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 SUMMARY 

This project began on April 14, 2017 and ended on October 14, 2018.  The main goal of this 
project was to design novel neighbor discovery protocols for nodes equipped with directional 
antennas in a wireless mesh network (WMN). Since the nodes in self-configuring networks, such 
as WMN, are deployed in an ad hoc manner, they need to discover their one-hop neighbors for 
data communication. Therefore, neighbor discovery is an important first step in the network setup. 
The neighborhood information is critical for network operations, including the topology 
management, routing, clustering and medium access control (MAC) layer operation. Note that the 
neighbor discovery is trivial when omni-directional transmission is used because a simple 
broadcast can reach all the nodes in a 1-hop neighborhood. However, the network consisting of 
purely directional-only antennas (without the support of omni-directional antennas) requires a 
significant neighbor discovery overhead and large latency because a node can communicate with 
its neighbors in only a narrow area at a time due to the limited antenna beamwidth. 

In this project, we have designed three different novel directional neighbor discovery schemes 
which have significantly lower protocol overhead and discovery latency. These schemes 
intelligently consider the collisions among the neighbor discovery messages of the neighboring 
nodes and use the machine learning techniques. The performance of these schemes is evaluated 
for different network sizes, node densities, beamwidth and number of one-hop neighbors. We have 
also built a hardware testbed to test the performance of neighbor discovery schemes for WMN. 

First, we have designed a novel collision-aware neighbor discovery scheme based on the two-
way handshaking, which introduces a collision resolution mechanism that allows the neighbor 
discovery process to converge significantly faster, especially in the case of high node density. We 
also propose a peer-assisted version of our algorithm where nodes cooperate by sharing the 
information about their already discovered common neighbors to maximize the discovery rate.   

Next, we have designed a fully directional neighbor discovery scheme based on finite-state 
learning automata. Every node learns about its neighborhood in each sector, and chooses the next 
sector by taking into account collisions and previously discovered neighbors. To the best of our 
knowledge, the learning automaton has so far not been applied to neighbor discovery with fully 
directional links. 

Finally, we have designed a novel distributed Q-learning based directional neighbor discovery 
scheme, which gives the nodes the ability to learn about their respective neighborhood through 
past discovery attempts in each sector. We first map the neighbor discovery process to a model-
free learning environment, followed by the use of a Q-learning algorithm to minimize the 
directional neighbor discovery latency. In every time slot, the node interacts with its neighborhood 
by executing an action and receives a reward. Based on the information collected, a node adjusts 
its operating mode to reduce the neighbor discovery latency.  

It is important to verify the directional neighbor discovery protocols through a realistic 
hardware platform. We have used National Instrument (NI) USRP-RIO boards, equipped with two 
RF interfaces, which can connect two directional antennas. Thus we can emulate a two-beam 
antenna. We have used Matlab and Labview programming to configure multiple USRP-RIO nodes 
such that they can use different beams for neighbor discovery and data communication.  
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In the next chapter, we provide an introduction of directional neighbor discovery, including a 
review of existing literature. The directional neighbor discovery schemes in this project are 
described in Chapter 3, folowed by their performance analysis in Chapter 4. Conclusions are given 
in Chapter 5. 

This project has achieved fruitful outcomes: one accepted IEEE journal paper and another 
manuscript under preparation, two published conference papers and third one under review. The 
detailed list is provided below:   

Journal Papers: 

1. B. El Khamlichi, D. H. N. Nguyen, J. El Abbadi, N.W. Rowe, and S. Kumar, Learning 
Automaton Based Neighborhood Discovery for Wireless Networks Using Directional 
Antennas, IEEE Wireless Comm. Letters, Accepted. 

2. B. El Khamlichi, J. El Abbadi, and S. Kumar, Distributed Q-Learning based Nieghbor 
Discovery in Directional Wireless Mesh Networks, under preparation. 

 

Conference Papers: 

3. B. El Khamlichi, Duy H. N. Nguyen, J. El Abbadi, N. Rowe, and S. Kumar, Collision-Aware 
Neighbor Discovery with Directional Antennas, International Conf. Computing, Networking 
and Communications (ICNC 2018), Workshop on Computing, Networking and 
Communications, Maui, Hawaii, USA, March 5-8, 2018. 

4. A. Shaha, Duy H. N. Nguyen, and S. Kumar, N. W Rowe, Real Time Video Transceiver using 
SDR testbed with Directional Antennas, IEEE 8th Annual Ubiquitous Computing, Electronics 
and Mobile Communication Conference (UEMCON), 2017. 

5. B. El Khamlichi, J. El Abbadi, and S. Kumar, Adaptive Directional Neighbor Discovery 
Scheme in Wireless Networks, submitted to IEEE WCNC. 
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 INTRODUCTION 

In order to address the challenges of a high-capacity backbone for future tactical edge 
networks, the IP- enabled, directional, mobile, mesh networks (WMN) are very promising. Figure 
1 shows an example of a WMN architecture. The directional mesh networks provide the following 
benefits: high capacity/spectrum efficiency, scalability (new nodes bring additional channel 
capacity so they can scale to several hundred mutually non-interfering nodes without loss of per-
node capacity), and inherent interference resilience [1]. These networks must be robust (i.e., they 
should have the properties of automatic node discovery, self-organizing and self-healing), with no 
single point of failure. 

 

 

 WMN architecture. 

Increasing the antenna gain over an omni-directional antenna has multiple benefits, such as 
increasing the communication range, link data rate, and/or improving link reliability [1], [2], [3], 
[4]. To maximize these advantages and to enable spatial re-use, it is necessary to have both the 
transmitter and receiver use directional beams. This substantially reduces the probability that any 
two links will interfere with each other. However, the directional networks, in particular narrow-
beam networks, challenge many basic assumptions for omni-directional wireless networks and 
require the design of novel cross-layer network protocols. 

In self-configuring networks such as WMN, after nodes are deployed, they need to discover 
their one-hop neighbors for data communication. Neighbor discovery is an important first step in 
the initialization of WMN, as the accurate neighborhood information is critical for network 
operations, including topology management, routing, clustering and MAC operation [5], [6]. Note 
that the accurate neighbor discovery is trivial when omni-directional transmission is used because 
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a simple broadcast can reach all the nodes in a 1-hop neighborhood [7], [8]. However, the use of 
directional antennas complicates the neighbor discovery process due to the following reasons: 

i. Limited beamwidth of directional antennas requires the neighbor discovery process to be 
repeated in different directions for covering the whole azimuth. This results in a 
significantly higher discovery overhead and latency. 

ii. A pair of nearby directional nodes can discover each other only when their beams are 
oriented toward each other at the same time. Therefore, the neighboring nodes must know 
when and where to point their beams to discover each other. This is further complicated by 
node mobility. 

In this project, we have developed and demonstrated the following three novel cross-layer 
neighbor discovery schemes for WMN nodes equipped with fully-directional antennas. We have 
also developed a hardware testbed to test the performance of neighbor discovery schemes for 
WMN. 

Existing neighbor discovery schemes require high latency because all the sectors are explored 
randomly and collisions caused by multiple simultaneous communications are ignored. When 
more than one transmitting neighbor exists in the same reception beam, a collision happens and 
the node discovery packets are considered lost. Since the work in [6, 11] does not propose a 
management mechanism in case of collision, the neighbor discovery is generally simply reiterated. 
However, the collision effect should not be ignored, since collisions may happen frequently in 
many realistic scenarios, especially for the case of wide beam-width, high node density, or large 
transmission range. 

To remedy this issue, we first design a novel, fully directional, collision-aware neighbor 
discovery scheme based on the two-way handshaking algorithm proposed in [6]. Our scheme 
introduces a collision resolution mechanism that will allow the neighbor discovery process to 
converge significantly faster, especially in the case of high node density. Second, we propose a 
peer-assisted version of our algorithm where nodes cooperate by sharing the information about 
their already discovered common neighbors to maximize the discovery rate and thereby reduce the 
discovery overhead and latency.   

Next, we have designed a fully directional neighbor discovery scheme based on finite-state 
learning automata. In this scheme, every node learns about its neighborhood in each sector, and 
intelliegently selects the next sector by taking into account collisions and previously discovered 
neighbors. Our scheme outperforms the existing schemes in terms of neighbor discovery latency 
and convergence. To the best of our knowledge, the learning automaton has so far not been applied 
to neighbor discovery with fully directional links. 

Finally, we have designed a novel distributed Q-learning based directional neighbor discovery 
scheme. The key idea behind this scheme is to give the nodes the ability to learn about their 
respective neighborhood through past discovery attempts in each sector. We first map the neighbor 
discovery process to a model-free learning environment, followed by the use of a Q-learning 
algorithm to minimize the directional neighbor discovery latency. In every time slot, the node 
interacts with its neighborhood by executing an action and receiving a reward. Based on the 
information collected, a node adjusts its operating mode to reduce the neighbor discovery delay. 
The contributions of this scheme can be summarized as: (a) The neighbor discovery process is 
modelled as a multi-agent model-free learning problem. Each node is regarded as an independent 
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agent gradually learning from its neighborhood and adapting its search strategy until reaching 
convergence. (b) The learning process is solved by means of the Q-learning algorithm, where a 
node adjusts its operating mode (i.e., to transmit or to receive) to reduce the overall discovery 
latency. (c) The Q-learning based scheme is compared to the random and deterministic discovery 
schemes and an extensive performance analysis shows that our scheme outperforms the existing 
schemes. 

It is important to verify the directional neighbor discovery through a realistic hardware 
platform. We have used National Instrument (NI) USRP-RIO boards to construct a short-distance 
(<100m) multi-beam hardware platform [9]. The USRP-RIO board has two RF interfaces, which 
can connect two directional antennas. Thus we can emulate a two-beam antenna. We have used 
Matlab and Labview programming to configure multiple USRP-RIO nodes such that they can use 
different beams for directional neighbor discovery and data communication.   

2.1. Related Work 

Only a limited number of schemes are available in the literature to improve the neighbor 
discovery latency for nodes equipped with directional antennas. In some schemes (such as [10, 11, 
12]), a secondary omnidirectional antenna is assumed to be present on each directional node to 
allow a faster discovery rate. However, omnidirectional antennas are known to be highly 
vulnerable to interference. Further, the combination of directional and omni-directional 
transmissions degrades the spatial reuse benefits, besides introducing range asymmetry problems. 

The fully-directional neighbor discovery schemes that use directional control and data 
transmissions can be divided in four broad classes: integrated unassisted, non-integrated 
unassisted, peer assisted, and external assisted classes, as described below [1].  

The integrated unassisted neighbor discovery automatically discovers other nodes without 
prior knowledge of them using the same set of channel frequencies and directional antenna beams 
used for transmitting user and control data between nodes. The non-integrated unassisted neighbor 
discovery automatically discovers other nodes without prior knowledge of them using a separate 
control channel for neighbor discovery and link establishment that covers all of the vicinity around 
a node within which a neighboring node might acquire or operate a link to that node. This approach 
requires access to an additional spectrum and adds implementation complexity but provides 
performance advantages compared to common frequency neighbor discovery. The peer assisted 
neighbor discovery uses the neighbor-provided nearest neighbor node position information for the 
neighbor discovery process. Here the nodes collaborate by sharing with each other the information 
about their already discovered neighbors. This reduces the neighbor discovery overhead. External 
assisted neighbor discovery takes advantage of the presence of any node position information 
available with a supervisory node (such as the cluster head) or over external interfaces. This 
reduces neighbor discovery overhead.  

