
            

PAPER • OPEN ACCESS

Dynamics and control of fast ion crystal splitting in
segmented Paul traps
To cite this article: H Kaufmann et al 2014 New J. Phys. 16 073012

 

View the article online for updates and enhancements.

Related content
Controlling the transport of an ion:
classical and quantum mechanical
solutions
H A Fürst, M H Goerz, U G Poschinger et
al.

-

Experimental quantum simulations of
many-body physics with trapped ions
Ch Schneider, Diego Porras and Tobias
Schaetz

-

Fast separation of two trapped ions
M Palmero, S Martínez-Garaot, U G
Poschinger et al.

-

Recent citations
Scaling Trapped Ion Quantum Computers
Using Fast Gates and Microtraps
Alexander K. Ratcliffe et al

-

Scalable Creation of Long-Lived
Multipartite Entanglement
H. Kaufmann et al

-

Dynamical ion transfer between coupled
Coulomb crystals in a double-well potential
Andrea Klumpp et al

-

This content was downloaded from IP address 131.84.11.215 on 26/02/2019 at 18:53

https://doi.org/10.1088/1367-2630/16/7/073012
http://iopscience.iop.org/article/10.1088/1367-2630/16/7/075007
http://iopscience.iop.org/article/10.1088/1367-2630/16/7/075007
http://iopscience.iop.org/article/10.1088/1367-2630/16/7/075007
http://iopscience.iop.org/article/10.1088/0034-4885/75/2/024401
http://iopscience.iop.org/article/10.1088/0034-4885/75/2/024401
http://iopscience.iop.org/article/10.1088/1367-2630/17/9/093031
http://dx.doi.org/10.1103/PhysRevLett.120.220501
http://dx.doi.org/10.1103/PhysRevLett.120.220501
http://dx.doi.org/10.1103/PhysRevLett.119.150503
http://dx.doi.org/10.1103/PhysRevLett.119.150503
http://dx.doi.org/10.1103/PhysRevE.96.032227
http://dx.doi.org/10.1103/PhysRevE.96.032227
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/432358489/Middle/IOPP/IOPs-Mid-NJP-pdf/IOPs-Mid-NJP-pdf.jpg/1?


Dynamics and control of fast ion crystal splitting in
segmented Paul traps

H Kaufmann, T Ruster, C T Schmiegelow, F Schmidt-Kaler and
U G Poschinger
QUANTUM, Institut für Physik, Universität Mainz, D-55128 Mainz, Germany
E-mail: h.kaufmann@uni-mainz.de

Received 1 March 2014, revised 17 April 2014
Accepted for publication 10 June 2014
Published 9 July 2014

New Journal of Physics 16 (2014) 073012

doi:10.1088/1367-2630/16/7/073012

Abstract
We theoretically investigate the process of splitting two-ion crystals in seg-
mented Paul traps, i.e. the structural transition from two ions confined in a
common well to ions confined in separate wells. The precise control of this
process by application of suitable voltage ramps to the trap segments is non-
trivial, as the harmonic confinement transiently vanishes during the process. This
makes the ions strongly susceptible to background electric field noise, and to
static offset fields in the direction of the trap axis. We analyze the reasons why
large energy transfers can occur, which are impulsive acceleration, the presence
of residual background fields and enhanced anomalous heating. For the impul-
sive acceleration, we identify the diabatic and adiabatic regimes, which are
characterized by different scaling behavior of the energy transfer with respect to
time. We propose a suitable control scheme based on experimentally accessible
parameters. Simulations are used to verify both the high sensitivity of the
splitting result and the performance of our control scheme. Finally, we analyze
the impact of trap geometry parameters on the crystal splitting process.
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1. Introduction

Linear crystals of ions trapped in linear Paul traps have allowed for ground-breaking
experiments in the fields of quantum computation, quantum simulation and precision
measurements [1]. Segmented, micro-structured Paul trap arrays have been proposed as a
future hardware platform for scalable quantum information experiments [2]. Small groups of
ions are trapped separately from each other, such that precise manipulation of the qubits can be
accomplished. Experimental protocols then require ion shuttling operations, in addition to laser-
or microwave-driven logic gates. Essential shuttling operations are splitting and merging of
linear ion crystals. It is important that they are fast on the typical timescale for quantum gates of
10–100 μs, and in order to allow for gate operations or readout after the splitting, a low energy
transfer is required. Shuttling of trapped ions in segmented traps has been realized within a few
oscillation cycles of the harmonic trap by time-dependent control of the trap voltages [3, 4], at
energy transfers below one motional quantum. Crystal splitting in a segmented trap was first
demonstrated in [5], at energy transfers of about 140 phonons within a splitting time of 10 ms.
With optimizations, splitting has been included in the set of methods for quantum computing,
e.g. for quantum teleportation [6] and entanglement purification [7]. Currently, the best reported
result is a gain of about two vibrational quanta per ion at a time duration of 55 μs [4]. Our work
is intended to explain why the splitting process is challenging to control, and to provide a
detailed methodology to overcome these challenges, also for traps with less beneficial properties
than the one used in [4]. The experimental challenge for the control of this process is given by
the fact that the harmonic part of the electrostatic trap potential has to change its sign during this
process and therefore has to cross zero. This situation of weak confinement reduces the
attainable speed and potentially increases the final motional excitation. In order to make the
process more robust and faster, it is desirable to achieve a large quartic component of the axial
trapping potential.

Trap geometries tailored to improve splitting performance were investigated in [8]. In [9],
geometry parameters for optimized separation in surface electrode traps were derived, and the
role of enhanced anomalous heating due to transiently weak confinement was analyzed. In [10],
robust splitting operations on slow timescales were carried out by means of real-time
observation of the ion positions and feedback on the segment voltages.

In this work, we analyze the splitting process with the aim of achieving low energy
transfers in segmented miniaturized Paul traps. We reduce our analysis to the process of
splitting ion crystals, as the process of merging ion crystals is merely the time reversed process.
Furthermore, we restrict ourselves to the case of two ions. For splitting and merging processes
with several ions, the general procedures and conclusions are still valid.

