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ABSTRACT 

 Space-based global positioning systems are three-dimensional measurement 

systems that use radio signals from a constellation of satellites orbiting the Earth. They 

comprise a satellite navigation system designed to provide instantaneous position, 

velocity, and time information almost anywhere on the globe at any time. This 

technology is used in numerous areas such as unmanned systems, missiles, commercial 

and military aviation. The United States’ NAVSTAR Global Positioning System and 

Russian Global Navigation Satellite System (GNSS) are fully operational and used by 

different nations. Because of the technology’s essentiality, most countries aim for 

independence; however, this is a big problem for developing or non-space faring 

countries because of the cost of the systems. To decrease the cost of a position navigation 

and timing (PNT) constellation, some nations develop regional PNT systems. In this 

research, GNSS systems, regional navigation satellite systems and satellite-based 

augmentation systems are analyzed, and an independent regional timing and positioning 

system satellite constellation over Turkish territory is reviewed using the AGI Systems 

Tool Kit software. 
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I. INTRODUCTION 

A. BACKGROUND 

Global Navigation Satellite Systems (GNSS) are space-based three-dimensional 

measurement systems that use radio signals from a constellation of satellites orbiting the 

earth. They are designed to provide instantenaous position, velocitiy, and time information 

almost anywhere on the globe at any time, and in any weather. Applications of this 

technology serve not only military systems, but also offer lots of opportunity for civilian 

users [1].  

The Global Positioning System (GPS) is one of the GNSS projects conducted by 

the U.S. Department of Defense (DoD) to support accurate navigation information for 

warfighters. The DoD decided to commence the GPS program in the early 1970s and the 

first Navigation System with Timing and Ranging (NAVSTAR) satellite was launched in 

1978. In 1993, GPS became fully operational with 24 sattellites in orbit [2], [3].  

The Russian Global Navigation Satellite System (GLONASS) is another GNSS 

program that provides all potential users with constant and accurate position information. 

The GLONASS program began in 1972 and the first satellite launched in 1982. The 

GLONASS constellation was completed in 1995 with 24 satellites [4]. 

Similarly, GALILEO is a European GNSS project conducted by the European 

Space Agency (ESA) and European Union (EU) for global coverage and civil purposes. 

GALILEO aims to supply global, highly accurate position information and interoperability 

between GPS and GLONASS. The GALILEO program uses a phased approach, and an 

“In-Orbit Validation (IOV) Phase” was completed in 2011. The “Deployment Phase” is 

currently ongoing and Fully Operational Capability (FOC) is planned for the end of this 

decade. Four satellites launched on 12 December 2017 and another four on 25 July 2018 

increased the number of satellites in the constellation to 26 [5], [6].  

Like GALILEO, China’s BEIDOU Navigation Satellite System is another ongoing 

GNSS project. The development strategy of the BEIDOU project has three steps 
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(Experimental, Regional, Global) that aim to provide regional to global coverage. Like 

GALILEO, full deployment of the system is planned by the end of this decade [7].  

GPS, GLONASS, GALILEO, and BEIDOU GNSS systems are aimed to provide 

global coverage at all times. To provide global coverage, a large number of satellites is 

needed. By adding spares and renewal satelllites, the life cycle cost of this kind of system 

can be very high. For of that reason, some regional solutions are available in the world.  

For example, the Indian Regional Navigation Satellite System (IRNSS) is a 

regional Position Navigation and Timing (PNT) system developed by the Indian Research 

Organization (IRO). The IRNSS constellation consists of seven satellites, three of which 

are in geostationary orbits and four are in geosynchronous orbits; all are designed to 

provide PNT information accurately over India and its vicinity [8]. The last IRNSS satellite 

launched in March 2016 and the system became operational in June 2016. After completing 

the IRNSS constellation, India’s Prime Minister Narendra Modi renamed the system as 

Navigation Indian Constellation (NAVIC) [9]. 

Another regional satellite-based system is the Quasi-Zenith Satellite System 

(QZSS), which is interoperable with GPS signals. QZSS serves East Asia including Japan 

and Oceania. The first satellite of the QZSS constellation, named MICHIBIKI, launched 

on 11 September 2010, and by April 2018 the number of satellites in the QZSS 

constellation had reached four [10]. 

Besides global and regional navigation satellite systems, Satellite Based 

Augmentation Systems (SBAS) offer an opportunity to improve GNSS accuracy over a 

specific area at low cost [11]. Currently operational and under-development SBAS systems 

are the following: 

• Wide Area Augmentation System (WAAS) 

• European Geostationary Overlay Service (EGNOS) 

•  Multifunctional Transport Satellite (MTSAT) Satellite Based 

Augmentation System (MSAS) 
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• GPS Aided Geostationary Earth Orbit (GEO) Augmented Navigation 

(GAGAN) 

• System of Differential Correction and Monitoring (SDCM)  

• Satellite Navigation Augmentation System (SNAS) 

• South/Central America and the Caribbean SBAS Initiative (SACCSA) 

• Malaysia: a future SBAS System is under study 

• Africa-European Union Strategic partnership’ EGNOS extension to 

Africa-Indian Ocean (AFI) [12]  

B. PURPOSE 

This research presents the first investigation into a regional PNT system for Turkey. 

Additionally, it provides preliminary analysis results for well-known local positioning and 

timing systems. 

The purpose of this research is to analyze Global/Regional GNSS and SBAS 

systems’ constellation features and positioning performance. This research also aims not 

only to analyze current systems, but also to propose a Regional PNT System Constellation 

over Turkey to provide highly accurate and stable navigation information. 

C. THE RESEARCH QUESTION 

The following questions will be answered in the course of this research: 

• What Regional/Global Navigation Satellite Systems and Space Based 

Augmentation Systems are operational or under development all around 

the world? 

• What is the performance of Regional/Global Navigation Satellite Systems 

and Space Based Augmentation Systems over their operational area? 
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• Which constellation can be a good model for providing independent, 

highly accurate, and stable position information over the land of Turkey?  

• What is the predicted accuracy of the proposed system? 

D. SCOPE, LIMITATIONS, AND ASSUMPTIONS 

The scope of this study is limited to determining and analyzing orbital constellation 

characteristics and positioning performance for the proposed system.  

E. METHODOLOGY 

Based on a review of the relevant literature, this thesis is developed according to 

the following methodology: 

1. Conduct an open source review of Global/Regional Navigation Satellite 

Systems and SBAS Systems and programs. 

2. Conduct a literature review for sources of error in GNSS Systems and 

Dilution of Precision values to determine the accuracy of GNSS Systems.  

3. Propose a Regional and Independent PNT System Constellation for 

operation over the land of Turkey. 

4. Analyze the proposed constellation to answer the question, “How accurate 

is the system?” 

F. ORGANIZATION OF THE STUDY 

The stated research questions are discussed chapter by chapter. This thesis begins 

with a literature review and the collection of data about current GNNS, Regional PNT, and 

SBAS Systems, and tries to show their accuracy over their respective operational areas. 

After gathering information from the literature review, a unique system to Turkey is 

proposed, and is analyzed with STK software. The results of analysis are discussed at the 

end of the thesis. 



5 

II. LITERATURE REVIEW ON NAVIGATION SATELLITE 
SYSTEMS 

Space has attracted the attention of human beings for centuries. It was not until the 

20th century, however, that space studies went beyond the examination of the celestial 

bodies and the introduction of a number of hypotheses by astronomers. The field of 

rocketry gained momentum in the 20th century as German scientists developed rockets 

with the goal of attacking enemies over longer distances during the Second World War. 

This technological development became a milestone in their dreams about space. 

In the beginning, space activities, which often confer prestige on the sponsor nation 

and can serve as a deterrent, were confined to the superpowers. Over time, though,  remote 

sensing and communication satellites have gained vital importance for the economic and 

military systems of many other countries. The military satellite systems deployed today 

have many unobtrusive applications, from identification and diagnosis of strategic/tactical 

targets to safe and fast data communication, as well as for navigation and early-warning in 

the use of force from a distance. 

The launching of Sputnik-1 by the Soviet Union in 1957 revealed the need to follow 

the orbit of a satellite. The assumption was that it was possible to determine the location of 

the satellite by following the radio signals sent by Sputnik-1. Then came the thought that 

the converse could also be possible. The position of a radio receiver could be calculated if 

the orbit of the satellite was known in advance. Even more satellites could be designed for 

this work and sent into space. The concept of the navigation satellite system was born in 

this thought [13].  

