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Summary 
This report summarizes the results of Project Clio. The goal of the Clio effort was to develop 
technologies that could help reduce the high cost of software by bringing more automation into 
development and maintenance tasks. Consistent with the overall goals of the Defense 
Advanced Research Program Agency (DARPA) Mining and Understanding Software Enclaves 
(MUSE) program, a central feature of our effort was to leverage data about existing software in 
order to enable capabilities that were previously not available. 

The project was divided into a Maintenance thrust focused primarily on program repair, and a 
Development thrust, focused primarily on program synthesis. Among the key accomplishments 
for the project are the following: 

• Dramatic improvements in automatic patch generation by leveraging big-code. 
• First-time demonstration of "organ transplants for code." The ability to transfer 

functionality automatically from one application to another. 
• First-time demonstration of the ability to discover how to use an Application 

Programming Interface (API) by exercising its functionality on an existing application. 
• First-time demonstration of the automatic generation of key components of a 

satisfiability modulo theories (SMT) solver. 
• Dramatic improvements in the ability to generate data processing pipelines for machine 

learning. 
• First-time demonstration of the ability to learn a domain-specific language from a 

corpus of synthesis problems. 
• Demonstration of the ability to generate code from hand-drawn diagrams. 
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Intro 
The goal of project Clio was to develop technologies that could leverage data about existing 
source code and related artifacts available from the internet in order to help automate 
development and maintenance tasks. As part of this project, we explored a number of different 
approaches for learning from a corpus of software artifacts in order to support maintenance 
tasks such as bug repair and development tasks involving both the development of brand new 
algorithms, as well as the implementation of complex functionality by using existing APIs. 

Each of the thrusts described in this report illustrates a different way of leveraging the data 
from the corpus, but one element all the projects have in common is the interaction between 
Machine Learning-based techniques and symbolic techniques for the analysis, manipulation and 
search of programs from the Programming Systems community. It is this combination of 
techniques from the two fields that enables the technological accomplishments outlined in this 
report. 

Methods, Assumptions and Procedures 
The two main thrusts of the project were Maintenance and Development; both thrusts shared 
the common philosophy of leveraging data about both the code and its execution in order to 
deliver automation, but we now elaborate on the detailed methods assumptions and 
procedures for each separately. 

 
Maintenance 
For maintenance, we focused on two main tasks: patch transfer and patch discovery. 
 
Patch Transfer with Code Phage and CarbonCopy 
Our code transfer research exploited the availability of large amounts of code to find useful 
code in one donor application and transfer it into another recipient application to eliminate 
security vulnerabilities, fix defects, are augment the functionality of the recipient application. 
For example, there may be two different Portable Document Format (PDF) readers that have 
been patched by different vendors, but only one is vulnerable to an overflow given a 
particularly malformed file; the other one simply rejects it with an error message. The goal of 
patch transfer is to identify the code in the correct PDF reader that identifies that the file is 
malformed and transfer it to the vulnerable reader which must then be able to reject the 
malformed input as well, essentially to perform an organ transplant on code. 

As part of the project we tested two versions of this technology. The first developed into a 
prototype called Code Phage (CP), a system for automatically transferring correct code from 
donor applications into recipient applications that process the same inputs to successfully 
eliminate errors in the recipient. Experimental results using seven donor applications to 
eliminate ten errors in seven recipient applications highlight the ability of CP to transfer code 
across applications to eliminate out of bounds access, integer overflow, and divide by zero 
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errors. Because CP works with binary donors with no need for source code or symbolic 
information, it supports a wide range of use cases. To the best of our knowledge, CP was the 
first system to automatically transfer code across multiple applications. The results were 
published in Programming Language Design and Implementation (PLDI) 2015 [1]. 

The second version of the technology was implemented in a prototype named 
CodeCarbonCopy (CCC), a system for transferring code from a donor application into a recipient 
application. CCC starts with functionality identified by the developer to transfer into an 
insertion point (again identified by the developer) in the recipient. CCC uses paired executions 
of the donor and recipient on the same input file to obtain a translation between the data 
representation and name space of the recipient and the data representation and name space of 
the donor. It also implements a static analysis that identifies and removes irrelevant 
functionality useful in the donor but not in the recipient. We evaluated CCC on eight transfers 
between six applications. Our results show that CCC can successfully transfer donor 
functionality into recipient applications, including the ability to transfer new image filtering 
kernels and work with new input formats. The results of this work were published in Future of 
Software Engineering (FSE) in 2017 [2]. 