The paper is organized as follows: in section 2, we introduce the formalism for describing
the electrostatic potentials during the splitting operations and the equilibrium positions of the
ions, and we analyze the dependence of the equilibrium positions on the control parameters. In
section 4, we give a detailed explanation of the possible reasons for high energy transfers.
Based on these considerations, a procedure for the design of suitable voltage ramps is given in
section 5. In section 6, we analyze the performance of these ramps by numerical simulations. In
section 3, we compare typical examples for trap geometries and discuss the implication for ion
splitting.
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2. Prerequisites

2.1. Electrostatic trap potentials

We desire to split a two-ion crystal residing at center segment C along the trap axis x, to obtain
two ions stored in separated potential wells at the positions of the splitting segments S
neighboring C, see figure 1. Note that we consider only the spatial dimension along the trap
axis, as we assume that tight radial confinement persists throughout the process and the ions are
always located on the rf node of the trap. Typical distances between segments range between 50
and 500 μm, while the initial ion distance is 2–4 μm. The total external electrostatic potential
along the trap axis can be written as

Φ β α γ≈ + +x x x x( ) , (1)4 2

where the coefficients α β γ, , are given by the the trap geometry and the voltages applied to the
trap segments. This Taylor approximation is valid as long as the the ions are located sufficiently
close to x = 0, which is the center of the C segment. Throughout the splitting process, the
external potential is changing from a single well potential α > 0i to a double well potential
α < 0f , crossing the critical point (CP) at α = 0. Note that β > 0 is required to guarantee
confinement at α ⩽ 0. The approximation of equation (1) holds for α ⩾ 0 and for α ≲ 0 as long
as the separation of the two potential wells is small compared to the width of segment C. When
the distance of the ions from the center of the C segment becomes comparable to the width of
the segment, anharmonic terms of order >4 contribute significantly to the total potential. These
are not taken into account here since the outcome of the splitting process is determined around
the CP, as will be pointed out in the following sections.

Beyond the CP, the equilibrium distance depends significantly on higher order terms of the
potentials. However, the distance of the separated wells is still increasing monotonically for
decreasing α as long as the variation β is sufficiently small, and the corresponding trap

Figure 1. The process of ion crystal splitting. It is shown schematically how two ions
are moved from the initial center segment C to different destination segments SR L, by
changing a confining electrostatic potential from (a) a strong harmonic confining
potential (α > 0) via (b) a predominantly quartic potential (α ≈ 0) to (c) a double-well
potential (α < 0). The external potential is determined by the voltages applied to the
respective electrodes. The equilibrium positions are sketched as dashed lines. The outer
electrodes O facilitate the splitting process by increasing the transient quartic
confinement and offer the possibility to cancel a possible axial background field by
application of a differential voltage. The color coding of the segments and the
corresponding voltages is used throughout the manuscript.

3

New J. Phys. 16 (2014) 073012 H Kaufmann et al



frequencies in these wells are monotonically increasing. Thus, the motion beyond the CP
corresponds to an ordinary shuttling process of a stiff harmonic trap. This suggests that the
separation outcome should essentially not depend on higher order terms, a finding which is
supported by numerical calculations in section 6.

For studies that require precision beyond the CP, the higher order terms can be taken into
account numerically. A cubic term does not contribute to the potential if the trap is sufficiently
symmetric along the trap axis.

Including Coulomb repulsion, the total electrostatic potential of a two-ion crystal at a
center-of-mass position x0 and distance d is given by

Φ Φ Φ κ= + + − +( ) ( ) ( )x d x d x d
d

, 2 2 , (2)tot 0 0 0

with κ πϵ= e/4 0. At the CP, the harmonic confinement vanishes, and a weak residual
confinement is maintained by the interplay between Coulomb repulsion and quartic part of the
external potential. It is therefore desirable to maximize β at the CP. For a given trap geometry,
the attainable β is limited by the voltage range that can be applied to the trap electrodes1. The
coefficients of the potential equation (1) are given by the segment bias voltages and the
electrostatic properties of the trap:

α α α α= + +U U U (3)C C S S O O

β β β β= + +U U U (4)C C S S O O

γ Δ γ Δ γ γ= + + ′U U . (5)S S O O

An offset parameter γ′ is introduced for taking trap non-idealities—leading to a symmetry
breaking force along the trap axis—into account, see section 4.2. In contrast to the symmetric
quadratic and quartic contributions, the asymmetric tilt potential is controlled by the differential
voltages ΔUS O, between the corresponding left and right electrodes of the respective pair. The
segment coefficients are given by Taylor expansions of the standard potentials ϕ x( )

n
, which are

the dimensionless electrostatic potentials along the trap axis if a +1V bias is applied to segment
n and all other segments are grounded [13, 14]:

ϕ ϕ ϕ δ ϕ δ ϕ δ δ= + ′ + + +″  ( )x x x x x( )
1
2

1
24

, (6)
n m n x n x n x n

x
,

2 (4) 4 6
m

m
m

m
0
( )

0
( ) 0

( )

0
( )

with δ = −x x x m
0
( ), i.e. the Taylor expansions are carried out at center of segment m, x m

0
( ). The

coefficients for equations (3), (4), (5) are obtained for = =m C n C S O, , , :

α ϕ β ϕ γ ϕ= = =″ ′f f f
1
2

(0),
1

24
(0), (0), (7)n n n C n n n C n n n C, ,

(4)
,

with =f 1
C

and =f 2
S O,

accounting for two S O, segments acting symmetrically at x = 0. Note
that γ = 0

C
by definition.

1 The maximum voltage is ultimately limited by the electric breakdown threshold. In practice, as precisely
controlled time-dependent voltage waveforms are to be applied to the trap segments, the voltage range will be
determined by the electrical design, where one faces a trade-off between voltage range and output bandwidth
[11, 12].

4

New J. Phys. 16 (2014) 073012 H Kaufmann et al



In the following, for numerical calculations, we use the specific geometry parameters of a
three dimensional microstructured segmented ion trap A as detailed in section 3. There, other
traps and their geometry parameters are listed and analyzed as well.

