
ER
D

C/
G

SL
 T

R-
19

-3

Localization and Mapping of Unknown
Locations with Unmanned Ground Vehicles

G
eo

te
ch

ni
ca

l a
nd

 S
tr

uc
tu

re
s

La
bo

ra
to

ry

Doris M. Turnage February 2019

Approved for public release; distribution is unlimited.

The U.S. Army Engineer Research and Development Center (ERDC) solves the
nation’s toughest engineering and environmental challenges. ERDC develops innovative
solutions in civil and military engineering, geospatial sciences, water resources, and
environmental sciences for the Army, the Department of Defense, civilian agencies, and
our nation’s public good. Find out more at www.erdc.usace.army.mil.

To search for other technical reports published by ERDC, visit the ERDC online library at
http://acwc.sdp.sirsi.net/client/default.

http://www.erdc.usace.army.mil/
http://acwc.sdp.sirsi.net/client/default

 ERDC/GSL TR-19-3
February 2019

Localization and Mapping of Unknown
Locations with Unmanned Ground Vehicles

Doris M. Turnage
Geotechnical and Structure Laboratory
U.S. Army Engineer Research and Development Center
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Final report

Approved for public release; distribution is unlimited.

Prepared for U.S. Army Engineer Research and Development Center
Vicksburg, MS 39180-6199

ERDC/GSL TR-19-3 ii

Abstract

The main goals of this research are to enhance a commercial off the shelf
(COTS) software platform to support unmanned ground vehicles (UGVs)
exploring the complex environment of tunnels, to test the platform within
a simulation environment, and to validate the architecture through field-
testing.

Developing this platform enhances the U.S. Army Engineering Research
and Development Center’s (ERDC’s) current capabilities and creates a safe
and efficient autonomous vehicle to perform the following functions
within tunnels: (1) localizing (e.g., position tracking) and mapping of its
environment, (2) traversing varied terrains, (3) sensing the environment
for objects of interest, and (4) increasing the level of autonomy of UGVs
available at the ERDC.

The simulation experiments were performed in the STAGE Simulator, a
physics-based, multi-scale numerical test bed developed by Robotic
Operating System (ROS). Physical testing was conducted in Vicksburg,
MS, using a Coroware Explorer. Both the simulation and physical testing
evaluated three simultaneous localization and mapping (SLAM)
algorithms, i.e., Hector SLAM, Gmapping, and CORESLAM to determine
the superior algorithm. The superior algorithm was then used to localize
the robot to the environment and autonomously travel from a start
location to a destination location.

Completion of this research has increased the ERDC’s level of autonomy
for UGVs from tether to tele-operated to autonomous.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to
be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

ERDC/GSL TR-19-3 iii

Contents
Abstract .. ii

Figures and Tables ... v

Preface .. vii

1 Introduction .. 1
1.1 Background .. 1
1.2 Types of unmanned vehicles... 3

1.2.1 Unmanned ground vehicles .. 3
1.2.2 Unmanned aerial vehicles .. 4
1.2.3 Autonomous underwater vehicles.. 4

1.3 Proposed research .. 4
1.4 Objective... 5
1.5 Organization of report ... 5

2 Literature Review ... 6
2.1 Introduction .. 6
2.2 Mapping ... 6

2.2.1 Robotic mapping problems .. 6
2.2.2 Metric and topological maps .. 7
2.2.3 Probabilistic mapping algorithms... 8

2.3 Localization .. 9
2.3.1 Monte Carlo Localization .. 10
2.3.2 Kalman filters .. 12
2.3.3 Markov Localization .. 12

2.4 Simultaneous localization and mapping .. 14
2.5 Research goal .. 14

2.5.1 Modeling and simulation .. 15
2.5.2 Tunnel exploration .. 15
2.5.3 Levels of autonomy ... 16

2.6 Proposed research .. 17

3 Overview of System .. 19
3.1 Description of robot platform ..19
3.2 Description of software ... 21
3.3 Mapping and localization algorithms .. 22
3.4 Summary ... 22

4 Simulation Testing Evaluation .. 23
4.1 Evaluated SLAM algorithms ... 23

4.1.1 CoreSLAM .. 23
4.1.2 Gmapping .. 24
4.1.3 Hector SLAM Gmapping ... 24

ERDC/GSL TR-19-3 iv

4.2 Ground truth maps ... 25
4.3 Simulation results ... 26
4.4 Image registration of ground truth and generated maps 27

4.4.1 CoreSLAM .. 28
4.4.1 Gmapping .. 31
4.4.2 Hector SLAM.. 33
4.4.3 Comparisons of ground truth maps and Stage 4.1.1 generated maps 35

5 Physical Testing Evaluation .. 37
5.1 Evaluated algorithms ... 37
5.2 Test areas ... 37
5.3 Generated maps from physical testing ... 40

5.3.1 CoreSLAM .. 40
5.3.2 Gmapping .. 41
5.3.1 HectorSLAM .. 42

5.4 Comparison of ground truth map and generated map 42
5.5 Results.. 47

6 Localization and Pathfinding .. 48
6.1 A* pathfinding package ... 48
6.2 Requirements ... 48
6.3 Analysis and design .. 48

6.3.1 AMCL overview .. 49
6.3.2 Corobot_A* package... 49

6.4 Implementation .. 50
6.5 Testing ... 50

6.5.1 Test Site One ... 50
6.5.2 Test Site Two .. 54
6.5.2 Test Site Three .. 57

6.6 Conclusion .. 59

7 Conclusions and Future Work .. 61
7.1 Conclusions .. 61
7.2 Future work .. 61

References ... 62

Appendix A: Mobile Robot Cost .. 64

ERDC/GSL TR-19-3 v

Figures and Tables

Figures

Figure 1. Map of area robot has navigated. ... 8
Figure 2. Monte Carlo Localization algorithms. ... 11
Figure 3. Markov Localization algorithm (Fox et al. 1999). .. 13
Figure 4. Tunnel exploration in San Diego, CA. .. 16
Figure 5. ALFUS defined level of autonomy. ... 17
Figure 6. Superdroid Robots HD2 Treaded ATR Tank Robot kit... 19
Figure 7. Coroware Explorer. ... 20
Figure 8. Adept Pioneer 3-AT. ... 20
Figure 9. Hokuyo laser range finder. ... 21
Figure 10. Ground truth maps. .. 25
Figure 11. Map One and generated map of each algorithm. .. 27
Figure 12. Map Two and generated map of each algorithm. .. 27
Figure 13. Map Three and generated map of each algorithm. ... 27
Figure 14. Image registration of Map One and CoreSLAM generated map. 29
Figure 15. Image registration of Map Two and CoreSLAM generated map. 30
Figure 16. Image registration of Map Three and CoreSLAM generated map. 30
Figure 17. Image registration of Map One and Gmapping generated map. 31
Figure 18. Image registration of Map Two and Gmapping generated map. 32
Figure 19. Image registration of Map Three and Gmapping generated map. 32
Figure 20. Image registration of Map One and Hector SLAM generated map. 33
Figure 21. Image registration Map Two and Hector SLAM generated map. 34
Figure 22. Image registration of Map Three and Hector SLAM generated map. 34
Figure 23. Ground truth map of foyer and break room. ... 38
Figure 24. Ground truth map of basement. ... 39
Figure 25. Generated CoreSLAM map of basement. ... 40
Figure 26. Generated CoreSLAM map of foyer. ... 41
Figure 27. Generated Gmapping map of basement. .. 42
Figure 28. Generated Gmapping SLAM map of foyer. .. 43
Figure 29. Generated Hector SLAM map of basement. ...44
Figure 30. Generated Hector SLAM map of foyer. ... 45
Figure 31. Generated Hector Slam map and pictures of actual foyer. 46
Figure 32. Generated Hector Slam map and pictures of actual basement. 46
Figure 33. Test Site One with cones denoting points A and B. .. 51
Figure 34. Test Site One without cones and the SLAM generated map. 51
Figure 35. GIMP view with imported SLAM map. .. 52

ERDC/GSL TR-19-3 vi

Figure 36. Front and rear view of Test Site Two with cones. .. 55
Figure 37. Test Site Two resolution 300×300. ... 55
Figure 38. Test Site Three with cone. .. 57
Figure 39. Gimp 300×300. .. 58

Tables

Table 1. Hausdorff distance for Map One. ... 36
Table 2. Hausdorff distance for Map Two. .. 36
Table 3. Hausdorff distance for Map Three. .. 36
Table 4. Subscribed topic. .. 49
Table 5. Results for 100×100 on Test Site One. ... 53
Table 6. Results 200×200 on Test Site One. ... 53
Table 7. Results for 300×300 on Test Site One. .. 54
Table 8. Results for 500×500 on Test Site One. ... 54
Table 9. Results for 200×200 on Test Site Two. .. 56
Table 10.Results for 300×300 on Test Site Two. .. 56
Table 11. Results for 500×500 on Test Site Two. ... 56
Table 12. Results for 200×200 on Test Site Three. .. 59
Table 13. Results for 300×300 Test Site Three. ... 59
Table 14. Results for 500×500 Test Site Three. ... 59

ERDC/GSL TR-19-3 vii

Preface

The work was conducted for the Deployable Force Protection and Force
Protection Basing programs.

This work was performed by the Mobility Systems Branch (GMM) of the
Engineering Systems and Materials Division (GM), U.S. Army Engineer
Research and Development Center, Geotechnical and Structures Labora-
ory (ERDC-GSL). At the time of publication, Mr. Jeff Durst was Chief,
CEERD-GMM; Dr. Gordon W. McMahon was Chief, CEERD-GM; and Ms.
Pamela G. Kinnebrew, CEERD-GZT, was the Technical Director for Mili-
ary Engineering. The Deputy Director of ERDC-GSL was Dr. William P.
Grogan, and the Director was Mr. Bartley P. Durst.

COL Ivan P. Beckman was the Commander of ERDC, and Dr. David W.
Pittman was the Director.

ERDC/GSL TR-19-3 1

1 Introduction

1.1 Background

Congress mandated that one-third of military vehicles be autonomous by
2015 (Kinney et al. 2006). Autonomy, in this case, implies that the
unmanned ground vehicle (UGV) should be able to traverse a dynamic and
unstructured environment with little or no human intervention. In the
broadest sense, a UGV is any piece of mechanized equipment that moves
across the surface of the ground and serves as a means of carrying or
transporting cargo, but explicitly does NOT carry a human being (Gage
1995). The military uses the UGV to perform reconnaissance and surveil-
lance on the battlefield and in urban settings, tunnels, and other military
missions. There exists a limited number of available robotic platforms and
architectures equipped to navigate and perform mapping and localization
of complex environments.

The goal of this research is to develop a software system to support UGVs
exploration complex environments of tunnels and other subterranean
areas such as basements, old mines, sewers, and caves. The Department of
Defense (DoD) has used robotic platforms for various missions over the
past 10 years. The Department of Homeland Security (DHS) uses robotic
platforms in exploring drug tunnels along the southern U.S. border and
Mexico (see examples below). The development of a robust framework for
autonomous UGVs will lead to an increase in the availability of robotic
platforms and architectures to the DoD and DHS through the use of mod-
eling and simulation.

