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Formal Assurance of DoD Systems

Assurance Automation for Safe-Critical Cyber-Physical Systems
» The DoD requires rapid fielding of critical capabilities to remain competitive with
ongoing, urgent and emerging threats.
Challenge:
» Traditional Verification Does Not Scale
» Unpredictable Algorithms like machine learning (Autonomous CPS)
 Timely Interaction with Environment: correct actions at correct time

Our Solution:
« Add simpler (verifiable) runtime enforcer to make algorithms predictable %%

» Formally: specify, verify, and compose multiple enforcers:
- Logic: Enforcer intercepts/replaces unsafe action _ fore 8[| moveTo(xy)
- Timing: at right time
- In sync with Physics (Control Verification) (
* Protect enforcers against failures/attacks
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Logical Model

Statespace

* S = {s}
chpCS
Periodic actions
* Transition: Rp(a) €S S X S
* Destination state: Rp(a,s) = {s'|(s,s") €
R(a)}
Identify states too close to safety border
* Inertia lead to unsafe state even if enforced
» Enforceable states:

Co = {s|qa:Rp(a,s) € Cyp}

Safe actions:
* SafeAct(s) = {a|Rp(a,s) € Cy}
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Logical Enforcer

Statespace & actions

eS={s},p S

*Rp(a) €S XS; Rp(a,s) ={s'|(s,s") € R(a)}
Enforceable states

*Cp = {s|Fa:Rp(a,s) € Cp}

Safe actions:
* SafeAct(s) = {a|Rp(a,s) € Cyp}

Logical Enforcer: E = (P, Cy, 1)

» Set of safe actions:
u(s) € SafeAct(s)

* Monitor and enforce safe action:

< a, a € u(s)
= pick(u(s)), otherwise
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Drone Example

Statespace
e S={s|s=(x,y,06

(xmaxl ymax)

)} 165 :~

*d={(xy0)|(xy) €Z} %

Enforceable states
* §p: Max distance

* §5. Max distance
of enforcement

*Cp ={(x,y,0)|(x

in one period P \Q/

in opposite direction @

(xmuxr ymin)

+ 65,y +05) EZAN(x— 385,y — ) € Z}

Action: constant speed at angle 6

Enforcement: 6 = <

(0 €8, if Vo — v < 85 + 6p
€0, if x—Xpin <05+ 6p
0 €b;, ify—Ynm <05+ 6p
0 €0, if Xppgy — X < 650 + 5p

8 otherwise

180 (xmin'}/max)
< ) 90,
== p > 195
_ 285 61 75 0 T Y
compass 2 axis
=
i 7
15 N 345
6
255 o, 105
X axis (xminvymin)
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Composing Enforcers

Enforcer Details: E: (P, Cy, 1, U)
* Vs € Cyp: u(s) € SafeAct(s)
* U: utility

Composition without conflict
® El: (Pl, C¢1, U1, Ul)

Byt (Py, Cy ity Uz)

* Uyt M1 N Uy
Conflicting: Priority:

CUipiHg N FD?2U Ny ¢y
Conflicting: Utility

180 k (xmin: ymax)
165 < AELR 195 .
285 61 75 0 _
0,4 compass 6,
15 6+255/] | SNl 345
255  gr 105 Q2
b 3 »

X axis

* Uity N Uy F 0? argmaxaEulnuzzui (s,a') : argmaxaEulei (s,a')

(xmin' Ymin)
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—Proene-piloted by human
Virtual Fence.Marked by Black Posts
~ -- No Enforcers Active --
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Are We Done Yet?
Timing Assumption:
 Unverified software + enforcer finish before end of every P period.
- Unverified software executes for less than its Worst-Case Execution Time (WCET)
- Other software running executes for less than its WCET
- Schedulability analysis successful

What can go wrong?

» Unbounded preemption
- High priority software executes longer than WCET
- Can make other software miss deadlines: late actions with old sensing

* Unbounded execution
- Software executes longer than WCET
- Misses its own deadline: Does NOT produce output on time: late action + old sensing

* Inertia takes it to unsafe state
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Fixed-Priority Scheduling + Rate Monotonic

a a a

§

High Priority

Med. Priority

Low Priority

Preempted by higher
priority task

Preempted by higher Does not run until higher
priority task priority tasks finish
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Overload -> old sensed data + late actuation

a
High Priority .