The fully-directional neighbor discovery schemes can also be classified based on the use of 
time-synchronization and asynchronous operation.  Some neighbor discovery schemes assume that 
nodes are time synchronized to guarantee that all nodes switch their sectors synchronously. 
However, these schemes require time synchronization for all nodes, which may increase the 
hardware and control overhead burden on the wireless network. Furthermore, achieving time 
synchronization in a distributed manner is very unlikely in WMN with dynamic topologies. In the 
asynchronous, fully-directional neighbor schemes, each node listens in a random direction for a 
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random time and then transmits a hello message, and goes back to listening in another random 
direction. Although simple and straightforward, this approach, being probabilistic, does not bound 
the time for neighbor discovery. Moreover, it does not guarantee that discovered links are 
bidirectional. 

In [12], a randomized one-way handshaking mechanism was discussed for neighbor discovery 
in directional wireless networks. In each slot, a node probabilistically chooses to transmit or to 
receive in a randomly chosen sector (or direction). Due to the lack of reception confirmation, the 
discovered neighborhood for each node is asymmetric and implies a high latency. To deal with 
these issues, various two-way [13] and three-way handshaking [14] protocols were proposed. In 
[13], the authors proposed a random two-way handshaking mechanism and derived an analytical 
expression for the expected time to achieve a full neighbor discovery. The gossip-based version of 
the algorithm proposed in [15] enables a faster discovery through the cooperation between the 
nodes for exchanging neighbor information (assuming that GPS information is available). An 
improvement of 2-way handshaking mechanism was proposed in [13] through a selective feedback 
to reduce the collision probability during the feedback period. Our scheme proposed a collision 
resolution mechanism to allow a faster neighbor discovery in dense networks [16]. In [17], a more 
general and practical version of the neighbor discovery scheme was proposed for heterogeneous 
networks with different communication characteristics. 

Another set of algorithms considered a deterministic approach, where each node operates in a 
predefined scanning sequence. In [12], a node operates in a predefined sequence based on its ID 
in deterministic scan based algorithm (SBA-D), whereas a random sequence is used in the random 
scan based algorithm (SBA-R). In[18], the authors carried out a detailed investigation of the 
neighbor discovery performance in a 60 GHz network equipped with directional antennas by 
taking into consideration the impact of the antenna pattern and link model. An improvement to the 
random scan algorithm was proposed in [19] by eliminating the unlikely sectors assuming that 
each node has knowledge about its position via GPS. An ALOHA-like algorithm was proposed in 
[15] by modeling the neighbor discovery process as a coupon collector problem. An asynchronous 
serialized centralized neighbor discovery scheme was proposed in [20]. In this scheme, the 
neighbor discovery is performed only by the node that holds the token, and the token is exchanged 
by nodes until they achieve the network-wide neighbor discovery. A full integration of neighbor 
discovery with MAC protocol was described in [3, 4, 21]. Here, the neighbor discovery mechanism 
is incorporated with a scheduling based medium sharing technique that allows for exclusive 
directional transmission and reception. 

In the above mentioned algorithms, the neighbor discovery process still suffers from high 
protocol overhead and latency. First, most of these schemes ignore the effect of collision by 
assuming only one neighbor per beam or considering the colliding packets as lost. However, this 
assumption can lead to a drastic performance decline in the case of dense networks. Second, the 
nodes behave completely randomly in each discovery phase and do not consider the knowledge 
that can be gathered during past discovery attempts. Therefore, the random-search based 
approaches can be very time consuming. Our another scheme [22] has proposed a learning 
automaton based directional neighbor discovery (DND) protocol that is able to adapt the 
probability of exploring each sector based on the collision and successful discovery experienced 
in each sector. To the best of our knowledge, no other scheme has applied the reinforcement 
learning to the directional neighbor discovery problem so far. 
  



 

Approved for Public Release; Distribution Unlimited.   
7 

 METHODS, ASSUMPTIONS, AND PROCEDURES  

3.1. Collision-Aware Directional Neighbor Discovery Scheme 

 System Model and Assumptions 
We assume that each node is equipped with a steerable directional antenna with beamwidth 

𝛽𝛽 = 2∗𝜋𝜋
𝐾𝐾

 and (0 < 𝛽𝛽 < 2𝜋𝜋). To model the directional gain of antenna, we use the ideal keyhole 
model, which considers only the main lobe, i.e, the direction of maximum power for transmission 
or reception, while the side and back lobes are ignored. 

We assume that a pair of nodes can communicate in the directional mode if their beams points 
toward each other. In order to formalize this condition along with the beam model, we define 𝜑𝜑 
and 𝜑𝜑′ as the respective transmit and receive directions of the two nodes. We verify the previous 
condition through the following formula:  

 𝜑𝜑 = (𝜑𝜑′ + 𝜋𝜋)  mod  2𝜋𝜋 (1) 
 

Moreover, we consider that the nodes possess the following features: 
  

• Each node is identified by a unique ID.  

• All nodes are perfectly synchronized.  

• The nodes are half duplex. At each slot, a node selects one direction for either transmission 
or reception.  

 Algorithm Description  

3.1.2.1. Transmission Strategy 
The node discovery time is divided into slots and nodes are perfectly synchronized. Each time 

slot is further divided into two subslots, where the duration of a subslot is equal to the time required 
to transmit a discovery packet. At the beginning of each time slot, a node decides to transmit with 
a probability 𝑃𝑃𝑡𝑡 or to listen with probability (1 − 𝑃𝑃𝑡𝑡) in a randomly chosen beam direction. If a 
node is in the transmitting mode, it will send an advertisement message with its ID in a given 
direction during the first sub-slot. In the second sub-slot, the node will listen in the same direction. 
On the other hand, when a node is in the listening mode, the first sub-slot is dedicated to receiving 
the potential neighbor discovery messages in a chosen direction. If a successful reception takes 
place and the node is not already discovered, it will send a reply back in the same direction in the 
second sub-slot. Otherwise, the node will remain silent. 

3.1.2.2. Collision Detection 
 A collision occurs when a node simultaneously receives two or more packets from its 

neighbors in a given beam. In this case, the node is not able to decrypt the information, and the 
packet is considered lost. As shown in Figure 2, a collision will take place in the first sub-slot if 
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the node is able to intercept more than one connection. For simplicity, we do not consider other 
packet loss factors. Each node can differentiate between an empty slot and a slot with a collision 
through a simple energy detector. While existing schemes do not consider the collisions occurring 
during the neighbor discovery process, our scheme exploits the collision information to improve 
the overall neighbor discovery performance as discussed below. 

 

 

 Successful and collision example (Adapted from Figure 7 in [23]). 

3.1.2.3. Collision Resolution Mechanism 
To illustrate how our algorithm handles collisions, we consider four nodes in a 1-hop 

neighborhood: A, B, C and D. As illustrated in Figure 3, during the first sub-slot, nodes A, C and 
D are in transmit mode while node B is listening. In this case, node B will receive multiple 
discovery packets which causes their collision. In the second subslot, node B uses the same beam 
to transmit a collision acknowledgment in its beam. The four nodes then enter in a collision 
resolution mode as explained below:   
• Node B : The node B will remain in a listening mode until it successfully receives at least two 

neighbor discovery packets. We denote this mode as the “collision-resolving listening mode.”  

• Node A, C, D: The nodes A, C and D will plan the re-transmission in the same direction during 
the next slots. The re-transmission slot is chosen randomly within a contention window 
occupying 𝐶𝐶𝐶𝐶 slots. During the other slots, the nodes can either transmit or listen in other 
directions. However, the “re-transmitting node” (say node A) cannot schedule any new re-



 

Approved for Public Release; Distribution Unlimited.   
9 

transmission towards node B until it detects a successful discovery acknowledgment in this 
beam. We denote this mode as the “Collision-resolving re-transmitting mode.” If there are 
more than one node choosing the same slot to retransmit, a collision will occur again. 
Consequently, both nodes will plan another re-transmission phase in the next 𝐶𝐶𝐶𝐶 slots and 
node B will remain in the listen mode. 

  

 
 Illustration of the proposed collision resolution mechanism. 

 Analytic Formulation 

3.1.3.1.  Transmission Probability, 𝑷𝑷𝒕𝒕 
In the beginning of each time slot, every node in a 1-hop neighborhood randomly chooses to 

transmit or to listen with probability 𝑃𝑃𝑡𝑡 and 1 − 𝑃𝑃𝑡𝑡, respectively. Intuitively, the performance of 
the node discovery process strongly depends on the choice of transmission probability. A high 
transmission probability will result in more collisions, and thus a slow discovery process. On the 
other hand, a low transmission probability will result in an underutilization of the channel and a 
slow discovery rate. In most of the previous probabilistic approaches, the optimal probability a 
node uses to achieve the best discovery rate is related to the number of neighbors. As proved in 
[24], the optimal probability is given by,  

 𝑃𝑃𝑡𝑡 = 4∗Π2

𝑛𝑛∗𝜃𝜃2
,    𝑤𝑤ℎ𝑁𝑁𝑎𝑎 𝑎𝑎 𝑁𝑁𝑖𝑖 𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙𝑁𝑁. (2) 

Here 𝑎𝑎 is the number of neighbors and 𝜃𝜃 = 1
𝑘𝑘
. However, the number of neighbors is difficult to 

estimate. One solution to estimate 𝑎𝑎 is based on the node density of network. 
The optimal transmission probability will allow a maximum discovery rate. To assess the 

performance of the node discovery algorithm, we calculate the probability that a node 𝑁𝑁 discovers 
a node 𝑗𝑗 in a given time slot 𝑡𝑡 which is 𝑃𝑃𝑠𝑠 [12]. To achieve the successful node discovery, the node 
should score a successful transmission in both slots as discussed below. 
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In the first sub-slot:   

    • The node 𝑁𝑁 is transmitting in the direction of node 𝑗𝑗 with probability 𝜃𝜃
2∗𝜋𝜋

∗ 𝑃𝑃𝑡𝑡; And 

    • The node 𝑗𝑗 is listening in the direction of node 𝑁𝑁 with probability 𝜃𝜃
2∗𝜋𝜋

∗ 𝑃𝑃𝑡𝑡; And 

    • No other node is transmitting in the direction of 𝑗𝑗. This would take place if other 
neighbor node(s) transmit  in another direction with probability (1 − 𝜃𝜃

2∗𝜋𝜋
) ∗ 𝑃𝑃𝑡𝑡 or the neighbor 

listens with probability 𝜃𝜃
2∗𝜋𝜋

∗ 𝑃𝑃𝑡𝑡.  

 In the second sub-slot:   

    • The node 𝑁𝑁 is listening in the same direction with probability 1; And 

    • The node 𝑗𝑗 is transmitting an acknowledgment in the same direction with probability 1.  
 

