

CLIO: A DIGITAL CODE ASSISTANT FOR THE BIG CODE ERA

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MARCH 2019

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2019-069

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nations. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2019-069 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S / / S /
WILLIAM E. MCKEEVER QING WU
Work Unit Manager Technical Advisor, Computing
 & Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MARCH 2019
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

SEP 2014 – SEP 2018
4. TITLE AND SUBTITLE

CLIO: A DIGITAL CODE ASSISTANT FOR THE BIG CODE ERA

5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA8750-14-2-0242

5c. PROGRAM ELEMENT NUMBER
61101E

6. AUTHOR(S)

Armando Solar-Lezama

5d. PROJECT NUMBER
MUSE

5e. TASK NUMBER
BM

5f. WORK UNIT NUMBER
IT

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology
77 Massachusetts Ave
Cambridge MA 02139-4301

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2019-069
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09
13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report summarizes the results of Project Clio. The goal of the Clio effort was to develop technologies that could help
reduce the high cost of software by bringing more automation into development and maintenance tasks. Consistent with
the overall goals of the Defense Advanced Research Program Agency (DARPA) Mining and Understanding Software
Enclaves (MUSE) program, a central feature of our effort was to leverage data about existing software in order to enable
capabilities that were previously not available.

15. SUBJECT TERMS
Program Synthesis, Program Repair, Big Code

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
WILLIAM E. MCKEEVER

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

23

i

Table of Contents
List of Figures .. ii

Summary ... 1

Intro... 2

Methods, Assumptions and Procedures ... 2

Maintenance ... 2

Patch Transfer with Code Phage and CarbonCopy ... 2

Patch Generation with Prophet and Genesis .. 3

Development... 5

DemoMatch: Learning to use APIs with execution data ... 5

Data Enhanced Sketch and Constraint Solving ... 6

Automatically Synthesizing Learning Pipelines ... 8

Learning a Synthesizer .. 8

From Hand Drawings to Graphics Programs ... 9

Selecting representative examples for synthesis .. 9

Results and Discussion .. 11

Maintenance ... 11

Patch Generation with Prophet and Genesis .. 11

Development... 12

DemoMatch: Learning to use APIs with execution data ... 12

Data Enhanced Sketch and Constraint Solving ... 12

Automatically Synthesizing Learning Pipelines ... 13

Learning a Synthesizer .. 14

From Hand Drawings to Graphics Programs ... 15

Selecting representative examples for synthesis .. 16

Conclusions ... 16

References .. 17

List of Acronyms .. 18

ii

List of Figures
Figure 1 Overview of the Prophet System .. 4
Figure 2 Overview of the Genesis System... 4
Figure 3 Overview of the DEMOMATCH Approach .. 5
Figure 4 The Sketch Approach .. 6
Figure 5 Bit-Vector Constraints in an SMT Formula must be translated to CNF Clauses 7
Figure 6 Conditional Rewrite Rule and the C++ Code Needed to Implement it in the Solver 7
Figure 7 Overview of the AL System for Learning to Generate New Supervised Learning Pipelines 8
Figure 8 General Approach for Converting Hand-Drawn Figures into Programs ... 9
Figure 9 Overview of Selecting Representative Examples for Synthesis .. 10
Figure 10 Comparison Between Prophet and Other Patch Generation Systems 11
Figure 11 Comparison Between Genesis and PAR .. 12
Figure 12 Results of Synthesized Encoder Vs. Native Encoder for CVC4 .. 13
Figure 13 Results From AL Tool Compared with TPOT and Autosklearn .. 14
Figure 14 Some Examples of DSL Components We Were Able to Learn For Each Domain 14
Figure 15 Results for the Text Domain. The Green Line is Without the Learned Policy (Only Learning the
DSL) ... 15
Figure 16 Example of Hand Drawings to Graphics .. 15
Figure 17 Selecting Representative Examples for Synthesis ... 16

Approved for Public Release; Distribution Unlimited.
1

Summary
This report summarizes the results of Project Clio. The goal of the Clio effort was to develop
technologies that could help reduce the high cost of software by bringing more automation into
development and maintenance tasks. Consistent with the overall goals of the Defense
Advanced Research Program Agency (DARPA) Mining and Understanding Software Enclaves
(MUSE) program, a central feature of our effort was to leverage data about existing software in
order to enable capabilities that were previously not available.

