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Abstract 

The main goals of this research are to enhance a commercial off the shelf 
(COTS) software platform to support unmanned ground vehicles (UGVs) 
exploring the complex environment of tunnels, to test the platform within 
a simulation environment, and to validate the architecture through field-
testing.  

Developing this platform enhances the U.S. Army Engineering Research 
and Development Center’s (ERDC’s) current capabilities and creates a safe 
and efficient autonomous vehicle to perform the following functions 
within tunnels: (1) localizing (e.g., position tracking) and mapping of its 
environment, (2) traversing varied terrains, (3) sensing the environment 
for objects of interest, and (4) increasing the level of autonomy of UGVs 
available at the ERDC. 

The simulation experiments were performed in the STAGE Simulator, a 
physics-based, multi-scale numerical test bed developed by Robotic 
Operating System (ROS). Physical testing was conducted in Vicksburg, 
MS, using a Coroware Explorer. Both the simulation and physical testing 
evaluated three simultaneous localization and mapping (SLAM) 
algorithms, i.e., Hector SLAM, Gmapping, and CORESLAM to determine 
the superior algorithm. The superior algorithm was then used to localize 
the robot to the environment and autonomously travel from a start 
location to a destination location. 

Completion of this research has increased the ERDC’s level of autonomy 
for UGVs from tether to tele-operated to autonomous.  

 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

1.1 Background 

Congress mandated that one-third of military vehicles be autonomous by 
2015 (Kinney et al. 2006). Autonomy, in this case, implies that the 
unmanned ground vehicle (UGV) should be able to traverse a dynamic and 
unstructured environment with little or no human intervention. In the 
broadest sense, a UGV is any piece of mechanized equipment that moves 
across the surface of the ground and serves as a means of carrying or 
transporting cargo, but explicitly does NOT carry a human being (Gage 
1995). The military uses the UGV to perform reconnaissance and surveil-
lance on the battlefield and in urban settings, tunnels, and other military 
missions. There exists a limited number of available robotic platforms and 
architectures equipped to navigate and perform mapping and localization 
of complex environments. 

The goal of this research is to develop a software system to support UGVs 
exploration complex environments of tunnels and other subterranean 
areas such as basements, old mines, sewers, and caves. The Department of 
Defense (DoD) has used robotic platforms for various missions over the 
past 10 years. The Department of Homeland Security (DHS) uses robotic 
platforms in exploring drug tunnels along the southern U.S. border and 
Mexico (see examples below). The development of a robust framework for 
autonomous UGVs will lead to an increase in the availability of robotic 
platforms and architectures to the DoD and DHS through the use of mod-
eling and simulation.  

September 11, 2001, was a very devastating day, one that forever changed 
the United States of America (USA). Terrorist attacks occurred at the 
World Trade Center (WTC) towers in New York City and at the Pentagon 
in Washington, D.C. Tele-operated robots were used under the direction of 
the Center for Robot-Assisted Search and Rescue from September 11 to 
October 2, 2001, to search for victims and to help assess the structural 
integrity of the WTC foundation (Murphy 2004). The robots were used for 
tasks that the rescuers or canines could not perform; for example, to either 
go into spaces too small for a human or to pass through an area still 
burning (Murphy 2004). Before September 11, 2001, the Oklahoma City 
bombing on April 19, 1995, motivated an interest in the domain of rescue 
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robotics for urban search and rescue (Murphy 2004). Robin R. Murphy 
states that urban search and rescue (USAR) missions, which deal with 
man-made structures, have a different emphasis than traditional 
wilderness rescue or underwater recovery efforts and can be even more 
demanding on robot hardware and software design than military 
applications (Murphy 2004).  

During the search and rescue phase after September 11, 2001, the insertion 
of the Inuktum micro-VGTV robot into a sewer pipe at the WTC site 
allowed rescuers to attempt to locate an entry into a basement (Murphy 
2004). The robot was small in size and tethered, using a safety line for 
vertical entry (Murphy 2004).  

