

AMORTIZED INFERENCE FOR PROBABILISTIC PROGRAMS

STANFORD UNIVERSITY

FEBRUARY 2019

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2019-031

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nations. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2019-031 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S / / S /
WILLIAM E. MCKEEVER QING WU
Work Unit Manager Technical Advisor, Computing
 and Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

FEBRUARY 2019
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

NOV 2013 – AUG 2018
4. TITLE AND SUBTITLE

AMORTIZED INFERENCE FOR PROBABILISTIC PROGRAMS

5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA8750-14-2-0006

5c. PROGRAM ELEMENT NUMBER
61101E

6. AUTHOR(S)

Noah Goodman

5d. PROJECT NUMBER
PPML

5e. TASK NUMBER
4S

5f. WORK UNIT NUMBER
TA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Stanford University
Jordan Hall, Building 01-420
450 Serra Mall, Stanford, CA 94305

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2019-031
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09
13. SUPPLEMENTARY NOTES

14. ABSTRACT
Probabilistic programming holds the promise of revolutionizing computational systems by enabling non-experts to embed
sophisticated probabilistic AI: machine learning, natural language processing, and computer vision. Stanford set out to
radically accelerate probabilistic programming systems by targeting the full implementation stack from inference
algorithms to hardware. They have made significant advances in inference algorithms, compilation techniques, and
applications. Many of these advances have been released as open source software and/or transitioned to open source
projects carried on by industry partners. This has contributed to major growth in the probabilistic programming
community in both academia and industry. They expect in the near future to see further growth and uses in high-value
applications across diverse sectors.

15. SUBJECT TERMS

Probabilistic programming language, WebPPL, Pyro, Markov chain Monte Carlo. MCMC, Bayesian Data Analysis.

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
WILLIAM E. MCKEEVER

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

17

Contents

Contents i

1 Summary 1

2 Introduction 1

3 Methods, Assumptions and Procedures 1

4 Results and Discussion 2
4.1 PPL systems . 2

4.1.1 WebPPL . 2
4.1.2 Pyro . 3

4.2 Inference techniques . 3
4.2.1 MCMC . 3
4.2.2 HMC . 4
4.2.3 SMC . 4
4.2.4 Variational and optimization-based inference 5
4.2.5 Coarse-to-fine inference . 7

4.3 Hardware for inference . 7
4.4 Stochastic super-optimization . 8
4.5 Education and outreach . 10

5 Conclusions 11

6 References 11

7 List of Acronyms 13

i

1 Summary

We set out to radically accelerate probabilistic programming systems by targeting the full
implementation stack from inference algorithms to hardware. As reviewed below, we have
made significant advances in inference algorithms, compilation techniques, and applications.
Many of these advances have been released as open source software and/or transitioned to
open source projects carried on by industry partners.

2 Introduction

Probabilistic programming holds the promise of revolutionizing computational systems by
enabling non-experts to embed sophisticated probabilistic AI: machine learning, natural lan-
guage processing, and computer vision. To achieve this promise, breakthroughs are needed
in efficient inference algorithms and implementations. Over the course of the funding period
we explored a set of techniques that resulted in speedups at every level of the inference prob-
lem: statistical techniques to learn more efficient inference from past experience, compilation
techniques to remove overhead from the runtime system and target efficient hardware, and
meta-compilation techniques to infer the most optimal hardware-specific implementations.
These techniques, outlined below, resulted in several probabilistic programming language
(PPL) implementations, advances in algorithms and applications, and advances in related
research involving compilation to tightly target given hardware.

3 Methods, Assumptions and Procedures

Throughout the course of this project we have conducted basic research with an eye toward
publication, open source software release, and possible i mpact on i ndustry. Our methods
reflect standard research methodology i n machine l earning, with somewhat greater emphasis
on system building and evaluation. This twin emphasis on system building and i mpact i s
reflected i n the open source probabilistic programming systems we have released and the
publications resulting.

1

Approved for Public Release; Distribution Unlimited.

4 Results and Discussion

4.1 PPL systems

In order to fully explore and utilize PPLs and associated algorithms it is necessary to build
systems that support scaleable inference. We explored, and released into open source, several
such systems. The most important are review below.