 
Patch Generation with Prophet and Genesis 
Our automatic patch generation research exploited the availability of large amounts of code to 
automatically derive models of correct patches that could be used to distinguish correct 
patches from those that merely masked the symptoms of a bug. 

We developed Prophet, a novel patch generation system that works with a set of successful 
human patches obtained from open-source software repositories to learn a probabilistic, 
application-independent model of correct code. Prophet generates a space of candidate 
patches, uses the model to rank the candidate patches in order of likely correctness, and 
validates the ranked patches against a suite of test cases to find correct patches. Experimental 
results show that, on a benchmark set of 69 real-world defects drawn from eight open-source 
projects, Prophet significantly outperforms the previous state-of-the-art patch generation 
systems. More details can be found in our Principles of Programming Languages (POPL) 2016 
paper [3]. 
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Figure 1 Overview of the Prophet System 

We improved upon the prophet system with a follow-up system called Genesis. Unlike Prophet, 
Genesis does not rely on a set of human-crafted rules for how to transform the program. 
Instead, Genesis processes human patches from the corpus to automatically infer code 
transforms for automatic patch generation. We obtained results that characterize the 
effectiveness of the Genesis inference algorithms and the complete Genesis patch generation 
system working with real-world patches and defects collected from 372 Java projects. To the 
best of our knowledge, Genesis is the first system to automatically infer patch generation 
transforms or candidate patch search spaces from previous successful patches. More details are 
available in our FSE 17 paper [4]. 

 

Figure 2 Overview of the Genesis System 
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Development 
For development tasks, we developed several foundational technologies for leveraging data in 
order to support program synthesis. 

 
DemoMatch: Learning to use APIs with execution data 
The goal of the DemoMatch system was to allow developers to learn how to use an API when 
they did not know anything about its internal structure, not even the names of concepts used 
by the API. The starting point for DemoMatch was a database of program traces called DeLight, 
which captures detailed information about the execution of the API and its interaction with an 
application. During the setup phase, a database is constructed by running a set of applications 
that use the API while they are monitored by our trace capture infrastructure. 

The DemoMatch tool then allows a programmer who wants to use an API to achieve some 
functionality to simply demonstrate that functionality in an existing application. When the 
functionality is demonstrated, DemoMatch will capture a short trace of the execution of the 
application during the demonstration that it will use to infer the functionality that the user 
intends to demonstrate. The short trace does not contain enough information to know what 
API commands had to be issued, because the short traces usually fail to capture the setup 
phase that enabled the behavior demonstrated by the user. Instead, the short traces are used 
to index into the database to find traces where similar behaviors were exercised. Unlike the 
short demonstration trace, the traces in the database include all the setup steps; so after some 
analysis, DemoMatch can return to the user with the key elements of the code that needs to be 
written in order to achieve the demonstrated functionality. The details of the process are 
explained in our Programming Language Design and Implementation (PLDI) 2017 paper [5]. 

 

Figure 3 Overview of the DEMOMATCH Approach 
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Data Enhanced Sketch and Constraint Solving 
Another approach we explored under this effort is the use of data to improve constraint-based 
synthesis. The standard approach to constraint-based synthesis is illustrated in Figure 4. The 
programmer writes a specification and a sketch of the desired solution to define a synthesis 
problem, and the problem definition is translated to a series of constraints that are solved by an 
SMT solver. The result of solving the constraints is then mapped back to a program that satisfies 
the specification. 

 

Figure 4 The Sketch Approach 

A key element in this approach is the SMT solver. Our approach was to use a corpus of related 
problems to automatically synthesize a specialized version of the SMT solver that would be 
faster than the original general purpose solver. An interesting aspect of this approach was that 
it involved using the synthesizer to turn the data into a new synthesizer, so the synthesizer was 
essentially learning to improve itself. 

