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Abstract 

Probabilistic coastal hazard assessment is characterized by the 
relationship between storm hazards, such as storm surge, and 
corresponding annual exceedance probability. The probabilistic analysis of 
storm surge is an integral component of the flood hazard assessment of 
structures and facilities located near coastal areas. The Joint Probability 
Method (JPM) has become the standard probabilistic modeling approach 
for the assessment of coastal storm hazards in hurricane-prone areas in 
the United States. A comprehensive literature review was conducted to 
evaluate the components, technical considerations, and limitations of 
different implementations of the JPM, with emphasis on the methods 
adopted by U.S. government agencies, including the U.S. Army Corps of 
Engineers and the Federal Emergency Management Agency. The 
traditional treatment of uncertainty (e.g., meteorological, hydrodynamic, 
and probabilistic modeling error) in storm surge studies was found to be 
better documented than the quantification of epistemic uncertainty 
through the concurrent consideration of alternate data, methods, and 
models. This literature review is part of the U.S. Nuclear Regulatory 
Commission-sponsored study “Quantification of Uncertainties in 
Probabilistic Storm Surge Models.” 

 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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Unit Conversion Factors 

Most measurements and calculations referenced in this literature review 
are in SI units. The following table can be used to convert SI units to 
English customary units. 

Multiply By To Obtain 

m 3.28084 ft 

km 0.621371 mi 

km 0.539957 nmi 

km/hr 0.621371 mph 

km/hr 0.539957 kn 
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1 Introduction 

Storm surge is a storm-induced increase in the water surface elevation 
above the expected astronomical tide. It is caused primarily by the winds 
and low atmospheric pressure associated with tropical cyclones (TCs) and 
extratropical cyclones (XCs). Storm surge typically represents the most 
significant source of flooding in the coastal environment. Therefore, the 
quantification of storm surge is an integral component of the flood hazard 
assessment of structures and facilities located in coastal areas. 
Probabilistic coastal hazard assessment (PCHA) is characterized by the 
relationship between storm hazards, such as water surface elevation, and 
the corresponding annual exceedance probability (AEP). This water 
surface elevation, referred to as storm tide or still water level (SWL), 
typically represents the combined effects of storm surge, astronomical 
tide, and wave setup. The relationship between SWL and AEP is often 
depicted in the form of flood-frequency or flood-hazard curves. 
Uncertainty associated with these curves can be conveyed through bounds 
or confidence limit curves. The Joint Probability Method (JPM) has 
become the standard probabilistic modeling approach used to assess 
coastal storm hazards in hurricane-prone areas of the United States. The 
literature review on the JPM contained within this report is part of the 
U.S. Nuclear Regulatory Commission-sponsored study “Quantification of 
Uncertainties in Probabilistic Storm Surge Models.” 

1.1 Background 

The U.S. mainland is exposed to coastal storm surge, wave, and wind 
hazard on the East, West, Great Lakes, and Gulf of Mexico coasts. Each 
region has a unique set of coastal storm hazards. The Gulf Coast is exposed 
to high-intensity TCs that, exacerbated by the shallow continental shelf, 
produce very high surge. This same exposure extends around the southern 
Florida coast, but the surge magnitudes are lower along the East Coast 
because of the narrower shelf width and cooler waters. The storm exposure 
transitions to mixed tropical and extratropical through the mid-latitudes 
and finally to a mostly extratropical storm climate in the northernmost 
East Coast region. The Great Lakes region is directly exposed only to XCs. 
However, TCs can cross over the eastern lakes while transitioning to XCs. 
Likewise, the West Coast is exposed to only XCs, with the exception of the 
southernmost coast of California, and is dominated by a relatively narrow-
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to-nonexistent coastal shelf. For these environments, wave runup, 
including setup, is typically on the same order of magnitude as the surge. 
In addition, in the northern latitudes of the East and West Coast regions, 
the tide is of similar magnitude to the surge, whereas tide is small on the 
Gulf of Mexico coast line and virtually nonexistent in the Great Lakes. 

Approaches to evaluating the contribution of storm surge to the overall 
flood frequency at a coastal location can be direct or indirect. In direct 
methods, the statistical analysis is based on historical observations of 
storm responses. Indirect methods are based on simulated storm 
responses and rely on the joint probability analysis of storm forcing 
parameters. In the latter case, synthetic storms based on the statistical 
characterization of historical TCs are developed, and their associated wind 
and pressure fields are used as inputs into hydrodynamic models for the 
simulation of storm surge response. This approach is necessary for 
hurricane-prone coastal areas given that the tropical cyclone population is 
statistically underrepresented in the historical record. Coastal regions of 
the contiguous United States where the determination of flood hazard is 
based on the joint probability analysis of storm forcing parameters include 
locations along the Gulf of Mexico and Atlantic Ocean coastlines. Flood 
hazards in coastal areas that are affected by both XCs and TCs can also be 
assessed using joint probability analysis. 

Coastal flood hazards in areas impacted only by XCs are typically 
evaluated using direct methods, which generally involves performing 
extreme value analysis of water level responses where historical 
observations are fitted by a probability distribution. Extrapolation is 
possible if the tail of the fitted distribution is deemed to adequately 
represent the population of historical extremes. This approach can also 
incorporate Monte Carlo methods such as bootstrapping to assess 
uncertainty and numerical modeling to evaluate areas where insufficient 
historic water level data are available. Direct methods based on the 
statistical analysis of storm responses are typically used in the Pacific 
Coast and the Great Lakes regions.  

The JPM has become the dominant probabilistic model used to assess the 
coastal storm hazard in hurricane-prone areas of the United States. 
Although the JPM approach has been in development since the 1970s, 
recent advancements in technology have made it possible to reduce the 
necessary number of synthetic storms resulting in improved sampling 
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techniques and the development of the JPM with Optimal Sampling (JPM-
OS). Different implementations of the JPM-OS methodology emerged as a 
result of several studies done in the aftermath of Hurricane Katrina. These 
studies were conducted as joint efforts by the U.S. Army Corps of 
Engineers (USACE) and the Federal Emergency Management Agency 
(FEMA). Studies that stand out include the USACE Louisiana Coastal 
Protection and Restoration (USACE 2009a) and the Mississippi Coastal 
Improvements Program (USACE 2009b), the FEMA Mississippi Coastal 
Analysis Project (FEMA 2008), and the Flood Insurance Study for the 
Coastal Counties in Texas (USACE 2011), prepared by the USACE. Of 
particular importance was the work done by the Interagency Performance 
Evaluation Taskforce (IPET) in the aftermath of Hurricane Katrina, in 
which JPM-OS methods were developed for the statistical analysis of 
water level extremes to evaluate the performance of the Southeast 
Louisiana hurricane surge reduction system. This study provided the basic 
framework for the storm surge and modeling approaches used in later 
works such as those previously listed. This effort, led by a team of USACE, 
FEMA, National Oceanic and Atmospheric Administration (NOAA), 
private sector, and academic researchers, was documented in a whitepaper 
(Resio et al. 2007), which was ultimately included as an appendix of the 
final report (IPET 2009).  

1.2 Objectives 

A comprehensive literature review was conducted to evaluate the 
components, technical considerations, and limitations of different 
implementations of the JPM, with emphasis on the methods adopted by 
U.S. government agencies, such as the USACE and FEMA. Subjects 
discussed in this literature review include (1) probabilistic storm surge 
models (e.g., JPM), (2) storm recurrence rate models, (3) development of 
synthetic storm suites, (4) meteorological and hydrodynamic simulation of 
storms, and (5) quantification and propagation of uncertainty. 

Assessment of the components and technical considerations used in JPM-
OS through the technical literature will be emphasized given the method’s 
adoption by U.S. government agencies that oversee multiple aspects of 
coastal flooding, including regulatory oversight and project risk 
assessment, design, and construction. Assessment of the direct methods to 
estimate flood hazard in coastal areas will also be considered. This report 
is organized as follows: Chapter 1 provides project background and the 
context for the examination of the epistemic uncertainty; Chapter 2 
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provides an overview of probabilistic storm surge models; Chapter 3 
examines storm recurrence rate computation methods; Chapter 4 looks at 
the processes and models involved in developing synthetic storm sets for 
TCs; Chapter 5 and Chapter 6 describe meteorological forcing and 
hydrodynamic response numerical simulation models, respectively; 
Chapter 7 summarizes sources of errors that have been previously used in 
probabilistic storm surge studies; Chapter 8 discusses the classification of 
uncertainties, methods for propagating uncertainty, and JPM integration 
methods; Chapter 9 briefly describes some technical considerations 
relevant to probabilistic modeling of storm surge for critical 
infrastructure; and Chapter 10 is the conclusions. 

1.3 Approach 

1.3.1 U.S. Nuclear Regulatory Commission (USNRC) probabilistic flood 
hazard assessment 

The USNRC, as part of its mission to regulate commercial uses of nuclear 
material, including nuclear power generation, formulates policies and 
regulations governing nuclear reactors. To assure that nuclear power 
facilities can be operated without undue risk to the health and safety of the 
public, general design criteria have been established for facilities’ structures, 
systems, and components that are important to safety. Natural hazards 
represent one of the principal threats to the safety of nuclear facilities. The 
regulatory design basis for protection against natural phenomena is 
established in 10 CFR Part 50, Appendix A, Criterion 2 of the General 
Design Criteria (GPO 2011). In general, this criterion establishes that the 
structures, systems, and components important to safety shall be designed 
to withstand natural phenomena without loss of capability to perform their 
safety functions. It further specifies that the design for a site needs to 
consider the most critical historical event on record, along with a margin to 
take into account the limitations in accuracy, quality, and extent of the 
record.  

Within the USNRC regulatory framework, the margin referred to in the 
General Design Criterion 2 was originally estimated utilizing a 
deterministic approach, which did not specifically consider quantitative 
estimates of risk. Since those origins, the USNRC has been moving toward 
a risk-informed, performance-based approach by incorporating 
probabilistic risk assessment in the evaluation of natural hazards. One of 
the advantages of this approach is that it provides for the quantification of 



ERDC/CHL SR-19-1 5 

uncertainties associated with the probabilistic modeling of hazards. The 
USNRC (2013) issued an Interim Staff Guidance for the performance of 
tsunami, surge, and seiche hazard assessment that established acceptable 
methods for the evaluation of new reactors based on the current state of 
knowledge. On the topic of surge hazard assessment of new facilities, the 
document adopts the use of current probabilistic-deterministic approaches 
based on the use of coupled hydrodynamic ocean circulation and wave 
models driven by wind fields generated by a planetary boundary layer 
model. The evaluation of model parameter uncertainties that have an 
influence on design storm surge estimates is required.  

1.3.2 Quantification of uncertainty 

Two distinct types of uncertainty are generally recognized: aleatory and 
epistemic. Aleatory uncertainty is the natural randomness of a process 
and is inherent in nondeterministic processes. It is often called stochastic 
or irreducible uncertainty, or aleatory variability. Epistemic uncertainty 
is associated with a lack of knowledge and is also called subjective or 
reducible uncertainty. Unlike aleatory variability, epistemic uncertainty 
can potentially be reduced by collecting more data and performing 
additional research. 

The USNRC has in the past directly addressed epistemic uncertainty, in 
particular, in the context of probabilistic seismic hazard analysis (PSHA). 
The USNRC has published a set of guidelines developed by a Senior 
Seismic Hazard Analysis Committee (SSHAC) titled Recommendations for 
Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and the 
Use of Experts (Budnitz et al. 1997) and a companion document 
(Kammerer and Ake 2012) that address the issues of uncertainty 
associated with seismic hazard analysis. Of principal concern to the 
SSHAC was the uncertainty associated with the inputs to a PSHA and 
consequently with the results, given the nature of seismic activity. One of 
the key concepts developed by the SSHAC process is that the PSHA needs 
to capture the full range of possible estimates of the seismic hazard at a 
site through representation of the center, body, and range of technically 
defensible interpretations in light of a consideration of the complete set of 
data, models, and methods proposed by the larger technical community 
that are relevant to the hazard analysis. It has been proposed that the 
probabilistic seismic hazard assessment can be transferable to other 
natural hazards (Kammerer 2013). The probabilistic assessment of risk 
posed by flooding hazards is an area of concern that was recently the focus 
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of a revaluation by the USNRC. A probabilistic flood hazard assessment 
research plan that focuses on nuclear facilities has been implemented to 
aid the development of regulation and guidance that incorporates the 
latest developments in quantitative risk assessments. 

One of the most important aspects that has to be considered with the 
JPM methodology is the uncertainty at every step of the process that 
stems from the probabilistic model, the meteorological and 
hydrodynamic numerical models, and the climatological and oceanic 
observations. Uncertainty quantification is important to produce reliable 
results. Characterization of all uncertainty sources in any probabilistic 
approach becomes more critical as the data are used to perform analysis 
for very large average recurrence intervals (ARIs). The treatment of 
uncertainty in previous probabilistic storm surge studies will be 
described in this document. Particular emphasis will be given to the 
recent implementations of probabilistic surge models developed as a 
result of Hurricane Katrina, such as JPM-OS, which benefited from 
improved computing and modeling capabilities and are based on longer 
historical records than the earlier efforts. In its guidance on PSHA, the 
USNRC has adopted an approach for the quantification and propagation 
of aleatory and epistemic uncertainty that can be applied for the 
assessment of probabilistic storm surge models. This treatment of 
uncertainty differs from past JPM-OS studies because it considers the 
lack of knowledge regarding the best data, models, and methods that can 
be alternately applied at each step of the analysis. Methods for the 
propagation of uncertainties will be identified and examined. The 
common way in which the epistemic uncertainty is quantified and 
propagated in PSHA is through logic trees, using a process that utilizes 
expert assessment (Kammerer and Ake 2012) to determine whether data, 
methods, or models need to be carried forward in the analysis. 
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2 Probabilistic Storm Surge Models 

Probabilistic storm surge models are used as part of flood hazard 
assessments in coastal areas for the computation of SWL and associated 
AEP. The probabilistic model to be employed is dictated by data 
availability, the climatology of the area to be studied, and the 
characteristics of the atmospheric phenomena driving the storm surge. 
Most probabilistic models focus on statistical analysis of either storm 
responses or storm forcing parameters, or both, in areas where required 
due to the occurrence of distinct extreme climatological events. 

