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1.0 Summary 

Julia combines expertise from the diverse fields of computer science and computational science to 
create a new approach to numerical computing.  The Julia language is designed to be easy and fast. 
Julia questions notions generally held as “laws of nature” by practitioners of numerical computing: 

1. High-level dynamic programs have to be slow,

2. One must prototype in one language and then rewrite in another language for speed or
deployment, and

3. There are parts of a system for the programmer, and other parts best left untouched as they
are built by the experts.

We introduce the Julia programming language and its design — a dance between specialization and 
abstraction. Specialization allows for custom treatment.  Multiple dispatch, a technique from computer 
science, picks the right algorithm for the right circumstance.  Abstraction, what good computation is 
really about, recognizes what remains the same after differences are stripped away.  Abstractions in 
mathematics are captured as code through another technique from computer science, generic 
programming.  Julia shows that one can have machine performance without sacrificing human 
convenience. 

2.0 Introduction 

The original numerical computing language was Fortran, short for “Formula Translating System”, 
released in 1957. Since those early days, scientists have dreamed of writing high-level, generic formulas 
and having them translated automatically into low-level, efficient machine code, tailored to the 
particular data types they need to apply the formulas to.  Fortran made historic strides towards 
realization of this dream, and its dominance in so many areas of high-performance computing is a 
testament to its remarkable success. 

The landscape of computing has changed dramatically over the years. Modern scientific computing 
environments such as Python [43], R [19], Mathematica [27], Octave [30], Matlab [28], and SciLab [16], 
to name some, have grown in popularity and fall under the general category known as dynamic 
languages or dynamically typed languages. In these programming languages, programmers write simple, 
high-level code without any mention of types like int, float or double that pervade statically typed 
languages such as C and Fortran. 

Many researchers today do their day-to-day work in dynamic languages. Still, C and Fortran remain the 
gold standard for computationally-intensive problems for performance. In as much as the dynamic 
language programmer has missed out on performance, the C and Fortran programmer has missed out 
on productivity.  An unfortunate outcome of the currently popular languages is that the most 
challenging areas of numerical computing have benefited the least from the increased abstraction and 
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productivity offered by higher-level languages. The consequences have been more serious than many 
realize. 

Julia’s innovation is the very combination of productivity and performance.  New users want a quick 
explanation as to why Julia is fast, and whether somehow the same “magic dust” could also be sprinkled 
on their traditional scientific computing language. Julia is fast because of careful language design and 
the right combination of the carefully chosen technologies that work very well with each other.  This 
report demonstrates some of these technologies using a number of examples.  

Julia’s ability to provide expressiveness for technical computing users comes in large part because of its 
multiple dispatch feature, which is an unconventional object-oriented programming technique which 
allows users to depart from the limitations of class-based designs and instead leverage the expressive 
power of generic functions.  Loosely speaking, Julia’s types are objects that are nouns, and generic 
functions are verbs. Julia’s generic function system with multiple dispatch allows for users to describe 
different specific algorithms to carry out the same operation upon different objects. For example, there 
is a clear sense in which a function eigvals can be defined which implements the operation “take the 
eigenvalues of a matrix M” regardless of the specific properties of the matrix M, e.g. whether it is dense 
or sparse, local or distributed, symmetric or nonsymmetric. Nevertheless, it is often desirable to comeup 
with specialized algorithms to take full advantage of knowledge that can be exploited for the special 
case. For example, taking eigenvalues of a symmetric tridiagonal matrix can take advantage of the 
special structure of the matrix, avoiding the need to first reduce the matrix to tridiagonal form which 
would be needed in the general symmetric case, thus resulting in significant computational savings. In 
Julia, all that would be needed is to define a method for eigvals(M::SymTridiagonal) which implements 
one algorithm, while defining another method for eigvals(M::Symmetric) which provides a different 
algorithm taking into account symmetry but also being applicable to general symmetric matrices. By 
writing similar methods for yet other cases, Julia can expose a variety of algorithms, each of which can 
take full advantage of simplifications that result from leveraging special matrix properties in each special 
case. Users are also free to extend the eigvals function by providing yet more methods for their more 
specific use cases, e.g. for symplectic matrices over quaternions. Julia therefore also breaks down the 
wall between system library code and user code, dispelling the notion that there are only parts of a 
system which a programmer can use, with other parts best left untouched as they are built by the 
experts. 