We focused on two aspects of SMT solvers. The first aspect, illustrated by Figure 5 below was to 
automate the translation from high-level bit-vector constraints to CNF clauses. Given a large 
formula, there are many different ways of partitioning it into chunks and generating 
Conjunctive Normal Form (CNF) clauses for each chunk, with different solvers using different 
heuristics for this. Given a corpus of problems, the synthesizer will automatically generate a 
good way of partitioning the formula and of generating clauses for each partition. The results of 
this effort were published in a paper in the International Conferences on Theory and 
Applications of Satisfiability Testing (SAT) 2016 [6]. 
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Figure 5 Bit-Vector Constraints in an SMT Formula must be translated to CNF Clauses 

The second aspect of interest of the SMT solver is the simplification engine which uses 
conditional rewrite rules in order to attempt to simplify the problem. These rules describe how 
to simplify certain patterns assuming the solver can prove that some conditions are satisfied. 
Figure 6 illustrates one such rule and the C++ code that the solver uses to implement it. For this 
part of the project, we developed a tool called Swapper that given a corpus of problems, 
automatically generates conditional rewrite rules that are useful for that corpus and proves 
them correct. The details of this work were published in Formal Methods in Computer-Aided 
Design (FMCAD) 2016 [7]. 

 

Figure 6 Conditional Rewrite Rule and the C++ Code Needed to Implement it in the Solver 

Both of these elements enabled significant performance improvements in the solver. 
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Automatically Synthesizing Learning Pipelines 

 

Figure 7 Overview of the Automatically Synthesizing Learning (AL) System for Learning to Generate New Supervised Learning 
Pipelines 

We developed a system to automatically generate supervised learning pipelines from a set of 
APIs by learning from existing examples. 

Our system uses a probabilistic model of pipeline likelihood to guide the generation process. 
This model is trained on prior example pipelines and their input data, characterizing the 
likelihood of each step in a pipeline given previous steps. For our experiments, we instrument 
and learn from 500 different Python data science programs that use 9 publicly available 
datasets. Each of these programs implements a supervised learning pipeline as part of its 
functionality. We evaluate our tool by generating pipelines for 25 previously unseen datasets 
collected from various repositories (OpenML, Kaggle, Scikit-Learn, UCI). Our evaluation showed 
that our system can produce pipelines in under 5 minutes that are comparable to those 
produced by other systems in 1 hour. Our tool is also able to generalize to more datasets, which 
require additional transformations of the input for correct execution [8]. 

Learning a Synthesizer 
In recent years, many important synthesis problems have been solved not by using a general 
synthesis infrastructure such as Sketch, but rather by building a custom synthesizer, which 
searches programs in a Domain-Specific Language (DSL) using a specialized search heuristic, so 
the question for this project was whether we could learn a DSL and a search heuristic from a 
corpus. This was done with a new algorithm called Explore-Compress-Compile (EC^2). The 
algorithm works by iterating through the three phases mentioned in the name. The algorithm is 
seeded with a very basic language with only a small number of constructs. During the 
Exploration phase, the algorithm uses its current version of the language and the search 
heuristic to try to solve as many problems from the corpus as it can; during early iterations, it 
will succeed in solving only a few problems, but as it learns a more sophisticated language with 
a more sophisticated policy, its capabilities increase. From Exploration, the algorithm moves to 
Compression, where the algorithm analyzes all the solutions generated during Exploration and 
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infers new DSL components that would have made those solutions more compact. Finally, 
during the Compilation phase, the algorithm "dreams" new programs based on the new 
components it derived and uses these "dreamed" programs to train a new exploration policy. 
The algorithm then cycles back to the Exploration phase armed with the improved policy and 
improved DSL, allowing it to solve new problems in the corpus. This work was presented at 
Neural Information Processing Systems (NeurIPS) 2018 [9]. 