4.1.1 WebPPL

WebPPL is a rich modern PPL embedded in JavaScript. [3] WebPPL compilation is based
on first transforming code to continuation-passing style (CPS). This can result in code that
includes deeply nested function calls. In many cases, anonymous functions are defined and
immediately applied. We added an optimization pass to WebPPL in order to simplify the
Javascript code it generates: we detect such cases, flatten them into blocks, and subsequently
improve the generated code via optimization passes such as dead code elimination, removal
of side-effect free expressions, and tree-based constant folding. In addition, we implemented
trampolining to optimize the many tail-calls that result from CPS. The overall speed of the
system is improved by one to two orders of magnitude from these additions.

In WebPPL, a store-passing transformation threads a global store through the CPS-
transformed code. We extended the language to introduce a mutable global variable, backed
by the store. Because the state of the store is explicit in the transformed code, particle
filtering and other algorithms can be easily extended to be compatible with these mutable
global variables. Mutable variables make it straightforward to implement collapsed conjugate
models (e.g. the integrated for of multinomial-dirichlet pairs).

The WebPPL system includes many new algorithms for inference (further described be-
low), as well as an ecosystem of distributions, libraries, and tests. While teaching a course
on probabilistic models of cognition at Stanford, using WebPPL, we found a number of small
issues and pain points that we were able to solve. For instance, we added a method for se-
lecting the inference method automatically. This uses a simple decision tree to run through
methods up to certain pre-defined computational limits. Student projects both stress-tested
WebPPL and showcased it as a useful tool for cognitive modeling and data analysis. We
have continued to pursue applications of WebPPL to data analysis ad cognitive modeling
(particular of natural language use).

WebPPL has emerged as a go-to platform for cognitive modeling and bayesian data
analysis (BDA), used and taught at top universities around the world. More generally, we
have found flexible BDA to be one of the most useful and used applications for PPLs. This
is reflected i n adoption by the community, and i n the more than 80 citations f or the main

2

Approved for Public Release; Distribution Unlimited.

WebPPL source. It further supports cutting-edge directions such as optimal experiment
design [6].

4.1.2 Pyro

As our inference work turned to optimization-based techniques (described below) we found
that it was very difficult to accelerate tensor processing in javascript, we instead took the
lessons learned from WebPPL and used them to implement a new PPL directly in Python, us-
ing the Pytorch tensor libraries. This was a joint project with the Uber AI Labs, representing
a point of technology transfer, as well as an exciting research direction. This resulted in the
open source release of the Pyro PPL by Uber (see blog post at https://eng.uber.com/pyro/).
[1] The Pyro project has proven to be an extremely good way forward for modern deep
bayesian modeling with variational inference. Pyro has now become a large and vibrant
community project, with almost 5000 stars on GitHub, an active message board, and con-
tributions from nearly a dozen external contributors.

4.2 Inference techniques

4.2.1 MCMC

Markov chain Monte Carlo (MCMC) inference, and especially the relatively simple Metropo-
lis Hastings (MH) algorithm, form the basis for many implementations of scaleable inference
in PPLs, especially for statistical data analysis models. Lightweight, source-to-source trans-
formation approaches to implementing MCMC for probabilistic programming languages are
popular for their simplicity, support of existing deterministic code, and ability to execute on
existing fast runtimes. However, they are also slow, requiring a complete re-execution of the
program on every Metropolis Hastings proposal. We developed a new extension to the
lightweight approach, C3, which enables efficient, incrementalized re-execution of MH
proposals. C3 is based on two core ideas: transforming probabilistic programs into continua-
tion passing style (CPS), and caching the results of function calls. We found that on several
common models, C3 reduces proposal runtime by 20-100x, in some cases reducing runtime
complexity from linear in model size to constant. We also demonstrate nearly an order of
magnitude speedup on a complex inverse procedural modeling application. The C3 system

3
Approved for Public Release; Distribution Unlimited.

is fully implemented and available as part of the open-source Webppl language. This work
appeared at AIStats2016 [10].

