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1. Introduction 

While it can be difficult to draw meaningful conclusions from sparse unlabeled 

data, extracting informative features carries the potential to glean understanding or 

recognize patterns that may otherwise go undetected. Many conventional machine 

learning methods require a substantial amount of data to produce reliably accurate 

results. However, it may not always be feasible to obtain plentiful data samples. A 

recent surge of interest in one-shot learning—that is, learning on one or a few 

samples—has arisen in response to this problem.1–3 The majority of these 

techniques involve supervised or semi-supervised techniques. There are many 

cases, however, in which it may not be practical to confer any labels on the data. 

Therefore, we desire an unsupervised feature detection algorithm that is able to 

operate on very few samples of unlabeled data. Superficially, dictionary learning 

satisfies these stipulations. The dictionary learning algorithm has demonstrated 

significant utility with the tasks of image classification,4 facial recognition,5–7 and 

unsupervised clustering.8 

Suppose, however, that the data contains multiple, frequently repeating patterns. 

Because conventional dictionary learning algorithms are not immune to 

translations, the resultant feature dictionary contains many nearly redundant 

patterns that are mixed phases of the same underlying feature. In the similar field 

of subsequence time series clustering, the mixed phase problem can be so extreme 

as to yield simple uninformative periodic waveforms as features.9 Thus, there is a 

need for invariance to small shifts and distortions in the dictionary.10–14 A popular 

approach is modifying the dictionary update step of the K-SVD algorithm15 to 

handle all phase shifts of the learned atoms.11,12,14 The subspace clustering 

algorithm16 can be optimized to accommodate training the dictionary on multiple 

shifted versions of the original signal.13 It is possible to reduce the computational 

complexity by using multiple layers of dictionary atoms to build a hierarchical 

graph structure of atoms with certain shift-invariance constraints.14 Ranzato et al.10 

developed a method for unsupervised shift-invariant feature extraction that 

comprises convolutional filters followed by a layer of max-pooling. Originally, this 

method was only envisioned as a pretraining optimization of features for a 

supervised classifier. In this work, we connect this method to shallow what-where 

convolutional autoencoders,17 demonstrating that the algorithm can be used for 

shift-invariant dictionary learning in both one and two dimensions. Furthermore, 

this method doubles as an effective unsupervised classifier on limited data. Various 

deep architectures of autoencoders have been employed in image segmentation and 

classification texts;18–21 our method differentiates itself by including a single 

convolutional layer that employs what-where switches.17,22 While a stacked 
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convolutional what-where autoencoder (WWAE) with small pooling size was 

shown to be less accurate in unsupervised classification than those without the 

what-where switches,22 we show that a shallow convolutional network with a larger 

max pooling size results in a versatile unsupervised classifier.  

The feature extraction methods discussed thus far capture features that are 

necessary for the reconstruction of the image after some sort of dimensionality 

reduction, denoted here as primitive features. While descriptive, there are many 

cases in which primitive features can fail to fully encapsulate the flavor of the data. 

Therefore, in this work, we use a method that captures frequently occurring groups 

of primitive features that we dub collective features. This is readily accomplished 

by clustering the intermediate activation maps of the encoding convolutional layer 

in the WWAE. The identification of collective features on the input signal leads to 

an unsupervised partial segmentation of the signal/image. Typically, the best 

performing models for semantic segmentation combine image features with object 

detectors, which can be improved upon by supervised pretraining.23 With a shallow, 

completely unsupervised model trained on a single image, we do not achieve the 

same accuracy, but our method achieves useful segmentation as a side effect of 

clustering commonly occurring feature groups.  

Throughout our analysis of the activations in the intermediate layer, we noticed an 

edge effect in the convolutional process of the WWAE when breaking the signal 

into fragments. As the filter slides along, it is not always fully contained within the 

fragment; the zero-padding here creates edges along each patch. We resolve this 

issue in a novel approach by imposing that the decoder reconstruct a smaller region 

than what was encoded—a process we refer to as overcoding. This process 

immensely improves the accuracy of our unsupervised segmentation. 

