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ABSTRACT
The problem of how to best classify system errors has been a topic
of research for years. In this paper, we present an established taxon-
omy that draws on a broad range of previous work in this area: the
Architecture Analysis and Design Language’s (AADL) EMV2 Error
Library. The error library is now part of an international standard
and has been used in a range of systems and domains. In this work,
we describe its features, including that: a) it is deeply integrated
in a rich, semi-formal system modeling language (AADL); b) the
errors it includes have formalized semantics; and c) it is designed
to be easily extensible by system developers to become domain-
or system-specific. We describe the original inspirations and prior
work that informed the library’s design, document the error fami-
lies that comprise the taxonomy, and discuss the library’s usage in
an architecturally-integrated system assurance process.
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1 INTRODUCTION
The challenge of classifying the way that things can go wrong
in a component-based system is a difficult one: components—and
the systems that rely on them—can fail in myriad, unpredictable
ways. But it is nonetheless a challenge that should be addressed:
these component-based, software-driven systems which are diffi-
cult to analyze are also used increasingly for safety-critical appli-
cations. Unfortunately, many well-established classifications and
taxonomies of system errors are not what we term operationalized:
directly usable in modern, model-based system engineering efforts.
Rather, they were designed for human use on informal (often men-
tal) system models: they are specified and described in natural
language, rather than in any formal or semiformal specification
language.

The Architecture Analysis and Design Language (AADL) is a well-
established semiformal architecture specification language that is
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used in academia, industry [10], and is available as an international
standard [23]. Various annexes have been developed that extend
the core language to provide additional modeling features. One
that has been thoroughly documented elsewhere [5, 16] is the error
modeling annex, which is in its second version (abbreviated EMV2).
What has not been addressed, however, is the rationale and design
choices behind the EMV2 Error Library, which is the EMV2’s in-
cluded error taxonomy. Though usable independently of AADL as
a traditional, non-operationalized taxonomy, the error library is
most commonly used to embed the error behavior of a system in an
architectural model. It allows system designers to extend the notion
of a component’s interface and architecture beyond the interface
types (e.g., integer, floating point, etc.) and non-functional proper-
ties (e.g., timings, power consumption, etc.) to include behavior in
the presence of errors and activated faults.

This paper presents the EMV2 error library, as well as its un-
derlying concepts, inspirations, and impetuses. Specifically, the
contributions that the library makes are that it provides:

(1) An ontology of system errors that is embeddable into system
architecture models that have been specified in AADL. This
ontology relates error types to one another through type
extension, which enables modeling different layers of ab-
straction. Additionally, the types are instantiable into tokens,
which flow through petri-net-like specifications of compo-
nent error behavior.

(2) Formal specifications of the semantics of the error types in
the library.

This paper, in describing the library, makes additional contribu-
tions by providing:

(1) a rationale for the organization of the library,
(2) an explanation of the high-level concepts which underpin

the ontology’s design, and
(3) guidance on using ontologies with modern hazard analyses.

2 CONCEPTS IN THE AADL EMV2 ERROR
LIBRARY

This section introduces a number of concepts that are critical to
the Error Library: definitions of important terms, the importance
of effects based reasoning, a number of classifications of system
error, and a brief overview of relevant aspects of building system
models in AADL.

2.1 Definitions of Important Terms
There are a number of definitions of common error-modeling terms
present in the literature; in this paper we try to use terms within
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their well-understood meanings. Full definitions of all relevant
terms are given in the EMV2 Standard Document [24] which notes
that they are derived from an existing IEEE standard [14]. Three
particularly relevant definitions (excerpted / adapted from [24, p.
64]) are:

• Error “[The] difference between a computed, observed, or
measured value or condition and the true, specified, or theo-
retically correct value or condition”
• Fault “[A] root (phenomenological) cause of an error that
can potentially result in a failure”
• Failure “[The] termination of the ability of a product to
perform a required function or its inability to perform within
previously specified limits”