The project was divided into a Maintenance thrust focused primarily on program repair, and a
Development thrust, focused primarily on program synthesis. Among the key accomplishments
for the project are the following:

• Dramatic improvements in automatic patch generation by leveraging big-code.
• First-time demonstration of "organ transplants for code." The ability to transfer

functionality automatically from one application to another.
• First-time demonstration of the ability to discover how to use an Application

Programming Interface (API) by exercising its functionality on an existing application.
• First-time demonstration of the automatic generation of key components of a

satisfiability modulo theories (SMT) solver.
• Dramatic improvements in the ability to generate data processing pipelines for machine

learning.
• First-time demonstration of the ability to learn a domain-specific language from a

corpus of synthesis problems.
• Demonstration of the ability to generate code from hand-drawn diagrams.

Approved for Public Release; Distribution Unlimited.
2

Intro
The goal of project Clio was to develop technologies that could leverage data about existing
source code and related artifacts available from the internet in order to help automate
development and maintenance tasks. As part of this project, we explored a number of different
approaches for learning from a corpus of software artifacts in order to support maintenance
tasks such as bug repair and development tasks involving both the development of brand new
algorithms, as well as the implementation of complex functionality by using existing APIs.

Each of the thrusts described in this report illustrates a different way of leveraging the data
from the corpus, but one element all the projects have in common is the interaction between
Machine Learning-based techniques and symbolic techniques for the analysis, manipulation and
search of programs from the Programming Systems community. It is this combination of
techniques from the two fields that enables the technological accomplishments outlined in this
report.

Methods, Assumptions and Procedures
The two main thrusts of the project were Maintenance and Development; both thrusts shared
the common philosophy of leveraging data about both the code and its execution in order to
deliver automation, but we now elaborate on the detailed methods assumptions and
procedures for each separately.

Maintenance
For maintenance, we focused on two main tasks: patch transfer and patch discovery.

Patch Transfer with Code Phage and CarbonCopy
Our code transfer research exploited the availability of large amounts of code to find useful
code in one donor application and transfer it into another recipient application to eliminate
security vulnerabilities, fix defects, are augment the functionality of the recipient application.
For example, there may be two different Portable Document Format (PDF) readers that have
been patched by different vendors, but only one is vulnerable to an overflow given a
particularly malformed file; the other one simply rejects it with an error message. The goal of
patch transfer is to identify the code in the correct PDF reader that identifies that the file is
malformed and transfer it to the vulnerable reader which must then be able to reject the
malformed input as well, essentially to perform an organ transplant on code.

As part of the project we tested two versions of this technology. The first developed into a
prototype called Code Phage (CP), a system for automatically transferring correct code from
donor applications into recipient applications that process the same inputs to successfully
eliminate errors in the recipient. Experimental results using seven donor applications to
eliminate ten errors in seven recipient applications highlight the ability of CP to transfer code
across applications to eliminate out of bounds access, integer overflow, and divide by zero

Approved for Public Release; Distribution Unlimited.
3

errors. Because CP works with binary donors with no need for source code or symbolic
information, it supports a wide range of use cases. To the best of our knowledge, CP was the
first system to automatically transfer code across multiple applications. The results were
published in Programming Language Design and Implementation (PLDI) 2015 [1].

The second version of the technology was implemented in a prototype named
CodeCarbonCopy (CCC), a system for transferring code from a donor application into a recipient
application. CCC starts with functionality identified by the developer to transfer into an
insertion point (again identified by the developer) in the recipient. CCC uses paired executions
of the donor and recipient on the same input file to obtain a translation between the data
representation and name space of the recipient and the data representation and name space of
the donor. It also implements a static analysis that identifies and removes irrelevant
functionality useful in the donor but not in the recipient. We evaluated CCC on eight transfers
between six applications. Our results show that CCC can successfully transfer donor
functionality into recipient applications, including the ability to transfer new image filtering
kernels and work with new input formats. The results of this work were published in Future of
Software Engineering (FSE) in 2017 [2].