4.2.2 HMC

In contrast to MH, Hamiltonian Monte Carlo (HMC) uses gradient information to make
better changes to the model state at each step. We implemented HMC in both WebPPL
and a low-level, high-performance probabilistic programming language called Quicksand (the
source code and documentation can be found at http://dritchie.github.io/quicksand/)

We used Quicksand to explore applications of HMC in design for computer graphics, in
particular the creation of stable rigid block structures. We presented a system for generating
suggestions from highly-constrained, continuous design spaces. We formulated suggestion as
sampling from a probability distribution; constraints are represented as factors that concen-
trate probability mass around sub-manifolds of the design space. These sampling problems
are intractable using typical random walk MCMC techniques, so we adopted HMC. We
evaluated its ability to efficiently generate suggestions for two different, highly-constrained
example applications: vector art coloring and designing stable stacking structures. This
work appeared at Eurographics 2015 [8]

4.2.3 SMC

We extended our inference suite by exploring the idea that sequential monte carlo (SMC)
techniques, such as particle filtering, will be needed to scale up inference, particularly in light
of two problem types: filtering problems (like the UAV challenge problem), and semantic
parsing (roughly parsing a sentence into a logical denotation). We considered different ways
to implement SMC for PPLs as simply as possible. In considering this problem, it became
clear that what we needed was a co-routine approach to inference, where the execution future
would be made explicit so that it could be copied and manipulated. To do this in a flexible
way, we decided to try continuation passing style (CPS) conversion. We implemented the
CPS conversion as a code transform for a purely functional subset of javascript, and used it as
the basis of a rather compact PPL implementation. This lead us to WebPPL, and makes very
clear what must be added to make a PPL from a PL: a primitive distribution type (ERPs),
a sample keyword to sample from ERPs, a factor keyword to re-weight execution paths, and
marginal inference operators that compute the marginal distribution on return values form
a computation. WebPPL implements a number of inference algorithms, and seems to be
a useful language for exploring many examples of interest: in particular, combinations of
semantic parsing, pragmatic inference, and visual understanding.

4

Approved for Public Release; Distribution Unlimited.

The result of this effort forms the basis of the small web book The Design and Implemen-
tation of Probabilistic Programming Languages, at dippl.org. This is based on notes from a
summer school class (at ESSLLI 2014). Along the way we’ve had a number of useful ideas
and insights. These include the idea that we can insert “heuristic factors” that help guide
inference, as long as they cancel by the end of the program execution.

This idea of heuristic factors lead to a method for controlling the output of procedural
modeling programs using Sequential Monte Carlo (SMC). Previous probabilistic methods
for controlling procedural models use Markov Chain Monte Carlo (MCMC), which receives
control feedback only for completely-generated models. In contrast, SMC receives feedback
incrementally on incomplete models, allowing it to reallocate computational resources and
converge quickly. To handle the many possible sequentializations of a structured, recursive
procedural modeling program, we develop and prove the correctness of a new SMC vari-
ant, Stochastically-Ordered Sequential Monte Carlo (SOSMC). We implement SOSMC for
general-purpose programs using a new programming primitive: the stochastic future. We
have shown that SOSMC reliably generates high-quality outputs for a variety of programs
and control scoring functions. For small computational budgets, SOSMC’s outputs often
score nearly twice as high as those of MCMC or normal SMC. This work appeared at SIG-
GRAPH2015 [9].

Probabilistic inference algorithms such as SMC provide powerful tools for constraining
procedural models in computer graphics, but they require many samples to produce desirable
results. In this paper, we show how to create procedural models which learn how to satisfy
constraints. We augment procedural models with neural networks which control how the
model makes random choices based on the output it has generated thus far. We call such
models neurally-guided procedural models. As a pre-computation, we train these models
to maximize the likelihood of example outputs generated via SMC. They are then used as
efficient SMC importance samplers, generating high-quality results with very few samples.
We evaluate our method on L-system-like models with image-based constraints. Given a
desired quality threshold, neurally-guided models can generate satisfactory results up to 10x
faster than unguided models. [11]

4.2.4 Variational and optimization-based inference

Probabilistic programming languages are a powerful modeling tool, able to represent any
computable probability distribution. Unfortunately, probabilistic program inference is often
intractable, and many PPLs mostly rely on sampling-based methods that don’t scale to
large amounts of data. A different approach to inference in PPLs is to convert inference into
an optimization problem, a set of techniques usually called Variational Inference (VI). This
family of algorithms optimizes the parameters of a guide (importance) distribution family to

5
Approved for Public Release; Distribution Unlimited.

best approximate the posterior over program executions. The objective function can be one
of a variety of upper and lower bounds on the model evidence, and training can be based
on samples from the guide distribution (as in “black-box” variational) or from the (approx-
imate) posterior. We performed a number of experiments within this framework, including
targeted examples for procedural graphics, pragmatics, and vision-to-language models. Like
HMC, VI relies critically on gradient computations. In order to explore these algorithms
we implemented (and re-implemented) automatic differentiation (AD) for javascript by op-
erator overloading (using sweet.js macros). This resulted in an AD library in JavaScript
that has native support for tensor data types. (We also completed an exploration of using
the Torch tensor library (TH.C) to speed up tensor computation in WebPPL. While some
improvements resulted, the foreign-function interface overhead was so large that it offset the
improvements from numerics alone.)