Julia began with a deep understanding of the needs of the scientific programmer, the data scientist, and 
the needs of the computer in mind. Bridging cultures that have all too often been distant, Julia combines 
expertise from computer science and computational science creating a new approach to scientific and 
data-based computing. The result is a programming language that allows users to easily traverse 
different levels of abstraction, and inspect the relationship between high level code they write and low 
level code being emitted by the compiler, and allow for rapid tweaking between the different layers. 

3.0 Methods, Assumptions and Procedures 

Many popular dynamic languages were not designed with the goal of high performance.  After all, if you 
wanted really good performance you would use a static language, or so the popular wisdom would say. 
Only with the increased need in the day-to-day life of scientific programmers for simultaneous 
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productivity and performance in a single system has the need for high-performance dynamic languages 
become pressing.  Unfortunately, retrofitting an existing slow dynamic language for high performance is 
almost impossible specifically in numerical computing ecosystems.  This is because numerical computing 
requires performance-critical numerical libraries, which invariably depend on the details of the internal 
implementation of the high-level language, thereby locking in those internal implementation details.  
For example, you can run Python code much faster than the standard CPython implementation using the 
PyPy just-in-time compiler; but PyPy is currently incompatible with NumPy and the rest of SciPy.  

Another important point is that just because a program is available in C or Fortran, it may not run 
efficiently from the high level language or be easy to “glue” it in.  For example when Steven Johnson 
tried to include his C erf function in Python, he reported that Pauli Virtane had to write glue code( to 
vectorize the erf function over the native structures in Python in order to get good performance. 
Johnson also had to write similar glue code for Matlab, Octave, and Scilab. The Julia effort was, by 
contrast, effortless.2 As another example, randn, Julia’s normal random number generator was originally 
based on calling randmtzig, a C implementation. It turned out later, that a pure Julia implementation of 
the same code actually ran faster, and is now the default implementation. In some cases, “glue” can 
often lead to poor performance, even when the underlying libraries being called are high performance. 
The best path to a fast, high-level system for scientific and numerical computing is to make the system 
fast enough that all of its libraries can be written in the high-level language in the first place. The JUMP.jl 
[26] and the Convex.jl [42] packages are great examples of the success of this approach—the entire
library is written in Julia and uses many Julia language features described in this paper.

The Two Language Problem: As long as the developers’ language is harder than the users’ language, 
numerical computing will always be hindered. This is an essential part of the design philosophy of Julia: 
all basic functionality must be possible to implement in Julia—never force the programmer to resort to 
using C or Fortran. Julia solves the two language problem. Basic functionality must be fast: integer 
arithmetic, for loops, recursion, floating-point operations, calling C functions, manipulating C-like 
structs. While these are not only important for numerical programs, without them, you certainly cannot 
write fast numerical code. “Vectorization languages” like Python+NumPy, R, and Matlab hide their for 
loops and integer operations, but they are still there, inside the C and Fortran, lurking behind the thin 
veneer. Julia removes this separation entirely, allowing high-level code to “just write a for loop” if that 
happens to be the best way to solve a problem.  

We believe that the Julia programming language fulfills much of the Fortran dream: automatic 
translation of formulas into efficient executable code. It allows programmers to write clear, high-level, 
generic and abstract code that closely resembles mathematical formulas, as they have grown 
accustomed to in dynamic systems, yet produces fast, low-level machine code that has traditionally only 
been generated by static languages. Julia’s ability to combine these levels of performance and 
productivity in a single language stems from the choice of a number of features that work well with each 
other:  

1. An expressive type system, allowing optional type annotations;
2. Multiple dispatch using these types to select implementations;
3. Metaprogramming for code generation;
4. A dataflow type inference algorithm allowing types of most expressions to be inferred [3, 5];
5. Aggressive code specialization against run-time types [3, 5];
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6. Just-In-Time (JIT) compilation [3, 5] using the LLVM compiler framework [23], which is also used 
by a number of other compilers such as Clang [12] and Apple’s Swift [41]; and  