The probability of a node 𝑁𝑁 successfully discovering a node 𝑗𝑗 in a time slot 𝑡𝑡 is given by,  

 𝑃𝑃𝑠𝑠 = 2 ∗ 𝜃𝜃2 ∗ 𝑃𝑃𝑡𝑡 ∗ (1 − 𝑃𝑃𝑡𝑡) × [𝑃𝑃𝑡𝑡 ∗ (1 − 𝜃𝜃2) + (1 − 𝑃𝑃𝑡𝑡) ∗ (1 − 𝑃𝑃𝑡𝑡 ∗ 𝜃𝜃2)]𝑛𝑛−1. (3) 
 

We first plot 𝑃𝑃𝑠𝑠 for a beam-width of  𝜋𝜋
8
 and increasing number of neighbors. The results in 

Figure 4 clearly indicate that choosing 𝑃𝑃𝑡𝑡 = 1
2
 achieves the maximum neighbor discovery 

probability. The results for different numbers of sectors also gave similar results (not shown here). 
Thus, we consider it reasonable to fix the transmission probability to 1

2
 in all our simulations. 

 

 
 Probability of success for directional antennas with 8 beams. 
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3.1.3.2. Size of 𝑪𝑪𝑪𝑪 
 To accelerate the neighbor discovery process and avoid nodes colliding again during the 

collision resolution phase, we maximize the probability that exactly one node selects a given slot 
to retransmit. We denote the probability that exactly 𝑁𝑁 nodes choose the same slot for re-
transmission as 𝑃𝑃𝑠𝑠(𝑁𝑁). Considering that the number of nodes 𝑁𝑁 is a binomial distribution with 
parameters (𝑎𝑎, 1

𝐶𝐶𝐶𝐶
), we find:  

 𝑃𝑃𝑠𝑠(𝑁𝑁) = �𝑎𝑎𝑁𝑁 � �
1
𝐶𝐶𝐶𝐶
�
𝑖𝑖
�1 − 1

𝐶𝐶𝐶𝐶
�
𝑛𝑛−𝑖𝑖

. (4) 
 
We calculate the probability that only one node chooses a given slot to retransmit as :  

 𝑃𝑃𝑠𝑠(1) = � 𝑛𝑛
𝐶𝐶𝐶𝐶
� �1 − 1

𝐶𝐶𝐶𝐶
�
𝑛𝑛−1

. (5) 
 
Differentiating 𝑃𝑃𝑠𝑠(1) with respect to 𝑎𝑎, we get,  

 ∂𝑃𝑃𝑠𝑠(1)
∂𝐶𝐶𝐶𝐶

=
𝑛𝑛(𝑛𝑛−𝐶𝐶𝐶𝐶)(1− 1

𝐶𝐶𝐶𝐶)𝑛𝑛

𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶−1)2
. (6) 

 To find the optimal 𝐶𝐶𝐶𝐶 that maximizes 𝑃𝑃𝑠𝑠(1), let  

 ∂𝑃𝑃𝑠𝑠(𝑖𝑖)
∂𝑥𝑥

= 0. (7) 

 The optimal 𝐶𝐶𝐶𝐶 is obtained as:  
 𝐶𝐶𝐶𝐶 = 𝑎𝑎. (8) 

3.2.  Learning Automaton Based Directional Neighbor Discovery Scheme 

 System Model 

We consider a network of 𝑁𝑁 randomly deployed nodes. The first step for each node is to detect 
its one-hop neighbors. The nodes also need to regularly update their neighbor table either through 
polling mechanism [21] (for mobile networks) or neighbor re-discovery [26] (for static networks). 
Since the neighbor rediscovery is expensive due to frequent topology changes in mobile networks, 
the polling mechanism can be used to track the node mobility which would make it easy to compute 
in which sector the node would move, and update the neighbor table accordingly. On the other 
hand, since the topology does not change much in static networks, the neighbor rediscovery can 
be carried out at a very low cost. Each node is equipped with a steerable directional antenna that 
enables the node to transmit or listen in one of the 𝐾𝐾 non-overlapping sectors. All nodes in the 
network are clock synchronized. The proposed algorithm operates in an ALOHA-like structure 
[12, 13]. In each time slot, a node decides to transmit or receive with equal probability. To perform 
two-way handshaking, each time slot is logically divided into two sub-slots. If a node receives a 
pilot tone (i.e, sender’s ID) in the first sub-slot, it transmits its ID in the same direction (i.e, on the 
same beam) in the second sub-slot. Similarly, a node in transmitting mode in the first sub-slot 
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switches to receive mode in the second sub-slot. If two or more nodes transmit towards the same 
beam of a receiving node, the packets at the receiver are considered lost due to collision. 

 Neighbor Discovery as a Finite State-Action Learning Automaton 

 A learning environment is referred to as non-stationary if the reward distribution is time 
dependent. In other words, the objective of an agent in a non-stationary learning environment is 
not to converge to a single optimal action, but to adjust its behavior in each time slot. In this 
scheme, the finite-state learning automaton (FLA) is used to model an agent for neighbor 
discovery, which operates in a non-stationary environment with unknown dynamics [25]. In each 
time slot, the automaton chooses an action (from a finite set of actions), and receives a 
reinforcement signal from the environment, describing if the selected action is favorable (a reward) 
or unfavorable (a penalty). Based on the observation, the FLA updates its action selection 
probability to optimize its future behavior. Here, the objective of each node is to adjust its behavior 
in each time slot to maximize the discovery rate without converging to a single sector. As more 
neighbors are discovered in a sector, the optimal policy (i.e, the sector to be searched for neighbors) 
changes. As no prior policy coordination is assumed, the environment dynamics (i.e, the transition 
probability) is considered unknown to the agents. 

3.2.2.1. The Learning Node 
 We consider each node 𝑁𝑁 as an intelligent agent empowered by an independent learning 

mechanism, without prior information about the other agents. The FLA defines the learning agent 
as a quadruple {𝐴𝐴𝑖𝑖,𝛽𝛽𝑖𝑖,𝑃𝑃𝑖𝑖 ,𝑇𝑇} [25].  

 
3.2.2.1.1. The Automaton Action Space, 𝑨𝑨𝒊𝒊 

 An action 𝑎𝑎𝑘𝑘 corresponds to the node choosing a sector 𝑘𝑘 to operate in a listening or transmit 
mode. 𝐴𝐴𝑖𝑖 is expressed as:  

 𝐴𝐴𝑖𝑖 = {𝑎𝑎1,𝑎𝑎2, … , 𝑎𝑎𝐾𝐾}  𝑤𝑤𝑁𝑁𝑡𝑡ℎ  |𝐴𝐴𝑖𝑖| = 𝐾𝐾, 

where 𝐾𝐾 is the number of sectors.  
 
3.2.2.1.2. The Action Probability Distribution, 𝑷𝑷𝒊𝒊 

 We allow each node to select a sector probabilistically in a time slot 𝑡𝑡. In particular, each 
node keeps a probability distribution over the set of available possible actions in a time slot 𝑡𝑡 given 
by:  

 𝑃𝑃𝑖𝑖(𝑡𝑡) = {𝑝𝑝𝑖𝑖1(𝑡𝑡),𝑝𝑝𝑖𝑖2(𝑡𝑡), … ,𝑝𝑝𝑖𝑖𝐾𝐾(𝑡𝑡)} 

where 𝑝𝑝𝑖𝑖𝑘𝑘(𝑡𝑡) corresponds to the probability of node 𝑁𝑁 selecting a sector 𝑘𝑘 in time slot 𝑡𝑡. The action 
probability distribution must satisfy:  

 ∑𝐾𝐾
𝑘𝑘=1 𝑝𝑝𝑖𝑖𝑘𝑘(𝑡𝑡) = 1,∀𝑡𝑡  ,∀𝑁𝑁. 
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3.2.2.1.3. The Reinforcement Signal (Reward/Penalty) 
 If a node observes a collision in a sector, it assumes that more undiscovered nodes exist in 

that sector. The probability of exploring this sector should be higher in the following time slots, 
i.e., the sector is rewarded. Similarly, a penalty is applied to a sector in which a neighbor has been 
discovered, so that other sectors could be selected instead of selecting this sector again. Thus, the 
reinforcement learning signal, received by node 𝑁𝑁 in a time slot 𝑡𝑡 is given by:  

 

 𝛽𝛽𝑖𝑖(𝑡𝑡) = �
0, 𝑁𝑁𝑖𝑖𝑎𝑎 𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑁𝑁𝑖𝑖𝑁𝑁𝑐𝑐𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑙𝑙𝑖𝑖(𝑅𝑅𝑁𝑁𝑤𝑤𝑎𝑎𝑙𝑙𝑎𝑎)

1, 𝑁𝑁𝑖𝑖 𝑎𝑎 𝑎𝑎𝑁𝑁𝑁𝑁𝑙𝑙ℎ𝑏𝑏𝑐𝑐𝑙𝑙 𝑁𝑁𝑖𝑖 𝑎𝑎𝑁𝑁𝑖𝑖𝑐𝑐𝑐𝑐𝑑𝑑𝑁𝑁𝑙𝑙𝑁𝑁𝑎𝑎(𝑃𝑃𝑁𝑁𝑎𝑎𝑎𝑎𝑙𝑙𝑡𝑡𝑃𝑃)
1, 𝑁𝑁𝑖𝑖 𝑡𝑡ℎ𝑁𝑁𝑐𝑐𝑏𝑏𝑖𝑖𝑁𝑁𝑙𝑙𝑑𝑑𝑎𝑎𝑡𝑡𝑁𝑁𝑐𝑐𝑎𝑎 𝑖𝑖𝑙𝑙𝑐𝑐𝑡𝑡 𝑁𝑁𝑖𝑖 𝑁𝑁𝑎𝑎𝑙𝑙𝑁𝑁(𝑃𝑃𝑁𝑁𝑎𝑎𝑎𝑎𝑙𝑙𝑡𝑡𝑃𝑃)

 (9) 

 
 

3.2.2.1.4. The Updating Operator, T 
 Let 𝑇𝑇 denote the updating operator, which is used to adjust the probability distribution 

according to 𝛽𝛽𝑖𝑖(𝑡𝑡) received after an action. We have:  

 𝑃𝑃𝑖𝑖(𝑡𝑡 + 1) = 𝑇𝑇(𝑃𝑃𝑖𝑖(𝑡𝑡),𝐴𝐴𝑖𝑖 ,𝛽𝛽𝑖𝑖(𝑡𝑡)). 
  

3.2.2.2. The Environment 
 The environment is modeled as a triple of parameters {𝛼𝛼,𝛽𝛽, 𝑐𝑐}. Here, the action 𝛼𝛼𝑖𝑖(𝑡𝑡) 

performed by a node 𝑁𝑁 in a time slot is the input to the environment. The output 𝛽𝛽𝑖𝑖(𝑡𝑡) allows the 
node to assess the action performed, as illustrated in Fig. 5. A key factor describing the 
environment is the penalty and the reward probability for an action 𝛼𝛼𝑖𝑖(𝑡𝑡). We define the penalty 
probability vector as [25]:  

 𝑐𝑐𝑖𝑖(𝑡𝑡) = {𝑐𝑐𝑖𝑖1(𝑡𝑡), 𝑐𝑐𝑖𝑖2(𝑡𝑡), … , 𝑐𝑐𝑖𝑖𝐾𝐾(𝑡𝑡)}, (10) 

 with 𝑐𝑐𝑖𝑖(𝑡𝑡) = 𝑃𝑃𝑙𝑙[𝛽𝛽𝑖𝑖(𝑡𝑡) = 1|𝛼𝛼𝑖𝑖(𝑡𝑡) = 𝑎𝑎𝑖𝑖]. 
 