2.2. Equilibrium positions

We consider two ions of mass m and charge e, with their equilibrium positions given by the
center-of-mass x0 and the equilibrium distance d:

= ±x x d 2, (8)L R, 0

determined by minimizing the total electrostatic potential equation (2). The confinement is
characterized by the local trap frequency, which is given by the curvature of the external
potential at the ion positions:

ω Φ= ″e

m
x( ) . (9)L R,

The extremal points of the external potential equation (1) are given by

α
ζ

ζ
β

= −
·

x
3 2 3

(10)0
(0)

1 3 2 3

α
ζ

ζ
β

= ±
·

+ ∓
·

±x
i i( 3 1)

2 3
(1 3 )

4 3
(11)0

( )
1 3 2 3

where

ζ α β γ β γ α β β γ= + +( )( , , ) 9 3 8 27 . (12)2 3 3 4 2
1 3

Initially, at α α= i, the confining harmonic part of the external potential and the Coulomb
repulsion are dominant, thus we can neglect the quartic potential. The trap frequency is then
given by ω α= e m2 /2 at an ion distance of κ α=d ( / )1/3. At the CP, α = 0, and without tilt,
γ = 0, the ion distance is determined by quartic confinement and Coulomb repulsion:

κ β=d (2 ) . (13)CP
1 5

The Coulomb repulsion pushes the ions away from the trap center (where the curvature of the
external potential vanishes), such that a residual harmonic confinement persists because of the
quartic term. The minimum trap frequency during the splitting process is thus given by [8]

ω β κ= e m(3 ) (2 ) . (14)CP
3 10 1 2 1 5

Near the CP, the equilibrium distance can be computed from a perturbative expression up to
second order:

α
β κ

α
β κ

α≈ − +
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟d d( )

1
5

16 2
25

4
, (15)CP 4

1 5

7 3

1 5

2

for α β| | ≪ dCP
2 and α κ| | ≪ −dCP

3.
The center-of-mass position of the ion crystal near the CP to first order in the tilt parameter

γ is:
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α γ γ
β κ β κ

α
β κ

α≈ −
·

−
·

+ ·⎛
⎝⎜

⎞
⎠⎟x ( , )

1

3 2

2

45

26 2

675
(16)0 2 5 3 5 2 5

1 5

6 5 4 5

4 5

9 5 6 5
2

If the ions are sufficiently separated, α ≪ 0, the Coulomb repulsion can be neglected and the
equilibrium positions approximately coincide with the extrema of the external potential:

α β= −d 2 (17)f f

and the final trap frequency is given by ω α= − e m4 /f f
2 .

2.3. Critical tilt value

A static background force along the trap axis can tilt the external potential and thus keep the
ions confined in one common potential well throughout the splitting process. We make use of
the external potential minima equation (11) to obtain an estimate for the tilt parameter γ̃ , beyond
which the splitting ceases to work. In the following, we assume γ > 0.

In the presence of a non-zero potential tilt, an imperfect bifurcation occurs, i.e. the second
potential well opens up at α̃ < 0, see figure 2(c). We obtain a scaling law for γ̃ by calculating at
which tilt parameter the original potential well is deep enough to keep both mutually repelling

Figure 2. Ion equilibrium positions near the critical point. (a) The equilibrium positions
versus the harmonic parameter α. In the case of a perfectly compensated tilt (blue), the
ions separate symmetrically, in the case of a large tilt (red), both ions move towards one
side. (b) and (c) Close-ups around the critical point for a perfectly compensated tilt and
a large tilt respectively. Additionally, the extrema of the external potential are shown
(dashed). In (d), we display equilibrium positions and potential minima for tilt
parameters slightly below (blue) and above (red) the critical tilt parameter. In contrast to
the corresponding curves in (b), the equilibrium positions exhibit cusps that lead to
strongly enhanced acceleration.
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ions confined, see figure 3. The saddle point where the second potential well opens can be
found by solving = +x xc c0,

(0)
0,
( ) for α̃, yielding α β γ˜ = − 3

2
1/3 2/3. From this we obtain its position2

to be γ β=+x ( / )c0,
( ,0) 1

2
1/3. At α̃, the left potential minimum is located at twice the distance from

the origin γ β= −−x ( / )c0,
( ) 1/3. The potential attains the same value as on the saddle point +V x( )c0,

( ,0)

at the position γ β˜ = −+x ( / )c
( ) 3

2
1/3. The depth of the potential well defined by the saddle point

when the right well opens is therefore

Δ γ
β

= − =− +
⎛
⎝⎜

⎞
⎠⎟( ) ( )V V x V x

27
16

. (18)c c c0,
( )

0,
( ,0)

4 1 3

We can now define a criterion that determines whether the ions are actually separated by
comparing the Coulomb potential to the depth of the initial well at the CP, equation (18). If the
Coulomb repulsion pushes the right ion beyond the saddle point +x c0,

( ,0), it will end up in the right
potential well, otherwise the two ions will stay in the left well. Thus, the Coulomb energy at an
ion distance of − ˜+ +x xc c0,

( ,0) ( ) has to be larger than the well depth ΔVc. These considerations lead
to a critical tilt value of

γ κ β˜ < ± γ ( )C . (19)3 2 1 5

Despite the fact that the situation depicted in figure 3 does not actually occur, as the external
force at the saddle point vanishes and therefore cannot balance the Coulomb force, the obtained
scaling behavior is confirmed by numerical calculations, revealing a prefactor of γC = 1.06.

The result of equation (19) enables us to determine the required degree of precision by
which the background axial field has to be corrected. For this calculation, only the geometry
parameters β

C S O, ,
are needed. Furthermore, the sensitivity decreases as β2/5, which directly

characterizes the gain in robustness when the accessible voltage range is enhanced. For trap A
(section 3), we derive a value of γ̃ ≈ −3 Vm 1, corresponding to the requirement to set ΔUO more
accurately than about 9 mV.

Figure 3. Critically tilted potential such that the Coulomb repulsion fails to push the
right ion across the saddle point, see text.