Even VI does not scale as well as we would like, because data points are treated in-
dividually. To alleviate this problem, one could try to learn from past inferences, so that
future inferences run faster. This strategy is known as amortized inference; it has been
applied to Bayesian networks and deep generative models. We proposed a system for amor-
tized inference in PPLs. In our system, amortization comes in the form of a parameterized
guide program. Guide programs have similar structure to the original program, but can
have richer data flow, including neural network components. These networks can be opti-
mized so that the guide approximately samples from the posterior distribution defined by
the original program. We presented a flexible interface for defining guide programs and a
stochastic gradient-based scheme for optimizing guide parameters, as well as some prelimi-
nary results on automatically deriving guide programs. We explored in detail the common
machine learning pattern in which a “local” model is specified by “global” random values
and used to generate independent observed data points; this gives rise to amortized local
inference supporting global model learning.This work is reported in [7].

One example of such amortized inference is Variational Autoencoders (VAEs), which
learn representations of data by jointly training a probabilistic encoder and decoder network.
Typically these models encode all features of the data into a single variable. We became
interested in learning disentangled representations that encode distinct aspects of the data
into separate variables. We proposed to learn such representations using model architec-
tures that generalize from standard VAEs, employing a general graphical model structure
in the encoder and decoder, much as in our above technical report. This allows us to train
partially-specified models that make relatively strong assumptions about a subset of inter-
pretable variables and rely on the flexibility of neural networks to learn representations for
the remaining variables. We further defined a general objective for semi-supervised learning
in this model class, which can be approximated using an importance sampling procedure.
We evaluated our framework’s ability to learn disentangled representations, both by qualita-

6
Approved for Public Release; Distribution Unlimited.

tive exploration of its generative capacity, and quantitative evaluation of its discriminative
ability on a variety of models and datasets [16].

Further extending this line of research, we investigated deep generative models for multi-
modal data. Multiple modalities often co-occur when describing natural phenomena. Learn-
ing a joint representation of these modalities should yield deeper and more useful repre-
sentations. Previous generative approaches to multi-modal input either do not learn a joint
distribution or require additional computation to handle missing data. We introduced a mul-
timodal variational autoencoder (MVAE) that uses a product-of-experts inference network
and a sub-sampled training paradigm to solve the multi-modal inference problem. Notably,
our model shares parameters to efficiently learn under any combination of missing modal-
ities. We applied the MVAE on many datasets and matched state-of-the-art performance
using many fewer parameters. In addition, we found that the MVAE is directly applicable
to weakly supervised learning, and is robust to incomplete supervision. We considered two
case studies in detail: one of learning image transformations – edge detection, colorization,
segmentation – as a set of modalities, the second one of machine translation between two
languages. We found appealing results across this range of tasks [19].

4.2.5 Coarse-to-fine inference

The goal of this project was to exploit the (implicit or explicit) hierarchical structure of
a probabilistic model to speed up probabilistic inference: we reason first on an abstract
(coarse) level, then refine our reasoning using the most promising avenues found when rea-
soning abstractly. Many practical techniques for probabilistic inference require a sequence
of distributions that interpolate between a tractable distribution and an intractable distri-
bution of interest. Usually, the sequences used are simple, e.g., based on geometric averages
between distributions. When models are expressed as probabilistic programs, the models
themselves are highly structured objects that can be used to derive annealing sequences that
are more sensitive to domain structure. We proposed an algorithm for transforming prob-
abilistic programs to coarse-to-fine programs which have the same marginal distribution as
the original programs, but generate the data at increasing levels of detail, from coarse to
fine. We applied this algorithm to an Ising model, its depth-from-disparity variation, and a
factorial hidden Markov model. We found preliminary evidence that the use of coarse-to-fine
models can make existing generic inference algorithms more efficient. [17]

4.3 Hardware for inference

We performed experiments on optimal compilation and accelerated hardware backends for
probabilistic programming languages. The language used, Sliver, is not as expressive as a

7
Approved for Public Release; Distribution Unlimited.

full PPL. In particular, higher-order functions are only allowed in a limited form: looping
primitives. Functions can only be fed to looping primitives, which take loop bounds as
arguments and have void return type. We implemented a trace-based compiler for Silver
that targets GPU’s. In this case, we exploited the fact that traces do not contain control
flow and GPU’s can run such straight-line code very fast. We are then able to run many
samples in parallel, either using MH and running independent chains, or plain Monte Carlo.
We observed that a 32-site Ising model and a 12-item bin-packing problem ran on the order
of 109 parallel samples per second on a state-of-the-art GPU (NVIDIA GTX Titan).

