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Abstract

The problem of targeting and engaging individual missiles (targets) with an arsenal

of interceptors (weapons) is known as the weapon target assignment problem. This

problem has been well-researched since the seminal work in 1958. There are two

distinct categories of the weapon target assignment problem: static and dynamic. The

static weapon target assignment problem considers a single instance in which a known

number of incoming missiles is to be engaged with a finite number of interceptors.

By contrast, the dynamic weapon target assignment problem considers either follow

on engagement(s) should the first engagement(s) fail, a subsequent salvo of incoming

missiles, or both.

This research seeks to define and solve a realistic dynamic model. First, as-

signment heuristics and metaheuristics are developed to provide rapid near-optimal

solutions to the static weapon target assignment. Next, a technique capable of deter-

mining how many of each interceptor type to reserve for a second salvo by means of

approximate dynamic programming is developed. Lastly, a model that realistically

considers erratic flight paths of incoming missiles and determines assignments and

firing sequences of interceptors within a simulation to minimize the number of hits to

a protected asset is developed.

Additionally, the first contemporary survey of the weapon target assignment prob-

lem since 1985 is presented. Collectively, this work extends the research of missile

defense into practical application more so than currently is found within the literature.
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Real-Time Heuristics and Metaheuristics for Static and Dynamic Weapon Target

Assignments

I. Introduction

This dissertation focuses on the weapon target assignment (WTA) problem. Specif-

ically, it develops models by which air defense problems are framed and proposes new

heuristic algorithms to find solutions in “real-time” to these models. We define a

heuristic algorithm “real-time” if it is capable of finding a solution within the time it

takes a missile to launch and reach its point of impact.

The WTA can be categorized as static (SWTA) or dynamic (DWTA). The SWTA

models an air defense scenario wherein a known number of incoming missiles is ob-

served and a given number of interceptors is available for a single engagement. The

results of the assignments of interceptors to missiles is not explored, nor is the time

frame in which the engagements are to occur. That is, if five incoming missiles are

engaged by twenty-five interceptors, and each interceptor engages each of the five

missiles, the solution would not explore how such a firing sequence would occur or

whether any of the missiles would survive the engagements.

By contrast, the DWTA considers the outcomes of the SWTA as a subsequent

problem. The “Shoot-Look-Shoot” variant requires the determination of which mis-

siles, if any, survive an engagement and allows for a re-engagement. The “Two Stage”

variant has a first stage which is identical to the SWTA and a second stage in which

a number of incoming missiles is known only to a probability distribution. In each of

these variants, the solution must consider how many of the interceptors to preserve

for successive engagements or successive stages.

1



A second categorization which defines the WTA is the number of different types

of interceptors. In the homogeneous problem, each interceptor is of the same type,

thus the probability with which an interceptor will successfully destroy an incoming

missile, or probability of kill, is the same for each interceptor. Alternatively, in

the heterogeneous problem, there are different types of interceptors, each of which

has different probabilities of kill, making the problem more complex. Indeed, the

heterogeneous SWTA is an NP-Hard problem (Lloyd & Witsenhausen, 1986).

In this dissertation, the one and two stage heterogeneous WTAs are considered

wherein each of the chapters is an independent scholarly article. Chapter 2 gives

a contemporary survey of the literature on the WTA, focusing on models, optimal

algorithms, and heuristic algorithms for the SWTA and DWTA. In Chapter 3, a

metaheuristic is presented that is capable of finding real-time solutions for the SWTA

to some of the largest problems within the literature. A systemic problem identified

in the use of the commercial solver, BARON, is explored in Chapter 4. A logarithmic

transformation and a constraint with an instance-specific parameter are developed

and used to improve the performance of BARON when solving the SWTA. A new

heuristic is developed in Chapter 5, improving upon the work in Chapter 3 in solution

quality and required computational effort. The model used for the SWTA in chapters

3, 4, and 5, originally presented by Manne (1958), is well known and extensively used

within the literature. In Chapter 6, a model for the homogeneous two stage DWTA

developed by Murphey (2000) is used for the two stage heterogeneous DWTA, which

is solved therein. In Chapter 7, the continuous missile flight paths are modeled with

Bézier curves and a solution technique for a DWTA that solves the problem within a

realistic simulation is developed.

In Chapter 2, the literature of the WTA since its inception in 1958 (Manne, 1958)

is reviewed. Some of the different models for the SWTA and DWTA are defined,

2



illustrating different parameters or alterations in the assumptions of the models. The

survey proceeds to review the optimal algorithms for both the SWTA and DWTA.

As previously stated, the heterogeneous SWTA is NP-Hard, thus the optimal algo-

rithms generally apply to one of three models: the homogeneous WTA (for which an

optimal solution is accessible in polynomial time), a linear transformation of the het-

erogeneous WTA, or a heterogeneous WTA with very few interceptors and missiles.

A review of some of the heuristic and metaheuristic algorithms used on the WTA

follows. Some of these, such as the genetic algorithm, have been implemented many

times in the literature and some of these more well-cited works are explored. This

chapter concludes by examining some of the recent developments within the litera-

ture, exploring some of the alternative applications of WTA research, and defining

a method by which the high volume of literature is truncated to allow for a more

comprehensive review.

Chapter 3 develops and presents a metaheuristic which improves upon previous

research in which a heuristic that implements the solution to the quiz problem (i.e.,

the QP Heuristic) (Kline, 2017) was developed. This metaheuristic is called the

Eminent Domain (ED) Metaheuristic since it finds improved solutions by denying a

subset of the heuristic solution and resolving using the QP Heuristic. This denial

process allows for the possibility of improved solutions by preventing those solutions

of which a single assignment’s selection, which is made by a greedy selection criterion,

prevents subsequent assignments which may be of a superior solution. We compare

the results of the ED to those of a heuristic developed by Ahuja et al. (2007), a known

benchmark for the SWTA.

In Chapter 4, a logarithmic transformation to the SWTA formula is introduced

with which the commercial solver BARON can more effectively find the optimal so-

lution when possible and a lower bound when BARON is unable to determine an
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optimal solution. However, this transformation is computationally expensive and a

constraint with an instance-specific parameter is introduced to reduce the feasible

region of the problem, thus improving the efficiency of BARON in solving this trans-

formed problem.

Chapter 5 improves upon the QP subroutine by developing a new heuristic, which

has similarities to the Hungarian Algorithm, called the Greedy Hungarian-like Heuris-

tic (GH). This heuristic makes assignments by examining the best available assign-

ments for each weapon and for each target and selecting those assignments that are

among the best in both. The results of the GH are compared with the QP and ED,

and the GH is used as a subroutine for the ED in further comparison.

In Chapter 6, the heterogeneous two stage DWTA is considered. Extending the

work by Ahner & Parson (2015), this chapter uses the Concave Adaptive Value Esti-

mation (CAVE) Algorithm, with the GH as a subroutine, to compute the number of

interceptors to preserve for the second stage while using the GH to solve each stage

given the solution of the CAVE Algorithm. This dynamic programming technique is

used to approximate the value of each interceptor type in the second stage through

the use a simulation. The solutions of the CAVE Algorithm are compared to those

of a baseline policy and an optimal policy for small problem instances. Additional

comparative tests for the CAVE Algorithm and the baseline policies are conducted

on larger problem instances for which finding the optimal policy is intractable.

Chapter 7 extends the work of Leboucher et al. (2013), who modeled the flight

paths of incoming missiles in a one stage problem with two dimensional Bézier curves,

requiring the determination of a firing sequence. This extension uses three dimen-

sional Bézier curves so as to model the angle of approach of each missile and determine

a firing sequence which is limited by the time required for each engagement and the

windows of opportunity for engagement with each interceptor. Further, it determines
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the outcome of each engagement and allows for subsequent engagements in a Shoot-

Look-Shoot framework. This model is extended to two stages, thus modeling and

solving a two stage Shoot-Look-Shoot problem. A simulation is used to test the effi-

cacy of the solution technique, which initiates at the launch of incoming missiles and

requires the solution of an engagement plan, as well as the reallocation of interceptors

as battle damage is assessed, in real-time. The results of the solution technique are

compared to those of a realistic Shoot-Shoot-Look policy, which engages a missile with

two interceptors as soon as a missile is within the effective range of an interceptor.

The contributions of this dissertation are identified as follows. First, a real-time

metaheuristic is developed, using the QP Heuristic as a subroutine, that is capable

of efficiently finding near optimal solutions to the largest problems of the SWTA

found in the literature and that dominates known solution techniques (Chapter 3).

A logarithmic transformation with tight constraints is developed for the SWTA to

improve the efficiency and quality of the solution when utilizing the commercial solver,

BARON (Chapter 4). A new real-time heuristic algorithm is developed which can find

quality solutions to the SWTA with greater speed than known heuristic algorithms

and is implemented within a metaheuristic framework, finding the best real-time

solutions to the SWTA, in terms of solution quality, in less time than required by the

metaheuristic with the QP Heuristic subroutine (Chapter 5). A solution technique

capable of solving the two stage heterogeneous DWTA is developed and presented for

the first time in the literature, extending the work of Ahner & Parson (2015) (Chapter

6). A model for the DWTA is developed which considers the continuous flight path of

incoming missiles and time parameters that restrict windows of fire for interceptors

(Chapter 7). Further, a solution technique capable of solving the two stage Shoot-

Look-Shoot DWTA is developed and its efficacy is tested within simulations (Chapter

7). Lastly, a contemporary survey of the literature of the WTA that highlights the
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foundational contributions along with major contributions as measured by citation

rate is presented (Chapter 2).
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II. Literature Review

2.1 Introduction

Projectile weapons have been a consistent threat of hostilities throughout history.

Military advantage has always been aided by the capacity to inflict damage from

a distance. In the 20th century, missile technology advanced to the point that an

adversary had the potential to attack a protected asset from great distances. To

neutralize this stand off threat, the concept of air defense evolved. However, as the

ability to reduce a missile threat increased, so too did the quantity and quality of

missiles available, and research into the effective allocation of air defense resources

emerged.

Originally introduced into the field of operations research by Manne (1958), the

Weapon Target Assignment (WTA) Problem, or Missile Allocation Problem (MAP)

as it is sometimes known, seeks to assign available interceptors to incoming missiles so

as to minimize the probability of a missile destroying a protected asset. While much of

the literature on the WTA focuses on the defensive perspective, some have considered

the offensive perspective (Sikanen, 2008), wherein the objective is to maximize the

probability of destroying enemy protected assets.

There are two distinct categories of the WTA: the Static WTA (SWTA) and the

Dynamic WTA (DWTA). Originally modeled by Manne (1958), the SWTA defines

a scenario wherein a known number of incoming missiles (targets) are observed and

a finite number of interceptors (weapons), with known probabilities of successfully

destroying the targets (probabilities of kill), are available for a single exchange. The

solution to the SWTA informs the defense on how many of each weapon type to shoot

at each target. In the SWTA, no subsequent engagements are considered since time

is not a dimension considered in the problem.
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By contrast, the DWTA includes time as a dimension. Variants of the DWTA in-

clude the two stage DWTA and the shoot-look-shoot DWTA. The two stage DWTA

replicates the SWTA in its first stage, but includes a second stage wherein a number

of targets of various types are known only to a probability distribution. In this vari-

ant, the solution to the DWTA informs the defense on how to allocate the weapons

in the first stage and how many to reserve for the second stage in order to mini-

mize the probability of destruction. The shoot-look-shoot variant also replicates the

SWTA, however it enables the defense to observe which targets may have survived

the engagement (leakers) and allows for a subsequent engagement opportunity. The

solution to this variant similarly informs the defense on how to allocate the weapons

and how many weapons to reserve to reengage any leakers.

The WTA has been solved to optimality with exact algorithms. However, as

Lloyd & Witsenhausen (1986) showed that the WTA is NP-Complete, the majority

of solution techniques seek to find near optimal solutions in real-time, or “fast enough

to provide an engagement solution before the oncoming targets reached their goals”

(Leboucher et al., 2013). These real-time solution techniques are products of heuristic

algorithms or are solved using exact algorithms applied to transformations of the

formulation.

The rest of this paper proceeds as follows. In §2.2, we review the various formu-

lations for both the SWTA and DWTA. We examine the basic formulations of each

and explore the transformations which have been implemented. We also review novel

formulations which have sought to model and solve the problem in unique settings.

In §2.3, we review the exact algorithms that have been used to solve the SWTA and

DWTA. Some of these algorithms provide optimal solutions to the original formu-

lations whereas others refer to the transformed formulations identified in §2.2. In

§2.4, we review the heuristic and metaheuristic solution techniques for the SWTA
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and DWTA. In §2.5, we discuss the state of the WTA and present a metric with

which we focused this examination of the literature.

2.2 Formulations

There have been many different formulations of the WTA. Early literature sought

to transform the nonlinear formulation from Manne (1958) due to the computational

limitations with nonlinear programming. As computational power increased, trans-

formations which were better suited to global optimization tools emerged. Burr et al.

(1985) introduced the DWTA which captured the value of subsequent engagements.

Similar to the SWTA, variations to the original DWTA occur throughout the litera-

ture.

Herein, we examine some of the formulations for both the SWTA and DWTA. For

purposes of clarity in both formulation and in presentation, we map the formulations

presented by their authors into the terms of the formulation developed by Manne

(1958). Namely, variables that are shared between multiple formulations are defined

as follows:
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pij : the probability weapon i destroys target j

qij : the probability weapon i fails to destroys target j

Vj : the destructive value of target j

xij : the number of weapons of type i assigned to target j

K : the number of protected assets

ak : the value of asset k

n : the number of targets

m : the number of weapon types

wi : the number of weapons of type i

cij : a cost parameter for assigning a weapon of type i to target j

F : the set of feasible assignments

γjk : the probability target j destroys asset k

sj : the maximum number of weapons that can be assigned to target j

t : the number of stages

SWTA Formulations.

The original formulation as defined by Manne (1958) considers a scenario where

a defender has wi of i = 1, . . . ,m weapon types with which to defend against j =

1, . . . , n targets. Each weapon type i has a probability pij of killing target j and each

target j has a destructive value Vj. With decision variables xij indicating the number
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of weapons of type i to assign to target j, the SWTA is formulated:

min
n∑
j=1

Vj

m∏
i=1

(1− pij)xij

s.t.
n∑
j=1

xij ≤ wi, for i = 1, . . . ,m

xij ∈ Z+, for i = 1, . . . ,m, j = 1, . . . , n .

However, it is common to write the formulation in terms of the probability of

survival qij = 1− pij

S1 min
n∑
j=1

Vj

m∏
i=1

q
xij
ij

s.t.
n∑
j=1

xij ≤ wi, for i = 1, . . . ,m

xij ∈ Z+, for i = 1, . . . ,m, j = 1, . . . , n .

The nonlinear objective function in S1 seeks those assignments to minimize the

expected value of survival. The assignments are integer and the total number of

weapon i cannot exceed the number of weapons on hand, wi. This formulation is used

frequently, (e.g., (Ahuja et al., 2007),(Lemus & David, 1963),(Lee et al., 2002),(den-

Broeder et al., 1959)) and is often the initial formulation used when implementing a

transformation.

A simpler version of S1 is given by denBroeder et al. (1959), who assumes that

all weapons have the same probability of kill for target j, pij = pj ∀i = 1, . . . ,m. His

formulation differs from S1 in the objective, which is

S2 min
n∑
j=1

Vjq
xj
j
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This formulation simplifies S1 and is easily optimized by a greedy assignment tech-

nique. However, its assumption of homogeneity greatly reduces the applicability of

the formulation.

Kwon et al. (1999) utilize a similar model to S1 but reformulate the problem into

an integer program with a linear objective function and nonlinear constraints. They

use a negative cost parameter, cij, for assigning weapon i to target j which they seek

to minimize as follows:

min
∑

(i,j)∈A

cijxij

s.t.
∑

{j=1,...,n|(i,j)∈A}

xij≤wi for i = 1, . . . ,m

1−
∏

{i=1,...,m|(i,j)∈A}

(1− pij)xij ≥dj for j = 1, . . . , n

xij≤uij ∀(i, j) ∈ F ,

xij≥0 ∀(i, j) ∈ F

where dj is the minimum desired probability of kill for target j, uij is an upper

bound on the number of weapons i that can be assigned to target j, and F is the

set of all feasible assignments. Kwon et al. (1999) then multiply a large number

θ to a logarithmic transformation of the nonlinear constraint and round down to

the largest integer contained in order to generate the following linear approximation,
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where aij = b−θ ln(1− pij)c > 0 and bj = b−θ ln(1− dj)c > 0

S3 min
∑

(i,j)∈A

cijxij

s.t.
∑

{j=1,...,n|(i,j)∈A}

xij≤wi for i = 1, . . . ,m

∑
{i=1,...,m|(i,j)∈A}

aijxij≥bj for j = 1, . . . , n

xij≤uij ∀(i, j) ∈ A,

xij≥0 ∀(i, j) ∈ A

This formulation is linear and is computationally simpler than S1 and a solution

is more easily attained. Because the formulation is an approximation, however, its

solution is not guaranteed to be optimal for S1.

A different transformation to S1 is put forth by Ahuja et al. (2007) by applying a

logarithmic transformation to the objective. Letting dij = − ln(qij), their formulation

becomes

S4 min
n∑
j=1

Vj2
−yj

s.t.
n∑
j=1

xij≤wi for i = 1, . . . ,m

m∑
i=1

dijxij = yj for j = 1, . . . , n

xij∈Z+ for i = 1, . . . ,m, j = 1, . . . , n

yj≥0 for j = 1, . . . , n

With this transformation, Ahuja et al. (2007) have an objective which is the sum of

separable convex functions. They utilize this transformation to model the SWTA as
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a network flow problem, which is addressed later in section §2.1. Further, as is shown

by Kline et al. (2017), utilizing S4 within a commercial global optimization solver

such as BARON is more reliable than when utilizing S1, which has roughly a 21%

false optimality rate.

Others simplify the problem by limiting the number of weapons of each type to

wi = 1, making the problem a binary program. Li et al. (2009) propose the objective

function

S5 min
n∑
j=1

Vj

m∏
i=1

(1− pijxij),

with an added constraint which limits xij to a binary decision variable. S1 can be

transformed to S5 by setting the number of weapon types to the total number of

weapons. That is, if wi = 3 and m = 5, the problem could be transformed for S5

by setting wi = 1 and m = 15. This increases the number of decision variables of

the problem, though the transformation to a binary program allows for more efficient

solution techniques.

A more simplified formulation is put forth by Rosenberger et al. (2005), who model

the SWTA as a knapsack problem. They define a positive cost parameter cj, which

is earned when assignment j is selected. Their model assumes that no two weapons
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can be assigned to the same target and is

S6 max
∑
j∈J

cjxj

s.t.
∑
j∈Si

xj ≤ 1 i = 1, . . . ,m

∑
j∈Tj

xj ≤ 1 j = 1, . . . , n

xj =

 1 assignment j is selected

0 otherwise

In the first constraint, the set Si is the subset of all feasible assignments of which

weapon i is assigned. Similarly, the set Tj in the second constraint is the subset of

all feasible assignments which assigns a weapon to target j. While simpler than S1,

this formulation, like S2, carries more assumptions which limit its ability to model

and solve complex missile defense problems.

Malcolm (2004) proposed a formulation with the same binary decision variables

in which the objective is similar in structure to S5. He shows that, when weapon

assignments are restricted to exactly one target and m = n, the objective can be

written as
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S7 min −
n∑
j=1

Vj

(
m∑
i=1

xijpij

)

s.t.
n∑
j=1

xij = 1 for i = 1, . . . ,m

m∑
i=1

xij = 1 for j = 1, . . . , n

xij =

 1 weapon j is assigned to target i

0 otherwise
for i = 1, . . . ,m, j = 1, . . . , n

This allows for solution techniques which exploit the special structure of the formu-

lation, but is only of use under certain rigid situations.

Two additional variants to the SWTA formulations are also in the literature.

One, defined by Shang et al. (2007), considers the value, ak, of a protected asset

k = 1, . . . , K and the probability with which a target j will destroy this asset γjk.

Given the probability that weapon i will destroy target j, pij, they formulate

S8 min
K∑
k=1

ak

nk∏
j=1

[
γjk

W∏
i=1

(1− pijxij)

]

s.t.
K∑
k=1

nk = n

n∑
j=1

xij = 1, i = 1, . . . ,m

xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n

where each protected asset has incoming targets 1, . . . , nk and there are a total of

n targets. This formulation considers the importance of different protected assets,
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which is relevant in a missile defense problem, but it adds complexity to the problem.

Karasakal (2008) does not consider a target value but rather treats each target

to be of identical destructive capacity. He defines the set of feasible solutions as F ,

limits the number of weapons that can be assigned to target j as sj, and defines a

formulation

S9 max
∏

j=1,...,n

1−
∏

{i=1,...,m|(i,j)∈F}

(1− pij)xij


s.t.
∑

{j=1,...,n|(i,j)∈F}

xij ≤ wi for i = 1, . . . ,m

∑
{i=1,...,m|(i,j)∈F}

xij ≤ sj for j = 1, . . . , n

0 ≤ xij ≤ uij, ∀i, j ∈ F and xij is integer

This formulation treats all protected assets and targets as having equal value and

simply seeks to maximize the expected destruction to incoming targets.

DWTA Formulations.

Shoot-Look-Shoot.

There are two variants of the DWTA, each of which have unique formulations.

The first variant is the shoot-look-shoot scenario, wherein weapons are assigned to

targets in a first engagement and a subsequent engagement allows assigning remaining

weapons to any surviving targets. This problem was discussed by Eckler & Burr

(1972), who do not define a model but define the probability that n targets are

destroyed over t stages, which is equivalent to the probability that at least n weapons
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do not fail over t stages, as

P (t) =
t∑

i=n

(
t

i

)
(1− p)t−ipi, (1)

for a problem wherein all probabilities of kill are the same and all targets are of the

same value. Eckler & Burr (1972) identify that the most desired strategy to the t stage

problem under this assumption will be equivalent to finding the number of weapons

to use in each stage which minimize the number of stages necessary to achieve some

acceptable value of P (t).

Soland (1987) provides a model for the Eckler & Burr (1972) scenario with the

assumption that all weapons have the same probabilities of kill and all targets have

the same value. Given a nondecreasing function g(nq) which defines the expected

fraction of targets destroyed, where nq is the number of unintercepted targets, the

state of the system S(nq, d, t) defines the fraction of targets destroyed given nq targets,

d weapons, and t remaining engagements. The state space is bound by

S(0, d, t) = 0, for d = 0, 1, . . . , D, t = 1, . . . , T,

S(nq, d, 0) = g(nq), for nq = 0, 1, . . . , n, d = 0, 1, . . . , D.

He defines the transition probability that j targets survive having used i weapons as

P (j|nq, i, d, t), where

P (j|nq, i, d, t) =

(
nq
j

)
qjIt (1− qIt )nq−j.

I defines the spread of weapons to targets, or I = i
nq

in the case that i
nq

is integer.

If it is not integer, then nq + nq

⌊
i
nq

⌋
− i of the targets receive

⌊
i
nq

⌋
weapons and the

remaining i−nq
⌊
i
nq

⌋
targets receive

⌈
i
nq

⌉
weapons. His model seeks to minimize the
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number of weapons required to ensure that the expected number of surviving targets

is less than some “nondecreasing maximum damage function f” (Soland, 1987)

D1 min D

s.t. S(nq, D, T )≤f(nq), nq = 1, . . . , n.

Hosein & Athans (1989) provide a different model than Soland (1987), but with

the same underlying assumptions. They define nk(t) as the number of targets aimed at

protected asset k at stage t, or the number of surviving targets after t−1 engagements.

They compute the probability that the number of targets surviving into the second

stage is j(2) given the assignment in the first stage is x(1), for all i = 0, 1, . . . ,m

and j = 0, 1, . . . , n(1) as P
(
n(2) = j(2)|x(1)

)
. Defining J∗s (n(2),m2) as the optimal

solution to the second stage with m2 weapons available, they define the formulation

D2 max
x(1)∈ZK

+

Jd = E
n(2)

[J∗s (n(2),m2)]

s.t. |x(1)|+m2 = m.

The objective is the expected value of the optimal solution in the second stage, thus

the optimal solution to the problem is to find the number of weapons to use in the

first stage, m1, and assign them to the appropriate targets, x(1), in such a way that

the second stage can be solved to optimality given the number of surviving targets

and the number of unused weapons, m2.

A different approach, which considers the available windows in which targets can

be engaged, is proposed by Leboucher et al. (2013). He computes random paths of

randomly located targets using Bézier curves, which allow for the calculation of the
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time to impact for each target and the earliest point at which each weapon can engage

the target. For each weapon-target pairing, he computes:

f1(Ei/j) = EFFi/j, (i ∈ I), (j ∈ J)

f2(Ei/j) = LFFi/j − EFFi/j, (i ∈ I), (j ∈ J)

f3(Ei/j) = d(Pjout , Pi0)

where EFFi/j is the earliest feasible fire time for weapon i to target j, LFFi/j is the

latest feasible fire time for weapon i to target j, and d(Pjout , Pi0) is the Euclidean

distance that the weapon, i0, must fly over the protected area to intercept target j.