 
   

 The environment as a set of 𝑁𝑁 independent learning automata. 

3.2.2.3.   The Learning Algorithm 
 In the existing probabilistic and deterministic neighbor discovery schemes [6, 12], the node 

operates as a pure chance automaton, i.e., the node does not adjust its behavior based on its current 
state. By using a learning algorithm, the node can select a most appropriate sector which leads to 
a successful neighbor discovery with a higher probability. The modification in the node’s behavior 
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is in terms of updating its sector selection probability distribution (from 𝑃𝑃𝑖𝑖(𝑡𝑡) to 𝑃𝑃𝑖𝑖(𝑡𝑡 + 1)) after 
each time slot, by using the following linear reward and penalty scheme [25]:   

• Initialization: Each node initializes the action probability vector 𝑃𝑃𝑖𝑖(𝑡𝑡), as 𝑝𝑝𝑖𝑖𝑘𝑘(0) = 1
𝐾𝐾

,∀𝑘𝑘,∀𝑁𝑁. 
Due to the lack of coordination between the nodes prior to the deployment, the actions are 
considered equiprobable. 

• Repeat: At each time instant 𝑡𝑡:  

• In the first sub-slot: Select a sector 𝑘𝑘 ∈ {1,2,3, … ,𝐾𝐾} according to the probability vector 
𝑃𝑃𝑖𝑖(𝑡𝑡). The transmit or receive operation to perform in that sector is chosen with probability 
1
2
.  

• In the second sub-slot: The node calculates the reward or penalty, based on the feedback 
from the environment. Each node independently updates its probability vector by using the 
linear learning algorithm. For an action 𝛼𝛼𝑖𝑖(𝑡𝑡) that a node 𝑁𝑁 executes in time slot 𝑡𝑡, the 
probability is updated as follows: 

     If 𝛽𝛽𝑖𝑖(𝑡𝑡) = 0    (𝑙𝑙𝑁𝑁𝑤𝑤𝑎𝑎𝑙𝑙𝑎𝑎): 

𝑝𝑝𝑖𝑖𝑘𝑘(𝑡𝑡 + 1) = �
𝑝𝑝𝑖𝑖𝑘𝑘(𝑡𝑡) + 𝑎𝑎(1 − 𝑝𝑝𝑖𝑖𝑘𝑘(𝑡𝑡)), 𝑁𝑁𝑖𝑖𝛼𝛼𝑖𝑖(𝑡𝑡) = 𝑎𝑎𝑖𝑖

(1 − 𝑎𝑎)𝑝𝑝𝑖𝑖𝑘𝑘(𝑡𝑡), 𝑁𝑁𝑖𝑖𝛼𝛼𝑖𝑖(𝑡𝑡) ≠ 𝑎𝑎𝑖𝑖.
 

 

     If 𝛽𝛽𝑖𝑖(𝑡𝑡) = 1    (𝑝𝑝𝑁𝑁𝑎𝑎𝑎𝑎𝑙𝑙𝑡𝑡𝑃𝑃):  

 𝑝𝑝𝑖𝑖𝑘𝑘(𝑡𝑡 + 1) = �
(1 − 𝑏𝑏)𝑝𝑝𝑖𝑖𝑘𝑘(𝑡𝑡), 𝑁𝑁𝑖𝑖𝛼𝛼𝑖𝑖(𝑡𝑡) = 𝑎𝑎𝑖𝑖

𝑏𝑏
𝐾𝐾−1

+ (1 − 𝑏𝑏)𝑝𝑝𝑖𝑖𝑘𝑘(𝑡𝑡), 𝑁𝑁𝑖𝑖𝛼𝛼𝑖𝑖(𝑡𝑡) ≠ 𝑎𝑎𝑖𝑖.
 

     Here 𝑎𝑎 (reward) and 𝑏𝑏 (penalty) are the learning rate, with 𝑎𝑎 and 𝑏𝑏 ∈ [0 l]. 

3.3. Adaptive Directional Neighbor Discovery Scheme  

 System Model and Assumptions 
We assume that each node is equipped with a steerable directional antenna with beamwidth 

𝜃𝜃 = 2𝜋𝜋
𝐾𝐾

, where 0 < 𝜃𝜃 < 2𝜋𝜋. We denote the neighbors of a node 𝑁𝑁 as 𝑁𝑁𝑁𝑁𝑁𝑁(𝑁𝑁). Each antenna is able 
to orient its beam to a predefined direction. To model the directional gain of an antenna, we employ 
a 2-dimension ideal keyhole antenna model [12]. The beam model takes into consideration only 
the main lobe, i.e., the direction of maximum power for transmissions or receptions, while the side 
and back lobes are ignored. 

We assume that a pair of nodes can communicate in the directional mode if their antennas are 
oriented toward each other. In order to formalize this condition along with the presented beam 
model, we define 𝜑𝜑 and 𝜑𝜑′ as the respective transmit and receive directions of the two nodes. We 
verify the previous condition through the following formula: 



 

Approved for Public Release; Distribution Unlimited.   
15 

𝜑𝜑 = (𝜑𝜑′ + 𝜋𝜋)  𝑚𝑚𝑐𝑐𝑎𝑎  2𝜋𝜋 

We next assume that time is divided into slots and the nodes are perfectly synchronized. The 
nodes operate in half duplex mode, i.e., a node can either transmit or receive in a given time slot. 
In transmit mode, a node will send an advertisement message with its ID in a given direction during 
the first sub-slot. In the second sub-slot, the node will listen for ACK in the same direction. 
Similarly, a node in listen mode, will dedicate the first sub-slot to receiving potential neighbor 
discovery messages. If a successful reception occurs and the node is not already discovered, the 
node will send an ACK message in the same direction in the second sub-slot. If the node is already 
discovered, the node will remain silent. Moreover, we consider that the nodes possess the 
following features: Each node is identified by a unique ID; All nodes are perfectly synchronized; 
The network topology is assumed to be static during the node discovery process. 

 Preliminaries 
  Various multi-agent reinforcement learning (MARL) schemes have been proposed in 

literature considering a model-free environment. In this case, the agent ought to learn to behave 
optimally even when no a priori knowledge about the environment dynamics is available. For the 
neighbor discovery problem, our goal is to map the directional neighbor discovery problem into a 
multi-agent learning scenario. To solve this problem, we consider a decentralized implementation 
of the Q-learning algorithm with an 𝜀𝜀-greedy exploration strategy, as it can allow a node to learn 
an improved policy by repeatedly interacting with the environment with no a priori knowledge of 
the state transition probabilities. The MARL theory and the Q-learning mechanism are briefly 
described below.  

3.3.2.1. Multi-Agent Reinforcement Learning (MARL) 
 In distributed decision making, each node is considered as an independent agent with 

autonomous learning capabilities. Let us assume that the environment is a finite state discrete time 
non-stationary system. At each time slot 𝑡𝑡, the agent interacts with the system following a 
predefined sequence:   

(1) The agent 𝑁𝑁 observes its state: 𝑖𝑖𝑡𝑡𝑖𝑖 = 𝑖𝑖 ∈ 𝑆𝑆, where 𝑆𝑆 is the set of 𝑀𝑀 possible states, 𝑆𝑆 =
{𝑖𝑖(1), 𝑖𝑖(2), … , 𝑖𝑖(𝑀𝑀)}.  

(2) Based on 𝑖𝑖𝑡𝑡𝑖𝑖, the agent 𝑁𝑁 takes an action: 𝑎𝑎𝑡𝑡𝑖𝑖 = 𝑎𝑎 ∈ 𝐴𝐴, where 𝐴𝐴 is the set of 𝑅𝑅 actions 
available to the agent: 𝐴𝐴 = {𝑎𝑎(1),𝑎𝑎(2), … ,𝑎𝑎(𝑅𝑅)}.  

(3) A transition occurs as a results of action 𝑎𝑎𝑡𝑡𝑖𝑖 . The agent now perceives its state as 𝑖𝑖𝑡𝑡+1𝑖𝑖 . We 
denote the transition probability from state 𝑖𝑖 to state 𝑖𝑖′ as 𝑃𝑃𝑠𝑠𝑠𝑠′.  

(4) A reward 𝑙𝑙𝑡𝑡𝑖𝑖 is returned to the agent. The process is repeated infinitely or until an ending 
condition is met.  

 The process is depicted in Figure 6.  
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 Multi-agent distributed learning scenario. 

   

In MARL scheme, the goal of each agent is to find an optimal policy 𝜋𝜋∗ for each state 
maximizing the reward 𝑙𝑙𝑡𝑡𝑖𝑖 = 𝑙𝑙(𝑖𝑖𝑡𝑡𝑖𝑖,𝑎𝑎𝑡𝑡𝑖𝑖) accumulated over an infinite number of steps. We define 
the value function of a policy as the expected infinite discounted sum of the accumulated reward, 
when a player starts in state 𝑖𝑖0 and executes the policy 𝜋𝜋. 

 
 𝑄𝑄(𝑖𝑖,𝑎𝑎) = 𝔼𝔼{∑∞

𝑡𝑡=0 𝛽𝛽 𝑙𝑙(𝑖𝑖𝑡𝑡,𝜋𝜋(𝑖𝑖𝑡𝑡))|𝑖𝑖0 = 𝑖𝑖} (11) 
 
where 𝛽𝛽 is a discount learning factor 0 ≤ 𝛽𝛽 ≤ 1. Equation 11 can be rewritten as [27, 28]:  

 𝑄𝑄(𝑖𝑖,𝑎𝑎) = 𝑙𝑙(𝑖𝑖,𝑎𝑎) + 𝛽𝛽∑𝑣𝑣∈𝑆𝑆 𝑃𝑃𝑠𝑠𝑣𝑣(𝑎𝑎)𝑄𝑄(𝑑𝑑, 𝑏𝑏) (12) 

 where, 𝑏𝑏 ∈ 𝐴𝐴 as 𝑏𝑏 ∉ 𝑎𝑎. 
 

Finding an optimal policy is equivalent to minimizing the cost at each time slot:  

 𝑉𝑉∗(𝑖𝑖) = min
𝑎𝑎∈𝐴𝐴

𝑄𝑄(𝑖𝑖,𝑎𝑎) (13) 

 By using the Bellman optimality criterion, the optimal policy 𝜋𝜋∗satisfies the following equation:  

 𝑄𝑄(𝑖𝑖,𝑎𝑎) = 𝑙𝑙(𝑖𝑖,𝑎𝑎) + 𝛽𝛽∑𝑣𝑣∈𝑆𝑆 𝑃𝑃𝑠𝑠𝑣𝑣(𝑎𝑎)min
𝑏𝑏∈𝐴𝐴

𝑄𝑄∗(𝑖𝑖, 𝑏𝑏). (14) 

 Subsequently, at each time slot a node determines its action as it verifies:  

 𝑄𝑄∗(𝑖𝑖,𝑎𝑎∗) = min
𝑎𝑎∈𝐴𝐴

𝑄𝑄∗(𝑖𝑖,𝑎𝑎) (15) 

 As in Equation 14, the Q-value is clearly a function of the excepted reward 𝑙𝑙(𝑖𝑖, 𝑎𝑎) and the 
transition probability 𝑃𝑃𝑠𝑠𝑠𝑠′. However, in model free RL problems, the agents don’t have a priori 
knowledge of the system dynamics as it generally depends on the others agents’ policies. In this 
case, Q-learning is particularly interesting as it enables a learner to determine an optimal policy by 
incrementally calculating an estimation of 𝑄𝑄∗(𝑖𝑖, 𝑎𝑎), which makes it suitable for our application 
[27]. 