Patch Generation with Prophet and Genesis
Our automatic patch generation research exploited the availability of large amounts of code to
automatically derive models of correct patches that could be used to distinguish correct
patches from those that merely masked the symptoms of a bug.

We developed Prophet, a novel patch generation system that works with a set of successful
human patches obtained from open-source software repositories to learn a probabilistic,
application-independent model of correct code. Prophet generates a space of candidate
patches, uses the model to rank the candidate patches in order of likely correctness, and
validates the ranked patches against a suite of test cases to find correct patches. Experimental
results show that, on a benchmark set of 69 real-world defects drawn from eight open-source
projects, Prophet significantly outperforms the previous state-of-the-art patch generation
systems. More details can be found in our Principles of Programming Languages (POPL) 2016
paper [3].

Approved for Public Release; Distribution Unlimited.
4

Figure 1 Overview of the Prophet System

We improved upon the prophet system with a follow-up system called Genesis. Unlike Prophet,
Genesis does not rely on a set of human-crafted rules for how to transform the program.
Instead, Genesis processes human patches from the corpus to automatically infer code
transforms for automatic patch generation. We obtained results that characterize the
effectiveness of the Genesis inference algorithms and the complete Genesis patch generation
system working with real-world patches and defects collected from 372 Java projects. To the
best of our knowledge, Genesis is the first system to automatically infer patch generation
transforms or candidate patch search spaces from previous successful patches. More details are
available in our FSE 17 paper [4].

Figure 2 Overview of the Genesis System

Approved for Public Release; Distribution Unlimited.
5

Development
For development tasks, we developed several foundational technologies for leveraging data in
order to support program synthesis.

DemoMatch: Learning to use APIs with execution data
The goal of the DemoMatch system was to allow developers to learn how to use an API when
they did not know anything about its internal structure, not even the names of concepts used
by the API. The starting point for DemoMatch was a database of program traces called DeLight,
which captures detailed information about the execution of the API and its interaction with an
application. During the setup phase, a database is constructed by running a set of applications
that use the API while they are monitored by our trace capture infrastructure.

The DemoMatch tool then allows a programmer who wants to use an API to achieve some
functionality to simply demonstrate that functionality in an existing application. When the
functionality is demonstrated, DemoMatch will capture a short trace of the execution of the
application during the demonstration that it will use to infer the functionality that the user
intends to demonstrate. The short trace does not contain enough information to know what
API commands had to be issued, because the short traces usually fail to capture the setup
phase that enabled the behavior demonstrated by the user. Instead, the short traces are used
to index into the database to find traces where similar behaviors were exercised. Unlike the
short demonstration trace, the traces in the database include all the setup steps; so after some
analysis, DemoMatch can return to the user with the key elements of the code that needs to be
written in order to achieve the demonstrated functionality. The details of the process are
explained in our Programming Language Design and Implementation (PLDI) 2017 paper [5].

Figure 3 Overview of the DEMOMATCH Approach

Approved for Public Release; Distribution Unlimited.
6

Data Enhanced Sketch and Constraint Solving
Another approach we explored under this effort is the use of data to improve constraint-based
synthesis. The standard approach to constraint-based synthesis is illustrated in Figure 4. The
programmer writes a specification and a sketch of the desired solution to define a synthesis
problem, and the problem definition is translated to a series of constraints that are solved by an
SMT solver. The result of solving the constraints is then mapped back to a program that satisfies
the specification.

Figure 4 The Sketch Approach

A key element in this approach is the SMT solver. Our approach was to use a corpus of related
problems to automatically synthesize a specialized version of the SMT solver that would be
faster than the original general purpose solver. An interesting aspect of this approach was that
it involved using the synthesizer to turn the data into a new synthesizer, so the synthesizer was
essentially learning to improve itself.