Another set of experiments concerned a compiler that made better use of the fact that
programs in Sliver yield exact information when exposed to a CFA2 analysis. This was a
whole-program optimizing compiler in the tradition of Stalin Scheme and MLton, which also
took advantage of control flow information for the whole program. Our approach was to
compile the program to a finite-state machine (FSM), which fixed all control flow, and then
compiled the FSM to a lower-level language (in our case, C++). For MCMC on a 32-site
Ising model, we found that the resulting compiled program ran about as fast as the 32-site
Ising model produced by tracing out the whole model. This is promising, as it shows that
we can achieve performance similar to tracing using a compile-time set of techniques.

Finally, we also explored compilation to digital logic circuits realized on the field pro-
grammable gate array (FPGA). Our Sliver compiler can easily target digital logic circuits,
as it starts from a representation of the computation as a finite state machine. We were able
to successfully compile a few simple models, such as the 1-D Ising model, to the FPGA. One
aspect of our FPGA compilation approach is to compile entire extended basic blocks of the
original program to a single hardware state transition, rather than one instruction for each
primitive operation. This can result in more computation per FPGA clock cycle. Following
on to the PPAML program, our FPGA effort has been scaled up significantly because Mark
Horowitz and Pat Hanrahan were funded by Intel to start a science and technology center
on Agile Hardware Design.

4.4 Stochastic super-optimization

The optimization of short sequences of l oop-free, fixed-point assembly code sequences i s an
important problem i n highperformance computing. However, the competing constraints of
transformation correctness and performance i mprovement often f orce even special purpose
compilers to produce sub-optimal code. We have shown that by encoding these constraints as
terms i n a cost f unction, and using a Markov Chain Monte Carlo sampler to rapidly explore the
space of all possible code sequences, we are able to generate aggressively optimized versions of
a given target code sequence. Beginning from binaries compiled by “llvm ?O0”, we are able
to produce provably correct code sequences that either match or outperform

8

Approved for Public Release; Distribution Unlimited.

code produced by “gcc ?O3”, “icc ?O3”, and in some cases expert handwritten assembly.
[13]

We described a general framework c2i for generating an invariant inference procedure
from an invariant checking procedure. Given a checker and a language of possible invariants,
c2i generates an inference procedure that iteratively invokes two phases. The search phase
uses randomized search to discover candidate invariants and the validate phase uses the
checker to either prove or refute that the candidate is an actual invariant. To demonstrate
the applicability of c2i, we use it to generate inference procedures that prove safety proper-
ties of numerical programs, prove non-termination of numerical programs, prove functional
specifications of array manipulating programs, prove safety properties of string manipulating
programs, and prove functional specifications of heap manipulating programs that use linked
list data structures. [14]

The aggressive optimization of heavily used kernels is an important problem in high-
performance computing. However, both general purpose compilers and highly specialized
tools such as superoptimizers often do not have sufficient static knowledge of restrictions on
program inputs that could be exploited to produce the very best code. For many applications,
the best possible code is conditionally correct: the optimized kernel is equal to the code that
it replaces only under certain preconditions on the kernel?s inputs. The main technical
challenge in producing conditionally correct optimizations is in obtaining non-trivial and
useful conditions and proving conditional equivalence formally in the presence of loops. We
combined abstract interpretation, decision procedures, and testing to yield a verification
strategy that can address both of these problems. This approach yields a superoptimizer
for x86 that in our experiments produces binaries that are often multiple times faster than
those produced by production compilers. [15]

Software fault isolation (SFI) is an important technique for the construction of secure
operating systems, web browsers, and other extensible software. We demonstrate that su-
peroptimization can dramatically improve the performance of Google Native Client, a SFI
system that ships inside the Google Chrome Browser. Key to our results are new tech-
niques for superoptimization of loops: we propose a new architecture for superoptimization
tools that incorporates both a fully sound verification technique to ensure correctness and
a bounded verification technique to guide the search to optimized code. In our evaluation
we optimize 13 libc string functions, formally verify the correctness of the optimizations and
report a median and average speedup of 25% over the libraries shipped by Google. [2]