September 11, 2001, was a very devastating day, one that forever changed
the United States of America (USA). Terrorist attacks occurred at the
World Trade Center (WTC) towers in New York City and at the Pentagon
in Washington, D.C. Tele-operated robots were used under the direction of
the Center for Robot-Assisted Search and Rescue from September 11 to
October 2, 2001, to search for victims and to help assess the structural
integrity of the WTC foundation (Murphy 2004). The robots were used for
tasks that the rescuers or canines could not perform; for example, to either
go into spaces too small for a human or to pass through an area still
burning (Murphy 2004). Before September 11, 2001, the Oklahoma City
bombing on April 19, 1995, motivated an interest in the domain of rescue

ERDC/GSL TR-19-3 2

robotics for urban search and rescue (Murphy 2004). Robin R. Murphy
states that urban search and rescue (USAR) missions, which deal with
man-made structures, have a different emphasis than traditional
wilderness rescue or underwater recovery efforts and can be even more
demanding on robot hardware and software design than military
applications (Murphy 2004).

During the search and rescue phase after September 11, 2001, the insertion
of the Inuktum micro-VGTV robot into a sewer pipe at the WTC site
allowed rescuers to attempt to locate an entry into a basement (Murphy
2004). The robot was small in size and tethered, using a safety line for
vertical entry (Murphy 2004).

On March 20, 2003, the USA invaded Iraq, a war different from any other
because of new technological advances. One such advancement was the
Dragon Runner Reconnaissance Robot, developed by the National Robot-
ics Engineering Centre (NREC). Weighing about 15 lb, the Dragon Runner
was designed to be light enough to toss into a window or up and down
stairs (Voth 2004). The U.S. Marine Corps used the Dragon Runner during
Operation Iraqi Freedom with approximately a dozen deployed for sentry
missions and urban reconnaissance (Voth 2004). When U.S. forces went
into Iraq in 2003, they had a limited number of robotic units on the
ground (Singer 2008). By the end of 2004, the number was up to 150
(Singer 2008). By the end of 2005, it was up to 2,400, and it more than
doubled the next year (Singer 2008).

Since 1990, approximately 130 tunnels have been discovered along the
border between San Diego, CA, and Tijuana, Mexico; one of the more
recent discoveries was on March 16, 2016. According to the New York
Daily News article by Alfred Ng, federal agents apprehended a 415-yard
tunnel between Mexicali, Mexico, and Calexico, CA, after a 16-month
investigation, seizing almost 3,000 lb of marijuana. The tunnel had
entrances at a restaurant in Mexico and a newly built house in California.
From 2010 to date, the tunnels have become more sophisticated, spacious,
and expensive. According to Alfred Ng, the March 16, 2016, tunnel is the
first instance where drug traffickers bought property in the U.S. specif-
ically for hiding a drug tunnel.

According to the Associated Press article by Elliot Spagat on November 27,
2010, the sophisticated cross-border tunnel, equipped with a rail system,

ERDC/GSL TR-19-3 3

ventilation, and fluorescent lighting, was the second discovery of a major
underground drug passage in San Diego during November 2010. The
U.S. Homeland Security and Mexican officials shut down this tunnel. The
elaborate tunnel’s length was 2,200 ft. The tunnel was between the kitchen
of a home in Tijuana, Mexico, and two warehouses in San Diego’s Otay
Mesa industrial district. The cost of constructing these tunnels appears to
be enormous because of the sophistication of their design. The first tunnel,
discovered on November 3, 2010, spanned 600 yd and contained 25 tons
of marijuana. Discovery of these tunnels has escalated in the past three
years, along with border security efforts such as border fence installations,
increased border agents, and the call for DoD support from the DHS. The
discovery of these tunnels greatly concerns both the DoD and the DHS.
Both agencies have identified a requirement for methods that will easily
explore and map out the unknown tunnel’s environments without sending
humans into the tunnels and endangering them. Developing robotic plat-
forms to perform this task would mitigate the danger to humans.

1.2 Types of unmanned vehicles

The USA took a variety of vehicles to war; however, basically three distinct
types of unmanned vehicles were used: (1) unmanned ground vehicles
(UGV), (2) unmanned aerial vehicles (UAV), and (3) autonomous under-
water vehicles (AUV). Each of these unmanned vehicles saw action in the
Iraqi War, and some were for tunnel exploration along the United States-
Mexico border.

1.2.1 Unmanned ground vehicles

The U.S. Army uses two major types of autonomous and semi-autonomous
ground vehicles: large vehicles and small vehicles. Examples of large vehi-
cles are tanks, trucks, and high-mobility, multiple-wheeled vehicles also
known as the HUMVEEs. Examples of small vehicles, sized for carrying by
a soldier in a backpack, are the PackBot and Talon. The PackBot and Talon
move around on treads like small tanks.

Manufactured and sold by the iRobot Corporation of Burlington, MA, the
PackBot weighs approximately 28 kg (61.78 lb) and costs approximately
$40,000. The PackBot performed reconnaissance and neutralization of
unexploded ordnance (UXO) and improvised explosive device sites, which
posed a major problem to the U.S. Military during the Iraqi War.

ERDC/GSL TR-19-3 4

Manufactured and sold by Foster-Miller Inc., the Talon weighs approxi-
mately 38 kg (85 lb) and costs approximately $60,000. The Talon per-
forms a variety of functions from reconnaissance to weapons delivery.
Equipped with a robotic arm, uses of the Talon include surveillance or
grabbing. The Talon performed search and recovery missions at the World
Trade Center after the September 11 attack and various missions in the war
in Afghanistan (Voth 2004). Twenty Talon robots were deployed in Iraq in
the beginning of 2003 and have accomplished approximately 10,000 or
more missions (Voth 2004).

1.2.2 Unmanned aerial vehicles

The UAV is an unmanned aerial vehicle; for example, a drone. The military
has been the dominant customer for UAVs in the United States, spending
nearly half a billion dollars annually on UAVs in recent years (Russell and
Norvig 1995). The organizations and tactical units within the Office of the
Secretary of Defense, Army, Navy, Marine Corps, and Air Force are
responsible for specifying, acquiring, and operating UAVs (Russell and
Norvig 1995). Examples of UAVs are drones and the MQ-9 Reaper.

1.2.3 Autonomous underwater vehicles

An AUV is an autonomous underwater vehicle. The main fields of AUV
application include: (1) ocean exploration and monitoring of water
medium, (2) marine geological survey, (3) inspection of the underwater
engineering structures and pipelines, (4) search, inspection, and rescue
operations, and (5) protection of environment and maricultures (Russell
and Norvig 1995). AUVs were used to search 3.5 million square meters of
shallow water for mines in Operation Enduring Freedom in Iraq in 2003
(Edwards et al. 2004). Examples of AUVs are the Autonomous Benthic
Explorer and the Odyssey IV.

1.3 Proposed research

Designed for relatively benign environments related to terrain, command
and control, tethered robotic platforms such as pipe inspections systems,
surveillance robots, explosive ordnance disposal robots, and mine clear-
ance robots perform at a low level of autonomy (Doray et al. 2009). In
contrast, a tunnel environment presents several challenges to a UGV: i.e.,
the complexity of the terrain, communications limitations (GPS does not

ERDC/GSL TR-19-3 5

work underground), and limited amounts of pre-existing data about the
tunnel’s environment.

1.4 Objective

This dissertation research focuses on building a software system to sup-
port UGVs in exploring tunnels. The goal of this research is to build a
robust architecture to perform tunnel mapping and localization in an
unknown environment, hence to increase the level of autonomy of a UGV.
The current UGV designs cannot accomplish the functions such as locali-
zation and mapping to operate in tunnel environments while communicat-
ing with aboveground systems.

1.5 Organization of report

Chapter 2 provides background information on current and past research
on localization and mapping UGVs in varied environments. Chapter 3 pro-
vides information on the robotic platform used in this research, the soft-
ware, and the selection of algorithms for localization and mapping in the
prototype system. Chapter 4 provides details and the results of the simula-
tion experiments using CoreSLAM, Gmapping, and HectorSLAM. Chap-
ter 5 provides details and the results of the physical testing experiments
using CoreSLAM, Gmapping, and HectorSLAM field-testing for the robotic
platform. Chapter 6 provides details on localizing the robotic platform to
maps of various resolution generated by HectorSLAM, pathfinding with
A*, path traversal with the Explorer localized to the generated map. Chap-
ter 7 provides conclusions and future work.

ERDC/GSL TR-19-3 6

2 Literature Review

2.1 Introduction

This chapter provides an overview of research in the area of localization
and mapping of robots in uncertain complex environments such as build-
ings, urban areas, mines, underwater, and tunnels. Also included is an
overview of past and current research by the Engineering Research and
Development Center (ERDC) on modeling and simulation and tunnel
exploration.

2.2 Mapping

Robotic mapping addresses the problem of acquiring spatial models of
physical environments through mobile robots (Thrun 2002). Tasks
performed by the robot include the identification of features, such as
landmarks, distinctive objects, or shapes and estimation of the robot’s
location in reference to the identified features. One of the fundamental
tasks in robotics is the creation of a map of the area where the robot is
moving (Rozman 2009). The robot uses the created map for its navigation
in this environment.

The robot-mapping problem, more specifically, consists of the robot find-
ing its pose, creating a map, and integrating the two. The robot has to keep
track of its state based on data perceived from its sensors. The pose, the
most important part of the state, provides information related to the
location and orientation of the robot relative to its environment, i.e., pose
= (x, y, Ө), where x and y represent the location and Ө is the orientation of
the robot relative to a given coordinate frame.

2.2.1 Robotic mapping problems

Sebastian Thrun lists the five following problems associated with robotic
mapping: (1) measured noise, (2) map size, (3) correspondence/data
association problem, (4) dynamic environments, and (5) robotic explora-
tion (Thrun 2002b).

As discussed earlier, robots, equipped with varied sensors to perceive their
environment, navigate their environment seeking landmarks. As the robot
navigates its environment, the sensor data may contain errors in
measuring its environment. The errors are also defined as noise. The cause

ERDC/GSL TR-19-3 7

of the errors may be slippage caused by odometry errors or sensor noises
because of real-world predicaments. Odometry errors will accumulate and
throw off an entire map.

Second, there is the problem of the size of the map. The size of the map
may be increased as the robot navigates. When mapping a robot’s environ-
ment, the information about the environment has to be stored. Storing the
map requires more memory space and computational time as the map
increases in size.

The third and possibly hardest problem in robotic mapping is the corre-
spondence problem, also known as the data association problem. The data
association problem is associated with differentiating between sensor
measurements taken at time t corresponding with the same physical object
in the world. The correspondence problem determines if two data points
taken from different scans are the same object.

The fourth problem, dynamic environment, deals with environmental
change as time passes, e.g., a landmark that is a moving object such as a
person. Changes in an environment can be from slow to fast.

The final problem is robotic exploration during mapping, the task of gen-
erating robot motion in the pursuit of building a map. Figure 1 depicts a
map of an UGV while exploring a tunnel and the map that it creates during
the exploration of the tunnel.