We focused on two aspects of SMT solvers. The first aspect, illustrated by Figure 5 below was to
automate the translation from high-level bit-vector constraints to CNF clauses. Given a large
formula, there are many different ways of partitioning it into chunks and generating
Conjunctive Normal Form (CNF) clauses for each chunk, with different solvers using different
heuristics for this. Given a corpus of problems, the synthesizer will automatically generate a
good way of partitioning the formula and of generating clauses for each partition. The results of
this effort were published in a paper in the International Conferences on Theory and
Applications of Satisfiability Testing (SAT) 2016 [6].

Approved for Public Release; Distribution Unlimited.
7

Figure 5 Bit-Vector Constraints in an SMT Formula must be translated to CNF Clauses

The second aspect of interest of the SMT solver is the simplification engine which uses
conditional rewrite rules in order to attempt to simplify the problem. These rules describe how
to simplify certain patterns assuming the solver can prove that some conditions are satisfied.
Figure 6 illustrates one such rule and the C++ code that the solver uses to implement it. For this
part of the project, we developed a tool called Swapper that given a corpus of problems,
automatically generates conditional rewrite rules that are useful for that corpus and proves
them correct. The details of this work were published in Formal Methods in Computer-Aided
Design (FMCAD) 2016 [7].

Figure 6 Conditional Rewrite Rule and the C++ Code Needed to Implement it in the Solver

Both of these elements enabled significant performance improvements in the solver.

Approved for Public Release; Distribution Unlimited.
8

Automatically Synthesizing Learning Pipelines

Figure 7 Overview of the Automatically Synthesizing Learning (AL) System for Learning to Generate New Supervised Learning
Pipelines

We developed a system to automatically generate supervised learning pipelines from a set of
APIs by learning from existing examples.

Our system uses a probabilistic model of pipeline likelihood to guide the generation process.
This model is trained on prior example pipelines and their input data, characterizing the
likelihood of each step in a pipeline given previous steps. For our experiments, we instrument
and learn from 500 different Python data science programs that use 9 publicly available
datasets. Each of these programs implements a supervised learning pipeline as part of its
functionality. We evaluate our tool by generating pipelines for 25 previously unseen datasets
collected from various repositories (OpenML, Kaggle, Scikit-Learn, UCI). Our evaluation showed
that our system can produce pipelines in under 5 minutes that are comparable to those
produced by other systems in 1 hour. Our tool is also able to generalize to more datasets, which
require additional transformations of the input for correct execution [8].

Learning a Synthesizer
In recent years, many important synthesis problems have been solved not by using a general
synthesis infrastructure such as Sketch, but rather by building a custom synthesizer, which
searches programs in a Domain-Specific Language (DSL) using a specialized search heuristic, so
the question for this project was whether we could learn a DSL and a search heuristic from a
corpus. This was done with a new algorithm called Explore-Compress-Compile (EC^2). The
algorithm works by iterating through the three phases mentioned in the name. The algorithm is
seeded with a very basic language with only a small number of constructs. During the
Exploration phase, the algorithm uses its current version of the language and the search
heuristic to try to solve as many problems from the corpus as it can; during early iterations, it
will succeed in solving only a few problems, but as it learns a more sophisticated language with
a more sophisticated policy, its capabilities increase. From Exploration, the algorithm moves to
Compression, where the algorithm analyzes all the solutions generated during Exploration and

Approved for Public Release; Distribution Unlimited.
9

infers new DSL components that would have made those solutions more compact. Finally,
during the Compilation phase, the algorithm "dreams" new programs based on the new
components it derived and uses these "dreamed" programs to train a new exploration policy.
The algorithm then cycles back to the Exploration phase armed with the improved policy and
improved DSL, allowing it to solve new problems in the corpus. This work was presented at
Neural Information Processing Systems (NeurIPS) 2018 [9].