2. Theory 

2.1 Primitive Feature Extraction 

We define primitive features as those necessary for reconstruction of the input 

signal after some form of dimensionality reduction, primarily obtained through 

signal processing algorithms. Primitive features are intended to capture interesting 

parts of the data set, such as textures or repeated patterns, and provide an 

informative summary of the input signal. We present an overview of the techniques 

utilized in this report for primitive feature extraction: dictionary learning and 

shallow convolutional WWAEs. 
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2.1.1 Conventional Dictionary Learning 

Given an input signal 𝑥, the objective of dictionary learning is to compute a matrix 

𝐷 such that the original input may be closely approximated as a linear combination 

𝑥 = 𝐷𝑠 of a few atoms of the dictionary—we call 𝑠 a sparse representation of 𝑥. 

The dimension of the dictionary is equal to that of the input vector in this setting. 

For an input data set 𝑋 =  [𝑥1, 𝑥2, … , 𝑥𝑁 ], we seek to compute a dictionary that 

minimizes the error between each signal and its approximation such that the sparse 

representation satisfies a constraint. That is, we find D and 𝑠 subject to 

  min
𝐷,𝑠𝑖

∑ ‖𝑋𝑖 − 𝐷𝑠𝑖‖2
2 +  𝜆‖𝑠𝑖‖0𝑖 , (1) 

where the number of nonzero 𝑠𝑖 is ideally much smaller than the length of vector 𝑠. 

It has been shown that applying the ℓ1-norm to 𝑠 can provide an identical solution 

as shown in Eq. 1,24 this allows the problem to be solved in polynomial time. We 

also impose that each column in 𝐷, often called an atom, is a unit vector. 

Dictionary learning is typically accomplished by alternating between fixing the 

dictionary 𝐷 and sparse representation 𝑠 while minimizing the other. The best 

possible sparse representation for a fixed 𝐷 is calculated through algorithms such 

as Orthogonal Matching Pursuit (OMP)25 or Focal Underdetermined System Solver 

(FOCUSS).26 The dictionary is then updated based on this new sparse 

representation. In the Method of Optimal Directions (MOD), the sparse 

representation is held constant as 𝐷 is renormalized.27 The K-SVD algorithm15 

updates each column in 𝐷 separately and appropriately changes the relevant 

coefficients in 𝑠 to reduce the mean squared error, accelerating convergence. 

Alternatively, dictionary learning can be accomplished by assuming that signals 

generated from the same dictionary elements should lie in the subspace spanned by 

those atoms. In subspace clustering,16 the input signals are clustered based on the 

subspaces of dictionary atoms that contain them. The dictionary is then composed 

of the collection of vectors that span each of these subspaces. 

2.1.2 Shift-Invariant Dictionary Learning 

Shift-invariant dictionary learning is employed to capture local patterns that appear 

throughout a signal.11, 28 This prevents frequently appearing features from clogging 

the dictionary and multi-phase mixtures from smearing the learned features, 

allowing for a cleaner analysis of the input signal. We allow the dimension of 

dictionary atoms to be smaller than that of the input signal. Thus, we must account 

for all possible shifts of each dictionary atom 𝑑𝑗 along the input signal 𝑥𝑖; let 𝑡𝑖,𝑗 

represent the location of atom 𝑑𝑗 along the signal 𝑥𝑖. Denote 𝜏(𝑑𝑗, 𝑡𝑖,𝑗) to be the 
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vector with dimension equivalent to 𝑥𝑖 that is null everywhere except for a copy of 

𝑑𝑗 that begins at 𝑡𝑖,𝑗. Therefore, our new objective function becomes 

min
𝑑𝑗,𝑡𝑖,𝑗,𝑠𝑖,𝑗

‖𝑋 − ∑ ∑ 𝑠𝑖,𝑗𝜏(𝑑𝑗 , 𝑡𝑖,𝑗)

𝑗𝑖

‖

2

2

. (2) 

The K-SVD algorithm may be extended to solve the shift-invariant case;11,12,14 here, 

each atom is updated individually depending on the existence of overlap and 

appropriate changes are made to the corresponding sparse representation. Another 

algorithm28 updates 𝑠 through coordinate descent while fixing 𝐷. It then employs 

coordinate descent and the Lagrange dual method29 to upgrade 𝐷 while freezing 𝑠. 