Med. Priority

Old sensing, late
overload actuation

Old sensing, late
f actuation

t

Low Priority

t

late actuation

Missed deadlines
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Unbounded preemption
Solution: Enforce timing budgets (timing
enforcement) — [~ — —
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Unbounded preemption

Solution: Enforce timing budgets (timing

enforcement)

STILL: Old sensing, late
actuation if overload

Prevented from
delaying other tasks
if overload

Other tasks’
actuation on time

Only executed in given
periodic time budget
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Unbounded Execution:

Solution: safe actuation on timing enforcement

a ’a .

a

Only executed in given
periodic time budget

Carnegie Mellon University
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Decide if calculated «
used too old s or not

Prevented from
delaying other tasks
if overload

Calculate a default safe fast
actuation executed “just
before” timing budget
expires: kernel informs task
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Are we done yet?

Unverified software may corrupt Logical Enforcer
* It can even be malicious

Unverified software uses
* Unverified OS/kernel
* Unverified libraries

Temporal Enforcer relies on
» Unverified kernel / scheduler
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Mixed-Trust Computing

System composed of trusted (verified) and untrusted (unverified) components
* Trusted : Verified Enforcers
» Untrusted: Unverified software

Untrusted should not corrupt trusted

Trusted should not depend on untrusted
« Cannot depend on unverified kernel / scheduler

Trusted components
* Preserve safety

Untrusted components
* Provide mission capability / performance
» Potential spurious failures
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Uber XMHF: Verified Micro-Hypervisor Protection

VM
Applicationl Application2 Application3
Protection of

‘ HypApps

Verified

HypAppl | HypApp2 HypApp3

XMHF

VM Accessible XMHF Protected

HARDWARE
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Uber XMHF: Verified Micro-Hypervisor Protection

Only temporal enforcer can be protected if untrusted does not finish

VM
Untrustedl Untrusted?2 Untrusted3
Protection of

‘ HypApps

Verified

XMHF t
VM Accessible XMHF Protected
HARDWARE
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Uber XMHF: Verified Micro-Hypervisor Protection

VM
Untrusted?2 Untrusted3
Protection of

‘ HypApps

Verified

XMHF

1

VM Accessible XMHF Protected

HARDWARE
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Two schedulers: VM scheduler + XHMF Scheduler
Mixed-trust task: u; = (t;, ;)

a
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V)
L >
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S g
T XMHE
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Two schedulers: VM scheduler + XHMF Scheduler

Mixed-trust task: u; = (t;;
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System safe even if VM dies

tement A] Approved for public release and unlimited distribution




Simulation Demo
Drone Protection (VM Crash) — Hardware in the loop
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Application to Security Intrusion: Controller Rejuvenation
ONR Project

Problem:

 Controller compromised by security attack
» Difficult to detect

Solution:

* Reboot (rollback to previous safe state)
» Re-establish stability of system
 Track mission progress

Carnegie Mellon University
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Software Rejuvenation
Operating Modes

1. Tracking Control (TC)
2. Software Refresh (SR)

3. Secure Control

» The switch from TC to SR is triggered by a timer

(SC)

IN/OU Prackinge
Nt  e— Control
—_—

Sottware

“Mltn:l

Secure

Clontrol

(unsecure information)

« From SR to TC or SC there is a condition to be satified (secure information)

[, refresh clock period

=Lt ll lock

Luneoul

Y
TU C

start clog

t. refresh clock l"“"'i

l\

Software Tracking Control Software Secure Control racking Control Software
Refresh tac Refresh Relresh
Tsgp I'ro Tsn sy Iy

i
Lincout
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Software Rejuvenation
Secure Control

secure L ontrold

« Recoverable Set

Esci(1)  Lyapunov Theory and Positively
Invariant Sets

o |
« Safety Set 5.8‘(;'.1'(5.5-) = 635.5'(;'1(_1)

€s Tuc
IN/JOU Irackinge
Net L — e Control
A\t ek .