2.2 Effects-Based Reasoning
One of the key aspects of the AADL EMV2 taxonomy is its enforce-
ment of local, effects-based error classification. The importance of
focusing on the effects of errors (rather than their causes) in system
analysis has been discussed previously. Walter and Suri made it
an important part of their Customizable Fault / Error Model [28],
Procter et al. discuss its importance and benefits in some detail [21],
and it underlies design of hazard analyses with a top-down focus
(e.g., STPA [17], FTA [7], SAFE [20]). Key to enabling an effects-
focus (and, more generally, to the design of the Error Library) is
Powell’s work on failure modes and assumptions—not only do we
adopt much of his service model (see Section 2.3) but we also use his
notions of observers [19]. At a high-level, the primary justifications
for focusing on effects rather than causes are:

(1) Reducing Ambiguity: Walter and Suri argue that cause-based
classificationmethods, such as the Laprie taxonomy [15], can
lead to the same fault being classified differently in different
systems, but note that this is impossible with an effects-focus
[28].

(2) Reducing Analysis Space: Procter et al. note that the set of
causes is essentially unbounded, while observable fault ef-
fects can, at a given level of abstraction, be known statically—
making analysis of larger systems more tractable [21].

(3) Enabling Local Reasoning: As the analysis space is reduced
to a more manageable level, it is possible to gain a notion of
completeness and minimality with some effect-classification
taxonomies [6]. This means that, to a limited extent, a com-
ponent can be analyzed independently of other parts of the
system it is a part of.

(4) Connecting to Compositional Reasoning: There is an important
connection between effects-based reasoning, assume/guar-
antee logics, and design by contract styles. Errors can also
be conceptualized as violations of a component’s assump-
tions [24]. Similarly, the effects of those errors are typically
violations of the component’s guarantees.

(5) Enabling Safety and Security Co-Analysis: There is a growing
recognition of the overlap between traditional safety and
security concerns. An effects focus allows, in some cases, for
the simultaneous co-analysis of safety and security, a topic
explored by Procter et al. [21].

2.3 Error Identifiability Concepts
In this paper we use the term error identification in a broad sense. An
error is said to be identifiable if system behavior could be modified
as a result of its presence; this is analogous to being observable, and
is closely related to the term interference in the security community
[11]. An unidentifiable error, then, is an incorrect system state that
has no impact on system functioning, e.g., a sensor reading that
is close enough to the correct value to not cause a component (or
system) failure. We use the term detection more narrowly: to mean
that the system itself (instead of only an omniscient observer) can
determine that something is incorrect and compensatory actions
should be taken.

Whether an error can be detected (and compensated for) depends
on a number of factors: system architecture, application demands,
the presence of error correcting technology, etc. We propose a
number of concepts relevant to the classification of errors in Fig.
1. Some error types, including those having to do with values,
timings, and errors of commission and omission have their intuitive
meanings. We explain the other concepts at a high level in this
section and document the error types that make up the Error Library
in Section 5.

Quantity Our views on error identification were inspired by
Powell as well as Bondavalli and Simoncini [3, 19]. Central to these
views are the concepts of service and service items.

(1) Service Items: Powell defines service items as “value-time
tuples,” i.e., messages that have both a value and a time [19].
In some cases errors can be identified in individual service
items.

(2) Sequences: In other cases, a component may be able to com-
pensate for individual, erroneous service items but unable
to function correctly if the errors persist past some sequence
of service items (the length of which is bounded by some
implementation-specific value, commonly written k).

(3) Services: Lastly, every item in the entire service (i.e., as k
grows large) may have to be incorrect for an error to be
identifiable.

Subtlety Some errors can be detected and compensated for using
only the information a component has, while others are more subtle
and would only appear to an omniscient observer. We again turn
to Bondavalli and Simoncini who propose further differentiation
based on this concept of error detectability [3].

(1) Detectable Errors: Errors which are detectable by the system
itself are termed coarse incorrect errors by Bondavalli and
Simoncini [3], we use the term detectable.

(2) Undetectable Errors: Other errors, which would only be iden-
tified by the hypothetical “perfect observer” who has full
knowledge of the system’s specification, are subtly incorrect
according to Bondavalli and Simoncini [3]; we use the term
undetectable.