Using these three parameters for each pairing, Leboucher et al. (2013) creates a

cost matrix for all of the possible assignments

H =



E1/1 E2,1 · · · E|I|/1

E1/2 E2,2 · · · E|I|/2
...

...
. . .

...

E1/|J | E2,|J | · · · E|I|/|J |


,

in which the cost of an assignment H
(
Ei/j

)
is

H(Ei/j) = α1f1(Ei/j) + α2f2(Ei/j) + α3f3(Ei/j),

where α1 + α2 + α3 = 1 and (α1, α2, α3) ∈ [0, 1]3. He presents a formulation to
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determine the assignments

D3a min
m∑
i=1

n∑
j=1

H(Ei/j)xij

s.t.
m∑
i=1

n∑
j=1

xij ≤ m

and defines, for each possible firing sequence (FS), three parameters. First, given

the time at which target j is engaged, FTj, the parameter measuring the firing time

is f4(FS) =
∑T

j=1 FTj. Second, a parameter identifying any constraint violation is

f5(FS) =
∑m

i=1 ci, where ci is 1 if the assignment of weapon i violates a constraint

and 0 otherwise. Lastly, the parameter representing idle time of the system, given

the time at which weapon i is fired, FTi, is f6(FS)
∑m−1

i=1 (FTi+1 − FTi). Leboucher

et al. (2013) present a formulation whose solution gives the optimal firing sequence

of the assignment solution

D3b minF (FS)

s.t. F (FS) =

 (f4(FS) + 1) ∗ f6(FS) f5(FS) = 0

∞ f5(FS) 6= 0 .

The formulation presented by Leboucher et al. (2013) enables observation of sur-

viving targets following an engagement which can be reengaged in a subsequent iter-

ation and can be used to solve a shoot-look-shoot problem.

2-Stage.

The second variant of the DWTA is the 2 stage, or more generally the multi-

stage, problem, which differs from the shoot-look-shoot in that it does not allow the
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reacquisition of leakers. That is, in the shoot-look-shoot problem, a given number of

targets are repeatedly engaged until all have been destroyed or a limit to the number

of iterations is met. In the 2 stage problem the given number of targets is only

engaged once before a subsequent stage occurs. In the second stage, the number and

type of incoming targets is known only to a probability distribution.

Chang et al. (1987) model the T stage WTA by considering the value of each stage

as defined by the formulation S1 and taking the sum over the T stages.

D4 min
xij(t)

E

[
T∑
t=1

∑
j∈At

Vj(t)
m∏
i=1

(1− pij(t))xij(t)

]

s.t. At+1 = (At ∪ Lt) ∩ K′t

Mi(t) = Mi(t− 1)−
n∑
j=1

xij(t− 1) i = 1, . . . ,m

∑
j∈At

xij(t) ≤Mi i = 1, . . . ,m

xij(t) ∈ Z+ i = 1, . . . ,m, j = 1, . . . , n

where At is the set of targets in stage t, Mi(t) is the number of interceptors of type i

at stage t, Lt is the set of new targets observed in stage t and Kt is the set of targets

killed in stage t.

Burr et al. (1985) present a formulation for a multi-stage problem in which all

weapons have the same probability of kill for all equally valued targets. That is,

a known number of targets arrives in the first stage and a number arrive in each

of the number of subsequent stages, both of which are known only to a probability

distribution. Given the attack strategy a(k), which identifies the number of targets

aimed at asset k, and a defense strategy d(k, j), which defines how many weapons to
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shoot at the target j threatening asset k, Burr et al. (1985) formulate the problem

D5 min
d(k,j)

K∑
k=1

a(k)∑
j=1

d(k, j)

s.t. V (d, a) ≤ V

n

K∑
k=1

a(k), for all a

where V is the sum of all protected asset values, n is the total number of targets, and

V (d, a) is the expected damage to the protected asset given a targets and deployment

strategy d

V (d, a) =
K∑
k=1

ak

1−
a(k)∏
j=1

(
1− qd(k,j)

) .

This formulation seeks to ensure that the expected damage to the protected assets is

less than the total value of all protected assets.

Murphey (2000) formulates the multi-stage problem by defining n(t) as the number

of targets which arrive at time t = 1, . . . , T and c(t) as a nondecreasing function which

represents a cost of waiting. With the assumption that all weapons have the same

probability of kill for target j, his formulation is

D6 min
T∑
t=1

c(t)

n(t)∑
j=1

Vjq
xj(t)
j

s.t.
T∑
t=1

n(t)∑
j=1

xj(t) = m,

Vj ∈ V ∈ Rn
+ j = 1, . . . , n(T )

x(t) ∈ Zn(t)
+ t = 1, . . . , T

where m is the total number of weapons and V is the set of all target values. This

formulation is seeking to minimize the value of the assignments and the inclusion

of a non-decreasing cost of waiting function will bias the solution to make earlier
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assignments unless these assignments are to targets of a very small value relative to

those of later assignments.

Xin et al. (2011) allow for different probabilities of kill for each weapon to each

target and further allow for different probabilities of kill between stages. Their for-

mulation for stages t = 1, . . . , T is

D7 min

K(t)∑
k=1

Vk

n(t)∏
j=1

1− γjk
T∏
h=t

m(t)∏
i=1

(1− pij(h))xij(h)


s.t.

n(t)∑
j=1

xij(t) ≤ ni for i = 1, . . . ,m, t = 1, . . . , T

m(t)∑
i=1

xij(t) ≤ sj for j = 1, . . . , n, t = 1, . . . , T

T∑
t=1

n(t)∑
j=1

xij(t) ≤ wi for i = 1, . . . ,m

xij(t) ≤ fij(t) for i = 1, . . . ,m, j = 1, . . . , n, t = 1, . . . , T
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where

K(t) : number of existing assets at time t

n(t) : number of existing targets at time t

m(t) : number of available weapons at time t

ak : the value of asset k

γjk : the probability target j destroys asset k

pij(t) : the probability weapon i destroys target j at time t

ni : maximum number of targets weapon i can shoot at each stage

sj : maximum number of weapons that can be assigned to target j at each stage

wi : total number of weapons of type i

fij(t) : 1 if weapon i can be assigned to target j, 0 otherwise.

This is one of the more complex and realistic models that can be found within the lit-

erature. It allows for expansion into a shoot-look-shoot problem and considers many

parameters which are relevant to modeling missile defense. However, as the com-

plexity is higher than other formulations, finding solutions is more computationally

expensive than for simpler formulations.

A model proposed by Khosla (2001) considers the required time for weapon system

control and defines the following terms:
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n : Number of current threats

m : Number of current weapon systems

T : Total number of time points in time interval

TV (j) : Threat value of threat j

OW (i, j) : Option weight of weapon system i for threat j

LB(i, j) : Begin launch time for weapon system i for threat j

LE(i, j) : End launch time for weapon system i for threat j

GT (i, j) : Guidance time interval for interceptor for weapon system i to engage threat j

IR(i) : Inventory resource of weapon system i (number of interceptors)

GR(i) : Guidance resource capacity of weapon i

where GT (i, j) defines the amount of time the guidance system must be allocated to

weapon i in targeting target j and GR(i) is the number of guidance systems available.

The option weight OW (i, j) serves to add a benefit to preferred pairings; a bias for

weapon i to be assigned to target j.

Khosla (2001) defines a mixed integer program with only a few of the considera-

tions discussed thus far, proposing that expanded models including additional time

constraints such as reload time. Using a decision variable L(i, j, t) = 1 if t denotes

the launch time for an interceptor from weapon system i to engage threat j and 0
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otherwise, he models this problem, with a weight factor α ∈ [0, 1], as

D8 max
m∑
i=1

n∑
j=1

T∑
t=1

[αTV (j) + (1− α)OW (i, j)]L(i, j, t)

s.t.
m∑
i=1

T∑
t=1

L(i, j, t)≤ 1, for j = 1, . . . , n

n∑
j=1

T∑
t=1

L(i, j, t)≤ IR(i), for i = 1, . . . ,m

If L(i, j, t) = 1, R(i, j, t′) = 1, ∀ t≤t′≤ t+GT (i, j)

n∑
j=1

T∑
t=1

R(i, j, t)≤ GR(i), for i = 1, . . . ,m

In this model, Khosla (2001) ensures that only one weapon system is assigned to

each target, the total number of interceptors does not exceed the inventory, and the

guidance time required for the assignments does not exceed the number of guidance

systems. He nests this model into a framework which updates the number of targets

after each completed iteration and, as such, can be used in a 2 stage scenario where

the number of targets in subsequent stages is stochastically determined.

This model simplifies some of the parameters and considerations posed in D7, but

includes a discretized time step which provides the firing sequence inherent to, but

previously not considered, missile defense. However, due to the exponential growth

of the number of decision variables with the increase in resolution, Khosla (2001)

identifies that even modest sized problems are very computationally expensive.

Ahner & Parson (2015) address the SWTA formulation, originally proposed by

Murphey (2000), to compute the value of the first stage and includes in the objective

the expected value of the second stage, with the maximum number of weapons, b < M ,
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that can be used in any stage, as follows

D9 min
x

{
n1∑
j=1

V
(1)
j

(
1− p(1)

j

)x(1)j

+ E
ω∈Ω

[
Z2

(
x(2), ωj

) ]}

s.t. x(1)≤ b

xj∈ Z+, for j = 1, ..., n

where x
(1)
j defines the number of weapons fired at target j in the first stage and the

total number of weapons fired in the first stage is x(1) =
∑n1

j=1 x
(1)
j . Further, the

second stage, Z2, is a function of the remaining weapons, x(2) = M − x(1), and a

random occurrence, ω ∈ Ω of the number of targets and the type of each target.

Z2

(
x(2), ωj

)
=min

x(2)

{
n2(ω)∑
j=1

V
(2)
j (ω)

(
1− p(2)

j

)x(2)j

}

s.t.

n1∑
j=1

x
(1)
j +

n2(ωj)∑
j=1

x
(2)
j = M

x(2)≤ b

x
(2)
j ∈ Z+, for j = 1, . . . , n

Unlike other formulations, this formulation accounts for the uncertainty of a second

stage which must be considered when allocating available weapons to the first stage.

However, it is a homogeneous model which assumes that all weapons have the same

probability of kill for a target j.

Sikanen (2008) models the DWTA wherein all weapons have the same probability
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of kill for all targets

D10 max
xi1,...,xiT

T∑
t=1

n(t)∑
j=1

pj(t)λ
t
jVjxjt

s.t.
T∑
t=1

xjt ≤ 1 for j = 1, . . . , n(t)

T∑
t=1

n(t)∑
j=1

xjt ≤ m

xjt ∈ {0, 1} for j = 1, . . . , n(t), t = 1, . . . , T

where there are T stages, n(t) targets per stage, and m available weapons. Further,

the value of target j is Vj and its time discount factor at stage t is λtj. Given that xjt is

a binary decision variable, the expression is the sum over all stages of the sum over all

assignments. The time discounting factor imposes a bias on earlier assignments. The

product of the probability, target value, time discount factor, and decision variable

result in either a value of 0 or the time discounted expected value of the assignment.

Though a superior assignment may occur as the target is closer to the protected asset

(pj(t) is a function of time), the value of the target decreases since a miss will reduce

the ability to reengage.

2.3 Exact Algorithms

There are few cases in the literature of exact algorithmic solutions to the WTA.

The problem suffers due to its complexity as an NP-Complete problem (Lloyd &

Witsenhausen, 1986) and, like routing problems, are simply hard to solve. For the

SWTA, the number of possible permutations of assigning m weapons to n targets is

nm, assuming that all weapons must be assigned, which, as the number of weapons

and targets increases, grows exponentially and searching all possible solutions quickly
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becomes computationally intractable. Because the DWTA includes either a shoot-

look-shoot or multiple stage (or both) framework, it further increases the number of

permutations. The literature implementing exact solution techniques generally fall

into one of two categories: small problems and problems wherein assumptions reduce

the complexity.

SWTA.

denBroeder et al. (1959) showed the first optimal solution technique in their Max-

imum Marginal Return (MMR) algorithm. Assuming that the probability of kill for

any weapon to target j is the same, they showed that an optimal solution can be found

by assigning xij = 1 where {i, j} ∈ arg max(Vjpij) and then updating Vj = Vj(1−pij)

and p(i, ·) = p(·, j) = 0 and repeating the process until all weapons have been as-

signed. Further, when the probabilities of kill are the same for all weapons to all

targets, pi1j1 = pi2j2 , ∀i1, i2 ∈ I, j1, j2 ∈ J , the optimal solution is found by dividing

the weapons evenly across all targets (Hosein et al., 1988).

Malcolm (2004) developed and solved S7, where he defined his constraint coeffi-

cient matrix A as totally unimodular. This ensures that every vertex of the convex

polytope that defines the feasible solution space is an integer solution. As such, he

uses the Simplex Method to quickly find the optimal solution.

Smaller problems were solved through an exhaustive search algorithm for S1 by

Johansson & Falkman (2009). In comparing the objective function value of every

feasible solution, they show that a problem with 9 weapons and 8 targets took 13

minutes to run to completion and that adding one additional target took 43.7 minutes

to run to completion, which they present to illustrate the combinatorial explosion in

run time as a function of problem size.

Several cases of using a branch and bound algorithm are found in the literature.
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Rosenberger et al. (2005) solved S6 for up to 8 weapons and 4 targets. Ahuja et al.

(2007) implemented three lower bounding strategies to increase the efficiency of fath-

oming nodes: a generalized network flow solution, an MMR solution, and a minimum

cost flow solution. Kline (2017) developed a branch and bound algorithm to solve S1

and was able to find optimal solutions for up to 10 weapons and 10 targets. Beyond

this, the size of the problem precluded convergence within 7 days of computation.

Karasakal (2008) utilizes linear integer programming techniques to find optimal

solutions to two linear transformations of S9.

Bogdanowicz (2012) develops and utilizes an algorithm by which he searches

through known effective weapon-target pairings to find an optimal solution. Utilizing

the Joint Munition Effectiveness Manual (JMEM), he defines the desired minimal

effect of any one pairing to reduce the number of sets through which he searches for

an optimal set of pairings, given the number and type of weapons and targets.

DWTA.

Burr et al. (1985) puts forth an optimal algorithm for D4 given a scenario wherein

one target per stage is observed and a defender will assign weapons for up to k − 1

stages, after which he will surrender the protected asset. Given a maximum total

expected damage of 1, the defender must limit the expected damage per stage to

no greater than r = 1
k
, where each weapon has a probability of kill of p = 1 − q.

His algorithm is to set the minimum number of weapons to ensure damage does not

exceed r for the first stage as

d(1) =

⌈
ln(r)

ln(q)

⌉
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and all subsequent stages as

d(k′) =


ln

(
1− 1−rk′∏k′−1

i=1 (1−qd(i))

)
ln(q)

 ,
where 1 < k′ ≤ k − 1.

Soland (1987) gives an optimal solution to the shoot-look-shoot model D1 in

which the number of weapons i to assign to the total number of targets a in the first

stage is simply
⌊
i
a

⌋
and to preserve the remaining i−

⌊
i
a

⌋
weapons for the surviving

targets. If the problem allows for more than two stages, he iteratively performs this

allocation, utilizing the largest integer contained in the fraction of available weapons

to surviving targets in the immediate stage and preserving the remaining weapons

for the subsequent stage.

Hosein (1989) proves that the optimal solution to D2 is to spread the number of

weapons used for each stage t, mt, as evenly as possible, which is similar to Soland

(1987). He therefore seeks to optimize over the decision variables mt the minimum

value of the final stage.

Ahner & Parson (2015) generate an optimal strategy for D9 through the im-

plementation of the Concave Adaptive Value Estimation (CAVE) algorithm with a

modified MMR algorithm which they call the MMR Plus Algorithm. The CAVE

algorithm estimates the value of second stage assignments by utilizing random real-

izations of the number of targets in the second stage and iteratively updating the

subgradient of a concave value estimation, the CAVE function. Their MMR Plus

algorithm assigns weapons to known targets in the first stage and, by comparing

marginal returns of assignments to the CAVE function, indicates how many weapons

to preserve for the second stage. Though the CAVE Algorithm is an approximation

technique, Ahner & Parson (2015) prove the convergence to the optimal solution in
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the DWTA wherein all weapons have the same probabilities of kill to target j.

Sikanen (2008) uses dynamic programming to solve D10. He uses a backwards

induction process to recursively define the policy which will optimize the problem.

2.4 Heuristic Algorithms

Due to the computational complexity of the WTA, much of the literature focuses

on heuristic algorithms which provide real time solutions rather than guaranteed

optimal solutions. Many of these are of well known heuristic algorithms, such as the

very large scale neighborhood (VLSN) search or the Genetic Algorithm (GA), but

others are of new design, seeking to exploit the special structure of the WTA.

SWTA.

The heuristic algorithms applied to the SWTA often fall into one of several groups.

Herein, we will explore some of the varying approaches within these groups.

MMR.

Kolitz (1988) implemented the MMR algorithm and, unlike denBroeder et al.

(1959), did not assume that all weapons had the same probability of kill for any target

j, but rather that each weapon’s probability of kill for any target j was independent.

Julstrom (2009), Madni & Andrecut (2009), and Gelenbe et al. (2010) implement

the MMR algorithm as a comparative benchmark in testing their heuristic approaches.

Ahuja et al. (2007) utilize the MMR algorithm as one of three lower bounding schemes

for their branch and bound algorithm.
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Genetic Algorithms.

There have been several implementations of the GA in the SWTA, each with a

minor adjustment yet the same in structure and execution. Metler et al. (1990) was

the first to implement the GA for the SWTA. Lee et al. (2002), Zhihua et al. (2009),

Lee & Lee (2005), Bogdanowicz et al. (2013), Li et al. (2009), Fu et al. (2006), Lee

et al. (2003), Lu et al. (2006), and Wu et al. (2008) are among the many subsequent

researchers that utilized the GA for the SWTA.

VLSN.

The very large scale neighborhood (VLSN) search metaheuristic is used by Ahuja

et al. (2007) and Lee (2010) to improve upon informed feasible solutions. Their VLSN

algorithms execute a heuristic search to efficiently find a quality solution and then

they define local search neighborhoods within which to search for superior solutions.

Ant Colony Optimization.

The Ant Colony Optimization (ACO) is another heuristic that is frequently im-

plemented. It was first used by Lee et al. (2002), and Yanxia et al. (2008), Lee & Lee

(2003), Shang (2003), Shang et al. (2007), Shang (2008), Huang & LI (2005), and Su

et al. (2008) among others have used the ACO to solve the SWTA.

Other Heuristic Algorithms.

Other techniques that do not fall into more generalized groupings have been

demonstrated to efficiently find quality solutions to the SWTA. Day (1966) solves

an integer relaxed NLP and utilizes rounding schemes. Wacholder (1989) imple-

mented neural networks to find robust solutions. Ahuja et al. (2007) used a network

flow based construction heuristic to find near optimal solutions to some of the larger
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problems in the literature. Tokgöz & Bulkan (2013) compared the results of GA,

Simulated Annealing (SA), Variable Neighborhood Search (VNS), and Tabu Search

algorithms. Johansson & Falkman (2010) use Particle Swarm Optimization (PSO)

and compare computational results to the GA, MMR, and exhaustive search algo-

rithms. Similarly, Zeng et al. (2006) compares PSO with GA and a GA improved by

greedy eugenics. Kwon et al. (1999) solves S3 using a Lagrangian relaxation Branch

and Bound Algorithm. Kline (2017) implemented the filtered beam search heuristic

on S1, developed a heuristic based upon the optimal solution to the quiz problem and

improved on these initial solutions using a metaheuristic which iteratively blocked as-

signment pairings which may have prevented superior solutions (Kline et al., 2017)

and also developed a heuristic with similarities to the Hungarian Algorithm (Kline

et al., 2017). See Hill & Pohl (2010) for a description of GA, SA, ACO, Tabu Search,

and PSO.

DWTA.

Less attention has been given to the DWTA as compared to the SWTA. Thus,

there are fewer heuristic algorithms shared among researchers. Often, hybrid heuristic

algorithms are used to inform one another in execution.

Metler et al. (1990) propose three greedy heuristics, the first of which is simply

the MMR algorithm. In the second heuristic, the expected value of each pairing is

computed and the selection of a random number determines the assignment based

upon a probability mass function for which assignments with higher expected values

have higher probabilities. The third heuristic proposed by Metler et al. (1990) is

called the ALIAS Algorithm. This algorithm first updates the value of a target in

stage t by dividing the value of the group by the total number of targets of type

j in stage t. It then assigns weapons to targets based upon an MMR procedure,
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updating the probabilities of kill and repeating until an assignment violates one of

the constraints or the maximum number of iterations has occurred.

Chang et al. (1987) developed a heuristic algorithm for D4 which utilizes a heuris-

tic subroutine to solve the first stage. An iterative process then decrements the num-

ber of weapons to use in the first stage based upon its marginal contribution until

the contribution is greater than some ε, at which point the number of weapons for

the first stage is fixed and the second stage is considered. This process iterates until

either all weapons have been assigned or all stages have been considered. As a sub-

routine to solve the first stage, Chang et al. (1987) use three different heuristics: the

MMR, an iterative linear network programming algorithm, and a nonlinear network

flow algorithm.

Murphey (2000) develops a decomposition algorithm to solve D9. In this heuristic,

he solves the first stage by some heuristic algorithm, saving the first stage solution and

expected second stage solution. After this he solves the second stage primal and dual

formulation across all possible second stage target outcomes. He uses these solutions

to define the expected objective function value of the second stage. If this value

exceeds the expected second stage objective function value previously determined, he

adds a cut to the problem and repeats the process.

Xin et al. (2010) solve D7 using Virtual Permutation (VP), TS, GA, and ACO.

In a subsequent work, they developed a rule-based heuristic to solve D7 in which

they consider the saturation of the constraints in order to inform the greedy selection

process by which they assign weapons to targets in a stage t (Xin et al., 2011).

Leboucher et al. (2013) use a Hungarian Algorithm to solve the assignment pair-

ings for D3a and uses a GA-PSO hybrid algorithm to solve D3b in order to determine

the firing order of the assignments. Khosla (2001) uses a GA-SA hybrid algorithm to

solve D8. Chen et al. (2009) implements a GA to solve D7. Bertsekas et al. (2000)
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uses Neuro-dynamic programming to obtain near optimal policies which he compares

to optimal policies obtained through dynamic programming.

2.5 Discussion

Evolution of WTA.

Research on the WTA has evolved since the work of Manne (1958) with devel-

opments in both the formulation of the problem and the solution techniques imple-

mented. In the earliest works, reference to the limited capacity to solve large nonlinear

problems (Day, 1966) resulted in attention on simplified formulations of the SWTA

(denBroeder et al., 1959) and solution techniques capable given the computational

capacity of the day (i.e., (Lemus & David, 1963), (Day, 1966)). Eckler & Burr (1972)

proposed and discussed the possibility of solving dynamic variants of the SWTA but

were unable to generate algorithms to solve such problems.

As computational power increased, so too did the ability to solve problems of in-

creased complexity. Burr et al. (1985) modeled and solved one of the earliest DWTA

problems, as did Chang et al. (1987), Soland (1987), and Hosein et al. (1988). Mean-

while, models of the SWTA with fewer assumptions were solved with novel approaches

(i.e., (Wacholder, 1989), (Metler et al., 1990), (Kwon et al., 1999)).

This pattern continued into the 2000s, with model developments either capturing

additional parameters which more closely resemble reality (i.e., (Shang et al., 2007)

and (Karasakal, 2008)) or models which enabled faster optimal or near optimal solu-

tions (i.e., (Malcolm, 2004), (Ahuja et al., 2007), and (Ahner & Parson, 2015)). Once

developed, these models were solved using newer approaches (i.e., (Bertsekas et al.,

2000), (Wu et al., 2008), (Kline et al., 2017)) or combinations of existing approaches

which could be implemented efficiently (i.e., (Lee et al., 2002), (Ahuja et al., 2007),

(Su et al., 2008), and (Xin et al., 2010)).
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As computational power continues to grow, the WTA will likely continue to be

the subject of research which improves upon existing solution techniques. Dynamic

models which consider the time dependence of weapon utilization and target flight

paths have been proposed ((Khosla, 2001) and (Leboucher et al., 2013)) but have

received less attention than existing models. Improvements to the solution techniques

in these models are yet to emerge, and as remarked by Khosla (2001), “in spite of

the two-step approach [outlined in (Khosla, 2001)], each of the optimization problems

still have a huge search space even for a modest number of threats, weapon systems,

and time points.” Methods of improving on the two-step approach are yet to emerge.

Similarly, Leboucher et al. (2013) remarks on the exponential growth of the problem

and proposes a two-step solution technique, adding that an additional problem is “to

be able to quantify the quality of one proposed solution.”

The future of the WTA will need to address the aforementioned difficulties of the

scheduling-focused DWTA with techniques capable of exploiting the special structure

of the problem. Additionally, there exist many parameters of the problem which are

removed due to the increased computational complexity they would bring that could

be introduced using novel modeling techniques.

Recent Developments.