When evaluating storm surge responses, statistical methods rely on the 
analysis of historical observations, such as extreme value analysis (Coles 
2001) of data recorded at water level gages. In hurricane-prone areas, 
however, this approach may be inadequate, primarily because of the 
spatial sparseness and typically low frequency of TCs, resulting in 
insufficient historical TC events to properly characterize risk. Another 
limitation of statistical methods based on storm responses is the relatively 
low spatial density of water level gages. For most study areas, water level 
gages located within reasonable distances are often unavailable. In the 
past, interpolation of SWL among a group of two or more gages was used 
to define extreme water levels. Given the strong effect of coastal geometry 
on storm surge, it has been shown that in most cases the sparse water level 
observations cannot be remediated by interpolation (Melby et al. 2012). 
Furthermore, in areas affected by TCs, the availability of a water level gage 
at the study location does not guarantee that all possible storms that could 
impact the area are represented in the recorded data. Several factors 
responsible for this uncertainty include the low frequency of occurrence of 
TCs, storm track heading, and relatively short record lengths (Resio et al. 
2007). In addition, gages often fail during extreme storms due to 
submergence of the instrumentation and control systems. 

The lack of adequate data for the estimation of AEP of SWL in areas affected 
by hurricanes was identified early on in the design of coastal flood control 
systems and led to the concept of modeling the forcing of a storm to 
calculate the corresponding surge. Some of the approaches used to model 
TC wind fields, such as the standard project hurricane and the probable 
maximum hurricane (PMH), were deterministic in nature. The main 
problem with these approaches was that storm behavior relied on the 
definition of one parameter, such as storm intensity, and other parameters 
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were deterministically related to it. This neglected the impact of any other 
parameter on the modeled surge response (Resio et al. 2007). 

The estimation of AEP for SWL at coastal locations has been a field in 
continuous development as improvements to data gathering, statistical 
analysis, and computational capabilities have evolved and expanded. An 
example of an early approach is identified by Resio et al. 2012, which 
consists of using a bathystrophic storm surge numerical model to estimate 
surge one-dimensionally along a traverse line perpendicular to the 
bathymetry contours as a response to the wind and pressure fields of a 
PMH. In contrast, present-day hydrodynamic numerical models can solve 
complex processes in multi-dimensional space. The statistical analysis of 
storm parameters greatly benefited from computational improvements 
allowing for the development of the JPM and the sampling of the 
parameter space by Monte Carlo methods or optimized joint probability 
methods.  

2.1 Natural processes responsible for storm surge 

Storm surge is an increase of water level primarily as a result of wind-
induced surface shear stress and pressure fields caused by TCs and XCs. 
TCs mostly impact the United States along its Atlantic and Gulf of Mexico 
coasts and in some rare instances along the southern coast of California 
(USACE 2002). Other contributions to storm surge include geostrophic 
forces, local currents, nearshore waves, and runoff. In general terms, surge 
is primarily dependent upon the meteorological characteristics of the 
storm and the physical characteristics of the coast (Irish et al. 2011). Resio 
and Westerink (2008) identified that the fundamental physics of the 
storm-surge process include forcing mechanisms, dissipation 
mechanisms, and system geometry. They provided a simple linear, steady-
state equation that showed surge height at the coast to be directly related 
to the wind stress and width of the continental shelf but inversely 
proportional to water depth. Surge is caused by momentum transfer to the 
water column by wind and waves. The bathymetric slope of the ocean is a 
determining factor in establishing the momentum transfer contributions 
of wind and waves to surge. The contribution of waves is dominant for 
steep slopes.  

The term tropical cyclone refers to a non-frontal, large-scale, warm-core, 
low-pressure system with organized convection and a well-defined 
cyclonic surface circulation that derives energy from warm ocean 
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temperatures (Holland 1993). TCs originate over tropical or subtropical 
waters and are classified according to their intensity as determined by 
wind speed. Tropical depressions are systems with wind speeds less than 
62 kilometers per hour (km/hr) (38 miles per hour [mph]), tropical 
storms are characterized by wind speeds between 63 km/hr (39 mph) and 
118 km/hr (73 mph), and hurricanes have winds greater than 119 km/hr 
(74 mph). These intensity classifications based on wind speed are not 
typically applied in the JPM mathematical conceptualization of TCs, and 
in this context wind speed is not regarded as the principal parameter to 
describe storm intensity. 

The TC forcing for hydrodynamic modeling is defined by the wind field at 
the sea-air interphase and the inner-core sea level pressure and gradient. 
For purposes of ocean response model forcing, the wind field is 
represented by the wind speed and direction at an elevation of 10 meters 
(m), for a 30-minute time interval (Cardone and Cox 2009). The modeling 
of the wind fields typically starts with a parametric characterization of TCs 
with central pressure, size, scaling radius, translational speed, and profile 
peakedness parameter, also known as Holland B (Holland 1980). Storm 
central pressure is an indicator of storm intensity: the lower the pressure, 
the stronger the storm. The translational speed, also referred to as forward 
speed, impacts surge as it determines the length of time that a particular 
location will be under the effects of the storm. Storms that make landfall 
along the U.S. Atlantic coast tend to have a higher translational speed than 
those in the Gulf of Mexico due to the effect of steering winds (FEMA 
2012). It has been reported that surge is most responsive to the effects of 
the storm during the 24 hr period before landfall (Cardone and Cox 2009). 
In terms of the storm size, Irish et al. (2008) found that storm surge 
increases with size and that the increase is sensitive to bottom slope. The 
effect of storm size was found to be greater on mild ocean bottom slopes. 
The Holland B parameter is a dimensionless parameter that controls the 
peakedness of the wind profile. It has been found to decrease with 
increasing latitude and increase with decreasing radius of maximum winds 
(Vickery and Wadhera 2008).  

XCs are formed as a result of the interaction of cold and warm air masses 
and thus can be described as the result of a baroclinic process. They 
typically originate in the middle latitudes, outside of the tropics, hence the 
name. The greater the difference in temperature between the air masses, 
the greater the instability and the stronger the storm. Along the 
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northeastern coast of the United States, these storms are known as 
Nor’easters. They are characterized by a counterclockwise circulation and 
move towards the northeast along the coast (Myers 1975). XCs tend to 
produce smaller surges than TCs since they typically exhibit higher central 
pressures and lower wind speeds. In contrast to TCs, they cannot be 
described by a set of parameters because the cyclone is rarely a well-
defined, relatively uniform symmetric cyclone. TCs can convert to 
extratropical as they move from the tropics towards the poles. When this 
occurs, it is referred to as an extratropical transition.  

2.2 Joint probability analysis of coastal hazards due to tropical 
cyclones (TCs) 

Characterization and probabilistic analyses of individual hurricane 
parameters originated in the 1950s (Myers 1954). In the late 1960s, 
methods were developed (Russell 1968a, b) for the estimation of 
probabilities of wind, storm surge, and wave loads applied to offshore 
structures based on a full Monte Carlo simulation. In the 1970s, NOAA 
developed the JPM for coastal tide frequency analysis. From its 
conception, the total annual tide frequencies were determined by adding 
the separately calculated frequencies from landfalling hurricanes, 
bypassing hurricanes, and XCs. Several technical memorandums and 
technical reports were published that refined the methodology and 
expanded it to several sections of the U.S. Atlantic and Gulf coasts (e.g., 
Myers 1970; Ho 1974; Myers 1975; Ho and Myers 1975). By the late 1980s, 
FEMA (1988) had adopted the JPM as presented in the National Weather 
Service report NWS-38 (Ho et al. 1987). The magnitude of the damages 
caused by hurricane Katrina in 2005 brought about new developments to 
the JPM that reduced the number of storms required for populating the 
parameter space by optimizing storm parameter sampling.  

2.2.1 Joint Probability Method (JPM) 

Statistical analysis of water level response resulting from TCs in most 
cases suffers from a lack of historical observations. The low frequency of 
occurrence of this type of storm at any given location results in small 
sample sizes. Some of the characteristics of the cyclones that impact a 
particular area may make it necessary to consider them as belonging to 
different populations. TC intensity has been identified as such a 
characteristic (Resio et al. 2007) since intense storms tend to behave 
differently than weak storms. The JPM overcomes this problem by 
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focusing on the forcing instead of the response. In broad terms, TCs are 
defined by a number of forcing parameters that are used to generate the 
corresponding wind and pressure fields, which in turn are used as input to 
a hydrodynamic numerical model that estimates the storm surge and the 
SWL response. The AEP of the SWL are calculated for a series of water 
level bins (e.g., from 0.1 m to 10 m at 0.1 m intervals) by integrating the 
individual probabilities of all storms that generated a SWL equal to or 
greater than each of the water level bins.  

The primary storm parameters used in the JPM for the characterization of 
TCs are the central pressure deficit, Δp; radius of maximum winds, Rmax; 
translational speed, Vt; heading direction, θ; and landfall or reference 
location, xo. Secondary parameters often include the Holland B and 
epsilons or uncertainty terms. To develop the set of synthetic storms, each 
parameter is treated as a random variable, and either a marginal or a 
conditional probability density function (PDF) is sought for each 
parameter based on the TCs observed in the historical record. The 
probability distributions are then divided into discrete bins (FEMA 1988). 
Synthetic storms are developed as possible combinations of samples from 
the marginal distributions. The annual frequency of a given synthetic 
storm and its SWL response is the product of the storm recurrence rate 
(SRR) at a particular location and the joint probability of the combination 
of storm parameters specific to that storm. This joint probability is the 
product of the probability of each of the storm parameters. The AEP of a 
flood elevation at a particular location in excess of a value r can be 
expressed as the following multiple integral: 

 𝜆𝜆𝑟𝑟(𝑥𝑥�)>𝑟𝑟 = 𝜆𝜆 ∫𝑃𝑃[𝑟𝑟(𝑥𝑥�) + 𝜀𝜀 > 𝑟𝑟|𝑥𝑥�, 𝜀𝜀] 𝑓𝑓𝑥𝑥�(𝑥𝑥�)𝑓𝑓𝜀𝜀(𝜀𝜀)𝑑𝑑𝑥𝑥�𝑑𝑑𝜀𝜀 (1-1a) 

  ≈ ∑ �̂�𝜆𝑖𝑖𝑛𝑛
𝑖𝑖 𝑃𝑃[𝑟𝑟(𝑥𝑥�𝑖𝑖) + 𝜀𝜀 > 𝑟𝑟|𝑥𝑥�𝑖𝑖, 𝜀𝜀] (1-1b) 

where 𝜆𝜆𝑟𝑟(𝑥𝑥�)>𝑟𝑟 = AEP of TC response 𝑟𝑟 due to forcing vector 𝑥𝑥� = f(xo, θ, Δp, 
Rmax, Vt); 𝜆𝜆 = SRR (storms/yr/km) at site of interest; �̂�𝜆𝑖𝑖 = probability mass 
(storms/yr) of synthetic storm 𝑖𝑖; 𝑃𝑃[𝑟𝑟(𝑥𝑥�) + 𝜀𝜀 > 𝑟𝑟|𝑥𝑥�, 𝜀𝜀] = conditional 
probability that storm 𝑖𝑖 with parameters 𝑥𝑥�𝑖𝑖 generates a response larger 
than 𝑟𝑟; 𝜀𝜀 = unbiased error or aleatory uncertainty of the storm response.  

In Equation 1-1b, the probability mass of a given storm (�̂�𝜆𝑖𝑖) is defined as 
�̂�𝜆𝑖𝑖 =  𝜆𝜆𝑝𝑝𝑖𝑖, where 𝑝𝑝𝑖𝑖 is the product of its discrete joint probability and the TC 
track spacing (in kilometers). Otherwise stated, each storm’s probability 
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mass is computed as the product between its SRR, the discrete probability 
determined from the joint probability model of storm parameters, and the 
storm track spacing. 

A central issue surrounding the application of the JPM is the notion that 
five parameters are sufficient to characterize a hurricane and its wind 
fields. Although in current practice these parameters have been 
acknowledged as sufficient to represent a storm, it has been recognized 
that additional parameters such as Holland B and astronomical tide (for 
small tide range areas) could be potentially incorporated (FEMA 2012). A 
way to address the effects of neglected parameters in the JPM formulation 
is through an error term “ε” that is added to the integral. This error term 
was considered as a minimum to address the following model 
uncertainties (Resio et al. 2007): 

• the effect of random phasing of the maximum surge and tide  
• random variations in the peakedness of the wind fields represented by 

the Holland B parameter 
• track variations not captured in storm set 
• model errors 
• errors in wind fields due to variations not included in the planetary 

boundary layer model. 

These factors are quantified as error terms and are combined to create the 
overall error component. A prominent limitation for the application of the 
JPM methodology is that the number of synthetic storms that can 
potentially be derived from all possible storm parameter combinations can 
be on the order of thousands. State-of-the-art, high-fidelity hydrodynamic 
numerical modeling includes coupled wave and storm surge models and 
very high resolution grids. Modeling thousands of synthetic storms can be 
infeasible due to the computational burden of current numerical modeling 
techniques. One alternative is to use low-fidelity hydrodynamic numerical 
models that result in increased uncertainty. To address this issue, some 
studies have combined Monte Carlo methods with the JPM. Recognizing 
that the infrequent nature of hurricanes in FEMA Region III would result 
in an under-represented historical sample, Vickery et al. (2013) utilized a 
Monte Carlo simulation technique to model 100,000 hypothetical 
hurricanes to compute the statistics of hurricane parameters and tracks. 
To make feasible the implementation of a high-resolution computer 
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model, the number of storms was reduced using an optimal sampling 
approach that preserved the storm statistics. 

Optimal sampling approaches facilitate the practical application of high 
resolution numerical hydrodynamic models. The JPM-Optimal Sampling 
with Bayesian Quadrature (JPM-OS-BQ) was adopted as part of the FEMA 
Risk MAP program best practices. As documented in the Operating 
Guidance No. 8-12 (FEMA 2012), JPM-OS-BQ was used to optimize the 
discretization  of the joint probability distribution of TC parameters to 
obtain a reduced number of combinations (storms) representative of the 
probability space. The Bayesian Quadrature (BQ) (Diaconis 1988; 
O’Hagan 1991; Minka 2000; Toro 2008) algorithm was recommended to 
optimize the discrete weights assigned to each parameter combination 
corresponding to the synthetic storm set.  