The subspace clustering method may be adapted to train on multiple phase shifts of 

the input signals with an added subspace pruning phase to handle the vast amount 

of training data.13 

2.1.3 Convolutional Autoencoders 

A convolutional autoencoder follows an encoder-decoder paradigm—that is, an 

input signal is rebuilt after first being transformed into a lower-dimensional 

representation. An input signal 𝑋 is first encoded into its latent representation 𝑟. 

The latent representation of the 𝑖-th feature map is 𝑟𝑖 =  𝜎(𝑊𝑖 ∗ 𝑋 + 𝑏𝑖), where 𝑊𝑖 

and 𝑏𝑖 are the respective weight and bias vectors and 𝜎 is a (typically nonlinear) 

activation function. Recall that the convolution of two signals 𝑓(𝑡) and 𝑔(𝑡) is 

defined as 𝑓(𝑡) ∗ 𝑔(𝑡) = ∫ 𝑓(𝑡)𝑔(𝑡 − 𝑢)𝑑𝑢
∞

−∞
. The signal is then reconstructed (or 

decoded) through the following 

𝑌 =  𝜎 (∑ 𝑊𝑖′ ∗ 𝑟𝑖 + 𝑐

𝑖

), (3) 

where 𝑊𝑖′ is simply 𝑊𝑖 flipped over both dimensions. The weights are shared 

throughout the input, allowing spatial locality to be preserved. The reconstruction 

is learned through the minimization of a loss function.  

A pooling layer is often added after convolution in order to reduce the dimension 

of the feature maps and induce translation invariance. For example, max-pooling 

of the latent representations summarizes the maximum value of a rectangular 

region. Small degrees of translational invariance are imposed by this down-

sampling as small shifts in the input would not change the maximum in a certain 

region. This is beneficial when determining the presence but not exact location of 

a certain feature. Recent literature has suggested that the max-pooling layer may be 

entirely replaced by convolutional layers with larger stride with no loss in accuracy 
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in the supervised case;30 however, the features captured by these models tend to be 

tangled and incoherent, as we will demonstrate. 

In WWAEs,17,31,32 pooling layers in the encoder of an autoencoder are accompanied 

by the appropriate unpooling layer in the decoding phase. Unpooling is typically 

conducted by restoring the maximum value to the entire region from which it was 

extracted, diluting exact spatial information. To remedy this, the location (the 

“switch” or “where”) of the maximum value obtained from max-pooling (the 

“what”) can be passed to the decoder, restoring the maximum to its original position 

in the input signal. A diagram of this network is depicted in Fig. 1. These WWAEs 

have been shown to produce better reconstruction quality than those of simple 

upsampling. This can be partially explained by the additional information stored in 

the switches. Additionally, WWAEs produce comparable classification accuracy to 

other established frameworks.17 We will demonstrate that this method provides 

very clean and informative features. 

 

Fig. 1 Diagram of a single-layer convolutional WWAE 

Sparsity may be imposed upon the hidden activations of an autoencoder to prevent 

the pollution of features with irrelevant information, akin to what is used in 

conventional dictionary learning. Having only a few features strongly activated 

while all others are negligible conveys meaningful information about the data. This 

can be achieved by imposing a sparsifying penalty (such as the ℓ1-norm) to the 

activations10,33 or by selecting a certain number of features with the largest 

activations31,32. While an interesting problem, we apply no regularization in this 

work and leave it as a topic to be explored in the future. 
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2.2 Collective Feature Extraction 

We define collective features as groups of primitive features that combine to form 

more sophisticated patterns. In a more technical sense, it is actually the clustering 

of feature vectors corresponding to each pixel in the input image. Clustering Gabor 

feature vectors has seen success by providing a texture-based segmentation of 

images.34 Jun et al. performed k-means clustering35 on deep-level feature 

representations extracted from a stacked denoising autoencoder.18 More 

informative observations may be gleaned from isolating primitive features that 

naturally occur in close proximity throughout the signal. Sometimes, primitive 

features alone may not naturally appear to be representative samples of a signal. 