Countries that want to secure their access to navigation satellite systems, which 

nowadays are considered an undeniable point of military and economic importance, are 

developing new programs with national and international initiatives. As satellite systems 

of regional and global navigation systems increase, these artificial stars are becoming an 

alternative to the polar star in the earthly journey of mankind. 
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A. APPLICATION OF NAVIGATION SATELLITES 

Today, navigation satellite receivers are involved in many civilian and military 

applications. Navigation satellite systems are the most common system used in the aviation 

and maritime communities. Especially for air and sea vehicles, they are used for route and 

target information. Support systems that increase positioning sensitivity, such as the U.S.-

run WAAS or the European EGNOS, have gained widespread use in aviation. In fact, many 

of these support systems can be used as an approach and landing system in air vehicles by 

certifying them within the framework of flight rules. 

The use of navigation satellite systems is not limited to air and sea vehicles. One of 

the main uses of navigation satellite systems in the military area is cartography. As is 

discussed in the following sections, the coordinate measurement errors that are essential to 

the map drawing task can be reduced to submeter and millimeter levels by using differential 

satellite receivers [2]. 

Besides these applications, navigation satellite systems are widely used as a 

reference time source, especially in the management of communication networks and the 

banking sector. Solutions based on navigation satellite systems also find use in the 

meteorology, marketing, and transportation sectors. The applications for the use of 

navigation satellite systems are limited only by the imagination, but some areas of use can 

be listed as follows [14]:  

• Earthquake investigations 

• Agriculture 

• Fishing 

• Farming 

• Emergency Services and Natural Disaster Management 

• Scientific Research 

• Traffic Management and Prevention of Accidents 
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• Landscaping 

• Precision Guided Ammunition and Cruise Missiles 

• Mine Clearing 

B. PRINCIPLES OF NAVIGATION SATELLITE SYSTEMS 

The Navigation Satellite System is a general term used for satellite-based systems 

that can provide location and time information. In general, navigational satellite systems 

consist of three parts [15]: 

• Space Segment 

• Control Segment  

• User Segment 

The Space Segment consists of satellites that broadcast navigation signals. The 

Control Segment generally forms the ground stations and centers where the system and 

navigational signals are managed. The User Segment can be defined as any type of 

customer, including military and civilian users, who receives navigation signals. 

The GNSS receiver has to receive a signal in order to detect the position (latitude, 

longitude, and height) of at least three navigation satellites. Furthermore, a fourth satellite 

signal is needed to resolve time synchronization and locate the receiver more accurately. 

Within the signal sent by the navigation satellite, there is the position information of the 

satellite that sent the signal as well as the time it sent the signal. Based on this signal, the 

receiver uses the arrival time method to calculate the distance to each satellite from which 

it received the signal. In order to use the time of arrival (TOA) method, the receiver must 

have the following information [16]: 

• Time the signal was sent 

• Signal delivery speed 

• Time the signal was received 
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Establishing a satellite’s location based on the time information in the signal, which 

is delivered at the speed of light, requires precision. The time the signal was sent is already 

in the satellite signal. Despite the fact that atomic clocks on the satellites are very precise 

and stable among the specimens, the transmitted time information is not as precise as the 

receiver needs. Yet, the correction information for the satellite time error may also be 

included in the satellite signal. The time to receive the signal is recorded by quartz watches, 

which are less stable than the clocks on the satellites. Nevertheless, the time error on the 

receiver is not a big problem, and this error can easily be corrected by the signal from the 

fourth satellite. That is why a navigation satellite receiver needs signals from at least four 

satellites to predict its location. Otherwise, when a signal transmission speed is considered, 

a small time error causes a large distance error [2], [14]–[17]. 

C. NAVIGATION SATELLITE SYSTEMS 

Navigational satellite system architectures vary according to the expectations of the 

satellites owners’ countries, their aims, economic possibilities, and technological sub-

structures. First of all, it is necessary to mention Global Navigation Satellite Systems can 

provide speed, time, and positioning information all over the world. There are four global 

navigation systems already known to be operational or in development. 

• USA NAVSTAR Global Positioning System (GPS) 

• RUSSIA Global Navigation Satellite System (GLObal’naya 

Navigatsionnaya Sputnikova Sistema-GLONASS) 

• CHİNA COMPASS Navigation Satellite System 

• European Union Global Navigation Satellite System (GALILEO) [18] 

By 2018, NAVSTAR, owned by the United States, and GLONASS, owned by 

Russia, were globally available sources of accurate speed, time, and location information. 

In addition to Global Navigation Satellite Systems, Regional Navigation Satellite Systems, 

which can provide location and time information locally, are also being operated or 

developed. These are; 
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• China BEIDOU-1/2 

• Indian Regional Navigation Satellite System (IRNSS) 

• Japan Quasi-Zenith Satellite System (QZSS) [18] 

Finally, the support systems used to improve the data of existing global navigation 

satellites have also been operationally applied. These are:  

• Wide Area Augmentation System (WAAS) 

• European Geostationary Overlay Service (EGNOS) 

• Multifunctional Transport Satellite (MTSAT) Satellite Based 

Augmentation System (MSAS) 

• GPS Aided Geostationary Earth Orbit Augmented Navigation (GAGAN) 

• System of Differential Correction and Monitoring (SDCM)  

• Satellite Navigation Augmentation System (SNAS) 

• South/Central America and the Caribbean SBAS Initiative (SACCSA) 

• Malaysia: a future SBAS System is under study 

• Africa-European Union Strategic partnership EGNOS extension to Africa-

Indian Ocean (AFI) [11], [12] 

1. Global Navigation Satellite Systems 

As previously mentioned, two countries currently have GNSS, and the European 

Union has a program to have such a system to be independent. GPS and GLONASS 

programs are conducted by United States of America and Russia, respectively, and became 

operational after long development processes. The GALILEO program, which belongs to 

the European Union, is making steady progress to join the other GNSS. This section 

discusses the current and future GNSS programs.  
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a. NAVSTAR GPS 

It would be useful to talk about the evolution of navigational satellite systems from 

which GPS emerged. As is known, the U.S. TRANSIT system, which was the predecessor 

of modern satellite navigation systems, operated according to the principle of measuring 

the doppler shift of satellites in polar orbits. Only two-dimensional location information 

was obtained from this system. Therefore, it was not a suitable positioning system for 

aircraft, because altitude information could not be obtained from it. Instead, the TRANSIT 

system could generally be used in slow moving vehicles or on sea vehicles. In the 

meantime, the Soviet Union developed two nearly identical systems. These were the 

“Parus” developed for the Soviet Navy and the “Tsikada” developed for commercial ships 

[19]. 

The success of the TRANSIT system encouraged the U.S. Air Force and the U.S. 

Navy to develop even better systems. First, the U.S. Air Force Project 621B started 

obtaining three-dimensional positioning information. In 1973, the GPS Joint Program 

Office (JPO) was established and the NAVSTAR GPS concept was born [14], [20]. The 

versions of NAVSTAR GPS satellites are as follows [21]: 

• Navigation Technology Satellites (NTS) 

• Navigation Development Satellites (Block-I) 

• Block-II and Block-IIA (First Operational Satellites) 

• Block-IIR and Block-IIR-M (Replenishment Satellites) 

• Block-IIF (Modernization Satellites) 

• Block-III (The first satellite will be launched in December 2018) 

The space segment of the GPS consists of 24 active satellites nominally located at 

about 20,000 kilometers altitude and in 12-hour periodic orbits. Besides these 24 

operational satellites, additional ones are active spares. These satellites are located in six 

orbital planes with a 55-degree inclination angle (that is, four satellites per orbit). This 
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constellation ensures that a receiver anywhere in the world can continuously receive signals 

from at least four satellites. Nevertheless, in order to provide better performance for users, 

the number of satellites today is 31 [22]. 

To control GPS satellites, the U.S. DoD is running one master control station located 

in Schriever Air Force Base (AFB), Colorado, and one alternate master control station 

located in Vandenberg AFB, California. There are 12 command and control antennas and 16 

monitor stations generally all around the world [2]. The task of these stations is to monitor 

system performance and make measurements to accurately determine satellites’ orbits.An 

illustration of the control segment is given in Figure 1. 

 

Figure 1. GPS Control Segment. Source: [23]. 

The GPS has two kinds of services. One of them is Standard Positioning Service 

(SPS), which is available to all users, and the other one is Precise Positioning Service 

(PPS), which is available only for authorized users [24]. For reasons of security, in earlier 

decades the accuracy of the system was intentionally reduced through the deliberate 

addition of errors to their GPS signals. This process was known as Selective Availability 

(SA), and it was discontinued on 1 May 2000 due to economic reasons and is no longer 

used [25]. 

The three different signals sent by the GPS to the receiver are: 

• L1 (1575.42 MHz) 
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• L2 (1227.6 MHZ) 

• L5 (1176 MHz) [26], [27]. The L5 is a new signal. Initially an 

experimental signal, GPS-IIR satellites, GPS-IIF, and Block-III satellites 

have the capability to transmit it.  

Furthermore, there are three different types of coding on these three different 

signals. 