The aggressive optimization of floating-point computations is an important problem in
high-performance computing. Unfortunately, floating-point instruction sets have compli-
cated semantics that often force compilers to preserve programs as written. We present a
method that treats floating-point optimization as a stochastic search problem. We demon-
strated the ability to generate reduced precision implementations of Intel?s handwritten C

9
Approved for Public Release; Distribution Unlimited.

numeric library which are up to 6 times faster than the original code, and achieve end-to-end
speedups of over 30% on a direct numeric simulation and a ray tracer by optimizing kernels
that can tolerate a loss of precision while still remaining correct. Because these optimiza-
tions are mostly not amenable to formal verification using the current state of the art, we
presented a stochastic search technique for characterizing maximum error. The technique
comes with an asymptotic guarantee and provides strong evidence of correctness. [12]

Reasoning about floating-point is difficult and becomes only more so if there is an inter-
play between floating-point and bit-level operations. Even though real-world floating-point
libraries use implementations that have such mixed computations, no systematic technique
to verify the correctness of the implementations of such computations is known. In this pa-
per, we presented the first general technique for verifying the correctness of mixed binaries,
which combines abstraction, analytical optimization, and testing. The technique provides
a method to compute an error bound of a given implementation with respect to its mathe-
matical specification. We apply our technique to Intel?s implementations of transcendental
functions and prove formal error bounds for these widely used routines. [5]

The x86-64 ISA sits at the bottom of the software stack of most desktop and server
software. Because of its importance, many software analysis and verification tools depend,
either explicitly or implicitly, on correct modeling of the semantics of x86-64 instructions.
However, formal semantics for the x86-64 ISA are difficult to obtain and often written man-
ually through great effort. We described an automatically synthesized formal semantics of
the input/output behavior for a large fraction of the x86-64 Haswell ISA’s many thousands
of instruction variants. The key to our results is stratified synthesis, where we use a set of in-
structions whose semantics are known to synthesize the semantics of additional instructions
whose semantics are unknown. As the set of formally described instructions increases, the
synthesis vocabulary expands, making it possible to synthesize the semantics of increasingly
complex instructions. Using this technique we automatically synthesized formal semantics
for 1,795 instruction variants of the x86-64 Haswell ISA. We evaluated the learned seman-
tics against manually written semantics (where available) and found that they are formally
equivalent with the exception of 50 instructions, where the manually written semantics con-
tain an error. We further found the learned formulas to be largely as precise as manually
written ones and of similar size. [4]

4.5 Education and outreach

Over the course of the project we engaged in a number of education and outreach efforts.
These included the PPAML 2016 summer school, a tutorial on BDA in WebPPL to be pre-
sented at CogSci2018, and the online textbooks probmods.org and dippl.org. In preparation
for the PPAML 2016 summer school, we cleaned up and revised a large amount of the doc-

10
Approved for Public Release; Distribution Unlimited.

umentation, system, and interface for our WebPPL PPS. We also created materials for the
lectures and exercises which are hosted in another web book.

5 Conclusions

Probabilistic programming holds the promise of revolutionizing computational systems by
enabling non-experts to embed sophisticated probabilistic AI: machine learning, natural
language processing, and computer vision. We set out to radically accelerate probabilistic
programming systems by targeting the full implementation stack from inference algorithms
to hardware. We have made significant advances in inference algorithms, compilation tech-
niques, and applications. Many of these advances have been released as open source software
and/or transitioned to open source projects carried on by industry partners. This has con-
tributed to major growth in the probabilistic programming community in both academia
and industry. We expect in the near future to see further growth and uses in high-value
applications across diverse sectors.

6 References

[1] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Prad-
han, Theofanis Karaletsos, Rohit Singh, Paul A. Szerlip, Paul Horsfall, and Noah D.
Goodman. Pyro: Deep universal probabilistic programming. JMLR, abs/1810.09538,
2019.

[2] Berkeley Churchill, Rahul Sharma, JF Bastien, and Alex Aiken. Sound loop super-
optimization for google native client. In ACM SIGPLAN Notices, volume 52, pages
313–326. ACM, 2017.