For example, the features of an image of text should ideally be characters; however, 

primitive feature extraction may only detect lines and curves. Classifying common 

groupings of these lines and curves allows for letters to be detected, resulting in 

more informative features. Moreover, for unlabeled data of unknown origin unlike 

the text example, the extraction of meaningful and representative features is much 

more crucial as one may not be familiar with how the primitive features combine. 

2.2.1 Segmentation 

Recall that during convolution, the filters slide along the signal, and the dot product 

is taken at each specified position. This results in activation maps corresponding to 

each filter that detail the presence of the corresponding feature at each particular 

point. We choose to group primitive features based on these activation maps as they 

indicate which features are highly active in close proximity. Here, we impose that 

the stride of the convolution should be one. Therefore, the output of the 

convolutional layer will be similar in size to the input, and each sample will have 

unique values in the activation maps and can be classified accordingly. A stride 

greater than one may be used; however, groups of samples are classified together, 

which may impede the accuracy. Using strided convolution with no max-pooling 

or unpooling for segmentation is demonstrated in Section 4.4. The activation maps 

of the encoding convolutional layer are utilized because it is the location where the 

feature detectors are trained as opposed to the decoding layer where features are 

optimized for reconstructing the input.  

We begin by performing dilation separately on each activation map. This 

morphological operation convolves the signal with a kernel 𝐵, replacing the image 

pixel at the anchor point with the maximum value overlapped by 𝐵. This operation 

serves to enlarge bright regions to overpower nearby darker regions; in this 

application, dilation magnifies regions of heavy activation. The dilated activations 

are then clustered through the 𝑘-means algorithm. These clusters are dubbed the 
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collective features. A collective feature is technically a distribution, so it cannot be 

easily visualized, but it should resemble the parts of the input signal where the 

particular feature is dominant. 

2.3 Overcoding 

When training a network on a lone signal, we break the signal into windows in 

order to produce sufficient training and validation data. Once the model is trained, 

the full signal can be fed through the model to extract the activation maps. 

However, when clustering the activations of a test image, we noticed some strange 

artifacts present across the entirety of the image. These effects originate as the filter 

slides over the edge of the patch; the filter learns only the part of the image that it 

covers and zeroes elsewhere, creating an edge effect. We propose an overcoding 

method to alleviate this effect.   

Our method learns a fragment of the image and reconstructs a smaller portion, 

ensuring that the filters are entirely contained within that fragment. In Fig. 2, we 

detail two variants of our proposed method. Note that this method is valid for data 

in both one and two dimensions; for the 2-D case, simply treat each value as a 

square.  

 

Fig. 2 A diagram of both overcoding processes where the red represents the current patch, 

the blue grid represents the surrounding image, and the yellow depicts the sliding filter. The 

left image demonstrates when the kernel size is a factor n of the pooling size, while the right 

image depicts the case when the kernel size is one more than the pooling size. 

Let 𝑝 be the pooling size of the max-pooling layer and 𝑘 = 𝑛𝑝 be the size of the 

convolutional kernel for some positive integer 𝑛. The image is broken into non-

overlapping patches of size (2𝑛 − 1)𝑝, which are fed through a single-layer 

convolutional WWAE with a stride of 1. After decoding, the reconstructed patches 
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are cropped to a size of 𝑝, shaving off (𝑛 − 1)𝑝 pixels from each edge. We force 

the convolutional filters to not exceed the edge of the patches; therefore, the 

predicted 𝑝 samples will always be entirely covered by the convolutional filter as 

depicted in Fig. 2. 