• Coarse Acquisiton (C/A Code): The C/A Code is the unencrypted code 

that is introduced to the system to capture the GPS signal. It is included in 

the L1 signal. 

• Precise (P/Y) Code:  It is a code found in L1 and L2 signals and used for 

better performance and sensitivity. Initially, the receiver is locked onto the 

C/A code because the P-code is more difficult to lock. The satellite does 

not normally send a P-Code, but the encrypted P (Y) -code is sent instead. 

Unauthorized receivers can not lock directly onto this code. 

• Military Code (M-Code): The M-Code signal will broadcast with Block-

III satellites when they are at FOC phase. This signal is more powerful and 

harder to jam, as well as more flexible, secure, and interoprable than other 

signals [26].  

When it comes to the stability and correctness of the GPS signals, differences 

depend on the situation. GPS error size for civilian users when SA was enabled was 100 

meters. With the shutdown of SA the error size was reduced to 10 meters.  

b. GLONASS 

While the United States was developing the NAVSTAR GPS, the Soviet Union was 

developing a navigation system called GLONASS with similar features. GLONASS, which 

started development in 1976, was aimed at providing global coverage with full capacity in 

1991. This aim was met with only 21 operational satellites after four years. But the financial 

troubles of the Russian Federation following the breakup of the Soviet Union left only 16 
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satellites operational in 1998 [28]. Until 2010, the constellation consisted of 24 satellites [18]. 

Now, GLONASS is currently operational with 26 satellites; one of them is under flight test 

and one is under maintenance [29]. A picture of the GLONASS constellation is given in 

Figure 2. 

 

Figure 2. GLONASS Constellation Overview. Source: [30]. 

The space segment of GLONASS consists of about 24 active satellites nominally 

located at about 19,100 km altitude and in 11 hour-15 minute-45 second periodic orbits. 

These satellites are in three orbital planes with a 64.8-degree inclination angle (eight 

satellites per orbit). This constellation ensures that a receiver anywhere in the world can 

continuously receive signals from at least four satellites [18]. The satellites used in the 

GLONASS constellation are depicted in Figure 3 chronologically.  
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Figure 3. History of GLONASS Satellites. Source: [31]. 

The ground segment includes: a system control center; a network of five telemetry, 

tracking, and command centers; the central clock; three upload stations; two satellite laser 

ranging stations; and a network of four monitoring and measuring stations. As shown in 

Figure 4, different from the GPS ground segment, all stations are distributed over Russian 

territory. It is known, however, that there are also efforts to establish ground stations 

outside of Russia to improve the reliability and correctness of GLONASS [18]. 

 

Figure 4. GLONASS Ground Segment. Source: [32]. 
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As in GPS, GLONASS satellites also send signals by using three main carrier 

frequencies to provide two services: an open service with open access, and a secured 

service with authorized access. GLONASS uses Frequency Division Multiple Access 

(FDMA) while GPS and GALILEO, which is described later, use Code Division Multiple 

Access (CDMA). Because of this, a GPS receiver cannot receive the GLONASS signal 

although it can receive a GALILEO signal. During a GPS-GLONASS Interoperability and 

Qualification Workshop held in 2006, work on resolving this issue was announced. As a 

consequence of these efforts, modernized GLONASS-K satellites contain CDMA with the 

L3 signal. This way GLONASS and other GNSS systems are targeted to be mutually 

operable [34]. A summary of the characteristics of GLONASS signals is given in Table 1. 

Table 1. Summary of GLONASS Signals and Service Types 

Signal 
Carrier 

Frequency 
(MHz) 

Modulation Data Rate 
(bps) 

Service 
Type 

L1 1,600.995 FDMA 125 
Open 

Authorized 

L2 1,248.06 FDMA 250 
Open 

Authorized 

L3 1,202.025 
CDMA  

(with modernized 
GLONASS-K satellites) 

100 Open 

 

c. GALILEO 

GALILEO is a cooperative project of the ESA and the EU to provide position 

information with high sensitivity from GPS and GLONASS. The main goal of the 

GALILEO project is that ensure Europe be independent from the United States and Russia 

in terms of navigation. Other motivating issues are to create dominance in satellite-based 

navigation systems and to encourage EU industry for the satellite navigation market [35]. 

For the GALILEO program, a phased approached is applied. ESA launched the 

Galileo System Test Bed (GSTB-V1) in 2002 to develop the ground segment by using raw 
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GPS data [35]. After this step, ESA implemented the GSTB-V2 program that aimed to 

design and launch two test satellites. The first satellite of the  

GSTB-V2 program, Galileo In-Orbit Validation Element-A (GIOVE-A), launched in 

December 2005. After that, GIOVE-B launched in April 2008. This phase concluded 

successfully with the reception of GALILEO-like signals from these experimental 

satellites. GIOVE-A and GIOVE-B satellites were retired in 2012 [5], [18], [35]. 

After an early technology demonstration with the GSTB-1 and GTSB-2 programs, 

the IOV Phase started. The IOV phase began with the launching of experimental satellites 

on 21 October 2011 and concluded successfully at the end of 2013. The Full Operational 

Phase will be completed with the deployment of the whole constellation and is still 

ongoing. Currently there are 18 operational satellites in orbit and four satellites under flight 

test [35]. 

The space segment of the GALILEO constellation consists of about 30 active 

satellites, including six spares, located at about 23,222 kilometers altitude and in 

approximately 14-hour periodic orbits. These satellites are in three orbital planes with a 

56-degree inclination angle. This constellation ensures good coverage over polar regions 

as well [18].  

The ground infrastructure of GALILEO includes: two Control Stations, five 

Mission Uplink Stations, six Tracking and Command Stations, and 16 Sensor Stations 

worldwide, as shown in Figure 5. 
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Figure 5. GALILEO Ground Segment Overview. Source: [36]. 

GALILEO will provide five different kinds of service: Open Service (OS), 

providing PNT information for all users at no charge; Public-Regulated Service (PRS), 

which provides PNT information for users who have receivers equipped with a PRS 

security module; Commercial Service (CS), which will be capable of transmitting external 

data to all users; Search-and-Rescue Service (SAR), which is designed to support the 

COSPAS-SARSAT Program; and Safety-of-Life (SOL) Service, which is for aviation 

applications [37]. Current and planned signals and the corresponding services are given in 

Table 2: 

Table 2. GALILEO Signals and Service Types 

 Signal Frequency Service 

Type 

1. GALILEO E1 1559-1594 MHz OS, PRS 

2. GALILEO E5a 1164-1188 MHz OS 

3. GALILEO E5b 1195-1219 MHz OS 

4. GALILEO E6 1260-1300 MHz PRS, CS 

5. SAR Downlink 1544-1545 MHz SAR 

6. Improves the OS performance and uses the 
same frequencies as the OS 

SOL 
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2. Regional Navigatıon Satellite Systems 

Besides the GNSS, there are a few RNSS programs that offer independent PNT 

services over a specific area at a low cost. The prominent feature of such systems is low 

deployment and life cycle cost due to the limited number of satellites. The Indian Regional 

Navigation Satellite System, which is owned by India, the Quasi-Zenith Satellite System, 

which is owned by Japan, and BEIDOU-1/COMPASS, which is owned by China, are 

examples of RNSS programs. This section discusses the current and future GNSS 

programs. 

a. Indıan Regıonal Navıgatıon Satellıte System (IRNSS) 

The IRNSS is a regional positioning system that covers the entire 1,500–2,000 

kilometer area surrounding India, which is owned by the Indian government [38]. The 

project was launched in 2006 by the Government of India, which aimed to finish the project 

in 2012. The last IRNSS satellite was launched in 2016, and became operational in June 

2016. After the IRNSS constellation reached completion, India’s Prime Minister Narendra 

Modi renamed the system the Navigation Indian Constellation, or NAVIC [9]. 

The IRNSS architecture consists of three primary segments, like others: space, 

ground, and user segments [8]. The space segment of IRNSS consists of seven satellites 

placed at geostationary and geosynchronous orbits. The geosynchronous satellites have 29-

degree inclination angles. This inclination provides coverage around lower and higher 

latitudes [8], [18], [38]. Detailed information about IRNSS satellites is given in Table 3. 