While the focus of the research discussed heretofore focuses primarily on the static

and dynamic allocation of interceptors to offensive missiles, recent research has pro-

vided different frameworks through which this problem is addressed. We briefly dis-

cuss these recent developments here.
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Sensor Weapon Target Assignment Problem.

Missile defense depends on the accuracy and reliability of sensors to identify the

type and position of each incoming missile so as to appropriately defend a protected

asset. Much of the literature disregards the allocation of sensors and assumes the

defender’s omniscience. However, different approaches concerning the consideration

of a finite number of sensors are found within the literature.

Bogdanowicz & Coleman (2007) develop a model that seeks to maximize the sum

of the benefits of assigning each sensor to each target and each weapon to each target.

Zi-fen et al. (2011) combine the auction algorithm based technique developed by

Bogdanowicz & Coleman (2007) to reduce the limitations that an imperfect network

topology would introduce.

Others have considered the effect that sensors have on the probability of detecting

incoming missiles. Jian & Chen (2015) models the damage probability of an inter-

ceptor as the probability that a sensor will identify the missile and the destructive

capacity of the weapon with which the sensor is paired. Xin et al. (2018) extends this

by modeling the probability of successful engagement as the product of the intercep-

tor’s probability of kill and the sensor’s probability of detection.

Multi-objective Programs.

Each of the formulations presented in §2 seeks to maximize the probability of

destruction of all of the incoming missiles in some capacity. While the DWTA formu-

lations include parameters and constraints that promote the preservation of some of

the interceptors for subsequent salvos or subsequent shots to a leaker, solving each of

these formulations results in the consumption of all available resources. Though it is

important to defend a protected asset, there may be situations in which it is benefi-

cial to conserve interceptors. As such, there has been research into the simultaneous
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maximization of damage and minimization of shots.

Li et al. (2015) model the DWTA with an objective that simultaneously maximizes

the expected damage and minimizes the ammunition consumption. They compare

the performance of two solution techniques for this bi-objective program and later

develop and compare a third technique (Li et al., 2017). Li et al. (2017) solve a similar

formulation with a modified ant colony algorithm. Li et al. (2018) include a third

objective which seeks to maximize the value of each weapon type and use a genetic

algorithm to solve the multi-objective model.

Game Theory Approaches.

While all of the research discussed thus far addresses the response to an adversary

with no consideration of the adversary’s reaction, there has been research on this

game theory aspect to missile defense. In contrast to the discussion regarding the

research utilizing sensors and the research of multi-objective programs, the research

of game theory approaches does not conform to similar models.

Shan & Zhuang (2013) develop a model that considers the impact of defensive

resource allocation in the face of strategically focused and non-strategically focused

adversaries. Golany et al. (2015) develop a model that seeks to place defensive re-

sources in order to defend multiple assets and extend this model with a superior

solution technique in Golany et al. (2017). Similarly, Boardman et al. (2017) models

such a scenario and considers interceptor probabilities of kill.

Shalumov & Shima (2017) models a scenario wherein the protected assets are

maneuvering aircrafts. Their model considers the flight paths of the aircrafts, the

trajectories of the missiles, and the probabilities of kill of the interceptors in order to

best guide the aircrafts and their defensive actions. Within the simulation they run,

Shalumov & Shima (2017) test different assignment algorithms within a small scale
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two agent game.

Alternate Applications.

The WTA literature informs research beyond missile defense. Often, WTA works

are cited for their modeling or solution techniques, as they are applicable in many as-

signment problems with quantifiable rewards or costs and limited resources. Gülpınar

et al. (2018) framed their model and solution technique for a dynamic resource allo-

cation problem on much of the same literature that is outlined in §2, §3, and §4 of

this survey. Çetin & Esen (2006) model and solve a media allocation problem with an

objective function which, if Vj is the audience type value, pij is the probability that

audience j views advertisement i, and decision variable xij is the number of adver-

tisements of type i to assign to audience j, is the formulation S1. Onay (2016) model

neuromarketing with S1 as an objective function where Vj is the value of the brain

stimulus, pij is the probability that stimulus i affects the brain region j, and decision

variable xij is the number of stimulants of type i to assign to brain region j. Another

application using objective functions similar to S1 is cancer treatment. The target-

ing of cancer cells with medication is modeled and solved by Çetin (2007) and Esen

et al. (2008) using WTA research. Both Alighanbari (2004) and Bertuccelli & How

(2011) model and solve unmanned aerial vehicle (UAV) assignment planning prob-

lems with static and dynamic WTA models. Lastly, Gelenbe et al. (2010) use WTA

research to model and solve a problem of dispatching ambulances to emergencies with

an objective function that is similar to formulations S1 and S3.

Analysis of Literature Influence.

Matlin (1970) put forth the first survey of the WTA literature, characterizing the

problem with five components and defining elements of the problem which structured
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its subsequent research. Due to the high volume of literature at present, a strategy

to focus the considered literature for this survey was necessary, else an exhaustive

list of the literature would obfuscate the state of the WTA and how it came to be.

We considered the relevance of any work in the literature to be a function of its

usefulness to subsequent research and used a rate of citation metric as a tool to limit

our discussion heretofore.

Table 1. WTA Literature by Citation Density

Author Year Citations Citation Rate SWTA or DWTA Exact or Heuristic

Lee, Z 2003 257 17.13 SWTA Heuristic
Ahuja 2007 187 17 SWTA Both
Lee, Z 2002 249 15.56 SWTA Heuristic
Lee, Z 2005 117 9 SWTA Heuristic
Lloyd 1986 230 7.19 SWTA Exact
Xin 2011 50 7.14 DWTA Heuristic
Xin 2010 55 6.88 DWTA Heuristic
Karasakal 2008 57 5.7 SWTA Exact
Ahner 2015 15 5 DWTA Exact
Gelenbe 2010 38 4.75 SWTA Heuristic
Chen 2009 42 4.67 DWTA Heuristic
Bertsekas 2000 83 4.61 DWTA Both
Rosenberger 2005 59 4.54 SWTA Exact
Lee, M 2010 36 4.5 SWTA Heuristic
Yanxia 2008 42 4.2 SWTA Heuristic
Zeng 2006 50 4.17 SWTA Heuristic
Wacholder 1989 119 4.10 SWTA Heuristic
Lee, Z 2002 62 3.88 SWTA Heuristic
Bogdanowicz 2013 16 3.2 SWTA Heuristic
Eckler 1972 144 3.13 Both Exact
Khosla 2001 52 3.06 DWTA Heuristic
Murphey 2000 54 3 DWTA Heuristic
Lee, Z 2003 43 2.87 SWTA Heuristic
Johansson 2011 18 2.57 SWTA Heuristic
Matlin 1970 115 2.40 SWTA Exact
Madni 2009 21 2.33 SWTA Heuristic
Hosein 1988 63 2.1 DWTA Exact

As of September 2018

Table 1 shows that much of the work used in this survey with higher citation

rate, given the current year of 2018, focuses on heuristic solutions to the SWTA.

The entries within this table rate approximately 2 citations per year or more and

demonstrate, by their consistent impact on research, the importance and substantial

contribution they have made to the WTA literature.
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At the same time, we find that this metric, while helpful in reducing the volume of

literature to consider, can lead us to consider some works as less relevant due to the

lower citation rate which is sensitive to original publication date. Despite this reduced

rate, the works in Table 2 have a large number of citations and are foundational in

much of the literature we consider highly relevant. As such, we include these works.

Table 2. Included Foundational WTA Literature by Citation Count

Author Year Citations Citation Rate SWTA or DWTA Exact or Heuristic

Manne 1958 118 1.97 SWTA Exact
Hosein 1989 46 1.59 DWTA Exact
denBroeder 1959 83 1.41 SWTA Exact
Soland 1987 31 1 DWTA Exact
Day 1966 53 1.02 SWTA Heuristic

As of September 2018

2.6 Conclusion

The WTA has a rich breadth of literature which serves to improve upon the the-

ory and techniques necessary to efficiently solve these complex problems. Early works

sought to find methods to transform the problem into a simpler form, assume many

of the complexities away, or do both in order to generate a formulation which was

manageable with the computational capacity of the day. The theories and techniques

proposed by the earliest researchers, such as Manne (1958) and denBroeder et al.

(1959), inform much of the current research and built a foundation upon which sub-

sequent researchers were able to extend the theory and solution techniques of the

WTA.

In this survey, we have provided nine static models and ten dynamic models for

the WTA which have had an impact on the literature and have provided insights

into the problem from a modeling perspective. Additionally, we have reviewed some

of the exact algorithms, heuristic algorithms, and metaheuristic algorithms for the

static and dynamic WTA. Some of these algorithms are widely used in the literature,
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such as the branch and bound algorithm or the genetic algorithm. Others, such as

the algorithm developed by Bogdanowicz (2012) or the rule based heuristic developed

by Xin et al. (2010) were created to solve the WTA, efficiently exploiting the special

structure of the problem.

The only consistent aspect of the WTA since its introduction into the field is its

enduring relevance. As defensive strategies improve to enhance the capacity to mit-

igate the risk that ballistic missiles present, the technology of these ballistic missiles

also improves. Additionally, while not addressed here, many non-defensive applica-

tions, in the business field and others, will continue to benefit from the lively research

surrounding the weapon target assignment problem.
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III. A Heuristic and Metaheuristic Approach to the SWTA

3.1 Introduction

The Weapon Target Assignment (WTA) Problem has been studied extensively in

the field of operations research since its introduction to the field by Flood in 1957.

It is the subject of many solution techniques that include exact algorithms, heuristic

algorithms, and nature inspired metaheuristics. In much of the literature, a piecewise

approximation of linear functions is used to transform the problem into one whose

solution is more computationally accessible. While there are variants of the problem

such as the dynamic WTA and two stage WTA, this paper focuses on the NP-complete

Static WTA (SWTA) Problem.

Given n incoming targets, solving the problem results in the assignment of m

weapons to the targets so as to minimize the collective residual expected value of

the targets. The value of the targets, Vj, corresponds to their negative effects on the

system being defended for j = 1, . . . , n targets and the number of weapons of type i,

wi, which have an associated probability pij of destroying target j. As the problem

seeks to minimize the residual value of targets, known in literature as target leakage,

the probability of survival for an individual target is defined by qij = 1 − pij. The

SWTA problem formulation is nonlinear and is defined by

min
n∑
j=1

Vj

m∏
i=1

q
xij
ij (1)

st

n∑
j=1

xij≤wi for i = 1, ...,m,

xij∈Z+, for i = 1, ...,m, j = 1, ..., n,

where xij is the number of weapons of type i to assign to target j. In this paper,
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we limit wi = 1 for i = 1, . . . ,m for direct comparison with previous results given in

Ahuja et al. (2007).

Solution techniques have expanded with regard to both the size of problem in-

stances considered and the removal of simplifying assumptions. Manne (1958), apart

from contributing the first model of this problem to the literature, identified an opti-

mal solution to the problem when two “not-so heroic approximations” are introduced:

all weapons have the same probability of kill for any one target, and the decision vari-

ables, xij, are binary-valued. Manne whereas demonstrated how a small toy problem

can be optimized by observation, denBroeder et al. (1959) offers the first algorithm

capable of solving larger instances using Manne’s assumptions. Known in the litera-

ture as the Maximum Marginal Return (MMR) algorithm, denBroeder sequentially

assigns weapons to targets that respectively provide a maximum marginal contribu-

tion to the objective function. Kolitz (1988) further defined the conditions by which

the MMR algorithm is optimal. Removing the assumption that all weapons have the

same probability of kill for a particular target, Chang et al. (1987) limited the number

of weapons assigned to each target to be at most one and, by utilizing a linear approx-

imation of the objective function, was able to solve the problem via an iterative linear

network programming algorithm (ILINE) that assigns the best weapon-target pair-

ings and updates the number of available weapons at each iteration. The limitation

on the number of weapons assigned to each target was removed by Kwon et al. (1999)

and Ahuja et al. (2007) to optimize the problem using a branch and bound algorithm.

These branch and bound approaches respectively utilized Lagrangian relaxation tech-

niques (Kwon) and linear transformations (Ahuja) in their execution. Johansson &

Falkman (2009) sought to define the limits of instance sizes for which a brute force

algorithm can optimize the nonlinear problem, and Kline (2017) developed a branch

and bound algorithm to optimize larger instances of the nonlinear problem.
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As the WTA problem has been proven to be NP-complete (Lloyd & Witsenhausen,

1986), many heuristic algorithms have been utilized to find suboptimal solutions.

Neural networks (Wacholder, 1989), genetic algorithms (e.g., Lee et al., 2003, 2002;

Shang et al., 2007), ant colony algorithms (Lee et al., 2002), and particle swarm

algorithms (Zeng et al., 2006) are but a few of the heuristic and metaheuristic solution

techniques applied.

Kline (2017) proved the convexity of the untransformed SWTA objective function,

developed methods of finding exact solutions to smaller problem sizes, and both cre-

ated and tested a new heuristic capable of finding quality solutions in real time. This

heuristic, while finding solutions within hundredths of a second for large instances

(e.g., n = 160, m = 80) of these NP-hard problems, usually does not guarantee

optimal solutions. For smaller instances (e.g., n≤10, m≤10), the heuristic attained

solutions that were approximately 5% from the global optimum, on average, motivat-

ing this study to improve the solution procedure.

In this paper, we review the Modified Quiz Problem (MQP) heuristic from Kline

(2017) in §2. In §3, we introduce a new metaheuristic which invokes the MQP heuristic

as a subroutine which we iterate while preventing judiciously selected assignments to

search for improved assignment pairings. We present a comparison of the results of

this metaheuristic with the well regarded construction heuristic developed by Ahuja

et al. (2007) in §4 and provide conclusions in §5.

3.2 Quiz Problem Heuristic

The heuristic that serves as a kernel within the metaheuristic examined herein

is based upon the parametric characteristics of the optimal solution to the Quiz

Problem. Bertsekas & Castañon (1999) first applied the solution characteristics to

the Quiz Problem within a heuristic search for scheduling problems, and Ahner (2005)
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used the approach to route unmanned aerial vehicles in risky environments.

The Quiz Problem states that an individual presented with a series of questions

u = 1, . . ., n with value vu has probability pu of correctly answering a question. Fur-

ther, the individual answers questions, receiving the value of each question as a re-

ward, until he answers one incorrectly, at which point the quiz is terminated. The

objective of the Quiz Problem is to identify the order in which to answer the ques-

tions to maximize the value of the collective reward. Bertsekas & Castañon (1999)

showed that the strategy to maximize return is an index policy wherein questions are

answered in descending values of yu, which is defined as

yu =
vupu

1− pu
=
vupu
qu

.

For the SWTA, we use Ahner’s residual value strategy to define the value of each

weapon-target assignment as y0
ij, which allows us to select the maximum return for a

weapon-target assignment xı̂̂, where

(̂ı, ̂)∈arg max
i=1,...,m,

j=1,...,n

{y0
ij}.

We then redefine our target value to be V̂← V̂qı̂̂, which is the residual value of the

selected target given the weapon assigned. We also redefine our probabilities of kill

for the selected weapon wı̂ to be pı̂· = 0, as we have only one weapon of each type

for our models (W.L.O.G., an instance having more than one weapon of a given type

can be modeled with our construct by considering the multiple weapons of the same

type as multiple weapons types having identical capabilities and only one weapon

each). Using these updated values, we update our value array to be y1
ij. We repeat

this process until each of the weapons is assigned to a target.

Figure 1 shows the Modified Quiz Problem Heuristic. The heuristic initializes
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the assignment solution, x, to an n x m zeros matrix for a problem instance having

n weapons and m targets. As referenced above, we build a value array y, which is

defined by

y0
i,j =

Vjpij
qij

.

We then identify the two largest values in y, which we denote as y(i1, j1) and y(i2, j2).

If i1 6=i2, we check to see whether the greedy assignment is preferred according to a

process defined in the following paragraph. If i1 = i2, we set x(i1, j1) = 1 and

increment a counter k by 1. If our counter is equal to the number of weapons after

this increment, we terminate the heuristic. Otherwise, we update our value array y

by redefining Vj1 ← Vj1qi1j1 and setting the probabilities of weapon i1 to zero, (i.e.,

pi1j = 0, j = 1, . . . , n).

We note a shortcoming for greedy selection-based heuristics. These heuristics

seek to define pairings based upon the greatest expected value of the weapon-target

assignment, that is Vjpij, which aligns with the conceptual underpinnings of a greedy

algorithm. The shortcoming in this approach can be illustrated by examining a case

having two weapons and two targets, with target values {V1, V2} and probabilities of

kill {p11, p12, p21, p22}. If we define the greatest expected value to be

max


V1p11 V2p12

V1p21 V2p22


 = V1p11,

and we further assume that, for this case,

V1p11 − V2p12 < V1p21 − V2p22,
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Figure 1. Quiz Problem Heuristic and Modified Quiz Problem Heuristic
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we can see that, with a simple rearrangement of the above inequality, we have

V1p11 + V2p22 < V1p21 + V2p12.

Thus, selecting the pairing with the greatest expected value will result in a lower final

solution value than selecting the alternative. We incorporate into the Quiz Problem

Heuristic a step that checks whether

yab −max
j 6=b
{yaj} < ycd −max

j 6=d
{ycj},

where yab > ycd > . . . > min
i,j
{yij}. In the case wherein the above inequality holds

true, we select ycd rather than yab as our assignment within such an iteration.

Although we may find superior solutions with this modification, we note that this

additional routine increases the computational requirement of the heuristic. We will

show in §3 that the Eminent Domain Metaheuristic proposed herein similarly resolves

the shortcoming of implementing a greedy selection process through repetition of a

subroutine, so we will not invoke the modification step in the metaheuristic proposed

in §3 or in the Quiz Problem Heuristic in §4.

3.3 Eminent Domain Metaheuristic

Although the Quiz Problem Heuristic has an appealing simplicity for implemen-

tation and requires relatively little computational effort, even when utilized to solve

large problem instances, the solution quality can be sufficiently degraded relative to

an accepted benchmark heuristic (e.g., see Kline (2017)) to merit the consideration of

an alternative approach. As such, a metaheuristic capable of using the solution from

the QP heuristic as an initial feasible solution has the potential to exceed current

top performing heuristics in both computational time and solution quality. Herein,
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we develop the Eminent Domain (ED) Metaheuristic that, given an initial feasible

solution, iteratively denies the assignment pairings of a subset of weapon-target pairs

that yield the most value for the benefit of other potential assignments.

Upon examining the QP heuristic, we found that inferior solutions are identified

when an assignment pairing is made that causes the prevention of ultimately superior

pairings, effectively converging towards a local-but-not-global optimal solution. That

is, for an instance in which i− l and k− j is part of a global optimal solution, such a

local optimum convergence may occur if the assignment of weapon i to target j has

a superior expected value compared to assigning weapon i to target l, but where a

k→l assignment is far worse than a k − i assignment. We initially considered using

a neighborhood search metaheuristic to improve upon the initial solution, but since

there is no guarantee that assignments must be spread evenly (i.e., there can be unas-

signed targets even when the number of weapons equals the number of targets), this

technique would have adopted the logical construct of a full enumeration approach,

negating rather than exploiting the computational efficiency of the QP heuristic. We

found that, as an alternative, running the QP heuristic while instilling a side con-

straint iteratively preventing the best assignments would allow for the heuristic to

obtain an improved objective value.

The formalized process by which we execute the ED Metaheuristic, as depicted in

Figure 2, is as follows. We first find a feasible solution using the QP heuristic. We next

define a method by which we assign values to the assignments of our initial solution.

From this solution, we define a threshold value above which we iteratively implement

our QP heuristic with side constraints while preventing such assignments. The best

solution found is returned using a termination rule where either the metaheuristic is

run to completion or a maximum computation time is exceeded.

We seek a method for alternatively defining the quality of each assignment because
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Figure 2. Eminent Domain Metaheuristic

the decay of assignment utility in one weapon may far exceed that of another. Take,

for example, the values of the following problem with two weapons and two targets:

V1p11 V2p12

V1p21 V2p22


where V1p11 = 10, V1p21 = 9, V2p12 = 8, and V1p22 = 6. In assigning Weapon 1 to

Target 1, which follows from a greedy selection process, we force the assignment of

Weapon 2 to Target 2. The resulting sum of assignment values is 16, which is inferior

to that of assigning Weapon 1 to Target 2 and Weapon 2 to Target 1, which has

a sum of assignment values of 17. We note that the decay of assignment values of

Weapon 1 is less than that of Weapon 2. If we consider this assignment value decay,

we can observe the quality of the assignment of Weapon 2 to Target 2 to be lower

than that of Weapon 1 to Target 2. While this is similar to the greedy selection

shortcoming illustrated in §2, it is worth redefining because the assignment value
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decay is the basis for the ED Metaheuristic. In the following paragraphs, we describe

two alternatives for defining the quality of each assignment to block myopically higher-

valued assignments and allow the subroutine to make assignments that may be part

of a solution having a lower objective function value.

The first method to define the quality of assignments considers the relative value

decay of assignments for each weapon. As such, we denote this the Ratio-based

Method. We first define the values of each possible assignment in keeping with the

MQP heuristic: yij =
Vjpij
qij

. We then compute the relative values for each weapon, or

y′ij =
yij

max
j
{yij}

,

where y′ij ∈ (0, 1]. Further, we define the rank order of each weapon’s assignments,

yr, with 1 being the worst and t being the best. We compute an element-wise product

of the rank order matrix with the relative value matrix to find a ratio value matrix.

Next, we multiply this element-wise by our initial solution, x0, resulting in an m x n

matrix of assignment scores, xr. Table 3 illustrates each step of the Ratio-based ED

Metaheuristic process through an example.

Next, we define a threshold percentage, pa, which identifies the number of assign-

ments to iteratively deny. We define the set of assignments which we will deny, xd,

to be the set of all xr≥tpa. For example, we define pa = 0.8, we would find each

assignment score xr≥0.8t = 4 and run the subroutine 2 times, iteratively blocking

assignments

w3 − t2

w5 − t3

We allow for an increased number of denials so that we may consider the solution
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Table 3. Ratio-Based Assignment Scores Computation

y j = 1 2 3 4 5

i = 1 151.93 228.05 139.92 79.33 101.02
2 154.53 119.94 176.97 105.88 53.91
3 99.02 259.72 143.02 61.12 58.39
4 103.89 231.80 118.25 147.48 179.99
5 120.18 335.10 442.78 83.84 59.07

y’ j = 1 2 3 4 5

i = 1 0.67 1 0.61 0.35 0.44
2 0.87 0.68 1 0.60 0.30
3 0.38 1 0.55 0.24 0.22
4 0.45 1 0.51 0.64 0.78
5 0.27 0.76 1 0.19 0.13

yr j = 1 2 3 4 5

i = 1 4 5 3 1 2
2 4 3 5 2 1
3 3 5 4 2 1
4 1 5 2 3 4
5 3 4 5 2 1

x0 j = 1 2 3 4 5

i = 1 1 0 0 0 0
2 0 0 0 1 0
3 0 1 0 0 0
4 0 0 0 0 1
5 0 0 1 0 0

xr j = 1 2 3 4 5

i = 1 2.66 0 0 0 0
2 0 0 0 1.20 0
3 0 5.00 0 0 0
4 0 0 0 0 3.11
5 0 0 5.00 0 0
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where single denials, single-and-pairwise denials, etc. are implemented. For example,

if we were to allow for up to two simultaneous denials, the blocked assignments would

include

w3 − t2

w5 − t3

w3 − t2 & w5 − t3

We store the objective function value and assignment matrix of the best solution

and, if we find an improved solution, we run this process again. This metaheuristic

terminates when no improvements are found during an iteration of the denial process.

A second method we develop to define the quality of each assignment is similar to

the first though, instead of relying on relative values, we use the least squares method

to find the slope for the solution value decay of each weapon. We call this method

the Slope-based Method. Referring to Table 3, this alternative method replaces the

second process where we define the y′ matrix. We divide each vector of slopes by the

minimum slope to find a scaled vector of slopes mi ∈ (0, 1], which we subsequently

multiply by the rank of each assignment, as in the Ratio-based Method with the

relative value of each weapon. Table 4 illustrates the steps of the Slope-based ED

Metaheuristic through the same example as illustrated in Table 3.

Improvements on the ED Metaheuristic.

We define a metaheuristic capable of finding improved solutions using a heuristic

subroutine. The implementation of this metaheuristic only improves the heuristic

search algorithm solution. Further, the implementation of the ED Metaheuristic

with single-and-pairwise denials will not find inferior solutions to those found using
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Table 4. Slope-Based Assignment Scores Computation

y j = 1 2 3 4 5

i = 1 151.93 228.05 139.92 79.33 101.02
2 154.53 119.94 176.97 105.88 53.91
3 99.02 259.72 143.02 61.12 58.39
4 103.89 231.80 118.25 147.48 179.99
5 120.18 335.10 442.78 83.84 59.07

yr j = 1 2 3 4 5

i = 1 4 5 3 1 2
2 4 3 5 2 1
3 3 5 4 2 1
4 1 5 2 3 4
5 3 4 5 2 1

m Slope Relative Slope

i = 1 -34.83 0.34
2 -29.48 0.29
3 -48.46 0.48
4 -31.76 0.31
5 -101.87 1

y’ j = 1 2 3 4 5

i = 1 1.37 1.71 1.03 0.34 0.68
2 1.16 0.87 1.45 0.58 0.29
3 1.43 2.38 1.90 0.95 0.48
4 0.31 1.56 0.62 0.94 1.25
5 3.00 4.00 5.00 2.00 1.00

x0 j = 1 2 3 4 5

i = 1 1 0 0 0 0
2 0 0 0 1 0
3 0 1 0 0 0
4 0 0 0 0 1
5 0 0 1 0 0

xr j = 1 2 3 4 5

i = 1 1.37 0 0 0 0
2 0 0 0 0.58 0
3 0 2.38 0 0 0
4 0 0 0 0 1.25
5 0 0 5.00 0 0
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only a single denial.