2.2.2 Metric and topological maps

According to the type of maps generated, mapping algorithms can be
roughly divided into two categories: metric approaches and topological
approaches. The first approach models the environment using a metric
map, enabling accurate estimation of the robot’s positions. A metric
approach typically provides a dense representation of the environment;
therefore, it is well suited to precise trajectory planning (Angeli et al.
2008). In a topological approach, the environment, segmented into dis-
tinctive pieces, forms the nodes of a graph or topological map. The neigh-
boring relations (i.e., whether or not a piece is accessible from another
one) is modeled using the edges of this graph (Angeli et al. 2008). Topo-
logical mapping relies on a higher level of representation than metric
mapping, allowing symbolic goal-driven planning and navigation.

ERDC/GSL TR-19-3 8

Figure 1. Map of area robot has navigated.

Compared with metric mapping, topological mapping usually provides a
more compact representation that scales better with the size of the
environment.

2.2.3 Probabilistic mapping algorithms

The correspondence problem is the key to solving either the metric map-
ping or topological mapping problem, i.e., the robot must be able to deter-
mine if data taken at different times correspond to the same physical
object (Reynolds 2005). In this regard, probabilistic techniques yield some
of the most accurate results of any of the methods.

At the foundation of any probabilistic algorithm for robotic mapping lies
Bayes’ Rule (1), where x represents the map and d represents the data for
the sensors. Pr(x) is the prior probability of the map, and Pr(x|d) is the
probability of the map x is true given the sensor measurement d, and
p(d|x) is the probability of the sensor measurement being d given an
object at x.

 Pr(x|d)= 𝑝𝑝(𝑑𝑑│𝑥𝑥)Pr(𝑥𝑥)
𝑝𝑝(𝑑𝑑)

 (1)

ERDC/GSL TR-19-3 9

Usually, a Bayes estimator approximates both the map and the robot’s
pose.

The correspondence problem also can be tackled in an incremental
fashion. For example, Reynolds (2005) discussed a maximum likelihood
approach that compares nearby measurements of the previous map to
identify the path the robot has moved within a small time frame. This
approach was shown to be robust in the sense that it can recover from a
wrong correspondence. Nevertheless, it takes a large amount of process-
ing, making it less ideal for real-time applications.

An occupancy grid is one of the most popular incremental algorithms
because of its ease of use and robustness. In the most basic form, the
binary occupancy of a location (x,y) is calculated and the cells (grids) are
incrementally updated (Reynolds 2005). This approach works well in a
real-time application; however, it relies heavily on odometry data. This
means that the errors in odometry data will accumulate and, hence, skew
the map.

The above error accumulation problem can be alleviated by a hybrid
method, e.g., combining a Bayes estimator with an incremental algorithm.
Although they are typically more difficult to implement, they provide
significantly better results than either a purely Bayes estimator or an
incremental method for autonomous robots (Reynolds 2005).

2.3 Localization

Localization refers to the estimation of the position of a mobile robot on a
known or a predicted map (Stanculescu and Sojka 2008). It requires using
a map to interpret sensor data to determine the configuration of the robot.
Without the ability to localize itself in an environment successfully, a robot
is effectively stripped of its ability to do useful work (Kramer 2010).

There are three issues involved with localization: the local position track-
ing problem, the global position tracking problem, and the kidnapped
robot problem. Each problem has been extensively researched in the
literature.

The local position tracking problem has received the most attention. When
dealing with this problem, the robots initial pose is known. For global
position tracking, the robot is unaware of its initial pose and has to

ERDC/GSL TR-19-3 10

determine its location from scratch. In the kidnapped robot problem, the
robot knows its location; however, it is relocated and is totally unaware of
its new location. The mobile robot must figure out its location on its own
completely. This problem is used to test a robot’s ability to localize itself.

Although there are many methods for determining the location of the
robot, in this research three methods are discussed in detail as follows:
(1) Monte Carlo Localization, (2) Kalman filters, and (3) Markov Localiza-
tion. Next, we provide a summary of which of the three localization prob-
lems these methods solve, along with one other possible solution to both
the localization and mapping problems.

2.3.1 Monte Carlo Localization

Monte Carlo Localization (MCL) has been widely used to estimate a
robot’s pose and to solve the global localization problem, in which the
robot does not know its starting position (Thrun et al. 2001). MCL consists
of four steps: sampling, prediction, update, and weight normalization as
depicted in Figure 2 below. The general idea is as follows.

1. Initialize a set of samples (the current samples) so that their locations
are evenly distributed and their importance weights are equal.

2. Repeat until done (i.e., weights converge) with the current set of
samples:
a. Move the robot a fixed distance and take a sensor reading.
b. Update the location of each of the samples (using the movement

model).
c. Assign the importance weights of each sample to the likelihood of

that sensor reading given that new location (using the sensor
model).

d. Create a new collection of samples by sampling (with replacement)
from the current set of samples based on their importance weights.

e. Let this new collection be the current set of samples.

Research performed by Stanculescu and Sojka (2008) evaluates the Monte
Carlo Localization algorithm. It was concluded that MCL efficiently
estimates the position of a robot on a grid-based map.

ERDC/GSL TR-19-3 11

Figure 2. Monte Carlo Localization algorithms.

In Dellaert et al. (1999), the researchers introduce a MCL method that
represents the probability density involved by maintaining a set of
randomly drawn samples. By using a sampling-based representation, they
obtain a localization method capable of representing an arbitrary
distribution. Experimentally, they show that the resulting method can
efficiently localize a mobile robot without knowledge of its starting
position, which is faster, more accurate, and less memory-intensive than
earlier grid-based methods.

One advantage of using the MCL is its ability to represent multi-modal
distributions; hence, it can be used to globally localize a mobile robot. A
second advantage is that MCL drastically reduces the amount of memory
required compared to a grid-based Markov Localization (discussed in Sec-
tion 2.3.3) and can integrate measurements at a considerably higher fre-
quency. A third advantage is that, like many randomized algorithms, it is
easy to implement (Stanculescu and Sojka 2008).

ERDC/GSL TR-19-3 12

Many variants of the MCL method exist, one such method is Mixture –
Monte Carlo Localization, a mobile robot localization algorithm. It is a
version of particle filtering that combines a regular sampler with its dual
(Thrun et al. 2001). The Mixture-MCL provides efficiency, versatility,
resource adaptiveness, and robustness.

2.3.2 Kalman filters

In a seminal paper, R.E. Kalman (1960) developed a probabilistic filtering
algorithm for a control system. The Kalman filter has been widely applied
in robot perception. Its purpose is to use sensor measurements observed
over time, containing noise (random variation) and other inaccuracies, to
produce values that tend to be closer to the true values of the measure-
ments than the observed values.

Kalman filters are essentially Bayes’ filters under a Gaussian assumption.
They have been widely applied to estimate the robot’s pose. The Kalman
filter algorithm operates on the postulation that the current state function
must be a linear step from the previous state function with Gaussian noise.
The Kalman filter is an effective approach in several aspects: (1) it
supports estimations of past, present, and even future states, and (2) it can
do so even when the precise nature of the modeled system is unknown
(Welch and Bishop 1995).

Although Kalman filter-based techniques have proven to be robust and
accurate for keeping track of the robot’s position, it relies on the Gaussian
assumption and lacks the ability to globally (re-)localize the robot in the
case of localization failures (Dellaert et al. 1999). Although the Kalman
filter can be amended in various ways to cope with some of these
difficulties, recent approaches have used richer schemes to represent
uncertainty, moving away from the restricted Gaussian density
assumption inherent in the Kalman filter (Dellaert et al. 1999).

2.3.3 Markov Localization

Markov Localization is a special case of probabilistic state estimation using
Bayes’ rule. It is robust against both inaccurate maps and noisy sensors
(Song 2002). In many probabilistic mobile robot localization literatures,
the term Markov Localization and Bayesian estimation (filter) are used
interchangeably. Markov Localization uses a probabilistic framework to
maintain a position probability density over the whole set of possible robot

ERDC/GSL TR-19-3 13

poses. It is based on the Markov Assumption, i.e., the environment is static
(Fox et al. 1999). Instead of maintaining one hypothesis as to where in the
world a robot may be, it maintains a probability distribution over the space
of all such hypotheses (Fox et al. 1999). The probabilistic representation
allows it to weigh these different hypotheses in a mathematically sound
way (Fox et al. 1999). The pseudo code of a general Markov Localization
algorithm is given in Figure 3.

Figure 3. Markov Localization algorithm (Fox et al. 1999).

Markov Localization has produced excellent success in mobile research
areas, such as working as guidance robots at a crowded museum. Minerva
and Rhino are two mobile robots using different types of robots and sensor
modalities to act as interactive museum tour-guides. The major advantage
of Markov Localization is its ability to detect localization failures and to re-
localize the robot (Fox et al. 1999). The only disadvantage lies in the fixed
representation of the grid, which has an undesirable effect; the memory

ERDC/GSL TR-19-3 14

requirement stays constant even if only a minor part of state space is
updated.

2.4 Simultaneous localization and mapping

Simultaneous localization and mapping (SLAM) is a technique used by
robots and autonomous vehicles to build a map within an unknown
environment (without apriori knowledge) or to update a map within a
known environment (with apriori knowledge from a given map) while
keeping track of their current location. SLAM, which was introduced by
R. Smith, M. Self, and P. Cheeseman in 1990, laid the groundwork for the
modern SLAM problem using Extended Kalman Filters.

A solution to the SLAM problem has been seen as the “Holy Grail” and
would enable robots to operate in an environment without a priori
knowledge of obstacle locations. The characteristics of SLAM couple the
problems of localization and mapping. The two quantities are to be
inferred from a single measurement. Loosely speaking, a SLAM process
consists of multiple steps: landmark extraction, data association, state
estimation, state update, and landmark update (Riisgaard and Blas 2004).

To achieve SLAM, two models are required, the process model and the
observation model. In the process model, a vehicle traverses through an
environment containing a population of landmarks with a known kinetic
model. In the observation model, the vehicle is equipped with a sensor that
can take measurements of the relative location between any individual
landmark and the vehicle itself. Various versions of SLAM exist:
FastSLAM 2.0, Marginal SLAM, and EKF –SLAM, to name a few.

2.5 Research goal

Currently, a very limited number of robotic platforms are available for
tunnel exploration. The goal of this research is to develop a software
platform to support a UGV to perform localization and mapping of a
tunnel. The robotic platform should be able to detect humans and objects
while exploring the tunnel. This research aids in expanding the number of
robotic platforms available for use by the DoD and the DHS. Also, another
goal is to increase the level of autonomy for UGVs in which the ERDC
currently use from tethered UGV. Next, we discuss the modeling and
simulation, tunnel exploration, and levels of autonomy.

ERDC/GSL TR-19-3 15

2.5.1 Modeling and simulation

Modeling and simulation (M&S) is a tool that saves time, money, and lives.
M&S has been used by the military since the early 1940s. According to the
Department of Defense’s Modeling and Simulation Primer, military
analysts use M&S to help shape the size, composition, and structure of
forces to meet national military requirements, and to assess the sufficiency
of operational plans. The Primer also states that the military acquisition
community uses M&S (1) to evaluate requirements for new systems and
equipment; (2) to conduct research, development, and analysis activities,
(3) to develop digitized prototypes and avoid the building of costly full
scale mockups, and (4) to plan for efficient production and sustainment of
the new systems and equipment when employed in the field.