 

Approved for Public Release; Distribution Unlimited.   
17 

3.3.2.2. Q-Learning 
 Similar to the single agent Q-learning, a multiagent Q-learning scheme operates as follows: 

each agent maintains an evaluation matrix, denoted by 𝑄𝑄(𝑀𝑀,𝑅𝑅). The Q-learning process estimates 
the value function in Equation 12 iteratively without any explicit knowledge about the reward 𝑙𝑙 
and the transition probability 𝑃𝑃𝑠𝑠𝑠𝑠′. After execution of each action, each agent independently updates 
its Q-matrix in a recursive manner [28]:  

 𝑄𝑄(𝑠𝑠,𝑎𝑎) = �
𝑄𝑄(𝑠𝑠,𝑎𝑎) + 𝛽𝛽∆𝑄𝑄(𝑠𝑠,𝑎𝑎), 𝑁𝑁𝑖𝑖𝑎𝑎 = 𝑎𝑎𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 = 𝑖𝑖𝑡𝑡

𝑄𝑄(𝑠𝑠,𝑎𝑎), 𝑐𝑐𝑡𝑡ℎ𝑁𝑁𝑙𝑙𝑤𝑤𝑁𝑁𝑖𝑖𝑁𝑁,  (16) 

 where  

 ∆𝑄𝑄(𝑖𝑖,𝑎𝑎) = {𝑙𝑙𝑡𝑡 + 𝛽𝛽min
𝑎𝑎∈𝐴𝐴

𝑄𝑄𝜋𝜋(𝑑𝑑,𝑎𝑎)} − 𝑄𝑄(𝑖𝑖,𝑎𝑎) (17) 

For the case of non-stationary reward, the Q-learning algorithm needs to keep trying all the 
action-state combinations as the identity of the optimal action may be different in each time slot 
[29, 30]. However, the learning algorithm may get stuck in a non-optimal policy unless all the 
possible actions are tested continuously. To remedy this, an 𝜀𝜀-greedy exploration strategy is used, 
where the agent chooses the greedy action (i.e., the learned action) with probability 𝜀𝜀 and a random 
action with probability 1 − 𝜀𝜀 [29]:  

 𝑎𝑎∗ = �
𝑎𝑎𝑙𝑙𝑙𝑙𝑚𝑚𝑎𝑎𝑎𝑎(𝑄𝑄(𝑖𝑖,𝑎𝑎)), 𝑤𝑤𝑁𝑁𝑡𝑡ℎ 𝑝𝑝𝑙𝑙𝑐𝑐𝑏𝑏𝑎𝑎𝑏𝑏𝑁𝑁𝑙𝑙𝑁𝑁𝑡𝑡𝑃𝑃 1 − 𝜀𝜀
𝐼𝐼(𝐴𝐴), 𝑤𝑤𝑁𝑁𝑡𝑡ℎ𝑝𝑝𝑙𝑙𝑐𝑐𝑏𝑏𝑎𝑎𝑏𝑏𝑁𝑁𝑙𝑙𝑁𝑁𝑡𝑡𝑃𝑃 𝜀𝜀.  (18) 

where I(A) is a characteristic function for the event when action 𝑎𝑎 is chosen. Choosing the 
numerical value of the exploration rate (𝜀𝜀) should ensure a balance between exploiting the learned 
policy and exploring new policies to avoid being trapped in a sub-optimal policy. This value is 
generally chosen empirically. 

 Deterministic Q-Learning based Neighbor Discovery Algorithm  
We model the neighbor discovery problem with a directional antenna as an N-agent model-

free learning game. It is very complex to compute the state transition probability 𝑃𝑃𝑠𝑠𝑠𝑠′ for the given 
system model: the reward/penalty received by each agent depends on the strategy of other agents 
which complicates the estimation of 𝑃𝑃𝑠𝑠𝑠𝑠′. Further, in a decentralized reinforcement learning 
scheme, each agent is equipped with an independent Q-learning mechanism which greatly 
improves the scalability of the proposed scheme compared to the centralized schemes. 

As discussed earlier, in the previously proposed schemes, both the beam direction and the 
operating mode (i.e., trasmit or receive) are determined either randomly or deterministically. In 
this scheme, we propose a learning formulation based on one dimensional decision making. In the 
proposed deterministic Q-learning based algorithm, each node executes a scan sequence randomly, 
and the operating mode is decided by a Q-learning mechanism. 
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3.3.3.1. Deterministic Learning based DND 
3.3.3.1.1. Formulation 

Each node decides to start a scan sequence in a random direction with probability 1
𝐾𝐾

. The 
operating mode is chosen via the learning algorithm. First, we formulate the Q-learning parameters 
as follow:   

• State space: As described earlier, we consider a network consisting of 𝑁𝑁 nodes each equipped 
with a 𝐾𝐾 sectored antenna. Under a distributed multi-agent framework, each node 𝑁𝑁 focuses on 
its operating mode and perceives its state at a time slot 𝑡𝑡 as:  

 𝑖𝑖𝑡𝑡𝑖𝑖 = {𝑎𝑎𝑖𝑖1(𝑡𝑡), 𝑎𝑎𝑖𝑖2(𝑡𝑡), . . . . 𝑎𝑎𝑖𝑖𝐾𝐾(𝑡𝑡)} 

where 𝑖𝑖𝑡𝑡𝑖𝑖 is a vector of the number of neighbors discovered in sector 𝑘𝑘 after 𝑡𝑡 time slots 
(𝑎𝑎𝑖𝑖𝑘𝑘(𝑡𝑡)). Thus, considering that the nodes distribution is uniform, it is straightforward that:  

 𝑎𝑎𝑖𝑖𝑘𝑘(𝑡𝑡) ∈ {0, . . . , 𝑁𝑁𝑁𝑁𝑖𝑖(𝑖𝑖)
𝐾𝐾

}  ∀𝑘𝑘,∀𝑎𝑎. 

We denote the set of all possible states by 𝑆𝑆. Further, we define a terminating state as a state 
where a node has discovered all its one-hop neighbors:  

 𝒮𝒮𝑡𝑡𝑁𝑁𝑡𝑡𝑡𝑡 = 𝑖𝑖𝑡𝑡𝑖𝑖 ∈ 𝒮𝒮: 𝑖𝑖𝑡𝑡𝑖𝑖 = {𝑁𝑁𝑁𝑁𝑖𝑖(𝑖𝑖)
𝐾𝐾

, . . . , 𝑁𝑁𝑁𝑁𝑖𝑖(𝑖𝑖)
𝐾𝐾

}} ,∀𝑁𝑁. (19) 

• Actions: After observing its state at each stage, each node needs to independently choose its 
action for the current time slot. We consider that a node choosing to listen or to receive in a 
given sector is viewed as an action. The action space of a node 𝑁𝑁 is defined as:  

 𝐴𝐴 = {𝐿𝐿(𝑙𝑙𝑁𝑁𝑖𝑖𝑡𝑡𝑁𝑁𝑎𝑎),𝑇𝑇(𝑡𝑡𝑙𝑙𝑎𝑎𝑎𝑎𝑖𝑖𝑚𝑚𝑁𝑁𝑡𝑡)} (20) 

• The Reinforcement Signal (Reward/Penalty): The reward perceived by a node 𝑁𝑁 depends on 
the observation made in the second sub-slot. The design of the reward function is meant to 
force the agent to elicit the desired behavior. In the context of neighbor discovery, the agent 
aims to discover all of its neighbors in a short period. Thus, the agent needs to perform more 
exploration in the sector where an undiscovered neighbor is expected with a high probability. 
If a node transmits its ID in the first slot and observes a collision in the second sub-slot, it 
assumes that more undiscovered nodes exist in that sector. Thus, the Q-value of this sector 
should be higher in the next time slots. Similarly, when a neighbor is discovered successfully, 
the reward function should reflect the need to investigate other directions. The reinforcement 
signal, denoted as 𝑙𝑙(𝑖𝑖,𝑎𝑎), received by node 𝑁𝑁 at a given time slot 𝑡𝑡 is given by:  

 𝑙𝑙(𝑖𝑖,𝑎𝑎) = �
1, 𝑁𝑁𝑖𝑖 𝑎𝑎 𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑁𝑁𝑖𝑖𝑁𝑁𝑐𝑐𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑙𝑙𝑖𝑖

0, 𝑁𝑁𝑖𝑖 𝑎𝑎 𝑎𝑎𝑁𝑁𝑁𝑁𝑙𝑙ℎ𝑏𝑏𝑐𝑐𝑙𝑙 𝑁𝑁𝑖𝑖 𝑎𝑎𝑁𝑁𝑖𝑖𝑐𝑐𝑐𝑐𝑑𝑑𝑁𝑁𝑙𝑙𝑁𝑁𝑎𝑎
0, 𝑁𝑁𝑖𝑖 𝑡𝑡ℎ𝑁𝑁 𝑐𝑐𝑏𝑏𝑖𝑖𝑁𝑁𝑙𝑙𝑑𝑑𝑎𝑎𝑡𝑡𝑁𝑁𝑐𝑐𝑎𝑎 𝑖𝑖𝑙𝑙𝑐𝑐𝑡𝑡 𝑁𝑁𝑖𝑖 𝑁𝑁𝑎𝑎𝑙𝑙𝑁𝑁.

 (21) 
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3.3.3.1.2. Q-Learning Implementation 

 Having specified the state, action and cost of our formulation, we implement a Q-learning 
mechanism, where each node executes the following learning steps:   

    1.  Each node initializes its Q-matrix.  
    2.  At each time slot, if a node chooses to act greedily, the selected action is chosen based 

on the minimum Q-value. If the node chooses to explore, the action is randomly chosen.  

    3.  The node executes the selected action and receives an immediate reward 𝑙𝑙(𝑖𝑖,𝑎𝑎).  
    4.  Each node independently updates its Q-table as suggested in Equation 16:  

 𝑄𝑄(𝑠𝑠,𝑎𝑎) + 𝛽𝛽∆𝑄𝑄(𝑠𝑠,𝑎𝑎) (22) 

  

 
Since every node needs to keep looking for new neighbors across all its sectors, the reward is 

considered as non stationary. In other words, identity of the optimal action (i.e., optimal sector) 
can be different in each time slot. Thus, the learning procedure needs to find a suitable balance 
between exploration and exploitation. In this context, exploitation refers to operating in a sector 
which appears to have the most probable undiscovered neighbors, whereas the exploration refers 
to choosing any other sector randomly. By introducing an exploration factor 𝜀𝜀, a node explores all 
sectors to ensure that a link is established with all of its neighbors. Numerical values of the 
exploration factor and learning step are determined via numerical simulation. Details of the 
algorithm are given in Algorithm 1. 
  