Table 3. IRNSS Satellites 

Satellites Orbit type Launch Date Degree Inclination 

IRNSS-1A GSO 01 Jul 2013 55 29 

IRNSS-1B GSO 04 Apr 2014 55 29 

IRNSS-1C GEO 15 Oct  2014 83 0 

IRNSS-1D GSO 28 Mar 2015 111 29 

IRNSS-1E GSO 20 Jan 2016 111 29 
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Satellites Orbit type Launch Date Degree Inclination 

IRNSS-1F GEO 10 Mar 2016 32 0 

IRNSS-1G GEO 28 Apr 2016 132 0 

IRNSS-1H Launch Failure 

IRNSS 1I GSO 12 Apr 2018 55 28.8 

 

The IRNSS architecture is depicted in Figure 6. Note that the ground segment of 

IRNSS consists of different kinds of stations and facilities to support the maintenance and 

operation of IRNSS satellites. These ground segment elements are: 

• IRNSS Spacecraft Control Facility (SCF) 

• ISRO Navigation Centre (INC) 

• IRNSS Range and Integrity Monitoring Stations (IRIMS) 

• IRNSS Network Timing Centre (IRNWT) 

• IRNSS CDMA Ranging Station (IRCDR) 

• Laser Ranging Stations (ILRS) 

• IRNSS Data Communication Network (IRDCN) [8], [39] 
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Figure 6. IRNSS Architecture. Source: [39]. 

The IRNSS constellation transmits two signals in the L5 and S bands for two 

operational services, which are Standard Positioning Service (SPS) and 

Authorized/Restricted Service (RS) [18]. The Restricted Service uses encryption 

technology and is only available for authorized users. Detailed information about 

transmission frequencies and related services is given in Table 4.  
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Table 4. IRNSS Signals and Service Types 

 Signal Frequency (MHz) Bandwith (MHz) Service Type 

1. 
L5 1,176.45 24 

SPS 

2. RS 

3. 
S 2,492.028 A6.5 

SPS 

4. RS 

 

b. Quası-Zenıth Satellıte System (QZSS) 

QZSS, developed by the Japanese Space Agency (JAXA), is a PNT system as well 

as an SBAS system that is planned to operate in full compliance with GPS. The main 

objectives of QZSS are to broadcast GPS-interoperable and augmentation signals for users 

around Japan and Oceania/Australia [18], [40]. 

Established in June 2002, this program is the coordinated effort of four different 

ministries of the Government of Japan [41]. The first satellite Michibiki, which means 

“guiding” or “showing the way,” was launched on 11 September 2010. At that time, full 

operational capability was aimed to be completed by 2013. The last satellite launched, 

however,  on 09 October 2017, and in April 2018 the four-satellite constellation finally 

became operational [42]. 

Because Japan is located at a high latitude, GNSS signals generally come with a 

relatively low elevation angle. These signals are often obstructed in areas with narrow 

streets and elevations surrounded by buildings, and their strength weakens. Moreover, for 

uninterrupted signals in countries like Japan, where high buildings are numerous, satellites 

must be on top of Japan. These two motivating elements dictate the use of a quasi-zenith 

trajectory for this system [43]. 

Quasi-Zenith Orbit (QZO), which is used in QZSS, is typical geo-synchronus orbit 

(GSO) that has eccentricity and inclination. These two orbital parameters provide at least 

one satellite above Japan during seven to nine hours constantly. On the other hand, the 
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satellite will not always propogate signals directly overhead (zenith), so the system is called 

“quasi-zenith” [44]. 

After the first satellite launched in 2011, the three other satellites followed 

beginning in 2017. Three of the four satellites have QZO orbits and one of them is in GEO. 

The satellite that has a GEO orbit is located at 127 E longitude. The three satellites located 

in QZO are 130 degrees apart from each other in terms of their planes [18]. The nominal 

parameters of QZO are given in Table 5. 

Table 5. QZSS Satellites Nominal Orbital Parameters 

Orbit Parameter Nominal Allocation Tracking Range 

Semimajor Axis (A) 42,164 km - 

Eccentricity 0.075 0.075 ± 0.015 

Inclination 40 degree 36 ̴ 45 degree 

Argument of Perigee 270 degree 270 ± 2.5 degree 

RAAN 117 ± 130 degree - 

Central Longitude 136 degree 130 ̴ 140 degree 

 

The ground segment of QZSS includes: two master control stations, which are 

located in Hitachi-Ota (main) and Kobe (redundant); seven satellite control stations, which 

are mostly located at the southern part of Japan and were set up at the end of 2016; and 

more than 30 monitor stations all around the world [10], [18].  

Considering QZSS services, QZSS has three main functional capabilities [10]:  

• GPS Complementary: Navigation signals L1-C/A, L1C, L2C, and L5 

sent from high elevation to improve the time percentage of positioning 

availability.  

• GNSS Augmentation: Navigation Signal L1S has sub-meter 

augmentation data and L6 has centimeter class augmentation data. 
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• Messaging Service: This service is available on L1S receivers. This 

service is planned for transmitting disaster and crisis related information to 

the users, for example, in earthquakes and tsunamis, terrorist attacks, and 

evacuation orders. For these services, seven different signals are used in 

four different main carrier frequencies [18], as given in Table 6. 

Table 6. QZSS Signals and Service Types 

 
Signal 

Frequency  

(MHz) 

Bandwith 

(MHz) 
Service Type 

1. L1 C/A 

1575.42 30.69 

Navigation 

2. 
L1S 

Augmentation (sub-meter) 

and Messaging 

3. L1C Navigation 

4. L2C 1227.6 30.69 Navigation 

5. L5 
1176.45 24.9 

Navigation 

6. L5S Navigation 

7. L6 1278.75 42 Augmentation (cm class) 

 

c. BEIDOU-1/COMPASS 

This program was established by the Chinese government to contruct GNSS for 

PNT and short message services for users anywhere and anytime in the world. As seen in 

Figure 7, the development of the whole system is divided into two main steps and planned 

in three phases [45]. 
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Figure 7. BEIDOU/COMPASS Timetable. Source: [45]. 

Regional Radio Determination Satellite Service (RDSS) is an experimental 

regional PNT system consisting of three satellites at GEO (80E, 110.5E, 140E), designed 

to be the basis for the COMPASS Navigation System. Another name for Regional RDSS 

is BEIDOU-1, with three satellites launched between 2000 and 2003. This system’s 

operational area is between 70E-140E and 5N-55N. With this constellation, the system has 

better than 20-meter positioning accuracy [45]. 

In the second phase (BEIDOU-2), Radio Navigation Satellite Service (RNSS) was 

established at the end of 2012 by using 14 satellites. Five of the satellites are located at 

GEO (80E, 58.75E, 110.5E, 140E, 60E); another five of them have inclined 

geosynchronous orbits (IGSO), locating them at 118E and 98E with a 55-degree inclination 

angle. This system covers an area extending 55°S-55°N and 55°E-180°E. Regarding the 

system’s performance, RNSS is more accurate than the previous one, with positioning 

accuracy of less than 10 meters, velocity measurement accuracy less than 0.2 meters per 

second, and timing accuracy of less than 50 nanoseconds [18]. 

The Global RNSS phase (COMPASS) is under construction and its expected 

completion is by the end of 2020. At the end of 2020, the system will have five GEO, three 

IGSO, and 27 MEO satellites in three types of orbits for global coverage [7], [18]. 

The COMPASS/BEIDOU System has two different services at the global or 

regional level [18]: 
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• Open Service: This service provides free positioning, velocity, and timing 

services for all users at anytime. 

• Authorized Service: This service is also divided into two kinds of 

services, which are wide area differential service and short-message 

communication service. Overall, Authorized Service provides safer PNT 

and velocity information. For these services, signals that are used by the 

COMPASS/BEIDOU system are given in Table 7. 

Table 7. BEIDOU Signals and Service Types 

Signal Carrier Frequency 
(MHz) 

Bandwith 
(MHz) Service Type 

B1 1,575.42 
1.023 Open 
2.046 Authorized 

B2 1,191.795 10.23 Open 
B3 1,268.52 10.23 Authorized 

 

The ground segment of the COMPASS/BEIDOU System is planned to have 

control, upload, and monitor stations.  

D. GNSS SYSTEMS MEASUREMENTS ERRORS 

All GNSS systems have space, ground, and control segments, and these segments 

communicate with each other by using electromagnetic waves. Among the GNSS 

segments, electromagnetic (EM) waves travel millions of kilometers and pass through 

different mediums. This travel causes some measurement errors, but this is not the only 

source for the errors. There are three main sources for GNSS errors: 

1. Clock-Related Errors  

Precise time information is very important for measuring position in GNSS ystems. 

Thus, there are very precise and expensive atomic clocks on satellites. On the other hand, 
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clocks on both the satellite and user segment drift from system time. These drifts cause 

measurement errors, and they can be grouped as follows [17]: 

• Satellite Clock Error 

• Receiver Clock Error 

• Intersystem Biases 

• Signal Propagation Errors 

• Sagnac Effect: This is an error caused by Earth’s rotation during the travel 

of EM waves among the satellites and the ground segment. 

• Ionospheric Errors: The effect of ionosphere density on the GPS signal is 

not known in advance because of its regional and temporal changes. 

• Troposphere Errors: These errors are a fault that is a function of air 

temperature, air pressure, and humidity in the air. 