The Department of Defense’s Modeling and Simulation Primer defines a
model as a physical, mathematical, or logical representation of a system,
entity, phenomenon, or process with no movement, as in a replica of a car
or airplane. The model may take the form of a set of assumptions
concerning the operation of the system (Banks and Carson 1984). Once
developed and validated, a model can be used to investigate a wide variety
of “what if” questions about the real-world system.

In Discrete-Event System Simulation, simulation is defined by Banks as
the imitation of the operation of a real-world process or system over time.
Whether done by hand or on a computer, simulation involves the
generation of an artificial history of a system and the observation of that
artificial history to draw inferences concerning the operation of
characteristics of the real system (Banks and Carson 1984).

2.5.2 Tunnel exploration

The Unmanned Tunnel Exploration (UTE) research effort’s goal is to
develop a Semi-Autonomous Unmanned System for Small Unmanned
Ground Vehicles in tunnel environments, and Intelligence, Surveillance,
and Reconnaissance (ISR) processes (Doray et al. 2009). The UTE research
effort combines high resolution vehicle simulations with field experiments
to advance the operational capability of SUGV’s operating in tunnels. The
UTE technology will have a significant impact on successfully deploying the
first generation Tunnel Activity Detection Systems (TADS) solution through
the Joint Task Force-North (JTF-N), a subordinate command of
US NORAD-NORTHCOM, and the US ARMY ERDC. Further collaboration

ERDC/GSL TR-19-3 16

is being conducted with TAE Technical Support Working Group, US ARMY
TRADOC Analysis Center, Monterey, and Idaho National Labs. Figure 4
depicts the TALON navigating a tunnel in San Diego.

Figure 4. Tunnel exploration in San Diego, CA.

2.5.3 Levels of autonomy

An autonomous navigation system or autonomous robot can function,
operate, or make decisions independently under reasonable circumstances,
with limited human intervention. Increasing levels of human intervention
decrease the autonomy of the navigation system. A classification of levels of
autonomy takes into account the interaction between human control and
the machine motions: teleoperation, supervisory, task-level autonomy, and
full autonomy. In teleoperation, a human controls each movement. Each
machine actuator change is specified by the operator. At the supervisory
level, a human specifies general moves or position changes, and the
machine decides specific movements of its actuators. At the task-level
autonomy, the operator specifies only the task, and the robot manages itself
to complete it. In full autonomy, the machine will create and complete all its
tasks without human interaction. Generally, higher levels of autonomy do

http://www.wired.com/images_blogs/wiredscience/2009/05/tunnel1.jpg

ERDC/GSL TR-19-3 17

not necessarily require more complex cognitive capabilities. For example,
robots in assembly plants are completely autonomous, but operate in a fixed
pattern.

The Autonomy Levels of Unmanned Systems (ALFUS) working group’s
definition of levels of autonomy is displayed in Figure 5. The ALFUS level
ranges from 0 to 10, where at 0 there is no autonomy and the robot is
controlled by remote control and at 10 the system is a fully intelligent
system with no human interface.

Figure 5. ALFUS defined level of autonomy.

2.6 Proposed research

In this research, software was designed and tested for a UGV, the Coro-
ware Explorer, to enable it to function as an UGV with the capability to
localize and map an unknown area while navigating. The UGV was
equipped with a camera, acoustic sensor, and a Laser Range Finder that
provides the UGV with readings to determine its pose and landmarks
within the unknown area to create a map of the unknown research.

The developed system was validated using simulation and field-testing to
determine its ability to navigate the unknown environment, detect
landmarks, and build a map of the navigated environment. Three scenarios
were used for simulation testing. The simulated test environment was the
STAGE simulator and the test sites were in facilities at the ERDC in
Vicksburg, MS.

ERDC/GSL TR-19-3 18

This research uniquely combines Coroware Explorer and field-testing. In
the next chapter, we introduce Coroware Explorer, the robot platform in
the project.

ERDC/GSL TR-19-3 19

3 Overview of System

3.1 Description of robot platform

The following UGV platforms received consideration as possible platforms
for this research: (1) the Adept Pioneer 3-AT, (2) the Coroware Explorer,
and (3) Superdroid Robots HD2 Treaded ATR Tank Robot Kit. Each of
these platforms is a programmable robot, easily adaptable to varied
sensors. Figure 6 depicts the Superdroid Robots HD2 Treaded ATR Tank
Robot Kit, Figure 7 depicts the Coroware Explorer, and Figure 8 depicts
the Adept Pioneer 3-AT.

Figure 6. Superdroid Robots HD2 Treaded ATR Tank Robot kit.

The selection of the robot is based on several requirements.

• It may be tracked or wheeled.
• It must be capable of crossing objects of various sizes such as rocks,

water, and gravel.
• It must support a range of sensors.

ERDC/GSL TR-19-3 20

Figure 7. Coroware Explorer.

Figure 8. Adept Pioneer 3-AT.

ERDC/GSL TR-19-3 21

For this project, we selected the Coroware Explorer (Figure 7). The
Explorer meets all the above requirements. It has 6-in. clearance or more.
It is equipped with two sensors: a two Mega Pixel Color Webcam to
capture scenes and a Laser Range Finder (Figure 9) for detection of
landmarks. It has a 2.0 GHz CPU, 1 GB of RAM, a 2.0 GHz CPU, a 4-hr
battery life, a dual-boot operating system (Ubuntu Linux or Windows),
Wi-Fi, and a CUDA-capable main board. Its dimensions are 23 in. long,
21 in. wide, and 16 in. high with a weight of about 20 lb. The robotic
software platform is the Robotic Operating System. Appendix A contains
an original quote for the Coroware Explorer from Coroware.

Figure 9. Hokuyo laser range finder.

The Laser Range Finder, shown in Figure 9, is the Hokuyo UTM-30L-X.
The Hokuyo UTM-30L-X has a detectable range of 100 mm to
30,000 mm, 25 msec per scan, 12V operating voltage, and a 270 deg
scanning range. It connects to the Explorer via USB. The cost of the
Hokuyo UTM-30L-X was approximately $7,000.

3.2 Description of software

The Robotic Operating System (ROS), an Open Source UGV software, was
selected for use with this project. ROS provides libraries and tools to help

ERDC/GSL TR-19-3 22

software developers create robot applications. ROS is not an operating
system in the traditional sense of process management and scheduling;
rather it provides a structured communication layer above the host
operating system of a heterogeneous compute cluster (Quigley et al. 2009).

ROS was designed to meet a specific set of challenges encountered when
developing large-scale service robots as part of the STAIR project at
Stanford University and the Personal Robots Program at Willow Garage,
but the resulting architecture is far more general than service-robot and
mobile-manipulation domains. The philosophical goals of ROS can be
summarized as (1) peer-to-peer, (2) tools-based, (3) multi-lingual, (4) thin,
and (5) free and open-source.

ROS provides services expected of an operating system, including
hardware abstraction, low-level device control, implementation of
commonly used functionality, message-passing between processes, and
package management (http://wiki.ros.org/ROS/Introduction). It also provides tools
and libraries for obtaining, building, writing, and running code across
multiple computers (Quigley et al. 2009).

ROS currently only runs on Unix-based platforms. Software for ROS is
primarily tested on Ubuntu and Mac OS X systems, although the ROS
community has been contributing support for Fedora, Gentoo, Arch Linux,
and other Linux platforms (Quigley et al. 2009).

3.3 Mapping and localization algorithms

Thus far, grid-based, topological, and hybrid mapping algorithms were
studied for possible use to perform this research. Markov Localization, the
Monte Carlo Method, and Kalman filters have been studied as a means to
perform localization of the robot. SLAM has been studied and performs
localization and mapping simultaneously.

3.4 Summary

The Coroware Explorer was selected as the platform for this research. ROS
was used to program the Explorer robotic platform. Three mapping and
localization algorithms will be implemented and compared in Chapter 4.

ERDC/GSL TR-19-3 23

4 Simulation Testing Evaluation

This chapter provides a quantitative evaluation of three laser-based SLAM
algorithms implemented in the 2-D simulator: CoreSLAM, Gmapping, and
HectorSLAM. The tele-operated robot explores three ground truth map
images, and each produces a generated map image. Image registration, the
process of aligning two images of the same scene, is then used to align the
ground truth map and the generated map for a multimodal comparison of
the two. The Hausdorff Distance, a mathematical function used to
measure the difference between two subsets of the same space, is then
calculated to show the difference in the two images as a numeric value.
Both image registration and the Hausdorff distance code are written in
MATLAB and produce results comparing each of the algorithms and
showing one algorithm is superior to the other two.

4.1 Evaluated SLAM algorithms

As discussed in Section 2.4, many types of SLAM algorithms exist, for
example, those that are vision-based or laser-based, and those that are 2-D
or 3-D. The three algorithms evaluated were available at www.ros.org:
CoreSLAM, Gmapping, and HectorSLAM. Each algorithm requires laser-
based inputs as data for the simulation. The three SLAM algorithms collect
data via the tele-operated robot within the Stage 4.1.1 software simulation,
each outputting a map image of the navigated environment.

Each algorithm is used as a black box in this research; however, the
underlying details of the implementation differ in the following aspects:
(1) Both HectorSLAM and CoreSLAM rely on scan matching, while
Gmapping uses particle filters, (2) CoreSLAM may produce a different
map each time with the same input dataset, and (3) CoreSLAM requires
loop closing while Hector SLAM does not.

4.1.1 CoreSLAM

CoreSLAM is a version of SLAM that implements tinySlam. It requires a
mobile robot that provides odometry data and is equipped with a
horizontally mounted, fixed, laser range-finder. The slam_CoreSLAM
node will attempt to transform each incoming scan into the Odom
(odometry) “tf” frame.

ERDC/GSL TR-19-3 24

CoreSLAM relies on a simple Monte Carlo algorithm for scan matching
and was developed by Steux and El Hamzaoui with the goal of producing a
SLAM algorithm with no more the 200 lines of codes. CoreSLAM has
aparticle filter routine, ts_distance_scan_to_map, and a map update
function. The ts_distance_scan_to_map routine tests each state position,
and the map update function updates the map as the robot navigates its
environment.

The slam_CoreSLAM node takes as input laser data and pose data
collected from the laser range finder and outputs a low quality map, yet a
recognizable one.

Overall, CoreSLAM performs better on a slow robot.

4.1.2 Gmapping

Gmapping is a highly efficient Rao-Blackwellized particle filter to learn
grid maps from laser range data. Implementation requires a mobile robot
equipped with a mounted, fixed, laser range finder.

Loop closure is the hardest part; when closing a loop, be sure to drive
another 5 to 10 m to get plenty of overlap between the start and end of the
loop.

This package contains Gmapping from OpenSlam and a ROS wrapper. The
Gmapping package provides laser-based SLAM as a ROS node called
slam_Gmapping. Using slam_Gmapping, it creates a 2-D occupancy grid
map (like a building floor plan) from laser range finder and pose data
collected by a mobile robot (Santos 2008).

The slam_Gmapping node takes as input laser data and pose data
collected from the laser range finder and outputs a high quality map.

4.1.3 Hector SLAM Gmapping

Hector SLAM relies on scan matching, uses a Gauss-Newton Approach,
and is accurate enough that it does not require loop closure. The Hector
SLAM package consists of three main packages, hector_mapping,
hector_geotiff, and hector_trajectory_server.