7. Julia’s carefully written libraries that leverage the language design, i.e., points 1 through 6 
above. 

4.0 Results and Discussion 
 

4.1 A Taste of Julia 
 

4.1.1 A Brief Tour 
 

In[1]: A = rand(3,3) + eye(3) # Familiar Syntax  
inv(A) 

Out[1]: 3x3 Array{Float64,2}:  

0.698106 -0.393074 -0.0480912  
-0.223584 0.819635 -0.124946  
-0.344861 0.134927 0.601952  

The output from the Julia prompt says that A is a two dimensional matrix of size 3 × 3, and contains 
double precision floating point numbers.  

Indexing of arrays is performed with brackets, and is 1-based. It is also possible to compute an entire 
array expression and then index into it, without assigning the expression to a variable: 

In[2]: x = A[1,2]  
y = (A+2I)[3,3] # The [3,3] entry of A+2I 

Out[2]: 2.601952  
 

In Julia, I is a built-in representation of the identity matrix, without explicitly forming the identity matrix 
as is commonly done using commands such as “eye.” (“eye”, a homonym of “I”, is used in such 
languages as Matlab, Octave, Go’s matrix library, Python’s Numpy, and Scilab.)  
 
Julia has symmetric tridiagonal matrices as a special type. For example, we may define Gil Strang’s 
favorite matrix (the second order difference matrix) in a way that uses only O(n) memory.  
 

In[3]: strang(n) = SymTridiagonal(2*ones(n),-ones(n-1))  
strang(7)  

Out[3]: 7x7 SymTridiagonal{Float64}:  
2.0 -1.0 0.0 0.0 0.0 0.0 0.0  
-1.0 2.0 -1.0 0.0 0.0 0.0 0.0  
0.0 -1.0 2.0 -1.0 0.0 0.0 0.0  
0.0 0.0 -1.0 2.0 -1.0 0.0 0.0  
0.0 0.0 0.0 -1.0 2.0 -1.0 0.0 
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 0.0 0.0 0.0 0.0 -1.0 2.0 -1.0 
0.0 0.0 0.0 0.0 0.0 -1.0 2.0  

A commonly used notation to express the solution x to the equation Ax = b is A\b. If Julia knows that A is 
a tridiagonal matrix, it uses an efficient O(n) algorithm:  

In[4]: strang(8)\ones(8) 

Out[4]: 8-element Array{Float64,1}: 

4.0 
7.0 
9.0 
10.0 
10.0 
9.0 
7.0 
4.0 

Note the Array{ElementType,dims} syntax. In the above example, the elements are 64 bit floats or 
Float64’s. The 1 indicates it is a one dimensional vector. Consider the sorting of complex numbers. 
Sometimes it is handy to have a sort that generalizes the real sort. This can be done by sorting first by 
the real part, and where there are ties, sort by the imaginary part. Other times it is handy to use the 
polar representation, which sorts by radius then angle. By default, complex numbers are incomparable 
in Julia. If a numerical computing language “hard-wires” its sort to be one or the other, it misses an 
opportunity. A sorting algorithm need not depend on details of what is being compared or how it is 
being compared. One can abstract away these details thereby reusing a sorting algorithm for many 
different situations. One can specialize later. Thus alphabetizing strings, sorting real numbers, or sorting 
complex numbers in two or more ways all run with the same code. In Julia, one can turn a complex 
number w into an ordered pair of real numbers (a tuple of length 2) such as the Cartesian form 
(real(w),imag(w)) or the polar form (abs(w),angle(w)). Tuples are then compared lexicographically in 
Julia. The sort command takes an optional “less-than” operator, lt, which is used to compare elements 
when sorting. Note the compact function definition syntax available in Julia used in the example below 
and is of the form f(x,y,...) = .  