The practical effect of the application of the BQ is the reduction in the 
number of synthetic storms required for the hydrodynamic modeling. The 
Mississippi Coastal Analysis project incorporated the JPM-OS-BQ 
methodology into its application of the JPM (FEMA 2008). Part of the 
study included the validation of the methodology by performing a 
standard JPM surge analysis and optimal sampling alternatives with the 
Sea, Lake, and Overland Surges from Hurricanes (SLOSH) hydrodynamic 
model to compare the results. The JPM-OS-BQ resulted in a root-mean-
square error of 0.14 m and average error of -0.006 m for a 1% AEP SWL. 
The effect of the application of the JPM-OS-BQ versus the conventional 
JPM approach was also evaluated by FEMA (2014) for the FEMA Region 2 
Flood Insurance Study. A comparison of the results between a full JPM 
analysis with 4,108 storms and a JPM-OS-BQ analysis with 149 storms 
was done using a low-resolution Advanced Circulation (ADCIRC) mesh 
and bathymetry for computational simplicity and no numerical wave 
modeling. A mean difference in water surface elevations of 0.03 m and a 
standard deviation of 0.15 m was found for the 1% AEP.  

A second optimal sampling approach developed post-Katrina is the JPM-
OS with Response Surface (JPM-OS-RS) (Resio et al. 2007). The response 
surface is used to interpolate the storm surge response from additional TC 
parameter combinations that were not modeled in order to reduce 
simulation runs while still achieving an accurate hazard curve. The JPM-
OS-RS requires expert judgment for the selection of storm parameters and 
corresponding probability masses. The response surface interpolation 
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scheme employed in the Louisiana Coastal Protection and Restoration 
(USACE 2009a) study was based primarily on the surge surface generated 
from Δp and Rmax combinations for fixed landfall locations, Vt, and θ. 
Variations in storm intensity and size were found to have the most 
influence on storm surge response. CPRA (2013) estimated that the RS 
applied in the study introduced additional uncertainty with root-mean-
square deviation on the order of 0.70 m. Irish et al. (2009) used 
dimensionless surge response functions to describe the response surface. 
The reported bias using this methodology was between 0 and 4 cm while 
the root-mean-square error varied from 13 cm to 24 cm. Irish et al. (2011) 
compared surge extreme-value statistics estimated using the historical 
surge population (HSP) and JPM-OS using response functions. The HSP 
approach quantifies surge frequency through the fitting of a parametric or 
non-parametric distribution to measured or modeled storm surge data. 
The study found that the HSP approach resulted in errors of 9% to 17% for 
ARIs of 50 and 1,000 years when considering a storm record of 100 years. 
More reliable surge estimates were found using the response function 
approach, with errors of 2% to 3% for the same return periods and storm 
record length.  

A recent study by Jacobsen et al. (2015) addressed the 1% AEP surge 
uncertainty associated with the JPM approach and identified three general 
sources of uncertainty in the water level cumulative distribution function 
(CDF). These three sources were hurricane joint probability uncertainty, 
model uncertainty, and surge-response optimal sampling uncertainties. 
Together, these give rise to 10 specific components of uncertainty  that 
include, among others, representativeness of the historical record, 
hurricane sampling, surge model, tides, Holland B, wind drag, adequacy of 
OS to capture the surge response, and the surge-response function.  

2.2.2 Alternative methods 

Wind hazard models represent another methodology that has been 
developed to evaluate hurricane risk. These methods evolved from the 
simulation of hurricanes at specific locations to the simulation of the 
entire hurricane track. The basic approach for the site-specific models, as 
summarized by Vickery et al. (2000), is to determine statistical 
distributions of hurricane parameters at a site and then sample from each 
distribution using Monte Carlo methods to create a mathematical 
representation of hurricanes that are used to model wind speeds. 
Hurricane intensity is held constant until landfall and then decayed using 
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a filling-rate model. The hurricane parameters that are evaluated are 
central pressure deficit, radius to maximum winds, heading, translational 
speed, and the closest distance of the hurricane track to the site.  

Vickery et al. (2000) introduced a simulation approach that models the 
complete wind history of a hurricane or storm along its track from 
formation to landfall called the empirical track model (ETM). Storms are 
initialized over water using sampled hurricane database (HURDAT) data 
for starting position, date, time, heading, intensity and translational speed. 
Changes in the translational speed and storm heading are updated in 6 hr 
increments. The central pressure is modeled stochastically as a function of 
sea surface temperature. This method allows for the modeling of wind risk 
over large regions. In evaluating the applicability of ETM to surge analysis, 
Resio et al. (2007) concluded that given the ETM reliance on a Monte 
Carlo approach that requires the simulation of storms over a significantly 
long period of years, its application to high-resolution wave and surge 
models is impractical. Though these wind hazard methods in their original 
conceptions were used to evaluate hurricane risk associated with wind 
speeds, they have also been applied to surge modeling (Lin et. al 2010).  

Vickery et al. (2009) provided an overview of hurricane hazard modeling 
that included an assessment of modeling uncertainties of wind hazard 
models. This overview concluded that limited work has been presented in 
the literature regarding the treatment of uncertainty in the hurricane 
simulation processes. Work by Batts et al. (1980) was referenced as an 
early example of the consideration of uncertainty in a wind speed study. A 
study prepared by the same author was referenced where the 
quantification of uncertainty was performed using a two-loop simulation 
process consisting of an outer loop and an inner loop. A 100,000-year 
simulation was performed 5,000 times to determine an un-correlated 
wind field modeling error term and a coefficient of variation of the 
estimated 1% AEP wind speeds. The modeling error, with zero mean and 
10% coefficient of variation, was added to the wind speed computed from 
the wind field model. The coefficient of variation of the 1% AEP was 6% for 
the Gulf of Mexico and 15% around the state of Maine.  

2.3 Probabilistic analysis of coastal hazards due to extratropical 
cyclones (XCs) 

The probabilistic analysis of coastal storm hazards due to XCs is based on 
historical observations of storm responses. In contrast to the JPM 
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methodology, which relies on the joint probability analysis of storm 
forcing, attempts to adequately parameterize XCs have not been achieved. 
Therefore, given the current state of the practice, assessment of 
extratropical storm surge hazard does not rely on the probabilistic 
characterization of storm forcing parameters.  

When water level stations exist near a study site, and sufficient historical 
water level observations are available, an extreme value analysis of SWL 
can be performed. However, in situations where there are no data 
available close to the study site or the study is regional in nature, the 
probabilistic analysis of SWL should be based on simulated responses 
developed from high-fidelity meteorological and hydrodynamic modeling 
of historical data. In the case of XCs, the identification of storm events is 
achieved by subtracting the astronomical tide from historical or calculated 
water level data to estimate a time series of the non-tidal residuals (NTR). 
Specific storms can be extracted using sampling techniques such as the 
peaks-over-threshold (POT) methodology, where all NTRs above a certain 
threshold are identified and sampled from the historical record. The way 
in which NTRs are estimated varies depending on the geographical region. 
In the North Atlantic and Pacific Coasts, for example, NTRs are 
determined by subtracting the predicted astronomical tide from water 
level measurements. For the Great Lakes, the NTRs are identified by 
detrending the data series. A quality control process is typically 
implemented to ensure that the residuals correspond to an atmospheric 
event and not the result of riverine flow or seiching.  

Nadal-Caraballo et al. (2012) and Melby et al. (2012) developed a 
methodology for estimating based flood elevations for the FEMA flood 
hazard mapping efforts in the Great Lakes region that exemplifies 
extratropical storm hazard analysis. The most significant storms were 
selected by applying the POT technique on the surge data time series. The 
number of storms depended on that required for the desired AEP to be 
valid and was controlled by the threshold. Hindcast wind and pressure 
fields were used to run a high-fidelity hydrodynamic model. Water level 
response was obtained, and a parametric model was fit to the data. In the 
case of the application of a parametric model, the water level time series is 
sampled and fit to a distribution, obtaining the best estimate of the 
parameters using the maximum likelihood. This response-based approach 
is the recommended methodology for the Great Lakes and is further 
described in FEMA (2014). Another example of methodologies for 
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computing coastal hazards for regions only impacted by XCs is described 
by FEMA (2005) for the U.S. Pacific Coast.  

Unlike the JPM methodology, where uncertainty is individually quantified 
based on its source, the uncertainty in surge hazard studies for areas 
influenced only by XCs is often computed using resampling methods. 
Nadal-Caraballo and Melby (2014), as part of the Phase I of the North 
Atlantic Coast Comprehensive Study (NACCS), quantified uncertainty 
using Monte Carlo Life-Cycle simulation. The mean curve and confidence 
limit curves where calculated at 23 water level gages. The uncertainty from 
the bootstrap includes an aleatory component related to the selected 
sample and an epistemic component related to the best estimate 
parameters of the distribution. Analysis based on simulated responses 
developed from high-fidelity meteorological and hydrodynamic modeling 
of historical data should exhibit epistemic uncertainties similar to those of 
TCs due to the similarity in the meteorological and hydrodynamic 
modeling approaches. For areas affected by both TCs and XCs, separate 
probabilistic analyses are performed and the results combined assuming 
independence between the two populations.  
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3 Computation of Storm Recurrence Rate 
(SRR) 

The AEP of coastal storm hazards at a given location is primarily a 
function of SRR, the joint PDF of storm forcing parameters, and the storm 
responses. The SRR is a measure of the frequency with which a particular 
area is expected to be affected by TCs. The SRR has been expressed in 
previous JPM studies in units of number of hurricanes per year per unit 
length (Myers 1975) and in more recent JPM-OS studies as 
storms/year/degree (USACE 2011; IPET 2009) and 
storms/year/kilometer (FEMA 2008).  

The FEMA Operating Guidance 8-12 (FEMA 2012) identifies two 
approaches used for the estimation of SRR. The Capture Zone approach 
consists of counting the number of hurricanes that make landfall along an 
idealized segment of coast line or pass through a predefined area. The 
second approach is the Gaussian Kernel Function (GKF) (Chouinard and 
Liu 1997) in which each storm is assigned a weight that decreases as its 
distance to the point of analysis increases. The distance-adjusted weights 
are based on a Gaussian PDF with an optimal kernel size.  

By its very definition, SRR is sensitive to the number of TCs sampled in the 
historic record. Since the methods for recording TCs have not been 
homogeneous throughout the time period for which there is formally 
documented data, the selection of the period of record for the analysis will 
represent a significant source of uncertainty. The NOAA Atlantic hurricane 
database (HURDAT2) serves as the official record for TCs and subtropical 
cyclones of the Atlantic Basin encompassing a period from 1851 to the 
present. For Gulf of Mexico coastal studies performed after Hurricane 
Katrina, a consensus was formed around the selection of period of record 
for the studies to begin in the early 1940s (FEMA 2008; Vickery and 
Blanton 2008; USACE 2011). This period coincides with the start of 
hurricane-tracking, reconnaissance-aircraft data collection missions.  

3.1 Hurricane database 

HURDAT2 is assembled by the NOAA National Weather Service (NWS). 
Currently in its second generation, the format is used for storing the 
assessment of North Atlantic basin hurricanes, as well as Northeast and 
North Central Pacific hurricanes in what constitutes the official record for 
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TCs and subtropical cyclones in the United States. The Atlantic HURDAT2 
covers the North Atlantic Ocean, Gulf of Mexico, and Caribbean Sea from 
1851 to the present and is maintained and updated by the National 
Hurricane Center (NHC). The Northeast and North Central Pacific 
HURDAT2 covers the time period from 1949 to present; it is maintained 
and updated by the NHC over an area that extends from 140º W to the 
North and Central Americas west coast and by the Central Pacific 
Hurricane Center that oversees an area that extends from 140° to 180º W. 
The databases include the historic storm data, quality controlled though 
yearly post-season analyses of recent cyclones, as well as re-analyses of 
past hurricane seasons that are performed to correct biases and random 
errors in the historic data (Landsea et al. 2004). The results of those 
analyses are called the best tracks, and each best track represents a 
subjectively smoothed representation of a tropical cyclone’s history 
(Landsea and Franklin 2013).  

The original HURDAT database was created per request of the National 
Aeronautics and Space Administration (NASA) Space Program to provide 
tracks and forecasts of TCs (Jarvinen et al. 1984). Prior to 1944, the 
principal sources of data were land stations and ship reports. The amount 
of data was subject to coincidental encounters with the systems, and its 
quality was affected by the limitations of the instrumentation. Storm 
positions were only recorded once or twice a day, making it necessary to 
interpolate the intermediate positions. Even though wind speeds were 
recorded for each position, changes in the instrumentation and its height 
and location introduced some inaccuracies to the data set (Jarvinen et al. 
1984). After 1944, when aircraft reconnaissance was initiated, an increase 
in track information over the ocean was observed, and pressure data were 
included. Weather satellites were introduced during the 1960s (Toro 
2008) and were considered one of the biggest advances to the tracking of 
TCs (Jarvinen et al. 1984). The combined use of satellites and aircraft 
reconnaissance provided significant improvements to the database. 
Differences in the frequency, instruments, and methods of data 
measurement and analysis, throughout the history of storm tracking, 
introduced errors and systematic biases to the database. A reanalysis effort 
has been instituted by the NHC to address these issues.  

The reanalyses are performed according to the most recent analysis 
techniques by gathering all available meteorological data and are based on 
current understanding of TCs (Delgado 2014). Because of the extent of the 



ERDC/CHL SR-19-1 20 

database, the reanalysis project has been divided into various eras. The 
entire process has been completed for the period of 1851–1950 (Landsea et 
al. 2004, 2008, 2012, 2014; Hagen et al. 2012; Delgado et al. 2018. New 
reanalyses are submitted to the National Hurricane Center Best Track 
Change Committee for approval and then incorporated to the HURDAT2 
database. 

The best track data in HURDAT2 include the maximum sustained surface 
winds (knots), the central pressure (millibars), position (latitude and 
longitude), and wind radii (nautical miles). The precision for these 
parameters are 5 knots, 1 millibar, 0.1° latitude/longitude, and 5 nautical 
miles (nmi), respectively for each of the aforementioned categories 
(Landsea and Franklin 2013). One millilbar is equal to 100 Pascal or 
1 hectopascal (hPa). Best track maximum sustained surface winds and 
position data are provided at 6 hr intervals (synoptic times), starting at 
0000 hours, for cyclones recorded after 1956. Best track central pressure 
values are provided at the same time interval starting in 1979 while the 
recording of wind radii data starts in 2004.  