Replication Errors may only be detectable by a system if mes-
sages are correlated and compared between several receiving com-
ponents. This is commonly the case in distributed systems where a
sensor may provide input to multiple components: if those compo-
nents cross-check their received values with each other, differences
in message timings and values can be detected and potentially
addressed.
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Service Item [An individual message or input]

Sequence [A bounded number of service items of size k]

Service [An unbounded sequence of service items]

Quantity

High [The delivered value is greater than the correct value]

Low [The delivered value is less than the correct value]

Unrepresentable [The delivered value is not representable using the type of the correct value]

Value

Early [Arrival before the correct time according to some clock]

Late [Arrival after the correct time according to some clock]
Timing

Transient [A bounded length of time]

Permanent [An unbounded length of time]
Permanence

Commission [An unexpected service item, sequence, or service is delivered]

Omission [An expected service item, sequence, or service is not delivered]
Presence

Undetectable [The delivered item has an error that is not detectable using only available information]

Detectable [The delivered item has an error that is detectable using only available information]
Subtlety

Out of Tolerance [Exceeds the tolerance of local error-correction mechanisms]

Within Tolerance [Within the tolerance of local error-correction mechanisms]
Recoverability

Stable [Indicates the error follows some distribution]

Jittery [Indicates the error does not follow a distribution]
Consistency

Replication
Symmetric [The error is present in all replicates]

Asymmetric [The error is not present in all replicates]

Figure 1: Error concepts used in the Error Library.

Recoverability Many safety-critical systems will have error-
correction capabilities, but most of these techniques can only com-
pensate for errors within some range. This classification is for cases
where input errors exceed the error-correction boundary.

Permanence Intuitively, not all problems with system compo-
nents are lasting: sensors may be bumped, control algorithms may
be preempted, etc. These problemsmay not be fatal, and long-lasting
faults should in some cases be dealt with differently. Avižienis et
al. classify faults depending on whether they are permanent or
transient [2] and we make a similar distinction with errors.

Consistency A related issue to permanence is consistency: er-
ror behavior is often inconsistent. A value error (such as “Too
High”) may either occur regularly according to some pattern, or
be randomly interwoven with correct values or other value errors
(e.g., “Too Low”). Since jittery errors (i.e., those that do not follow
a distribution) can cause different behaviors than those that appear
consistently, we include the concept in our classifications.

2.4 Modeling with AADL
AADL provides a set of language constructs and connections that en-
able system designers to build high-fidelity models of their systems
and then analyze multiple aspects of them. We briefly summarize
two aspects of the language that are relevant to this work here, a
more complete discussion of the language is provided elsewhere
[9].

Functional andHardwareViewsAADL’smodeling constructs
include both runtime and hardware elements. The runtime elements
are primarily software, e.g., process, thread, subprogram, etc. and

they can be bound to hardware elements such as processors, mem-
ory, and buses [9]. One of the language’s strengths is its ability
to describe interactions between the two views of a system, such
as how the failure of a hardware component may affect certain
subprograms, or the impact of assigning a particular process to a
specific processor.

Instantiation andPropagationPathResolutionWhen a sys-
tem designer writes AADL, he or she is specifying what’s called the
declarative model, which can then be instantiated. Instantiation—
which is typically done automatically by tooling—involves a number
of transformations, including fully resolving the system’s propaga-
tion paths. These paths are used by various analyses to determine
where data and control events—including errors—start, are trans-
formed, and stop. Thus, most analyses require a system model to
be instantiated.

3 RELATEDWORK: CLASSIFICATION AND
GUIDEWORD SCHEMES

This section discusses a number of popular safety concept classifica-
tion schemeswhich, we argue, can be considered non-operationalized
taxonomies of system errors. Often, these take the form of a set
of guidewords, which are terms used in hazard analyses to guide
designers/analysts to consider ways that a system can deviate from
its intended functionality [7]. Guidewords are typically adapted to
the needs of the system by incorporating domain knowledge, prior
analyst experience, etc. Redmill et al. provide a thorough treatment
of the role of guidewords and their use in software including when
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and how to adapt them to a particular domain [22]. If the EMV2
Error Library is used independently of AADL, it can be thought of
as a taxonomy of guidewords that is to some extent interchangeable
with the others in this section.

