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SURETY HOOD CULTURE OF PLANTS FOR AGENT–PLANT INVESTIGATIONS 
 
 

1. INTRODUCTION  
 
Developing advanced defensive capabilities against chemical warfare agents 

(CWAs) that are disseminated in natural environments requires a greater understanding of the 
underlying principles involving CWA interaction with natural systems. Few experimental data 
existed that described interactions between CWA and terrestrial plants. Investigations from 
CWA field studies have provided some useful information involving agent–plant interaction; 
however, testing in the field has inherently uncontrolled environmental conditions (Reich, 1959a, 
1959b). Variance in environmental parameters can make the data resulting from outdoor tests 
less useful as input for models, which predict outcomes using established scientific and empirical 
relationships. Laboratory investigations permit the assemblage of select controlled conditions to 
reduce interferences arising from the complexity of uncontrolled, open-ended natural 
environments, thereby allowing investigations to better focus on relationships of interest.  

 
Methods for culturing intact living plants within a surety hood environment for 

extended periods of time did not exist. Such methods are necessary to maintain 
phytophysiological responses of plants within a surety hood to investigate and obtain results 
applicable to CWA-contaminated battlefields. Without a more complete understanding of  
agent–plant interactions, it is difficult to predict the presence and persistence of the potential 
exposure hazard posed by CWA-contaminated foliage. Therefore, capabilities for growing and 
sustaining healthy plants under controlled conditions within a chemical surety hood for extended 
periods of time are necessary to successfully investigate agent–plant interactions.  

 
This report details newly developed methods and protocols for growing and 

maintaining healthy plants in a chemical surety hood for the conduct of controlled agent–plant 
interaction investigations. These plant culture methods were used to successfully establish 
critical parameters for assessing threats from O-ethyl-S-(2-diisoproylaminoethyl) methyl 
phosphonothioate (VX) on battlefields in natural environments, including the visual 
characterization of the effects of VX on grass foliage (Simini et al., 2016), coefficient of VX 
wash-off from rainfall (Haley et al., 2016), contact transfer (exposure) of VX from contaminated 
foliar surfaces onto an army combat uniform (Haley et al., 2017), and the persistence and 
effective half-life of VX on contaminated grass foliage (Checkai et al., 2017). The results of 
these investigations provided critical parameter input for predictive models, direct experimental 
determinations for comparison to model outcomes, and information for decision-making that can 
affect soldiers on VX-contaminated battlefields.   

 
 

2. LIGHTING FOR PLANT CULTURE IN CONFINED SPACES  
  
Light is one of the most-important environmental stimuli impacting plant growth 

and development (Kopsell et al., 2015). Terrestrial photoautotrophic plants require 
photosynthetically active radiation (PAR) within the range of 400–700 nm (McCree, 1972, 1981) 
for normal growth and physiology. Traditional high-intensity lighting systems, such as  
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high-pressure sodium, metal halide, fluorescent, and incandescent light combinations, require 
balancing of their heat loads to avoid scorching or damaging plants (Bula et al., 1991; Massa et 
al., 2008). However, heat-load balance for such plant growth systems is commonly accomplished 
using large chilling units, which are too cumbersome for use with most surety hoods (Bula et al., 
1991).  

 
2.1 Semiconductor Diodes as a Source of Radiation  

  
The first commercially functional light-emitting diode (LED) was developed in 

the 1960s by combining three primary elements (Ga, As, and P) into a GaAsP diode to obtain a 
low luminous intensity red light source, and a comparable low luminous intensity green LED 
was commercially available by the late 1960s (Ehrenstein, 2014). These early LEDs were very 
low power and were usable only as low-intensity indicator lamps (Bourget, 2008). However, 
with their low heat output, they were especially useful in heat-sensitive electronic equipment.   

 
In the United States, testing of LEDs as a source of radiation for the culture of 

higher terrestrial plants began primarily because of interest by the National Aeronautics and 
Space Administration in space-based plant-growth systems (Morrow, 2008). Early work with 
LEDs that focused on plant production as a source of food was undertaken to support research 
involving regenerative life-support systems for a space station and future Moon and Mars bases. 
As the performance of commercially available red LEDs improved, the intensity of red LED 
output became adequate for growing plants, especially if blue light was also provided using 
traditional sources of lighting (Morrow, 2008; Massa et al., 2008). However, the addition or 
supplementation by traditional means of supplying blue light sufficient for growing and 
maintaining healthy plants brought with it associated heat load (Bula et al., 1991). Even the U.S. 
Environmental Protection Agency (USEPA) plant test guidelines warned that care should be 
taken to ensure that plants are not affected by heat generated from supplemental lighting during 
ecological effects plant tests (USEPA, 2012).  