For our other method, we let 𝑘 = 𝑝 + 1 be the size of the convolutional kernels and 

break the image into non-overlapping patches of size 3𝑝 where the center 𝑝 samples 

will be reconstructed as shown previously. In this case, there is one slight addition 

to the model. The encoding convolution layer will output blocks of size 2𝑝 since 

the filters are required to stay fully inside the border of the patches. The max-

pooling and unpooling layers leave this size unchanged. In order to have the center 

𝑝 samples reconstructed, we zero pad the processed patches by 
𝑝

2
 on all sides; note 

that these zeroes only impact reconstruction and have negligible impact on the 

training of the activation maps of the encoding convolutional layer. Additionally, 

notice that even pooling sizes work much more effectively in this case. The output 

of the decoding convolutional layer is cropped to the center 𝑝 samples as shown 

previously. Unlike the previously detailed case, note that the center 𝑝 samples may 

not be entirely covered by the convolutional filters. Figure 2 demonstrates this 

process. 

3. Methods 

3.1 Training 

We detail the data sets and models used for feature extraction. The general 

architecture for each type of network is discussed here; refer to each corresponding 

section for more specific details. Supervised networks with pooling contain a 

convolutional layer with a stride of one followed by a max-pooling layer, while 

those with striding contain only a convolutional layer with a stride greater than one. 

Both of these models possess a layer of dropout before the final decision layer. The 

unsupervised networks are composed of a single convolutional layer of encoding 

and decoding. The encoding convolutional layer can possess either a stride of one 

followed by a max-pooling layer or simply a stride greater than one. For WWAEs, 

switches are employed to retain relational information on maxima. If pooling is 

employed, an unpooling layer occurs first during decoding. For WWAEs, the 

switches restore the maxima to their original location during unpooling. The final 

decoding convolutional layer will have a stride that matches that of the encoding 

layer. 
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3.1.1 MNIST Handwritten Digits Data Set 

The MNIST data set36 of 28 × 28 pixel images of handwritten digits was utilized 

for feature extraction with the standard training set of 60,000 digits and test set of 

10,000 digits, serving to qualitatively compare feature extraction between various 

forms of supervised and unsupervised single-layer convolutional networks. We 

performed no further processing of the images themselves. The MNIST digits were 

deemed too small for the use of overcoding. The hyperparameters for these models 

are collected in Table 1; note that all models utilize a batch size of 20. 

Table 1 Hyperparameters for the neural networks 

Type of model Filters 
Kernel 

size 

Pooling/striding 

size 
Epochs Activations 

MNIST supervised 20 14 7 100 ReLu 

MNIST unsupervised 20 14 7 100 Linear 

Audio no overcoding 40 1024 256 20 Tanh 

Audio overcoding 𝑘 =  𝑝 + 1 40 1024 1023 20 Tanh 

Audio overcoding 𝑘 = 2 𝑝 40 1024 512 20 Tanh 

Audio overcoding 𝑘 = 4𝑝 40 1024 256 20 Tanh 

Image no overcoding 50 16 8 450 Linear 

Image overcoding 𝑘 =  𝑝 + 1 50 16 8 450 Linear 

Image overcoding 𝑘 = 2 𝑝 50 16 15 450 Linear 

 

3.1.2 Audio 

Keeping with our theme of sparse data, we utilized a single 30-min and 50-s speech 

sampled at 22,050 Hz mono.37 Our objective was to compare the features extracted 

through various unsupervised means with those extracted from dictionary learning. 

In the case of max-pooling and striding without overcoding, we determined the 

ideal features in this case would correspond to phonemes. Using a reasonable 

estimate that there are two phonemes per second in the English language, we broke 

the speech into fragments of size 9216 (1024 × 9). The overcoding cases follow 

the process outlined in Section 2.2.2 with hyperparameters given in Table 1. During 

dictionary learning, the speech was broken into patches of size 1024. The algorithm 

ran for 450 iterations training 70 pairs of encoding and decoding features.  
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3.1.3 Single Images 

We extracted and localized features from single images. Figure 3 depicts the three 

images upon which our model was separately trained. Our goal was to compare 

unsupervised methods of feature extraction with that of dictionary learning. In the 

unsupervised cases without overcoding (max-pooling and striding), the image is 

broken into patches whose dimensions were equivalent to the pooling size. The 

overcoding case follows the process of Section 2.2.2. Refer to Table 1 for the 

hyperparameters of these models. For dictionary learning, the image was broken 

into 16 × 16 patches. The algorithm ran for 450 iterations training 70 features. As 

with the neural networks, the algorithm was trained separately on each image.  