3.1 Hazard and Operability (HAZOP)
The HAZOP technique was created in the 1970s by the United
Kingdom’s Institute of Chemical Industry, and it is essentially a
multidisciplinary brainstorming technique [7]. It is performed by
having experts in different system aspects and lifecycle phases—
e.g., designers, testers, users, etc.—apply guidewords like less or
late to individual components’ parameters. It has been applied
to a range of system types, including software [7, 22]. Wallace,
whose Fault Propagation and Transformation Calculus [27] partially
inspired AADL’s Error Model, also classified failures based on a set
of guidewords in a style modeled off of McDermid et al.’s use of
HAZOP on software [18].

3.2 System Theoretic Process Analysis (STPA)
Leveson describes a hazard analysis technique called System Theo-
retic Process Analysis (STPA) in the book Engineering a Safer World
[17]. Like HAZOP, STPA uses guidewords, though they are applied
to the control structure of a system rather than its physical de-
sign. The two steps of STPA—identifying hazardous control actions
and determining causation—each have their own set of guidewords.
STPA’s improvement over more traditional techniques is in part a re-
sult of its use of control theory; the terms it uses such as providing
causes hazard or wrong timing causes hazard reflect this
control-theoretic approach. Tooling (e.g., [1, 20]) and partial formal-
izations (e.g., [26]) for STPA and its variants and extensions have
also been created.

3.3 The Avižienis Taxonomy
Avižienis et al. describe a full taxonomy of a number of concepts
in the critical systems space [2]. This includes a number of classifi-
cations of faults, errors, failures etc. Like the EMV2 Error Library
(and unlike HAZOP and STPA), the classification is presented as a
taxonomy, rather than being described in the context of a specific
analysis process.

3.4 Dolev and Yao’s Adversary Model
Dolev and Yao describe a formal, well-established adversary model
where the attacker controls the network, e.g., message values and
delivery timing can be modified arbitrarily [6, 12]. Their model
consists of a formal description of adversary capabilities, though,
so it is not similar to the discussion-oriented terminology used
by HAZOP or the control-theoretic guidewords models used by
STPA. This model has been used as the basis for guidewords that
simultaneously address safety and security [21].

4 TAXONOMICAL MECHANISMS
The AADL Error Library is composed primarily of error types,
which are organized into a hierarchy, and then (if used within an
AADL model) are instantiated along with the rest of the declarative
system specification. In this section we present an overview of these
mechanisms and the motivation behind their use. For previous

discussions and illustrations of the AADL Error annex see, e.g.,
[5, 16], or for complete documentation, refer to Section E.5 of the
AADL language standard [24].

4.1 Foundation: Error Types
Error types are used in three related ways. They can represent:
a) a propagated error, i.e., malformed input to a component that is
causing erroneous behavior, modeled with the AADL error flow
and error propagation constructs; b) an activated fault, i.e., an
internal problem with a component that is identifiable, modeled
with error source and error event; or c) the behavior state of
a system component (using AADL’s error behavior construct)
[24]. At first blush, this reuse of one language construct for three
concepts may seem to be an abuse of notation. However, given the
component-centric, effects-focused view presented by AADL and
its error model, the concepts are equivalent. That is: the behav-
ior of some component A, which receives its input from another
component B, depends only on the input received. The source of
deviations in that input—an activated fault in B, B’s having propa-
gated an error from a third component C, or B’s current state—are
irrelevant to A.

4.2 Relation: Building a Hierarchy
In the library, multiple error types are typically related to one an-
other via extension. Type extension creates a subtyping relationship.
For example, one of the base value error types, ItemValueError is
extended into DetectableValueError and UndetectableValue-
Error. Both of these types have the semantics of their more ab-
stract supertype (ItemValueError) but carry additional informa-
tion about the detectability of the value error. Taken together, the
latter two types completely compose the former; i.e., there is no
way for a service item to have an error in its value that is neither
detectable nor undetectable.

4.3 Instantiation: Using Declared Types
As discussed in Section 2.4, AADL models are instantiated before
analyses are conducted on them. When a system that contains error
annotations is instantiated, the portions of the model specified
using the error annex are also instantiated for analysis. Error types
produce tokens which move through a system-wide petri net-like
simulator that is derived from the collection of component error
flows and propagations. This simulator can then be mined for error
behaviors [5].