 Algorithm 1: Deterministic Q-Learning based Algorithm 
 
Initialization each 𝑖𝑖 ∈ 𝑆𝑆, 𝑎𝑎 ∈ 𝐴𝐴   
Initialize the Q-value 𝑄𝑄(𝑖𝑖,𝑎𝑎) ← 0    
Evaluate the starting state 𝑖𝑖𝑡𝑡𝑖𝑖 randomly. 
Learning Loop  generate a random number 𝑙𝑙𝑎𝑎𝑎𝑎 between 0 and 1.  𝑙𝑙𝑎𝑎𝑎𝑎 < 𝜀𝜀,  
  Select the start direction randomly,    
  Select the operating mode minimizing the Q-value.  
  Execute the selected operating mode.   
  Calculate the cost based on the reward function in Equation (21).  
  Observe the next state 𝑖𝑖𝑖𝑖𝑡𝑡+1.  
 Update the Q-matrix entry as in Equation (16).  
End Loop   
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3.4. Hardware Demonstration of Directional Neighbor Discovery Scheme 

In this section, we describe our hardware demos for directional neighbor discovery (DND) 
schemes. To better demonstrate the different cases of directional neighbor discovery, we use two 
directional antennas (instead of one) in each PC. Each antenna is manually rotated to emulate the 
steerable antenna. Manual rotation helps us to better observe the transition process from a ‘no-
neighbor’ case to a ‘neighbor detected” case. Our testbed consists of multiple NI USRP 2943R 
boards for DND test, and we have written the C++ socket programs to achieve multi-point RF 
communications.  

In our DND testbed, each node is equipped with two directional antennas. These two beams 
are able to send or receive data simultaneously after we program the two Rx/Tx ports of the USRP 
board. The neighbor discovery in our demos involves node authentication process and multimedia 
communications.  

In the first demo we have implemented the basic directional neighbor discovery via the Rx 
port programming in the USRP boards. In Demo 2, we show how each node can discover multiple 
neighbors simultaneously through it two beams. In the third demo, we further test the link switch 
operations based on different link conditions, in which our intelligent wireless nodes can measure 
the quality of wireless signal. When the RF signal quality is poor, the sender and receiver 
automatically switch to another link for a better transmission quality.  

 Hardware Platform 

We have used NI USRP 2943R, with 2x2 MIMO RF transceivers with independently tunable 
operating frequencies from 50 MHz to 6 GHz, with 40 MHz, 120 MHz, or 160 MHz per channel 
for real-time communication, as shown in Figure 7. The 2x2 MIMO RF transceivers enable the 
setup of two RX/TX ports and two RX ports. The RX/TX ports can be manually switched between 
reception (Rx) and transmission (Tx) mode, while the RX ports can only work in the reception 
mode. The 2x2 MIMO RF transceivers are associated with four individual ADC and DAC chips 
respectively.  

A FPGA chip is the core of the USRP device. It can be used to process RF signals and manage 
the functionalities of the USRP board. Through the software tool called Labview, a user can change 
the structure of signal processing sequences. Hence, the USRP supports a flexible wireless 
communication system with customized wireless protocols. 

The directional antenna (HAO14SDP Hi-Gain Antenna) used in our demo has a beam width 
of 60 degrees. Its operation frequency is 500MHz - 3GHz, with gain of 14dBi, and the impedance 
of 50 Ohm. 
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 USRP hardware architecture for 2 different RF channels [from NI.com]. 

 Software Platform 

• NI Labview Communication Suite: LabVIEW is used to interact with the FPGA of USRP. The 
default configuration of NI Labview tool is shown in Figure 8. The Communication Suite of 
NI Labview can be generally categorized into two components. The first component, shown in 
the leftmost part of Fig. 8, is the software installed in the host PC. In this component, a user 
can easily build the wireless communication protocols in the host code and set the 
communication parameters. In addition, the embedded codes are available in the FPGA chip, 
which are critical for achieving flexible wireless communication control such as modulation 
mode change. 
 

 

 Default FPGA configuration with two RFs [from NI.com] 
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Users can modify certain part of the codes in the FPGA chip, but it is more complicated than 

modifying the codes in the host PC. In our demos, since we need to change some functionalities 
of the USRP board in the lower layer of ISO architecture, we have spent much time building the 
codes of FPGA in USRP for the implementation of DND scheme.  
 
• C++ Socket Program: We have built a server routine based on C++ sockets to handle the 

neighbor authentication and channel selection (see Figure 9).  
 

 
  Default FPGA configuration for two RFs [from NI.com]. 

 Socket programming is a way of connecting two nodes on a network for TCP/IP-based 
communications. One socket (in a node) listens on a particular port with an IP address, while the 
other socket reaches out to this node to form a TCP connection. In our case, the server forms the 
listener socket while the client reaches out to the server. Most inter-process communication uses 
the client/server model.  

 Demo 1: Basic Directional Neighbor Discovery Functions 

3.4.3.1. System Model 
We build demo 1 by using three USRP-Rio boards (see Figure 10): two as receivers (Rx1 and 

Rx2), and one as a sender (Tx), at a transmission frequency of 2.2 GHz. Two directional antennas 
are used in each USRP node. We assume that each node maintains a list of the node IDs of all 
valid neighbors, so that it can decide to accept or decline the communication request from its 
neighbors based on their ‘friendly (valid)’ or ‘enemy (invalid)’ status. In this demo, Rx1 is 
assumed to be valid whereas Rx2 is invalid. The directional antenna is manually rotated in order 
to detect RF signals from different directions. 
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  System model of Demo 1.  

3.4.3.2. Methodology 
This demo is used to demonstrate the basic principle of directional neighbor discovery. To 

mimic the steerable antenna, we manually rotate the direction of a beam. The sender sends a 
request message through its directional antenna and waits for the response message from its 
potential neighbors in that particular direction. When no neighbor is detected in that direction, the 
system displays a message “No neighbor in the area”. Otherwise, it will verify the ID of the 
detected neighbor by checking its valid-IDs list. If the neighbor passes the validation test, the node 
will add its IP address to the list of valid neighbors, and display “Find a valid neighbor” on the 
screen. The node uses C++ routine to authenticate the received packet. If the packet comes from 
an invalid neighbor, the screen displays “Not a valid neighbor”.  

3.4.3.3. Implementation and Test Results 
The antenna of Rx1 node faces the front as shown in Figure 11(a) whereas the antenna of Rx2 

node is rotated by 900 (facing the left side) in Figure 11(b). 
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 (a) Rx1 setup; (b) Rx2 setup. 

Initially the antenna of Tx is set to face Rx2 node and the neighbor discover process is initiated 
by Tx by sending a “neighbor request” message. The Rx2 node sends a “neighbor response” 
message back to Tx. However, as mentioned earlier, Rx2 is set as an invalid neighbor of the sender. 
Therefore, when the sender (Tx) receives the feedback from the receiver (Rx2), it determines that 
Rx2 is an invalid neighbor, as shown in Figure 12. Thus Tx will not initiate any communication 
with Rx2.  

 

 
 Tx system output while facing Rx2. 

In the next stage, the Tx’s antenna is rotated by 45-degree. In this case, its antenna is not 
oriented toward either of the two receivers, which results in a poor link quality. Since the signal 
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strength is not strong enough to accomplish the neighbor discovery process, the node (Tx) that is 
searching for the neighbors cannot find any neighbors. Therefore, we get the message on the screen 
as “No neighbor in this area”, as shown in Figure 13. 

  

 

 Tx system output when facing an empty area (i.e., without neighbors). 

We then rotate the directional antenna of Tx to face Rx1 node, which is assumed to be a valid 
neighbor. Similar to the previous stages, the Tx node sends the “neighbor request” message on its 
main beam. Upon receiving this message, the Rx1 node sends back a “neighbor response” message 
with a valid authentication. In this way, the Tx node determines that the neighbor is a valid node, 
and adds its IP address to its neighbor list. Now it can communicate with this valid neighbor. 
Figure 14 shows the result of the successful neighbor discovery process, where the console on the 
screen outputs the text “Find a valid neighbor”.  
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 Tx system output when facing Rx1 (valid neighbor). 

 Demo 2: Multi-Beam Directional Neighbor Discovery 

3.4.4.1. System Model 
The USRP-Rio boards are able to transmit/receive data simultaneously through two 

transceivers (RX1/TX1, and RX2/TX2). Also, the data rate of each transceiver is large enough 
(>100Mbps) for multimedia transmissions. To explore the advantages of USRPs, we implement 
the video transmissions in our DND testbed.  

As shown in Figure 15, we use three USRPs: one sender (Tx node) and two receivers (Rx1 
and Rx2). In this demo, we use two channels with different frequencies, Tx1/Rx1 in Beam 1 at 
2.2GHz and Tx2/Rx2 in Beam 2 at 2.8GHz. Two different 720p HD video streams are transmitted 
by Tx node over these two channels - NCAA Football video stream on channel 1 and National 
Geographic video stream on channel 2. 

 

Tx 
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 System model for multi-beam neighbor discovery demo. 

3.4.4.2. Methodology 
In this demo, a USRP Tx can discover the neighbors in two different directions. We deploy 

two USRP nodes (Rx1 and Rx2) in two different directions. Both of them are valid USRP 
neighbors.  

Through careful programming, we make the two antennas work in parallel to discover the 
neighbors simultaneously. Through multi-beam neighbor discovery process (instead of just relying 
on one beam), we can significantly shorten the neighbor discovery time of a node.    

Note that the USRP board allows the processing of only one Rx data flow and one Tx data 
flow in its FPGA-supported libraries by default. To enable simultaneous neighbor discovery in 
both beams, we have implemented another Rx data flow transmission thread in its FPGA board. 
Since this modification cannot be achieved through a regular programming in the host PC, we had 
to modify the codes in the FPGA which is very time consuming.  

As mentioned before (see Figure 8), the data transmission control of a USRP is programmed 
through a flow chart management module. A packet is processed by the blocks in the flowchart, 
where each block carries out a particular data processing function. This procedure and the blocks 
are defined by the code stored in the FPGA board of USRPs. The USRP manufacturer does not 
recommend changing this architecture. However, to implement this modification, we obtained a 
special permission from the manufacture, and realized our design after investing a lot of effort.  
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3.4.4.3.   Implementation and Test Results 
In this demo, the sender (Tx) has two antennas (i.e., two beams), one beam facing Rx1 and 

the other facing Rx2. Each beam goes through the same steps as in Demo 1, and the two beams 
perform those operations simultaneously. After the two neighbors (Rx1 and Rx2) are detected via 
these two beams, the sender (Tx) begins to transmit multimedia data (video stream) to these two 
neighbors at the same time. 

 Figure 16 shows the two video streams that we transmitted through two different beams of 
Tx node. Due to the high bandwidth supported by USRP boards, both videos are high-resolution 
streams and can be played on the receivers (Rx1 and Rx2) in real-time. In Figure 16, one can also 
observe the status of the system through the two consoles at the bottom of the figure.      

 

 

 System state when two neighbors are discovered (Left side is the video stream sent to Rx2, 
Right side is for Rx1). 

 Demo 3: Multi-Beam Link Switching 

3.4.5.1. System Model 
In this demo, we implement the link quality detection function in the DND testbed. The link 

quality detection can further improve performance of wireless networks by preventing the routing 
of packets through the neighbors that have poor link quality (measured by the poor received signal 
strength). We use a two-antenna system in this testbed, which can establish two links with 
respective neighbors, one link per antenna. In practical networks, the link quality can be actively 
sensed based on the received signal strength to establish the best end-to-end route among the 
neighboring nodes. Therefore, our tasks here include basic neighbor discovery and link quality 
comparisons among neighbors. 
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The setup of this demo is similar to Demo#2 shown in Figure 15, the major difference being 
that the video stream is transmitted only on one of the two links, based on the link quality and 
priority. Here Link 1 (in Antenna 1’s orientation) that streams the football video has a higher 
priority than Link 2. 