ERDC/GSL TR-19-3 25

The Hector_mapping node is a SLAM approach used with or without
odometry on platforms that exhibit roll/pitch motion (of the sensor, the
platform, or both). It leverages the high update rate of modern LIDAR
systems like the Hokuyo UTM-30LX and provides 2-D pose estimates at
the scan rate of the sensors (40 Hz for the UTM-30LX). Although the
system does not provide an explicit loop closing ability, it is sufficiently
accurate for many real-world scenarios. The system has been used
successfully on Unmanned Ground Robots, Unmanned Surface Vehicles,
Handheld Mapping Devices, and logged data from quadrotor UAVs (Kohl-
brecher 2011).

Hector_geotiff saves the map and robot trajectory to geotiff image files.
The hector_trajectory_server saves trajectory files as output. The
hector_mapping node’s main input is scan data on the /scan topic. The
data are then transformed via the /tf topic.

Overall, Hector SLAM outputs a high quality map that is recognizable.

4.2 Ground truth maps

Figure 10 displays the three maps chosen as the ground truth maps for the
simulation, labeled as Map One, Map Two, and Map Three. Each is simple
in design and simple to navigate. All three maps were downloaded from
the web and used with the Stage 4.1.1 simulator as the ground truth map
for the simulated robot to navigate.

Figure 10. Ground truth maps.

ERDC/GSL TR-19-3 26

4.3 Simulation results

Each of the three SLAM algorithms previously discussed was tested using
the 2-D simulation environment, Stage, a 2-D robotic simulator that
provides users with the capabilities of simulating a robot or a variety of
robots in an environment or a variety of environments. Stage, an open-
source software, provides multiple physics-based models for robot sensors
and actuators. Some of the currently supported models are sonar and
infrared rangers, 2-D scanning laser rangefinder, color-blob tracking,
fiducial tracking, bumpers, grippers, and mobile robot bases with odometric
and global localization (University of Tennessee Knoxville 2007).

One advantage Player/Stage provides is the ability to move from
simulation to the robot by changing a few parameters (Staranowicz and
Mariottini 2011). The learning curve on the Stage software is a
disadvantage.

Stage, used standalone or with ROS, has many versions. This research
implements Stage 4.1.1, the most recent version and requires ROS Fuerte
for implementation.

The simulated robot completely navigated each of the three ground truth
maps with each of the three algorithms to produce the three generated
maps. Figure 11 shows the ground truth map, labeled Fixed, and the three
generated maps produced by each algorithm, labeled CoreSLAM,
Gmapping, and Hector Slam, after navigating the ground truth of Map
One. Figure 12 shows the ground truth map, labeled Fixed, and the three
generated maps produced by each algorithm, labeled CoreSLAM,
Gmapping, and Hector Slam, after navigating the ground truth of Map
Two. Figure 13 shows the ground truth map, labeled Fixed, and the three
generated maps produced by each algorithm, labeled CoreSLAM,
Gmapping, and Hector Slam, after navigating the ground truth of Map
Three.

Analyses of these maps are discussed later.

ERDC/GSL TR-19-3 27

Figure 11. Map One and generated map of each algorithm.

Figure 12. Map Two and generated map of each algorithm.

Figure 13. Map Three and generated map of each algorithm.

4.4 Image registration of ground truth and generated maps

MATLAB (matrix laboratory) is a multi-paradigm numerical computing
environment and fourth-generation programming language with many
functions and libraries. This research uses the image registration tool to
compare the generated maps to the ground truth map.

Image registration, the process of aligning two images of the same scene, is
then used to align the ground truth map image and the generated map

ERDC/GSL TR-19-3 28

image for a multimodal comparison of the two images. An intensity-based
automatic image registration process requires a pair of images, a metric,
an optimizer, and a transformation type in order to align one image with
another. The pair of images is the ground truth map image and the
generated map image.

The metric defines the image similarity metric for evaluating the accuracy
of the registration. The optimizer defines the methodology for minimizing
or maximizing the similarity metric.

The transformation type defines the type of 2-D transformation that
brings the misaligned image (called the moving image or the generated
image) into alignment with the reference image (called the fixed image or
the ground truth image). Four transform types exist: affine, rigid, similar,
and translation.

The image registration process begins with the transform type you specify
and an internally determined transformation matrix. Together, they
determine the specific image transformation that is applied to the moving
image with bilinear interpolation.

Next, the metric compares the transformed moving image to the fixed
image and a metric value is computed.

Finally, the optimizer checks for a stop condition. A stop condition is
anything that warrants the termination of the process. In most cases, the
process has reached a point of diminishing returns or it has reached the
specified maximum number of iterations. If there is no stop condition, the
optimizer adjusts the transformation matrix to begin the next iteration.

The following sections discuss the resulting aligned images produced with
the four transformations, i.e., affine, rigid, similar, and translation, and
the three algorithms. The maps will contain three colors: magenta, green,
and black. The magenta represents the intensity of the ground truth
image, the green represents the intensity of the SLAM generated map, and
the black represents where both images align or are the same.

4.4.1 CoreSLAM

Figures 14, 15, and 16 were produced using two images, (1) the ground
truth map images, and (2) the Stage simulated generated map images

ERDC/GSL TR-19-3 29

from the CoreSLAM algorithm, as inputs to MATLAB’s image registration
function. In general, image registration overlays or aligns the generated
map on to the ground truth map image to compare the two images. The
image registration tool is executed with the four different transform types:
affine, translation, rigid, and similar. Figures 14, 15, and 16 display the
output images of the four transformations with the MATLAB code.

The generated maps show up with more intensity than the ground truth
maps due to CoreSLAM producing multiple edges (green shaded areas)
along the exterior portion of the map. While the ground truth and
generated maps are similar in nature, there are few overlapping points
because there is very little black, which shows points where the two images
are identical.

Figure 14. Image registration of Map One and CoreSLAM generated map.

ERDC/GSL TR-19-3 30

Figure 15. Image registration of Map Two and CoreSLAM generated map.

Figure 16. Image registration of Map Three and CoreSLAM generated map.

ERDC/GSL TR-19-3 31

4.4.1 Gmapping

Figures 17, 18, and 19 were produced using two images; the ground truth
map images and the Stage simulated generated map images from the
Gmapping algorithm in MATLAB’s image registration function. The
magenta in the image of Figure 17 represents the intensity of the ground
truth image, the green represents the intensity of the SLAM generated map,
and the black represents where the images overlap. In the upper left of
Figure 18, all transform types align all most perfectly. Transform type affine
has a small amount of green in the bottom indicating that the ground truth
map of Map Two has a slightly higher intensity than the generated map.
Transform type translation (bottom right) has a small amount of green on
the left and the bottom of the map, indicating the ground truth map of Map
Two has a slightly higher intensity than the generated map. In Figure 19, the
magenta is stronger in all transformations, indicating that the generated
map has a higher intensity than the ground truth of Map Three. The black
shows where the images align.

Figure 17. Image registration of Map One and Gmapping generated map.

ERDC/GSL TR-19-3 32

Figure 18. Image registration of Map Two and Gmapping generated map.

Figure 19. Image registration of Map Three and Gmapping generated map.

ERDC/GSL TR-19-3 33

4.4.2 Hector SLAM

Figures 20, 21, and 22 were produced by using the ground truth maps and
the Stage simulated generated maps with the Hector SLAM algorithm as
input in MATLAB’s image registration function. The image registration
tool was again processed with the four different transform types: affine,
translation, rigid, and similar. Figure 20 shows the generated map has
more intensity than the ground truth map due to the alignment being off
and the degree of difference in the two maps. While the maps are similar
in nature, they have few overlapping points. Figures 21 and 22 show black
more than magenta and green indicating that the two images have very
little differences. Figure 20 has more green with all transform types.

Figure 20. Image registration of Map One and Hector SLAM generated map.

ERDC/GSL TR-19-3 34

Figure 21. Image registration Map Two and Hector SLAM generated map.

Figure 22. Image registration of Map Three and Hector SLAM generated map.

ERDC/GSL TR-19-3 35

Figure 21 shows green around the exterior due to the processing of image.
In Figures 21 and 22, the rigid (upper right) and translation (lower right)
transforms produce near perfect alignments.

4.4.3 Comparisons of ground truth maps and Stage 4.1.1 generated
maps

For a quantitative measure between the ground truth maps and the
generated simulator maps, the Hausdorff Distance is calculated. The
Hausdorff distance, by definition, is as follows: Given two finite sets A =
(a1….ap) and B = (b1…bp), the distance is calculated as

 𝐻𝐻(𝐴𝐴, 𝐵𝐵) = max (ℎ(𝐴𝐴, 𝐵𝐵), ℎ(𝐵𝐵, 𝐴𝐴))

where

ℎ(𝐴𝐴, 𝐵𝐵) = sup 𝑖𝑖𝑖𝑖𝑖𝑖‖𝑎𝑎 − 𝑏𝑏‖
 a∈A b∈B

‖ ‖ represents some underlying norm defined in the space of the two
point sets, which is generally required to be an Lp norm, usually the L2 or
Euclidean norm. The function h(A,B) is called the directed Hausdorff
distance from A to B. If A and B are compact sets, then

ℎ(𝐴𝐴, 𝐵𝐵) = max
𝑎𝑎∈𝐴𝐴

min
𝑏𝑏∈𝐵𝐵

‖𝑎𝑎 − 𝑏𝑏‖

The Hausdorff Distance is calculated with the function h(A,B), which
returns the distance of matrix A from matrix B. It identifies the point an
element of A that is the farthest from any point in B and measures the
distance from A to its nearest neighbor in B (comparing images using
Hausdorff Distance paper).

Table 1 shows the HectorSLAM algorithm has the lower values of 15.5885,
in the Hausdorff Distance Column. CoreSLAM has the second lowest value
of 16.55. Gmapping has the highest value of 22.7156.

Table 2 shows the CoreSLAM algorithm has the lower value of 15.5563, in
the Hausdorff Distance Column. HectorSLAM and Gmapping have an
equal value of 16.8523.

ERDC/GSL TR-19-3 36

Table 3 shows the HectorSLAM algorithm has the lower values of 14.1067,
in the Hausdorff Distance Column. CoreSLAM having the second lowest
value of 18.13857. Gmapping has the highest value of 19.2354.

Based on all the results, HectorSLAM outperforms both CoreSLAM and
Gmapping for Map One and Map Three. CoreSLAM outperforms
HectorSLAM and Gmapping for Map Two while HectorSLAM and
Gmapping are tied for Map Two.

Table 1. Hausdorff distance for Map One.

 Map Size Hausdorff Distance
CoreSLAM 600 × 500 16.55
Gmapping 600 × 500 22.7156
Hector SLAM 600 × 500 15.5885

Table 2. Hausdorff distance for Map Two.

 Map Size Hausdorff Distance
CoreSLAM 500 × 500 15.5563
Gmapping 500 × 500 16.8523
Hector SLAM 500 × 500 16.8523

Table 3. Hausdorff distance for Map Three.