In[5]: # Cartesian comparison sort of complex numbers 
complex compare1(w,z) = (real(w),imag(w)) < (real(z),imag(z)) 
sort([-2,2,-1,im,1], lt = complex compare1 ) 

Out[5]: 5-element Array{Complex{Int64},1}:  
-2+0im
-1+0im
0+1im

1+0im
2+0im
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In[6]: # Polar comparison sort of complex numbers 
complex compare2(w,z) = (abs(w),angle(w)) < (abs(z),angle(z)) 
sort([-2,2,-1,im,1], lt = complex compare2) 

Out[6]: 5-element Array{Complex{Int64},1}:  
1+0im  
0+1im 
-1+0im
2+0im
-2+0im

To be sure, experienced computer scientists tend to suspect there is nothing new under the sun. The C 
function qsort() takes a compar function. Nothing really new there. Python also has custom sorting with 
a key. Matlab’s sort is more basic. The real contribution of Julia is that the design of Julia allows custom 
sorting to be high performance and flexible and comparable with implementations in other dynamic 
languages. 

4.2   Writing programs with and without types 

4.2.1 The balance between human and the computer 

Graydon Hoare, author of the Rust programming language [35], in an essay on “Interactive Scientific 
Computing” [17] defined programming languages succinctly:   

Programming languages are mediating devices, interfaces that try to strike a balance between 
human needs and computer needs. Implicit in that is the assumption that human and computer 
needs are equally important, or need mediating.  

A program consists of data and operations on data. Data is not just the input file, but everything that is 
held—an array, a list, a graph, a constant—during the life of the program. The more the computer 
knows about this data, the better it is at executing operations on that data. Types are exactly this 
metadata. Describing this metadata, the types, takes real effort for the human. Statically typed 
languages such as C and Fortran are at one extreme, where all types must be defined and are statically 
checked during the compilation phase. The result is excellent performance. Dynamically typed languages 
dispense with type definitions, which leads to greater productivity, but lower performance as the 
compiler and the runtime cannot benefit from the type information that is essential to produce fast 
code. Can we strike a balance between the human’s preference to avoid types and the computer’s need 
to know? 

4.2.2  Julia’s recognizable types 

Many users of Julia may never need to know about types for performance. Julia’s type inference system 
often does the work, giving performance without type declarations.  
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Julia’s design allows for the gradual learning of concepts, where users start in a manner that is familiar 
to them and over time, learn to structure programs in the “Julian way” — a term that captures well-
structured readable high performance Julia code. Julia users coming from other numerical computing 
environments have a notion that data may be represented as matrices that may be dense, sparse, 
symmetric, triangular, or of some other kind. They may also, though not always, know that elements in 
these data structures may be single precision floating point numbers, double precision, or integers of a 
specific width. In more general cases, the elements within data structures may be other data structures. 
We introduce Julia’s type system using matrices and their number types: 

In[14]: rand(1,2,1)  
Out[14]: 1x2x1 Array{Float64,3}: 

[  :,  :, 1] = 
0.789166 0.652002  

In[15]: [1 2; 3 4]  
Out[15]: 2x2 Array{Int64,2}: 

1 2 
3 4 

In[16]: [true; false]  
Out[16]: 2-element Array{Bool,1}: 

true  
false 

We see a pattern in the examples above. Array{T,ndims} is the general form of the type of a dense array 
with ndims dimensions, whose elements themselves have a specific type T, which is of type double 
precision floating point in the first example, a 64-bit signed integer in the second, and a boolean in the 
third example. Therefore Array{T,1} is a 1-d vector (first class objects in Julia) with element type T and 
Array{T,2} is the type for 2-d matrices.  

It is useful to think of arrays as a generic N-d object that may contain elements of any type T. Thus T is a 
type parameter for an array that can take on many different values. Similarly, the dimensionality of the 
array ndims is also a parameter for the array type. This generality makes it possible to create arrays of 
arrays. For example, Using Julia’s array comprehension syntax, we create a 2-element vector containing 
2 × 2 identity matrices. In[17]: a = [eye(2) for i=1:2] Out[17]: 2-element Array{Array{Float64,2},1}: 

4.2.3  User’s own types are first class too 

Many dynamic languages for numerical computing have traditionally had an asymmetry, where built-in 
types have much higher performance than any user-defined types. This is not the case with Julia, where 
there is no meaningful distinction between user-defined and “built-in” types.  