From Hand Drawings to Graphics Programs
As part of this work, we developed a system that is able to take as input hand-drawn images
and produce a tikz program that when executed generates the desired image, but which also
captures all the symmetries and regularity of the drawing. The system works through a two-
stage pipeline: during the first stage, a neural network translates the hand-drawn images into a
specification of the diagram to be generated, and then in the second phase, a program
synthesizer generates the code with the goal of minimizing the program complexity. The high-
level process is illustrated in Figure 8. This work was presented at NeurIPS 2018 [10].
Additionally, this work led to a new sponsored collaboration with Siemens and follow-on work
expanding the approach to 3D, which was recently published in the Conference and Exhibition
on Computer Graphics and Interactive Techniques SIGGRAPH ASIA [11].

Figure 8 General Approach for Converting Hand-Drawn Figures into Programs

Selecting representative examples for synthesis
The high-level observation behind this effort was that for many synthesis problems, the goal is
to learn a function from a large number of input-output examples, but in some cases, there are
significantly more input-output examples than are necessary to fully specify the task, making
the synthesis process unnecessarily slow. We were able to show that given a corpus of related
synthesis problems, you could train a neural network to identify whether an additional example
will add any information to the problem, taking into account the biases built in to the
synthesizer. By using this technique, the neural network can be used to pre-filter the set of
examples to a much smaller set that leads to a simpler synthesis problem that is much easier to

Approved for Public Release; Distribution Unlimited.
10

solve. The results of this work were published in the International Conference on Machine
Learning (ICML) 2018 [12].

Figure 9 Overview of Selecting Representative Examples for Synthesis

Approved for Public Release; Distribution Unlimited.
11

Results and Discussion
We now elaborate on some of the key results from the projects described earlier; for additional
details, we refer the reader to the full papers cited earlier.

Maintenance
Patch Generation with Prophet and Genesis
Some of the headline results for Prophet are as follows: After running Prophet on a benchmarks
set, it was able to generate validated patches for 38/69 bugs; after manual validation, we were
able to confirm that it had generated correct patches for 18/69 bugs and for 15 out of those 18
bugs, the correct patch was ranked first. The results compared to alternative patching systems
are summarized in Figure 10.

Figure 10 Comparison Between Prophet and Other Patch Generation Systems

Approved for Public Release; Distribution Unlimited.
12

In the case of Genesis, we compared it with the Pattern-based Automatic program Repair (PAR)
system from ICSE 2013 [13], which uses manual transformations (Genesis and Prophet cannot
be compared side-by-side because Genesis operates on Java code while Prophet operates on C
code). Those results are summarized in Figure 11.

Figure 11 Comparison Between Genesis and PAR

Development
DemoMatch: Learning to use APIs with execution data
All the results for DemoMatch were published in the PLDI 2017 paper mentioned earlier, but
some of the highlights are as follows. First, we were able to generate a database of traces from
130 Java Swing tutorial programs and dozens of "how-to" sample programs which totaled
20,000 lines of code and 250 million events. For 28 demos, we found that in 26 of the 28 demos
captured from 3 applications, the right code snippet containing the key implementation
methods was in the top 10 suggestions produced by the tool.

We also constructed a Database of traces from 5 Eclipse Plugins. We used it to explore
behaviors including editor folding, auto completion, auto edit, outline navigation. In a
controlled experiment we found that even for such complex APIs, the system produced most of
the necessary code for these tasks with 0 irrelevant statements.

Data Enhanced Sketch and Constraint Solving
In Figure 12 we illustrate the results of replacing the native encoding layer in CVC 4 with an
encoding layer synthesized using our data-driven technique. For each of the problem domains,
we trained a different encoder and show that the generated encoding is able to solve problems
that could not be solved by the original. We also noted that there is significant domain
specificity in the encoders. Encoders trained for one domain actually do quite poorly when used
in another domain.