• Multipath Errors: These are the mistakes caused by signals from Earth, 

such as those from water deposits or signals reflected from buildings. 

2. System Errors 

• Satellite Orbital Errors (Ephemeris Errors): These are mistakes that 

originate from different gravitational forces on the GNSS satellites. 

• Receiver Noise: This is the typical noise that can be found in all RF 

receiver sides and caused by antennas and cables (generally considered as 

white noise). 

3. Intentional Error Sources 

• Selective Availability: These are the errors introduced to the system in 

order to prevent the effectiveness of the Navigation Satellite System from 

being at the same level for each receiver. 
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• Signal Jamming: This is inntentional signal interference for GNSS signal 

degradation. 

• Signal Spoofing: This is sending a fake signal to a receiver for spoofing. 

Signal Jamming and Signal Spoofing terms are related to Electronic 

Warfare. 

E. DIFFERENTIAL NAVIGATION SATELLITE SYSTEM 

Differential Navigation Satellite Systems are systems that operate with the principle 

of correlating errors between similar receivers. Sources of error in two receivers close to 

each other are almost identical. If the position of one of the receivers is fully known, error 

correction of the navigation satellite system can be calculated. These calculated corrections 

can then be applied to the other receiver to improve the performance of the measurements 

made. With this type of satellite system, it is possible to achieve centimeter-level accuracy 

[46].  

Two similar receivers close to each other have the same Satellite Time Error and 

Controlled Access error, Ephemeris error, Ionospheric error, and Tropospheric error. The 

same Satellite Clock fault and Controlled Access fault through the Differential Navigation 

Satellite System are completely recovered while similar errors are reduced. On the other 

hand, different receiver noise and signal reflections are being added and increased. While 

the receiver noise can be reduced with a better design, the error caused by the signal 

reflection can be reduced by the antenna-based approach, which centers on designing 

antennas more sensitive to the Right-Hand Circular Polarization Signals (referred to as 

GNSS Polarization) than Left Hand Circular Polarization Signals. Conversely, signal 

reflection error can also be reduced by a receiver-based approach that increases the 

resolution of the receivers’ code discriminator. 

F. AUGMENTATION SYSTEMS 

Applications of the studies on Global Navigation Satellite Systems to national and 

international programs are generally concentrated on the regional improvement of the 
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satellite signal. There are three points to be considered when the desire is to improve the 

satellite signal. 

• Reliability 

• Accuracy 

• Availability 

Reliability is the timely notification of faulty navigation solutions to the user. 

Accuracy is the difference between actual values and measured navigational values. 

Availability means that navigation solutions can be reached whenever the user desires. 

Terrestrial networks are being constructed from receiving stations in the context of 

studies to improve the navigation satellite signal regionally. In these stations, where 

geographical locations are known precisely, the error values of the signals from the 

satellites are calculated and a reference signal is transmitted to the region of interest to be 

used to increase the reliability and availability of the data. 

Different solutions are used at the point of publication of the reference signals. The 

most important of these is the Ground Based Augmentation Systems (GBAS). These 

systems broadcast the reference signal to the region of interest via radio stations. These 

radio stations can broadcast in the Very High Frequency (VHF) or Ultra High Frequency 

(UHF) band. The disadvantage of these systems is that they are limited to the area where 

they can broadcast.  

In addition to terrestrial lines and relays, SBAS, such as satellites that are orbiting 

at GEO or HEO, are used to provide a wider coverage area. SBAS signals are sent via 

special communication equipment placed on general purpose public and commercial 

communications satellites. 

There are many completed and ongoing SBAS studies all around the world due to 

the low cost and faster deployment of these systems. Areas of interest for current and 

planned SBAS systems are highlighted in Figure 8. 
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Figure 8. Current and Planned SBAS Systems. Source: [11]. 

1. Wide Area Augmentation System (WAAS) 

The Wide Area Augmentation System (WAAS) is a system that ensures the 

correctness, reliability, and accessibility of location information by improving GPS 

performance. The most important advantage of WAAS is its low cost. Prior to WAAS, the 

U.S. Federal Aviation Administration (FAA) had undertaken several ground-based 

navigation systems.  

The FAA has been maintaining many different ground-based navigation systems. 

It was concluded that a single system was needed to replace this collection of ground-based 

navigation systems and be used more cost effectively. GPS alone, however, cannot provide 

Category-I (CAT-I) accurate approach information to aircraft in terms of accuracy, 

reliability, and accessibility. Thus, WAAS was considered as a solution [47]. 

In WAAS implementation, reference receivers with specific distances between 

them are located within U.S. borders. GPS information is collected by these reference 

receivers and sent to a center where system faults are calculated. Through this center, the 

correction information is sent to two satellites in GEO, and to all users via these satellites. 

WAAS was fully deployed in July 2003 and put into service in December 2003 [48]. 
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2. European Geostationary Navigation Overlay Service (EGNOS) 

EGNOS, which is similar to WAAS of the United States, is a project launched by 

the European Space Agency, the European Union, and EUROCONTROL to provide GPS 

service with increased accuracy and validity. On 01 January 2009, the European 

Commission declared that EGNOS officially went live. The system consists of 40 Ranging 

and Integrity Monitoring stations (RIM), four Mission Control Centers (MCC), six 

Navigation Land Earth Stations (NLES), and three satellites located at GEO. Within 

EGNOS, Open Service was put implemented on 01 October 2009, and Safety of Life 

Service was activated on 02 March 2011 [18], [49]. 

3. GPS-Aided GEO-Augmented Navigation System (GAGAN) 

As mentioned earlier, GAGAN is a satellite-based augmentation system intended 

to improve the performance of the NAVSTAR GPS system by sending reference signals. 

The GAGN project is run by the Government of India and the estimated budget is $170 

million. The aim of the project is to provide navigation services at every stage of the flight 

in the Indian and adjacent airspace. The system consists of three geostationary satellites, 

15 reference stations installed throughout India, three uplink stations, and two control 

centers. GAGAN is compatible with other GPS-based SBAS systems, such as WAAS, 

EGNOS, and MSAS as well. GAGAN was certified in December 2013 by the Directorate 

General of Civil Aviation (DGCA) in India [18], [50]. 

4. The Multi-Functional Transport Satellite (MTSAT) Satellite-Based 
Augmentation System (MSAS)  

MSAS NAVSTAR is a satellite-based support system designed to improve 

positioning accuracy derived from GPS. The purpose of the system developed by Japan is 

to provide positioning information in the vertical and horizontal direction with a precision 

of 1.5 to 2 meters. The system consists of two GEO satellites whose names are MTSAT-1 

(140E) and MTSAT 2 (145E), two master control stations (one at Kobe and one at 

Hitachioota), two monitoring and ranging stations (one in Australia and one in Hawaii), 

and four ground monitoring stations (at Sapporo, Tokyo, Fukuoka, and Naha). The system 

has been used in the aviation industry since September 2007 [18]. 
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5. The System For Differential Corrections and Monitoring (SDCM) 

SDCM, which is planned to be Russia’s satellite-based augmentation system, will 

provide real-time differential corrections for GLONASS and GPS signals. The system 

consists of three GEO satellites, whıch are the Luch-5A (launched in 2011 at 167E), Luch-

5B (launched in 2012 at 16W), and Luch-5V (launched in 2014 and placed at 95E), along 

with 24 reference stations in Russia and eight reference stations abroad. By the end of 2018, 

Russia’s plan is to cover all Russian territory with L1/L5 and precise positioning service [18]. 

6. Other SBAS Systems 

According to [11] and other public resources, there are a few SBAS studies 

including the Chinese Satellite Navigation Augmentation System (SNAS), and the 

South/Central America and the Caribbean SBAS initiative (SACCSA). In Malaysia a 

future SBAS system is planned, and there is an Africa-European Union strategic 

partnership, as well as an EGNOS extension to the Africa-Indian Ocean (AFI) Region. It 

is difficult, however, to find reliable information sources about these planned project 

during this compilation.  
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III. NEED FOR A REGIONAL NAVIGATION AND TIMING 
SYSTEM IN TURKEY AND CURRENT CAPABILITIES 

Space technologies have an important role in accelerating the development of 

countries and in increasing the quality of people’s lives. Therefore, in the field of space 

sciences and space technologies, studies are rapidly increasing all over the world. Ever 

since the launch of the Sputnik-1 satellite, space exploration has become a world-class 

competition. Moreover, space science and techology has become a shining industry that 

provides a number of benefits to countries, especially in the area of defense. Developments 

in space technologies have enabled people to get to know others who inhabit the planet and 

the atmosphere that surrounds it. For this reason, space technology has fostered socio-

economic development, new business opportunities, and fields of expertise, and ithas 

opened new global markets. As countries have gained political and military advantages in 

space, they have also gained greater prestige in the international arena. 