 

Fig. 3 The three images38–40 that were utilized in this work with resolutions 2868 × 1601 

(office), 5430 × 3620 (parking lot), and 1425 × 1030 (text) 

3.2 Segmentation 

We compared the efficacy of the segmentation algorithm on the models trained on 

single images. A 24 × 24 filter was used for dilation with the center as the anchor 

point; it is depicted in Fig. 4. The activations of the text image were grouped into 

30 clusters, while those of the office and parking lot images were classified into 15 

clusters. 
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Fig. 4 Filter utilized for dilation during segmentation 

4. Results and Discussion 

Clear and descriptive features can be vital in understanding unlabeled data. Here, 

we empirically compare features derived from our method with those of similar 

methods. Additionally, we demonstrate how our feature extraction method works 

in tandem with feature segmentation.   

4.1 MNIST 

We compared our method of feature extraction with various supervised and 

unsupervised neural networks on the MNIST data set as benchmarks. Figure 5 

displays the features of each model. Note that since there are an ample number of 

digits in the MNIST data set and the dimensions of the digits themselves are only 

28 pixels, no overcoding was required in any of the models. We expect supervised 

neural networks to possess generally clean features, as the learning process is 

guided by the labels provided. This is demonstrated by the lines and curves in Figs. 

5a and 5b. However, the presence of multiple curves in a single feature indicates 

that there is some entanglement occurring. These models do a comparatively better 

job than the unsupervised models that do not use what-where switches. As depicted 

in Figs. 5c and 5d, simply striding or max-pooling without what-where switches in 

the unsupervised case produces an unintelligible blur of high-frequency 

components. However, in our model containing the what-where method, extremely 

clean, untangled “wavelets” are extracted. These features are uniquely descriptive 

because one can easily determine how each digit can be reconstructed from them.  
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Fig. 5 Features extracted from the various models trained on the MNIST data: 

a) supervised striding, b) supervised max-pooling, c) unsupervised striding, d) unsupervised 

max-pooling without what-where switches, and e) what-where switches 

One may wonder how an unsupervised model behaves on similar inputs, such as 

two of the same digits in our case. In theory, the model should utilize similar 

features to reconstruct the digits—that is, the decoding activation maps are 

expected to be similar. Recall that these models are unsupervised, so the labels of 

the data are never processed. While this is not necessary for reconstruction 

accuracy, it is interesting because it can be roughly viewed as unsupervised 

segmentation. The activation maps can be visualized through dimensionality 

reduction techniques. Here, we employ the t-SNE algorithm,41 which converts pairs 

of the data to a probability distribution where similarity of the data in the pairs 

correlates to the probability of selection. A similar distribution is defined in the 

lower dimension such that sum of the Kullback-Leibler divergences42 over all data 

points is minimized. Thus, similar high-dimensional data points will be positioned 

closely in the lower-dimensional representation.   

We fed the 10,000 test digits to each trained unsupervised model and visualized the 

decoding activation maps in two dimensions using t-SNE. The results of this are 

presented in Fig. 6. Note that while the colors of the figure are derived from the 

labels of the digits, the models had no access to these labels. The WWAE provided 

the cleanest segmentation of the three unsupervised models. The other two models 

consistently confused the digits 4 and 9 and had some trouble distinguishing the 
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digits 3, 5, and 8. Notice that the WWAE was not perfect as a small subset of the 

fives was mistaken for the digit 3. Despite this, the WWAE was able to cleanly 

segment the 10 digits without access to labels. This is an extremely desirable 

property regarding unlabeled data, indicating that the visualization of decoding 

activation maps can inherently categorize the data. It is interesting to point out that 

the results of Turchenko et al.22 demonstrate that WWAEs provided the least 

accurate segmentation of the five unsupervised models. We attribute the difference 

in our results to the use of a shallow model with a much larger pooling size—

Turchenko et al. utilized a two-layer model with a pooling size of two. 