5 THE TAXONOMY
The AADL EMV2 Error Library (Section E.6 of the AADL Standard
[24]) plays three interrelated roles. First, it is a list of guidewords,
suitable for brainstorming and manual analysis in the style of e.g.,
HAZOP (see Section 3.1) or STPA (see Section 3.2). Second, it con-
tains a wide range of error types that can be directly used in AADL
system and component specifications. Third, it serves as the basis
from which system- and domain-specific error types are derived.
As we discuss in Section 7.1, the contents of the library continue
to evolve in an attempt to strike the correct balance between these
goals and manageable brevity.
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Term Definition

S A service
si An individual service item in S
ϵ The empty service item
k System-specific sequence boundary
C Max expected value change between consecutive items
vi ,δi Actual value and delivery time for item si
Vi ,Di Correct value and delivery time range for item si
si (j ), si (k ) jth and kth replicates of service item si

Error Type Formalization

ServiceOmission ∀si ∈ S | si = ϵ
ItemOmission ∃si ∈ S | si = ϵ
TransientServiceOmission ∃[si . . . si+k−1] ⊂ S ∧ si−1, si+k , ϵ | ∀sj ∈ [si . . . si+k−1] | sj = ϵ
ItemValueError ∃si ∈ S | vi < Vi
BoundedValueChange ∃si−1, si ∈ S | abs (vi −vi−1) > C
LateDelivery ∃si ∈ S | δi > Di
SymmetricValue ∃si ∈ S | ∀j,k ∈ [1,n] | vi (j ) = vi (k ) ∧vi (j ) < Vi

Table 1: Formalizations of selected error types. Formalized types are shaded in the hierarchies in Figs. 2-5

.

Themeaning of a particular error type in the library is a deviation
from the correct value, as identifiable by an omniscient observer
[19]. Note that, due to space constraints, our goal in this section is
not to fully detail the exact semantics of each error type. Full details
are available in the AADL EMV2 standard itself. Rather, here we
give an overview of, and the intuition behind, the families of error
types used in the library. Table 1 lists some example formalizations.
Error types with formalizations in Table 1 are shaded in Figures 2
to 5.

Note that error types that extend the same supertype are mu-
tually exclusive. Two error type families (Service and Replication)
have a single common parent, and so the subtypes of these families
cannot co-occur with other subtypes of the same family. The other
two families (Value and Timing) have no such restriction, however:
service items can, for example, have both a wrong value and be
part of an out-of-order sequence.

5.1 Service Errors
Recall from Section 2.3 that we use the terms sequence and service to
refer to bounded and unbounded (respectively) ordered collections
of service items—i.e., messages, inputs, etc., where accuracy and
timeliness are required for correctness. The first family of error
types, shown in Fig. 2, contains errors in “the number of service
items delivered by a service.” [24]

Commission and Omission Of the six error types that ex-
tend the top level ServiceError type, four deal directly with ei-
ther unexpected items and services (commission) or missing ones
(omission). If the errors are single events, the ItemCommission and
ItemOmission types should be used; if it is an entire service that
is in error the Service counterparts should be used instead.

Sequences Errors that are more subtle than single service items
or complete services are captured using the children of the Sequence-
Omission and SequenceCommission types. Some, like early and
late service start and termination, have an intuitive meaning. Two of

the remaining four—TransientServiceOmission and Transient-
ServiceCommission—are used for intermittent versions of their
service-based counterparts. The final error types, BoundedOmission-
Interval and BoundedCommissionInterval are used when ser-
vice item errors occur more frequently than some specific bound1.
Note that if a sequence error persists longer than the system-specific
k bound, it becomes a service error.

5.2 Value Errors
The second error family, shown in Fig. 3, collects errors which rep-
resent incorrect values. The collection is split into three hierarchies:
one dealing with items, one with sequences, and one with services.

ItemValueError These errors deal with individual service items
with incorrect values. The family is divided first by the detectability
of the errors; i.e., if only an omniscient observer could detect them,
or the system itself can as well. If they are detectable, errors can be
classified as either out of range, which means they are outside
of some domain-specific range (e.g., a percentage that is more than
100 or less than 0) or out of bounds, which means the value
is unrepresentable in the expected type (e.g., a string is received
instead of an integer).