R(Tvc; Esci(es), U) € Egci(1)

Secre
R. Romagnoli, B.H. Krogh, and B. Sinopoli, Design of software rejuvenation for cps security using invariant Control
sets, accepted to 2019 American Control Conference (ACC).
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Software Rejuvenation
Secure Control

Controlled System: = = f_(r) 2 f(x,o(a
Lyapunov Function: V. : R” — R, My (1,,,) C ’\f (Zeg)s

",:'(.r”/) = () and Vr = JNF‘ '«q {’:l[} ( ) ) > () Vix)
E ov | " |
Vo(z) = — - fu(z) <0 L7
T dr T 10 :
Lyapunov level set:For ¢ > 0, T
€) ={x € Ny, (zeq)|Vio () < €}. | :

= .\‘.(_ﬂ{ \‘lyij//J
Positively Invariant Set. For any 11
0 <e<1, E.(¢) is an invariant set.

V>0, R(t;E.(€),¢) C Eq(€)
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Software Rejuvenation
Secure Control

Prop.1. Given i = f_(x ) £ f(x.p(x)) with stabilizing controller -
p for equilibrium state (.. @(2¢,)) and Lyapunov function V_(x)

as defined above, given ¢ > () for any

e<e <1A4>0 3V t> (¢ —e)y},

R(t;EL(€'), p) C Ep(e)-

'

'

'

\

\ ’ ’

\ E,\‘(‘) (eg) .
-~

Prop2 ForanyL’Cuandany()<+‘<F’§I,
3T >0 3 R(t:E:(e).U) CEL) VI < Ty _ emes

* Propl. We can always recover in a finite time
* Prop2. Given a reduced version of the Safety Set we can always find a period of time
where is allowed uncertain control.
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Software Rejuvenation
Analysis of mission progress

Idea:

Provide a sequence of way points that
represent a sequence of equilibrium points
around which we define the Safe Set.

switch to xi+!

Goal. switch to xi switch to xi+2

« Safety transition from one way point to the
next one.

» Liveness (in the case of no attack)

e ™ 2 e Di A] A d f bl il limite tributi
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Software Rejuvenation
Analysis of mission progress

« Safety @7 R
- -~ N
. s \
* Liveness € (80 \
7’ \
7’ \
’ \
II \
/ \
2. : !
II t,r{ v —1 (¢ f_r( "-l' ) N
. . . =, i Eaiagle) #
R. Romagnoli, B.H. Krogh, and B. Sinopoli. Safety and TN * o e =s %,
. . . . ’ d
liveness of software rejuvenation for secure tracking I+l

control, accepted to 2019 European Control
Conference (ECC).

Carnegie Mellon University
software Engineenng Instute

[Distribution Statement A] Approved for public release and unlimited distribution.



Software Rejuvenation
Drone experiment

6 DOF = 12 state variables

s — s osmy
nm
Py SO
m
r ] cosooos
i
|
!
l
¢ ; Te
K
l -
, !

Linear design:

 linearize at equilibrium

« assume full state available

» LQ state feedback design

» reference points =
equilibrium states
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Software Rejuvenation: Drone experiment

JMAVSim

’ .

I
i\

Zaom mode;: Dynamic @& 2%,00m FOV: 60.00
FRS: |
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Software Rejuvenation
Analysis of mission progress

6 DOF = 12 state variables

WO I

| |
), 3
/ .
.
/

! 5
, 2
Linear design: L5

 linearize at equilibrium

« assume full state available

« LQ state feedback design :

- reference points = e
equilibrium states

-TC
— SR
e Atk

sC

Carnegie Mellon University
software Engineenng Insttute




Current Experiments
Micro-reboot in indoor drone
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Summary

Scalable formal verification
 Using enforcers
» Untrusted components guarded by trusted (verified) ones

Full verification of CPS
* Control
* Logical
* Time

Protected verification

» Enables building trusted system with untrusted components
* Protection verified down to the metal
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