Uncertainty associated with the data in HURDAT has always been 
recognized, and efforts have been made towards its quantification. 
Uncertainty estimates of the parameters have been provided as part of the 
reanalysis project for the different eras (Landsea et al. 2014). Additional 
efforts can be attributed to the independent and separate work of Torn and 
Snyder (2012) and Landsea and Franklin (2013). Torn and Snyder (2012) 
estimated the uncertainty for position and intensity for the period of 
2000–2009. They first verified the satellite observations using 
reconnaissance data and then derived new estimates by comparing the 
ones provided by the NHC against the verified dataset. In separate work, 
Landsea and Franklin (2013) estimated the uncertainties on each 
parameter (intensity, central pressure, position, and size) for the same 
period of time. They used data from three different sources (satellite-only, 
satellite and aircraft, U.S. landfalling cyclones) and asked the NHC 
Hurricane Specialists to provide individual estimates. The results are 
shown in Table 1. At the end, the results of the uncertainty for position and 
intensity were very similar between the two different approaches. 

To the knowledge of the authors, the location uncertainty associated with 
HURDAT2 has not been accounted for in the computation of storm 
recurrence rate in joint probability analysis surge studies. Uncertainty of 
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other storm parameters has been implicitly accounted for when 
performing the marginal fits for storm parameters such as central 
pressure. It is complex to determine the amount of uncertainty that can be 
attributed to the measurement of pressure data versus the fitting of the 
marginal distributions.  

Table 1. Average best track uncertainty estimates as provided by the NHC Hurricane 
Specialists in 2010. Ranges of the responses are given within the parentheses (Landsea and 

Franklin 2013). 

Parameter Tropical Cyclones 
Category 1 and 2 

Hurricanes Major Hurricanes 

Satellite Only 

Intensity (km/hr) 
21.3 

(17.6–27.8) 
20.9 

(18.5–27.8) 
25 

(13.9–33.3) 

Central pressure (hPa) 
5.8 

(3–10) 
7.7 

(5–10) 
9.5 

(5–15) 

Position (km) 
63.9 

(46.3–83.3) 
43 

(27.8–74.1) 
22.8 

(9.26–37) 

Gale ( 63 km/hr) radii 
(km) 

70.4 
(37–111.1) 

73 
(46.3–111.1) 

73.7 
(46.3-111.1) 

Storm (92.6 km/hr) radii 
(km) 

51.3 
(27.8–92.6) 

56.5 
(37–92.6) 

59.8 
(37–92.6) 

Hurricane (118.5 km/hr) 
radii (km) — 

41.7 
(13.9–92.6) 

45.2 
(13.9-92.6) 

Satellite and Aircraft 

Intensity (km/hr) 
15.2 

(9.26–18.5) 
16.85 

(9.26–18.5) 
19.6 

(9.26-27.8 ) 

Central pressure (hPa) 
3.0 

(2–5) 
3.5 

(2–8) 
3.9 

(2–10) 

Position (km) 
40.7 

(23.15–64.8) 
27.6 

(13.9–46.3) 
20.7 

(9.26–37) 

Gale ( 63 km/hr) radii 
(km) 

54.6 
(27.8–83.3) 

54.6 
(27.8–83.3) 

54.6 
(10–45) 

Storm (92.6 km/hr) radii 
(km) 

39.1 
(18.5–74.1) 

43.3 
(27.8–74.1) 

23.9 
(10–40) 

Hurricane (118.5 km/hr) 
radii (km) — 

29.4 
(13.89–55.6) 

32 
(9.26–27.8) 

U.S. Landfalling 

Intensity (km/hr) 
15 

(9.26-18.5) 
15.9 

(9.26–18.5) 
18.1 

(9.26–27.8) 
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Parameter Tropical Cyclones 
Category 1 and 2 

Hurricanes Major Hurricanes 

Central pressure (hPa) 

2.8 
(2–5) 

 

3.5 
(1.5–8) 

 

3.6 
(1.5–10) 

 

Position (km) 

33.3 
(18.5-64.8) 

 

22.2 
(9.26–46.3) 

 

14.4 
(9.26–27.8) 

 

Gale ( 63 km/hr) radii 
(km) 

44.6 
(18.5–74.1) 

44.1 
(18.5–55.6) 

45.4 
(18.5–55.6) 

Storm (92.6 km/hr) radii 
(km) 

30.74 
(18.5–55.6) 

35.7 
(18.5–55.6) 

35.4 
(18.5–55.6) 

Hurricane (118.5 km/hr) 
radii (km) — 

23.9 
(9.26–46.3) 

24.8 
(9.26–55.6) 

3.2 Capture zone methods 

The Capture Zone methods for defining the recurrence rate of hurricanes 
include line-crossing methods and area-crossing methods. In the line-
crossing method, the coastline is smoothed, and all hurricanes that make 
landfall are counted. All line-crossing storms are given uniform weight 
while all other storms are given a weight of zero since they are not 
considered. The number of storms is divided by the length of the line to 
calculate the rate. An example application of the line-crossing method can 
be seen in the studies conducted by NOAA in the 1970s (Myers 1970, 1975) 
and in the FEMA Texas study where it was used in conjunction with the 
GKF method.  

It has been noted (Resio et al. 2007) that capture zone methods may be 
prone to sample error or population error at the moment of defining the 
capture zone. The capture zone must be big enough to encompass a 
sufficient number of storms to be able to compute parameter statistics 
(sample error) but small enough to ensure the selected storms belong to 
the same population (population error). Related to the selection of the 
capture zone is the fact that the procedure does not differentiate storms 
within a capture zone since all are assigned the same weight. In contrast, 
storms outside of the capture zone are given a weight of zero, making the 
resulting storm rate significantly sensitive to the sometimes subjective 
process of establishing zone limits.  
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3.3 Gaussian Kernel Function (GKF) 

Recent JPM-OS applications have generally adopted a variation of the 
GKF method developed by Chouinard and Liu (1997). In contrast with the 
capture zone methods, this method considers the historical data over a 
wide area by assigning weights to the hurricanes based on the distance to 
the study site. The distance-adjusted weights are computed using a 
Gaussian PDF with an optimal kernel size. The GKF equation is as follows: 
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where 𝜆𝜆 = the SRR in storms/yr/km; 𝑇𝑇 = record length (yr); 𝑤𝑤(𝑑𝑑𝑖𝑖) = 
distance-adjusted weights from the Gaussian PDF (storms/km) for storm 
i; 𝑑𝑑𝑖𝑖 = distance from location of interest to a storm data point (km) for 
storm i; ℎ𝑑𝑑 = optimal kernel size (km) and n is the number of events.  

The GKF method proposed by Chouinard included a cross-validation, 
least-square procedure to objectively determine the optimal kernel size. In 
this procedure, the historic data are randomly separated into two samples 
with complementary probability. One sample is used to calculate the SRR 
using the GKF, and the other is used to calculate the observed SRR. The 
cross-validated square error is computed, and the minimum corresponds 
to the optimal kernel size. 

A sensitivity analysis was performed for the selection of optimal kernel 
size for the USACE NACCS (Nadal-Caraballo 2015). The SRR computed 
from the GKF were compared to the observed SRR estimated using a 
capture zone for distances of 100 km to 500 km. The squared error of GKF 
SRR and observed SRR was plotted against Gaussian kernel (GK) size to 
determine the GK size for which the squared error was minimized. The 
method was effective for evaluating the GK. The procedure was repeated 
for other geographical locations in the gulf for verification purposes, and 
the optimal kernel size could be clearly identified from the graphs.  
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Hybrid approaches have been used to determine storm recurrence rates. 
Resio et al. (2007) and USACE (2011) performed line-crossing sampling of 
storms and applied GKF weights.  
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4 Development of Synthetic Storm Set 

4.1 Probability distributions of storm parameters 

A central component of the joint probability analysis of TCs is to 
determine the marginal or conditional distributions of each of the storm 
forcing parameters. This section will describe the probability distributions 
that have been used to fit storm parameters in recent surge studies.  

4.1.1 Central pressure deficit 

An examination of previous studies reveals that the most commonly 
applied distribution shapes for central pressure are the Gumbel extreme 
value distribution (USACE 2009a, 2009b, 2011) and the truncated Weibull 
distribution (FEMA 2008). The FEMA Operating Guidance 8-12 (FEMA 
2012) recommends the application of either one of these two distributions 
but stresses that the most important consideration is the quality of fit of 
the data. It recognizes that another distribution may be used if its shape is 
more consistent with the observed empirical distribution.  

The small sample size that typically characterizes the tropical cyclone 
climatology that impacts a coastal location exacerbates the uncertainty 
associated with the distribution parameters. Bootstrap resampling 
methods have been used in previous studies to recalculate the values of the 
distribution parameters (FEMA 2008).  

4.1.2 Radius of maximum winds 

The evaluation of radius of maximum winds (Rmax) data for most studies 
has included an analysis of the correlation of Rmax with Δp. Several studies 
have identified a weak negative correlation between Rmax and Δp (FEMA 
2012). Vickery and Wadhera (2008) developed statistical models to 
estimate Rmax for Gulf of Mexico and Atlantic Ocean hurricanes, which 
were dependent on Δp and latitude. Evaluated as a group, R max for 

landfalling hurricanes in both regions displayed a positive correlation to 
latitude and a negative correlation to Δp2. No correlation of Rmax and Δp2 
was found for Gulf of Mexico landfalling hurricanes when analyzed 
separately, but the study recognized it may be due to insufficient data. 
JPM surge studies have recognized the correlation and modeled the 
conditional distribution of Rmax given Δp as lognormal (FEMA 2008), but 
in other studies it has been defined as a normal distribution (USACE 



ERDC/CHL SR-19-1 26 

2009a,b, 2011). FEMA (2012) recommends its mapping partners assume a 
correlation and ensure that sufficient data are analyzed to capture it. 
Consideration of the negative correlation would help limit the creation of 
unrealistic synthetic storms with extreme intensity that also have extreme 
large radii. For the Mississippi Coastal Analysis Program (FEMA 2008), 
the lognormal distribution derived for the high-intensity storms did not fit 
the low-intensity storm data, and the data had to be refitted.  

4.1.3 Heading direction 

A procedure for calculating heading was developed for the Mississippi 
Coastal Analysis Project that involved the calculation of directional SRR 
using GKF (Chouinard and Liu 1997) to construct a rate-versus-heading 
curve (FEMA 2008). The heading direction data for high-intensity storms 
were fitted to a Beta distribution. For the low-intensity storm data, the 
normal distribution resulted in a better fit. Heading direction was 
characterized with a normal distribution for other studies in the Gulf of 
Mexico (USACE 2009a, 2009b, 2011). 

4.1.4 Translational speed 

FEMA (2012) recommends that translational speed be fit with lognormal 
or normal distributions, and the choice should be made based on the fit of 
the empirical distributions. A study performed by Toro (2008) in support 
of the Mississippi Coastal Analysis Project found that translational speed 
was well approximated by the lognormal distribution with a mean of 23.8 
km/hr and a standard deviation of 10.08 km/hr for high-intensity storms 
and a mean of 19.8 km/hr and standard deviation of 9 km/s for low-
intensity storms. In this study the translational speed was treated as 
independent from other characteristics. For other studies, the normal 
distribution has been used (USACE 2009a, 2009b, 2011). 

4.2 Discretization of probability distributions 

The discretization of probability distributions is an essential part of the 
JPM-OS methodology since the discretized distributions are the building 
blocks of the synthetic storm set. It is one of the main attributes that 
differentiates the different JPM methods from one another.  
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4.2.1 Uniform discretization 

Uniform discretization is the most straightforward approach of 
discretizing parameter probability distributions and was the method used 
in the first JPM studies. The CDF was divided into class intervals based on 
percentile. The NOAA TR NWS-38 (Ho et al. 1987) provides examples of 
the application of uniform discretization in a JPM approach. Example 
summary sheets provided in the document show that the central pressure 
deficit distribution was divided into intervals of 1, 5, 15, 30, 50, 70, and 
90 percentiles, forward speed into 5, 20, 40, 60, 80, and 95 percentiles, 
and heading and radius to maximum winds into 5, 16.67, 50, 83.33, and 
95 percentiles. Several post-Katrina studies use the application of uniform 
discretization to a JPM-OS, in particular the Response Surface approach 
(USACE 2009a, 2009b, 2011). The uniform discretization used on these 
studies was not based on percentiles but in uniform intervals of the 
parameter space.  

4.2.2 Bayesian Quadrature (BQ) 

The BQ optimal sampling approach is used to define an optimal set of 
synthetic storms that represent the complete parameter space. Toro et al. 
(2010) describes a three-step discretization scheme within the BQ. The 
first step involves a general discretization of the central pressure deficit 
into three intervals corresponding to hurricane categories 3, 4, and 5 on 
the Saffir-Simpson hurricane wind scale (SSHWS). The joint probability 
distributions within each interval are discretized using BQ, optimizing the 
values of the hurricane parameters and determining their associated 
probability.  

A source of uncertainty in the BQ is that it has a subjective component in 
the specification of correlation distance associated with the hurricane 
parameters. The correlation distance refers to a property of the 
autocovariance function of the joint PDF of the parameters represented as a 
Gaussian random process with mean zero. Sampling nodes are spread more 
evenly and are closer matched to the marginal distribution in the direction 
in which the PDF of the parameters has closer correlation distances. Toro et 
al. (2010) provides some direction for the selection of correlation distance 
suggesting values of 1 to 3 for the most important parameters and 4 to 6 for 
less important parameters. Verification of the resulting synthetic storm set 
can be done by developing another set of data based on the original JPM 
concept of utilizing all possible combinations to run a lower fidelity model 
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and comparing the results. FEMA (2012) provides guidance on additional 
verification methods such as using a parametric model, comparison of 
statistical moments of the original distributions to those calculated by the 
BQ discretization, and assessment of the surge CDF curve at various 
locations for the occurrence of large jumps.  

4.2.3 Other discretization methods 

Other methods have been used in some studies for discretizing the 
probability distributions of the storm parameters. Nadal-Caraballo et al. 
(2015) developed a hybrid approach for application in the USACE NACCS 
that combined discretization by BQ and uniform discretization. The 
marginal distributions for Δp and θ were applied using a structured 
discretization to ensure adequate coverage of the probability and 
parameter spaces, as well as the spatial coverage of the study area. The BQ 
method was used for the discretization of the Rmax and Vt marginal 
distributions. This approach was considered more appropriate given the 
regional nature of the study.  