Theorem 1 The single-and-pairwise denials variant of the ED Metaheuristic finds

non-degrading solutions relative to the single-denial variant, which finds non-degrading

solutions to its subroutine QP Heuristic.

Proof. Let XQP be the feasible solution found by the QP heuristic. Further, let

X(1) be the set of solutions found by the ED Metaheuristic with one denial. As X(1)

is a finite set, there exists a solution x∗ ∈ X(1) for which f(x∗) ≤ f(x), ∀ x ∈ X(1).

As illustrated in Figure 2, if f
(
xQP

)
< f(x), ∀ x ∈ X(1), x∗ = xQP . Otherwise,

f(x∗) < f
(
xQP

)
.

Similarly, let X(2) be the set of all solutions found by the ED Metaheuristic with

two simultaneous denials. Let xr ∈ X(1) be the solution found when blocking the rth

assignment and xr,s ∈ X(2) be the solution found when blocking both the rth and sth

assignments. Then ∀ xr,∃ xr,s such that xr = xr,s when r = s. Therefore, X(1) ⊂ X(2).

As above, there exists a solution x∗ ∈ X(2) for which f(x∗) ≤ f(x), ∀ x ∈ X(2).

From these, we can assert that ∀ x1 ∈ X(1) and f(x2) ≤ f(x1) ≤ f(xQP ), ∀ x2 ∈

X(2). �

3.4 Computational Results

We test each heuristic and metaheuristic to solve a set of instances by designing

random parameters within various instance sizes ranging from 5 weapons and 5 tar-

gets to 80 weapons and 160 targets. We consider 15 problem sizes, shown in Table

18, which affix the number of weapons and targets for a set of randomly generated

instances for each size. For each target value, a uniformly distributed continuous

variable value [25, 100] is randomly generated, and we also assigned randomly gen-

erated probabilities of kill as uniformly distributed continuous variables [0.6, 0.9] so

58



that each weapon has a different probability of kill for each target. This allows us to

compare results to Ahuja et al. (2007), who used the same distributions. We generate

20 problem instances for each of the 15 problem sizes and perform all tests on a com-

puter having an Intel Xeon E5-2650 v2 processor with 128 GB RAM. Each solution

method is applied to the same set of 20 problem instances for each problem size to

enable a comparison of solution methods’ relative effectiveness and computational

efficiency.

Table 5. Test Problem Sizes

Problem Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Weapons 5 10 10 10 15 20 20 20 40 40 40 40 80 80 80
Targets 5 5 10 20 10 10 20 40 10 20 40 80 40 80 160

Comparison of Heuristics.

The baseline heuristic, the QP heuristic, is compared to the Construction heuristic

developed by Ahuja et al. (2007). The motivation for introducing a modification to

the Quiz Problem (QP) heuristic is explained in §2 and generally results in improved

objective values. However, this modification increases the computational require-

ment of the heuristic. As the ED Metaheuristic similarly resolves the shortcoming

of implementing a greedy selection process through repetition of the subroutine, we

demonstrate results using the QP heuristic without the modification.

Table 6 reports the performance of the QP and Construction Heuristics regarding

both the number of instances for which each heuristic dominates in terms of objective

function value, and the average required computational effort for each problem size.

We observe that, whereas the QP heuristic attained the superlative objective function

value for 79 of the 300 (26%) test instances, it’s required computational effort was

notably better than the Construction Heuristic. Despite attaining the superlative
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objective function value for 77% of the instances tested (including some instances

for which both heuristics attained an identical solution), the Construction Heuristics

required computational effort is problematic for practical use. By comparison, the QP

Heuristic required 99.96% less computational effort, on average, across problem sizes.

Moreover, for Problem Sizes 9-15, the Construction Heuristic required over 15 seconds

and up to 22 minutes, on average, for the implementation of the WTAP solution to

defend against incoming missiles. Such solution times will not allow enough time to

act on the decision in a timely manner.

Improvements with ED Metaheuristic.

In this section, we test and present the improved solutions found via the ED Meta-

heuristic and conduct selected sensitivity analyses for key algorithmic parameters.

During initial testing for which we do not explicitly display the results herein, we

observed that the improvements for smaller problem sizes are greater with the Ratio-

based ED, whereas they are greater with the Slope-based ED for larger problem sizes.

As problem size increases, more targets are available for each weapon. This results

in an increased density of assignment values about the mean. Because the Slope-

based ED computes a least squares model of a weapons assignment quality decay,

the increased density about the mean reduces the slope and decreases the intercept

relative to the models of smaller problems. As the heuristic begins assigning weapons

to targets, the steep immediate decay of assignment pairings for larger problems

quickly reduces to a far slower decay whereas the slope of the model gives a constant

decay. This means that, for larger problems, the assignment values given by Ratio-

based ED will have very high scores for the top assignments and the rest will be

relatively small whereas Slope-based ED will have steadily decreasing scores. This

yields a greater quantity of assignments in our denial set xd for the Slope-based ED
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Table 6. Comparison of QP Heuristic and Construction Heuristic Over 20 Instances
per Problem Size

Problem Best Solutions Average Time (sec)

Size Weapons Targets QP Construction QP Construction

1 5 5 5 19 0.000254 0.224
2 10 5 5 19 0.000382 0.445
3 10 10 5 17 0.000386 0.441
4 10 20 7 13 0.000406 0.487
5 15 10 4 16 0.000538 0.767
6 20 10 0 20 0.000768 1.608
7 20 20 1 19 0.000815 2.208
8 20 40 14 6 0.00121 4.455
9 40 10 1 19 0.00136 17.997
10 40 20 2 18 0.00210 20.569
11 40 40 1 19 0.00250 14.311
12 40 80 14 6 0.00352 47.077
13 80 40 0 20 0.00704 309.641
14 80 80 0 20 0.00876 177.106
15 80 160 20 0 0.0117 1348.815

vis-á-vis the Ratio-based ED for larger problem sizes.

For smaller problem sizes, we observe that our Ratio-based ED improves the solu-

tion better than the Slope-based ED. This is due to the increased variation between

weapon assignment decay slopes. With the larger problems, the assignment decay is

very similar among each of the weapons, but with smaller problems this is not the

case. As such, the Slope-based ED, which normalizes the slopes, is more likely to

have one weapon with a relatively large slope which corresponds to smaller normal-

ized slopes for the other weapons, and ultimately results in lower assignment quality

scores for those weapons. As the Ratio-based ED does not consider the assignment

decay of each weapon relative to each other weapon, its scores are not impacted by

outliers. Figure 3 shows the assignment quality decay for two instances each for four

problem sizes. The solid line depicts the actual decay of assignment values, whereas

the dotted line shows the slope of the decay for the given weapons. This illustrates

the variation between slopes and the density of assignment values about the mean.
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Figure 3. Slope-based ED and Ratio-based ED Assignment Value Decay Rates for 2
Instances Each of 4 Different Problem Sizes

We conducted additional testing on the ED Metaheuristic using up to one, two,

three, or four simultaneous denials, respectively, to identify the impact on solution

quality. Figure 4 illustrates the relative improvements for each of the 20 instances

for four different problem sizes, using the Slope-based ED with pa = 0.4, wherein,

e.g., an improvement of 0.11 indicates an 11% relative improvement in the reported

objective function value. We observe that there is no benefit in these problems to

allowing three and four simultaneous denials. In comparing our improved solutions

to known optimal solutions for smaller problem sizes, we note that some problems are

improved by denying only one assignment of one weapon and multiple assignments
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of another weapon, a process the ED Metaheuristic does not perform due to the

combinatorially-influenced growth in the computational effort it would entail.

Figure 4. Relative Improvements Using Multiple Simultaneous Denials in the Slope-
based ED Metaheuristic (with pa = 0.4)

As evidence to this conjecture, we note in Table 7 that the average computa-

tional effort required for these multiple denials grows exponentially for medium and

larger-sized problem instances. We observe the points at which the ED Metaheuristic

variants with “up to 3” and “up to 4” multiple denials each exceed the computational

time required for the Construction Heuristic to find a solution.

We test the improvements made by the Slope-based ED Metaheuristic while vary-

ing the threshold percentage. We run each of the 20 instances using threshold per-

centages pa = {0, 0.25, 0.5, 0.75, 1} and examine the average relative effect on the QP
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Table 7. Average Computational Effort for Multiple Denials in the ED Metaheuristic

Average Time (sec)

ED With Simultaneous Denials

Weapons Targets 1 up to 2 up to 3 up to 4 Construction

5 5 0.00955 0.00521 0.00671 0.00876 0.224
15 10 0.0199 0.0806 0.336 1.210 0.767
20 20 0.0373 0.253 1.528 7.650 2.208
40 80 0.328 6.806 92.499 992.206 47.077

Heuristic solution and the average computational time, respectively. Table 8 reports

the improvements and computational times with one denial. The best improvements

in average solution quality occur with a threshold percentage of 0%, which is ex-

pected as it ensures that we deny each such assignment rather than a subset of our

assignments.

Table 8. Improvements for 1 Denial With Different Threshold Percentages for the
Slope-based ED Metaheuristic

Relative Improvement (%) Average Time (sec)

Threshold Percentage Threshold Percentage
Weapons Targets 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

5 5 3.935 2.683 2.683 2.683 2.683 0.00353 0.00334 0.00325 0.00317 0.00319
10 5 4.672 4.199 4.199 4.199 4.199 0.00729 0.00683 0.00602 0.00702 0.00596
10 10 5.728 5.160 5.160 4.525 4.525 0.00730 0.00637 0.00612 0.00814 0.00600
10 20 1.864 1.864 1.423 1.273 1.273 0.00762 0.00769 0.00656 0.00607 0.00609
15 10 5.415 4.647 3.929 3.929 3.929 0.0111 0.00966 0.00890 0.00891 0.00889
20 10 5.972 3.338 3.338 3.338 3.338 0.0151 0.0119 0.0118 0.0118 0.0117
20 20 3.187 2.323 2.323 2.323 2.323 0.0155 0.0120 0.0129 0.0120 0.0120
20 40 1.158 1.158 1.088 0.762 0.762 0.0186 0.0190 0.0193 0.0166 0.0131
40 10 3.805 2.892 2.892 2.892 2.892 0.0301 0.0236 0.0235 0.0237 0.0234
40 20 2.396 1.708 1.708 1.708 1.708 0.0346 0.0277 0.0286 0.0280 0.0263
40 40 2.192 2.054 1.853 1.853 1.853 0.0378 0.0291 0.0284 0.0272 0.0276
40 80 0.803 0.803 0.803 0.638 0.638 0.0488 0.0504 0.0513 0.0324 0.0325
80 40 2.659 2.152 1.999 1.999 1.999 0.0929 0.0680 0.0700 0.0625 0.0600
80 80 1.413 0.927 0.841 0.841 0.841 0.135 0.0845 0.0759 0.0760 0.0741
80 160 0.386 0.386 0.386 0.349 0.349 0.196 0.195 0.195 0.115 0.110

Within Table 9, we note that varying the threshold percentage is far more com-

putationally expensive when we allow for two simultaneous denials, but that the

improvements to the QP solution are far greater. We can observe that while all of
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the average solution improvements increase (save those of a threshold percentage of

100%) when allowing two simultaneous denials, the improvements between pa = 0.25

and pa = 0.5 increase the most, on average.

Table 9. Improvements for 2 Denials With Different Threshold Percentages for the
Slope-based ED Metaheuristic

Relative Improvement (%) Average Time (sec)

Threshold Percentage Threshold Percentage
Weapons Targets 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

5 5 5.845 5.845 5.447 5.238 2.683 0.0280 0.00849 0.00588 0.00417 0.00276
10 5 7.308 6.805 5.838 5.424 4.199 0.114 0.0561 0.0210 0.00965 0.00497
10 10 8.705 8.705 8.595 7.292 4.525 0.110 0.0754 0.0450 0.0112 0.00491
10 20 4.675 4.675 4.645 3.794 1.273 0.130 0.107 0.107 0.0284 0.00507
15 10 9.855 9.811 9.208 7.378 3.929 0.379 0.281 0.158 0.0213 0.00733
20 10 11.222 11.069 10.531 5.993 3.338 0.984 0.793 0.323 0.0460 0.00973
20 20 6.609 6.609 6.498 5.460 2.323 1.027 0.907 0.539 0.084 0.0098
20 40 2.936 2.936 2.906 2.562 0.762 1.398 1.463 1.428 0.510 0.01329
40 10 9.860 9.860 9.048 7.152 2.892 8.322 6.660 2.553 0.298 0.023
40 20 6.687 6.676 6.503 5.044 1.708 11.123 10.398 5.799 0.572 0.0254
40 40 4.820 4.820 4.810 4.580 1.853 13.434 12.338 8.983 1.856 0.0350
40 80 1.950 1.950 1.950 1.670 0.638 18.276 18.295 18.280 7.280 0.0378
80 40 6.330 6.330 6.310 5.980 1.999 134.805 129.892 91.724 11.215 0.0609
80 80 2.790 2.790 2.790 2.370 0.841 235.055 229.069 198.649 50.365 0.0736
80 160 1.050 1.050 0.923 0.894 0.349 367.771 364.288 276.099 259.992 0.110

Optimality Gaps of Heuristics.

We test the ED Metaheuristic with a threshold percentage pa = 0.4, using the

Ratio-based ED Metaheuristic, alternatively with single-denial (denoted ED 1) and all

single-and-pairwise denials (denoted ED 2), as respectively defined in §3. We compare

the results of these experiments utilizing the Ratio-based ED Metaheuristic variant

to the optimal solutions reported by the commercial solver BARON as reported in

Table 10. We utilized BARON due to its robust and efficient performance as noted

in Neumaier et al. (2005), wherein the authors indicate that BARON has a 1.8%

false optimal reporting rate and is designed to solve nonlinear convex optimization

problems optimally.

We call attention to the negative optimality gaps within the results in Table 10.
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We utilized BARON to find optimal solutions for each problem, and it reported a

solution as globally optimal upon termination for each problem size’s instance where

noted by an asterisk. We observe that in multiple instances, each of the solution

methods is able to find superior solutions to BARON for the SWTA problem. As

such, the relative gap with these instances is a negative value, and the solutions

reported to be optimal by BARON are not, in fact, optimal. As a confirmatory

experiment, for every instance for which an alternate solution method outperformed

BARON, we conducted a warm start of BARON by initializing it with the solution

attained by the ED Metaheuristic. For each such instance, BARON returned the

warm start solution as optimal. For the largest problem instances, BARON was only

able to find a feasible solution and a lower bound within two hours of computational

effort, and these feasible solutions were inferior to those found by the QP Heuristic

(7 of 20 instances), the Ratio-based ED Metaheuristic with single-denial (10 of 20

instances) and the Ratio-based ED Metaheuristic with single-and-pairwise denials

(18 of 20 instances).

Table 11 reports the number of superior solutions out of 20 instances for each

problem size that each solution method finds relative to the reportedly optimal so-

lutions from BARON. We note that, for larger problem sizes having more weapons

than targets, we find superior solutions to BARON with greater frequency than for

problem sizes having more targets than weapons. We observe that, compared to the

Ratio-based ED Metaheuristic with single-and-pairwise denials, we find 59 instances,

a 21.4% false reporting rate, higher than reported by Neumaier et al. (2005).

To garner better insight regarding the performance of each heuristic, we present

the relative gaps using the best solution for each instance regardless of solution tech-

nique. Table 12 depicts these relative gaps. We note that the Ratio-based ED Meta-

heuristic with single-and-pairwise denials is consistently within 2% of the best ob-
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Table 10. Relative Optimality Gaps with BARON (%)

Search Heuristic

Weapons Targets QP ED 1 ED 2 Construction

5 5 7.299 ± 8.784 4.189 ± 7.576 0.467 ± 1.636 0.460 ± 2.059

10 5 9.098 ± 9.898 4.001 ± 4.169 0.834 ± 1.483 1.780 ± 3.501

10 10 10.793 ± 8.920 5.500 ± 6.606 0.596 ± 1.181 3.136 ± 3.430

10 20 6.501 ± 3.436 4.577 ± 2.341 1.447 ± 1.478 6.303 ± 4.525

15 10 13.138 ± 9.474 8.086 ± 6.876 1.491 ± 1.553 5.106 ± 4.012

20 10 14.148 ± 8.288 9.534 ± 8.778 1.082 ± 2.069 1.524 ± 3.485

20 20 8.857 ± 3.495 6.287 ± 3.208 1.728 ± 1.295 2.978 ± 2.185

20 40 3.916 ± 1.153 2.707 ± 1.376 0.855 ± 0.502 5.360 ± 2.153

40 10 -60.701 ± 11.568 -61.802 ± 11.682 -64.530 ± 10.465 -64.855 ± 10.141

40 20 0.083 ± 10.747 -1.777 ± 9.545 -6.510 ± 8.679 -5.792 ± 7.578

40 40 7.137 ± 3.468 5.074 ± 1.864 1.883 ± 0.409 2.921 ± 0.954

40 80 2.734 ± 0.877 1.969 ± 0.726 0.730 ± 0.418 3.812 ± 1.652

80 40 -15.719 ± 12.564 -17.471 ± 12.028 -21.060 ± 11.543 -21.446 ± 11.607

80 80 4.295 ± 1.696 3.403 ± 1.099 1.396 ± 0.680 1.557 ± 0.612

80* 160* -0.00450 ± 1.150 -0.391 ± 1.146 -1.058 ± 1.142 3.619 ± 1.718

*BARON did not converge to a global optimal solution within 2 hours.

served solution.

3.5 Conclusion

We refer to work by Kline (2017) in defining a Modified Quiz Problem (MQP)

Heuristic capable of finding quality solutions to the Static Weapon Target Assignment

(SWTA) Problem in thousandths of a second as a basis for an improving metaheuris-

tic. We present the Eminent Domain (ED) Metaheuristic as a solution methodology

to exploit the highly efficient MQP as a subroutine capable of finding improved so-

lutions in real time. We remove the previously developed modification to the MQP

Heuristic so as to increase its computational efficiency due to a similar process in the

ED Metaheuristic to overcome a shortcoming inherent in a greedy selection process.

Using the Quiz Problem (QP) heuristic as a subroutine, we demonstrate the real time

improvements of the ED Metaheuristic with respect to solution quality, which often
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Table 11. Number of Solutions (out of 20 Instances per Problem Size) That Each
Heuristic Solution is Superior to BARON

Search Heuristic

Weapons Targets QP ED 1 ED 2 Construction

5 5 0 0 0 0

10 5 0 0 0 0

10 10 0 0 0 1

10 20 0 0 0 0

15 10 0 0 1 0

20 10 0 1 5 3

20 20 0 0 0 0

20 40 0 0 0 0

40 10 20 20 20 20

40 20 7 8 12 15

40 40 0 0 0 0

40 80 0 0 0 0

80 40 19 20 20 20

80 80 0 0 1 0

80* 160* 7 10 18 1

*BARON did not converge to a global optimal
solution within 2 hours.
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Table 12. Average Relative Gaps for Selected Heuristics with Respect to the Best
Solution Available (%)

Search Heuristic

Weapons Targets QP ED 1 ED 2 Construction

5 5 7.300 ± 8.784 4.190 ± 7.576 0.468 ± 1.636 0.461 ± 2.058

10 5 9.099 ± 9.898 4.002 ± 4.169 0.835 ± 1.483 1.781 ± 3.501

10 10 10.794 ± 8.920 5.501 ± 6.607 0.597 ± 1.180 3.138 ± 3.429

10 20 6.501 ± 3.436 4.577 ± 2.341 1.447 ± 1.478 6.303 ± 4.525

15 10 13.153 ± 9.460 8.101 ± 6.861 1.504 ± 1.537 5.121 ± 4.021

20 10 14.828 ± 8.039 10.173 ± 8.377 1.702 ± 2.123 2.118 ± 2.573

20 20 8.857 ± 3.495 6.287 ± 3.208 1.728 ± 1.295 2.978 ± 2.185

20 40 3.916 ± 1.153 2.707 ± 1.376 0.855 ± 0.502 5.360 ± 2.153

40 10 12.702 ± 6.374 9.253 ± 4.389 1.679 ± 1.747 0.997 ± 2.105

40 20 8.065 ± 3.891 6.150 ± 3.273 1.043 ± 1.712 1.953 ± 2.427

40 40 7.137 ± 3.468 5.074 ± 1.864 1.883 ± 0.409 2.921 ± 0.954

40 80 2.734 ± 0.877 1.969 ± 0.726 0.730 ± 0.418 3.812 ± 1.652

80 40 7.732 ± 3.110 5.538 ± 2.324 0.910 ± 1.110 0.396 ± 0.604

80 80 4.301 ± 1.695 3.409 ± 1.102 1.401 ± 0.667 1.562 ± 0.613

80 160 1.087 ± 0.313 0.697 ± 0.249 0.022 ± 0.076 4.748 ± 1.105
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exceed those of the best known solutions to this problem found in the literature.

In observing the relative improvement of each assignment quality calculation

method and the number of dominant solutions found by these methods when com-

pared to the QP heuristic and the Construction heuristic, we demonstrate the ca-

pability of the ED Metaheuristic to find, in real time, high quality solutions to the

SWTA. We demonstrate that the ED Metaheuristic contains three parameters (i.e.

the type of assignment quality computation, the number of simultaneous denials, and

the threshold percent pa), that can be tuned to enable the Metaheuristic to effectively

and efficiently solve large problem instances.

We further note that the type of assignment quality computation utilized within

the ED Metaheuristic, either a Slope-based or Ratio-based method, has strengths

with differing problem sizes. The ED Metaheuristic can, for smaller sized problems

(less than 20 weapons and 20 targets) find better solutions using the Ratio-based

Method whereas, for larger sized problems (more than 40 weapons and 10 targets)

find better solutions with the Slope-based Method. However, we note that these

results are simply due to the size of the set of denials, xd, for each problem size.

That is, for smaller problem sizes, the Ratio-based Method has a larger set of denials

whereas, for larger problem sizes, the Slope-based Method has a larger set of denials

for equivalent threshold percentages.

We identify in §4 that the number of simultaneous denials affects the solution

improvement for up to two simultaneous denials. Beyond this, we observe no im-

provements to the solutions. Whereas modifications to the ED Metaheuristic can

to find improvements by using more than two simultaneous denials, we caveat that

such methods would make the ED Metaheuristic more closely resemble a brute force

algorithm and would quickly cease to be a real-time solution method for this problem.

Moreover, we observe that the average optimality gap for the single-and-pairwise de-
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nial variant of the ED Metaheuristic is exceeded by the baseline Construction Heuris-

tic only three times but at a noteworthy computational cost. Conversely, the opti-

mality gap of the single-denial variant of the ED Metaheuristic is often greater than

the Construction Heuristic but is capable of finding these quality solutions within two

tenths of a second at its slowest.

We present computational results for our testing of differing threshold percentages

and note that, though more computationally expensive, setting pa to 0% generally

results in much improved solutions compared with higher pa values. When only allow-

ing one denial, this difference in computational time is nearly negligible, whereas for

two simultaneous denials it becomes cumbersome and the average ED Metaheuristic

required solution time increases notably.

We observe that the parameters allow for real time solutions which improve upon

the solution found using the QP Heuristic. The single-denial variant of the ED Meta-

heuristic finds real-time solutions that are within 10% (on average 4%) of BARON’s

reported optimal solutions. Moreover, the single-and-pairwise denials ED is capable

of a more rigorous search, finding solutions that are at most within 2% (on aver-

age 0.8%) of the optimum and are capable of finding solutions 64%, as reported by

BARON, should there be no real-time requirement for the solution.
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IV. Transforming the Weapon Target Assignment Problem
for Efficient Optimal Convergence

4.1 Introduction

The Weapon Target Assignment (WTA) Problem has been well studied since its

introduction by Manne (1958). Two distinct variants of the problem distinguish

between solving an immediate and isolated event (i.e., the Static WTA or SWTA),

and solving a problem which allows for subsequent engagements (i.e., the Dynamic

WTA or DWTA). The research herein addresses the SWTA.