2 For γ ⩾ 0, x0
(0) corresponds to the left potential minimum, which always exists, and for α α< ˜ < 0, +x0

( )

corresponds to the right potential minimum and −x0
( ) corresponds to the maximum of the separation barrier. By

contrast, for γ < 0, x0
(0) corresponds to the right potential minimum, and for α α< < ˜0 , +x0

( ) corresponds to the left
minimum.
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3. Trap geometry optimization

We will show in section 4 that the outcome of a crystal splitting operation is strongly determined by
magnitude of the quartic confinement coefficient at the CP β

CP
from equation (33). We thus investigate

the effect of the trap geometry on the coefficients α β γ, ,n n n
from equation (7). We calculate the

realistic potentials from electrostatic simulations [14] to infer the geometry parameters according to
equation (7). In particular, six different traps designs were studied, four of which are three-dimensional
and two are surface-electrode traps. The results are shown in table 1. The calculations are carried out
for a generic simplified geometry shown in figure 4(d), which is essentially determined by the segment
width w, the slit height h and the spacer thickness d for the three-dimensional traps. Traps A, B [15]
and C[13] are similar segmented micro-structured ion traps . Trap B is subdivided into a loading
region of larger geometry, B (wide), and a narrow processing region, B (narrow). The data for trap C
pertain to a wedge segment of μ=w 100 m surrounded by larger segments. Trap D is a segmented
planar ion trap [16], the calculations are performed at a distance of μ100 m between the ion and the
surface. Trap D2 is a planar ion trap featuring a segmented ground plane, otherwise identical to trap D.
Trap A was used for all simulations in section 6.

For traps A and B (wide) we calculate similar parameters, however the minimum trap frequency
during the splitting is larger for trap A. Trap B (narrow) exhibits the highest minimum trap frequency
of the six geometries as the total dimensions of this section of the trap are rather small. The wedge
segment in trap C helps to increase the minimum trap frequency but choosing an overall smaller size
seems to be a more favorable solution. The planar trap D has a similar minimum trap frequency as
trap B (wide) and is also suitable for splitting ion crystals. The segmentation of the ground plane of
this trap (D2) offers an enhanced αC, i.e. a large trap frequency. The calculations show, however, that
for a segmentation of the center electrode, the potentials become more anharmonic and the Taylor
approximation (1) breaks down. Thus, the sign and magnitude ordering of the coefficients might be
different from the other geometries, therefore the geometry parameters and the ion height above the
surface should be carefully chosen to allow for successful splitting operations.

Table 1. Comparison of trap geometry parameters for different linear segmented Paul
traps. Letters A to D denote different traps that are operated at various institutes, see
text. Note that γ = 0

C
by definition. The trap frequency at the critical point is specified

for Ulim = 10V and 40Ca+ ions.

Parameter Unit A B (wide) B (narrow) C D D2

w μm 200 250 125 100 200 200
h μm 400 500 250 200 — —

d μm 250 125 125 250 — —

αC μm−2 −3.0 −2.5 −9.1 −6.4 −1.4 −12.0
β

C 10 μm−4 2.7 1.7 19.9 14.4 1.5 −6.5

αS μm−2 1.7 1.7 6.2 4.7 0.9 10.7
β

S 10 μm−4 −3.0 −1.9 −22.1 −14.7 −1.7 5.6

γ
S 10−1μm−1 11.0 9.3 19.2 21.6 4.1 17.8

αO μm−2 1.0 0.6 2.3 1.6 0.4 0.9
β

O 10 μm−4 0.2 0.2 2.0 1.2 0.1 0.8

γ
O 10−1μm−1 3.2 2.2 4.3 3.2 1.2 2.2

ω π/2CP MHz 0.18 0.14 0.29 0.26 0.14 0.11
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For trap A we calculated the geometry parameters for varying segment width w, the result
is shown in figure 4. We analyze the dependance of all potential coefficients on w with
parameters h and d held constant. For splitting operations the optimum segment width would be
at about μ=w 125 m, while the actual segment width of the trap is μ=w 200 m. We could
therefore obtain a roughly twofold increase of β

CP
bought at the expense of a reduced trap

frequency for ion storage due to the reduced αC coefficient.
Finally, we investigate the dependence of β

CP
on the overall trap geometry size. We therefore

pick trap parameters h and d from the range of typical values and determine the optimum segment
width w for these. Defining the effective trap size = + +d w h d( )eff

2 2 2 1/2, we find a scaling
behavior of β ≈ × · −V d2.2 10

CP
24

eff
4, i.e. the best attainable value for the quartic confinement

coefficient scales as the inverse fourth power with the effective trap size, which is similar to the
presumed distance scaling law for anomalous heating [17]. We conclude that for a trap
architecture aiming at shuttling-based scalable quantum information, the considerations presented
here should be incorporated into the design process to facilitate crystal splitting operations.

4. Intricacies of crystal splitting

4.1. Impulsive acceleration at the CP

In this section, we show that the energy transfer can be quantitatively described by a simple
model, which interpolates between impulsive acceleration for short times and adiabatic

Figure 4. Calculated geometry parameters α β γ, ,n n n
and the maximum β

CP
at the critical

point for a linear segmented Paul trap with dimensions μ=h 400 m, μ=d 250 m as a
function of the segment width w. The color code is as above: blue—C, red—S, green—
O. The limiting voltage for the electrodes is =U V10lim .
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behavior for long times. We first derive the impulsive approximation, and then refine the model
to include the onset of adiabaticity. We also confirm the validity of our model by simulations.

A naive approach towards crystal splitting is the linear interpolation between two voltage
sets pertaining to a single well and a double well, leading to a constant variation rate of the
harmonic coefficient α. As this does not involve dedicated control of the ion distance, it is
equivalent to a rapid sweep across a structural transition of the ion crystal. This leads to an
unfavorable power-law scaling of the energy transfer with respect to the sweep time [18], which
prevents attaining adiabaticity.