3.4.5.2. Methodology 
We demonstrate that the system automatically switches the link based on their quality and 

priority. Here we use the state variable 𝑆𝑆1 ∈ (0,1) to denote the link signal quality (1: good; 0: 
poor) and the state variable 𝑆𝑆2 ∈ (0,1) to indicate whether the current link is being used (0: idle; 
1: occupied). If Link 1 is in good condition (S1 = 1), 𝑆𝑆2 is set to 1 to inform that Tx is streaming 
the video to Rx 1 node on it. Otherwise, the system automatically switches to the other available 
link (i.e., Link 2 between Tx and Rx2, if it is in good condition, until the condition of Link 1 
becomes good again. 

3.4.5.3. Implementation and Test Results 
Initially, both links are in good condition (their signal-to-noise ratio (SNR) is -38dBm, and 

𝑆𝑆1 = 1). Since Rx1 has a higher priority, Tx sends the football video to Rx1 as shown in Figure 
17.  

 

 
 

 𝑆𝑆1 = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆2 = 1, Tx sends the football video to Rx1.  

 
Then we block Link 1 by placing an object in its direction, which degrades its signal quality 
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to poor (its SNR is -51dBm, 𝑆𝑆1 = 0). As a result, Tx automatically switches to the video stream 
to Rx2 on Link 2 (𝑆𝑆2= 1), as shown in Figure 18. 

 

 
 

 𝑆𝑆1 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆2 = 1, Tx sends the video to Rx2. 

 
When we remove the obstacle from Link 1’s direction to make its quality “good” again (the 

signal to noise (SNR) is -38dBm, 𝑆𝑆1 = 1), the system switches back to stream Rx1 video, as shown 
in Figure 19. These results demonstrate that Tx can automatically switch between two links based 
on the traffic priority and channel conditions. 

Major advantage of this Demo 3 is that it demonstrates the automatic update of the established 
routes when more than one neighbor is present which make available multiple links. 
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 𝑆𝑆1 = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆2 = 0, Tx sends the Football video to Rx1. 
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 RESULTS AND DISCUSSIONS 
In this chapter, we discuss the performance of our three directional neighbor discovery 

schemes that we described in Chapter 3. 

4.1. Collision-Aware Directional Neighbor Discovery Scheme: Performance Analysis  
To assess the performance of the proposed scheme, we split the evaluation into two major 

sections. In the first section, we analyze the improvement of the new algorithm compared to the 
random and scan schemes proposed in [12] and [31]. We then enhance the achieved results by 
enabling cooperation between nodes. The peer assisted version of the proposed algorithm operates 
identically as described in Section 3, the only difference being that a node also includes its 
neighbor table in the exchanged discovery packets. This will allow a node to discover multiple 
neighbors indirectly. 

The evaluation of the proposed algorithm is performed using extensive simulations using 
MATLAB. To quantify the improvement achieved by the proposed scheme, we use the following 
metrics which have been widely used in the literature:   

• Convergence time: we define the convergence time of the neighbor discovery process as the 
number of slots required for all the nodes to discover 90% of their neighbors.  

• Discovery ratio over time: This metric represents the ratio of the discovered neighbors to the 
total number of neighbors over time.  
 We also study the performance of the directional neighbor discovery scheme when the 

network density and the antenna beamwidth vary. The simulation experiments in different 
scenarios provide a realistic estimate of the time duration required to achieve the network wide 
neighbor discovery. 

 Unassisted Collision-Aware Neighbor Discovery 
First, we compare the performance of the proposed algorithm with random and scan based 

algorithms in the same simulation environment. The simulation scenario consists of 100 nodes 
randomly distributed in a square area 5 × 109m 2. Each node has a directional transmission range 
of 500m and 8 sectors. The results are averaged over 30 runs corresponding to different nodes 
placements. 

Figure 20 shows the ratio of neighbors discovered as a function of time for the unassisted 
collision-aware algorithm and the random and scan based neighbor discovery schemes without 
any collision management. The results clearly indicate that introduction of the collision 
management mechanism allows nodes to discover their neighbors at a faster rate. Quantitatively, 
the proposed algorithm requires 57% fewer slots to complete the network-wide neighbor discovery 
compared to the scan-based algorithm.  
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 Discovery ratio for the unassisted and assisted neighbor discovery schemes considered 
scenario(𝑁𝑁 = 100,𝑘𝑘 = 8). 

It is also of great interest to evaluate the performance of the proposed scheme for the sparse 
and densely populated networks. Figure 21 plots the convergence time for the three algorithms 
with different values of node density. As expected, the number of slots required to achieve the 
convergence of the neighbor discovery process is proportional to the node density. Moreover, the 
improvement of the proposed algorithm is also strongly correlated to the node density. For higher 
number of neighbors, the improvement achieved by our proposed scheme is more prominent. This 
may easily be substantiated as the number of packet collisions also increases for higher densities.  

  Next, we investigate the performance of the proposed algorithm for nodes with different 
number of beams. We fix the number of neighbors to 12. Figure 22 shows the average convergence 
time when the beamwidth varies from 900 to 250. First, we observe that the random algorithm 
needs a lot more time to complete the neighbor discovery process for narrow beams. Second, the 
proposed algorithm outperforms scan based for both the wide and narrow beams. 
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 Convergence time for ( K=8) and increasing number of neighbors. 

 Convergence time for different number of beams and a fixed number of neighbors. 
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 Peer-Assisted Collision-Aware Neighbor Discovery 
 We implement an enhanced version of the collision-aware neighbor discovery scheme by 

enabling the cooperation among nodes. In this version of the algorithm, we consider that all nodes 
have knowledge of their locations via GPS. Each node includes the (ID) and the location of its 
already discovered neighbors in its discovery packet. This will allow nodes to discover potential 
neighbors indirectly minimizing the number of slots required to complete the network-wide 
neighbor discovery. Figure 23 shows the neighbor discovery ratio achieved by the proposed and 
the scan based algorithms, along with their peer assisted versions. We observe that peer-assisted 
algorithms outperform the unassisted algorithms in terms of the discovery ratio over time. This is 
not surprising since, for the peer-assisted algorithms, one successful transmission can allow a node 
to discover multiple neighbors indirectly.  

 

 Discovery ratio for the the unassisted and assisted neighbor discovery schemes scenario(𝑁𝑁 =
100,𝑘𝑘 = 8). 
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 Convergence time for different algorithms with varying number of beams 

   
Next, we study the performance of these schemes for different numbers of antenna sectors. 

As expected, the peer-assisted collision-aware algorithm significantly outperforms the other 
schemes as shown in Figure 24. Similar to our previous analysis, we compute the convergence 
time for networks with increasing density. The results show that the convergence time follows the 
same trend as the previous results. In summary, the results suggest that combining the proposed 
collision resolution management and the cooperation between nodes (peer-assisted) achieved 
significant improvement in terms of reduced neighbor discovery time. 

4.2. Learning Automaton Based Directional Neighbor Discovery Scheme: 
Performance Analysis 

 Convergence Behavior 
 Generally, the aim of a learning scheme is to converge to an optimal action(s) based on past 

observations. However, the node must keep looking for new neighbors across all sectors during 
neighbor discovery. In other words, the optimal action (i.e., optimal sector selection) can be 
different in each time slot. In fact, the variation pattern of the expected reward would give a precise 
idea about the evolution of the optimal policy. In Figure 25, we plot the probability of observing 
a reward (represented as the collision probability) as a function of time (see Equation 9). The 
probability of collecting a reward is initially high, but it decreases with time. This property sustains 
the claim of the non-stationarity of learning environment as the penalty probability is time 
dependent, and the agent needs to adapt to the changes without converging to a given action. A 
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node responds to a neighbor discovery advertisement, only when no previous link has been 
established with the sender node [13]. Thus, as the node discovers most of its neighbors, the 
probability of collisions decreases, because the previously discovered nodes remain silent.  

   

 

 Collision probability for different number of sectors (or beams, 𝐾𝐾) and neighbor density 
values. Here, Neib is the number of neighbors per beam. 

 
Hence, the asymptotic behavior of LA can be described in terms of the asymptotic behavior 

of the penalty probability vector (defined in Equation 10) as:  

 lim
𝑡𝑡→∞

𝑐𝑐𝑖𝑖𝑘𝑘(𝑡𝑡) = 1, ∀𝑁𝑁,∀𝑘𝑘. 

Next, we are interested in the final distribution of sector selection probability, 𝑃𝑃𝑖𝑖. To calculate 
the limiting distribution of 𝑃𝑃𝑖𝑖, we use the expected probability distribution as 𝐸𝐸[𝑃𝑃𝑖𝑖(𝑡𝑡 + 1)|𝑃𝑃𝑖𝑖(𝑡𝑡)]. 
Using the distance diminishing factor, it can be shown that the limiting distribution of 𝑃𝑃𝑖𝑖 is normal 
with a mean [25]:  

 𝐸𝐸[𝑃𝑃𝑖𝑖𝑘𝑘(∞)] = 𝑐𝑐𝑖𝑖
𝑘𝑘(𝑡𝑡→∞)

∑𝑘𝑘𝑗𝑗=1 𝑐𝑐𝑗𝑗
𝑘𝑘(𝑡𝑡→∞)

, ∀𝑁𝑁,∀𝑘𝑘. 

As discussed earlier, the probability of a node receiving a penalty will go to 1 as the neighbor 
discovery process converges. Thus, the limiting distribution will converge to an equilibrium point 
as:  

   𝐸𝐸[𝑃𝑃𝑖𝑖𝑘𝑘(𝑡𝑡 → ∞)] ≈ 1
𝐾𝐾

,∀𝑘𝑘,∀𝑁𝑁. 

The interpretation of this result perfectly matches with our specific protocol design 
requirements. During execution of the proposed strategy, the node redraws its sector selection 
probability to accomplish a fast neighbor discovery. However, by the end of the algorithm, all the 
sectors will be equally penalized as no reward is expected. This will lead to an equilibrium point 
approximately equal to the initial distribution. 

0 200 300 400 500 600
Time slots

0

0.1

0.2

0.3

0.4

0.5

0.6

C
ol

lis
io

n 
pr

ob
ab

ilit
y

K=8, Neib=12
K=6, Neib=6
K=6, Neib=3



 

Approved for Public Release; Distribution Unlimited.   
38 

 Impact of Design Parameters 
Value of the learning parameters 𝑎𝑎 (reward) and 𝑏𝑏 (penalty) dictates the amount of 

adjustments applied to the action probability vectors 𝑃𝑃𝑖𝑖(𝑡𝑡). Intuitively, the value of parameters 
depends on the number of sectors and node density. For example, in a high density network, more 
exploration is needed in a given sector even after a successful neighbor discovery, in order to reach 
its other neighbors. A small value of the penalty parameter (𝑏𝑏) is more appropriate in this case, as 
the variation of the probability vector should be small to allow the exploration of that sector in 
later slots. The same logic can be used for the reward parameter (𝑎𝑎). As dense networks are more 
prone to collisions, a high value of ’𝑎𝑎’ will allow the colliding nodes to discover each other in a 
relatively short period of time by assigning higher probabilities to the sector(s) experiencing 
collisions. In contrast, sparse networks need less exploration as the number of neighbors per beam 
is small. A more significant adjustment of 𝑃𝑃𝑖𝑖 (i.e., a high value of 𝑏𝑏 ) allows exploitation of the 
information collected by investigating other sectors. A good estimate for the update of 𝑎𝑎 and 𝑏𝑏 can 
be defined through numerical simulations as suggested in [25].  