 
2.2 Importance of Blue Light and Development of High-Intensity Blue LEDs  

  
Light provided by improved-output red LEDs was found to be sufficient to initiate 

the growth of plants because a primary role of red light absorption is regulation of plant 
development (Massa et al., 2008). However, absorption of sufficient quality and quantity of blue 
light was needed to control primary and secondary metabolism, stomatal regulation, plant 
morphology, gene expression, and transition to flowering, which is the fundamental basis for 
fruiting and reproduction (Kopsell et al., 2015; Folta and Childers, 2008; Morrow, 2008). For 
photoautotrophic plants, incident PAR is a major environmental factor for controlling plant 
growth (Bula et al., 1991). In green plants, light is the energy source for conversion of carbon 
dioxide and water into complex organic compounds that are used in essential cellular functions, 
such as biosynthesis and respiration. Substantial flux of incident blue light is required to sustain 
normal, healthy photoautotrophic terrestrial plants (Hoenecke et al., 1992).  

 
Before the 1990s, the intensity of light output from commercially available blue 

LEDs was barely visible (Ehrenstein, 2014). High-intensity output from commercially available 
blue LEDs was highly sought after but difficult to produce (Diep, 2014). Finally in the 1990s, 
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three researchers (Isamu Akasaki, Hiroshi Amano, and Shuji Nakamura), working in two 
different and independent research groups, produced bright blue light from LEDs that they had 
created in their respective laboratories. The first practical blue LED was developed in 1993 
(Nakamura et al., 1996). Further development of LED technology led to the modern, 
commercially available, high-intensity blue LEDs in 1999 (Bourget, 2008). For their combined 
research breakthroughs that led to the initial creation of a functional high-intensity blue light 
LED using high-quality gallium nitride, the Nobel Prize in Physics (2014) was awarded to all 
three researchers. 

 
Modern high-intensity LEDs now last up to 100,000 h compared with 10,000 h 

for fluorescent lights and 1,000 h for incandescent bulbs. Modern LEDs convert more than 50% 
of input electricity into light, compared with approximately 4% for incandescent lighting (Nobel 
Prize in Physics, 2014). Within the decade that followed the creation of bright blue LED, 
improved modern high-intensity LEDs have been incorporated into numerous products  
(Diep, 2014). However, by 2008, most commercially available LED lighting systems still did not 
provide light intensities that were sufficient for the successful growth and extended sustainment 
of healthy plants (Massa, 2008). Many plant lighting systems that are insufficient for extended 
sustainment of healthy plants remain on the commercial marketplace. It is notable that even 
white light LED-based plant growth systems are inefficient with regard to heat output, as 
compared with LED arrays that permit adjustment of the output-intensity for each type of LED 
within the array. 

 
We recognized that some LED plant lighting systems began incorporating 

improved, modern, high-intensity LEDs into adjustable lighting arrays for the growth of plants 
(Morrow, 2008) and that this innovation was a key component for growing and sustaining 
healthy plants within a laboratory hood under surety constraints. Therefore, we began 
investigating commercially available LED array lighting systems.  

 
 

3. METHODS AND MATERIALS 
  

3.1 Lighting System Selected for the Culture of Plants within a Surety Hood  
 
Because physiologically healthy living plants are necessary to investigate and 

record critical parameters for the effects of agent–plant interaction, we selected, installed, and 
tested a LumiBar (LumiGrow; Novato, CA) strip-lighting, high-intensity LED array system 
within a surety hood. The LED array consisted of the improved, modern, high-intensity output 
red, blue, and green LEDs to supply high-quality PAR. The PAR spectral outputs of modern 
high-intensity red and blue LEDs are required to supply radiation for absorption by plants that is 
sufficient for culturing normal, healthy, photoautotrophic plants. Green light is predominantly 
reflected by photoautotrophic plants, causing their green appearance. However, inclusion of 
green LEDs within an array allows inspection of plants under white light (red + blue + green; 
Figure 1), so that the effects of plant treatments may be recognized and characterized (Kim et al., 
2004; Simini et al., 2016).  

 
 



 
 

4 

 The LumiBar strip-lighting system includes a power-control module that permits 
external adjustment of the output-intensity for each type of LED within the array, thereby 
permitting exclusion of green LED output during plant culture periods (Figure 2).  

 
 

   
Figure 1. Modern, high-intensity blue, red, and green LEDs (close-up photo).  