 

Fig. 6 Results of dimensionality reduction of the activation maps for the unsupervised 

models: a) striding, max-pooling; b) without what-where switches; and c) with what-where 

switches 

4.2 Audio 

We utilized human speech data to demonstrate the capabilities of handling 1-D 

data; the results are given in Fig. 7. In this instance, we employed dictionary 

learning for comparison. However, without any shift invariance, many of the 

features display a similar oscillatory behavior with little variation. The striding and 

pooling without what-where models both produce very homogenous features. The 

features from striding are flat on the ends with a small region of activity in the 

middle, while those from pooling with no what-where generally follow the same 
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indistinct pattern. The model that incorporates what-where produces a variety of 

clean features, representing many distinct waveforms. This is expected as the what-

where method introduces shift-invariance. We implemented three versions of 

overcoding since the single speech was broken into patches during training. The 

models with overcoding generally produced the largest variety of distinct features, 

indicating a more accurate depiction of characteristics of the data. It is much more 

difficult to visually interpret 1-D data; thus, having a wider range of visually 

distinct features offers a more viable survey of the data set. Notice, however, that 

there is some sort of edge effect present in a few of the overcoding features. 

 

Fig. 7 Features from various unsupervised models trained on the audio data: a) dictionary 

learning, b) striding, c) max-pooling without what-where switches, d) what-where switches, 

e) overcoding with k = p+1, f) overcoding with k = 2p, and g) overcoding with k = 4p 

4.3 Single Images 

Single images served as 2-D examples for the comparison of dictionary learning 

and other unsupervised neural networks. A picture of a page of text was selected 

for the simplicity and repetitiveness of the characters. The black, repeated text on a 

white background provides optimal conditions for descriptive features. 

Additionally, we know that lines, curves, and parts of letters are the ideal result; 

this gives a reasonable benchmark for our comparisons. Figure 8 displays the 

extracted features. Like both cases above, the features extracted with unsupervised 

striding are incoherent. Because the image has fairly high resolution, the what-

where method without overcoding struggles to capture clear features; while some 

distinct lines are present, many of the features are tangled together. Dictionary 

learning does a fairly decent job at extracting portions of letters. However, many 

letters are jumbled together in a single feature, failing to provide a clean, descriptive 

summary. The features extracted from the what-where method present either clean 
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curves or sections of letters with very few being tangled. It is auspicious that legible 

letters can be extracted.  

 

Fig. 8 Features extracted from various unsupervised models trained on the text image: 

a) dictionary, b) striding, c) what-where switches without overcoding, d) overcoding with 

k = p+1, and e) overcoding with k = 2p 

The other two single images depicted much more complicated scenes, presenting a 

more difficult challenge for the networks. Figure 9 displays the respective features 

of the office and parking lot pictures. Notice that while the features from dictionary 

learning for both pictures contain some clean curves, many of the features are just 

a saturated color or completely noise. As we have demonstrated before, the features 

obtained from simply striding are unintuitive jumbles. For these images, utilizing 

what-where without any overcoding produces tangled amalgamations of different 

features, likely due to the complexity of the images. While a few of the features 

obtained from overcoding are single colors, the overcoding method provides the 

cleanest features. Clear curves can be detected in the bulk of the features. However, 

unlike the previous cases, the features cannot be easily connected to the original 

signal. 
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Fig. 9 Features extracted from various unsupervised models trained on the office and 

parking lot images respectively: a) dictionary, b) striding, c) what-where switches without 

overcoding, d) overcoding with k = p+1, and e) overcoding with k = 2p 

The other two single images depicted much more complicated scenes, presenting a 

more difficult challenge for the networks. Figure 9 displays the respective features 

of the office and parking lot pictures. Notice that while the features from dictionary 

learning for both pictures contain some clean curves, many of the features are just 

a saturated color or completely noise. As we have demonstrated before, the features 

obtained from simply striding are unintuitive jumbles. For these images, utilizing 

what-where without any overcoding produces tangled amalgamations of different 

features, likely due to the complexity of the images. While a few of the features 

obtained from overcoding are single colors, the overcoding method provides the 

cleanest features. Clear curves can be detected in most of the features. Unlike the 

previous cases, the features cannot be easily connected to the original signal. 
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4.4 Segmentation 

The segmentation technique is intended to determine which features commonly 

occur together in order to classify features that may not be extracted by existing 

methods. We focus on the text image first as it provides the most poignant results. 