 

 

 Discovery ratio over time for 𝐾𝐾 = 8 and 𝑁𝑁 = 150, with learning parameters (𝑎𝑎 = 0.1,𝑏𝑏 =
0.05). 
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 Convergence time for 𝐾𝐾 = 8 and increasing neighbor density. 

 

 

 Convergence time for different number of beams with 4 neighbors per beam. 

  Simulation Results 
 In this section, we evaluate performance of the proposed scheme, compared to the two-way 

random handshaking algorithm [12] and the scan based algorithm [6]. Latency of the neighbor 
discovery scheme is quantified by two widely used performance metrics: the neighbor discovery 
ratio over time and convergence time, defined in Section 4.1. Minimizing these metrics also 
minimizes the energy consumption during the neighbor discovery process. 

The simulation scenario consists of 150 nodes randomly distributed in a 1000m by 1000m 
area. Each node uses 8 antenna beams and has a directional transmission range of 200m. The 
results are averaged over 30 runs corresponding to different node placements. The neighbor 
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discovery ratio as a function of time in Figure 26 clearly indicates that the proposed LA based 
scheme achieves a faster neighbor discovery rate. Quantitatively, the proposed scheme requires 
48% fewer time slots to achieve 90% neighbor discovery compared to the random scheme, and 
68% fewer slots compared to the scan-based algorithm.  

In Figure 27, we compare the convergence time for different node densities per beam. The 
learning parameters are adjusted to maximize the discovery rate. As expected, all the three schemes 
need more time to achieve network-wide neighbor discovery for a higher node density. However, 
the use of a learning based scheme reduces the convergence time considerably. This improvement 
is more obvious for dense networks because collisions occur more frequently. The learning 
mechanism can exploit the collision information efficiently, which leads to a faster discovery. On 
the other hand, the explore only strategy of the random and scan-based algorithms results in a 
significantly increased delay. 

The neighbor discovery performance for different antenna beamwidths is evaluated in Figure 
28, where the number of neighbor nodes per beam is fixed to 4, and the number of antenna sectors 
is varied from 4 to 12 (i.e., beamwidth varies from 90∘to 30∘). Although all three schemes need a 
higher convergence time for narrow beams, the proposed learning-based scheme provides much 
lower latency.  

4.3. Adaptive Directional Neighbor Discovery Scheme: Performance Analysis 
In this section, performance of the proposed scheme is compared with the probabilistic and 

deterministic schemes proposed in [12] and [6]. We also consider multiple simulation scenarios to 
study how the neighbor discovery process is affected by the network characteristics, including the 
network density and antenna beamwidth. To capture the effectiveness of each protocol 
quantitatively, we use the average discovery ratio over time and convergence time metrics.   

 Neighbor Discovery Latency 
We first evaluate performance of the deterministic Q-learning based scheme compared to the 

randomized and scan based schemes proposed in [12] and [6]. The simulation scenario consists of 
100 nodes randomly deployed in a square area of 1Kmx1Km. Each node is equipped with a 
steerable antenna with a 60∘ beamwidth and transmission range of 200𝑚𝑚. The average number of 
neighbors per beam is five. To obtain accurate results, we repeat the simulation experiment 30 
times with different node placements, and the results are averaged for each data point. Figure 29 
shows the average discovery ratio for the considered scenario. The use of Q-learning scheme 
significantly reduces the neighbor discovery latency. The deterministic Q-learning based scheme 
requires 151 and 438 fewer time slots than the random and deterministic 2-way handshaking 
schemes, respectively, to achieve a 90% network wide neighbor discovery. Further, the Q-learning 
based scheme significantly reduces the effect of long-tail problem on the discovery latency. As the 
node develops knowledge about the neighborhood in each sector, it learns to focus its beam in the 
directions where less neighbors have been discovered instead of searching (randomly or 
deterministically) in all sectors. Thus, a node significantly reduces its discovery latency by 
adapting it search probability to focus on the undiscovered neighbors in their respective sectors. 
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 Impact of Node Density 
Figure 30 shows the average convergence time for different node densities in the network. 

Average number of nodes per beam is varied from 2 to 10 neighbors for a fixed beamwidth of 
60∘. For each case, the learning parameter 𝛽𝛽 and the exploration parameter 𝜀𝜀 are adjusted to 
maximize the discovery rate. As the node density increases, a node needs more time to establish 
links with all of its one-hop neighbors due to a higher collision probability and increased deafness. 
However, the Q-learning algorithm exhibits a significantly lower latency for all the considered 
scenarios. We also note that the improvement is more prominent when the number of neighbors 
increases. For the case of a higher density (10 neighbors per beam), the algorithm achieves a 
network wide neighbor discovery with a reduction of 368 and 581 time slots as compared to the 
random and deterministic 2-way handshaking schemes, respectively. This can be explained by the 
fact that the integration of Q-learning mechanism allows a node to adjust its behavior upon a 
collision or a successful communication. Thus, a balanced exploitation/exploration scheme is 
particularly helpful in the collision-prone situations, as it can allow a faster collision resolution 
compared to the continuous exploration used by the random and deterministic schemes. 

 Impact of Antenna Beamwidth 
To evaluate the impact of antenna beamwidth on neighbor discovery latency, we performed 

additional simulations by fixing the number of neighbors per beam to 5 and varying the number 
of sectors from 4 to 12 (i.e, varying the beamwidth from 90∘ to 30∘). The results are shown in 
Figure 31. As expected, the use of narrower beams experienced a higher latency. The deterministic 
Q-learning based algorithm exhibits the shortest convergence time in all the considered scenarios. 
Moreover, the convergence time for the Q-learning based scheme is significantly lower in the case 
of narrow beams. Quantitatively, the learning algorithm can achieve up to 28% and 56% faster 
network wide discovery compared to the random and deterministic schemes, respectively (for 𝐾𝐾 =
12). 

 
  

 Average discovery ratio for (𝑁𝑁𝑁𝑁𝑁𝑁 = 5nodes/beam and 𝑘𝑘 = 6). 
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 Average convergence time for 𝑘𝑘 = 6 and varying node density. 

  

 
  

 Average convergence time for 𝑁𝑁𝑁𝑁𝑁𝑁 = 5 and different beamwidths.   
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 Discussions 
The value of the exploration parameter 𝜀𝜀 reflects the need to explore more alternative actions 

in a given state, as the value of optimal action in both the deterministic and probabilistic algorithms 
is different in each time slot. Intuitively, the value of 𝜀𝜀 depends on the network density. For 
instance, for a network with high density (more than three nodes per beam), exploring new state-
action pairs helps in discovering multiple neighbors in the same beam with minimal latency. On 
the other hand, a small value of 𝜀𝜀 becomes more appropriate for low density networks as a greedy 
approach guarantees a faster discovery [22]. 

The same logic can be used for learning parameter 𝛽𝛽. As dense networks are more prone to 
collisions, a high value of 𝛽𝛽 will allow the colliding nodes to discover each other in a relatively 
short period of time by giving high Q-values to the state-action pairs experiencing collisions. In 
contrast, the sparse networks need a smaller value of the learning parameter to allow the 
exploitation of information collected by investigating other sectors. A good estimate of the step 
size for 𝛽𝛽 and 𝜀𝜀 can be found through numerical simulations as suggested in [26].  
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 CONCLUSIONS 

Use of purely directional antennas in wireless mesh networks have many advantages, 
including increased transmisison range, energy conservation, higher throughout due to the spatial 
reuse and interference avoidance. However, the network consisting of directional antennas 
(without the support of omni-directional antennas) requires a significant neighbor discovery 
overhead and large latency because a node can communicate with its neighbors in only a narrow 
area at a time due to the limited antenna beamwidth. In this project, we designed three novel 
directional neighbor discovery schemes which have significantly lower protocol overhead and 
discovery latency. These schemes intelligently consider the collisions and use machine learning 
techniques. We have also built a hardware testbed to test the performance of neighbor discovery 
schemes for WMN. 

We first designed a collision-aware neighbor discovery algorithms for synchronous static ad-
hoc networks with directional antenna. By introducing the collision resolving mechanism, we 
addressed the lack of collision management in the earlier approaches. We also extended our 
scheme by enabling cooperation between nodes. As expected the peer assisted collision-aware 
scheme performs favorably compared to scan based and random neighbor discovery schemes. To 
prove the effectiveness of our scheme, we assessed its improvement in a variety of networks with 
increasing networks density and different number of sectors. Numerical results show that our 
proposed scheme performs well in the collision-prone scenarios (wide beams and/or high node 
density). 

Next, we designed a learning automata based algorithm to expedite the neighbor discovery 
process in directional wireless networks, which allows a node to learn from success and collision 
history. The simulation results demonstrated that the use of learning algorithm exhibits a 
significant performance improvement over existing random and scan based neighbor discovery 
schemes for different node densities and beamwidths. Our proposed scheme performs particularly 
well in networks with narrow beamwidth and high node density. 

Finally, we designed a new distributed Q-learning based scheme that allow a directional node 
to learn from the successful neighbor discovery and collision history to improve the neighbor 
discovery rate. This deterministic algorithm help the nodes to decide the most appropriate 
operating mode in order to achieve a rapid convergence. The numerical results demonstrate that 
the our scheme exhibits a significant improvement over the two-way handshaking random and 
deterministic schemes for different scenarios. Furthermore, the designed schemes perform 
particularly well in networks with high density. 

Hardware-based demos are very important for practical protocol evaluation. We used the 
USRP-RIO boards to establish a directional network platform. In this DND testbed, we 
demonstrated the neighbor discovery process through two-beam directional antennas. We first 
achieved a basic neighbor discovery function in Demo 1, where the USRP RF board useed one or 
two beams to search valid neighbors in different directions. In Demo 2, we further explored the 
capabilities of USRP boards in terms of concurrent neighbor discovery in different beam 
directions. Two directional antennas are used to search valid neighbors simultaneously. 
Additionally, the video streams were also transmitted and played in real-time via the two antennas 
of the USRP board at the same time. In Demo 3, we used the concept of signal quality sensing 
during the DND process and used it for the transmission performance optimization.   
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FLA  Finite-state Learning Algorithm 

FPGA  Field Programmable Gateway Access 

GPS  Global Positioning  
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MARL  Multi Agent Reinforcement Learning 
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PER  Packet Error Rate 

QoS  Quality of Service 

RF  Radio Frequency 

RL  Reinforced Learning 

Rx  Receiver 

SBA  Scan-based Algorithm 

SBA-D  Deterministic Scan Based Algorithm 

SBA-R  Random Scan Based Algorithm 

SNRs  Signal-to-Noise Ratios 

Tx  Transmitter 

USRP  Universal Software Radio Peripheral 

WMN  Wireless Mesh Networks 
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