Given a set J = {1, . . . , n} of incoming missiles (targets), the SWTA assigns a

set I = {1, . . . ,m} of available interceptors (weapons) to the targets, minimizing the

probability of a leaker (i.e, a target passing through defenses). Each target has a

value Vj, which quantifies its worth as a measure of lethality if not destroyed by a

weapon. For each weapon type i, of which we have wi weapons, there is a probability

pij with which it will successfully destroy target j, known as the probability of kill,

and qij = 1 − pij likewise indicates the probability that a single weapon of type i is

unsuccessful when assigned to destroy a target j. The math programming formulation

for the SWTA is:

P1 : min
x

∑
j∈J

Vj
∏
i∈I

q
xij
ij

s.t.
∑
j∈J

xij ≤ wi, ∀ i ∈ I,

xij ∈ Z+, ∀ i ∈ I, j ∈ J,

where xij is the number of weapons of type i assigned to target j.

Although the SWTA has been solved to optimality for smaller instances with ex-

act algorithms in the literature, Lloyd & Witsenhausen (1986) showed the SWTA to
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be NP-hard. As such, the majority of solution techniques seek to find near-optimal

solutions in real time, or “fast enough to provide an engagement solution before the

oncoming targets reached their goals” (Leboucher et al., 2013), to be of practical

value when addressing larger-sized instances. The efficient identification of optimal

solutions remains important, whether to reduce computational effort when bench-

marking heuristic solution techniques for smaller instances or to expand the size of

instances for which optimal solutions can be attained.

Although contemporary commercial solvers can identify optimal solutions to in-

stances of these nonlinear integer programming formulations, a thorough understand-

ing of the underlying principles of optimization may serve to increase the efficiency

of commercial solvers via an objective function transformation within the SWTA for-

mulation. Moreover, Kline et al. (2017) showed that commercial solvers designed for

global optimization may report suboptimal solutions as global optimal solutions, and

an objective function transformation within the SWTA may mitigate this shortcom-

ing.

Alternative formulations and transformations have been explored for the SWTA,

and we refer the reader to work by Kline et al. (2018) for a thorough review of the

related SWTA literature. Of relevance to this study, Kwon et al. (1999) applied a

linear transformation within an efficient Lagrangian relaxation solution technique.

Ahuja et al. (2007) performed a logarithmic transformation for which the authors

developed a linear approximation, embedded within an efficient branch and bound

algorithm. Other authors have adopted simplifying assumptions to enable a more

identification of optimal solutions; Murphey (2000) assumed pij to be constant for

all i ∈ I, j ∈ J , but such an approach loses problem granularity and the identified

optimal solution is not guaranteed to be optimal to the original SWTA formulation..

With respect to both the required computational effort and solution quality at-

73



tained by the commercial solver BARON, this paper proposes and tests a reformula-

tion of the SWTA, both without and with simple bounds on the intermediate decision

variables required for the transformation, as well as with tighter lower bounds that

reduce the feasible region but do not eliminate an optimal solution. In §2, we intro-

duce a transformation and offer alternative bound tightening constraints to reduce

the feasible region of the transformed SWTA problem formulation. We also prove

that the introduction of a tighter constraint to intermediate decision variables within

the transformed SWTA formulation notably reduces the feasible region without elim-

inating an optimal solution. In §3, we test the performance of a leading commercial

solver designed for global optimization, when solving a set of test instances of the

alternative SWTA formulations, with respect to both solution quality and required

computational effort. We conclude this paper in §4 and discuss the impact of the

proposed transformations to the SWTA.

4.2 WTA Reformulations

The basic SWTA transformation we consider is identical to that developed by

Ahuja et al. (2007). We introduce an intermediate decision variable, zj, to attain a

separable, convex objective function that no longer contains the product summation

operator. Although Ahuja et al. (2007) proceeded to solve such a problem as a

minimum cost network flow problem, we retain the transformation as Problem P2
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for direct solution via a commercial solver in testing herein.

P2 : min
x,z

∑
j∈J

Vje
zj

s.t.
∑
j∈J

xij ≤ wi, ∀ i ∈ I,

zj =
∑
i∈I

xij ln(qij), j ∈ J,

xij ∈ Z+, ∀ i ∈ I, j ∈ J.

Given that the BARON commercial solver leverages a branch and reduce solution

procedure (Tawarmalani & Sahinidis, 2004), the imposition of finite upper and lower

bounds on the intermediate decision variables, zj, ∀ j ∈ J , should improve solver

performance. As such, we offer Problem P2 with additionally derived bounds as

Problem P3, where the bounds do not reduce the feasible region of the original

SWTA formulation.

P3 : min
x,z

∑
j∈J

Vje
zj

s.t.
∑
j∈J

xij ≤ wi, ∀ i ∈ I,

zj =
∑
i∈I

xij ln(qij), j ∈ J,

zj≥
∑
i∈I

ln(qij), j ∈ J,

zj≤0, j ∈ J,

xij ∈ Z+, ∀ i ∈ I, j ∈ J.

We contend that, when the additional bounding constraints of P3 are active, a
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commercial solver will converge to an optimal solution more efficiently than it will

for P2. However, we propose that, in general, the constraints in P3 are not active

and that any decrease in the required computational effort to attain a global optimal

solution will not be statistically significant. Alternatively, we consider the formulation

for Problem P4, wherein tighter bounds are emplaced upon the intermediate decision

variables, and the feasible region is reduced, but an optimal solution is not eliminated

by the tighter bounds.

P4 : min
x,z

∑
j∈J

Vje
zj

s.t.
∑
j∈J

xij ≤ wi, ∀ i ∈ I,

zj =
∑
i∈I

xij ln(qij), j ∈ J,

zj≥c min
i∈I
{ln(qij)} , j ∈ J,

zj≤0, j ∈ J,

xij ∈ Z+, ∀ i ∈ I, j ∈ J,

wherein the parameter c is instance-specific, and it characterizes the possible differ-

ence in the number of weapons assigned to any one target from the number assigned

to any other target in an optimal solution.

Lemma 1 Any instance of the SWTA in which there exists an i ∈ I for which

wi > 1 can alternatively be expressed as an instance in which wi = 1 for all i ∈ I.

Proof. Given an instance of Problem P1 having a set I of weapon types, each

with wi of each type and probability of intercept pij against target j ∈ J . This yields

a total of
∑

i∈I wi individual weapons in the original instance. For the reformulated

instance, let |I ′| ←
∑

i∈I wi; wi′ ← 1, ∀i′ ∈ I ′; and pi′j ← pij for exactly wi weapon
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types i′ ∈ I ′ for each i ∈ I. Every feasible solution for the original instance has a

corresponding solution in the reformulated instance, wherein multiple assignments of

a single weapon type in the original instance are distributed among identical weapon

types in the reformulated instance. �

The following theorem addresses the calculation of c.

Theorem 2 Given an instance of the SWTA having a set of targets J = {1, . . . , n}

and a set of weapons I = {1, . . . ,m} with wi = 1 for all i ∈ I, the difference between

the number of weapons that are assigned to target 1 and the number of weapons that

can be assigned to target n in an optimal solution will not exceed c, where c is given

by

c = max
k∈Z

{
V1(1− pi1)k > Vn

}
+ 1.

Proof. There are three cases to consider: |I| = |J |, |I| > |J |, and |I| < |J |.

For each case, the probability of kill is randomly chosen such that pmin ≤ pij ≤ pmax.

Because the maximum number of weapons that can be assigned to any one target

will occur at lower probabilities of kill, let p = pmin and q = 1− p. Further, for each

case, let V1 ≥ V2 ≥ · · · ≥ Vn without loss of generality (w.l.o.g.).

Case 1: |I| = |J |. Compare the objective functions of a solution having one

weapon assigned to each of the targets with a solution having at least two weapons

assigned to one target. Given the possible values of Vj and pij, two weapons can be

assigned to Target 1 and zero weapons assigned to Target n in an optimal solution if
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the following inequality is feasible:

V1q
2 + V2q + · · ·+ Vn−1q + Vn < V1q + V2q + · · ·+ Vn−1q + Vnq

V1q
2 + Vn < V1q + Vnq

V1q(1− q) > Vn(1− q)

V1q > Vn

Given V1q > Vn is possible, three weapons can be assigned to Target 1 and zero

assigned to Targets n and n − 1 in an optimal solution if the following inequality is

feasible.

V1q
3 + V2q + · · ·+ Vn−1 + Vn < V1q

2 + V2q + · · ·+ Vn−1q + Vn

V1q
3 + Vn−1 < V1q

2 + Vn−1

V1q
2(1− q) > Vn−1(1− q)

V1q
2 > Vn−1

This relationship continues until all weapons are assigned to Target 1 and Targets

2, . . . , n have zero weapons assigned. Therefore, when V1(1 − p)k > V2 is feasible,

c = k + 1 weapons can be assigned to Target 1 in an optimal solution, leaving k

targets unassigned.

Case 2: |I| < |J |. At least |J | − |I| = s targets will not have a weapon assigned

and two weapons can be assigned to Target 1 in an optimal solution if the following
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inequality is feasible.

V1q
2 + V2q + · · ·+ Vn−s+1 + Vn−s+ · · ·+ Vn <

V1q + V2q + · · ·+Vn−s+1q + Vn−s + · · ·+ Vn

V1q
2 + Vn−s+1 < V1q + Vn−s+1q

V1q(1− q) > Vn−s+1(1− q)

V1q > Vn−s+1

The same relationship holds for Case 2 as for Case 1. Therefore, when V1(1− p)k >

Vn−s+1 is possible, c = k + 1 weapons can be assigned to one target in an optimal

solution, leaving s+ k targets unassigned.

Case 3: |I| > |J |. At least |J |−|I| = s targets will have at least r =
⌊
|I|
|J |

⌋
assigned

weapons with r + 1 assigned to the remaining targets. However, an optimal solution

may have r + 2 weapons assigned to Target 1 and r assigned to Target s − 1 when

the following inequality is feasible.

V1q
r+2 + V2q

r+1 + · · ·+Vn−s+1q
r + Vn−sq

r + · · ·+ Vnq
r <

V1q
r+1 + V2q

r+1+ · · ·+ Vn−s+1q
r+1 + Vn−sq

r + · · ·+ Vnq
r

V1q
2 + Vn−s+1 < V1q + Vn−s+1q

V1q(1− q) > Vn−s+1(1− q)

V1q > Vn−s+1

The same relationship holds for Case 3 as for Case 1. Therefore, an optimal solution

may exist that has c = k + 2 more weapons assigned to Target 1 than assigned to

Targets n− s+ 1 through n when V1(1− p)k > Vs−1 is possible. �
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4.3 Testing and Results

We conduct an experiments to examine whether formulations P2-P4 improve

upon P1 with respect to solver performance. This experiments uses the GAMS

Algebraic Modeling Language, version 24.8.5, with the commercial solver BARON,

version 17.4.1. The experiment considers the problem instance sizes shown in Table

13. We define parameters Vj and pij as continuous uniformly distributed random

variables Vj ∈ [25, 100] and pij ∈ [0.6, 0.9]. We solve 30 instances of each problem

size for each of the four problem formulations. We perform all tests on a computer

having an Intel Xeon E5-2650 v2 processor with 128 GB RAM.

Table 13. Tested Problem Instance Sizes

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Weapons 5 10 10 10 15 20 20 20 40 40 40 40 80 80 80
Targets 5 5 10 20 10 10 20 40 10 20 40 80 40 80 160

Given the distributions of our parameters, we note that

V1q > Vn

100(0.4) > 25

40 > 25

is possible, thus we can have two more weapons assigned to Target 1 than to Target

n in an optimal solution. However

V1q
2 > Vn

100(0.4)2 > 25

16 > 25
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cannot hold, so an optimal solution cannot have two more weapons assigned to Target

1 than Target n. Therefore, within P4, we set c = 2 when |I| ≤ |J | and c =
⌊
|I|
|J |

⌋
+ 3

when |I| > |J |.

Table 14 reports the experimental results of required computational effort for

BARON to find an optimal solution for each of P1-P4 and the results of the two-

sample t-test having the null hypotheses that the required solution time for P1 is

less than that required for P2, the required solution time for P2 is less than that

required for P3, and the required solution time for P3 is less than that required

for P4. We define our significance level to be α = 0.5. Additionally, we note that

BARON required lesser computational effort to solve Problem P4, on average, for 11

out of 15 (i.e., 73%) problem instance sizes when compared to Problems P3 and P2,

and 9 out of 15 (i.e., 60%) problem instance sizes when compared to Problem P1.

Table 14. Average Solution Times and Hypothesis Tests

Mean required computational effort (sec) H0 (required computational effort)

W T P1 P2 P3 P4 P1 < P2 P2 < P3 P3 < P4

5 5 0.0287 0.0287 0.0290 0.0553 R R FTR
10 5 0.161 0.0680 0.0667 0.0943 R R FTR
10 10 0.365 0.208 0.177 0.243 R R FTR
10 20 3.547 98.450 97.548 2.256 FTR R R
15 10 1.085 10.410 16.824 5.772 FTR R R
20 10 2.179 0.504 0.539 0.384 R R R
20 20 1.550 4.062 4.407 0.538 FTR R R
20 40 34.552 1800.002 1800.001 32.749 FTR R R
40 10 15.021 968.814 978.820 310.017 FTR R R
40 20 25.836 415.600 430.382 77.990 FTR R R
40 40 49.616 1292.189 1296.902 36.032 FTR R R
40 80 94.731 1800.001 1800.002 510.491 FTR R R
80 40 350.690 1800.000 1800.002 1800.001 FTR R R
80 80 570.158 1800.001 1800.002 521.411 FTR R R
80 160 1804.966 1801.095 1801.102 1797.776 R R R

We observe in Table 14 that mean solution times support our conjecture that

the reformulation with bound tightening constraints will increase the efficiency of the
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commercial solver, BARON. For any of the smaller problems (i.e., Problem sizes 1 -

7), we note that the mean required computational efforts for problems for which the

the ratio of the number of weapons to the number of targets is integer-valued (i.e.,

Problem sizes 2 and 6) is much lower for P2 and P3 than for P1. We caveat that the

mean solution time for Problem sizes 4 and 5, for which the weapon-to-target ratios

are 1
2

and 3
2
, respectively, are much greater for P2 and P3 than for P1. Further,

we note the relatively large increase in required computational effort for Problems

8-15 which we attribute to the combinatorial explosion associated with this NP-hard

problem.

We also note that the hypothesis testing in Table 14 shows that only in Problems

1, 2, 3, and 6 does no statistical difference in convergence speed exist when comparing

the solver performance for P1 and P2. There is no statistical decrease in required

computational effort between P2 and P3. For Problems 4-15, we can reject the

null hypothesis that P3 will converge faster than P4, and we can therefore state

that the convergence rates of P4 are less than or equal to those of P3. From the

results reported in Table 14, it is evident that P4 requires less time for BARON to

identify a global optimum than either P2 or P3. We also notice that, in examining

the convergence rates for P1 and P4, no single formulation yields a performance by

BARON that consistently dominates another formulation.

The other conjecture states that the solutions found by solving P2 and P3 will be

no worse than P1. While this may seem an odd statement when comparing results of

a global optimization tool, we find that BARON reports suboptimal solutions when

solving P1. Table 15 shows that, as the size of the problem increases, P1 becomes less

reliable, especially in cases where there are more weapons than targets. We attribute

this to the functional approximation to the polyhedral outer-approximation, which

we believe to be a loose approximation for P1 but a tight approximation for P2 and
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P3 due to the separable convex functions of the latter. We find that the solutions

identified by solving P4 are identical to those found by P2 and P3 when the latter

converge to an optimal solution within 30 minutes. When P2 and P3 do not converge

to an optimal solution within 30 minutes, P4 improves upon the best solution by

0.098%, on average.

Table 15. P1 Suboptimal Solutions

w t Mean relative gap (%) Number suboptimal

5 5 0 0
10 5 0 0
10 10 0 0
10 20 0 0
15 10 0.02 2
20 10 0.13 8
20 20 0 0
20 40 0 0
40 10 9.61 28
40 20 6.91 29
40 40 0.01 6
40 80 0 0
80 40 11.7 29
80 80 5.04 29
80 160 7.91 30

4.4 Conclusion

Global optimization is a challenging task made easier by powerful commercial

solvers. Among available commercial solvers, BARON is regarded as both efficient

and robust (Neumaier et al., 2005). Yet, it is clear that even one of the leading global

optimization solvers can converge to suboptimal solutions or expend unnecessary

computational time if the formulation is ill-suited for the solver.

Herein we defined a transformation on the Static Weapon Target Assignment

(SWTA) Problem and offered several alternative sets of bound tightening constraints
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which reduced the solution space while preserving the global optimal solution given

the specific parameters of this problem. We hypothesized that BARON would solve

P4 more efficiently than P2 and P3, and that the solutions for P2, P3, and P4

would be non-degrading as compared to P1. We empirically demonstrated that the

transformed problem formulations did increase the efficiency of finding an optimal

solution for smaller problems under certain conditions, and that it increased solution

quality up to 11.7% of solutions using the untransformed problem formulation. We

used two-sample t-tests to test for statistical significance to the hypotheses that one

formulation performs more or less efficiently than another, and results aligned with

our hypotheses and conjecture.

Ultimately, this exploration into the performance of a commercial solver for differ-

ent bounding techniques on a logarithmic transformation serves to inform our ability

to efficiently and effectively use a global optimization solver. Although commercial

solvers are continuously improving, an understanding of how these solvers function

enables a user to provide the best formulation, lest the solution be suboptimal and/or

computationally expensive.
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V. A Greedy Hungarian-like Algorithm for the SWTA

5.1 Introduction

The air defense problem of assigning available interceptors (weapons) to engage

incoming missiles (targets) is known in the literature as the Weapon Target Assign-

ment (WTA) Problem. The WTA Problem was introduced to the field by Manne,

who derived of it from a presentation by Merrill Flood in 1957 at The Princeton Uni-

versity Conference on Linear Programming Manne (1958). Variants of the problem as

defined first by Matlin (1970) include the Static WTA (SWTA) and Dynamic WTA

(DWTA). This paper focuses on the SWTA Problem and obtaining quality solutions

to this NP-Hard problem Lloyd & Witsenhausen (1986) in real-time or “fast enough

to provide an engagement solution before the oncoming targets reach their goals”

Leboucher et al. (2013).

Given n incoming targets, solving this defensive variant of the problem results

in the assignment of m weapon types to engage the targets so as to minimize the

collective expected residual value of the targets. The value of target j, Vj, corresponds

to its destructive capacity and weapons of type i, and there are wi such weapons, have

an associated probability pij of destroying target j. The problem seeks to minimize

the residual value of each target, known in the literature as target leakage, which

utilizes the probability of survival, defined as qij = 1 − pij. The SWTA problem is

nonlinear and is defined by

min
n∑
j=1

Vj

m∏
i=1

q
xij
ij (1)

st
n∑
j=1

xij ≤ wi, for i = 1, . . . ,m,

xij ∈ Z+, for i = 1, . . . ,m, j = 1, . . . , n
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where the decision variable xij is the number of weapons of type i to assign to target

j. In this paper, we address the most general case where wi = 1 for i = 1, . . . ,m,

which results in a binary decision variable.

Since its inception, many solution techniques have been applied to variants of

the problem, from exact algorithms to heuristic and metaheuristic algorithms. Kline

(2017) proved the convexity of the untransformed SWTA Problem in 2017 and de-

veloped a method of finding exact solutions to smaller problem sizes. Others utilize

transformations in order to expedite optimal algorithms, such as Ahuja et al. (2007),

who transforms the objective function and uses a branch and bound algorithm, and

Malcolm (2004), who transforms the constraint matrix, simplifies the objective func-

tion, and uses the simplex method. Many well known heuristic algorithms have been

utilized to solve the SWTA, such as the Very Large Scale Neighborhood (VLSN)

search Lee (2010) and the genetic algorithm Lee et al. (2003), Bogdanowicz et al.

(2013).

In this paper, we review the Quiz Problem (QP) Heuristic and the Eminent Do-

main (ED) Metaheuristic from Kline et al. (2017) in §2. In §3, we introduce a new

heuristic which shares some similarities with the Hungarian Algorithm. We test the

performance of this heuristic and compare it to the QP heuristic with and without

the ED Metaheuristic and the lower bounds as reported by BARON in §4 and identify

our conclusions in §5.

5.2 QP Heuristic and ED Metaheuristic

QP Heuristic.

Kline (2017) proposed application of the optimal solution to the quiz problem

to a heuristic algorithm for the weapon target assignment problem. Bertsekas &

Castañon (1999) first applied this methodology to a heuristic search for scheduling
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problems and later Ahner (2005) used the approach to route unmanned aerial vehicles

in risky environments. The quiz problem states that an individual presented with a

series of questions with values vu has probability pu of correctly answering a question,

where u = 1, . . ., n. Further, the individual answers questions, receiving the value

of each question as a reward if correct, until he answers one incorrectly, at which

point the quiz is terminated. The goal of the quiz problem is to identify the order in

which to answer the questions to maximize the sum value of those correctly answered.

Bertsekas & Castañon (1999) showed that the strategy to maximize return is an index

policy in which questions are answered in descending values of yu, where

yu =
vupu

1− pu
=
vupu
qu

.

For the SWTA, we use the quiz problem strategy to define the value of each weapon-

target assignment as y0
ij, which allows us to select the maximum return for a single

weapon-target assignment xı̂̂, where

(̂ı̂) ∈ arg max
i=1,...,m

j=1,...,n

{y0
ij}.

We then redefine our target value V̂ = V̂qı̂̂, which is the residual value of the

selected target given the weapon assigned. If there remains only one available wi, we

redefine our probabilities of kill for this weapon pı̂· = 0. Using these updated values,

we define the next iteration value array as y1
ij. We repeat this process until each of

the weapons is assigned to a target.

ED Metaheuristic.

Kline et al. (2017) developed the Eminent Domain (ED) Metaheuristic as an effi-

cient method to improve upon a feasible solution by iteratively preventing assignments
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which may result in suboptimal solutions. Utilizing the QP Heuristic as a subroutine,

the ED Metaheuristic is initialized by finding a feasible solution and assessing the fit-

ness of each assignment. From this, the ED Metaheuristic iteratively blocks each of a

subset of the assignments in the initial solution based upon this fitness metric, either

individual blocks (the ED 1 Metaheuristic) or individual-and-pairwise blocks (the ED

2 Metaheuristic) using the QP heuristic while not allowing the blocked assignment(s).

If a superior solution is found, the process is repeated with the improved solution until

no improvements are found.

The ED Metaheuristic may find superior solutions because greedy selection pro-

cesses sequentially make assignments based upon the maximum immediate utility of

all available assignments which can make assignments whose selection result in infe-

rior solutions. That is, the collective fitness of the most beneficial assignment and

the subsequent assignments is inferior to a solution having a less superior first as-

signment and subsequent assignments. As this is a common characteristic of greedy

search heuristics, and of heuristics in general, the ED Metaheuristic prevents each

of the potentially obstructive assignments to allow for the possibility of a superior

collection of assignments to be made. The ED Metaheuristic results in monotonically

improving solutions.

5.3 Greedy Hungarian Heuristic

In examining the optimal solutions to smaller problems and contrasting subop-

timal solutions using iterative selection processes described heretofore, we observe a

property common to optimal solutions: optimal assignments tend to be among the

best available for each weapon and for each target; local optimal assignments may be

elements of a global optimal solution. We note that, for each weapon, the expected

value of survival, Vj(1− pij) or Vjqij, of each target decays at inconsistent rates. For
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one weapon, the second best assignment available may be marginally smaller than

the best available assignment whereas a different weapon may have far greater decay.

A different decay is observable when examining the assignments available to each

target. Those assignments which are part of a globally optimal solution generally do

not suffer much decay from the best assignments available to each weapon or each

target.

Figure 5. Greedy Hungarian Heuristic Flow Chart

We develop a Greedy Hungarian-like Heuristic, which develops a relative fitness
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for each assignment, illustrated in Figure 5. We initialize this process by defining

an assignment matrix of zeros, X. We define a matrix, Y1, of the expected value of

survival for each assignment, Vjqij. We next seek to scale down the assignment values

in order to assess their fitness relative to one another without artificially inflating

those of targets with larger values. We do this by subtracting from Y1 a matrix of

the mean column values of Y1. This results in a new matrix Y2, whose columns have

a mean of 0. We next define a matrix, Y3, as the difference of Y2 and a matrix of the

minimum values of each row of Y2. This matrix, Y3, has a minimum value of 0 where

the best assignment for each weapon is met by an assignment among the best for each

target. Next, we define Y4 as a matrix of the expected value of destruction, Vjpij,

for each assignment less Y3. We update our assignment matrix X by incrementing

Xij, where {i, j} corresponds to the maximum value of Y4. If any weapons remain

unassigned, we set the probabilities of kill for weapon i to 0 and redefine the value of

target j as Vj = Vjqij and repeat the above process, starting with defining Y1.

We present an example of this heuristic in Table 16. Given 5 weapons and 5

targets, we first see, in matrix Y1, the expected survival of each assignment. Matrix

Y2 shows the next step, where the average expected survival for each target is sub-

tracted from each assignment of that target. In matrix Y3, the minimum value for

each weapon is subtracted from each value for that weapon. Lastly, we see in matrix

Y4 the difference of matrix Y3 from the expected kill value of each assignment (de-

noted Vjpij). We identify the maximum value of matrix Y4, which is the assignment

of weapon 3 to target 2, set this value in our assignment matrix X, update V2 and

p3·, and repeat the process until all five weapons have been assigned.