We have mentioned so far a few number types and two matrix types, Array{T,2} the dense array, with 
element type T and SymTridiagonal{T}, the symmetric tridiagonal with element type T. There are also 
other matrix types, for other structures including SparseMatrixCSC (Compressed Sparse Columns), 
Hermitian, Triangular, Bidiagonal, and Diagonal. Julia’s sparse matrix type has an added flexibility that it 
can go beyond storing just numbers as nonzeros, and instead store any other Julia type as well. The 
indices in SparseMatrixCSC can also be represented as integers of any width (16-bit, 32-bit or 64-bit). All 
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these different matrix types, although available as built-in types to a user downloading Julia, are 
implemented completely in Julia, and are in no way any more or less special than any other types one 
may define in their own program.  

For demonstration, we create a symmetric arrow matrix type that contains a diagonal and the first row 
A[1,2:n]. 

In[18]: # Type Parameter Example (Parameter T) 
     # Define a Symmetric Arrow Matrix Type with elements of type T 

type SymArrow{T}  
dv::Vector{T} # diagonal  
ev::Vector{T} # 1st row[2:n] 
end  

# Create your first Symmetric Arrow Matrix 
S = SymArrow([1,2,3,4,5],[6,7,8,9])  

Out[18]: SymArrow{Int64}([1,2,3,4,5],[6,7,8,9]) 

The parameter in the array refers to the type of each element of the array. Code can and should be 
written independently of the type of each element. 

Julia’s type system allows for abstract types, concrete “bits” types, composite types, and immutable 
composite types. All of these can have parameters and users may even write programs using unions of 
these different types. 

4.3 Multiple Dispatch 

Multiple dispatch is the selection of a function implementation based on the types of each argument of 
the function. It is not only a nice notation to remove a long list of “case” statements, but it is part of the 
reason for Julia’s speed. It is expressed in Julia by annotating the type of a function argument in a 
function definition with the following syntax: argument::Type. 

Mathematical notations that are often used in print are difficult to employ in programs. For example, we 
can teach the computer some natural ways to multiply numbers and functions. Suppose that a and t are 
scalars, and f and g are functions, and we wish to define 1.  Number x Function = scale output: a ∗ g is 
the function that takes x to a ∗ g(x) 2. Function x Number = scale argument : f ∗ t is the function that 
takes x to f(tx) and 3. Function x Function = composition of functions: f ∗ g is the function that takes x to 
f(g(x)). If you are a mathematician who does not program, you would not see the fuss. If you thought 
how you might implement this in your favorite computer language, you might immediately see the 
benefit. In Julia, multiple dispatch makes all three uses of * easy to express: In[21]: *(a::Number, 
g::Function)= x->a*g(x) # Scale output *(f::Function,t::Number) = x->f(t*x) # Scale argument 
*(f::Function,g::Function)= x->f(g(x)) # Function composition Here, multiplication is dispatched by the 
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type of its first and second arguments. It goes the usual way if both are numbers, but there are three 
new ways if one, the other, or both are functions. These definitions exist as part of a larger system of 
generic definitions, which can be reused by later definitions. Consider the case of the mathematician 
Gauss’ preference for sin2 φ to refer to sin(sin(φ)) and not sin(φ) 2 (writing “sin2 (φ) is odious to me, 
even though Laplace made use of it.”(Figure 2).) By defining *(f::Function, g::Function)= x->f(g(x)), 
(f^2)(x) automatically computes f(f(x)) as Gauss wanted. This is a consequence of a generic definition 
that evaluates x^2 as x*x no matter how x*x is defined. This paradigm is a natural fit for numerical 
computing, since so many important operations involve interactions among multiple values or entities. 
Binary arithmetic operators are obvious examples, but many other uses abound. The fact that the 
compiler can pick the sharpest matching definition of a function based on its input types helps achieve 
higher performance, by keeping the code execution paths tight and minimal. We have not seen this in 
the literature but it seems worthwhile to point out four possibilities:  

1. Static single dispatch (not done)
2. Static multiple dispatch (frequent in static languages, e.g. C++ overloading)
3. Dynamic single dispatch (Matlab’s object oriented system might fall in this category

though it has its own special characteristics)
4. Dynamic multiple dispatch (usually just called multiple dispatch).