From Hand Drawings to Graphics Programs  
As part of this work, we developed a system that is able to take as input hand-drawn images 
and produce a tikz program that when executed generates the desired image, but which also 
captures all the symmetries and regularity of the drawing. The system works through a two-
stage pipeline: during the first stage, a neural network translates the hand-drawn images into a 
specification of the diagram to be generated, and then in the second phase, a program 
synthesizer generates the code with the goal of minimizing the program complexity. The high-
level process is illustrated in Figure 8. This work was presented at NeurIPS 2018 [10]. 
Additionally, this work led to a new sponsored collaboration with Siemens and follow-on work 
expanding the approach to 3D, which was recently published in the Conference and Exhibition 
on Computer Graphics and Interactive Techniques SIGGRAPH ASIA [11]. 

 

Figure 8 General Approach for Converting Hand-Drawn Figures into Programs 

Selecting representative examples for synthesis 
The high-level observation behind this effort was that for many synthesis problems, the goal is 
to learn a function from a large number of input-output examples, but in some cases, there are 
significantly more input-output examples than are necessary to fully specify the task, making 
the synthesis process unnecessarily slow. We were able to show that given a corpus of related 
synthesis problems, you could train a neural network to identify whether an additional example 
will add any information to the problem, taking into account the biases built in to the 
synthesizer. By using this technique, the neural network can be used to pre-filter the set of 
examples to a much smaller set that leads to a simpler synthesis problem that is much easier to 
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solve. The results of this work were published in the International Conference on Machine 
Learning (ICML) 2018 [12]. 

 

Figure 9 Overview of Selecting Representative Examples for Synthesis 
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Results and Discussion 
We now elaborate on some of the key results from the projects described earlier; for additional 
details, we refer the reader to the full papers cited earlier. 

Maintenance 
Patch Generation with Prophet and Genesis 
Some of the headline results for Prophet are as follows: After running Prophet on a benchmarks 
set, it was able to generate validated patches for 38/69 bugs; after manual validation, we were 
able to confirm that it had generated correct patches for 18/69 bugs and for 15 out of those 18 
bugs, the correct patch was ranked first. The results compared to alternative patching systems 
are summarized in Figure 10. 

 

Figure 10 Comparison Between Prophet and Other Patch Generation Systems 
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In the case of Genesis, we compared it with the Pattern-based Automatic program Repair (PAR) 
system from ICSE 2013 [13], which uses manual transformations (Genesis and Prophet cannot 
be compared side-by-side because Genesis operates on Java code while Prophet operates on C 
code). Those results are summarized in Figure 11. 

 

 

Figure 11 Comparison Between Genesis and PAR 

Development 
DemoMatch: Learning to use APIs with execution data 
All the results for DemoMatch were published in the PLDI 2017 paper mentioned earlier, but 
some of the highlights are as follows. First, we were able to generate a database of traces from 
130 Java Swing tutorial programs and dozens of "how-to" sample programs which totaled 
20,000 lines of code and 250 million events. For 28 demos, we found that in 26 of the 28 demos 
captured from 3 applications, the right code snippet containing the key implementation 
methods was in the top 10 suggestions produced by the tool. 

We also constructed a Database of traces from 5 Eclipse Plugins. We used it to explore 
behaviors including editor folding, auto completion, auto edit, outline navigation. In a 
controlled experiment we found that even for such complex APIs, the system produced most of 
the necessary code for these tasks with 0 irrelevant statements. 

Data Enhanced Sketch and Constraint Solving 
In Figure 12 we illustrate the results of replacing the native encoding layer in CVC 4 with an 
encoding layer synthesized using our data-driven technique. For each of the problem domains, 
we trained a different encoder and show that the generated encoding is able to solve problems 
that could not be solved by the original. We also noted that there is significant domain 
specificity in the encoders. Encoders trained for one domain actually do quite poorly when used 
in another domain. 
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Figure 12 Results of Synthesized Encoder Vs. Native Encoder for CVC4 

In the case of the synthesized simplification rules, we were also able to show that synthesizing 
the rules both helped us generate faster solvers and also led to solvers that were more 
specialized for their domain. It is important to point out that these are also among the largest 
artifacts ever generated using constraint-based synthesis: Some of the encoders are over 50K 
Lines of Code (LOC). 