With the use of satellites, countries have also taken great steps in the acquisition of 

scientific data and in matters directly related to human life. The desire to monitor the 

physical changes that take place on the Earth and, in particular, to overcome the difficulties 

in obtaining data from regions beyond the borders of one’s own country, are addressed by 

satellite technology. In this context, earthquakes and floods, forest fires, and landslides can 

be monitored by satellites by developed countries. Research during space studies also 

contributes to the creation of many innovations that facilitate the daily life of asociety, and 

the findings are transformed into consumer technologies that provide additional comfort 

and convenience in everyday life. In this chapter, information about Turkey’s space assets 

and space studies are introduced, and areas in which it can be developed, particularly in 

terms of regional navigation and timing satellite technology, are considered.. 

A. CURRENT CAPABILITIES 

From the beginning of the Space Era, Turkey has aimed to accomplish a goal in 

space science and technology. As a result of this, several satellites have been owned by 

Turkey for years. In this section, satellites owned by Turkey are discussed.  
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1. Communication Satellites 

As countries worldwide have been rapidly developing their space science and 

technology, Turkey began by using Iranian and Yugoslavian stations in 1968 to meet its 

communication needs from space. Subsequently, Turkey met its communications needs by 

renting transponders from INTELSAT satellites. TURKSAT-1B became the first Turkish-

owned satellite in 1994, and its second satellite, TURKSAT-1C, went into orbit in 1996. 

In this section of the thesis, Turkish-owned communication satellites are introduced 

chronologically in three parts, which are Endof-Life Satellites, In-Orbit Satellites, and 

Ongoing Projects. 

a. End of Life Satellites 

The following paragraphs describe the earliest satellites launched by Turkey. 

(1) TURKSAT 1B 

Turkey’s first satellite to reach orbit was TURKSAT 1B, which was launched on 

an Ariane 4 rocket in 1994, successfully served for 12 years between 1994 and 2006. (Its 

predecessor, the Turksat 1A, failed to reach orbit due to a fault in the launch vehicle.) The 

TURKSAT 1B satellite was developed by the French company Alcatel Alenia Space 

Industries and covered Turkey, Europe, and the Middle East. The location of its orbit was 

31 degrees East Longitude [51]. 

(2) TURKSAT 1C 

To serve Turkey, Europe, and the Middle East simultaneously, TURKSAT 1C 

launched in 10 July 1996 on an Ariane 4 rocket. Like TURKSAT 1B, TURKSAT 1C was 

also developed by France’s Alcatel Alenia Space Industries. This satellite’s orbital location 

was 31 degrees East Longitude during the orbital tests and shifted to 42 East Longitude. 

After taking over all broadcast traffıc on TURKSAT 1B completely, it returned to 31 

degrees East Longitude for its mission. The TURKSAT 1C satellite completed its mission 

on 23 September 2010 [51]. 
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(3) TURKSAT 2A 

The TURKSAT 2A Satellite was placed in the same position with the TURKSAT 

1C satellite, which serves 42 degrees East Longitude. The TURKSAT 2A satellite was 

developed by EURASIASAT, a consortium established between Turk Telekom and French 

Aerospatiale. TURKSAT 2A was launched in 10 January 2001 and served for 15 years 

until 27 September 2016 [51]. 

b. On-Orbit Satellites  

In the following paragraphs, the Turkish satellites currently in service are described. 

(1) TURKSAT 3A 

TURKSAT 3A was launched on an Ariane 5 rocket at Kourou Guyana Space 

Center on 13 June 2008. This satellite, which serves at 42 degrees East, has a bandwidth 

of 1296 MHz. Its operational life is designed as 20 years. Therefore, TURKSAT 3A has a 

25 percent longer service life than previous satellites. TURKSAT 3A is currently on active 

duty, and it serves not only for communication but also TV broadcasting [52].  

(2) TURKSAT 4A 

On 7 March 2011 a contract was signed with Japanese company Mitsubishi Electric 

Corporation (MELCO) for the supply of TURKSAT 4A and TURKSAT 4B 

communication satellites. The TURKSAT 4A communication satellite was launched on 14 

February 2014 on a Proton rocket from the Baykonur Space Base in Kazakhstan. The 

TURKSAT 4A Ku-band channel covers Turkey, North Africa, Europe, the Middle East, 

Asia, and sub-Saharan Africa regions. The Ka frequency band is also used on the satellite. 

Launching of the TURKSAT 4A satellite to replace TURKSAT 2A resulted in increased 

communication capacity [52]. 

(3) TURKSAT 4B 

The TURKSAT 4B communication satellite was successfully launched on 16 

October 2015 from the Baykonur Space Base in Kazakhstan. TURKSAT 4B has a 

bandwidth of 3400 MHz, and the satellite’s location marked the first time that Turkey used 



36 

the position of 50 degrees East. TURKSAT 4B covers Turkey, Africa, Europe, the Middle 

East, and the west of China. In addition to TV broadcasting in the Ku frequency band, the 

TURKSAT 4B communication satellite is designed to provide high speed and low cost 

Internet access services with spot coverage in the Ka frequency band [52]. 

c. On-Going Projects 

The TURKSAT 5A satellite is planned to be put into service in 2020 and 

TURKSAT 5B satellite will be put into service in 2021. It is foreseen that the TURKSAT 

6A communication satellite, which will be manufactured in Turkey at the Satellite Systems 

Integration and Test Center (USET), will be launched into space in 2020 [53]. 

2. Remote Sensing Satellites 

Remote sensing is a way of gathering information about location by using special 

detectors according to the features of the target. Remote sensing satellites are useful 

detectors for intelligence services to get data from contested or access denied areas. In this 

section, Turkey’s current and ongoing remote sensing capabilities from space are 

discussed. 

a. BILSAT 

BILSAT 1, jointly produced by TUBITAK UZAY and British Surrey Satellite 

Technology Limited (SSTL), was launched on 27 September 2003. The cost of the satellite 

is $ 13.3 million and its task life is planned as 15 years. The BILSAT project was conducted 

for starting, developing, and supporting small satellite technology. In 2006, the BILSAT 

satellite was shut down due to a malfunction in the battery cells [54]. 

b. RASAT 

RASAT is the second remote sensing satellite owned by Turkey after BILSAT. 

RASAT was the first satellite designed and manufactured in Turkey. RASAT has a high-

resolution optical imaging system and new modules designed and developed by Turkish 

engineers.  
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RASAT, launched from Russia on 17 August 2011, is located in a sun-synchronous 

circular orbit at an altitude of 700 kilometers. RASAT can take images from all over the 

world. It has 5-meter panchromatic and 15-meter multi-band spatial resolution using a 

pushbroom camera. RASAT, which has a design life of three years, completed its seventh 

year in orbit [55]. 

c. GOKTURK-1 

The aim of the GOKTURK-1 program is to provide high-resolution images for 

military intelligence from any region in the world without a geographical restriction. At 

the same time, another objective of this satellite system is to support many civilian 

activities, such as control of forest areas, follow-up of illegal construction, damage 

detection as soon as possible after natural disaster, annual product detection, and 

production of geographical map data. In addition to these objectives, a satellite installation, 

integration, and test center will be established according to the international standards 

whereby the integration and testing of all satellites up to five tons can be carried out in 

Turkey. 

The contract for the GOKTURK-1 project was signed on 13 July 2009 between the 

Turkish Ministry of Defense, the Undersecretariat for Defense Industries, and 

TELESPAZIO and entered into force on 19 July 2009. In the project, TELESPAZIO was 

the main contractor and TUSAS participated directly in the work packages for which it was 

responsible to TELESPAZIO. Apart from direct participation, some components of the 

GOKTURK-1 satellite were produced by TAI. 

The GOKTURK-1 satellite was launched from the Korou Space Base on 26 

December 2016 on a Vega rocket. The program cost was 250 million Euro. GOKTURK-1 

is located in a sun-synchronous circular orbit at an altitude of 700 kilometers [56]. 

d. GOKTURK-2 

The GOKTURK-2 satellite is intended to be the first national ground observation 

satellite designed and manufactured using TUBITAK resources. The Project Support 

Agreement of the GOKTURK-2 project was signed on 13 April 2007 by the Turkish 
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Ministry of National Defense, TUBITAK, and TUBITAK UZAY-TUSAS Joint Venture. 

The objectives of the GOKTURK-2 project are to develop technologically specialized 

manpower and infrastructure for space and satellite systems, and to meet the observation 

and research needs of public institutions and organizations with national capabilities. 

The GOKTURK-2 satellite pre-shipment tests were completed at the TAI facilities, 

and the satellite was then sent to the Jiuquan Launch Center of the People’s Republic of 

China. GOKTURK-2 was launched into space on 18 December 2012. The first signal from 

the satellite, which was placed into mission orbit after 12 minutes, was received after 86 

minutes. The commissioning process was completed and the images taken by GOKTURK-

2 satellite were then downloaded to the ground station in Ankara [57]. 