SequenceValueError Some programs may be able to behave
correctly when a small number of input values are incorrect, but
longer sequences of erroneous values cannot be compensated for.
This is further extended into out of order sequences and values that
are Stuck, i.e., repeating the same value. A final type, BoundedValue-
Change, signifies successive values that are both in range but are
implausibly far apart (according to some user-specified boundary).

ServiceValueErrors Value errors with entire services signify
that all service items have value errors.

1Due to an oversight, BoundedCommissionInterval errors are not included in the
library at the time of publishing. The authors have submitted a request to include it in
future updates to the EMV2 standard [24].
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Early Service
Termination

Late Service
Start

Bounded Omission
Interval

Transient Service
Omission

Service Error

Service
Omission

Service
Commission

Item
Omission

Late Service
Termination

Early Service
Start

Transient Service
Commission

Bounded 
Commission Interval

Sequence
Omission

Sequence
Commission

Item
Commission

Figure 2: Hierarchy of service errors, adapted from [24]. A formalization for the shaded type is given in Table 1.

Item Value
Error

Detectable
Value Error

Out of
Bounds

Out of
Range

Bounded Value
Change

Stuck
Value

Sequence Value
Error

Service Value
Error

Out of 
Order

Undetectable
Value Error

Figure 3: Hierarchy of value errors, adapted from [24]. A formalization for the shaded types is given in Table 1.

5.3 Timing Errors
Timing errors can be challenging to model because there are two
different notions of timing that can be used. The first, inter-arrival
time, specifies the length of time allowable between service items.
The second, clock time, specifies delivery deadlines according to
some more absolute notion of time, e.g., time-of-day, Unix time,
time since system initialization, etc. Both types of timing issues
are modelable using our library’s timing error hierarchy, shown in
Fig. 4. Note that ItemTimingErrors can occur using either type of
timing specification: they signify only that a single service item is
either early or late according to some system-specific deadline.

SequenceTimingError This error family uses inter-arrival tim-
ing specifications. The more abstract SequenceTimingError can
be refined into HighRate (violations of the minimum inter-arrival
time), LowRate (violations of the maximum inter-arrival time), and
RateJitter, which is a combination of the two.

ServiceTimingError This error family uses clock timing speci-
fications. The generic notion of ServiceTimingError is extended
by both EarlyService, where service items arrive consistently
early, and DelayedService, where they are late.

5.4 Replication Errors
The family of replication error types (shown in Fig. 5) is used to
model errors in replicated service items, which may come about
as a result of various architectural mechanisms, e.g., redundancy
patterns, parallel execution, etc. Work in this area was inspired in
part by Walter and Suri’s ideas on communication symmetry [28],
which posited that otherwise-undetectable errors could, in some
systems, be detected if service items were replicated and used in
multiple places.

In the error library, this gives rise to a new family of error
types that combines the previous error families—service, value,
and timing—with either symmetric or asymmetric presentation. If
all replicates are in error, the error is said to be Symmetric, oth-
erwise it is Asymmetric. In addition to timing errors, which have
their intuitive meaning, replicates can differ in value and presence.

Value Errors If one or more of the values of the replicates differs
from other replicates, two errors are possible, depending on the test
for equality used: if any variation in replicates produces different
behaviors (e.g., if the inputs are used in a hash function) then an
AsymmetricExactValue error is present. Otherwise and the most
appropriate error type is AsymmetricApproximateValue.
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Item Timing
Error

Early
Delivery

High 
Rate

Late
Delivery

Service Timing
Error

Sequence Timing
Error

Early
Service

Delayed
Service

Low
Rate

Rate
Jitter

Figure 4: Hierarchy of timing errors, adapted from [24]. A formalization for the shaded type is given in Table 1.

Asymmetric 
Approximate Value

Asymmetric 
Exact Value

Asymmetric Item 
Omission

Asymmetric 
Service Omission

Symmetric Service 
Omission

Symmetric Item 
Omission

Asymmetric
Omission

Replication Error

Asymmetric 
Replication Error

Symmetric 
Replication Error

Asymmetric
Timing

Asymmetric 
Value

Symmetric 
Omission

Symmetric 
Timing

Symmetric
Value

Figure 5: Hierarchy of replication errors, adapted from [24]. A formalization for the shaded type is given in Table 1.