On March 20, 2003, the USA invaded Iraq, a war different from any other 
because of new technological advances. One such advancement was the 
Dragon Runner Reconnaissance Robot, developed by the National Robot-
ics Engineering Centre (NREC). Weighing about 15 lb, the Dragon Runner 
was designed to be light enough to toss into a window or up and down 
stairs (Voth 2004). The U.S. Marine Corps used the Dragon Runner during 
Operation Iraqi Freedom with approximately a dozen deployed for sentry 
missions and urban reconnaissance (Voth 2004). When U.S. forces went 
into Iraq in 2003, they had a limited number of robotic units on the 
ground (Singer 2008). By the end of 2004, the number was up to 150 
(Singer 2008). By the end of 2005, it was up to 2,400, and it more than 
doubled the next year (Singer 2008).  

Since 1990, approximately 130 tunnels have been discovered along the 
border between San Diego, CA, and Tijuana, Mexico; one of the more 
recent discoveries was on March 16, 2016. According to the New York 
Daily News article by Alfred Ng, federal agents apprehended a 415-yard 
tunnel between Mexicali, Mexico, and Calexico, CA, after a 16-month 
investigation, seizing almost 3,000 lb of marijuana. The tunnel had 
entrances at a restaurant in Mexico and a newly built house in California. 
From 2010 to date, the tunnels have become more sophisticated, spacious, 
and expensive. According to Alfred Ng, the March 16, 2016, tunnel is the 
first instance where drug traffickers bought property in the U.S. specif-
ically for hiding a drug tunnel. 

According to the Associated Press article by Elliot Spagat on November 27, 
2010, the sophisticated cross-border tunnel, equipped with a rail system, 
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ventilation, and fluorescent lighting, was the second discovery of a major 
underground drug passage in San Diego during November 2010. The 
U.S. Homeland Security and Mexican officials shut down this tunnel. The 
elaborate tunnel’s length was 2,200 ft. The tunnel was between the kitchen 
of a home in Tijuana, Mexico, and two warehouses in San Diego’s Otay 
Mesa industrial district. The cost of constructing these tunnels appears to 
be enormous because of the sophistication of their design. The first tunnel, 
discovered on November 3, 2010, spanned 600 yd and contained 25 tons 
of marijuana. Discovery of these tunnels has escalated in the past three 
years, along with border security efforts such as border fence installations, 
increased border agents, and the call for DoD support from the DHS. The 
discovery of these tunnels greatly concerns both the DoD and the DHS. 
Both agencies have identified a requirement for methods that will easily 
explore and map out the unknown tunnel’s environments without sending 
humans into the tunnels and endangering them. Developing robotic plat-
forms to perform this task would mitigate the danger to humans. 

1.2 Types of unmanned vehicles  

The USA took a variety of vehicles to war; however, basically three distinct 
types of unmanned vehicles were used: (1) unmanned ground vehicles 
(UGV), (2) unmanned aerial vehicles (UAV), and (3) autonomous under-
water vehicles (AUV). Each of these unmanned vehicles saw action in the 
Iraqi War, and some were for tunnel exploration along the United States-
Mexico border. 

1.2.1 Unmanned ground vehicles  

The U.S. Army uses two major types of autonomous and semi-autonomous 
ground vehicles: large vehicles and small vehicles. Examples of large vehi-
cles are tanks, trucks, and high-mobility, multiple-wheeled vehicles also 
known as the HUMVEEs. Examples of small vehicles, sized for carrying by 
a soldier in a backpack, are the PackBot and Talon. The PackBot and Talon 
move around on treads like small tanks.  

Manufactured and sold by the iRobot Corporation of Burlington, MA, the 
PackBot weighs approximately 28 kg (61.78 lb) and costs approximately 
$40,000. The PackBot performed reconnaissance and neutralization of 
unexploded ordnance (UXO) and improvised explosive device sites, which 
posed a major problem to the U.S. Military during the Iraqi War. 
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Manufactured and sold by Foster-Miller Inc., the Talon weighs approxi-
mately 38 kg (85 lb) and costs approximately $60,000. The Talon per-
forms a variety of functions from reconnaissance to weapons delivery. 
Equipped with a robotic arm, uses of the Talon include surveillance or 
grabbing. The Talon performed search and recovery missions at the World 
Trade Center after the September 11 attack and various missions in the war 
in Afghanistan (Voth 2004). Twenty Talon robots were deployed in Iraq in 
the beginning of 2003 and have accomplished approximately 10,000 or 
more missions (Voth 2004).  