 
 

 
Figure 2. Surety hood illuminated by an array of high-intensity output blue and  

red LEDs during the culture of grass plants (Echinochloa crus-galli).   
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3.2  Chemicals 

 The VX selected for method development and initial agent–plant interaction 
research was Chemical Agent Standard Analytical Reference Material (CASARM)-grade (U.S. 
Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD), Chemical 
Abstracts Service (CAS) no. 50782-69-9. VX purity was determined and verified by nuclear 
magnetic resonance spectroscopy. The VX was stabilized with 5% by weight 
diisopropylcarbodiimide (CAS no. 693-13-0; Sigma-Aldrich Company; St. Louis, MO). The 
water used in these investigations was ASTM Type I (ASTM, 2004) that was subsequently 
allowed to naturally equilibrate with air at ambient conditions. Miracle-Gro Water Soluble All 
Purpose Plant Food (Scotts Miracle-Gro Company; Marysville, OH) fertilizer (24% total 
nitrogen [calculated as N], 8% available phosphate [calculated as P2O5], 16% soluble potash 
[calculated as K2O], 0.02% boron, 0.07% copper [water soluble], 0.15% iron [chelated], 0.05% 
manganese [chelated], 0.0005% molybdenum, 0.06% zinc [water soluble], and 1.14% 
ethylenediaminetetraacetic acid chelating agent) was used to prepare the dilute aqueous 
phytonutrient solution (530 mg/L). All other solvents and reagents were analytical grade or 
purer, and these were obtained from Sigma-Aldrich Company.  

3.3    Plant Species  

 The plant species selected for method development and initial research was the 
grass plant E. crus-galli [L.] P. Beauv. (Figure 3). Grass is the most-prevalent type of higher 
plant worldwide and E. crus-galli is one of the most-ubiquitous grasses globally (CABI, 2017). 
E. crus-galli is tolerant of dry and wet natural habitats and is used as forage for grazing 
animals as well as for wildlife food and habitat (USDA–NRCS, 2015). This species is also one 
of the most-important weed species in crop systems globally; however, E. crus-galli is 
cultivated as a crop for human consumption in some parts of the world (CABI, 2017).  

3.4  Plant Culture before and within Surety Hood Constraints  

 Within an environment-controlled plant-growth chamber (model PGC-9/2; 
Percival Scientific; Perry, IA), 20 E. crus-galli grass seeds (lot no. PM11452Q, 2014; Prairie 
View Nursery; Winona, MN) per 100 mm (4 in.) diameter pot were germinated by hydration 
with ASTM Type I water in potting mix (Miracle Gro Moisture Control potting mix; Scotts). 
Before use, each pot was prepared by lining the bottom of each with two pieces of absorbent 
paper and then filling with 170 g (77.1 g dry mass) of potting mix. 

 
 After 7 days post-germination, each individual grass plant seedling was 
transplanted into a new prepared pot and grown to mature leaf stage within a plant-growth 
chamber (Simini et al., 2016). To avoid the effects of nutrient deficiencies that could have 
existed in the soil, dilute phytonutrient solution was administered to the plants every 2 to 3 days 
to maintain the respective initial mass for moisture of each replicate plant system and to sustain 
healthy plants.  
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Figure 3. E. crus-galli grass plants in native habitat.  

 
 
  The following environmental conditions were maintained within the environment-
controlled plant-growth chamber: 
 

 300–350 µmol s–1 m–2 PAR (at plant canopy),  
 22 ± 2 ºC (daytime),  
 18 ± 2 ºC (nighttime),  
 60 ± 5% relative humidity (RH), and 
 0.56 km/h (0.35 mph) airflow. 

 
 Temperature and RH were measured using an OM-DVTH data logger (Omega 
Engineering, Inc.; Stamford, CT). PAR, delivered by fluorescent and incandescent lighting, was 
measured periodically using an MQ-200 quantum meter equipped with an AM-310 sensor wand 
(Apogee Instruments; Logan, UT). Airflow was calculated by the manufacturer’s technical 
personnel in accordance with the plant-growth chamber specifications (Percival Sci., 2017). 
 