Approved for Public Release; Distribution Unlimited.
13

Figure 12 Results of Synthesized Encoder Vs. Native Encoder for CVC4

In the case of the synthesized simplification rules, we were also able to show that synthesizing
the rules both helped us generate faster solvers and also led to solvers that were more
specialized for their domain. It is important to point out that these are also among the largest
artifacts ever generated using constraint-based synthesis: Some of the encoders are over 50K
Lines of Code (LOC).

Automatically Synthesizing Learning Pipelines
In order to evaluate this work, we compared it to Autosklearn and Tree-Based Pipeline
Optimization Tool (TPOT), two automated Machine Learning (ML) tools with pre-defined search
spaces for components. We also compared the AL tool to a simple baseline and a default value
predictor. All tools use Python’s data analysis ecosystem (pandas, numpy, scikit-learn, xgboost).
The system was evaluated against 20 benchmark datasets. Autosklearn, TPOT run for 1 hour on
each benchmark dataset, whereas our tool runs in less than 5 min. Our AL tool was trained on
500 scripts targeting 9 datasets (collected through Kaggle, a data science website). From the
experiments, we drew some important observations; first, the search space extracted from
example programs enabled execution on more datasets, whereas the other systems need to be
extended manually to account for new components. We also observe the pipelines generated
are comparable in performance to existing systems (for inputs where all systems execute). The
results are summarized in Figure 12.

Approved for Public Release; Distribution Unlimited.
14

Figure 13 Results From AL Tool Compared with TPOT and Autosklearn

Learning a Synthesizer
The key result from this effort is that starting with a very high-level language, we are able to
synthesize interesting DSL components, including high-order functions such as "filter" directly
from the corpus, as illustrated in Figure 14.

Figure 15 shows how after every iteration of the algorithm, the system is able to solve more
synthesis problems and learn them faster. The orange lines are the results including the learned
search policy; the green line is without learning the search policy, leading to lower quality
results.

Figure 14 Some Examples of DSL Components We Were Able to Learn For Each Domain

Approved for Public Release; Distribution Unlimited.
15

Figure 15 Results for the Text Domain. The Green Line is Without the Learned Policy (Only Learning the DSL)

From Hand Drawings to Graphics Programs
We were able to generate images for large numbers of diagrams and show that the generated
diagrams generalize to different numbers of elements in the diagram as illustrated in figure 16.

Figure 16 Example of Hand Drawings to Graphics

Approved for Public Release; Distribution Unlimited.
16

Selecting representative examples for synthesis
For the key experiment in the paper we were able to show that the proposed approach
outperforms competing approaches for selecting examples. An interesting observation was that
some potential baselines were in fact much worse than adding all the examples at once, which
was still significantly worse than our approach.

Figure 17 Selecting Representative Examples for Synthesis

Conclusions
This report provides a comprehensive, cumulative and substantive summary of the progress
and significant accomplishments achieved during the period covered by the agreement.
Additional information on the research accomplishments highlighted in this report are available
in 12 publications that were produced as part of this project. We believe these results clearly
demonstrate some of the original hypothesis behind the MUSE program. First that the
interaction between programming systems and data-driven machine learning can lead to
powerful new capabilities, and two that focusing on enclaves, that is, programs from similar
domains is beneficial for many tasks. For example, the work on data enhanced sketching and
constraint solving showed that solvers trained in one domain generalized really well to new
problems in that domain, but would do badly on very different domains.

Another measure of the success of the program is in the interest from industry; our group is
now doing follow-up work with Intel and Siemens.

Approved for Public Release; Distribution Unlimited.
17

References

[1] E. L. F. L. M. R. Stelios Sidiroglou-Douskos, "Automatic error elimination by horizontal code
transfer across multiple applications.," in PLDI, 2015.

[2] E. L. A. E. F. L. M. R. Stelios Sidiroglou-Douskos, "CodeCarbonCopy," in ESEC/SIGSOFT FSE
2017, 2017.

[3] M. R. Fan Long, "Automatic patch generation by learning correct code," in POPL, 2016.

[4] P. A. M. R. Fan Long, "Automatic inference of code transforms for patch generation," in
ESEC/SIGSOFT FSE, 2017.