We note that this heuristic is similar to the Hungarian Algorithm defined by Kuhn

(1955) prior to defining the value matrix, Y3. In contrast to the Hungarian Algorithm,

we define Y2 as the difference of Y1 and the mean value of the columns, rather than
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Table 16. Example of Greedy Hungarian Heuristic

Y1 j = 1 2 3 4 5

i = 1 6.6818 19.6212 5.375 20.1761 5.5313
2 8.4738 22.7763 4.3047 18.4437 6.8691
3 9.4819 10.0417 7.8144 12.6709 8.9564
4 10.8689 13.4611 7.1515 12.541 10.6329
5 7.6667 18.8394 7.0631 7.0537 5.1386

Y2 j = 1 2 3 4 5

i = 1 -1.9528 2.6733 -0.9667 5.9990 -1.8944
2 -0.1608 5.8284 -2.0370 4.2666 -0.5566
3 0.8473 -6.9062 1.4727 -1.5062 1.5307
4 2.2343 -3.4868 0.8098 -1.6361 3.2072
5 -0.9679 1.8915 0.7214 -7.1234 -2.2871

Y3 j = 1 2 3 4 5

i = 1 0 4.6261 0.9861 7.9518 0.0585
2 1.8762 7.8654 0 6.3037 1.4805
3 7.7535 0 8.3789 5.4001 8.4370
4 5.7211 0 4.2966 1.8508 6.6941
5 6.1555 9.0148 7.8447 0 4.8363

Vjpij j = 1 2 3 4 5

i = 1 23.5362 69.0119 20.6657 40.1949 27.7033
2 21.7442 65.8568 21.7360 41.9273 26.3655
3 20.7361 78.5914 18.2263 47.7001 24.2782
4 19.3491 75.1721 18.8893 47.8300 22.6018
5 22.5513 69.7938 18.9777 53.3174 28.0960

Y4 j = 1 2 3 4 5

i = 1 23.5362 64.3859 19.6797 32.2431 27.6449
2 19.8680 57.9914 21.7360 35.6237 24.8850
3 12.9825 78.5914 9.8474 42.3001 15.8412
4 13.6280 75.1721 14.5927 45.9793 15.9077
5 16.3958 60.7789 11.1329 53.3174 23.2597
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Table 17. Example using Hungarian Algorithm

Y2 j = 1 2 3 4 5

i = 1 0 9.5795 1.0703 13.1225 0.3927
2 1.7920 12.7346 0 11.3901 1.7305
3 2.8002 0 3.5097 5.6173 3.8178
4 4.1871 3.4194 2.8468 5.4874 5.4942
5 0.9850 8.7976 2.7584 0 0

Y3 j = 1 2 3 4 5

i = 1 0 9.5795 1.0703 13.1225 0.3927
2 1.7920 12.7346 0 11.3901 1.7305
3 2.8002 0 3.5097 5.6173 3.8178
4 1.3403 0.5726 0 2.6406 2.6475
5 0.9850 8.7976 2.7584 0 0

the minimum value of the columns. We find that utilizing the minimum column

value reduces the importance paid to the fitness of assignments for each weapon and

often requires many iterations before a solution can be observed whereas the proposed

method requires as many iterations as the number of weapons. For example, we see

in Table 17 that the values of matrix Y2 contain multiple zeros in rows 4 and 5 and

that the subsequent matrix Y3 requires additional steps before an optimal solution

can be observed using the Hungarian Algorithm. By contrast, we see in Table 16

that the values of matrix Y2 contains negative values which preserves the capacity

for stratification shown in matrix Y3. Though this does not guarantee optimality,

it is an efficient method by which we assess the fitness of each assignment in terms

of targets and weapons. Additionally, we can see in Table 17 that no solution can

be identified in Y3 because all of the zeros can be covered with four lines. As such,

additional iterations are required before an optimal solution can be identified.

5.4 Computational Results

We test each heuristic and metaheuristic to solve a set of problem instances by

designing random parameters within various instance sizes ranging from 5 weapons
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and 5 targets to 80 weapons and 160 targets. We denote the results of the ED 2

Metaheuristic, utilizing the Quiz Problem Heuristic as a subroutine, as ED 2, and

the ED 1 and ED 2 Metaheuristics, utilizing the Greedy Hungarian Heuristic as a

subroutine, as GH 1 and GH 2, respectively. We consider 15 problem sizes, shown

in Table 18, which fix the number of weapons and targets while randomly generating

target values and probabilities of kill for weapon-target pairs. For each target, a

uniformly distributed continuous variable value [25, 100] is randomly generated, and

we also assigned randomly generated probabilities of kill as uniformly distributed

continuous variables [0.6, 0.9] so that each weapon has a different probability of kill

for each target. This allows us to compare results to the performance of the QP

heuristic and the ED metaheuristic, proposed by Kline et al. (2017). We generate 20

problem instances of random numbers for each of our 15 problem sizes and performed

all tests on a computer having an Intel Xeon E5-2650 v2 processor with 128 GB RAM.

Each solution method is applied to the same set of 20 problem to compare solution

values and computational times. Our results, insights, and analysis are presented in

this section.

Table 18. Tested Problem Sizes

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Weapons 5 10 10 10 15 20 20 20 40 40 40 40 80 80 80
Targets 5 5 10 20 10 10 20 40 10 20 40 80 40 80 160

We utilize the BARON solver for each instance of each problem in order to obtain

an optimal solution to which we can compare the different solution techniques on

optimality gaps. According to Neumaier et al. (2005), BARON is the most robust

and efficient of available solvers and has an average false optimal reporting rate of

1.8%. We can see in Table 19 that the GH heuristic performs better than the QP

heuristic in every problem and that the implementation of the ED metaheuristic
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while utilizing the GH heuristic as a subroutine performs comparably to the ED 2

metaheuristic.

The negative optimality gaps indicate that these solution techniques find solutions

which improve upon the reported optimal solutions of BARON as noted in Kline et al.

(2017), which indicates either an error within our heuristics or a falsely reported

“optimal solution” from BARON. In order to address this, we run BARON a second

time for each instance wherein an improved solution is found, seeding the solver with

the best solution we find using one of our solution techniques. We find that, in every

instance, BARON returns our solution as the “optimal solution”. This does not lead

us to believe optimal solutions are found for each of these problems, but rather that

BARON is reporting these cases as locally optimal and is unable to find improved

solutions.

Table 19. Average Gap with BARON

Average Gap (%)

Weapons Targets QP ED 2 GH GH 1 GH 2

5 5 7.30 0.47 3.20 1.48 0.57
10 5 9.10 0.83 7.38 2.50 1.38
10 10 10.79 0.60 5.40 2.29 1.70
10 20 6.50 1.45 1.23 0.44 0.22
15 10 13.14 1.46 8.15 3.59 2.26
20 10 14.15 1.06 6.33 3.44 1.73
20 20 8.86 1.58 7.37 4.13 2.08
20 40 3.92 0.85 0.94 0.55 0.33
40 10 -60.70 -64.64 -62.39 -63.58 -64.50
40 20 0.08 -6.74 -1.87 -4.59 -6.08
40 40 7.14 1.88 5.56 3.48 2.66
40 80 2.73 0.73 0.93 0.64 0.50
80 40 -15.72 -21.11 -18.52 -19.82 -20.81
80 80 4.29 1.37 3.21 2.49 1.86

80* 160* 0.00 -1.06 -1.10 -1.26 -1.35

*BARON did not converge to a global optimal solution
within 30 minutes.
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We find that applying the logarithmic transformation, shown below, to the SWTA

formulation enables BARON to converge to a superior solution. We show in Table 20

that the optimality gap using the solutions of the transformed problems demonstrate

solutions approaching the best found by BARON on the transformed problem but in

no instance does a heuristic technique outperform BARON.

min
n∑
j=1

Vje
zj (1)

st
n∑
j=1

xij ≤ wi, for i = 1, . . . ,m,

zj =
n∑
j=1

xij ln(qij), for j = 1, . . . , n,

xij ∈ Z+, for i = 1, . . . ,m, j = 1, . . . , n

Table 20. Average Optimality Gap with BARON Using Transformation

Average Optimality Gap (%)

Weapons Targets QP ED 2 GH GH 1 GH 2

5 5 7.30 0.47 3.20 1.48 0.57
10 5 9.13 0.86 7.40 2.53 1.41
10 10 10.79 0.60 5.40 2.29 1.70
10 20 6.50 1.45 1.23 0.44 0.22
15 10 13.15 1.48 8.16 3.60 2.28
20 10 14.98 1.81 7.13 4.21 2.47
20 20 8.86 1.58 7.37 4.13 2.08
20 40 3.92 0.85 0.94 0.55 0.33
40 10 16.09 4.36 11.29 7.54 4.69
40 20 10.90 3.46 8.74 5.80 4.17
40 40 7.16 1.89 5.58 3.49 2.68
40 80 2.73 0.73 0.93 0.64 0.50
80 40 10.30 3.25 6.67 4.96 3.66
80 80 4.65 1.72 3.56 2.85 2.21

80* 160* 1.85 0.77 0.73 0.57 0.47

*BARON did not converge to a global optimal solution
within 30 minutes.
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As shown in Table 20, the ED 2 Metaheuristic is the superlative technique in

terms of solution quality, yet the computational time requirements of each solution

technique must be addressed as we are seeking real-time solution techniques. BARON

solution times varied from 0.5 seconds to being unable to converge for the largest

problem instance considered in the 30 minutes alloted. We see in Table 21 that

the GH heuristic is capable of finding solutions to even the largest problems within

0.025 seconds. Meanwhile, the GH 1 and GH 2 Metaheuristics, both finding solutions

within 7.54% and 4.69% of the best found solution, respectively, require just over one

second and one minute, respectively. Though the ED 2 Metaheuristic generally finds

the best solution, it is the slowest solution technique and ceases to be a real time

metaheuristic for problems with more than 20 weapons.

Table 21. Average Computational Time Requirements

Average Computational Time (sec)

Weapons Targets QP ED 2 GH GH 1 GH 2

5 5 0.000188 0.0142 0.000371 0.00278 0.00454
10 5 0.000340 0.0717 0.000448 0.00480 0.0256
10 10 0.000342 0.0685 0.000452 0.00493 0.0268
10 20 0.000356 0.128 0.000492 0.00519 0.0322
15 10 0.000505 0.281 0.000716 0.0108 0.0945
20 10 0.000659 0.692 0.000966 0.0193 0.214
20 20 0.000706 0.713 0.00102 0.02136 0.219
20 40 0.00134 1.43 0.00129 0.02680 0.268
40 10 0.00135 5.54 0.00201 0.08818 1.61
40 20 0.00249 8.13 0.00235 0.101 1.93
40 40 0.00325 11.5 0.00296 0.126 2.39
40 80 0.00397 18.4 0.00458 0.195 3.53
80 40 0.00761 116 0.00833 0.674 25.6
80 80 0.00880 209 0.0117 1.02 38.0
80 160 0.0128 333 0.0232 1.82 73.9
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5.5 Conclusion

We refer to Kline (2017) in defining a Modified Quiz Problem (MQP) Heuristic

and to Kline et al. (2017) in defining the Eminent Domain (ED) Metaheuristic, both

capable of finding quality solutions to the Static Weapon Target Assignment Problem

efficiently. We present the Greedy Hungarian (GH) Heuristic as a new technique in

solving the largest problems in the literature within 0.025 seconds. Further, we apply

the ED Metaheuristic using the GH Heuristic as a subroutine, resulting in improved

solutions in “real-time”.

We seek to quantify the fitness of our solutions by implementing the BARON

solver to find the optimal solutions from which we can report optimality gaps. We

find that for roughly 20% of the instances, the developed heuristic and metaheuristic

solution techniques are able to find solutions superior to those reported by BARON

to be optimal. Of the remaining instances, we find the GH Heuristic has an average

optimality gap of 5.22% while the GH ED 1 and GH ED 2 Metaheuristics have average

optimality gaps of 3.01% and 1.96%, respectively.

We show that, while the ED 2 finds the superior solution in 44% of the instances

when compared to the GH 2, which finds superior solutions to the ED 2 in 37% of the

instances, the ED 2 has a higher growth of required computational effort as a function

of problem size than the GH 2. Further, while the GH Heuristic requires among the

least computational effort, the GH 1 increases the performance of the GH by 42.5%

and requires less than 1 second of computational effort for all but the largest two

problems considered. Thus, we identify the GH 1 a “real-time” solution technique

capable of finding near optimal solutions to the Static Weapon Target Assignment

Problem.
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VI. Implementing the CAVE Algorithm for the
Heterogeneous 2 Stage DWTA

6.1 Introduction

The problem of assigning available interceptors to incoming missiles is known in

the literature as the Weapon Target Assignment (WTA) Problem. Manne (1958)

put forth the first definition of the problem, from which many variations have been

defined and solved.

In its simplest form, the WTA problem is defined as follows. Given n incoming

missiles (targets), the Static WTA (SWTA) seeks to employ available interceptors

(weapons) so as to intercept and destroy a subset of the targets, minimizing the

expected value of any leakers, targets passing through defenses. Each target has a

value Vj, which quantifies its lethality, and for each weapon type i, of which we have

wi weapons, there is a probability pij with which it will successfully destroy target j,

known as the probability of kill. The SWTA formulation is

min
n∑
j=1

Vj

m∏
i=1

(1− pij)xij

st
n∑
j=1

xij≤wi for i = 1, ...,m,

xij∈Z+, for i = {1, ...,m}, j = {1, ..., n}

where xij is the number of weapons of type i to assign to target j.

The Dynamic WTA (DWTA) is an extension of the SWTA and considers more

than one engagement. While there are variants of the DWTA, such as the “shoot-look-

shoot” model, this paper focuses on the multiple stage problem. In this approach,

we have complete knowledge of a first stage which is defined by the SWTA. However,

we know, to a probability distribution, the number and type of targets which will be
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fired in a subsequent stage or stages. We define the formulation for the two stage

problem, which can be extended to multiple stages, as

Z1 = min
x

{
n1∑
j=1

V
(1)
j

m∏
i=1

(1− pij)x
(1)
ij + E

ω∈Ω

[
Z2

(
x(2), ωj

) ]}

st
n∑
j=1

xij≤wi for i = 1, ...,m,

xij∈Z+, for i = {1, ...,m}, j = {1, ..., n}

where n1 is the number of targets in the first stage with values V
(1)
j and x

(1)
ij is the

number of weapons of type i to assign to target j in the first stage. We define the

value of the second stage, Z2, as a function of the remaining weapons, x(2), and a

random occurrence, ω ∈ Ω, where Ω is the set of all combinations of numbers and

types of targets in the second stage.

Z2

(
x(2), ωj

)
= min

x(2)

{
n2(ω)∑
j=1

V
(2)
j (ω)

m∏
i=1

(1− pij(ω))x
(2)
ij

}
.

The rest of this paper is presented as follows: in §2 we review some of the literature

which we use as a basis from which to expand DWTA research. In §3, we define

several solution techniques with which we solve the DWTA. In §4 we present two

experiments in which we test the solution techniques from §3. We conclude this

paper with a discussion of the results and their implications in §5.

6.2 Literature Review

The basic formulation for the SWTA, defined in §1, was the formulation defined

by Manne (1958), who attributed it to Dantzig. Several solution techniques have

found optimal solutions to this formulation. denBroeder et al. (1959) developed the
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Maximum Marginal Return (MMR) algorithm, which is a greedy algorithm that finds

the optimal solution when all weapons have the same probability of kill to target j.

Ahuja et al. (2007) developed a branch and bound algorithm using a hybrid lower

bounding strategy to solve a logarithmic transformation of the SWTA. Johansson &

Falkman (2009) used a full enumeration algorithm to find exact solutions to small

problem sizes. Kline (2017) developed a branch and bound algorithm to solve the

untransformed SWTA.

Because the SWTA is NP-Complete (Lloyd & Witsenhausen, 1986), much more

focus has been given towards efficiently finding near optimal solutions. There have

been many implementations of the genetic algorithm, ant colony optimization algo-

rithm, and MMR algorithm, and less frequently the very large scale neighborhood

search heuristic, network flow heuristics, and tabu search heuristics. Kline et al.

(2017) developed a heuristic with similarities to the Hungarian Algorithm which we

modify and utilize in §3.

The DWTA receives less attention than the SWTA, and most of the work on the

DWTA, like the SWTA, utilizes heuristic approaches to efficiently find near optimal

solutions. One of the exact solution techniques is that of Ahner & Parson (2015), who

use the Concave Adaptive Value Estimation (CAVE) Algorithm originally defined by

Godfrey & Powell (2001) to converge to the optimal number of weapons to reserve

for a second stage with the assumption that all weapons have the same probability

of kill for target j.

6.3 Solution techniques

We develop a solution technique to the heterogeneous 2 stage DWTA which uti-

lizes the CAVE Algorithm in a manner similar to Ahner & Parson (2015). We note

that, while the solution given by Ahner & Parson (2015) is proven to be optimal, our
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technique cannot guarantee optimality due to the differing probabilities of kill be-

tween weapon types, as illustrated by Kolitz (1988). As such, we utilize a subroutine,

the Greedy Hungarian-like (GH) Heuristic, in our CAVE Algorithm which demon-

strates superior performance to the MMR Plus Algorithm used by Ahner & Parson

(2015) for the heterogeneous case. Further, as we recognize that the solution we find

with our CAVE Algorithm is not guaranteed to converge to optimality, we build a

Markov Decision Process (MDP), which we solve using backwards induction, that

will converge to an optimal solution. We use the solutions of the MDP to identify the

optimality gap of the solution of the CAVE Algorithm for small problem instances.

However, if we had an optimal assignment algorithm in lieu of the GH heuristic, the

CAVE Algorithm would converge to the optimal solution, as we prove in §3.1.

CAVE Algorithm.

Our approach uses a subroutine for the CAVE Algorithm, the GH Heuristic, which

assigns all weapons to available targets in the first stage while allocating weapons to

a dummy target representing the approximated value of the second stage targets,

which we derive via the CAVE Algorithm. In Figure 6, we define Y(1) as a matrix

of the expected values of survival for all assignment pairings. We then define Y(2)

as the difference between each element of Y(1) and the mean value of its row. Each

element of Y(3) is the difference between its value in Y(2) and the minimum value of

its column. Finally, the elements in Y(4) are the difference between their expected

value of destruction and their value in Y(3). We concatenate Y4 with the values

of the CAVE function with one additional weapon of each type, Z(x(2) + 1, ω), and

determine {ı̂, ̂} = arg max[Y4 Z(x(2) + 1, ω)]. If {ı̂, ̂} corresponds to a target in

stage 1, we update x(1)(̂ı, ̂) = x(1)(̂ı, ̂) + 1. Otherwise, we update x(2)(̂ı) = x(2)(̂ı) + 1

and repeat the process until all weapons have been assigned.
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Figure 6. Greedy Hungarian-like Heuristic Flow Chart
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The CAVE Algorithm generates a cost-to-go function, referred to as the CAVE

function, which we use to determine how many of weapon type i to save for the

second stage of the DWTA by means of our GH subroutine as previously described.

We initialize the algorithm by first randomly generating parameters of our problem

as uniformly distributed variables, pij ∈ U [plowij , p
high
ij ] and Vj ∈ U [V low

j , V high
j ],

after which we execute the subroutine. We then generate a random sample of the

number and type of targets in stage 2 and determines the subgradients

ν+(x(2)(i), ω) = Z
(
x(2)(i) + 1, ω

)
− Z

(
x(2)(i), ω

)
ν−(x(2)(i), ω) = Z

(
x(2)(i), ω

)
− Z

(
x(2)(i)− 1, ω

)
where Z

(
X(2)(i), ω

)
is the GH solution to the second stage for weapon type i given

random instantiation ω∈Ω. Using these subgradients, we define a smoothing interval

I = [max(0,min(x(2)(i)− ε−, uk−)),min(max(x(2)(i) + ε+, uk
++1),M(i))]

where uk is the breakpoint associated with x(2) in the finite set of ordered breakpoints

{νk, uk)|k ∈ K}, ε is a step size governing how far out to smooth the CAVE function,

and M(i) is the number of weapons available of type i. We perform smoothing over

the interval I = [um, un] using a stepsize, which is a function of the iteration j we are

performing in the CAVE Algorithm, α = 1
1+j

νknew = αν−(x(2)(i), ω) + (1− α)νkold for k = m(i), . . . , x(2)(i)− 1

νknew = αν+(x(2)(i), ω) + (1− α)νkold for k = x(2)(i), . . . , n(i)− 1

We iterate the CAVE Algorithm until the either the change in subgradients across

all weapon types is within some small tolerance or a predetermined number of itera-
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tions have been performed. The end state of the CAVE Algorithm is the number of

weapons of each type to preserve for the second stage.

Theorem 3.1 shows that, given an optimal assignment algorithm that can solve

the problem in polynomial time, the algorithm would provide the optimal solution to

the two stage problem with two weapon types. Unfortunately, no such algorithm is

known for this NP-Hard problem.

Theorem 3 Assume the optimal solution for a two weapon type problem is (x1
1, x

2
1, x

1
2, x

2
2)

and that the optimal second stage subgradients which indicate preserving n1
2 and n2

2

weapons are bound by [D−1 , D
+
1 ] and [D−2 , D

+
2 ]. Given the assignment algorithm within

the CAVE Algorithm is an optimal algorithm, w1 weapons of type 1, and w2 weapons

of type 2, the CAVE Algorithm will generate the optimal solution (x1
1, x

2
1, x

1
2, x

2
2).

Proof. If we know the optimal number of weapons to preserve of either one of

the weapon types, we can utilize Theorem 4.3 from Ahner & Parson (2015) to prove

that the CAVE Algorithm will generate the optimal solution.

If we do not know the optimal number of weapons of either type to preserve

a priori, the CAVE Algorithm will generate the optimal solution if λ1∈[D−1 , D
+
1 ]

and λ2∈[D−2 , D
+
2 ] since the subroutine generates optimal assignments in each stage.

Therefore, the CAVE Algorithm will not generate the optimal solutions if any of four

cases occurs: when λ1 < D−1 and λ2 < D−2 , when λ1 > D+
1 and λ2 > D+

2 , when

λ1 < D−1 and λ2 > D+
2 , or when λ1 > D+

1 and λ2 < D−2 :

Case 1: λ1 < D−1 and λ2 < D−2 . In this first case, the CAVE Algorithm finds

less than w1 subgradients with values greater than or equal to D−1 and less than

w2 subgradients with values greater than or equal to D−2 . At the optimal solution,

there are w1 − n1
2 subgradients with values greater than or equal to D−1 and w2 − n2

2

subgradients with values greater than or equal to D−2 . Further, there are n1
2 + 1 and

n2
2 +1 subgradients in the second stage with values greater than or equal to λ1 and λ2,

104



respectively. However, since the CAVE Algorithm selects subgradients sequentially,

it would require w1 + 1 and w2 + 1 weapons in order to converge at λ1 and λ2.

Case 2: λ1 > D+
1 and λ2 > D+

2 . In this case, the CAVE Algorithm finds w1 and w2

subgradients with values greater than D+
1 and D+

2 . In the first stage at the optimal

solution, there are w1−n1
2 and w2−n2

2 subgradients with values greater than or equal

to D+
1 and D+

2 , respectively. In the second stage, there are n1
2−1 and n2

2 subgradients

with values greater than or equal to D+
1 and D+

2 , respectively. This means that there

are a total of w1− 1 and w2− 1 subgradients with values greater than or equal to D+
1

and D+
2 , respectively, which is a contradiction.

Case 3: λ1 < D−1 and λ2 > D+
2 . We denote the subgradient proceeding λ2 as

λ−2 . Because we know that D−2 ≤λ−2 ≤D+
2 and λ1 < D−1 , it follows that λ1 < λ−2 .

However, the CAVE Algorithm will not converge to subgradients (λ1, λ2) since it

selects subgradients sequentially. Therefore, either λ1≥D−1 and λ2 > D+
2 or λ1 > D−1

and λ2≤D+
2 . Addressing the first of these cases, we showed in Case 2 that λ1 > D+

1

and λ2 > D+
2 is a contradiction and cannot occur. Additionally, if D−1 ≤λ1≤D+

1 ,

we showed that the CAVE Algorithm will find the optimal solution. Addressing

the second of these cases, we showed in Case 1 that λ1 < D−1 and λ2 < D−2 is a

contradiction and cannot occur. Further, if D−2 ≤λ2≤D+
2 , the CAVE Algorithm will

find the optimal solution.

Case 4: λ1 > D+
1 and λ2 < D−2 . This case is similar to Case 3 and can be proven

in the same manner.

�

MDP.

We model the heterogeneous 2 stage DWTA as an MDP in order to generate

optimal solutions to smaller problem sizes. MDPs are characterized by the collection
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of objects

{T ,S,As, pt(·|s, a), rt(s, a)}

We define each of these objects here. The first, T , denotes the planning horizon of

the problem. We model the DWTA as a finite horizon problem, with decision epochs

denoting which target to consider for interdiction. Given n targets in the first stage,

we define the planning horizon to extend to n + 1, which is a dummy target which

represents the value of the second stage.