4.3 Storm track development 

Synthetic storm development is informed by the stochastic 
characterization of historical TCs. For a given region, tracks are 
constructed based on specified landfall locations (or alternative reference 
locations) and heading directions (e.g., -40°, -20°, 0°, 20°, and 40°), 
following characteristic climatological track paths. The number of tracks 
also depend on the study domain size and the spacing between tracks. The 
Mississippi Coastal Analysis Project (FEMA 2008), Region II FIS (FEMA 
2014), and other FEMA studies used a track spacing equivalent to Rmax. A 
track spacing of 0.60° was used by Resio et al. (2007) for the Louisiana 
coast. The NACCS (Nadal-Caraballo et al. 2015) employed a different track 
spacing values for each of the study’ subregion, namely, 60 km, 67 km, and 
74 km. 

The numerical hydrodynamic modeling of surge requires information on 
the variation of the hurricane parameters along the track. The resulting 
synthetic storm parameters in the JPM-OS approach are determined in 
reference to a coastal reference point, so the variation of these parameters 
along the track needs to be modeled. Several relationships between storm 
location and geography have been identified that inform the application of 
variations to the synthetic storms along their tracks. One of the principal 
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relationships is that the central pressure deficit of a hurricane decreases 
after landfall as the storm infills, weakens, and dissipates (Ho et al. 1987). 
Since the center of the hurricane is a low-pressure zone, the term filling of 
central pressure is used to describe the increase in the central pressure. 
Ho et al. (1987) found that intense hurricanes had a tendency to fill more 
rapidly than weaker storms after landfall. Translational speed has been 
found to be primarily related to latitude, increasing as latitude increases. 
Landfall is considered to be the point where the center of low pressure 
crosses the coastline, which is often idealized in the JPM studies.  

Resio et al. (2007) identified that for the Gulf of Mexico coastline, 
hurricanes typically weaken 6 to 24 hr before landfall. This weakening was 
characterized by an increase in central pressure and radius to maximum 
winds and a decrease in the Holland B parameter. The increase in central 
pressure and radius of maximum winds were estimated to be 10–15 hPa 
and 15% to 30%, respectively. The phenomenon was not observed for 
other U.S. coastlines. This pre-landfall weakening was applied starting 167 
km (90 nmi) away from the coast to synthetic storms with radius to 
maximum winds larger than 19 km (10 nmi) in the Louisiana (Resio et al. 
2007) and Texas (USACE 2011) studies. The decay of the central pressure 
deficit was modeled with a linear equation that is dependent on the 
location and the change in central pressure over the 167 km. The radius 
was expanded linearly 30% from 167 km prior to landfall, and the Holland 
B parameter decreased linearly over the same distance from 1.27 to 1.00 at 
landfall and to 0.90, 3 hr after landfall. Storm heading and forward speed 
were assumed constant over the last 167 km prior to landfall.  

Vickery and Twisdale (1995) developed a generic pressure deficit scaling 
model using the pressure deficit history of four strong hurricanes that 
impacted the study area. The filling-rate exponential decay model applied 
after landfall was developed using central pressure and position data from 
HURDAT and adapted for three regions: the Gulf Coast, the Florida 
peninsula, and the Atlantic Coast. Later, the model was revisited using 
updated data and expanded to include the Mid-Atlantic and New England 
coasts. The treatment of uncertainty in the filling rate model was 
considered in the calculation of the filling constant, which used the mean 
values associated with the characteristics of the storm at the time of 
landfall plus a normally distributed error term with zero mean and 
standard deviation equal to the error (Vickery 2005). Graphs of the mean 
exponential decay constant versus central pressure deficit at landfall for 
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each region were provided and included 95% confidence limits. This filling 
rate model has been used in various JPM-OS studies (Resio et al. 2007; 
Vickery and Blanton 2008; FEMA 2008).  

Central pressure filling rate was evaluated as part of the NACCS (Nadal-
Caraballo et al. 2015). Synthetic storms were divided into two groups 
depending on whether they made landfall or were bypassing. Linear fits 
were applied to the ratio of pressure deficit offshore to the pressure deficit 
at landfall as a function of distance to landfall in order to estimate the pre-
landing filling rate. Holland B and Rmax variations were computed using 
functions developed by Vickery and Wadhera (2008), which are 
dependent on central pressure. Vickery’s post-landfall rate-filling model 
was applied. A similar analysis was done for bypassing storms by 
establishing three crossing-point latitudes for each region of study. Linear 
fits were calculated separately for each region and then combined to 
determine the applied filling rate.  

In general, uncertainty quantification for pre-landfall central pressure 
filling rates was not presented in the referenced studies. The 
determination of filling rate consisted of a linear fitting of the historical 
data. This was identified as a potential area for further evaluation. In the 
case of post landfall filling, the most widely used model formally considers 
uncertainty.  
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5 Numerical Simulation of Meteorological 
Forcing 

5.1 Planetary Boundary Layer model (PBL) 

The TC forcing for an ocean response model (e.g., ADCIRC) is defined by 
modeling the surface winds within the planetary boundary layer (PBL) of 
the atmosphere. Cardone and Cox (2009) identified the main approaches 
as (1) parametric models; (2) steady-state dynamical models; (3) non-
steady dynamical models and; (4) kinematic analysis. Steady-state 
dynamical models based on the Thompson and Cardone (1996) PBL model 
have been widely applied in post-Katrina storm surge studies to estimate 
wind and pressure field time histories produced by the parameterized 
synthetic TCs.  In general, the PBL model solves the storm wind and 
pressure fields by means of numerical integration of the equations of 
motion of the boundary layer taking into account the physics of a moving 
vortex (Cardone and Cox 2009). The model is dynamic as it is solved along 
the storm track, taking into account the variations of the storm 
parameters.  

Various aspects that pertain to model initiation and model calibration that 
can contribute to model uncertainty have been identified in the literature. 
Cardone and Cox (2009) identified as the principal challenge of model 
initialization the description of the PBL pressure gradients in terms of the 
radial pressure profile:  
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where: 𝑃𝑃0 = minimum central pressure; n = 1 or 2, for one exponential or 
the sum of two exponentials; i = exponential component; dpi = total 
pressure deficit; Rpi = scale radius of exponential pressure profile; Bi = 
profile peakedness parameter (Holland B); r = radial distance from storm 
center. 

It can be seen that the radial pressure profile depends on the Holland B 
parameter. Any uncertainty associated with the estimation of this 
parameter will be transferred to the profile. Other initial model 
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parameters include the planetary boundary layer depth, boundary layer 
stability, and the sea surface roughness. 

An important step in the calibration of the PBL model is the comparison of 
the resulting winds outside the inner core with wind measured at buoys and 
winds measured by aircraft reduced from flight level to an elevation of 10 m. 
This elevation is the reference height used by surge models. The reduction is 
done by empirical ratios, and wind speeds at this level can be 65%–75% of 
flight level speeds (Resio and Westerink 2008). The calibration process 
consists of varying the input parameters until the resulting wind fields 
match the best available winds, which consist of the most appropriate 
measured wind data as evaluated by experienced modelers.  

Cardone and Cox (2009) observed that the PBL model does not require 
arbitrary calibration constants to a particular region or a type of storm 
and concluded that the interaction of the tropical cyclone with its 
environment could be accounted for by appropriate specification of the 
input parameters.  

Two different PBL models were evaluated as part of the IPET study (IPET 
2009). One was the PBL model of Thompson and Cardone (1996), and the 
other was the PBL model by Vickery et al. (2000). In the particular data 
analyzed in the study, the Thompson and Cardone PBL model performed 
better. The coastal analysis project for the coast of Mississippi (FEMA 
2008) made use of the Thompson and Cardone PBL model. Comparison of 
PBL model winds and measurements from buoys and oil rigs resulted in 
an uncertainty of ±20° in direction and ±2 m/second (s) in wind speed (1 
hr average at 10 m elevation). 

The PBL model was also applied in the Texas Flood Insurance Study (FIS) 
(USACE 2011). The study quantified the model error of the combination of 
the model and forcing for the study area as a standard deviation between 
0.53–0.76 m (1.75–2.50 ft). It further quantified that the errors associated 
with the use of PBL winds increased the standard deviation to 0.61–1.07 m 
(2.00–3.50 ft). The study attributed these values to the varying accuracy of 
the high water marks to which the model results were compared. 

The skill of the PBL model wind field was examined by Cardone and Cox 
(2013) in a hindcast study of twentieth century TCs in the Gulf of Mexico 
using the PBL model coupled with a third-generation wave model. The 
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study considered that the evaluation of wave variables was a stricter 
indicator of the skill of the wind field compared to wind speed 
measurement given that ocean response is ultimately a reflection of spatial 
and temporal development of wind forcing. The study found that for all 
storms the standard deviation of the wind speed difference was 1.56 m/s, 
and the correlation coefficient was 0.89. 

5.2 Best winds 

The use of the best wind data is central to the calibration process of either 
the PBL model for TC applications or the hindcast models for XCs. Best 
wind data can be derived from reanalyses based on historical climate data. 
The National Centers for Environmental Prediction (NCEP) has produced 
reanalyses that cover various periods during the twentieth century. NCEP 
produces the National Center for Atmospheric Research (NCAR) reanalysis, 
which covers the period from 1948 to the present and the Climate Forecast 
System Reanalysis (CFSR), which covers the period from 1979 to the 
present. The NACCS (Nadal-Caraballo et al. 2015) wind fields were adjusted 
from the two NCEP data sets to generate the wind and pressure fields for 
the study by assimilating NDBC buoy/Coastal-Marine Automated Network 
stations and manually reanalyzing storm events using the Interactive 
Objective Kinematic Analysis methodology. The NCEP/NCAR reanalysis was 
used for the 1948 to 1978 period, and the CFSR was used for the period of 1979 
to the present. 
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6 Hydrodynamic Simulation of Synthetic 
Storms 

Hydrodynamic modeling of the surge response to storm forcing requires 
the use of several modeling tools. The first step consists of generating the 
wind and pressure fields for the developed synthetic storms. This has been 
achieved in previous JPM studies using the PBL model (Thompson and 
Cardone 1996). The offshore wave estimates are subsequently calculated 
with the an efficient regional spectral wave transformation model like 
WAve prediction Model (WAM) model, which provides the wave energy 
spectra for each storm along the offshore boundary of the nearshore wave 
model. The nearshore waves can be computed with a variety of models 
such as the Steady State spectral WAVE (STWAVE) model. The PBL wind 
fields and the offshore wave energy spectra are used to drive a coupled 
surge and wave model such as CSTORM which combines ADCIRC and 
STWAVE models. Older studies 10 or more years ago used loose coupling 
while recent studies used fully coupled surge and wave models, like 
CSTORM. The result of this process is the simulation of wind fields, water 
surface variations, waves, and nearshore currents that are used as input to 
probabilistic hazard response models that may compute, for example, 
wave runup and overtopping on a levee or wave and flow forces on a wall.  

6.1 Storm surge models 

6.1.1 ADvanced CIRCulation (ADCIRC) 

The ADCIRC model is a long-wave, hydrodynamic model (Luettich et al. 
1992; Westerink et al. 1992) that has been applied extensively to simulate 
tidal circulation as well as extreme water levels that are forced by winds, 
pressures, and waves. Applying these forcing conditions, the two-
dimensional (2D), depth-integrated ADCIRC model has proven to 
accurately predict tidal- and wind-driven water-surface levels. ADCIRC 
has been successfully applied in a large number of coastal applications, 
most recently in support of the NACCS (Cialone et al. 2015), FEMA flood 
risk map updates in (1) the northern Gulf of Mexico region, (2) FEMA 
Region II and III, (3) the Lake Michigan storm wave and water level study 
(Jensen et al. 2012), and (4) the Lake St. Clair storm wave and water level 
study (Hesser et al. 2013); and in support of USACE projects such as the 
Louisiana Coastal Protection and Restoration project (USACE 2009a; 
Bunya et al. 2010) and the Mississippi Coastal Improvements Program 
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(Wamsley et al. 2013). (A detailed description for the general application 
of ADCIRC is available at http://www.adcirc.org.) 

ADCIRC is a physics-based model that was developed as part of the 
USACE Dredging Research Program (Luettichet al. 1992; Westerink et al. 
1992). The model represents the three-dimensional (3D) equations of 
motion for simulating tidal circulation and storm-surge propagation over 
large computational domains. ADCIRC is a finite-element model that 
allows for high resolution in particular areas of interest (study areas) or 
areas with complex shoreline or bathymetric features. Larger elements can 
be used in open-ocean regions where less resolution is needed. The model 
provides accurate and efficient computations over a range of time periods 
(days to years). 

The 2D (depth-integrated) form of ADCIRC solves the shallow water 
equations for conservation of mass and momentum. The formulation 
assumes that the water is incompressible, hydrostatic pressure conditions 
exist, and that the Boussinesq approximation is valid. The ADCIRC model 
can be forced with time-varying, water-surface elevations, wind shear 
stresses, atmospheric pressure gradients, wave radiation stresses, river 
inflow, and the Coriolis acceleration effect. The selection of input 
parameters like wind drag model and bottom friction values have a 
significant effect on the results and on the model stability, and they vary 
from study to study even for similar bottom and wind characteristics 
suggesting considerable uncertainty. See, for example, USACE (2011, 
2009a), and FEMA (2008).   

Sources of error for water level modeling and validation have been 
identified in previous studies where ADCIRC has been employed (Hanson 
et al. 2013; Cialone et al. 2015) and include errors in forcing winds, errors 
in modeling mesh due to bathymetry or surveying, as well as a 
combination of different sources of data in a grid error in the validation 
water levels and error relating to tidal calibration.  

6.1.2 Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model 

The SLOSH model is a numerical model developed by the NWS to 
estimate the storm surge generated by hurricanes (NOAA 2015). The 
model solves the 2D shallow water equations using a finite difference 
scheme on a polar grid. Storm parameters (forward speed, storm track, 
size, track, and pressure deficit) are used to develop wind and pressure 
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fields to drive the model. The SLOSH model domain includes open-coast 
shorelines, bays, rivers, bridges, roads, levees, and other physical 
landscape features. SLOSH can also model the astronomic tide and 
variations in the initial water level. However, the SLOSH model does not 
model the impacts of waves, river inflow, or rainfall. SLOSH has been 
applied to the U.S. Atlantic and Gulf of Mexico coastlines, Hawaii, Puerto 
Rico, and the Virgin Islands. NOAA uses the SLOSH model for hurricane 
surge forecasting because it is fast and efficient. The SLOSH model 
coverage is subdivided into 32 regions or basins, which are updated every 
5–1o years. 