 When the individual grass plants had developed two to three fully mature leaves  
(Figure 4), 18–21 days after transplanting, the individual seedlings within their pots were 
transferred into the plant culture conditions maintained within a surety hood. The selection of an 
individual plant and the pot position within the surety hood were randomized for agent–plant 
interaction experimental determinations involving VX on grass foliage. A sampling of E. crus-
galli mature grass foliage was taken from additional plants that did not receive VX to determine 
the moisture status of the grass (water content) by mass (weight).  
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The following environmental conditions were maintained within the surety hood: 
 
 300–350 µmol s–1 m–2 PAR (at plant canopy), 
 21 ± 2 ºC (daytime), 
 21 ± 2 ºC (nighttime),  
 50 ± 10% RH, and  
 2.41 ± 0.14 km/h (1.5 ± 0.09 mph) airflow. 

 
Temperature and RH were measured using an OM-DVTH data logger. PAR, 

delivered by a LumiBar strip lighting system, was measured periodically using an MQ-200 
quantum meter equipped with an AM-310 sensor wand (Apogee Instruments, Inc.; Logan, 
UT). Airflow was measured at the face of the surety hood using an Airdata Multimeter ADM-
870C (Shortridge Instruments, Inc.; Scottsdale, AZ). 

 
 

 
 

Figure 4. E. crus-galli grass plants with two to three fully mature leaves  
within the environment-controlled plant-growth chamber  

before transfer into surety hood.  
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3.5 Dissemination of Agent Droplets onto Leaves  
 

Plant stands were constructed to hold the pots and plants in fixed positions within 
the surety hood. A hole was cut in each Petri dish cover, and each pot was placed through the 
hole and onto the dish (Figure 5). Each pot was secured to a ring stand with an adjustable clamp. 
Grass leaves near the top of the plant canopy were randomly selected and laid horizontally across 
a ring. The grass leaves were secured to the rings by lengths of clear cellulose acetate tape that 
were folded in half lengthwise and placed across the leaf surface. This arrangement prevented 
sticky contact of acrylate adhesive with leaf surface. The ends of the folded tape were then 
secured to the ring with additional tape, which helped maintain a slight pressure on the leaf 
surface (Figure 6).  

 
A droplet of agent was disseminated onto the surface of individual horizontally 

stabilized leaves, while other random and horizontally stabilized leaves served as controls 
(Figure 6). The stabilized leaves remained secured in this horizontal position during and after 
dissemination of VX. Single droplets of VX, a droplet size expected from CWA dissemination 
under field conditions (DPG, 2011), were individually dispensed using a calibrated 10 μL 
Hamilton (Reno, NV) gas-tight syringe onto single living leaves attached to a healthy grass plant.  

 
 

 
Figure 5. E. crus-galli grass plants in surety hood with plant stands.  

 
 
 
 



 
 

9 

 
Figure 6. Close-up view of E. crus-galli leaves secured in horizontal position using tape 

folded in half lengthwise, which prevented leaf contact with adhesive. (VX was then 
disseminated onto the portion of the grass leaf held within the ring.)  

 
 

4. RESULTS    
 

Environmental conditions within the surety hood were sustained at levels similar 
to those maintained within the plant-growth chamber, and both sets of conditions were suitable 
for the culture of healthy plants (Table).  
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Table. Comparison of Environmental Conditions and Respective Durations  
within the Environment-Controlled Plant-Growth Chamber with Conditions  

Sustained within the Surety Hood Environment. 

Environmental 
Factor 

Daily 
Duration 

(h) 
Plant-Growth Chamber Surety Hood 

Daytime PAR  
at canopy 

16 300–350 µmol s–1 m–2 300–350 µmol s–1 m–2 

Daytime 
Temperature 

16 22 ± 2 ºC 21 ± 2 ºC 

Nighttime 
Temperature 

8 18 ± 2 ºC 21 ± 2 ºC 

RH 24 60 ± 5% 50 ± 10% 

Airflow  
Rate and Direction  

24 
0.56 km/h (Percival Sci., 

2017) upward 
2.41 ± 0.14 km/h 

horizontal 
 
 
The horizontal stabilization of individual leaves provided the following technical 

advantages:  
 
 no acrylate adhesive from clear tape came into contact with leaf surfaces,  
 no leaf surface damage was caused by tape removal,  
 the disseminated agent droplets came into contact with the leaf surfaces at the 

intended points, and 
 the agent–leaf contact locations were easily identified for further 

investigation.  
 
The methods of leaf stabilization and VX dissemination prevented droplets from 

merging on the foliage, which enabled analytical determination and characterization of the 
effects of VX. 

 
All of the grass plants that did not receive agent droplets remained healthy and 

thrived, including the horizontally stabilized control leaves. The effects of the agent–plant 
interactions of disseminated VX with grass foliage were readily observable (Simini et al., 2016; 
Checkai et al., 2017). The percent moisture content of the grass leaves before VX dissemination 
was determined to be 88% water (88.1 ± 1.1%), based on the sampling of mature grass foliage 
from plants that did not receive VX. This moisture content comports with the available moisture 
commonly found in leaves of healthy E. crus-galli plants (Hamim et al., 2016).  