GOKTURK-2 is located in a sun-synchronous circular orbit at an altitude of 686 

kilometers. The sensor on the satellite has 2.5-meter resolution [58]. 

e. GOKTURK-3 

The goal of the GOKTURK-3 project is to develop an observation satellite with a 

Synthtetic Aperture Radar (SAR) payload that can operate continuously. This is an ongoing 

project carried out by the Undersecretariat for Defense Industries, and the project contract 

has not yet been signed.  

B. NEED FOR A REGIONAL NAVIGATION AND TIMING SYSTEM IN 
TURKEY 

Precise position information, which is the product of GNSS systems, is being used 

in many fields with the development of technology. Enabled by GNSS, precision-guided 

munitions and cruise missiles can hit their targets. In addition, unmanned aerial vehicles 

need GNSS systems as a key navigation aid. 

Not only is its navigation feature important, but the timing function also provides 

critical information for military communication and link systems such as frequency 

hopping systems, Link-16 and Link-22. Nowadays, timing information is crucial for secure 

communication.  
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Furthermore, since the SA feature was discontinued in 2001, the error margin that 

could be added to these systems can cause irreparable results. All countries that do not have 

GNSS systems should always consider the existence of spoofıng. 

Currently the satellite systems owned by Turkey serve only two areas: 

communication and remote sensing. After achieving independence in communication and 

remote-sensing missions, the next critical self-sufficient mission area is PNT. 

Because of the inherent impact on national security, most countries try to be 

independent in this technology. Yet, is the high cost of space-based systems pose a 

challenge for developing or non-space faring countries. To decrease the cost of a PNT 

constellation, some nations have developed regional (RNSS) rather than globally based 

systems. Thus, in the next chapter, a proposed RNSS aimed to provide precise PNT 

information for Turkey continuously is simulated. 
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IV. MODELING AND SIMULATION FOR TURKEY 

This chapter of the thesis applies similar architectures of the GNSS constellations 

presented in the literature review chapter, and evaluates their performance as a possible 

solution for a Turkey GNSS system. The method uses STK simulation and Dilution of 

Precision (DOP) as a parameter for evaluating the accuracy of the system.  

A. DILUTION OF PRECISION  

As mentioned in Chapter II, the performance of a GNSS is based on three factors: 

reliablity, accuracy, and availability. DOP gives insight to GNSS users about the accuracy 

of GNSS systems by showing the impact of distributed visible satellite geometry. 

For accurate GNSS calculations, visible satellites should be distributed in the sky 

with wide angular separation. This angular separation results in low DOP value, which 

means the receiver can calculate its position more accurately. On the other hand, visible 

satellites distributed with low angular separation in the sky causes high DOP values, which 

means weak geometry for accurate GNSS calculations. 

Mathematically, the DOP value is a ratio between two calculated standard 

deviations: pseudorange and a specific parameter of calculation, such as vertical, 

horizontal, time, and position. For example, horizontal DOP (HDOP) is the ratio between 

the standard deviation of pseudorange and the standard deviation of the horizontal position 

component of the receiver. Also there is a Geometric DOP, which includes all of the 

specific parameters in its calculation. According to the components of the position/time 

solution, there are five different kinds of DOP: Position Dilution of Precision (PDOP), 

Horizontal Dilution of Precision (HDOP), Vertical Dilution of Precision (VDOP), Time 

Dilution of Precision (TDOP), and Geometric Dilution of Precision (GDOP). 

For this analysis, the descriptions of the DOP values are given in Table 8, which is 

taken from [59]. 
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Table 8. DOP Value Taxonomy. Source: [59]. 

DOP Value Rating Description 

1 Ideal This is the highest confidence level to be used for 
applications demanding the highest possible precision at 
all times. 

2–3 Excellent At this confidence level, positional measurements are 
considered accurate enough to meet all but the most 
sensitive applications.  

4–6 Good This represents a level that marks the minimum 
appropriate for making business decisions. Positional 
measurements could be used to make reliable in-route 
navigation suggestions to the user. 

7–8 Moderate Positional measurements could be used for calculations, 
but the fix quality could still be improved. A more open 
view of the sky is recommended. 

9–20 Fair This represents a low confidence level. Positional 
measurements should be discarded or used only to 
indicate a very rough estimate of the current position. 

21–50 Poor At this level, measurements are inaccurate by as much as 
300 meters with a 6-meter accurate device and should be 
discarded. 

 

B. CONSTELLATION PROPOSAL 

In order to obtain location information from navigation satellite systems, at least 

three signals must be received at the same time. Due to the fact that the user’s clock is not 

sufficiently sensitive, in order to obtain the required time information at least four signals 

must be gathered from satellites at the same time. When the existing systems mentioned in 

the literature review section are examined, we find it is necessary to have a satellite 

constellation of 24 satellites in orbit in order to provide continuous coverage in the world. 

It is also understood that the installation and maintenance costs of such a system can be 

quite high. 

A regional solution for Turkey can be addressed using different approaches. The 

first of these approaches is considered to be an independent system similar to the IRNSS 

architecture introduced by India.  
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When the number of satellites needed for an RNSS and the trajectories that can be 

used are taken from the technical point of view, a study conducted in 2008 designed a 

navigation satellite system that maximized accuracy and accessibility in a region defined in 

the world by using a genetic algorithm. According to this study, a four-satellite constellation 

is not a suitable solution for a region in the middle latitudes due to an average of three-hour 

unavailability periods over that region. As a result of the analysis, it was revealed that a 

regional positioning system that would cover a region located in the middle latitudes should 

have at least five satellites and at least two of these satellites should be located at GEO. This 

suggests that the architecture of our proposed systme should include at least five satellites in 

GEO and GSO orbits [16]. 

Although the constellation of the IRNSS satellite system is ideal for the latitudes 

that include India, it is not ideal for covering the latitudes of Turkey. This constellation is 

more suitable for the equator and areas near the equator. If the IRNSS system is applied to 

Turkey’s geography, the inclination of the GSO orbit must be at least 40 degrees to cover 

middle latitudes. In this case, the satellites would spend less time over Turkey due to the 

symmetry of the orbiting satellite and hence more time in the Southern hemisphere. This 

effect can be somewhat mitigated by using an eccentric orbit (that is, QZO) with the apogee 

located over Turkey.  

QZSS itself is not actually a fully independent regional navigation satellite system. 

Instead, QZSS has been proposed to strengthen and support the existing GPS system within 

the borders of Japan. Because GPS signals usually come with a low angle of inclination, 

these signals are often blocked in narrow streets and elevated spaces surrounded by 

buildings, and their strength is weakened. For uninterrupted signals, satellites must be more 

directly overhead in countries that have many tall buildings like Japan. With three satellites 

planned to be placed at the QZO with a special orientation, it is planned that the receivers 

will receive the signals more vertically and the GPS signals will be improved. Furthermore, 

because there is always one satellite at zenith, QZSS is very suitable in terms of GDOP 

efficiency for countries that are located at high latitudes like Japan and Turkey. 

In satellite-based positioning systems, satellite layout is important in order to get 

full efficiency. When satellites are placed in the sky as wide as possible and spread out, the 
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inefficiency due to geometric effects is also reduced. For Turkey that locatation is between 

36 and 42 degrees North latitudes, and an IRNSS or QZSS architecture does not provide a 

favorable geometry in this case. By contrast, a more efficient geometry can be obtained by 

designing a constellation that accommodates the characteristics of both IRNSS and QZSS. 

In order to calculate position, receivers must see at least four satellites scattered 

with good geometry. In this study, a combination of the IRNSS and QZSS solution and 

recommendations from [16] were analyzed. As a result of this, an eight satellite 

constellation is proposed. Constellations with various numbers of satellites can also be 

studied, but the solution is already known. For example, decreasing the number of satellites 

in the constellation will decrease the cost but increase the DOP value, which means poor 

accuracy. On the other hand, increasing the number of satellites in the constellation will 

increase the cost but decrease the DOP value. That is why an eight satellite constellation is 

proposed and studied as an indegeneous solution for RNSS over the land of Turkey.  

For a deeper look, six of the satellites  should be located at two separate QZO orbits 

(each of them has three satellites) so that a satellite is always located around zenith. The 

remaining two satellites shoud be located in GEO orbit. This satellite constellation has only 

one more satellite than India’s IRNSS system. In addition, this constellation will be the 

best for a region at high latitudes such as Turkey. The proposed constellation is shown in 

Figure 9. 