Though the SLOSH model is considered computationally efficient, this 
efficiency is achieved by imposing several limitations on the model 
physics, namely by neglecting the non-linear advection terms, wave 
interactions, and river inflows. In addition, the model domains are limited 
in size and resolution, which limits the model’s ability to incorporate basin 
scale effects (Blain et al. 1994). In addition, the coarse resolution in the 
SLOSH model grids does not capture local landscape features, which 
results in overly smoothed model results (Resio and Westerink, 2008). 
The SLOSH model friction is internally parameterized with a depth-
dependent linear Ekman-based formulation and land use and vegetation 
type are not considered in the friction formulation. These friction 
limitations in the SLOSH model can lead to over-damping of physical 
phenomena such as the strong geostrophic setup observed during 
Hurricane Ike. In addition, bottom friction and other model settings can 
have a significant effect on the model results and are highly uncertain. 
Jelesnianski et al. (1992) and Zhang et al. (2008) documented SLOSH-
computed maximum surge level errors of approximately 20%.  

6.2 Regional wave models 

High-fidelity numerical models require the estimation of offshore and 
nearshore waves that result from the wind fields generated by the modeled 
TCs. The current state of practice is to utilize third-generation wave 
models such as WAM or Wavewatch III. These models will be discussed in 
the next sections. 

6.2.1 WAve prediction Model (WAM) 

WAM is a global ocean wave prediction model and is the first model 
referred to as a third generation model in which the action balance 
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equation is integrated without predefined spectral constraints. This means 
the 2D wave spectrum can develop to a limiting frequency without 
constraints on the spectral shape. This modeling approach also allows for 
model improvements at the elementary level of the source term 
parameterizations. WAM can simulate typical (daily average) wave 
conditions as well as hurricane conditions (WAMDIG 1988). Previous 
first- and second-generation wave models generally required 
implementation-specific tuning of model parameters to improve model 
results (Tolman and Chlikov 1996).  

Development of the WAM model involves an international team of 
scientists whose efforts have resulted in refinements and improvements to 
wave modeling techniques over the last 35 years. Some of the modeling 
enhancements include the ability to simulate two-way coupling between 
wind and waves, wave data assimilation, and the medium-range 
operational forecasting capability. As of 2015, the official release version of 
WAM is Cycle 4.5, which is maintained by the German Helmholtz 
Zentrum, Geesthacht.  

The skill of the WAM model needs to be quantified as part of an analysis 
by evaluating differences between model results and measurements. The 
evaluation can be based on Quartile-Quartile graphics or statistical tests 
such as bias, root-mean-square-error, regression, correlation, and scatter 
index, performed at measurement sites (Cialone et al. 2015).  

6.2.2 WAVEWATCH III 

WAVEWATCH III (Tolman and Chalikov 1996; Tolman 2014) is a third-
generation wave model developed at the NCEP. This model is derived from 
the predecessor models (WAVEWATCH I and WAVEWATCH II) that were 
developed at Delft University of Technology and NASA Goddard Space 
Flight Center (NWS 2014). The WAVEWATCH III model actually differs 
from the earlier models in several key aspects: governing equations, 
program structure, numerical, and physical approaches. Presently, 
WAVEWATCH III is evolving from a wave model into a wave modeling 
framework to allow for development and expansion into additional 
physical and numerical approaches to wave modeling. WAVEWATCH III 
has transitioned from an NCEP-only model into a community-driven 
effort with developers spanning multiple organizations. Organization of 
model development from multiple sources is maintained by using a 
subversion server housed at NCEP. 
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WAVEWATCH III solves the random-phase, spectral-action density balance 
equation for wave number-direction spectra. The model also includes 
rudimentary surf zone source terms and wetting and drying of model grid 
points. WAVEWATCH III is the model that has been adopted as the basis 
for the operational wave forecasting systems at NOAA (NWS 2014). The 
global domain of that system has an approximately 50 km resolution, with 
nested regional domains for the northern hemisphere oceanic basins with 
approximately 18 km and 7 km resolution. The model includes wave 
refraction, nonlinear resonant interactions, sub-grid representations of 
unresolved islands, and dynamically updated ice coverage. Wind data for 
this system are provided from the Global Data Assimilation Scheme for the 
Global Forecasting System weather model. Prior to 2008, the model was 
limited to regions outside the surf zone. 

6.3 Nearshore wave transformation models 

6.3.1 Steady State spectral WAVE (STWAVE) 

The primary objective of applying a nearshore wave model is to quantify 
the change in wave parameters (wave height, period, direction, and 
spectral shape) from an offshore location (typically depths of less than 
40 m) to the shoreline. Offshore wave information obtained from wave 
buoys or global- or regional-scale wave hindcasts and forecasts is 
transformed through the nearshore coastal region using these nearshore 
wave transformation models. The nearshore wave model STWAVE is a 
steady-state, finite-differenced, phase-averaged spectral wave model based 
on the wave action balance equation (Smith et al. 2001). STWAVE 
simulates nearshore wave transformation including depth- and current-
induced refraction and shoaling, depth- and steepness-induced wave 
breaking, wind-wave generation and growth, wave-wave interaction, and 
whitecapping (Smith et al. 2001).  

STWAVE solves the governing equation for steady-state conservation of 
spectral wave action balance along backward-traced wave rays (Jonsson 
1990). Source and sink mechanisms include surf zone breaking in the form 
of the Miche criterion (Miche 1951), the flux of input energy due to wind 
(Resio 1988; Hasselmann et al. 1973), energy distribution through wave-
wave interactions (Resio and Perrie 1989), whitecapping (Resio 1987, 
1988), and energy losses due to bottom friction (Hasselmann et al. 1973; 
Padilla-Hernandez 2001; Holthuijsen 2007; Smith et al. 2001). Radiation 
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stress gradients are calculated based on linear wave theory and provide 
wave forcing to external circulation models, such as ADCIRC. 

Refraction and shoaling are implemented in STWAVE by applying the 
conservation of wave action along backward traced wave rays. Rays are 
traced in a piecewise manner. The wave ray is traced back to the previous 
(seaward) grid column or row, and the length of the ray segment is 
calculated. Derivatives of depth normal to the wave orthogonal are 
estimated (based on the orthogonal direction), and then the wave 
orthogonal direction is calculated for the previous (seaward) column. The 
energy is calculated as a weighted average of energy between the two 
adjacent grid points in the column and the direction bins. The energy 
density is corrected by a factor that is the ratio of the angle band width to 
the width of the back-traced band to account for the different angle 
increment in the back-traced ray. The shoaled and refracted wave energy 
is then calculated from the conservation of wave action along a ray. The 
process is repeated for the next columns. (Refer to STWAVE 
documentation [Massey et al. 2011a; Smith 2007; Smith et al. 2001] for 
additional model features and technical details.) There are both half-plane 
and full-plane versions of STWAVE. The half-plane version is generally 
limited to waves propagating within 60° of shore normal while the full 
plane version is less efficient but can produce wind forcing and wave 
generation and propagation in any direction. 

Validation runs are necessary to ensure correct application of model 
parameters by comparing with measured data. Parameters such as bottom 
friction are adjusted to match model results to the data. Other STWAVE 
inputs include offshore waves, winds, surge, and bathymetry. If no historic 
data are available for validation runs, sensitivity runs can be made 
(USACE 2011). Smith (2000) developed a model performance index (MPI) 
as an indicator of the model’s ability to capture the transformation from 
offshore to nearshore that is observed in the observations 

  rms

rms

Error
MPI

Changes



1

 (5) 

where Errorrms is the root-mean-square of the model compared to the 
measurements and Changesrms is the root-mean-square change from 
offshore data to the nearshore data. Values of MPI near 1.0 are indicative 
of good agreement. 
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6.3.2 Simulating WAves Nearshore (SWAN)  

SWAN was developed at Delft University of Technology as a third-
generation wave model. The model computes random, short-crested, 
wind-generated waves in coastal regions as well as inland water bodies 
(SWAN 2014). SWAN is similar to STWAVE in that it is a steady-state, 
phase-averaged spectral wave model based on the wave action balance 
equation. SWAN model domains can be developed for rectilinear grids, 
curvilinear grids, or triangular meshes, and computations can be made in 
the Cartesian or spherical coordinate system. An unstructured version of 
SWAN is known as unSWAN. The model can also be driven by other 
models (such as WAVEWATCH III, WAM, or a larger SWAN application) 
in what is referred to as a nested simulation, similar to STWAVE. Like 
CSTORM applications, SWAN simulations can be made in serial (i.e., on 
one processor) or in parallel (i.e., on multiple processors). Parallelization 
is available using a distributed-memory paradigm (using MPI) or through 
a shared-memory paradigm (using OpenMP). 

Physical properties that are accounted for in the SWAN mode include 
wind-generated waves; wave propagation in time and space; shoaling, 
refraction due to current and depth, frequency shifting due to currents and 
non-stationary depth; three- and four-wave interactions; whitecapping, 
bottom friction and depth-induced breaking; dissipation due to vegetation, 
turbulent flow, and viscous fluid mud; wave-induced set-up; transmission 
through and reflection against obstacles; and diffraction. Wave 
propagation can be simulated from laboratory to global scales. The model 
does not account for Bragg-scattering and wave tunneling. 

SWAN produces time series of one-dimension (1D) and 2D spectra; 
significant wave height and wave periods; average wave direction and 
directional spreading, 1D and 2D spectral source terms; root-mean-square 
of the orbital near-bottom motion; dissipation; wave-induced force; set-
up; and diffraction. The SWAN software can be used freely by the public 
under the terms of the GNU General Public License.  

6.3.3 Coastal Modeling System (CMS-Wave) 

CMS-Wave (Lin et al. 2006; Demirbilek et al. 2007) is part of the Coastal 
Inlets Research Program, Coastal Modeling System (CMS). CMS-Wave is 
similar to STWAVE and SWAN in that it provides a steady state 2D finite-
difference solution to the wave action balance equations. It solves 
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parabolic approximation equations and includes terms to account for wave 
energy dissipation and diffraction (Mase et al. 2005). It models similar 
processes to STWAVE and SWAN including wind-wave generation, 
refraction, wave breaking, wave dissipation mechanisms, and wave-
current interaction. Diffraction and reflection are approximated but have 
limited accuracy, particularly near hard surface obstructing structures. 
The model computes the steady-state spectral transformation of 
directional random waves in the presence of an ambient current. CMS-
Wave is a half-plane model, which means that the model limits wave 
propagation (from the seaward model boundary toward the shoreward 
model boundary). A set of examples given in Lin et al. (2008) 
demonstrates the model’s ability to simulate waves for studies involving 
storm-damage assessment, jetty modifications, and the planning and 
design of nearshore reefs. CMS-wave has not been coupled to a surge 
model within CSTORM. 

6.4 Phase-resolving wave propagation models 

Phase-resolving wave models, such as Boussinesq-type models, are suited 
for the investigation of wave transformation over small regions and is 
ideally suited for applications where reflection, diffraction, and/or non-
linear interactions are considered significant (Nwogu and Demirbilek 
2001). BOUSS-2D is based on Boussinesq-type equations derived by 
Nwogu (1993) and is a phase-resolving numerical model for simulating the 
propagation and transformation of waves in coastal regions such as 
harbors. The model computes nearshore wave fields including mean wave 
heights, mean current direction, mean water level breaking and transient 
representation of water levels, currents, and wave breaking. The governing 
equations are valid for deep and shallow water for simulating nearshore 
and harbor basin processes including reflection/diffraction near 
structures, energy dissipation due to wave breaking and bottom friction, 
cross-spectral energy transfer due to nonlinear wave-wave interactions, 
breaking-induced longshore and rip currents, wave-current interaction, 
and wave interaction with porous structures.  

The governing equations in BOUSS-2D are solved in the time domain with 
a finite-difference method. Input waves may be periodic (regular) or non-
periodic (irregular), and both uni-directional or multi-directional sea 
states may be simulated. Waves propagating out of the computation 
domain are either absorbed in damping layers or allowed to leave the 
domain freely. BOUSS-2D is applicable to small coastal regions (1–5 km), 
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including areas that experience complex wave transformation. The model 
can simulate wave breaking over submerged obstacles, breaking-induced 
nearshore circulation patterns, wave-current interaction near tidal inlets, 
infra-gravity wave generation by groups of short waves, and wave 
transformation around artificial islands. Applications of BOUSS-2D 
include wave agitation, harbor resonance, and ship-wake studies. This 
modeling technology is also used for navigation studies in ports, harbors, 
and marinas, coastal flooding and inundation studies, risk-based design of 
coastal structures, and wetlands protection. 

Recently, other Boussinesq models such as FUNWAVE-TVD (Shi et al. 
2012) and COULWAVE (Lynett et al. 2002) have gained prominence. The 
primary reason is that they are based on a finite-volume solution method 
that is much more stable than the finite-difference approach. These 
models have similar capabilities to BOUSS-2D. This class of model has 
some significant limitations. The first is that they are computationally 
demanding for both primary processing and for post-processing. They also 
have limited wind-wave generation capabilities at this time although that 
is an area of active research. None of these models is coupled with a surge 
model, and they assume a flat water surface. For small domains this is not 
a problem, but for large domains and high surge hurricanes this can be an 
important limitation. 

6.5 Coupled methods 

The Coastal Storm Modeling System (CSTORM-MS) developed at the U.S. 
Army Engineer Research and Development Center is a comprehensive 
system of high-fidelity, physics-based hydrodynamic and sediment 
transport models (Massey et al. 2011b). Several of the models described in 
this chapter are linked or coupled together within the CSTORM-MS: 
WAM, STWAVE, and ADCIRC. CSTORM-MS can be used to simulate 
forcing from tropical and extra-tropical storm winds and pressures, the 
wave and water level response to the forcing, as well as the beach 
response, including erosion, breaching and accretion. CSTORM-MS is 
specifically designed to be both expandable to include additional models 
and upgradable as model capabilities improve. Within the Surface-water 
Modeling System (SMS 2015), there is a graphical user interface that 
provides a work flow specifically for CSTORM-MS tightly coupled models 
to use the Earth System Modeling Framework. This capability provides a 
quicker feedback (data interpolation and reconditioning) between models 
for improved physical response, a reduction in model execution times, and 
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a reduction in required user input for configuring model interactions. One 
disadvantage of running coupled models is that it is impossible to 
ascertain the direct contribution of the specific models to the overall water 
level response. For example, if a modeler couples ADCIRC and STWAVE 
to produce total water level, the contribution of waves to water level 
cannot be directly determined. 