In the following, we derive an approximation for the energy transfer, assuming the
variation of α around the CP to be uniform. We consider the energy transfer to be caused by
impulsive displacement: at the CP, the equilibrium distance changes most rapidly, while the
confinement—and therefore the restoring forces—are reduced. Figure 5(a) shows that the
situation corresponds to a harmonic oscillator that is suddenly dragged at uniform speed,
causing displacement and therefore a gain in potential energy. Within the characteristic
timescale set by half the trap oscillation cycle τ π ω=/2 /CP CP, this yields the displacement:

δ ξ τ≈ ˙d d 2 (20)CP CP CP

α
α ξ τ≈ ∂

∂
˙d

2 (21)
CP

CP CP

β κ α ξ τ≈ ˙
−( ) 2, (22)

CP
4 1 5

CP CP

where equation (15) was used in the last line. The factor ξ < 1 accounts for a reduction of the
displacement, which is due to the fact that the trap frequency rapidly increases beyond the CP.

Figure 5. Impulsive acceleration at the critical point. (a) The equilibrium distance
(black) versus time. The red lines depict the approximate slopes ḋCP within time τCP
before and beyond the CP. They illustrate how the impulsive displacement δdCP
equation (22) is obtained from slope beyond the CP, and why the difference of the
slopes, i.e. the second derivative d̈CP, determines the onset of adiabaticity (see text). It is
also shown how the trap frequency (gray) varies strongly during the CP trap period. (b)
Comparison of the final excitation obtained from the simple approximation
equations (24) (dashed), (29) (solid) to simulation results (dots). The onset of
adiabaticity, χ = 1, is marked with vertical bars. The calculations are carried out for a
harmonic coefficient α t( ) linearly varying around the CP, and different constant values
for the quartic coefficient β.
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Thus, the restoring forces set in before τ /2CP and the resulting displacement is reduced with
respect to the dragged oscillator at constant frequency. This sudden displacement mechanism is
sketched in figure 5(a). The potential energy of an ion is consequently increased by

δ ω δ= ( )E m d
1
2

2 (23)CP
2

CP

2

π ξ β κ α= ˙
−( )m

8
, (24)

2
2

CP
4 2 5

CP
2

which serves as an approximation of the final energy transfer.
For a sufficiently small α̇

CP
, adiabaticity sets in and the energy transfer scales

exponentially with the splitting time. The reason for this is that the Coulomb repulsion serves
to push the ions outwards, providing smooth variation of the equilibrium distance as compared
to discontinuous behavior of the minima of the external potential, see figure 2(b). It therefore
leads to rapid, but continuous variation of the equilibrium positions with α. The onset of the
adiabatic regime is identified by comparing displacement δdCP to the change of the equilibrium
distance within τCP below the CP (see figure 5(a)), which means that the ion acceleration around
the CP is sufficiently slow to prevent sudden displacement. We therefore compare the
acceleration d̈CP to the reference acceleration ωdCP CP

2 . Note that

α
α

α
α¨ = ∂

∂
˙ + ∂

∂
¨d

d d
. (25)CP

2

2

CP

CP
2

CP
CP

For sufficiently uniform variation of α, the second term can generally be neglected, such that by
using equation (15), we obtain

β κ
α¨ = ˙

⎛
⎝
⎜

⎞
⎠
⎟d

2
25

4
. (26)CP

CP
7 3

1 5

CP
2

This yields the adiabaticity parameter

χ
ω

=
d̈

d
(27)CP

CP CP
2

β κ α= ˙− − −m

e

4
25 3

2 . (28)1 5
CP

9 5 6 5
CP
2

We empirically find the following model, which describes the exponential decrease of the
energy transfer in the adiabatic regime χ < 1:

δ δ χ
χ

′ ≈ −⎡
⎣⎢

⎤
⎦⎥E E cexp

1
, (29)

where c is a scaling constant. Numerical simulations are carried out for different constant values
for β and a linear variation of α around the CP. The results are shown in figure 5(b). It can be
seen that the approximations (24), (29) hold over a wide range of splitting times and quartic
coefficients, and that large energy transfers in the regime of 104

–106 phonons are readily
obtained. The simulations yield values of the model parameters of ξ ≈2 0.1 and ≈c 0.12 . We
conclude that in this regime, the energy transfer depends only on the ion mass, the variation rate
of α and the quartic confinement at the CP. As can be seen from the simulation results, still large
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energy transfers are obtained at the onset of adiabaticity, such that splitting at energy transfers
on the single phonon level would require splitting times on the order of several hundreds of μs.

As we will show in further sections, this problem can be overcome using ramps that ensure
a small ion acceleration d̈CP at the CP.

Thus, the energy transfer can be reduced by ensuring a small variation rate of α at the CP.

4.2. Uncompensated potential tilt

A residual static force along the trap axis, expressed by the coefficient γ′ in equation (5), can
originate from stray charges, laser induced charging of the trap [19], trap geometry
imperfections or residual ponderomotive forces along the trap axis. The behavior of the
equilibrium positions in the presence of an imperfectly compensated tilt, shown in figure 2,
reveals a discontinuity for the critical γ̃ , leading to diverging acceleration. The divergence of the
acceleration impedes us from performing the splitting process adiabatically for γ γ| | ≲ ˜, i.e. the
voltages cannot be changed sufficiently slow to suppress motional excitation. Thus, one might
encounter the situation that the tilt is sufficiently well compensated to allow for splitting, but
sufficiently low excitations cannot be obtained irrespective of the splitting time and other
control parameters. For small tilt parameters, γ γ| | ≪ ˜, we can employ the perturbative
expressions (15), (16) of the equilibrium positions to obtain

α α α
γ

β κ β κ
∂
∂

=
∂
∂

± ∂
∂

= · ±
⎛
⎝⎜

⎞
⎠⎟

x x d1
2

52 2

675

2
25

4
. (30)R L

2
,

2

2
0
2

2

2

4 5

9 5 6 5 7 3

1 5

We can estimate the tilt parameter at which the acceleration of one of the ions is twice as large
as the tilt-free case determined by equation (26) to be about 67% of the critical tilt γ̃ . Due to the
divergence of the acceleration at γ̃ , we can expect the actual acceleration at this tilt value to be
substantially larger, we thus conclude that a residual tilt γ γ| | ≪ ˜ is required to realize crystal
splitting at low motional excitation. A possible experimental scheme for this has been
demonstrated in [10]: the separation process is performed on a slow (second) timescale under
continuous Doppler cooling and detection. The ion positions are extracted from the camera
image, and a deviation of the center-of-mass from the initial value is restored by automatic
adjustment of the outer electrode differential voltage ΔUO.