 Hector SLAM Map Size Hausdorff Distance
CoreSLAM 500 × 500 18.13847
Gmapping 500 × 500 19.2354
Hector SLAM 500 × 500 14.1067

ERDC/GSL TR-19-3 37

5 Physical Testing Evaluation

This chapter provides the evaluation of three laser-based SLAM
algorithms, HectorSLAM, Gmapping, and CoreSLAM, implemented on the
mobile robot, the Coroware Explorer. The tele-operated robot explored
two physical test areas (ground truth maps) and generated a map of each
area with each algorithm. Comparisons of the ground truth maps and the
generated maps are discussed below.

5.1 Evaluated algorithms

The algorithms used for physical testing are the same as those discussed in
Section 4.1. The ultimate goal is to have the Explorer navigate each of the
test areas and build a map of the unknown environment with each of the
three algorithms. Each algorithm takes scan data from the Laser Range
Finder attached to the Explorer and outputs a generated map.

5.2 Test areas

Two areas were selected for ground truth maps. Figure 23 is the ground
truth map of the foyer, break room, and mail room of Building 3296 at the
ERDC, and Figure 24 is the ground truth map of the basement area of
Building 3296 used to perform the physical test. The tele-operated
Explorer navigated each area, and a map was generated simultaneously
using the input from the Laser Range Finder and the three algorithms. The
robot was networked with a laptop running UBUNTU and ROS Fuerte
with each of the three algorithms. Each area was traversed with one of the
selected algorithms to produce the three SLAM maps. The rooms in the
basement were empty while the foyer, break room, and mail room had
tables, chairs, file cabinets, a sink base, soft drink machines, snack
machines, garbage cans, ice machine, and recycle bins. The foyer’s entry
(Figure 23) is made of glass and has a larger area with two glass doors and
an entry leading to the hallway with entry to the breakroom and the mail-
room. The basement (Figure 24) consists of a hallway with four rooms and
another hallway. Rooms 1, 3, and 4 have one door, while Room 2 has two
doors. All four rooms were empty. The hallway was about 5 ft wide and
50 ft in length.

ERDC/GSL TR-19-3 38

Figure 23. Ground truth map of foyer and break room.

ERDC/GSL TR-19-3 39

Figure 24. Ground truth map of basement.

ERDC/GSL TR-19-3 40

5.3 Generated maps from physical testing

This section shows the generated maps produced while navigating the two
test areas with the mobile robot. CoreSLAM and Gmapping performed
poorly while HectorSLAM generated a recognizable map with many
identifiable features.

5.3.1 CoreSLAM

Figure 25 depicts the generated map from the CoreSLAM for the
basement, and Figure 26 depicts the foyer. CoreSLAM performed poorly
on the physical robot and the produced maps were of poor quality and
unrecognizable compared to the ground truth maps. This could be due to
the fact that the four rooms in the basement were small and the robot had
to make an almost 360-deg turn in the rooms. However, the map for the
foyer was also unrecognizable; therefore, this theory may be incorrect.

Figure 25. Generated CoreSLAM map of basement.

ERDC/GSL TR-19-3 41

Figure 26. Generated CoreSLAM map of foyer.

5.3.2 Gmapping

Figure 27 depicts the generated map from the Gmapping for the basement
and Figure 28 the generated map of the foyer. Gmapping performed
poorly on the physical robot, and the produced maps were of poor quality
and unrecognizable compared to the ground truth maps.

ERDC/GSL TR-19-3 42

Figure 27. Generated Gmapping map of basement.

5.3.1 HectorSLAM

Figure 29 depicts the generated map from Hector SLAM for the basement,
and Figure 30 is the generated map of the foyer. HectorSLAM performed
efficiently on the physical robot, and the produced maps were good quality
and recognizable, when compared to the ground truth maps. The
generated map of the basement was somewhat distorted, but each of the
four rooms and the hallway were identifiable.

5.4 Comparison of ground truth map and generated map

Hector SLAM produced a better map than CoreSLAM and Gmapping.
Figure 31 shows the generated Hector SLAM map and actual photographs
of the test site. Doors, windows, tables, chairs, and file cabinets can be
identified in the generated map. Most of the major corners of the Hector
SLAM map are recognizable. The Gmapping generated map of the foyer
had some recognizable features, but CoreSLAM had no recognizable
features.

The map in the center is the generated map and the color images are
actual photos of the foyer, breakroom, and mailroom. The generated map
in the center has labels pointing to open door, tables and chairs, walls, and
an unexplored area. The open door label points to an area where the
Explorer did not travel, but the laser scans down the hallway off the foyer.
Had the door been closed it would have scanned as a wall. The table and
chairs label shows the dots on the floor where the table and chair legs are.

ERDC/GSL TR-19-3 43

Figure 28. Generated Gmapping SLAM map of foyer.

The wall label is an area where there are actually walls, cabinets, or door
where the laser scanner cannot scan. The unexplored area, the gray area, is
an area in the mailroom where the laser scan did not scan.

ERDC/GSL TR-19-3 44

Figure 29. Generated Hector SLAM map of basement.

The map in the center of Figure 32 is the generated map of the basement
and the color images are actual photos of the basement, consisting of a
hallway and four small rooms. The generated map in the center has labels
pointing to empty rooms, the hallway and a breakroom not traversed by
the robot but scanned by the laser scanner. As depicted in Figure 31, the

ERDC/GSL TR-19-3 45

rooms are small and the hallway narrow, and the lighting varies from light
to dark. Too much light could affect the scan, so paper and blinds were
placed over the window to control the amount of light. I believe the
smallness of rooms and the narrowness of the hallway had an effect on the
quality of the map.

Figure 30. Generated Hector SLAM map of foyer.

ERDC/GSL TR-19-3 46

Figure 31. Generated Hector Slam map and pictures of actual foyer.

Figure 32. Generated Hector Slam map and pictures of actual basement.

ERDC/GSL TR-19-3 47

5.5 Results

This chapter provided physical testing of the Explorer in the foyer area and
the basement. The Explorer performed better in the foyer, and a higher
quality map was generated. This Hector SLAM and Coroware Explorer
research increases the ability of the ERDC to explore and map unknown
areas and aids in increasing the level of autonomy of current unmanned
vehicles used during the exploration of unknown areas. This
implementation and testing provides further validation of the Hector Slam
algorithm for real-world application.

ERDC/GSL TR-19-3 48

6 Localization and Pathfinding

This chapter localizes the Explorer to a position in the generated grid-
based map produced by Hector Slam in Chapter 5 using the Adaptive
Monte Carlo Localization Package (AMCL) for a robot moving in 2-D.
AMCL produces the positon of the moving robot in the map. Several maps
are produced at resolutions with three different physical locations. The
results of the robot’s path-finding ability with A* algorithm package was
collected for a path between two points, in both the generated SLAM map
and the physical site.

6.1 A* pathfinding package

The goal of this package is for the Explorer to create a path based on a
grid-based map produced by the mobile Explorer. Several maps are
generated at varying resolutions of 100×100, 200×200, 300×300,
500×500, and 1000×1000 of 3 different test sites. The Explorer travels
around the map from start node A, provided by the AMCL package, and to
destination node B, provided by the user and stored and passed to the A*
package. A path is produced by the A* algorithm, and then the path is
timed and traversed.

6.2 Requirements

The mobile robot must be able to localize itself in the grid-based map
produced by HectorSLAM and traverse a path produced by the A*
algorithm. The package takes as input a grid-base map, a start location,
and a destination location. The robot must travel the path produced by A*.
The robot must also traverse the map, storing a start location, and travel to
a destination. The actual distance between the destination point B of the
SLAM map and point B of the physical map was measured, recorded, and
analyzed.

6.3 Analysis and design

The analysis and design phase consists of the analysis and design to
localize the Explorer to a grid-based map and produce a path in the grid-
based map. The Corobot A* package allows the Explorer to traverse a path
in a grid-base map autonomously. The A* Package has the following steps.

1. Take as input a grid-based map produced with HectorSLAM.

ERDC/GSL TR-19-3 49

2. Convert the map to an array of 0s and 1s based on map resolution. 0 is
free. 1 is occupied.

3. Tele-operate the mobile robot to localize to the map and get the current
positon of the robot.

4. Store the current position as the start location.
5. Enter the destination position.
6. Calculate the path.
7. Convert the start and destination position to cells in the map.
8. Set start time for path traversal.
9. Mobile robot travels autonomously to destination.
10. Set end time for path traversal.
11. Calculate time to traverse path.
12. Measure the distance between the starting and ending points.
13. Repeat process on maps of varying resolution.
14. Collect results on pathfinding at each resolution.

6.3.1 AMCL overview

AMCL is a ROS package designed to provide a mobile robot its pose while
traversing a known map. AMCL is a probabilistic localization system for a
robot moving in 2-D (AMCL site). AMCL implements the adaptive (or
KLD-sampling) Monte Carlo approach as described by Dieter Fox (AMCL
site). AMCL takes as input a laser-based map and publishes the mobile
robot’s estimated pose in the map. AMCL subscribes to topics in Table 4.

Table 4. Subscribed topic.

scan sensor_msgs/LaserScan
tf tf/tf_messages
initialpose geometry_msgs/PosWithCovarianceStamped
Map Navigation_msgs

AMCL publishes the amcl_pose, which is the pose of the mobile robot
against the known map.

6.3.2 Corobot_A* package

The Corobot A* Package implements the A* algorithm with the Manhattan
Cost function. The package uses the robot pose, an x and y position in the
map, provided by AMCL, to use as the start location for the path, and the
user provides a random destination. The path between the start and

ERDC/GSL TR-19-3 50

destination location is calculated and provided. The robot then traverses
the given path.

Three cost functions were considered: (1) the Manhattan Distance,
(2) Euclidean Distance, and (3) the Chebyshev Distance.

The Manhattan Distance was implemented as the map is an NxN matrix,
and four of the surrounding cells of the map were considered. The function
is F = G + H, where G is the total distance to the current position and H
represents the cost.

6.4 Implementation

While the robot is traversing the area, a map is created of the explored area.
The robot is then localized to the map using AMCL, explores the area, and
displays its pose on the map. The robot can be given a destination position
to travel using its current position as the start location.

6.5 Testing

Three test sites were used to evaluate the ability of the Explorer to localize
itself in a generated SLAM map and travel from a start location to a
destination location. For each site, two cones were used to mark points A
and B. The area around the cones were taped to marked points A and B. The
area was traversed by the Explorer, and the SLAM map was generated. This
map was used to localize the robot to the position A. The destination
coordinate was entered into the A* package, and the difference between the
two B points was measured and the time to traverse the path recorded.

6.5.1 Test Site One

Figure 33 depicts Test Site One, a 12-ft by 9-ft area that has walls on one
side and two 6-ft tables as a wall for the 12-ft side. The 9-ft side has one
9-ft table and a board to enclose one side, and the other 9-ft side was a
constructed wall. The x-axis is marked and is determined to be the x-axis
by driving the Explorer around, and the x position of the pose data
increased, which is the northing in the map. The y-axis is marked and is
determined to be the y-axis by driving the Explorer around, and the y
position of the pose data increased.

ERDC/GSL TR-19-3 51

Figure 34 depicts Test Site One without the cones and positions A and B
marked with tape and the SLAM generated map with the two black
squares representing points A and B in the SLAM generated map.