T = {1, . . . , N + 1}

The states of this model define the number of unassigned weapons of each type

remaining. Given wi weapons of type i, the state space is of cardinality (wi + 1)m,

where m is the number of different weapon types.

The actions of this model define whether or not to assign any or all of the remaining

weapons to a given target. An action of all zeros indicates that no weapons will be

assigned to a target whereas one with all ones indicates that one of each weapon type is

to be assigned. If any weapons remain, the actions available include all permutations

of assigning or not assigning each of the available weapons, setting the size of the

allowable actions to
∏m

i=1(wi + 1), where wi is the number of available weapons of

type i. If we have a DWTA with 2 each of 5 weapon types, when all weapons are

available there are 35 = 243 allowed actions. When one of one type of weapon has

been assigned, there are 34 ∗ 2 = 162 allowed actions.

The probability transition function deterministically defines the transition from

the current state to the state reflecting the lack of the weapon(s) which was (were)
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assigned in the previous stage.

pt(j|s, a) =

 1 if j = s− a

0 otherwise
, s ∈ S, a ∈ As, t = 1, 2, ..., N − 1

So if we have one of each weapon type available,

St =

[
1 1 1 1 1

]

and we assign one of weapon type 3,

As =

[
0 0 1 0 0

]

we will transition to state

St+1 =

[
1 1 0 1 1

]

with probability 1.

The reward functions for decision epochs T = {1, . . . , N} are defined as the ex-

pected value of survival of a target given an assignment.

rt(s, a) = Vt

m∏
i=1

q
as(i)
it ,

where qit denotes the probability of weapon i missing target t and as(i) is the ith

element of action as∈As. However, the reward function for decision epoch N + 1

is the optimal expected solution for each state for all possible second stage targets.

That is, we must, for each state, determine the best assignment of available weapons

for each possible configuration of the number and types of targets in the second stage.
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Since we have an equal probability of each configuration, we take the average of the

best assignment values for each state. This gives us the optimal expected value for

each state in the N + 1 decision epoch.

Baseline Policy.

We develop a simple baseline policy which ensures that every target in the first

stage has assigned to it one weapon. We reserve for the second stage all remaining

weapons after allocating one to each target in the first stage. With the number of

reserved weapons for the second stage known, we utilize the GH Heuristic to determine

the objective function value of the first stage. Similarly, in computing the objective

function value of the second stage, we utilize the GH Heuristic.

We utilize this rule-based policy as a baseline because it is accessible without the

need for computationally complex algorithms or simulations. As we seek to demon-

strate the solution quality that a dynamic programming based algorithm is capable

of achieving, we compare it to a baseline policy which does not use dynamic program-

ming.

6.4 Computational Results

We test the aforementioned solution techniques across two experimental designs.

The smaller of the two is extensive enough to illustrate the differences in performance

between the CAVE Algorithm and the baseline policy but is also small enough that

the MDP can converge to the optimal solution without exceeding available memory,

which is the result of defining the action space in computing the terminal reward.

Solving the MDP allows for the comparison of policies by their optimality gaps. The

other experimental design is larger and finding an optimal policy to any of these

instances is intractable.
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Within each of the two experimental designs, we define the target value and the

weapon-target probability of kill parameters as follows. For each target, a uniformly

distributed continuous variable value Vj ∈ [25, 100] is randomly generated, and we also

assigned randomly generated probabilities of kill as uniformly distributed continuous

variables pij ∈ [0.6, 0.9] so that each weapon has a different probability of kill for each

target.

The parameters that we vary among the two experimental designs are as follows.

We vary the numbers of weapon types, m, each type with a different number of

weapons, wi. We also vary the number of target types, which is also the number of

targets in the first stage, n1. Lastly, we vary the number of possible targets in the

second stage. We do this by defining the minimum number of targets in the second

stage, tmin
2 , and the range of the number of targets in the second stage, trange

2 . So an

instance with the following parameters



m

w1

w2

n1

tmin
2

trange
2


=



2

4

3

5

2

3


,

we would have 2 different weapon types, the first with 4 weapons and the second with

3 weapons. Further, we would have 5 targets in the first stage and anywhere from 2

through 5 targets in the second stage, which occur according to a triangle distribution.

The targets in the second stage are selected randomly from the target types, which

means that the target values and the associated weapon-target probabilities of kill

correspond to those for each target type in the first stage.
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We generate 30 problem instances using random numbers for each design point

and performed all tests on a computer having an Intel Xeon E5-2650 v2 processor

with 128 GB RAM. Each solution method is applied to the same set of 30 problem to

allow for direct comparisons of solution values and computational times. Our results,

insights, and analysis are presented in this section.

Small Experimental Design.

We define an experiment wherein we can find optimal policies as determined by the

MDP model described in §3.2 as shown in Table 22. For these smaller design points,

we compute the optimal policy using the MDP algorithm and offer a comparison

to the CAVE Algorithm and baseline policy solutions by determining the first stage

solution with the given policies and computing the solution for every permutation of

the second stage possible. That is, we determine the objective function value of each

realization of each permutation of target types in each possible number of targets in

the second stage and compare the average performance of each solution technique to

the optimal policy of the MDP algorithm.

As the convolution of random numbers leaves us unable to assume a normal

distribution among parameters, we implement a nonparametric statistical test, the

Kruskal-Wallis test, to assess the performance of the solution methods. We test two

null hypotheses: (1) the CAVE Algorithm is equivalent to the baseline policy, and

(2) the optimal MDP policy is equivalent to the CAVE Algorithm policy. We can see

in Table 22 that, with a confidence of α = 0.05, 9 of the 11 problem instances reject

null hypothesis 1. In 8 of these 9 instances, the CAVE Algorithm outperforms the

baseline policy. We also observe that 9 of the 11 instances reject null hypothesis 2.

In instance 8, which does not fail to reject null hypothesis 2, the optimality gaps of

the 30 runs for the CAVE Algorithm do not deviate far from 99%, thus we reject the
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Table 22. Small Experimental Design

Parameter Settings Experimental Results
Avg Opt Avg Imp Comp

Instance m n1 tmin
2 trange

2 w1 w2 w3 Algorithm Gap (%) over Base (%) Time (sec)

MDP N/A 35.51 244.86
1 2 5 3 1 2 3 - CAVE 84.17 14.11 6.20

Baseline 73.90 N/A 0.0011

MDP N/A 20.67 238.72
2† 2 4 3 2 2 2 - CAVE 99.59 20.18 6.35

Baseline 83.20 N/A 0.00049

MDP N/A 0.35 0.12
3 2 4 1 1 3 3 - CAVE 95.80 -3.87 5.15

Baseline 99.66 N/A 0.00035

MDP N/A 20.34 92.69
4 2 4 2 2 3 2 - CAVE 87.65 5.48 5.62

Baseline 83.12 N/A 0.00049

MDP N/A 14.82 390.21
5 3 5 2 1 2 2 3 CAVE 88.05 1.10 11.15

Baseline 87.11 N/A 0.0014

MDP N/A 10.18 69.44
6 3 3 1 2 3 2 2 CAVE 93.31 2.80 9.30

Baseline 90.78 N/A 0.00090

MDP N/A 5.77 2.56
7∗ 3 5 1 1 3 3 2 CAVE 94.97 0.44 6.20

Baseline 94.58 N/A 0.00043

MDP N/A 0.42 30.00
8∗ 2 3 2 2 3 3 - CAVE 99.65 0.064 8.73

Baseline 99.59 N/A 0.00041

MDP N/A 18.98 2.70
9 2 4 2 1 3 2 - CAVE 87.83 4.50 7.45

Baseline 84.07 N/A 0.00032

MDP N/A 22.24 5.53
10 2 5 1 2 2 3 - CAVE 89.86 9.86 6.97

Baseline 81.82 N/A 0.00042

MDP N/A 6.94 0.26
11† 2 3 2 1 2 2 - CAVE 98.51 5.38 5.79

Baseline 93.61 N/A 0.00027
∗ fail to reject null hypothesis 1
† fail to reject null hypothesis 2
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null hypothesis despite its close proximity to the MDP policies.

We note that the average computational time for the three algorithms do not con-

sistently favor the CAVE Algorithm over the MDP algorithm. This is because the

CAVE Algorithm observes many realizations of the second stage in order to approxi-

mate its value function, which may be more computationally expensive than an MDP

with a relatively small action space. By contrast, we see that the computational time

required for some of the instances far exceeded the CAVE Algorithm. Further, there

were experimental settings for which the MDP did not converge to an optimal policy

within four week’s continuous computation, whereas the CAVE Algorithm was able

to find a solution within 20 seconds.

Table 23. Solutions within n% Optimal (%)

≤ 70 [70, 80) [80, 90) [90, 100) Optimal

CAVE 0 0.30 35.15 56.06 8.48
Baseline 0.61 11.82 44.55 37.58 5.45

We see in Table 23 the percentage of solutions for the CAVE Algorithm and

the Baseline policy by their optimality. Roughly 57% of the solutions found by

the Baseline policy, which requires minimal computational effort, are less than 90%

optimal whereas roughly 35.5% of the solutions found by the CAVE algorithm are

less than 90% optimal (only 1 solution was less than 80% optimal). By contrast,

roughly 43% of the solutions found by the Baseline policy are 90% optimal or better

as compared to the roughly 64.5% of solutions found by the CAVE algorithm which

are 90% optimal or better. This allows us to conjecture two points about the solution

techniques. First, the CAVE Algorithm generally finds better solutions than the

Baseline policy, as indicated by Table 22 and Table 23. Second, the CAVE Algorithm

is a more reliable solution technique than the Baseline policy, whose solutions vary

between 68% optimal and 100% optimal.
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Large Experimental Design.

We define an experiment wherein we cannot find optimal policies as determined

by the MDP model described in §3.2, but rather test the performance of the CAVE

Algorithm as compared to the baseline policy for larger design points, as shown in

Table 24. For these larger design points, we compute the solution to the first stage

and randomly sample 10,000 realizations of the second stage, computing the objective

function value of each realization with the CAVE Algorithm policy and baseline policy.

We use these solutions to determine the expected value of each policy.

As in §4.1, we use the Kruskal-Wallis test to assess the performance of the CAVE

Algorithm as compared to the baseline policy. We assume that the CAVE Algorithm

has similar optimality gaps for the larger problem instances to those of the smaller

problem instances, wherein it found policies which are 92.7% optimal. We see in

Table 24 that, with a confidence of α = 0.05, we can reject null hypothesis 1 in 28

of the 33 instances, and that for each of these 28 instances, the average improvement

of the CAVE Algorithm over the baseline policy is positive, therefore demonstrating

statistically superior solutions in the CAVE Algorithm in these instances.

6.5 Conclusion

The two stage heterogeneous WTA is a complex problem which has received lim-

ited in the literature. Each stage is an NP-Hard problem, with the number of weapons

in the second stage dependent upon the assignment made in the first stage. An op-

timal policy, which is achievable for small problems, is computationally expensive.

Indeed, a single problem with 3 weapon types (2 weapons of type 1 and 3 weapons of

type 2 and 3), 4 targets in the first stage, and 2-4 targets in the second stage did not

converge to an optimal solution after four weeks of computation using an MDP back-

wards induction algorithm. The use of a computationally simple policy, which we call
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Table 24. Large Experimental Design

Parameter Settings Experimental Results
Avg Imp CAVE

Instance m n1 tmin
2 trange

2 w1 w2 w3 w4 w5 over Base (%) Time (sec)

1 5 11 10 4 9 8 8 7 10 4.82 37.77
2 5 20 5 6 7 6 9 7 10 3.91 28.18
3 5 14 18 4 5 8 9 5 7 0.049 101.27
4 4 19 20 6 10 6 9 5 - 4.95 67.35
5 5 10 11 5 8 9 7 8 5 2.36 37.68
6 5 19 8 5 7 6 6 9 5 0.11 45.33
7 4 15 19 5 5 8 7 10 - 1.63 56.92
8 4 17 19 5 10 6 6 10 - 1.33 66.96
9 4 13 7 7 9 7 5 6 - 0.31 30.88
10 4 17 8 8 6 8 5 7 - 0.46 45.62
11 4 12 16 10 7 5 6 6 - 2.14 66.41
12∗ 4 17 14 10 9 10 7 7 - 0.0020 61.06
13 4 12 6 7 8 6 10 9 - 4.07 23.10
14 5 16 9 9 6 8 10 9 6 1.88 40.42
15 4 12 17 9 7 5 8 9 - 0.40 64.71
16∗ 4 16 13 10 9 10 8 8 - 0.030 56.23
17∗ 4 15 12 7 8 8 8 8 - -0.046 42.57
18 2 19 13 9 6 7 - - - 14.66 13.30
19 2 10 18 7 8 9 - - - 7.75 22.35
20 2 16 5 9 10 7 - - - 12.50 11.46
21 3 11 3 7 5 9 6 - - 0.82 16.49
22 2 20 12 8 7 6 - - - 12.35 10.39
23 2 11 15 8 8 9 - - - 8.35 22.41
24 3 15 4 8 10 7 8 - - 0.25 16.51
25 3 13 4 8 5 9 9 - - 0.79 18.26
26 3 18 16 6 6 8 10 - - 9.18 33.83
27 3 13 15 5 9 7 10 - - 1.05 32.97
28∗ 3 18 7 3 8 10 9 - - -0.15 23.29
29 3 13 9 3 6 5 8 - - 3.05 25.50
30 3 18 17 6 7 9 5 - - 17.14 35.97
31 2 14 14 4 9 7 - - - 18.54 16.89
32∗ 3 18 6 4 8 10 7 - - -0.021 21.72
33 3 14 10 3 6 5 7 - - 8.05 24.41

∗ fail to reject null hypothesis 1
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a baseline policy, converges to a solution rapidly but is unreliable in its performance,

with solutions as low as 68.6% optimal. As such, we develop a computationally simple

technique by which a near optimal solution is reliably found.

We present a solution technique for the heterogeneous DWTA which uses the

CAVE Algorithm with the Greedy Hungarian-like Heuristic as a subroutine. We

compare the performance of this algorithm to the performance of a baseline policy

and, when possible, to the performance of an optimal MDP algorithm. Though

limited by the size of the problem instance considered, this MDP algorithm is the

first optimal solution technique for the heterogeneous DWTA found in the literature.

We extend the work of Ahner & Parson (2015), who use the CAVE Algorithm

with an optimal subroutine to find the optimal solution to the homogeneous DWTA.

Our work is able to find near optimal policies to a two stage problem with different

types of weapon systems for small problem instances. The number of dimensions

to consider in each stage grows exponentially with the number of weapon systems,

which increases the required computational time for both the CAVE and the MDP

algorithms. The CAVE Algorithm is able to generate a policy which improves upon

a baseline policy within two minutes for the largest problem instances considered and

is easily extended to large problem instances.
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VII. A Continuous Time Two Stage Shoot-Look-Shoot
Weapon Target Assignment Problem

7.1 Introduction

With many variants and over sixty years (Manne, 1958) of consistent research,

the defensive weapon target assignment (WTA) problem is one whose solution in-

forms the targeting of incoming missiles with available interceptors in defense of a

protected assets. In his seminal work, Manne modeled what is now referred to as the

static WTA (SWTA), which provides a scenario wherein a known number of incoming

missiles (targets) with known destructive values is to be intercepted by a number of

interceptors (weapons) with known probabilities of successfully destroying the mis-

siles (probabilities of kill). With j = 1, . . . , n targets, each of which has a destructive

value Vj, and i = 1, . . . ,m weapons, with probabilities of kill pij, the formulation is

min
n∑
j=1

Vj

m∏
i=1

(1− pij)xij (1)

st
n∑
j=1

xij ≤ wi, for i = 1, . . . ,m,

xij ∈ Z+, for i = 1, . . . ,m, j = 1, . . . , n

where the decision variable, xij, defines the number of weapons of type i to assign

to target j. The first constraint limits the number of weapons of type i that can be

assigned to the total number of weapons of type i available, wi. The second constraint

limits the decision variable to positive integers.

Advances in WTA modeling and computational power enabled the development of

a dynamic WTA (DWTA), in which engagements can either be observed and repeated

(if the weapon misses the target) in a “Shoot-Look-Shoot” model, or a subsequent

stage in which a number of targets known only to a probability distribution can be
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fired at the protected asset in a “Two Stage” model. The homogeneous Two Stage

DWTA, which was initially proposed by Murphey (2000) and later optimally solved

by Ahner & Parson (2015), seeks to minimize the sum of the expected values of

survival for the targets in the first stage and the expected number of targets in the

second stage, which occurs according to a random variable ω ∈ Ω, where Ω is the set

of all possible outcomes of remaining targets whose distribution has a finite second

moment.

min

{
n1∑
j=1

V
(1)
j

(
1− p(1)

ij

)x(1)ij

+ E
ω∈Ω

[
Z2

(
x(2), ωj

) ]}
(2)

st
n∑
j=1

xij≤wi, for i = 1, . . . ,m,

xij∈Z+, for i = 1, ...,m, j = 1, ..., n

where the second stage, Z2, is a function of the remaining weapons, x(2), and a random

occurrence, ω, of the number and type of targets.

Z2

(
x(2), ωj

)
= min

{
n2(ω)∑
j=1

V
(2)
j (ω)

(
1− p(2)

ij

)x(2)ij

}
.

While there are many exact and heuristic solution techniques for the SWTA and

DWTA, there is relatively little research dedicated to the scheduling of these solutions.

As no interceptor system can instantly engage multiple targets simultaneously, it is

necessary to provide a firing order that governs the sequence in which the solution is

to be executed. Khosla (2001) proposed a model which addressed this by assigning

weapons to targets at specific time points in order to establish a solution which

provides a feasible firing order. However, as he notes, the length of time to consider

and the size of the time intervals to utilize can quickly increase the dimensionality of

the problem to a point at which finding a solution is intractable.
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An alternative model whose solution provides a feasible firing order was developed

by Leboucher et al. (2013). By using two dimensional Bézier curves, Leboucher

et al. (2013) are able to model flight paths of targets which define their position

in continuous time. The model is a homogeneous variant, which means that all

available weapons are of the same type. This contrasts with a heterogeneous variant,

in which different weapon types, with different probabilities of kill, are available.

Leboucher et al. (2013) implement a two step technique to solve their model, using

the Hungarian Algorithm to determine the assignment solution and a hybrid particle

swarm optimization and evolutionary game theory heuristic to determine the firing

order.

In this paper, we present a heterogeneous model, based on the aforementioned

model developed by Leboucher et al. (2013), which we extend to two stages while

at the same time allowing for a Shoot-Look-Shoot approach and modeling contin-

uous flight paths with three dimensional Bézier curves. In section §2, we present

our model and identify our assumptions. In §3, we describe our solution technique,

which involves several heuristics and an adaptation of the Concave Adaptive Value

Estimation (CAVE) Algorithm developed by Godfrey & Powell (2001). We test our

solution technique in §4 by running real-time simulations which initiate at the launch

of the targets and requires we find a solution and conduct all engagements prior to

the point of impact of each target over the number of stages. Finally, we analyze the

results and provide our conclusions in §5.

7.2 The Model

We present a formulation which is an amalgamation of the two stage model devel-

oped by Ahner & Parson (2015) and the work of Leboucher et al. (2013). We define
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our sets, in accordance with those described in §1, as follows:

I = {1, . . . ,m} Weapon types

J = {1, . . . , n} Target types

K = {1, . . . , a} Protected assets

T = {1, . . . , b} Stage.

We define a fifth set, which is composed of the set of assignments in the solution for

stage t, as

X t = {(i1, j1), . . . , (im, jn)}

Next, we define the parameters of our model. First, we define the probability that

target j will hit and destroy protected asset k as γjk, or probability of hit. We define

the probability that weapon i will hit and destroy target j as pij, or probability of

kill. We define the time required to fire, guide, and prepare a weapon system for

a subsequent engagement as our guide time, g. We define the number of weapons

of type i available as wi. Weapon i is located at li and it has an effective range of

ri. Target j is launched from a point of origin at a distance no closer than djk to

protected asset k and can climb to a maximum altitude of hj. In stage t, target j will

be within the maximum effective range of weapon type i at time crijt and will have a

time until impact at protected asset k of csijkt.

For the two stage model, we have additional parameters. We define the minimum

number of targets in the second stage to be nmin2 , and we define the maximum number

of targets in the second stage to be the sum of the minimum and nr2. So the number of

targets in the second stage is randomly selected within the range nmin2 ≤ n2 ≤ nmin2 +
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nr2. The complete list of parameters for this model is as follows:

γjk Probability of hit

pij Probability of kill

g Guide time

Mk Value of protected asset k

wi Number of weapons of type i

li Location of i

ri Range of i

djk Max distance between j and k

hj Max altitude of j

crijt Time until in range

csijkt Time until strike

nmin2 Min number of targets in stage 2

nr2 Range of number of targets in stage 2

We define our decision variables xtij and ytijqi as follows. The first decision variable,

xtij, indicates the number of weapons of type i assigned to target j in stage t. In the one

stage problem, this can be simplified to xij since t = 1 for all available assignments.

The second decision variable, ytijqi , indicates the time at which a weapon of type i is

assigned to target j in stage t. If xtij > 1, we identify successive shots with the index

qi = 1, . . . , wi. That is, if we have a non-zero value for ytij3, then at least 3 weapons

of type i are assigned to target j in stage t, with firing times ytij1, ytij2, and ytij3.

Using the aforementioned sets, parameters, and decision variables, we can define

our model. We are seeking to minimize the expected value of any leakers, or targets

which survive our defensive efforts. We assume that no target can destroy more than

one protected asset, thus we define a target value Vj = max {Mkγjk}. Therefore, we
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have

min

{∑n1

j=1V
(1)
j

(
1− p(1)

ij

)x(1)ij

+ E
ω∈Ω

[
Z2

(
x(2), ωj

) ]}
(3)

st
∑b

t=1

∑n
j=1x

t
ij≤wi, for i∈I, j∈J, t∈T, (3a)∣∣∣ytijqi − ytijq′i∣∣∣≥g, for (i, j)∈X t, t∈T, qi, q′i = 1, . . . , wi, q

′
i 6=qi, (3b)∣∣∣ytijqi − yti′j′q′i∣∣∣≥g, for (i, j), (i′, j′)∈X t, t∈T, qi, q′i = 1, . . . , wi, j

′ 6=j, (3c)

ytijqi≥c
r
ijt, for (i, j)∈X t, t∈T, qi = 1, . . . , wi, (3d)

ytijqi≤c
r
ijt + csijkt, for (i, j)∈X t, t∈T, qi = 1, . . . , wi, (3e)

xtij∈Z+, for i∈I, j∈J, t∈T, (3f)

ytijqi≥0, for i∈I, j∈J, t∈T, qi = 1, . . . , wi, (3g)

where the second stage, Z2, is a function of the remaining weapons, x(2), as described

in §1. In the above formulation, the objective function, (3), is equivalent to (2) from

§1. Constraint (3a) limits the total number of assigned weapons of type i over all

stages to wi. Constraints (3b) and (3c) ensure that two engagements occur at least g

time units apart unless fired from two weapon types at the same target. Constraint

(3d) limits the earliest fire time of a weapon of type i to target j to the time until

target j is within range of weapon i. Constraint (3e) ensures that the latest firing

time of a weapon of type i to target j is the time of impact of target j at protected

asset k. Lastly, constraints (3f) and (3g) limit the decision variables xtij and ytijqi to

positive integers and nonzero reals, respectively

We utilize Bézier curves to generate realistic flight paths of targets, as referenced

in §1. In order to capture the three dimensional reality of a weapon’s range and

the flight path of a target, we extend the two dimensional Bézier curves to three

dimensions. For each target, we generate three random control points and use the

location of the targeted protected asset as the fourth control point. With control

point n defined by Pn ≡ (xn, yn, zn), we generate each curve by using i = 1, . . . ,m
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break points, computing the coordinates at each break point as

f(xi, yi, zi) =

(
1− i

m

)3

P1+3

(
1− i

m

)2(
i

m

)
P2+3

(
1− i

m

)(
i

m

)2

P3+

(
i

m

)3

P4

Using the Bézier curves and the parameters li and ri, we generate problem in-

stances. Shown in Figure 7 is such a problem instance with two weapon types and

four targets aimed at a single protected asset. The gray hemispheres represent the

effective range of each weapon whereas the four curved lines indicate the flight paths

of the four targets, which follow the paths with constant speed.

Figure 7. 3-D Model using Bézier Curves

As shown above, this model captures the continuous time aspect of the target

flight paths and incorporates a multi-stage objective. We make several assumptions

in developing this model. First, we assume that, once launched, each target has a

constant speed and that all target velocities are equal. Next, we assume that we

have full knowledge of the flight paths of the targets and can accurately assess the

geometry of each target’s descent to the point of impact at the protected asset, which

we use to compute probabilities of hit and of kill. Next, we assume that a target of

type j in the second stage will have the same flight path and associated parameters
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as a target of type j in the first stage.