[3] N. D. Goodman and A. Stuhlmüller. The Design and Implementation of Probabilistic
Programming Languages. 2015.

[4] Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. Stratified synthesis: au-
tomatically learning the x86-64 instruction set. In ACM SIGPLAN Notices, volume 51,
pages 237–250. ACM, 2016.

[5] Wonyeol Lee, Rahul Sharma, and Alex Aiken. Verifying bit-manipulations of floating-
point. ACM SIGPLAN Notices, 51(6):70–84, 2016.

11

Approved for Public Release; Distribution Unlimited.

[6] Long Ouyang, Michael Henry Tessler, D Ly, and Noah D Goodman. webppl-oed: A
practical optimal experiment design system. In Proceedings of the Fortieth Annual
Conference of the Cognitive Science Society, 2018.

[7] Daniel Ritchie, Paul Horsfall, and Noah D. Goodman. Deep Amortized Inference for
Probabilistic Programs. Technical report, 2016.

[8] Daniel Ritchie, Sharon Lin, Noah D. Goodman, and Pat Hanrahan. Generating Design
Suggestions under Tight Constraints with Gradient-based Probabilistic Programming.
In Proceedings of Eurographics 2015, 2015.

[9] Daniel Ritchie, B. Mildenhall, N. D. Goodman, and P. Hanrahan. Controlling procedural
modeling programs with stochastically-ordered sequential monte carlo. In SIGGRAPH
2015, 2015.

[10] Daniel Ritchie, Andreas Stuhlmüller, and Noah D. Goodman. C3: Lightweight incre-
mentalized mcmc for probabilistic programs using continuations and callsite caching. In
AISTATS 2016, 2016.

[11] Daniel Ritchie, Anna Thomas, Pat Hanrahan, and Noah D. Goodman. Neurally-guided
procedural models: Amortized inference for procedural graphics programs using neural
networks. In Advances in Neural Information Processing Systems (NIPS 2016), 2016.

[12] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic optimization of floating-point
programs with tunable precision. ACM SIGPLAN Notices, 49(6):53–64, 2014.

[13] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic program optimization. Com-
munications of the ACM, 59(2):114–122, 2016.

[14] Rahul Sharma and Alex Aiken. From invariant checking to invariant inference using
randomized search. Formal Methods in System Design, 48(3):235–256, 2016.

[15] Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken. Conditionally correct
superoptimization. In ACM SIGPLAN Notices, volume 50, pages 147–162. ACM, 2015.

[16] N Siddharth, Brooks Paige, Van de Meent, Alban Desmaison, Frank Wood, Noah D
Goodman, Pushmeet Kohli, and Philip HS Torr. Learning disentangled representa-
tions with semi-supervised deep generative models. In Advances in Neural Information
Processing Systems 30, 2017.

[17] Andreas Stuhlmüller, Robert X. D. Hawkins, N. Siddharth, and Noah D. Goodman.
Coarse-to-fine sequential monte carlo for probabilistic programs. Technical report, 2015.

12
Approved for Public Release; Distribution Unlimited.

[18] David Tolpin, Jan-Willem van de Meent, and Frank Wood. Probabilistic program-
ming in anglican. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 308–311. Springer, 2015.

[19] Mike Wu and Noah Goodman. Multimodal generative models for scalable weakly-
supervised learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems
31, pages 5576–5586. Curran Associates, Inc., 2018.

7 List of Acronyms

• probabilistic programming language (PPL)

• continuation-passing style (CPS)

• bayesian data analysis (BDA)

• Hamiltonian Monte Carlo (HMC)

• Markov chain Monte Carlo (MCMC)

• sequential monte carlo (SMC)

• Stochastically-Ordered Sequential Monte Carlo (SOSMC)

• Variational Inference (VI)

• automatic differentiation (AD)

• Variational Autoencoders (VAEs)

• multimodal variational autoencoder (MVAE)

• graphics processing unit (GPU)

• finite-state machine (FSM)

• field programmable gate array (FPGA)

13
Approved for Public Release; Distribution Unlimited.

	Contents
	Summary
	Introduction
	Methods, Assumptions and Procedures
	Results and Discussion
	PPL systems
	WebPPL
	Pyro

	Inference techniques
	MCMC
	HMC
	SMC
	Variational and optimization-based inference
	Coarse-to-fine inference

	Hardware for inference
	Stochastic super-optimization
	Education and outreach

	Conclusions
	References
	List of Acronyms