4.4  High Performance Polynomials and Special Functions with Macros 

Julia has a macro system that provides easy custom code generation, bringing a level of performance 
that is otherwise difficult to achieve. A macro is a function that runs at parse-time, and takes parsed 
symbolic expressions in and returns transformed symbolic expressions out, which are inserted into the 
code for later compilation.  

For example, a library developer implemented an @evalpoly macro that uses Horner’s rule to 
evaluate polynomials efficiently. Consider  

In[47]: @evalpoly(10,3,4,5,6) 

which returns 6543 (the polynomial 3 + 4x + 5x 2 + 6x 3 , evaluated at 10 with Horner’s rule). Julia allows 
us to see the inline generated code with the command  

In[48]: macroexpand(:@evalpoly(10,3,4,5,6)) 

We reproduce the key lines below 

Out[48]: #471#t = 10 # Store 10 into a variable named #471#t 
Base.Math.+(3,Base.Math.*(#471#t,Base.Math.+(4,Base.Math.* 
(#471#t,Base.Math.+(5,Base.Math.*(#471#t,6)))) ))  

This code-generating macro only needs to produce the correct symbolic structure, and Julia’s 
compiler handles the remaining details of fast native code generation. Since polynomial evaluation is so 
important for numerical library software, it is critical that users can evaluate polynomials as fast as 
possible. The overhead of implementing an explicit loop, accessing coefficients in an array, and possibly 
a subroutine call (if it is not inlined), is substantial compared to just inlining the whole polynomial 
evaluation.  
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Steven Johnson reports in his EuroSciPy notebook19  

This is precisely how erfinv is implemented in Julia (in single and double precision), and is 3 to 4 
times faster than the compiled (Fortran?) code in Matlab, and 2 to 3 times faster than the compiled 
(Fortran Cephes) code used in SciPy.  

The difference (at least in Cephes) seems to be mainly that they have explicit arrays of 
polynomial coefficients and call a subroutine for Horner’s rule, versus inlining it via a macro.  

Johnson also used the same trick in his implementation of the digamma special function for 
complex arguments20 following an idea of Knuth:  

As described in Knuth TAOCP vol. 2, sec. 4.6.4, there is actually an algorithm even better than 
Horner’s rule for evaluating polynomials p(z) at complex arguments (but with real coefficients): 
you can save almost a factor of two for high degrees. It is so complicated that it is basically only 
usable via code generation, so it would be especially nice to modify the @horner macro to 
switch to this for complex arguments.  

No sooner than this was proposed, the macro was rewritten to allow for this case giving a factor of four 
improvement in performance on all real polynomials evaluated at complex arguments. 

5.0 Conclusions  
 

This document summarizes the activities enabled by the DARPA XDATA cooperative agreement that 
includes a series of papers, the explosive growth of the Julia language, and a remarkable amount of 
software development. At the time of writing this report, there have been a near 4,000,000 downloads 
of the Julia Language, several textbooks authored by faculty worldwide based on the Julia language, and 
any number of classrooms using the Julia language. At the early start of the XDATA effort, Python was 
extremely popular, (as it remains today), but even large commercial companies such as Google are 
starting to understand Python’s shortcomings. At the same time, libraries written in Julia remain callable 
from other popular languages such as Python.  More than just a language, Julia has become a place for 
programmers, physical scientists, social scientists, computational scientists, mathematicians, and others 
to pool their collective knowledge in the form of online discussions and in the form of code.  A 
remarkable amount of documentation that is directly or indirectly attributable to this work can be found 
on the following pages: 

1. The Julia Lab web page at MIT: https://julia.mit.edu/ 

2. The Julia Language web page: https://julialang.org/ 

3. And the author’s MIT web page: http://math.mit.edu/~edelman/ 
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