7.3 The Solution Techniques

We develop a solution technique, which we call the Continuous Reallocation

Method (CRAM), capable of finding real-time solutions in the combined Shoot-Look-

Shoot and two-stage model. Similar to Leboucher et al. (2013), we use a two step

technique for each stage, solving first the assignment problem and subsequently de-

termining the firing order. However, whereas Leboucher et al. (2013) determine the

assignments and firing order once, the CRAM determines the assignments and firing

order after every engagement. Because this element of control theory underlies the

CRAM, it is an example of model predictive control (Ahner, 2005). For the two

stage problem, we use a Concave Adaptive Value Estimation (CAVE) algorithm to

determine the number of interceptors to use in the first stage and the number to save

for the second stage. Herein, we present the heuristic algorithms that comprise the

CRAM, through which we are able to solve the problem.

A Single Stage.

We first define the process by which we solve the model in a single stage as the

two stage problem is an extension of the single stage problem. Given the parameters

defined in §2, we first assign the available weapons to targets by solving the formula-

tion in Equation (1) using a Greedy Hungarian-Like Algorithm (Kline et al., 2017).

Next, we assign a firing order by first identifying the time at which each target will

be within range of its assigned weapon. We then identify any assignments which are

within range at the current clock time and denote this time as the firing time for

the assignment within range which has the smallest time to impact. We increment

the clock by a set guide time and repeat the process until the clock time exceeds the
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latest time to impact. If no assignments are within range at the current clock time,

we increment the clock by the guide time and repeat the process.

With the assignment and firing order algorithms described above, we solve the one

stage model according to the CRAM as shown in Figure 8. Once the parameters are

generated, the clock is started and the assignments and firing order are determined.

Next, the procedure simulates the first weapon-target assignment according to the fir-

ing order, generating a random number, ω∈[0, 1] to assess whether weapon i destroys

target j. If ω > pij, target j survives the engagement. Otherwise, target j is destroyed

by weapon i. The clock is incremented by the guide time and the assignment and

firing order heuristics update the engagement plan given knowledge of the disposition

of the target. If it has been destroyed, the target no longer receives any weapons

and the successful engagement is annotated. Otherwise, the assignments and firing

order will adjust to account for the reduction of available weapons and time. This

process continues, with the clock tracking the actual time of the simulation, until the

last target is destroyed or has reached its destination. A different random number

ω∈[0, 1] for each surviving target determines whether it hit the protected asset. If

ω > γjk, target j misses protected asset k. Otherwise, target j hits protected asset k.

Two Stages.

We extend the single stage CRAM to solve a two stage problem. In order to do

this, we first must determine how many weapons to use in the first stage and how

many to save for the second stage. We extend and implement the CAVE algorithm,

used by Ahner & Parson (2015) to the two stage heterogeneous DWTA, as was first

demonstrated by Kline et al. (2018).

The two stage CRAM begins by defining the parameters and Bézier curves, start-

ing the clock, and using the CAVE algorithm to determine the number of weapons
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Figure 8. One Stage Procedure
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to use in each stage. Next, the first stage is solved using the procedure defined in

§3.1. Upon completion of the first stage, the number and type of targets in the sec-

ond stage is randomly determined and the associated parameters are generated. The

same procedure is then used for the second stage. The number of targets destroyed

and the number of targets that hit the protected asset are determined just as in the

one stage problem.

Baseline Policy.

In order to assess the efficacy of our solution techniques for this problem, we

develop a realistic Shoot-Shoot-Look policy which we call our Baseline Policy. In this

policy, a target j is engaged with two of weapon i upon entering its effective range.

If target j enters the effective range of weapon i and wi = 1, the second engagement

occurs with the next closest weapon once within range. If wi = 0, the target is

engaged with two weapons of the next closest weapon once within range. After each

engagement, the survival of the target is assessed and the target is reengaged if it

hasn’t yet reached the protected asset. For the two stage problem, half of the weapons

are saved for the second stage, with the extra weapon going to the second stage where

there are an odd number of weapons of any type.

7.4 Computational Results

We conduct two experiments to assess the performance of the solution techniques

outlined in §3. The first experiment tests the performance in a single stage problem

while the second tests the performance in a two stage problem. We use a nearly

orthogonal Latin hypercube (NOLH) design for each experiment, varying the upper

and lower bounds for both γjk and pij, guide time g, and number of weapons of

type i available wi. For the two stage problem, we also vary tmin2 and tr2. Within each
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experiment, we do not vary the ranges (ri) of each of the weapon types we use, nor the

max altitude (hj) or max distance (djk) of target j, of which there are 16 in the first

stage. Target j can have a launch point as far as 100 units in either direction, thus

the maximum distance for a launch point is roughly 141.4 units away
(√

1002 + 1002
)
.

All targets travel at a constant speed of 1 unit per second, so the longest possible

simulation is 141.4 seconds, or roughly 2.3 minutes.

For each experiment, we build our NOLH design by bounding the parameters as

follows

γjk ≥ γlowjk 0.15 ≤ γlowjk ≤ 0.3

γjk ≤ γhighjk 0.35 ≤ γhighjk ≤ 0.75

pij ≥ plowij 0.25 ≤ plowij ≤ 0.50

pij ≤ phighij 0.50 ≤ phighij ≤ 0.90

g 0.5 ≤ g ≤ 3

wi 5 ≤ wi ≤ 15.

We generate the values for γjk and pij by using the angle of impact or the angle

by which the target enters the effective range of a weapon, respectively. We make a

general assumption that the higher the angle of impact, the greater the probability

of hit, whereas the closer to 45◦, the higher the probability of kill, with a much lower

probability of kill at 90◦ than at 0◦, as can be seen in Figure 9. For a target j with

an angle of impact/entrance θ and a random deviation ε, the parameters are:

γjk = γlowjk +
θ

90◦

(
γhighjk − γlowjk

)
+ ε

pij =


(phighij +plowij )

2
+ θ

90◦

(
phighij − plowij

)
+ ε θ ≤ 45◦

phighij − θ−45◦

45◦

(
phighij − plowij

)
+ ε θ > 45◦,
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where, for each parameter, ε is a random variable within the range −δ ≤ ε ≤ δ, with

δ being a user defined input.

Figure 9. Probabilities of Hit/Kill Distributions

We test the NOLH design over five different scenarios for each of the two exper-

iments. These scenarios change the location and number of weapon types. Table

25 shows the five scenarios we test for each experiment. In the first scenario, each

weapon overlaps the protected asset, located at (0, 0, 0), enough that any incoming

target will be within its effective range at some point. Scenario two is the same as

scenario one except that there are only two available weapon types. In scenario three,

the effective ranges of weapon types 1 and 2 do not overlap, thus not all targets will

be within range of all weapon types. Scenario four is similar to scenario three less

the availability of weapon type 3. Lastly, in scenario five all three weapon types are

co-located at the protected asset.

We conduct all tests on a computer having an Intel Xeon E5-2650 v2 processor

with 128 GB RAM, and we seed each technique with the same random number stream

which determines the outcomes of each engagement and the success or failure of each

leaker. We iterate each design point 30 times and report our results as the mean

value of these replications.
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Table 25. Experimental Scenarios

Location Effective Range
Scenario w1 w2 w3 w1 w2 w3

1 (10,10,0) (-15,-15,0) (0,0,0) 30 35 40
2 (10,10,0) (-15,-15,0) - 30 35 -
3 (30,0,0) (-35,0,0) (0,0,0) 30 35 40
4 (30,0,0) (-35,0,0) - 30 35 -
5 (0,0,0) (0,0,0) (0,0,0) 30 35 40

One Stage Problem.

We present the results of the performance of the single stage CRAM and the

Baseline policy in Table 26. We see the average number of targets destroyed and

number of protected asset hits for each algorithm for each scenario as well as the

average number of each weapon type used in each scenario. As we restrict the number

of weapons of types 1 and 2 to the same design points in each of the scenarios, it

follows that the performance of each algorithm in scenarios 2 and 4, where only these

two weapon types are available, is worse than in the other three scenarios, wherein

all three weapon types are available.

We assess the performance of the CRAM by two metrics: reduction in the number

of hits to the protected asset and the number of weapons used. For the first met-

ric, we see that, in each scenario, the CRAM outperforms the Baseline policy in the

number of hits allowed to the protected asset. The CRAM has an average of 0.87

hits as compared to the 2.51 hits by the Baseline over the 5 scenarios. Additionally,

the number of targets destroyed is greater in the CRAM than the Baseline, with an

average of 13.04 targets destroyed by the CRAM and 8.06 destroyed by the Baseline

policy. Using the Kruskal-Wallis nonparametric test, we can state with 99% confi-

dence that the CRAM destroys 155%±4.03% the number of targets that the baseline

policy destroys and receives 40.0%± 5.40% the hits that the baseline policy receives.
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Table 26. Single Stage Results

Scenario Algorithm
Targets Protected Weapons Used

Destroyed Asset Hits w1 w2 w3

1
CRAM 14.01 0.61 7.65 7.20 7.73
Baseline 8.63 2.34 9.77 9.87 10.02

2
CRAM 11.84 1.25 9.57 9.43 -
Baseline 7.03 2.88 10.03 10.03 -

3
CRAM 13.98 0.63 7.84 7.15 8.32
Baseline 8.45 2.43 9.82 9.88 10.01

4
CRAM 11.40 1.35 9.72 9.51 -
Baseline 6.82 2.91 10.03 10.03 -

5
CRAM 14.20 0.54 6.35 7.62 8.37
Baseline 9.38 2.14 9.52 10.03 10.03

The second metric marks the efficiency of the policy. The CRAM uses fewer

weapons in each scenario to destroy more targets and allow fewer hits to the protected

asset. On average, the CRAM uses 7.05 of each weapon type whereas the Baseline

uses 8.60 of each weapon type. This indicates two improvements of the CRAM. First,

it indicates that the CRAM is not conducting overkill, firing too many weapons at

any one target. Second, this indicates that the CRAM assigns weapons to targets far

more efficiently than the Baseline policy, saving an engagement for a weapon which

will have a greater probability of kill rather than using more weapons to destroy

the target. We note that an additional reason that the CRAM uses fewer weapons

than the Baseline is the lack of sufficient time to allocate more weapons. Though

not reported here, a reduction in the guide time parameter g increases the number

of weapons used in each algorithm, yet the CRAM consistently uses fewer than the

Baseline for the reasons described.

While reassigning the weapons to targets and redefining the firing order is com-

putationally expensive, the efficiency of the heuristics defined in §3 allow for these

processes to refine and improve the engagement process without sacrificing much

time. As shown in Table 26, the performance of the CRAM in the single stage model
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improves upon the Baseline policy in each of the metrics considered.

Two Stage Problem.

As previously mentioned, we extend the experimentation of the one stage problem

by including a second stage with two additional parameters, tmin2 and tr2, where the

number of targets in the second stage, t2 is tmin2 ≤ t2 ≤ tmin2 + tr2. As the number

of targets increases for this problem, we also increase the number of weapons. We

bound these parameters as follows

wi 15 ≤ wi ≤ 30

tmin2 5 ≤ tmin2 ≤ 15

tr2 5 ≤ tr2 ≤ 10.

We present the results from the two stage experimentation in Table 27. In ad-

dition to the same measurements of effectiveness as presented in Table 26, Table 27

includes the average number of targets in the second stage, t2. This, along with the

16 targets in the first stage, defines the average total number of targets in each sce-

nario. However, the exact number of targets in the second stage is only known to

a probability distribution and the number of weapons to save are determined in the

first stage.

In observing Table 27, we can assess the performance of the CRAM as compared

to the Baseline policy per the two aforementioned metrics. First, we observe that the

CRAM consistently allows fewer targets to hit the protected asset than the Baseline

policy. With an average of 3.72 hits, the Baseline policy allows more than the CRAM,

which allows an average of 0.89 hits. Conversely, the CRAM destroys more targets

than the Baseline, with averages of 23.2 and 14.2, respectively. Using the Kruskal-

Wallis test, we can state with 95% confidence that the CRAM destroys 155%±3.42%
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Table 27. Two Stage Results

Scenario Algorithm
Targets Protected Weapons Used

t2Destroyed Asset Hits w1 w2 w3

1
CRAM 24.18 0.68 13.61 12.10 13.95

10.38
Baseline 15.08 3.58 17.19 18.72 21.16

2
CRAM 22.67 1.13 19.39 17.83 -

10.37
Baseline 13.66 4.08 21.56 21.50 -

3
CRAM 24.07 0.74 13.48 11.49 15.11

10.30
Baseline 14.74 3.68 17.55 18.56 20.77

4
CRAM 22.14 1.21 19.84 18.00 -

10.28
Baseline 13.25 4.18 21.46 21.31 -

5
CRAM 24.27 0.66 9.94 12.80 15.78

10.37
Baseline 16.16 3.23 13.68 20.34 22.49

the number of targets that the baseline policy destroys and allows 29.8%± 5.52% the

number of hits that the baseline policy allows.

Similar to its performance in the one stage problem, the efficiency of the CRAM in

the two stage problem exceeds that of the Baseline policy. In addition to the effective

assignments and prevention of overkill of any target, the CRAM utilizes the CAVE

algorithm to inform the decision of how many weapons to save for the second stage.

This reduces the chance of a surplus or deficit number of weapons in either stage,

which reduces the total number of hits to the protected asset.

The additional computational requirement of the CAVE algorithm can be justi-

fied in the CRAM by observing its performance as compared to the Baseline policy.

Though time consuming, execution of this algorithm enables an informed solution to

the first problem encountered in the two stage problem: that of how many weapons to

save for the second stage. With this solution, the efficient subroutines of the CRAM

are able to reallocate weapons to active targets without exhausting too much time

each time it observes the outcome of an engagement.

132



7.5 Conclusion

With a relatively small portion of all research into the Weapon Target Assignment

problem focusing on the dynamic variant (Kline et al., 2018), there are not many

models which consider a shoot-look-shoot problem within a multi stage problem.

Hosein & Athans (1989) provided an early model which considers subsequent stages

and targets that survived an engagement. Khosla (2001) developed a shoot-look-

shoot model which considers the scheduling of engagements and can be expanded to

consider multiple stages. Xin et al. (2011) developed a shoot-look-shoot model which

incorporates multiple stages and proposed a solution technique that efficiently assigns

available weapons to active targets in each stage. By contrast, Leboucher et al. (2013)

considers only one stage but examines the continuous time position of each target and

determines a firing order to engage targets before they reach the protected asset.

In this paper, we present a model which extends the continuous time model devel-

oped by Leboucher et al. (2013) into multiple stages, solving each stage in a manner

similar to Xin et al. (2011). We consider differing weapon types, thus making a het-

erogeneous problem whose solution, in each stage, is an NP-Hard problem (Lloyd &

Witsenhausen, 1986). We test the Continuous Reallocation Method (CRAM), over

one and two stages by simulating scenarios in which targets follow Bézier curves to a

protected asset, requiring our solution and engagements occur prior to their impact.

While we evaluate the efficacy of the CRAM on two metrics (i.e., reduction in the

number of hits to the protected asset and the number of weapons used), we note that

there are additional metrics which may be used in future research. One such metric

is the number of weapons needed so that the number of hits to the protected asset

is less than some threshold. We compare the experimental results of the CRAM to

those using a Baseline policy, which is a standard shoot-shoot-look policy engaging

targets as they enter the effective range of a weapon.
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We find that the CRAM is capable of solving this complex problem in real time

and, given the parameter values defined in §4, can provide assignment and firing or-

der policies which result in less than 1 target hitting the protected asset of the 16

incoming targets in the single stage problem and 26-31 incoming targets in the two

stage problem. Through the method of simulation defined heretofore, we demonstrate

its efficacy given two or three weapon types, overlapping or disjoint weapon effective

ranges, and one or two stages of engagements. Using the Kruskal-Wallis nonparamet-

ric test with 95% confidence, we can state that the CRAM statistically outperforms

the baseline policy in terms of the number of targets destroyed and the number of

hits to the protected asset.
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VIII. Conclusion

This dissertation develops and tests real-time heuristic algorithms for the Static

Weapon Target Assignment (SWTA) problem and Dynamic Weapon Target Assign-

ment (DWTA) problem and compares results to known benchmarks or realistic base-

line policies. First, a review of the literature is conducted and the state of the WTA

is discussed, including modeling techniques, optimal algorithms, and heuristic algo-

rithms. An Eminent Domain (ED) Metaheuristic is presented, which exploits the

efficiency of a subroutine - the Quiz Problem (QP) Heuristic - to repeatedly solve

the SWTA while denying a subset of assignments which may lead to superior solu-

tions. A logarithmic transformation to the SWTA with tight constraints is used to

improve upon the efficiency and quality of the solution to the SWTA when using

the commercial solver, BARON. A heuristic which improves upon the QP Heuristic,

called the Greedy Hungarian-like (GH) Heuristic, is then presented and finds superior

solutions by selecting assignments which are among the best for each interceptor and

each missile. The GH is used as a subroutine for the ED (identified as the GH-ED)

and results for the QP, ED, GH, and GH-ED techniques are compared. A multidi-

mensional Concave Adaptive Value Estimation (CAVE) Algorithm is developed for

use in the heterogeneous two stage DWTA with a modified GH subroutine. Lastly, a

Continuous Reallocation Method (CRAM) is developed, which uses the GH, GH-ED,

and CAVE algorithms to solve a two stage Shoot-Look-Shoot problem.

Missile defense is a relevant problem for which a quality solution is of high com-

plexity. Due to the probabilistic nature of incoming missiles, the success of an engage-

ment subject to a probability of kill, the erratic nature of missile flight paths, and the

uncertainty of subsequent missile strikes, which are necessary to consider in any en-

gagement, the problem requires complex models that capture these aforementioned

parameters yet whose solutions are computationally tractable. As such, simplified
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models are used to develop, test, and assess real time algorithms, with which more

realistic models are solved.

This dissertation is of a k-paper format and each chapter, less the introduction

and conclusion, is an article that in some point of the publication process in peer

reviewed journals. The scope and contributions of each article are reviewed herein.

In Chapter 2, a review of the literature on the Weapon Target Assignment (WTA)

Problem is conducted in a contemporary survey. The different SWTA and DWTA

models are examined and their differences and similarities are explored, demonstrat-

ing the evolution of the problem since its inception (Manne, 1958). Referencing these

various models, a discussion of some of the optimal algorithms and heuristic algo-

rithms that have been used to solve the WTA problem follows. Additionally, recent

developments in the literature and alternative applications of WTA research are dis-

cussed. A metric is proposed by which the research is parsed to present among the

more influential work. This is the first comprehensive survey of the WTA Problem

since Cheong (1985) and includes many developments that have emerged in the years

since.

In Chapter 3, the ED Metaheuristic is presented as a real-time solution technique

for the SWTA and an improvement over any known solution technique found within

the literature. It uses the QP Heuristic as a subroutine for this metaheuristic and

compares the solution quality and required computational effort of the QP Heuristic

and ED Metaheuristics to an accepted benchmark in the literature: a construction

heuristic developed by Ahuja et al. (2007). The ED 1 variant is able to find solutions

with two times the optimality gap of the construction heuristic, but is 2400 times

faster, on average. The ED 2 variant only performs 4 times faster than the construc-

tion heuristic, but finds solutions roughly with optimality gaps 45% better than those

of the construction heuristic, on average.
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In Chapter 4, a systemic problem with the commercial solver, BARON, is explored.

With an average false optimality rate of 21%, BARON’s unreliable performance in

solving the WTA is improved using a logarithmic transformation, which results in

lower bounds for which no improvements have been found. As this transformation

proves to require additional computational effort, a constraint is introduced to reduce

the domain, and an instance-specific parameter is used to tighten this constraint as

much a possible while ensuring that no optimal solution is removed from the domain.

Using this reduced-domain transformation, BARON finds superior solutions to any

other technique explored and does so more efficiently that alternative approaches

within BARON.

Chapter 5 develops and presents the GH heuristic, an improvement to the QP

heuristic in solution quality and required computational effort. This heuristic is used

as a subroutine for the ED Metaheuristic and the performance of the QP, ED, GH,

and GH-ED heuristics are compared by examining their required computational effort

and the quality of the solutions relative to those found by the commercial solver,

BARON. It is noted that the GH-ED 1 variant finds solutions with optimality gaps

15% greater than the construction heuristic, but roughly 250 times faster, on average.

The GH-ED 2 variant finds solutions with optimality gaps roughly 30% better than

the construction heuristic, and was 18 times faster, on average.

In Chapter 6, a multidimensional CAVE Algorithm is developed for use in the

heterogeneous two stage DWTA, using a modified GH heuristic as the subroutine.

No solutions to this problem have been found in the literature to date, and this is the

first technique capable of solving such an expanded model. The performance of the

CAVE Algorithm is tested and the results are compared to those of a baseline policy

in simulations that test the points of two nearly orthogonal Latin-hypercube designed

experiments. For the smaller designed experiment, optimal policies are determined
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by using a backwards induction algorithm to solve a Markov Decision Process model,

which enables the assessment of the performance of the CAVE Algorithm and baseline

policy. The CAVE Algorithm has an average optimality gap of 7.32% in these cases,

improving upon the baseline policy by 5.46%. In the larger designed experiment, the

determination of optimal policies is intractable due to the magnitude of the state

space and action space, thus the CAVE Algorithm is compared to the baseline policy

alone. In these larger cases, the CAVE Algorithm improves upon the baseline policy

by 4.32% on average.

Chapter 7 develops a complex and realistic model with continuous time parameters

which requires consideration of a Shoot-Look-Shoot firing sequence and the preserva-

tion of interceptors for a second salvo. While some models in the literature take into

account one or two of the features in this model, none are as collectively realistic and

complex as this model. Further, its parameters are defined in such a way as to be ca-

pable of modeling known characteristics of real missile defense systems. The CRAM,

which utilizes the GH, GH-ED, and CAVE Algorithm to generate real-time solutions

within the problem simulation, is developed, to which a realistic Shoot-Shoot-Look

policy is compared. For the single salvo testing, the CRAM allows 66% fewer hits to

the protected asset while using 18% fewer interceptors than the baseline policy. For

the two salvo testing, the CRAM allows 76% fewer hits to the protected asset and

uses 28% fewer interceptors than the baseline policy.

Throughout this dissertation, assumptions are made which reduced the complexity

of the models under experimentation. First, in Chapters 3, 4, and 5, it is assumed

that all probabilities of kill and missile destructive values are known a-priori. This

assumption is made only in the first stage of the DWTA in Chapter 6, although it

is known that the incoming missiles in the second stage are a subset of those in the

first stage. In Chapter 7, these parameters are not known a-priori, but rather are
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determined at the beginning of the simulation by analyzing the geometry of the flight

path of each incoming missile. Thus, in Chapter 7, full knowledge of the flight paths

of the incoming missiles in the first stage is known a-priori.

In Chapters 3, 4, 5, and 6, it is assumed that each interceptor has the capacity

to engage each incoming missile. This assumption is relaxed in Chapter 7, wherein

several scenarios in which interceptors can only engage a subset of incoming missiles

are considered. Further, several scenarios are considered in Chapter 7 in which the

interceptors have different earliest engagement times for the different missiles.

In Chapter 7, it is assumed that each missile has the same speed, which is constant

throughout its flight path. Further, it is assumed that the time required for each

engagement is constant amongst interceptor types.

Each of the solution techniques has similar problem size limitations which must be

considered prior to their implementation. The ED Metaheuristic is capable of finding

near optimal solutions when the ED 2 variant is used, with an average optimality gap

of 1.69%. However, this variant ceases to be real-time, with average computational

speed exceeding one second, for problems with more than 20 interceptors and missiles.

The ED 1 variant is able to find solutions that are, on average, 3.01% above optimal,

which is inferior the ED 2 in terms of solution quality, but it superior to the ED 2

in terms of required computational effort. The GH heuristic and the GH ED Meta-

heuristic have similar limitations. As the subroutines of the CAVE Algorithm and the

CRAM are the GH heuristic and GH ED Metaheuristic, the required computational

effort for each is also a limiting factor in the larger problem sizes considered.

This research has many extensions which may be explored in the future. First,

the ED Metaheuristic can be improved by finding an improved method of defining

the denial set. With a smaller denial set, the required computational effort of the

metaheuristic improves, and if the truncation of these sets can be made in such a way
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that reduces the degradation of solution quality, its application could expand.

Next, the GH Heuristic, ED Metaheuristic, and CAVE Algorithm can be used in

problems unrelated to missile defense. For example, product acquisitions which have

inherent probabilities of successfully achieving some goal can be modeled and solved

using these techniques. If future available capital is known only to a probability

distribution, the resulting problem can be modeled as the two stage DWTA, and the

CAVE Algorithm can be used to efficiently obtain near-optimal solutions.

The model proposed in Chapter 7 and the corresponding solution technique, the

CRAM, present a new type of model which limits the assumptions inherent to other

models and captures much of the reality of a missile defense problem. As is the case

with novel models, there is room for improvement in the model and its solutions that

are presented in this dissertation. One extension is to disregard the knowledge of the

flight paths of each missile while monitoring and predicting the flight paths based

upon continuously collected information. A second extension is the consideration of

sensors and their reliability on the identification of missile recognition and location.
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