and unlimited distribution,
software Engineenng Instute

Uber XMHF: Verified Micro-Hypervisor Protection

VM
Untrusted?2 Untrusted3
Protection of

‘ HypApps

Verified

XMHF

1

VM Accessible XMHF Protected

HARDWARE

Ca roegie Mellon U niversit ¥ [Distribution Statement A] Approved for public release and unlimited distribution
Software Engineenng Instute

Two schedulers: VM scheduler + XHMF Scheduler
Mixed-trust task: u; = (t;, ;)

a
V)
A4
V)
L >
17
g
> > VM
R,
N K1
! >
=)))
S g
T XMHE

wrnegie Mellon U niversity
software Engineenng Insttute

Two schedulers: VM scheduler + XHMF Scheduler

Mixed-trust task: u; = (t;;

wrnegie Mellon U niversity

ar
Software

crEineenng inst e

(04 a (04
) A
% | 71
@® >
= a
e
0
(D) Tz /
> N > VM
£ —
&) a* a* a at
%) K1
o
= 4 ¢ ¢ 4 4
S
T >
XMHF

System safe even if VM dies

tement A] Approved for public release and unlimited distribution

Simulation Demo
Drone Protection (VM Crash) — Hardware in the loop

- " Distribution Statement A] Approved for public rele d unlimited distribution.
Hon | niversity I J Appr p

nng Inst e

Application to Security Intrusion: Controller Rejuvenation
ONR Project

Problem:

 Controller compromised by security attack
» Difficult to detect

Solution:

* Reboot (rollback to previous safe state)
» Re-establish stability of system
 Track mission progress

Carnegie Mellon University
software Ergineenng Inst wite

Software Rejuvenation
Operating Modes

1. Tracking Control (TC)
2. Software Refresh (SR)

3. Secure Control

» The switch from TC to SR is triggered by a timer

(SC)

IN/OU Prackinge
Nt e— Control
—_—

Sottware

“Mltn:l

Secure

Clontrol

(unsecure information)

« From SR to TC or SC there is a condition to be satified (secure information)

[, refresh clock period

=Lt ll lock

Luneoul

Y
TU C

start clog

t. refresh clock l"“"'i

l\

Software Tracking Control Software Secure Control racking Control Software
Refresh tac Refresh Relresh
Tsgp I'ro Tsn sy Iy

i
Lincout

Carnegie Mellon University
software Engineenng Instute

Software Rejuvenation
Secure Control

secure L ontrold

« Recoverable Set

Esci(1) Lyapunov Theory and Positively
Invariant Sets

o |
« Safety Set 5.8‘(;'.1'(5.5-) = 635.5'(;'1(_1)

€s Tuc
IN/JOU Irackinge
Net L — e Control
A\t ek .

R(Tvc; Esci(es), U) € Egci(1)

Secre
R. Romagnoli, B.H. Krogh, and B. Sinopoli, Design of software rejuvenation for cps security using invariant Control
sets, accepted to 2019 American Control Conference (ACC).
(a roegie Mellon | Ili\rl‘uil-\ [Distribution Statement A] Approved for public release and unlimited distribution

software Engineenng Insttute

Software Rejuvenation
Secure Control

Controlled System: = = f_(r) 2 f(x,o(a
Lyapunov Function: V. : R” — R, My (1,,,) C ’\f (Zeg)s

",:'(.r”/) = () and Vr = JNF‘ '«q {’:l[} ()) > () Vix)
E ov | " |
Vo(z) = — - fu(z) <0 L7
T dr T 10 :
Lyapunov level set:For ¢ > 0, T
€) ={x € Ny, (zeq)|Vio () < €}. | :

= .\‘.(_ﬂ{ \‘lyij//J
Positively Invariant Set. For any 11
0 <e<1, E.(¢) is an invariant set.

V>0, R(t;E.(€),¢) C Eq(€)

(:;]rnvglp Mellon | niversit ¥ [Distribution Statement A] Approved for public release and unfimited distribution
Software Ergineenng Inst e

Software Rejuvenation
Secure Control

Prop.1. Given i = f_(x) £ f(x.p(x)) with stabilizing controller -
p for equilibrium state (.. @(2¢,)) and Lyapunov function V_(x)

as defined above, given ¢ > () for any

e<e <1A4>0 3V t> (¢ —e)y},

R(t;EL(€'), p) C Ep(e)-

'

'

'

\

\ ’ ’

\ E,\‘(‘) (eg) .
-~

Prop2 ForanyL’Cuandany()<+‘<F’§I,
3T >0 3 R(t:E:(e).U) CEL) VI < Ty _ emes

* Propl. We can always recover in a finite time
* Prop2. Given a reduced version of the Safety Set we can always find a period of time
where is allowed uncertain control.

Carnegie Mellon | niversit y [Distribution Statement A] Approved for public release and unlimited distribution
software Engineenng Insttute

Software Rejuvenation
Analysis of mission progress

Idea:

Provide a sequence of way points that
represent a sequence of equilibrium points
around which we define the Safe Set.

switch to xi+!

Goal. switch to xi switch to xi+2

« Safety transition from one way point to the
next one.

» Liveness (in the case of no attack)

e ™ 2 e Di A] A d f bl il limite tributi
Carnegie Mellon | niversity [Distribution Statement A] Approved for public release and unlimited distribution
Software Engineenng Instute

Software Rejuvenation
Analysis of mission progress

« Safety @7 R
- -~ N
. s \
* Liveness € (80 \
7’ \
7’ \
’ \
II \
/ \
2. : !
II t,r{ v —1 (¢ f_r("-l') N
. . . =, i Eaiagle) #
R. Romagnoli, B.H. Krogh, and B. Sinopoli. Safety and TN * o e =s %,
. . . . ’ d
liveness of software rejuvenation for secure tracking I+l

control, accepted to 2019 European Control
Conference (ECC).

Carnegie Mellon University
software Engineenng Instute

[Distribution Statement A] Approved for public release and unlimited distribution.

Software Rejuvenation
Drone experiment

6 DOF = 12 state variables

s — s osmy
nm
Py SO
m
r] cosooos
i
|
!
l
¢ ; Te
K
l -
, !

Linear design:

 linearize at equilibrium

« assume full state available

» LQ state feedback design

» reference points =
equilibrium states

Carnegie Mellon University
Software Engineenng Instiute

[Distribution Statement A] Approved for public release and unlimited distribution

Software Rejuvenation: Drone experiment

JMAVSim

’ .

I
i\

Zaom mode;: Dynamic @& 2%,00m FOV: 60.00
FRS: |

(:;]rnvglp Mellon | niversit ¥ [Distribution Statement A] Approved for public release and unfimited distribution.
Software Ergineenng Inst e

Software Rejuvenation
Analysis of mission progress

6 DOF = 12 state variables

WO I

| |
), 3
/ .
.
/

! 5
, 2
Linear design: L5

 linearize at equilibrium

« assume full state available

« LQ state feedback design :

- reference points = e
equilibrium states

-TC
— SR
e Atk

sC

Carnegie Mellon University
software Engineenng Insttute

Current Experiments
Micro-reboot in indoor drone

Carnegie Mellon University
Software Engineenng Inst ute

Summary

Scalable formal verification
 Using enforcers
» Untrusted components guarded by trusted (verified) ones

Full verification of CPS
* Control
* Logical
* Time

Protected verification

» Enables building trusted system with untrusted components
* Protection verified down to the metal

Cart wegie Mellon U niversity [Distribution Statement A] Approved for public release and unlimited distribution.

software Ergineenng Inst wite