Omission Errors Errors of omission can occur in replicated
services either symmetrically or asymmetrically. We further distin-
guish between the omission of individual service items and entire
services.

6 EXAMPLE PROCESS
The AADL Error Library is not typically used on its own. Rather, it
is most often used as a piece of the larger safety analysis process in
safety-critical engineering projects. In addition to efforts specifically
devoted to demonstrating or analyzing the Error Annex (e.g., [5,
16]), a number of larger projects have used the ontology in the
avionics domain, though in a range of settings. These include post-
hoc analysis of an industrial safety accident [13], extensive analysis
of an individual component [25], and a large-scale military “shadow
project” feasibility demonstration [4, 8].

Feiler gives perhaps the most detailed description of a typical
use of the error ontology in his report on the military shadow
project [8]. Steps 0, 1, and 3 (in the process below) compose the first
phase of the effort: identifying which error types to use. Steps 2 and
4 compose the second phase: specifying how the error types are
consumed and produced. This second step—essentially specifying
the input and output error specifications of each component—is
what takes advantage of both the propagation paths (created during
instantiation) and the type system which underlies the library to
enable forward and backward reasoning. Feiler’s experience was
that:

(0) At a high level, the safety process began with a functional
and hardware model of a system specified in AADL. The

ontology was used, along with the functional model of the
system, to drive conversations between a safety analyst and
a domain expert.

(1) The output of this conversation was a collection of error
types that had been customized to the domain, e.g., the
ServiceOmission error type was extended into a specific
subsystem failure. One of the most interesting error discov-
eries was that information on the system’s location traveled
along two paths, one of which had a significantly longer com-
putation time. This led to the discovery of an AsymmetricTim-
ingError.

(2) All of the findings from the dialogue were operationalized
by extending error types from the ontology into a system-
specific error library. These types were then used to drive a
hazard analysis of the system.

(3) Steps 1 and 2 were then repeated for the hardware model.
(4) Finally, interactions between the hardware and functional

model were analyzed using the combined set of system-
specific error types to determine the final error behavior
of the system.

Though other users of the error library don’t follow this ex-
act process, most follow a similar pattern. The core usage can be
summarized as: a) starting with the built-in error library; b) adapt-
ing its terms to a specific system/domain; c) re-integrating those
adaptations back into their system model via type extension; and
d) re-analyzing other system views with the new, more specific
error types.
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7 CONCLUSION
The original goals for the EMV2 error library were to develop a
common set of error types based on a range of existing guideword
schemes and—based on previous work by Walter and Suri—to clas-
sify errors in the set based on their effects [24, 28]. Based on the
experiences we and others have had using the library, we believe
these goals have been achieved. In this paper, we have laid out
much of the rationale behind the library, as well as an overview of
the error families and selected formalizations.

7.1 Future Work
Both AADL itself and its Error Modeling annex continue to evolve,
and there is more work to do in the future.

Safety and Security There is growing interest in the overlap
of security analysis with traditional safety assessment tasks. The
extent to which the Error Library, and the EMV2 itself, can support
these tasks is an open area of research. While we are encouraged
that most security issues eventually manifest in one of the same
error types as traditional safety concerns, others, such as the inad-
vertent leaking of privileged data, have no safety equivalent and
will likely require modifications to the library.

Limitations of an Effects FocusA strict focus on the effects of
errors is one of the strengths of the Error Library, though there may
be limits to this approach. To this end, we are experimenting with
less effect-focused error families that deal with, e.g., concurrency
issues. The costs, benefits, and tradeoffs involved in expanding
beyond a strict effects focus is not yet clear, however, so more study
needs to be done.

Patterns for Co-Occurring Errors System behavior in the
presence of errors can become arbitrarily complex when those
errors can co-occur, so a concise way of specifying co-occurrence
is desirable. The error library’s set of replication errors (i.e., the
creation of wholly new types, see Section 5.4) is one attempt at
this, as is the more general error type product construct, which
creates a new error type from two extant types, e.g., a value error
and a time error. We are still researching when one specification
mechanism is preferable to another.
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