4.3. Anomalous heating at the CP

Microstructured ion traps exhibit anomalous heating, i.e. the mean phonon number increases
due to thermalization with the electrodes at a timescale much faster than predicted by the
assumption that only Johnson–Nyquist noise is present [17]. This process can be modeled as

Γ¯̇ =n h, with the heating rate Γ ω ω ω= S e m( ) ( ) /4h E
2 , where the spectral electric-field-noise

density SE depends on the trap frequency ω. A polynomial decrease ω∝ −SE
a is often assumed,

where experimentally determined values for the exponent a range from 0.5–2.5. Additionally,
peaked features might arise in the noise spectrum that are caused by technical sources.
Moreover, the absolute values of the heating rates strongly depend on the properties of the
electrode surfaces. Typical values at trap frequencies in the 1 MHz regime range from 0.1 to
tens of phonons per millisecond. As the trap frequency is strongly decreased around the CP, we
can expect a significant amount of excess energy after the splitting caused by anomalous
heating, increasing for longer splitting durations [9]. We model this contribution by integrating
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over a time dependent heating rate:

∫Δ Γ ω¯ =n t t( ( )) d . (31)
T

hth
0

For the simulations that follow we will employ an experimentally determined relation for trap A
(section 3) which is Γ ω ω π≈ · × − −( ) 6.3 ( /2 MHz) m sh

1.81 1. This does not depend on the
geometry of trap A but on the properties of our trap apparatus.

In the case of imperfect control of the ion distance around the CP, section 4.1, or in the
presence of an uncompensated tilt, section 4.2, one will attempt to reduce the motional
excitation by splitting very slowly. This might, however, be unsuccessful as anomalous heating
will strongly contribute to the energy gain at large splitting times. Experimental procedures for
ensuring a sufficient degree of control are therefore ultimately required.

5. Voltage ramps

In this section we explain our scheme for designing voltage ramps for the splitting process. Our
intention is to provide a scheme that can be applied to any given trap geometry. We explicitly
do not rely on precise knowledge of the electrostatic trap potentials, but rather on quantities that
can be measured with reasonable effort. Furthermore, we describe how a single voltage level
can be used as a tuning parameter to achieve the optimum result. Our scheme assumes that the
tilt potential is perfectly compensated, γ = 0. We proceed as follows: we first describe how the
segment voltages are supposed to vary with the harmonicity parameter α, where we simply fix
voltage levels on a small set of mesh points. We then show how this is used in conjunction with
a chosen distance-versus-time and available distance-versus-α information to obtain time-
domain voltage ramps that can be employed in the experiment.

5.1. Static voltage sets

The calculation of suitable voltage ramps relies on the signs and on the magnitude ordering of
the geometry parameters. In table 1 we list values for several different microstructured traps.
We assume that any reasonable segmented trap geometry will exhibit similar characteristics.
From the results of section 4, it is clear that we desire a large positive value of β

CP
. We assume

that the voltages that can be applied to the segments are limited by hardware constraints to the
symmetric maximum/minimum values ±Ulim. To achieve the largest possible β at the CP, we
begin the splitting protocol by ramping the O segments to +Ulim, keep them at constant bias
around the CP, and ramp them back to zero bias after the splitting.

The CP is defined by the condition α = 0, which is accomplished by suitable voltagesUC S, .
This leaves one degree of freedom, which can be eliminated by maximizing β

CP
. We solve

equation (3) for UC :

α
α α α= − −( )U U U

1
. (32)C

C
O O S S

The largest possible β
CP

is then given by inserting this result into equation (4) and setting
= + = −U U U U,O S

CP(CP)
lim

( )
lim:
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β β
β
α

α β
β
α

α= + − −
⎛
⎝⎜

⎞
⎠⎟ Umax . (33)

U U O
C

C
S S

C

C
O

, CP lim
C S

Static splitting voltage sets are obtained by fixing the initial, CP and final voltage configurations
and interpolating between these. The procedure consists of the following steps:

(i) Determine the initial α > 0i from equation (3) using the initial voltages <U 0C
i( ) V,

= =U U 0S
i

O
i( ) ( ) V.

(ii) Choose the voltages at the CP such that the maximum β
CP

is attained, by setting
= + = −U U U U,O

CP
S

CP( )
lim

( )
lim and UC

CP( ) from equation (32) for α = 0. If the geometry
parameters are such that UC

CP( ) exceeds ±Ulim, set = −U UC
CP( )

lim and obtain US
CP( ) solving

equation (3) for US rather than UC. A variable offset ΔUC
CP( ) is added to UC

CP( ), which serves
to guarantee that the CP voltage set actually corresponds to α = 0. It is therefore a tuning
parameter that allows for compensation of imperfections. A similar technique has been
employed experimentally in [4]3.

(iii) Determine the desired final voltages. We choose =U 0C
f( ) V, = = −U U US

f
S

CP( ) ( )
lim and

=U 0O
f( ) V. This choice is convenient when ≈ −U UC

i( )
lim and ensures that the ions are

finally kept close to the respective centers of the S segments with a trap frequency similar
to the initial one. Obtain αf from equation (3).

(iv) For approaching the CP, α α⩾ > 0i , set

α α
α

= −
⎛
⎝⎜

⎞
⎠⎟U U( ) 1 (34)S

i
S

CP( )

and

α

α
α

α
α

α
α

=
− >

⩽

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟U

U

U

( )
2 1

2

2

(35)O
i

i

i

lim

lim

and obtain αU ( )C from equation (32).

(v) Beyond the CP, α α⩾ ⩾0 f , set

α = −U U( ) (36)S lim

and

α

α
α

α
α

α
α=

>

− ⩽

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝
⎜

⎞
⎠
⎟

U

U

U
( )

2

2 1
2

(37)O

f

f

f

lim

lim

and obtain αU ( )C from equation (32).