 

Figure 9. Proposed Constellation for Turkey 
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One of the critical points of the proposed architectural design is the positioning of 

two satellites in the GEO orbit. According to the international use of GEO orbits, Turkey 

can use 30, 42, and 45 degrees East longitude. The GEO satellites in the proposed 

constellation, however, have been deployed at 15 and 60 degrees East longitudes in order 

to place them as far as possible from each other and to obtain a better DOP efficiency. 

The remaining six satellites are placed in QZO orbits. The important motivation for 

using QZO orbits is that Turkey is located at approximately the middle of the northern 

hemisphere. As mentioned previously, the QZO orbit is a good solution that ensures that 

one satellite is always at zenith. The use of two QZO orbits in this constellation ensures 

that two satellites are always at zenith. The eccentricity of the QZO orbit also provides 

slower movement when the satellites are at apogee, so access time over Turkey is increased. 

In addition, the three satellites have a 120-degree separation in Right Ascension of 

Ascending Node (RAAN) to get homogeneous separation in orbit. Technical parameters 

of the satellites used in the simulation are given in Table 9. 

Table 9. Satellite Parameters 

Satellites 
Semi-

Major Axis 
(km) 

Eccentricity 
(e) 

Inclination 
(i) 

Argument 
of Perigee 

(w) 

Right 
Ascension 

of the 
Ascending 
Node (Ω) 

True 
Anomaly 

(v) 

East-1 42164 0.17 60 270.067 321.255 0 
East-2 42164 0.17 60 270.067 81.225 224.921 
East-3 42164 0.17 60 270.067 201.225 135.082 
West-1 42164 0.17 60 270.067 332.458 279.762 
West-2 42164 0.17 60 270.067 92.458 178.912 
West-3 42164 0.17 60 270.067 212.458 76.809 
Geo_East_
60 

42166.3 0 0 0 230.673 0 

Geo_West_
15 

42166.3 0 0 0 185.673 0 

 

This constellation is proposed to provide PNT for the specific region covering 

Turkey. The service area is defined as shown in Figure 10. This service area extends from 

northwest of Iceland to northwest of Malaysia. 



46 

 

Figure 10. Selected Service Area for Proposed Constellation 

C. STK PROGRAM 

STK is a simulation program created by Analytical Graphics Inc. (AGI). 

Approximately 1,000 global governmental or commercial organizations and associations, 

such as NASA, JAXA, ESA, and Lockheed Martin use STK.  

STK is an engineering software that can be used to solve complex problems related 

to space design and space operations, as well as muti-domain problems that include land, 

sea, air, space, aircraft, UAVs, and missle systems. In this thesis I used STK to model 

satellite constellations for space operations, to present 2D and 3D visualizations, to analyze 

the relationship between the area of interest and space assets, and to create graphs and 

reports [60]. 

D. RESULTS OF STK SIMULATION 

The mission of this proposed constellation is to provide PNT service to public and 

private organizations ın Turkey and abroad, especially the Turkish Armed Forces, 

continuously in peace as well as in crisis and operational situations. The goal of the 

simulation is to model various constellations, determine whether four satellites always 

cover the area of interest, and estimate the resultant DOPs to predict the accuracy of 

position information from each constellation. 
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Initially I used N-Asset coverage analysis for the area of interest. N-Asset coverage 

analysis aims to define the number of satellites simultaneously over a region. In this 

analysis the average number of available assets over each grid point is calculated and 

analyzed. This analysis is very important for PNT systems because users always have to 

receive four signals from four different satellites to get accurate PNT information. I 

specifically used the N-Asset Coverage Figure of Merit function in STK. 2D visualization 

of the simulation is given in Figure 11, and graphs by latitude and longitude are given in 

Figure 12 and Figure 13, respectively. The number of satellites between four and eight is 

depicted in the Figure 11, where green indicates the maximum number of satellites 

available over the area of interest while yellow and red indicate the minimum number of 

satellites. 

 

Figure 11. 2D Visualization of N-Asset Coverage Analysis 
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Figure 12. Value by Latitude 

 

Figure 13. Value by Longitude 

As seen from the preceding figures, for middle latitudes in the northern hemisphere, 

especially over the land of Turkey (36N-42N latitude and 26E-45E longitude), there are 

always at least six satellites in view. For a deeper look, seven satellites are always available 

for the southern part of Turkey while six satellites are always available in the northern part 

of Turkey. These results show that this constellation can provide four different PNT signals 

from four different satellites continuously; so, the first important requirement for position 

calculation is satisfied. 

The second step is to calculate DOP values to determine the accuracy of the system. 

For this calculation GDOP value was calculated because it contains all of the components 

of individual DOPs. The program calculated the average value of GDOP over a selected 
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period of time. The time step value selected for the simulation was 60 seconds. The 2D 

visualition of GDOP analysis is given in Figure 14, and the values by latitude and longitude 

are given in Figure 15 and Figure 16, respectively. According to the legend green areas 

have a lower DOP value, which gives high accuracy for navigation solutions. It is also seen 

that small yellow and red areas representing a higher DOP value (that is, greater than 20) 

are not suitable for navigation solutions. 

 

Figure 14. 2D Visualization of GDOP Analysis 

 

Figure 15. GDOP Values by Latitude 
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Figure 16. GDOP Values by Longitude 

As seen from the preceding figures, the average GDOP values for Turkey (36N-

42N latitude and 26E-45E longitude) are always around 10, which is depicted as green. 

Similar to the N-Asset coverage analysis, the southern part of Turkey gets lower DOP than 

the northern part of the country. But it is seen from these graphs that the value is never 

above 15. This result shows us this constellation can provide PNT service at the fair and 

moderate levels depending on the user’s position. According to Table 8, the PNT 

information provided by the constellation is a rough estimate of current position. Moreover, 

as seen from Figure 14, the southern part of the service area gets more accurate information 

than the northern part.  
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS AND FUTURE WORK 

In this study, global and regional navigation satellite systems and augmentation 

systems serving the Earth have been examined. Augmentation systems, which use GPS or 

GLONASS signals, were not evaluated or proposed since the goal of this thesis was to 

establish an independent PNT system for Turkey. 

The result of this thesis proposes a constellation that is independent and cost 

effective. This constellation has eight satellites; three each in two QZO orbits and two in 

GEO orbits.  

As detailed in the previous chapter, GDOP values ranging from 8 to 15 were 

obtained modeling this constellation over the land of Turkey. The confidence levels of 

these DOP values, however, are not sufficient to obtain precise position information. This 

constellation would not be appropriate for sensitive applications, such as aircraft precision 

approaches. Therefore, for future research, the issues discussed in this study can be 

improved in order to increase the DOP values and to move forward. 

In the proposed model, QZO and GEO orbits are used to place eight satellites. In 

later studies, eight or more satellites can be analyzed by using the HEO orbit instead of 

QZO orbit to decrease DOP value. The effect of the increase in the number of satellites on 

the DOP value can also be examined. Furthermore, the use of QZO orbits in the proposed 

constellation allowed for the assumption that there will always be a satellite near zenith. 

The Digital Terrain Elevation Data (DTED) maps of Turkey and identified service areas 

can be gathered and used in simulation to analyze whether a satellite can be seen at zenith 

over mountainous areas. 

It is also worth considering that in this study only the space segment of the RNSS 

system was investigated in the identified service area. Future work could include details of 

the payloads that can be used in such a system, as well as on the placement and architecture 

of the control stations, and features of the user segment. 
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B. RECOMMENDATIONS 

Previous studies on RNSS and analysis done within the scope of this thesis 

concluded that a constellation containing a minimum of five satellites is required. To 

improve DOP accuracy from RNSS systems, it is necessary to increase the number of 

satellites. Considering the cost of a satellite is roughly estimated at $350 million, it is 

estimated that a cost of about $2 billion to $2.5 billion will be needed for the creation of an 

eight satellite RNSS architecture. This includes launch and ground segment costs and was 

estimated by comparing the cost of similar programs. The annual operating cost of such a 

system is expected to be around $150 million. 

Establishing such an architecture is a time-consuming process and is not capable of 

responding immediately to our current needs. Instead, a more accurate strategy would be 

to progress gradually to this scale using a build-up approach. I propose that the following 

approach is more constructive: 

• In the first stage, investigate interoperability conditions with an existing 

and operational differential satellite system. 

• As a next step, develop an original satellite-based augmentation satellite 

system architecture. 

• At the last stage, consider the experiences and changing needs to revise 

and define a regional navigation satellite system. 

As a result, it is considered that the development of a support system that will 

include terrestrial stations and support satellites in the architecture, and the efforts to create 

a regional positioning system with the experience and infrastructure to be gained therein, 

will be the most appropriate approach. 

Nevertheless, the most important step in the near future should be to reduce 

Turkey’s dependence on one source and increase our accessibility to global satellite 

navigation systems. For this purpose, cooperative opportunities with GLONASS and 

GALILEO should be investigated and navigation satellite receivers should be gradually 

adapted to these systems. 
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