 
The array of modern blue and red LEDs emitted high-intensity PAR within the 

range 400–700 nm, which supported the culture of healthy plants. The minimal heat load of the 
array of LEDs was readily handled by surety hood airflow. The LED array was adjustable by 
height above the plant canopy, and the luminous intensities for blue, red, and green wavelengths 
were individually adjustable. This not only permitted exclusion of green LED output during plant 
culture periods but allowed inclusion of green LED output for inspection of plants under normal 
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white light conditions. Plant illumination and intensity met USEPA (2012) quantity and quality 
specifications for ecological effects plant tests, including 350 ± 50 µmol s–1 m–2 PAR (measured 
at the top of the canopy in the wavelength range 400–700 nm), with a photoperiod of 16 h of 
light and 8 h of darkness.  

 
The successful culture of plants within the surety hood environment permitted the 

investigation and determination of the following critical parameters for assessing threat from VX 
hazard on battlefields in natural environments: 

 
 visual characterization of the effects of VX on grass foliage (Simini et al., 

2016),  
 coefficient of VX wash-off from rainfall (Haley et al., 2016),  
 contact transfer (exposure) of VX from contaminated foliar surfaces onto an 

army combat uniform (Haley et al., 2017), and  
 persistent and effective half-life of VX on grass foliage (Checkai et al., 2017).  

 
The results of these investigations for VX on grass foliage were based on the 

successful culture of healthy plants within a surety hood environment, and coincide with the 
general trends that were observed historically (Reich, 1959a; 1959b), when effects on those 
studies from uncontrolled outdoor rainfalls (Haley, 2016; 2017) and temperature (Tevault et al., 
2012) are taken into account. This outcome illustrates the usefulness of the present methods for 
investigating agent–plant interactions with additional classes of CWAs.  

 
Extending the culture of healthy mature plants within a laboratory surety hood, 

rather than using costly walk-in exposure chambers, allows expenses to be minimized for 
investigations of agent–plant interactions and provides the necessary safety protection and 
precautions that are delivered by a surety hood environment.  

  
Using the conditions established in these investigations, the culture of healthy 

plants within a surety hood for investigation of agent–plant interactions proved to be extremely 
successful. The only limiting factor may be the ultimate height of the plant species selected for 
investigation because of the height limit imposed by the dimensions of the surety hood.  

 
Investigations of agent–plant interactions within a laboratory surety hood 

provide critical parameter input for predictive models, direct experimental determinations for 
comparison of model outcomes, and information for decision-making that affects soldiers on  
VX-contaminated battlefields.  
 
 
5. CONCLUSIONS  

 
Based on the results of these investigations of agent–plant interactions, we 

concluded the following: 
 

 The environmental conditions maintained in the surety hood were suitable for 
the extended culture of healthy plants.  
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 The methods for horizontal stabilization of individual leaves and VX 

dissemination allowed the investigation to focus on agent–plant interactions 
on healthy living plants. 

 
 The array of modern blue and red LEDs emitted high-intensity PAR that 

supported the culture of healthy plants. Plant illumination and intensity met 
USEPA (2012) quantity and quality specifications for ecological effects plant 
testing.  

 
 The successful culture of plants within the surety hood permitted the 

investigation and determination of critical parameters for assessing the threat 
from VX hazards on battlefields in natural environments.  

 
 The methods that we developed illustrated their usefulness for investigating 

agent–plant interactions for additional classes of CWAs. 
 
 Extending the culture of healthy mature plants within a laboratory surety 

hood, rather than using costly walk-in exposure chambers, allowed expenses 
to be minimized for investigating agent–plant interactions.  

 
 Investigations of agent–plant interactions within a surety hood provide critical 

parameter input for predictive models, direct experimental determinations for 
comparison of model outcomes, and information for decision-making that 
affects soldiers on VX-contaminated battlefields.  
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ACRONYMS AND ABBREVIATIONS 
 
 

CAS Chemical Abstracts Service 
CASARM Chemical Agent Standard Analytical Reference Material 
CWA chemical warfare agent 
LED light emitting diode 
PAR photosynthetically active radiation 
RH relative humidity  
USEPA United States Environmental Protection Agency 
VX O-ethyl-S-(2-diisoproylaminoethyl) methyl phosphonothiolate 
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