A coupled version of unSWAN (unstructured SWAN) and ADCIRC is also 
used to model coupled wave and surge storm response. The primary 
difference between CSTORM and ADCIRC+unSWAN is that in CSTORM 
applications, ADCIRC mesh geometry is unique from the STWAVE grid 
geometry so both can be configured to best solve the physics. In 
ADCIRC+unSWAN, the two unstructured meshes are typically identical. 
This presents inefficiencies because over most of the domain, the wave 
grid needs to be at a finer scale than the surge mesh. 

6.6 Modeling sources of errors 

Sources of model error include, but are not limited to, the discretization of 
the governing equations, grid resolution, representation of the physical 
setting (bathymetry, topography, frictional resistance to the landscape, 
representation of geometric constrictions), and the fidelity of the forcing 
conditions (wind, pressure, river inflow). ADCIRC is an unstructured, 
continuous, Galerkin finite element code that solves a variant of the 2D 
depth-integrated shallow water equations (SWE) using linear basis 
functions. From finite element theory, this discretization formulation of 
the SWE is known to have a leading error term that is quadratically 
dependent on the size of the elements and which converges asymptotically 
as the element sizes approach zero (Luettich and Westerink 2004). 
Therefore, it is established that the model is well verified. The ability of the 
model to accurately represent water levels for a given area and storm 
condition is highly dependent on proper grid resolution, parameter 
specifications such as Manning’s n values for bottom roughness from 
different land use types, as well as accurate input conditions, of which 
high-quality surface wind and pressure fields are particularly important. 
The purpose of performing validation studies is to establish, for a given 
configuration of the model, the level of error. Previous studies have 
reported an average absolute error for ADCIRC compared to high-water 
mark datasets from Hurricane Rita of 0.16 to 0.21 m with a standard 
deviation of 0.28–0.35 m and from Hurricane Katrina an average absolute 
error of 0.27–0.28 m with a standard deviation of 0.42–0.44 m (Bunya et 
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al. 2010). Similarly, for Hurricane Gustav, modeled high-water mark levels 
were within 0.5 m for 92% of the high-water mark data locations (Dietrich 
et al. 2011). The IPET (2009) report listed an overall absolute error of 
0.4 m for ADCIRC compared with Katrina. 

A comparison by Cialone et al. (2017) of Hurricane Sandy peak water level 
model results to U.S. Geological Survey high-water marks showed the 
ability of the model to inundate low-lying areas during storm events. 
Comparisons were made at 314 land locations that wetted during this 
event. It was found that 90% of the comparison locations differed by less 
than 0.5 m with an average error of 6.8%. The average difference for these 
locations was 0.2 m. The remaining 10% of the comparison locations 
differed by more than 0.5 m. The majority (85%) of these larger 
differences were within 1.0 m with the remaining 15% greater than 1.0 m. 
The average absolute difference for all comparison locations was 0.27 m, 
which is comparable to errors in other large studies (IPET 2009; Bunya et 
al. 2010; Dietrich et al. 2011) The small number of particularly poor 
comparisons (5 of 314 comparison locations) could be due to inaccurate 
measurements because the trend of the water level response was otherwise 
consistent and nearby comparisons were within 0.5 m. In addition, some 
areas that performed somewhat poorly were located in geometric 
constrictions, such as small-channel creeks, which are sometimes not well 
resolved in the model, and therefore results are not expected to be as 
accurate. Because the majority of the model and measurement differences 
were consistently small and comparable to differences reported in other 
studies, there is confidence in the model’s ability to predict water levels 
throughout the domain. 

Wave models are validated with field and lab data. The modeling errors 
are a function of the quality of the input information (bathymetry, wind 
fields, water levels, and boundary wave spectra) and the models 
themselves (e.g., lack of model physics, grid resolution [spatial and 
spectral]). Errors also exist in the measurements (e.g., pressure 
corrections, buoy motion in high or steep waves, and defining the surface 
in breaking waves). Measurement errors are generally estimated at 
approximately 10% in height and 10° in direction. Wave models integrate 
processes across the domain, so random input errors generally do not 
accumulate, but local errors in bathymetry or local processes may cause 
systematic errors in wave parameters (Smith 2000).  
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7 Quantification of Meteorological and 
Hydrodynamic Errors 

Uncertainties in the JPM methodology are addressed through the use of 
an error term 𝜀𝜀 within the JPM integral. As previously stated, this error 
term is composed of a series of error contribution component terms 
associated with different aspects of the JPM process, such as phasing of 
astronomical tide and surge, random variations in the Holland B 
parameter, model errors, etc. Three assumptions regarding the error 
contributions are that the error terms are independent, their effects can be 
combined by addition, and the combined error can be represented as a 
Gaussian distribution with mean zero. This way, the standard deviation of 
error is a percentage of the modeled surge. The standard deviation can be 
computed as follows (FEMA 2008): 

 σ σ σ σ σε ε ε ε εn   2 2 2 2
1 2 3  (6) 

where σεn = standard deviation of the individual error components.  

7.1 Bias in meteorological and numerical models 

The computation of the error term presupposes that the models used are 
unbiased. Bias occurs when there is a consistent difference between the 
measured data and their true value. Bias can be expressed as the mean of 
the error; therefore, if the mean of the error is zero, then there is no bias. 
Most of the previous studies have assumed little or no bias, hence their 
representation as a Gaussian distribution with mean zero. Nadal-Caraballo 
et al. (2015), as part of the NACCS, computed the bias for the tide, storm 
track heading, hydrodynamic modeling, and the meteorological modeling 
results. These are listed in Table 2. The total bias, excluding the non-tidal 
residual, was -0.20 m. The bias due to the nonlinearity of the surge and 
tide varied geographically according to the degree of enclosure of the body 
of water. Larger bias was found for enclosed bays, canals, and streams 
than for the open coast locations.  
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Table 2. Bias for various error components 
computed for the NACCS. 

Type Bias (m) 

𝜇𝜇𝑡𝑡𝑖𝑖𝑑𝑑𝑡𝑡 Variable 

𝜇𝜇𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡 -0.04 

𝜇𝜇ℎ𝑦𝑦𝑑𝑑𝑟𝑟𝑦𝑦 -0.11 

𝜇𝜇𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑦𝑦𝑟𝑟  -0.05 

Nadal-Caraballo (2015) also estimated the bias resulting from the 
utilization of one random tide simulation per storm. The assumed true 
value consisted of the water levels obtained from the linear superposition 
of 96 random tides per storm response, after correcting it for nonlinear 
bias due to the linear superposition of separate water level components. 
These results are listed in Table 3 for various ARIs from 1 year to 10,000 
years.  

Table 3. Bias resulting from the use of one random tide simulation 
per storm. 

ARIs 
(year) 

Bias 
(meter) 

1 -0.03 

5 -0.03 

10 -0.04 

50 -0.06 

100 -0.09 

500 -0.15 

1,000 -0.19 

5,000 -0.27 

10,000 -0.32 

7.2 Uncertainty in meteorological and numerical models 

The hydrodynamic modeling error, 𝜎𝜎ℎ𝑦𝑦𝑑𝑑, has been estimated in 
substantially different ways in recent FEMA studies. For example, in 
FEMA (2008), 𝜎𝜎ℎ𝑦𝑦𝑑𝑑 was computed as follows: 

 hyd cal measσ σ σ 2 2  (7) 
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where 𝜎𝜎𝑡𝑡𝑡𝑡𝑎𝑎 = calibration error; 𝜎𝜎𝑚𝑚𝑡𝑡𝑡𝑡𝑚𝑚 = measurement error. The calibration 
error was estimated as the standard deviation of the difference between 
simulated and measured storm surge elevations. The measurement error 
was estimated as a standard deviation representing the variability in high-
water marks. The values of 𝜎𝜎𝑡𝑡𝑡𝑡𝑎𝑎 and 𝜎𝜎𝑚𝑚𝑡𝑡𝑡𝑡𝑚𝑚 were estimated to be 0.46 m and 
0.40 m, respectively, resulting in 𝜎𝜎ℎ𝑦𝑦𝑑𝑑 = 0.23 m. Other studies (Resio et al. 
2007; USACE 2011) have estimated 𝜎𝜎ℎ𝑦𝑦𝑑𝑑 for the Louisiana-Mississippi 
coast to be in the range of 0.53–0.76 m. Nadal-Caraballo et al. (2015) 
estimated the hydrodynamic modeling error for the NACCS as 0.36 m.  

The errors in meteorological modeling are captured in 𝜎𝜎𝑚𝑚𝑡𝑡𝑡𝑡 and estimated 
from the variability in water levels when comparing levels simulated using 
best winds to those simulated with PBL winds. The wind and pressure 
fields derived from best winds employ techniques that combine inputs 
from a variety of meteorological sources. In Resio et al. (2007) and USACE 
(2011), values of 𝜎𝜎𝑚𝑚𝑡𝑡𝑡𝑡 are not explicitly provided. However, it is stated that 
the range of 𝜎𝜎ℎ𝑦𝑦𝑑𝑑+𝑚𝑚𝑡𝑡𝑡𝑡 for the Louisiana-Mississippi coast is approximately 
0.08–0.30 m. In FEMA (2008), 𝜎𝜎𝑚𝑚𝑡𝑡𝑡𝑡 for coastal Mississippi was estimated 
at 0.36 m. The meteorological modeling error was estimated as 0.38 m for 
the USACE NACCS (Nadal-Caraballo et al. 2015). 

7.3 Holland B parameter 

Regarding the random variations in the Holland B parameter, 𝜎𝜎𝐵𝐵, the 
storm surge elevations have been found to vary almost linearly with 
changes in the Holland B parameter. The value of 𝜎𝜎𝐵𝐵 is typically assumed 
to be in the range of 10%–20% of the storm surge (Resio 2007). More 
recent studies have adopted 𝜎𝜎𝐵𝐵 = 0.15 × storm surge elevation (FEMA 
2008; Nadal-Caraballo et al. 2015). In Resio et al. (2007), the randomness 
was modeled by a lognormal distribution with median of 1.0 and a 
logarithmic standard deviation of 0.15.  

7.4 Track variation 

Synthetic TC tracks are idealized representations of real-world tracks. As 
previously discussed in Section 4.3, synthetic TC tracks are constructed 
based on characteristic climatological track paths, landfall locations and 
heading directions observed within a given region. Although synthetic 
tracks are meant to cover the full range of these parameters, in practice, 
the synthetic TC suites might exhibit limited track variability relative to 
the natural variability of the historical TC population. Resio et al. (2007) 
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suggested the effect of track variations is mainly on wave fields rather than 
surge, and therefore it primarily affects the wave-setup component of the 
total storm surge. The error related to storm track variations not 
accounted for in the synthetic storm set, 𝜎𝜎𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡, was estimated to be 20% of 
the wave setup contribution to the storm surge elevation. The wave setup 
is estimated to be approximately 15%–30% of the storm surge (Resio et al. 
2007; USACE 2011). Nadal-Caraballo et al. (2015) estimated the storm 
track variation error as 0.25 m. Other studies have not explicitly accounted 
for 𝜎𝜎𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡.  

7.5 Astronomical tide 

There are situations where the tide range is small and it can be treated as 
an error in the total water level estimation. This has been the approach 
applied for the Gulf of Mexico. The purpose of the error associated with 
the astronomical tide, 𝜎𝜎𝑡𝑡𝑖𝑖𝑑𝑑𝑡𝑡, is to capture the aleatory variability arising 
from the fact that the arrival of a TC can occur at any tide phase. This error 
is computed as the standard deviation of the predicted tide at any given 
location. In FEMA (FEMA 2008), for example, this error was estimated to 
be 0.20 m for coastal Mississippi. FEMA (2012) states that when the tide 
amplitudes are not small compared to the 1% AEP surge level, the 
treatment of the tide as a small additive correction is inappropriate. 

Locations with larger tidal ranges require explicit consideration of the 
astronomical tide component of the water level for proper hazard 
quantification. In a JPM framework, the ideal approach is to simulate each 
synthetic TC at multiple tidal phases to fully characterize tidal variability. 
The computational burden required for this approach would make it 
impractical for implementation when performing the surge and tide 
simulations using high-resolution hydrodynamic models. The FEMA 
(2014) FIS, for example, incorporated just one randomly sampled 
astronomical tide in the numerical simulation of each of the 159 synthetic 
storms. This was done by selecting a random starting time for each tide 
simulation within a 2-month period.   

The NACCS (Nadal-Caraballo et al. 2015) quantified the uncertainty 
associated with the nonlinear residual (NLR) due to the interaction of 
storm surge and astronomical tide, and incorporated the NLR in the JPM 
integral as an error term. The NLR was defined as the difference in SWL 
between (1) linearly superimposed storm surge and astronomical tide, and 
(2) the full hydrodynamic simulation of the storm surge and tide 
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components. At any given time-step of a time series, tn, contrasting SWL 
from linear superposition (LS) and full simulation (FS), the NLR can be 
determined as follows: 

 𝑁𝑁𝑁𝑁𝑁𝑁(𝑡𝑡𝑛𝑛) = 𝑆𝑆𝑆𝑆𝑁𝑁𝐿𝐿𝐿𝐿(𝑡𝑡𝑛𝑛) − 𝑆𝑆𝑆𝑆𝑁𝑁𝐹𝐹𝐿𝐿(𝑡𝑡𝑛𝑛) (7) 

Three sets of NACCS simulations were used to obtain the parameters 
necessary for the computation of NLR:  

• Simulation set 1: a surge-only base condition;  
• Simulation set 2: base condition with each of the 1,050 TCs simulated 

on one random tide; and 
• Simulation set 3: tide-only condition.  

The NLR was computed from Equation (7), with 𝑆𝑆𝑆𝑆𝑁𝑁𝐿𝐿𝐿𝐿(𝑡𝑡𝑛𝑛) determined as 
the addition of the time series resulting from simulation sets 1 and 3, and 
𝑆𝑆𝑆𝑆𝑁𝑁𝐹𝐹𝐿𝐿(𝑡𝑡𝑛𝑛) was taken as the time series from simulation set 2.  