3 If the magnitude ofUS
(CP) is chosen smaller thanUlim, this leads to smaller values of β

CP
and a larger ion separation

at the CP. This offers the possibility for well-controlled studies of the dependence of the splitting process on the
quartic confinement at the CP.
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5.2. Time domain ramps

We now show how to design suitable time-domain voltage ramps U t( )n that will assure well-
controlled splitting. It has been shown in section 4.1 that a small value of the acceleration at the
CP, d̈CP, is required for achieving a low energy transfer. This in turn is guaranteed by well-
controlled variation of the distance d(t) throughout the splitting process. As αd( ) is
monotonically decreasing with α, it can be inverted to obtain α d( ) which is used to compute
the final voltage ramp as αU d t( ( ( )))n (see figure 6).

Possible choices for d(t) are a sine-squared ramp

π= + − ⎜ ⎟
⎛
⎝

⎞
⎠( )d t d d d

t

T
( ) sin

2
(38)i f i

2

or a polynomial ramp

= + − − + −
⎛
⎝⎜

⎞
⎠⎟( )d t d d d

t

T

t

T

t

T
( ) 10 15 6 (39)i i f

3

3

4

4

5

5

Figure 6. Voltage ramp transfer to the time domain. Note that all four axes pertain to
different quantities, and that the axis pointing downwards goes to increasing distances.
The reading direction is clockwise, starting in the bottom right corner: a predefined
time-to-distance function d(t) shown in (a) is used in conjunction with α-to-distance
information α d( ) shown in (b) to determine the time-dependent electrode voltages U t( )n
using the static voltage sets αU( )n from panel (c). The resulting rampsU t( )n are shown in
(d). The dashed curves correspond to the case when the voltage ramps are calculated
according to the presented method, but realistic trap potentials from simulations are
used to determine df and αd( ). The dashed arrows exemplify how a specific valueUC is
obtained.
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Both ramps fulfil = = ˙ = ˙ =d d d T d d d T(0) , ( ) , (0) ( ) 0i f . The polynomial ramp, used in the
following, additionally fulfils ¨ = ¨ =d d T(0) ( ) 0, while the second derivative of the sine-
squared ramp displays discontinuities. However, these features presumably play no role in
experiments, as the voltage ramps are generally subject to discretization and filtering. Different
methods can be employed for the determination of αd( ):

• The equilibrium distance can be computed by employing realistic trap potentials from
simulation data, using the voltage configuration pertaining to a given α as determined by
the static voltage sets αU( )n . This method requires the simulated potentials to match the
actual trap potential with great precision.

• The equilibrium distance can be computed using values from calibration measurements for
the coefficients α β,n n

. This circumvents the need for simulations and accounts for
parameter drifts. It only yields valid values for distances that are small compared to the
electrode width, however we will show in section 6 that this procedure yields useful
voltage ramps.

• Ion distances can be measured by imaging the ion crystal on a camera, while voltage
configurations for decreasing α values are applied. This is the most direct method, as the
ion distance in image pixels can be gauged by measuring the trap frequency from resolved
sideband spectroscopy [20]. The imaging magnification is determined from the trap
frequency by using = κ

ω( )d e

m

2 1/3

2 . This method benefits from the accuracy of resolved
sideband spectroscopy, which is typically between 10 kHz and 100 Hz.

6. Simulation results

In order to analyze the sensitivity of the splitting process and the performance of our ramp
design protocol, we numerically solve the classical equations of motion. For the time- and
energy-scales and potential shapes under consideration, we expect quantum effects to play no
significant role. For the case of single-ion shuttling, the occurrence of quantum effects is
thoroughly discussed in [21].

We perform the simulations using either the Taylor approximation of the potentials or the
realistic potentials from electrostatic simulations [14] for trap A, which is similar to that
described in [15]. The voltage ramps U t( )i are used in conjunction with the potentials to yield
the equations of motion for the ion positions <x x1 2. Employing the Taylor approximation
potential equation (1), these read

β α γ κ− ¨ = + + ±
−

mx t x t x
x x

4 ( ) 2 ( )
( )

, (40)1,2 1,2
3

1,2
2 1

2

where the coefficients are given by using the voltage ramps in equations (3), (4), (5). For
realistic trap potentials, we obtain

∑
ϕ κ− ¨ = ±

−=

mx U t
x x x

( )
d

d ( )
. (41)

n C S O
n

n

x

1,2
, , 2 1

2

1,2

The possibility to perform the simulations with approximate and realistic potentials serves the
purpose of verifying the performance of the voltage ramps. These are determined purely by trap
properties around the CP, which are conveniently accessible by measurements. More precisely,
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the time-domain voltage ramps are based on a αd( ) dependence given by the Taylor
approximation potential according to figure 6, while the resulting energy transfer pertaining to
these ramps can be obtained from simulations using realistic potentials.

Note that a non-zero tilt can be present in the simulations based on the realistic potentials
by summing separately over electrodes OL and OR and adding the differential voltage Δ± UO

given by γ γ/
O
accordingly. The calculations presented here employ the mass of 40Ca+ ions,

which we use in our experiments, and all simulations were performed for a limiting voltage
range =U 10lim V.

Equations (40) or (41) are solved numerically using the NDSolve package from
Mathematica, with the ions starting at rest. The final oscillation of each ion around its
equilibrium position is analyzed and yields the energy transfer expressed as the mean phonon
number Δ ω¯ = n E / f . We distinguish several regimes of laser–ion interaction: (i) if the
vibrational excitation becomes so large that the average Doppler shift per oscillation cycle
exceeds the natural linewidth of a cycling transition, ion detection by counting resonance
fluorescence photons will be impaired; (ii) measurement of the energy transfer, i.e. by probing
on a stimulated Raman transition [3], typically requires mean phonon numbers below about
300; (iii) the Lamb–Dicke regime of laser–ion interaction, where coherent dynamics on
resolved sidebands can be driven [22], is typically attained below about 10 phonons. The
borders between these regimes depend on the trap frequency, ion mass and the specific atomic
transitions to be driven, thus the regimes are indicated as broad gray bands in figure 7. Note that

Figure 7. Energy transfer versus splitting time: oscillatory (red) and thermal excitation
(blue), and the sum of both (black) versus the splitting duration T. The solid lines
correspond to the calculation using the Taylor approximation, the dashed lines
correspond to the full potential calculation, see text. Grey bands seperate different
regimes of laser–ion interaction, see text. The thermal excitation was deduced from
experimental heating rate data according to section 4.3. The inset shows the trap
frequency (black) and the corresponding heating rate (red) as a function of normalized
time during the splitting process.
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if final excitations in the measurable regime are obtained, an electrical counter kick can be
applied to bring the oscillation to rest [3].