Figure 33. Test Site One with cones denoting points A and B.

Figure 34. Test Site One without cones and the SLAM generated map.

ERDC/GSL TR-19-3 52

Next, the generated map is imported into GIMP 2 and scaled to the
resolution of the map to gather the x and y positions for each of the points
marked in the previous steps. The two points shown in the Figure 35 are
for a map of resolution of 100×100. This step is repeated to gather the
start and destination points for maps of resolution 200×200, 300×300,
and 500×500.

Figure 35. GIMP view with imported SLAM map.

Next, the Explorer and laptop are started with the correct setup to use the
AMCL Package and the generated map of the test site without the cones.
The robot is placed in the A position of the test site, then localized to the
map, and the A* package is executed. The AMCL package provided a
location of (40,60) and provided a B position for the target location.
Table 5 shows the results of these runs for a map of resolution 100×100.
The distance from where the robot ended and the position of Point B in the
physical map is shown in the Distance column, and the time to traverse the
path is shown in the Time column.

When entering the target location, the A* package was executed until a
B location close to the target destination B was found. Point (76, 38) was
too large. Point (65,40) and (65,50) are feasible and very close to the tar-
get destination point.

ERDC/GSL TR-19-3 53

In the 100×100 resolution map, Table 5, the error was from 7 to 16 in.,
with an average of 10.3 in. for the five runs. In the 200×200 resolution
map, Table 6, the error was from 0 to 16 in., with an average of 9.9 in. for
the five runs. In the 300×300 resolution map, Table 7, the error was from
0 to 18 in., with an average of 9.2 in. for the five runs. In the 500×500,
Table 8, resolution map, the error was from 2 to 18 in., with an average of
10.2 in. for the five runs. Overall, for Test Site One, the
300×300 resolution performed best.

Table 5. Results for 100×100 on Test Site One.

 Generated Map AMCL

 A B A B Time (sec.) Distance (in.)

Run 1 (52,38) (76,38) (60,40) (65,40) 11.85 9.00

Run 2 (52,38) (76,38) (60,40) (65,40) 15.51 12.00

Run 3 (52,38) (76,38) (60,40) (65,40) 16.37 7.50

Run 4 (52,38) (76,38) (60,40) (65,40) 13.50 16.00

Run 5 (52,38) (76,38) (60,50) (65,50) 14.39 7.00

Table 6. Results 200×200 on Test Site One.

 Generated Map AMCL

 A B A B Time (sec.) Distance (in.)

Run 1 (154,141) (177,148) (90,110) (90,110) 13.36 0

Run 2 (154,141) (177,148) (90,110) (90,110) 14.20 0

Run 3 (154,141) (177,148) (90,110) (90,110) 14.72 17

Run 4 (154,141) (177,148) (90,110) (90,116) 16.35 16

Run 5 (154,141) (177,148) (90,110) (90,116) 13.42 16

In Test Site One, when entering the generated map’s point B, the robot
could not find point B. The robot would try to travel up the wall and would
have to be stopped. This led to finding a point B close to the Point B on the
floor to enter. This was possibly caused by the area being too small, and
Point A and Point B being close together in the physical map. As we move
to Test Site Two, a larger area was chosen.

ERDC/GSL TR-19-3 54

Table 7. Results for 300×300 on Test Site One.

 Generated Map AMCL

 A B A B Time (sec.) Distance (in.)

Run 1 (155,140) (180,146) (150,150) (150,156) 20.57 16

Run 2 (155,140) (180,146) 150,150) (150,156) 15.01 18

Run 3 (155,140) (180,146) 150,150) (150,156) 14.46 4

Run 4 (155,140) (180,146) 150,150) (150,156) 13.52 8

Run 5 (155,140) (180,146) 150,150) (150,156) 15.70 0

Table 8. Results for 500×500 on Test Site One.

 Generated Map AMCL

 A B A B Time (sec.) Distance (in.)

Run 1 (250,243) (250,241) (250,250) (250,256) 8.87 14

Run 2 (250,243) (250,241) (250,250) (250,256) 9.83 2

Run 3 (250,243) (250,241) (240,250) (250,257) 9.33 5

Run 4 (250,243) (250,241) (250,250) (250,256) 8.99 12

Run 5 (250,243) (250,241) (250,250) (250,256) 8.72 18

6.5.2 Test Site Two

Test Site Two is an area approximately 15 ft by 24 ft with bookshelves,
several desks, a copy machine, a garbage can, and several small file
cabinets, (Figure 36). The hallway is blocked by a piece of board to make a
wall. The map was generated for Test Site Two with Hector SLAM with the
perimeter of the two cones taped on the floor in order to mark points A
(x,y) and B (x,y) in the actual test site.

Next, the generated maps are imported into GIMP 2 and scaled to
resolution size. For Test Site Two, the resolutions tested were 200×200,
300×300, 500×500, and 1000×1000. Resolution 100×100 produced a
poor quality map and was not on the canvas. In Figure 37, Point A is the
start location, and Point B is the destination location.

Next, the Explorer and laptop are started with the correct setup to use the
AMCL Package and the generated map of the test site without the cones.

ERDC/GSL TR-19-3 55

Figure 36. Front and rear view of Test Site Two with cones.

Figure 37. Test Site Two resolution 300×300.

The Explore was placed in the start position A of the test site, then
localized to the map, and the A* package was executed. The AMCL package
provided the starting point A(x,y) , and the user provided B(x,y) position
for the destination location. No results were collected for Resolution
1000×1000. Each time the A* Package was executed, the package had a
memory core dump.

ERDC/GSL TR-19-3 56

In the 200×200 resolution map, Table 9, the error was from 0 to 48 in.,
with an average of 27.6 in. for the five runs. In the 300×300 resolution
map, Table 10, the error was from 0 to 12 in., with an average of 2.8 in. for
the five runs. In the 500×500 resolution map, Table 11, the error was from
0 to 12 in., with an average of 2.8 in. for the five runs. Overall, for Test
Site 2, the 300×300 and 500×500 resolution performed best.

Table 9. Results for 200×200 on Test Site Two.

 Generated Map AMCL Entered

 A B A B Time (sec.) Distance (in.)

Run 1 (107,92) (145,99) (100,100) (115,100) 21.67 0

Run 2 (107,92) (145,99) (100,100) (115,100) 21.03 30

Run 3 (107,92) (145,99) (100,100) (115,100) 20.54 24

Run 4 (107,92) (145,99) (100,100) (115,100) 22.23 36

Run 5 (107,92) (145,99) (100,100) (115,100) 23.48 48

Table 10.Results for 300×300 on Test Site Two.

 Generated Map AMCL Entered

 A B A B Time (sec.) Distance (in.)

Run 1 (151,138) (188,126) (150,150) (150,164) 19.70 1

Run 2 (151,138) (188,126) (140,150) (140,164) 19.51 12

Run 3 (151,138) (188,126) (150,150) (150,164) 19.16 1

Run 4 (151,138) (188,126) (150,150) (150,164) 19.20 0

Run 5 (151,138) (188,126) (140,150) (140,164) 19.56 0

Table 11. Results for 500×500 on Test Site Two.

 Generated Map AMCL Entered

 A B A B Time (sec.) Distance (in.)

Run 1 (256,241) (294,241) 250,250) (264,250) 21.04 2

Run 2 (256,241) (294,241) (250,250) (264,240) 20.53 12

Run 3 (256,241) (294,241) (240,250) (264,250) 19.34 0

Run 4 (256,241) (294,241) (240,250) (264,250) 19.63 0

Run 5 (256,241) (294,241) (240,250) (264,250) 19.71 0

ERDC/GSL TR-19-3 57

In this set of tests, it is obvious that changing the resolution decreases
some of the error. Creating a map of resolution 100×100 was unsuccessful.
The map that was produced was of poor quality. As in Test Site One, the
entered Point B was tweaked by driving the robot around to find a feasible
Point B. The Point B of the generated map and the one collected were
extremely different, but once Point B was found, the error was low.

6.5.2 Test Site Three

The map was generated for Test Site Three, an area approximately 15 ft by
24 ft with Hector SLAM with the perimeter of the two cones taped on the
floor in order to mark Points A(x,y) and B(x,y) in the actual test site. Test
Site Three is the same room as Test Site Two, but the room was
rearranged. The copy machine was moved, and the desk was moved from
one wall to another. Figure 38 depicts Test Site Three.

Figure 38. Test Site Three with cone.

Next, the generated maps were imported into GIMP 2 and scaled to
resolution size. For this test, the resolutions tested were 200×200,
300×300, and 500×500. Resolution 100×100 produced a poor quality
map and was not on the canvas; thus testing for 100×100 resolution was
eliminated. A map of resolution 1000×1000 created an excellent map, but
this resolution was too memory intensive for the A* package and would
core dump. The x and y positions for each of the points were marked as in

ERDC/GSL TR-19-3 58

the previous steps. The two points are shown in the figures below and are
denoted for each of the resolutions. Figure 39 shows Point A and B along
with their x and y coordinates for resolution 300×300.

Figure 39. Gimp 300×300.

When running the A* algorithm, the start point A was provided by AMCL,
and the destination Point B was provided from the Gimp software. The
room was larger than in Test Site One in Tables 2 to 14. The distance from
where the robot ended and the position of Point B in the physical map is
shown in the Distance column, and the time to travel the path is in the
time columns. In the 200×200 resolution map, Table 12, the error was
from 48 to 70 in., with an average of 61 in. for the five runs. In the
300×300 resolution map, Table 13, the error was from 35 to 80 in., with
an average of 55.4 in. for the five runs. In the 500×500 resolution map,
Table 14, the error was from 56 to 108 in., with an average of 69.6 in. for
the five runs. Overall, for Test Site Three, the 300×300 resolution
performed best.

ERDC/GSL TR-19-3 59

Table 12. Results for 200×200 on Test Site Three.

 Generated Map AMCL

 A B A Time (sec.) Distance (in.)

Run 1 (116,95) (107,128) (110,110) 26.34 60

Run 2 (116,95) (107,128) (110,110) 25.89 63

Run 3 (116,95) (107,128) (110,110) 26.05 64

Run 4 (116,95) (107,128) (120,110) 13.79 48

Run 5 (116,95) (107,128) (110,110) 27.75 70

Table 13. Results for 300×300 Test Site Three.

 Generated Map AMCL

 A B A Time (sec.) Distance (in.)

Run 1 (166,137) (166,170) (160,150) 29.62 36

Run 2 (166,137) (166,170) (160,150) 38.93 60

Run 3 (166,137) (166,170) (160,150) 29.08 35

Run 4 (166,137) (166,170) (170,150) 30.83 66

Run 5 (166,137) (166,170) (170,170) 32.17 80

Table 14. Results for 500×500 Test Site Three.

 Generated Map AMCL

 A B A Time (sec.) Distance (in.)

Run 1 (269,248) (248,276) (250,250) 41.91 108

Run 2 (269,248) (248,276) (260,260) 26.31 62

Run 3 (269,248) (248,276) (260,260) 23.12 56

Run 4 (269,248) (248,276) (260,250) 40.56 62

Run 5 (269,248) (248,276) (260,250) 36.51 60

6.6 Conclusion

This research shows that the resolution of the map has an effect on the
robot’s localization and path finding ability. The Explorer performed best
at 300×300 resolution in all cases.