Automatically Synthesizing Learning Pipelines 
In order to evaluate this work, we compared it to Autosklearn and Tree-Based Pipeline 
Optimization Tool (TPOT), two automated Machine Learning (ML) tools with pre-defined search 
spaces for components. We also compared the AL tool to a simple baseline and a default value 
predictor. All tools use Python’s data analysis ecosystem (pandas, numpy, scikit-learn, xgboost). 
The system was evaluated against 20 benchmark datasets. Autosklearn, TPOT run for 1 hour on 
each benchmark dataset, whereas our tool runs in less than 5 min. Our AL tool was trained on 
500 scripts targeting 9 datasets (collected through Kaggle, a data science website). From the 
experiments, we drew some important observations; first, the search space extracted from 
example programs enabled execution on more datasets, whereas the other systems need to be 
extended manually to account for new components. We also observe the pipelines generated 
are comparable in performance to existing systems (for inputs where all systems execute). The 
results are summarized in Figure 12. 
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Figure 13 Results From AL Tool Compared with TPOT and Autosklearn 

Learning a Synthesizer 
The key result from this effort is that starting with a very high-level language, we are able to 
synthesize interesting DSL components, including high-order functions such as "filter" directly 
from the corpus, as illustrated in Figure 14.  

Figure 15 shows how after every iteration of the algorithm, the system is able to solve more 
synthesis problems and learn them faster. The orange lines are the results including the learned 
search policy; the green line is without learning the search policy, leading to lower quality 
results. 

 

Figure 14 Some Examples of DSL Components We Were Able to Learn For Each Domain 
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Figure 15 Results for the Text Domain. The Green Line is Without the Learned Policy (Only Learning the DSL) 

From Hand Drawings to Graphics Programs 
We were able to generate images for large numbers of diagrams and show that the generated 
diagrams generalize to different numbers of elements in the diagram as illustrated in figure 16. 

 

Figure 16 Example of Hand Drawings to Graphics 
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Selecting representative examples for synthesis 
For the key experiment in the paper we were able to show that the proposed approach 
outperforms competing approaches for selecting examples. An interesting observation was that 
some potential baselines were in fact much worse than adding all the examples at once, which 
was still significantly worse than our approach. 

 

Figure 17 Selecting Representative Examples for Synthesis 

Conclusions 
This report provides a comprehensive, cumulative and substantive summary of the progress 
and significant accomplishments achieved during the period covered by the agreement.  
Additional information on the research accomplishments highlighted in this report are available 
in 12 publications that were produced as part of this project. We believe these results clearly 
demonstrate some of the original hypothesis behind the MUSE program. First that the 
interaction between programming systems and data-driven machine learning can lead to 
powerful new capabilities, and two that focusing on enclaves, that is, programs from similar 
domains is beneficial for many tasks. For example, the work on data enhanced sketching and 
constraint solving showed that solvers trained in one domain generalized really well to new 
problems in that domain, but would do badly on very different domains.  

Another measure of the success of the program is in the interest from industry; our group is 
now doing follow-up work with Intel and Siemens. 
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List of Acronyms 
 
AL: Automatically Synthesizing Learning 

API: Application Programming Interface 

CCC: Code Carbon Copy System 

CNF: Conjunctive Normal Form 

CP: Code Phage  

DARPA: Defense Advanced Research Program Agency 

DSL: Domain Specific Language 

EC^2: Explore-Compress-Compile Algorithm 

FMCAD: Formal Methods in Computer-Aided Design 

FSE: Future of Software Engineering 

ICSE: International Conference on Software Engineering 

ICML: International Conference on Machine Learning 

LOC: Lines of Code 

MIT: Massachusetts Institute of Technology 

ML: Machine Learning 

MUSE: Mining and Understanding of Software Enclaves  

NeurIPS: Neural Information Processing Systems 

PAR: Pattern-based Automatic program Repair 

PDF: Portable Document Format 

PI: Principal Investigator 

PLDI: Programming Language Design and Implementation 

POPL: Principles of Programming Languages  

PS: Programming Systems 

SAT: Satisfiability Problem 

SAT: International Conferences on Theory and Applications of Satisfiability Testing 

SIGGRAPH: Conference and Exhibition on Computer Graphics and. Interactive Techniques 

SMT: Satisfiability Modulo Theories 

TPOT: Tree-Based Pipeline Optimization Tool 

UCI: University of California Irvine 
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