6.1. Dependence on splitting time

We first analyze the dependence of the energy transfer on the duration of the splitting process T,
the result is shown in figure 7. The calculation is carried out for the ideal case of perfectly
compensated potential tilt. We see that the final excitation becomes sufficiently low to remain in
the Lamb–Dicke regime for typical laser–ion interaction settings at times larger than about

μ40 s, which clearly outperforms the naive approach of voltage interpolation from section 4.1.
We also take into account increased anomalous heating around the CP by employing the

averaged heating rate according to equation (31). We see that for our specific heating rates, the
limit of about one phonon per ion cannot be overcome, but as the anomalous heating
contribution is scaling as T, the splitting result becomes rather insensitive with respect to the
precise choice of the T for ≳T 50 μs.

The simulation results verify our approach of calculating the voltage ramps using the
Taylor approximated potentials. One recognizes that the resulting energy transfer in this case is
larger by a factor of about two throughout the entire range of splitting durations. This is due to
the fact that the Taylor expansion leads to deviating voltages pertaining to the CP, which are
sufficiently strong to increase the acceleration as explained in section 4.1. The discrepancy
becomes irrelevant for splitting times larger than T = 60 μs. At around 60–70 μs the oscillatory
excitation becomes smaller than ¯ =n 0.1, corresponding to the limit we can currently resolve in
our experiment. The slight inaccuracy for low phonon numbers is due to numerical artifacts.
Even lower energy transfers at shorter T could possibly be achieved by ramp engineering, i.e.
by the application of shortcut-to-adiabaticity approaches [21, 23].

Figure 8. Mean coherent excitation as a function of the offset voltage at the center
segment at the CP (a) and the tilt force γ (b). The tilt voltage Δ+ UO is applied to the right
outer segment and Δ− UO is applied to the left outer segment. The mean phonon number
for the right ion is depicted by dashed lines and by solid lines for the left ion. The curves
correspond to different splitting times: μ=T 60 s (green), μ=T 40 s (black), μ=T 20 s
(red). The critical tilt is at γ̃ = −3 V m 1.
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6.2. Sensitivity analysis

Two crucial parameters for the splitting operation are the offset voltage at the CP ΔUC
CP( ) and the

potential tilt γ. Small variations of these parameters lead to strong coherent excitations as shown
in figure 8.

The CP voltage offset ΔUC
CP( ) serves both for modeling and compensation of inaccuracies

of the trap potentials, leading to a wrongly determined CP voltage configuration and therefore to
increased acceleration. It is implemented into the simulations by just adding it to UC

CP( ) as
determined by equation (32) in the calculation of the static voltage sets. We see that even for
sufficiently slow splitting, the Lamb–Dicke regime can only be attained if this voltage offset,
and therefore the CP voltages in general, are correct within a window of about 20 mV, on the
other hand it becomes clear that this voltage serves as convenient fine tuning parameter. The
minimum excitation does not occur at ΔUC

CP( ) = 0, but is slightly shifted to positive values.
This can be understood by considering that α̇

CP
is increased for any Δ ≠U 0C

CP( ) , but α̈CP is
decreased for Δ >U 0C

CP( ) . With α∂ ∂d / , the second term in equation (25) leads to a reduced total
acceleration for small positive ΔUC

CP( ). Larger values again lead to increased acceleration
because of a smaller β

CP
value. All other calculations in this work are done using ΔUC

CP( ) = 0.
For the case of an uncompensated tilt γ′, we observe an even stronger dependence of the

energy transfer. Fine tuning of the voltage difference on the outer segments ΔUO on the sub-mV
level is required to reach the single phonon regime. Moreover, we observe that moderate
uncompensated potential tilts reduce the energy transfer to one of the ions, as its CP
acceleration is reduced by a more smooth αx ( ) dependence. This might be of interest for
specific applications where only the energy transfer to one of the ions is of importance.

6.3. Dependence on the limiting voltage

Finally we study the dependence of the energy transfer on the limiting voltageUlim. We find that
by increasing the voltage limit, beyond =U 10lim V used so far, we can obtain lower coherent
excitations as shown in figure 9. For this simulation, only the maximum voltage on the outer
segments (max UO) is increased and all other limits remain unchanged. We infer that by
increasing the voltage limit on these electrodes up to about 50 V, one can reduce the mean

Figure 9. Dependence on the voltage limit: oscillatory excitation as a function of the
maximum voltage on the outer segments with all other limiting voltages remaining
unchanged. The curves correspond to different splitting times: μ=T 40 s (green),

μ=T 30 s (black), μ=T s20 (red).
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phonon number by a factor of ≈ 8 for T = 60 μs. For lower splitting durations the enhancing
factor becomes slightly smaller.

7. Conclusion

We have pointed out the pitfalls for ion crystal splitting: uncontrolled separation and
uncompensated background fields lead to enhanced acceleration of the ions when the single
well potential is transformed into a double well, which would require splitting times in the
millisecond range to keep the motional excitation near the single phonon level. This in turn
leads to strong anomalous heating due to the reduced confinement during the splitting process.
We presented a framework to design voltage ramps that allow for coping with these problems.
The scheme only relies on measured calibration data obtained for the initial situation, where the
ions are tightly confined in a single potential well. We carried out simulations, which elucidate
the energy transfer mechanisms, and verify the performance of our scheme for the voltage ramp
calculation. We showed that excitations near the single phonon level can be obtained for the
specific trap apparatus we use. Furthermore, we analyzed the suitability of different trap
geometries for ion crystal splitting by means of electrostatic simulations. We concluded that
crystal splitting becomes easier for smaller trap structures, and that dedicated optimization of
the geometry can be helpful. In future work, we envisage analyzing how crystal splitting can be
performed on faster timescales by using shortcut-to-adiabaticity approaches, with an emphasis
on robustness against experimental imperfections.
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