NLR bias was estimated to assess the need to apply a correction when 
performing the linear superposition. The uncertainty of linear 
superposition was quantified as the standard deviation of the NLR. The 
tidal variability was considered in the study by modeling a suite of tide-
only simulations of 96 randomly selected tidal phases from the historical 
record, adding these to the surge-only simulation results, correcting for 
NLR bias, and incorporating the NLR uncertainty in the JPM integral.  
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8 Uncertainty Classification, Integration, 
and Propagation 

Sources of errors or uncertainties associated with meteorological and 
hydrodynamic numerical modeling were described in the previous section. 
The discussion revolved around specific aspects of the JPM. This section 
presents a broader discussion about uncertainty. It covers uncertainty 
classification, integration, and propagation. 

8.1 Classification of uncertainty 

Two kinds of uncertainty are generally recognized: one associated with the 
inherent uncertainty of a natural process, often called aleatory variability, 
and epistemic uncertainty associated with a lack of knowledge. In the 
representation of a particular event through the use of a model, it is 
necessary to quantify the epistemic uncertainty arising from the model 
limitations. 

8.1.1 Aleatory variability 

Aleatory variability refers to the inherent randomness of a natural process. 
As such it is irreducible. This randomness can manifest itself in time, 
space, or both. Aleatory events can be characterized by their frequency of 
occurrence. Relevant examples with respect to a coastal reference location 
is the frequency of hurricanes, their intensity, velocity, size, and heading. 
This uncertainty can be described with probability models, such as for 
example, the Poisson distribution for frequency of TCs. It has been 
recognized that often this type of uncertainty is difficult to differentiate 
from epistemic uncertainty, depending on the nature of the models used 
(USNRC 1997; IPET 2009).  

8.1.2 Epistemic uncertainty 

Three components of epistemic uncertainty have been described: 
parametric uncertainty, input uncertainty, and structural uncertainty (Hill 
et al. 2013). Parametric uncertainty has its origin in the lack of complete 
knowledge of the correct settings of model parameters. Input uncertainty 
originates from the lack of knowledge of the true value of the initial or 
boundary conditions and forcing of a system. The structural uncertainty 
represents the failure of the model to represent the system, even though 
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the other sources of epistemic uncertainty are correctly accounted for. 
Although there are several mathematical frameworks for representing 
epistemic uncertainty, the most commonly used is the concept of 
probability (Bommer and Scherbaum 2008).  

A cursory examination of the literature shows variations to the 
classification of epistemic uncertainty components. Drouin et al. (2009), 
in the context of probabilistic risk assessment (PRA), identifies parameter, 
model, and completeness uncertainty as types of epistemic uncertainty. 
Completeness uncertainty refers to known or unknown risk contributors 
not included in a PRA model. Bitner-Gregersen et al. (2014) provide a 
different component breakdown of epistemic uncertainty in the context of 
applications for the offshore environment. Components include data 
uncertainty, statistical uncertainty, model uncertainty, and climatic 
uncertainty. Given the definitions for the components, the boundaries 
between the classifications do not seem rigid. Data uncertainty covers 
instrument error and the data generated by an estimation process, but in 
the latter case, the measurement uncertainty has to be combined with the 
corresponding model uncertainty. Statistical uncertainty is described as 
sampling variability due to sample size and sampling bias such as missing 
data. Model uncertainty relates to how well a model represents the 
physical process, including the type and fit of probabilistic distribution. 
Climatic uncertainty or variability is defined as the representativeness of a 
simulated or measured meteorological and oceanographic variable to the 
study area and applicable timeframe. However, it is also stated that it can 
be described as a model uncertainty. It originates because of the natural 
variability of the climate or anthropogenic climate change.  

8.2 Integration of joint probability of storm responses 

In recent studies referenced herein where the JPM has been employed, the 
integration of the joint probability of storm response for computation of 
the AEP of the water level response is done through the JPM probability 
integral in its discrete form as presented in Equation 1-b. 

Each synthetic storm, represented by a combination of parameters, 
produces a peak water level response at a particular site that is estimated 
from numerical modeling. To estimate the surge frequency, bins of 
elevation are created and a histogram is constructed for a range of 
elevations that encompass all the surge results. The rate for each storm is 
placed in the bin that corresponds to its peak water level response in order 
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to estimate the surge PDF. The width of the bins should be as small as 
practicable. Recent studies have used bin size on the order of 0.01 m 
covering a range of 0 to 10 m. The hazard curve is calculated by adding, at 
each surge elevation, all the rates accumulated in the bins with a higher 
surge elevation. The approach of employing predefined surge or water 
level bins can have the undesired effect of producing staircased hazard 
curves. Alternatively, the integration can be performed by rank-ordering 
the storms in descending order by the magnitude of their surge response 
and then aggregating the probability mass of each storm (cumulative 
sum) according to the storm sorting. 

The effect of the error terms is to distribute the probability mass 
associated with each bin of the histogram to the surrounding bins to 
account for the uncertainty. The redistribution can be done with a 
discretization of a Gaussian curve (FEMA 2012) with a width 
corresponding to the parameter σ𝜀𝜀 presented in the previous section. 
Another widely used approach for incorporating the uncertainty is to 
augment the storm-response by replicating each surge value by a given 
factor (e.g., 30–3,000) and distribute the error among them. The relative 
probability of the additional surge values (replicates) is determined by 
dividing each storm annual probability by the number of replicates. 

According to Resio et al. (2013), the uncertainty accounted for by the 
described error terms represents the model uncertainty but does not 
represent total uncertainty. Sampling error needs to be considered given 
the uncertainty that results from the small sample size of hurricanes that 
may impact a particular area. The difference in surge between the 
deterministic surge estimate curve and the curve that considers modeling 
and sampling variability was identified as 0.5 m to 1.0 m. 

8.3 Uncertainty propagation in probabilistic surge modeling 

The quantification of uncertainty within a PCHA framework requires the 
estimation of uncertainty in probabilistic storm surge models (statistical 
analysis) and surge/wave numerical models, the propagation of these 
uncertainties, and ultimately, estimation of the uncertainty in SWL and 
other storm responses. In past JPM-OS efforts, estimation of epistemic 
uncertainty has typically been limited to comparison of modeling results to 
historical observations and expert evaluations. Uncertainty is seldom 
properly quantified and propagated to the final storm response statistics. 
Most JPM-OS studies have accounted for uncertainty by including it as an 
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error term in the integration of the SWL. This approach results in 
smoothing of the SWL probability distribution without a quantifiable level 
of conservatism or confidence in the estimated SWL. In the NACCS 
(Nadal-Caraballo et al. 2015) the epistemic uncertainty was not integrated 
with the SWL, and this allowed conveying quantifiable information about 
the coastal hazards and associated uncertainties in the form of mean, 
median (50% non-exceedance limit), and confidence limits (e.g., 2%, 16%, 
84%, and 98%). 

An uncertainty analysis assessment of hurricane protection systems was 
presented in the IPET Report (2009), which included an analysis of 
aleatory and epistemic uncertainty in hurricane hazard analysis. It 
described an uncertainty classification scheme where both epistemic and 
aleatory uncertainties are broken down into model and parametric 
uncertainty. The report identified the Holland B parameter, astronomical 
tides, and the hurricane parameterization as sources of parametric 
aleatory variability. The modeling aleatory variability refers to the 
limitations in the prediction models that cannot be explained by the 
model. For that specific study, which used ADCIRC and STWAVE models, 
this variability was assumed to have a normal distribution with a standard 
deviation of 0.23 m.  

Four sources of epistemic uncertainty were identified, which included 
surge/wave model uncertainty, SRR, the parameters of the Gumbel 
generalized extreme value (GEV) distributions for central pressure, and 
the parameters for the Rmax and central pressure model. These 
uncertainties were propagated with the use of a logic tree. Figure 1 
reproduces the logic tree scheme used to model the epistemic uncertainty. 
The epistemic uncertainty was quantified by fractile curves plotted with 
the mean water surface elevation AEP curve. This approach has been 
implemented by the USNRC in its guidance on probabilistic seismic 
hazard assessment (Kammerer and Ake 2012). In this paradigm, the 
epistemic uncertainty arises from the selection and application of 
technically defensible alternative data, methods, and models at each step 
of the probabilistic seismic hazard assessment. If this concept is applied to 
probabilistic surge modeling, typical errors considered in the JPM integral 
error term, such as meteorological modeling, hydrodynamic modeling, TC 
track variation, and insufficient variation in wind and pressure profiles, 
would be treated as aleatory variability. Traditionally, these errors have 
been regarded as epistemic uncertainties. 



ERDC/CHL SR-19-1 54 

Figure 1. Logic tree for modeling epistemic uncertainty (IPET 2009). 
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9 Technical Considerations Relevant to 
Probabilistic Modeling of Storm Surge for 
Critical Infrastructure 

Criterion 2 of the General Design Criteria10 CFR Part 50, Appendix A 
(GPO 2011), establishes that the structures, systems, and components 
important to safety in nuclear power facilities shall be designed to 
withstand natural phenomena without loss of capability to perform their 
safety functions. The design for a site needs to consider the most critical 
historical event on record along with a margin to take into account the 
limitations in accuracy, quality, and extent of the record. It is USNRC 
policy that the margin be evaluated through a risk-informed, performance-
based approach that incorporates probabilistic risk assessment. In terms 
of flooding associated with storm surge, the formulation of the full flood 
hazard curves that account both for aleatory variability and epistemic 
uncertainty is desired. An essential requirement for nuclear power plant 
applications is that the full hazard curves must cover a range of AEP of 10-4 
to 10-6. Under the assumption of stationary climate, these AEPs represent 
ARIs ranging from 10,000 to 1,000,000 years. USNRC (Resio 2012) 
examined the use of a deterministic-probabilistic approach for estimating 
surge hazard for very low annual exceedance probabilities. To determine 
the Probable Maximum Storm Surge, the factors responsible for storm 
surge were examined to determine which could exhibit asymptotic upper 
limits that translate into an upper limit of estimated surge. Most of the 
JPM-OS studies performed have been associated with FEMA FIS. This 
means that the AEP for these applications meet regulatory requirements 
within the range of 1% to 0.2%.  

A study on the effect of uncertainty on estimates of hurricane surge 
hazards was performed that considered AEP in the range of 10-4 to 10-6 

(Resio et al. 2013). Two approaches were followed to estimate the 
probabilities for this range: (1) assumption that a physical upper limit for 
surge exists and it can be quantified and (2) assumption that sufficient 
information exists for calculating surge AEP. It was found for the west 
coast of Florida that not considering uncertainty for ARIs of 10,000 to 
1,000,000 years underestimated surge by 20%.  
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10 Conclusions 

This report provides a summary of the state of practice for the 
quantification of the coastal storm hazard and treatment of uncertainties. 
The focus is on TCs, although XCs are also addressed. The impact of 
coastal storm hazard exposures dictates the uncertainty. Tropical cyclone 
exposed areas have relatively infrequent storm landfalls, so the historical 
record is not sufficient to generate a proper statistical model of coastal 
storm hazard. In these locations, the historical storm parameters are used 
to develop a JPM that is sampled to develop a storm climate that is more 
spatially continuous and statistically robust. These storms are modeled 
using numerical hydrodynamic models, and then the response uncertainty 
is quantified. Conversely, for extratropical environments, the historical 
storms are usually adequate to develop a robust statistical model of 
response. For mixed population regions, the two populations are modeled 
independently, and then the uncertainties are combined. 

The literature review contained within this report is part of the USNRC-
sponsored study “Quantification of Uncertainties in Probabilistic Storm 
Surge Models.” The overall objective of the study is to assess technically 
defensible data, models, and methods that should be considered for the 
quantification of the epistemic uncertainty associated with the estimation 
of storm surge hazard. This treatment of epistemic uncertainty is based on 
the approach used by USNRC for probabilistic seismic hazard assessment.  

The primary uncertainties quantified in typical probabilistic storm surge 
hazard studies are grouped as aleatory (natural variability) and epistemic 
(lack of knowledge). For TCs, the primary joint probabilistic model of 
hurricane parameters provides a clear and robust description of aleatory 
uncertainty. Epistemic uncertainties, including numerical meteorological 
model error, numerical hydrodynamic model error, measurement error, 
and probabilistic model error have been addressed in this report. In some 
cases, where tide range is small, it is reasonably treated as an error.  

The USNRC applies a different approach in its definition and 
quantification of epistemic uncertainty in its guidance on probabilistic 
seismic hazard assessment. The epistemic uncertainty arises from the 
selection and application of technically defensible alternative data, 
methods, and models at each step of the probabilistic seismic hazard 
assessment. In practice, past individual JPM-OS studies, for example, 
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have been based on a defined set of data sources and have employed a 
single approach for estimating each of the JPM components (e.g., 
computation of SRR, univariate distributions, distribution discretization 
method, development of synthetic storm suites), limiting the 
understanding of the range of uncertainty. The uncertainty is propagated 
through the use of logic trees. This allows for the computation of a family 
of hazard curves, with individual curves representing each of the alternate 
modeling approaches that convey the range of the epistemic uncertainty in 
the form of fractile storm hazard curves. In this scenario, components of 
the error term would be considered aleatory variability.  

For extratropical environments, the uncertainty is primarily dealt with by 
performing an extreme value analysis of the simulated responses 
developed from high-fidelity meteorological and hydrodynamic modeling 
of historical data and applying resampling methods to compute the mean 
and confidence levels for the hazard curves. For areas affected by both TCs 
and XCs, separate probabilistic analyses are performed, and the results 
combined assuming independence between the two populations.  

The report identifies that additional work is required to better quantify 
errors. In addition, the statistical methods are often simple in the manner 
in which they combine errors and integrate epistemic uncertainty into the 
reported stochastic water levels. Many of the assumptions made may not 
be universal, such as spatial consistency of errors, zero mean normally 
distributed error, independency and stationarity of errors, among others. 
In this report, the individual modeling approaches and their respective 
errors were discussed. The traditional treatment of uncertainty (e.g., 
meteorological, hydrodynamic, and probabilistic modeling error) in storm 
surge studies was found to be better documented than the quantification 
of epistemic uncertainty through the concurrent consideration of alternate 
data, methods, and models. 
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