[5] I. K. A. S.-L. Kuat Yessenov, "DemoMatch: API discovery from demonstrations," in PLDI,
2017.

[6] R. S. A. S.-L. Jeevana Priya Inala, "Synthesis of Domain Specific CNF Encoders for Bit-Vector
Solvers," in SAT, 2016.

[7] A. S.-L. Rohit Singh, "SWAPPER: A framework for automatic generation of formula simplifiers
based on conditional rewrite rules.," in FMCAD, 2016.

[8] M. R. Jose Cambronero, "Generating Component-based Supervised Learning Programs From
Crowdsourced Examples," MIT-CSAIL-TR-2017-015,
https://dspace.mit.edu/handle/1721.1/112949, 2017.

[9] L. M. M. S.-M. A. S.-L. J. T. Kevin Ellis, "Learning Libraries of Subroutines for Neurally-Guided
Bayesian Program Induction," in NeurIPS, 2018.

[10] D. R. A. S.-L. J. T. Kevin Ellis, "Learning to Infer Graphics Programs from Hand-Drawn
Images," in NeurIPS, 2018.

[11] J. P. I. Y. P. A. S. A. S. D. R. A. S.-L. W. M. Tao Du, "InverseCSG: automatic conversion of 3D
models to CSG trees," ACM Transactions on Graphics, Volume 37, pp. 213:1-213, 2018.

[12] Z. M. A. S.-L. L. P. K. Yewen Pu, "Selecting Representative Examples for Program Synthesis,"
in ICML, 2018.

[13] D. Kim, J. Nam, J. Song and S. Kim, "Automatic patch generation learned from human-
written patches," 2013 35th International Conference on Software Engineering (ICSE), San
Francisco, CA, 2013, pp. 802-811.

Approved for Public Release; Distribution Unlimited.
18

List of Acronyms

AL: Automatically Synthesizing Learning

API: Application Programming Interface

CCC: Code Carbon Copy System

CNF: Conjunctive Normal Form

CP: Code Phage

DARPA: Defense Advanced Research Program Agency

DSL: Domain Specific Language

EC^2: Explore-Compress-Compile Algorithm

FMCAD: Formal Methods in Computer-Aided Design

FSE: Future of Software Engineering

ICSE: International Conference on Software Engineering

ICML: International Conference on Machine Learning

LOC: Lines of Code

MIT: Massachusetts Institute of Technology

ML: Machine Learning

MUSE: Mining and Understanding of Software Enclaves

NeurIPS: Neural Information Processing Systems

PAR: Pattern-based Automatic program Repair

PDF: Portable Document Format

PI: Principal Investigator

PLDI: Programming Language Design and Implementation

POPL: Principles of Programming Languages

PS: Programming Systems

SAT: Satisfiability Problem

SAT: International Conferences on Theory and Applications of Satisfiability Testing

SIGGRAPH: Conference and Exhibition on Computer Graphics and. Interactive Techniques

SMT: Satisfiability Modulo Theories

TPOT: Tree-Based Pipeline Optimization Tool

UCI: University of California Irvine

	List of Figures
	Summary
	Intro
	Methods, Assumptions and Procedures
	Maintenance
	Patch Transfer with Code Phage and CarbonCopy
	Patch Generation with Prophet and Genesis

	Development
	DemoMatch: Learning to use APIs with execution data
	Data Enhanced Sketch and Constraint Solving
	Automatically Synthesizing Learning Pipelines
	Learning a Synthesizer
	From Hand Drawings to Graphics Programs
	Selecting representative examples for synthesis

	Results and Discussion
	Maintenance
	Patch Generation with Prophet and Genesis

	Development
	DemoMatch: Learning to use APIs with execution data
	Data Enhanced Sketch and Constraint Solving
	Automatically Synthesizing Learning Pipelines
	Learning a Synthesizer
	From Hand Drawings to Graphics Programs
	Selecting representative examples for synthesis

	Conclusions
	References
	List of Acronyms