Figure 10 contains just the first paragraph from the text; the entire results for each 

method are contained in the supplemental materials. 

 

Fig. 10 Results of segmentation for various unsupervised neural networks trained on the 

text image: a) striding, b) what-where switches without overcoding, c) overcoding with 

k = p+1, and d) overcoding with k = 2p 

The striding method is unable to detect any letters, likely due to the 

incomprehensible features. While the method of what-where without overcoding 

does capture letters, notice that no color is unique to a specific letter. This does a 

decent job of detecting letters in general but is not necessarily reliable in 

segmenting particular letters. However, the methods that utilize overcoding 

actually can extract single letters. Notice that in the case where 𝑘 = 𝑝 + 1, the 

letters v, s, c, and u are detected by a single feature while the letter e is captured by 

a combination of two features. The letter t is completely captured by one of two 

features depending on what character follows; the same can be said for the letter a 

depending on what character precedes it. The letters m, n, and h are detected by a 

set of two features. We now focus on the case where 𝑘 = 2𝑝. Here, the letters a, e, 

s, and u are all detectable with a unique collective feature. Unlike the previous case, 

the other features capture sections of many letters as opposed to individual letters 

themselves. The cleaner features extracted in Section 4.3 result in a much more 

informative collective feature extraction. 
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Figure 11 displays the results from the segmentation method on the other two 

images. Since these scenes are much more complicated than a picture of text, the 

results are not as descriptive as the previous case. Considering the complexity of 

the scenes and difficulty of the task, the results are quite promising. Notice that for 

these images, the what-where method with no overcoding provided the least 

accurate segmentation since homogenous regions are often broken into multiple 

regions. While striding does a better job in this case, there are some egregious flaws 

with the segmentation. In the parking lot image, the filter activated by the trees is 

also present on a few of the cars while portions of the door frame share other 

features in the office scene. This is the only case where the overcoding did not 

provide a considerable improvement over the other methods. The wooden texture 

of the bookcase, table, and doors of the office are almost entirely captured by a 

single feature in the 𝑘 = 2𝑝 case. Additionally, in the 𝑘 = 𝑝 + 1 case, most of the 

skin is represented by one feature. For the parking lot picture, the bricks, taillights, 

and pavement are each almost entirely detected by a single feature in both cases. 

While the segmentation does appear to be much cleaner than that of the other two 

methods, there are still a few glaring flaws with the activations of the overcoding 

method. Despite this, the accuracy demonstrated is remarkable given that the 

autoencoder was trained to reconstruct a single image. 
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Fig. 11 Results of segmentation for various unsupervised neural networks trained on the 

office and parking lot images respectively: a) striding, b) what-where switches without 

overcoding, c) overcoding with k = p+1, and d) overcoding with k = 2p 
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5. Conclusion 

In this work, we show how a neural network architecture originally developed for 

pre-training a convolutional neural network can be used to extract shift-invariant 

features suitable for partial segmentation of images. Unlike traditional dictionary 

learning and striding-based autoencoders, shift-invariance greatly improves the 

legibility of the features. Clustering of the feature prevalence in the signal (image), 

leads to collective features suitable for unsupervised segmentation. Overcoding 

removes edge artifacts that often plague autoencoders. Given the ready availability 

of various open source neural network frameworks, such as Tensorflow and 

PyTorch, the shallow WWAE is an accessible way to perform shift-invariant 

dictionary learning. Future research in this area might entail evaluating the utility 

of this algorithm for developing compressed representations. 
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List of Symbols, Abbreviations, and Acronyms 

1-D  1-dimensional 

2-D 2-dimensional 

DOD US Department of Defense 

FOCUSS Focal Underdetermined System Solver 

K-SVD k-means singular value decomposition 

MNIST Modified National Institute of Standards and Technology 

MOD Method of Optimal Directions 

OMP Orthogonal Matching Pursuit 

WWAE what-where autoencoder  
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