The research in Chapter 6 provides the ERDC with an increased level of
autonomy from zero or tethered to autonomous level three, when
searching unknown environments. When this research began, the ERDC

ERDC/GSL TR-19-3 60

was using a tethered robot to explore unknown areas. We have tested and
selected the SLAM algorithm via simulation, performed physical testing on
a mobile robot and concluded that HectorSLAM is an excellent choice for
mapping an unknown area. Also, a ROS package AMCL, was implemented,
which allows the robot to localize itself to the SLAM generated map. Once
localized to the map, the mobile robot was able to traverse a path
generated with the A* algorithm.

ERDC/GSL TR-19-3 61

7 Conclusions and Future Work

7.1 Conclusions

The main goals of this dissertation were to enhance a commercial off the
shelf (COTS) robotic platform with the ability to generate a map of an
unknown area, to localize the robot to the generated map, and to increase
the level of autonomy from tethered to a level of five or more. The UGV
was tested with three SLAM algorithms, CORESLAM, Hector SLAM, and
Gmapping, in a simulated environment and a physical environment.
Hector SLAM proved to be the superior SLAM algorithm, outperforming
both Gmapping and CORESLAM in both simulation testing and physical
testing. It is my belief that Hector SLAM generated the best map because it
requires only a laser scan, unlike Gmapping and CORESLAM.

This research had a series of limitations: (1) ROS has a steep learning
curve and there are unlimited packages for use, (2) ROS operates in a
Linux environment, (3) lack of a dedicated test area that caused multiple
moves and setups as time allowed, and (4) the UGV and laptop’s WIFI
signals proved unacceptable for the transmission of data. This WIFI issue
was overcome by adding a radio to both the laptop and UVG and setting
up a network between the two. Large amounts of data were then
transmitted between the two.

7.2 Future work

Further enhancements to the UGV include adding other plug-and-play
devices such as Microsoft Kinect Sensor or the 360-deg 3-D sensor by
DFROBOT. Each of these sensors will produce a 3-D map of the navigated
area that can be overlaid onto the 2-D map. The Microsoft Kinect sensor
costs about $100 and is easily installed. The Kinect consists of several
sensors including a RBG sensor, a 3-D depth sensor, multi-array
microphone, and an accelerometer (https://developer.microsoft.com/en-
us/windows/kinect/hardware). The 360-deg 3-D sensor by DFROBOT is
also inexpensive and should be easily programmed.

Increasing the level of autonomy from around three, to between six and
ten is needed. Testing in a tunnel environment would show more of the
strengths and weaknesses of this UGV.

ERDC/GSL TR-19-3 62

References
Angeli, A., S. Doncieux, J. A. Meyer, and D. Filliat. 2008. Incremental vision-based topo-

logical SLAM. Intelligent Robots and Systems, IEEE/RSJ International
Conference. Nice, France.

Banks, J., and J. S. Carson. 1984. Discrete event system simulation. Upper Saddle River,
NJ: Prentice-Hall.

Dellaert, F., D. Fox, W. Burgard, and S. Thrun. 1999. Monte Carlo localization for mobile
robots. In Proceedings, IEEE International Conference on Robotics and
Automation. 10-15 May, Detroit, MI.

Doray, E., A. Clymer, J. McKenna, D. Horner, M. McKenna, T. Anderson, et al. 2009.
Unmanned tunnel exploitation. Technologies for Homeland Security, IEEE
Conference. Waltham, MA.

Edwards, D., T. Bean, D. Odell, and M. Anderson. 2004. A leader-follower algorithm for
multiple AUV formations: IEEE. In 2004 IEEE/OES Autonomous Underwater
Vehicles. 17-18 June, Sebasco, ME.

Fox, D., W. Burgard, and S. Thrun. 1999. Markov localization for mobile robots in
dynamic environments. Journal of Artificial Intelligence Research 11(3):391-427.

Gage, D. W. 1995. UGV history 101: A brief history of unmanned ground vehicle
development efforts. Unmanned Systems Magazine 13(3).

Kinney, P., M. Dooner, J. Nagel, and P. Trepagnier. 2006. Kat-5: Systems based on a suc-
cessful paradigm for the development of autonomous ground vehicles. In 2006
IEEE/ION Position, Location, And Navigation Symposium. 25-27 April,
Coronado, CA.

Kohlbrecher, S. 2011. Hector_mapping. http://wiki.ros.org/
hector_mapping.

Kramer, J. A. 2010. Accurate localization given uncertain sensors. MS thesis, University
of South Florida.

Morgan Quigley, B. G., K. Conleyy, J. Fausty, T. Footey, J. Leibsz, E. B., R. Wheelery, and
A. Ng. 2009. ROS: an open-source Robot Operating System. ICRA Workshop on
Open Source Software. Kobe, Japan.

Murphy, R. R. 2004. Rescue robotics for homeland security. Communications of the ACM
47(3):66-68.

Reynolds, J. 2005. An exploration of mapping algorithms for autonomous robotic map-
ping. Colorado State University, Department of Mechanical Engineering.

Riisgaard, S., and M. R. Blas. 2004. SLAM for dummies. A tutorial approach to simulta-
neous localization and mapping. Cambridge, MA: MIT OCW.

ERDC/GSL TR-19-3 63

Rozman, J. 2009. Grid-based map making using particle filters. International Journal of
Autonomic Computing 1(2):211-221.

Russell, S., and P. Norvig. 1995. A modern approach. In Artificial Intelligence. Engle-
wood Cliffs, CA: Prentice-Hall.

Santos, J. 2008. Gmapping. http://wiki.ros.org/gmapping.

Singer, P. W. 2008. Robots at war: The new battlefield. Wilson Quarterly 30-48.

Song, I. 2002. Probabilistic localization methods for a mobile robot navigation.
University of Waterloo.

Stanculescu, A., and M. Sojka. 2008. Evaluation of the Monte Carlo localization
algorithm. Prague: Czech Technical University.

Staranowicz, A., and G. Mariottini. 2011. Robotic simulation guide. ASTRA Robotics Lab,
Department of Computer Science and Engineering, University of Texas.
http://ranger.uta.edu.

Thrun, S. 2002. Robotic mapping: A survey. In Exploring artificial intelligence in the
new millennium, 1-35.

Thrun, S. 2006. The graph SLAM algorithm with applications to large-scale mapping of
urban structures. The International Journal of Robotics Research 25(5-6):403-
429.

Thrun, S., D. Fox, W. Burgard, and F. Dellaert. 2001. Robust Monte Carlo localization for
mobile robots. Artificial Intelligence 128(1-2):99-141.

University of Tennessee Knoxville. 2007. Player/stage: Getting started guide.
https://mabe.utk.edu/.

Voth, D. 2004. A new generation of military robots. Intelligent Systems, IEEE 19(4):2-3.

Welch, G., and G. Bishop. 1995. An introduction to the Kalman filter. University of North
Carolina at Chapel Hill.

ERDC/GSL TR-19-3 64

Appendix A: Mobile Robot Cost

ERDC/GSL TR-19-3 65

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display
a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

February 2019
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Localization and Mapping of Unknown Locations with Unmanned Ground
Vehicles

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Doris M. Turnage

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
 NUMBER

Geotechnical and Structures Laboratory
U.S. Army Engineer Research and Development Center
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

ERDC/GSL TR-19-3

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
U.S. Army Engineer Research and Development Center
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The main goals of this research are to enhance a commercial off the shelf (COTS) software platform to support unmanned ground
vehicles (UGVs) exploring the complex environment of tunnels, to test the platform within a simulation environment, and to validate
the architecture through field-testing. Developing this platform enhances the U.S. Army Engineering Research and Development
Center’s (ERDC’s) current capabilities and creates a safe and efficient autonomous vehicle to perform the following functions within
tunnels: (1) localizing (e.g., position tracking) and mapping of its environment, (2) traversing varied terrains, (3) sensing the
environment for objects of interest, and (4) increasing the level of autonomy of UGVs available at the ERDC. The simulation
experiments were performed in the STAGE Simulator, a physics-based, multi-scale numerical test bed developed by Robotic Operating
System (ROS). Physical testing was conducted in Vicksburg, MS, using a Coroware Explorer. Both the simulation and physical testing
evaluated three simultaneous localization and mapping (SLAM) algorithms, i.e., Hector SLAM, Gmapping, and CORESLAM to
determine the superior algorithm. The superior algorithm was then used to localize the robot to the environment and autonomously
travel from a start location to a destination location. Completion of this research has increased the ERDC’s level of autonomy for UGVs
from tether to tele-operated to autonomous.

15. SUBJECT TERMS
Autonomous vehicles
Vehicles, military

Tunnels
Underground areas
Navigation

Cartography – Software
Maps

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE
PERSON

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified 75
19b. TELEPHONE NUMBER (include
area code)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

	Abstract
	Contents
	Figures and Tables
	Preface
	1 Introduction
	1.1 Background
	1.2 Types of unmanned vehicles
	1.2.1 Unmanned ground vehicles
	1.2.2 Unmanned aerial vehicles
	1.2.3 Autonomous underwater vehicles

	1.3 Proposed research
	1.4 Objective
	1.5 Organization of report

	2 Literature Review
	2.1 Introduction
	2.2 Mapping
	2.2.1 Robotic mapping problems
	2.2.2 Metric and topological maps
	2.2.3 Probabilistic mapping algorithms

	2.3 Localization
	2.3.1 Monte Carlo Localization
	2.3.2 Kalman filters
	2.3.3 Markov Localization

	2.4 Simultaneous localization and mapping
	2.5 Research goal
	2.5.1 Modeling and simulation
	2.5.2 Tunnel exploration
	2.5.3 Levels of autonomy

	2.6 Proposed research

	3 Overview of System
	3.1 Description of robot platform
	3.2 Description of software
	3.3 Mapping and localization algorithms
	3.4 Summary

	4 Simulation Testing Evaluation
	4.1 Evaluated SLAM algorithms
	4.1.1 CoreSLAM
	4.1.2 Gmapping
	4.1.3 Hector SLAM Gmapping

	4.2 Ground truth maps
	4.3 Simulation results
	4.4 Image registration of ground truth and generated maps
	4.4.1 CoreSLAM
	4.4.1 Gmapping
	4.4.2 Hector SLAM
	4.4.3 Comparisons of ground truth maps and Stage 4.1.1 generated maps

	5 Physical Testing Evaluation
	5.1 Evaluated algorithms
	5.2 Test areas
	5.3 Generated maps from physical testing
	5.3.1 CoreSLAM
	5.3.2 Gmapping
	5.3.1 HectorSLAM

	5.4 Comparison of ground truth map and generated map
	5.5 Results

	6 Localization and Pathfinding
	6.1 A* pathfinding package
	6.2 Requirements
	6.3 Analysis and design
	6.3.1 AMCL overview
	6.3.2 Corobot_A* package

	6.4 Implementation
	6.5 Testing
	6.5.1 Test Site One
	6.5.2 Test Site Two
	6.5.2 Test Site Three

	6.6 Conclusion

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future work

	References
	Appendix A: Mobile Robot Cost
	REPORT DOCUMENTATION PAGE