1.2.2 Unmanned aerial vehicles 

The UAV is an unmanned aerial vehicle; for example, a drone. The military 
has been the dominant customer for UAVs in the United States, spending 
nearly half a billion dollars annually on UAVs in recent years (Russell and 
Norvig 1995). The organizations and tactical units within the Office of the 
Secretary of Defense, Army, Navy, Marine Corps, and Air Force are 
responsible for specifying, acquiring, and operating UAVs (Russell and 
Norvig 1995). Examples of UAVs are drones and the MQ-9 Reaper. 

1.2.3 Autonomous underwater vehicles 

An AUV is an autonomous underwater vehicle. The main fields of AUV 
application include: (1) ocean exploration and monitoring of water 
medium, (2) marine geological survey, (3) inspection of the underwater 
engineering structures and pipelines, (4) search, inspection, and rescue 
operations, and (5) protection of environment and maricultures (Russell 
and Norvig 1995). AUVs were used to search 3.5 million square meters of 
shallow water for mines in Operation Enduring Freedom in Iraq in 2003 
(Edwards et al. 2004). Examples of AUVs are the Autonomous Benthic 
Explorer and the Odyssey IV. 

1.3 Proposed research 

Designed for relatively benign environments related to terrain, command 
and control, tethered robotic platforms such as pipe inspections systems, 
surveillance robots, explosive ordnance disposal robots, and mine clear-
ance robots perform at a low level of autonomy (Doray et al. 2009). In 
contrast, a tunnel environment presents several challenges to a UGV: i.e., 
the complexity of the terrain, communications limitations (GPS does not 
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work underground), and limited amounts of pre-existing data about the 
tunnel’s environment.  

1.4 Objective 

This dissertation research focuses on building a software system to sup-
port UGVs in exploring tunnels. The goal of this research is to build a 
robust architecture to perform tunnel mapping and localization in an 
unknown environment, hence to increase the level of autonomy of a UGV. 
The current UGV designs cannot accomplish the functions such as locali-
zation and mapping to operate in tunnel environments while communicat-
ing with aboveground systems. 

1.5 Organization of report 

Chapter 2 provides background information on current and past research 
on localization and mapping UGVs in varied environments. Chapter 3 pro-
vides information on the robotic platform used in this research, the soft-
ware, and the selection of algorithms for localization and mapping in the 
prototype system. Chapter 4 provides details and the results of the simula-
tion experiments using CoreSLAM, Gmapping, and HectorSLAM. Chap-
ter 5 provides details and the results of the physical testing experiments 
using CoreSLAM, Gmapping, and HectorSLAM field-testing for the robotic 
platform. Chapter 6 provides details on localizing the robotic platform to 
maps of various resolution generated by HectorSLAM, pathfinding with 
A*, path traversal with the Explorer localized to the generated map. Chap-
ter 7 provides conclusions and future work. 
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2 Literature Review 

2.1 Introduction 

This chapter provides an overview of research in the area of localization 
and mapping of robots in uncertain complex environments such as build-
ings, urban areas, mines, underwater, and tunnels. Also included is an 
overview of past and current research by the Engineering Research and 
Development Center (ERDC) on modeling and simulation and tunnel 
exploration.  

2.2 Mapping 

Robotic mapping addresses the problem of acquiring spatial models of 
physical environments through mobile robots (Thrun 2002). Tasks 
performed by the robot include the identification of features, such as 
landmarks, distinctive objects, or shapes and estimation of the robot’s 
location in reference to the identified features. One of the fundamental 
tasks in robotics is the creation of a map of the area where the robot is 
moving (Rozman 2009). The robot uses the created map for its navigation 
in this environment. 

The robot-mapping problem, more specifically, consists of the robot find-
ing its pose, creating a map, and integrating the two. The robot has to keep 
track of its state based on data perceived from its sensors. The pose, the 
most important part of the state, provides information related to the 
location and orientation of the robot relative to its environment, i.e., pose 
= (x, y, Ө), where x and y represent the location and Ө is the orientation of 
the robot relative to a given coordinate frame. 

2.2.1 Robotic mapping problems 

Sebastian Thrun lists the five following problems associated with robotic 
mapping: (1) measured noise, (2) map size, (3) correspondence/data 
association problem, (4) dynamic environments, and (5) robotic explora-
tion (Thrun 2002b).  

As discussed earlier, robots, equipped with varied sensors to perceive their 
environment, navigate their environment seeking landmarks. As the robot 
navigates its environment, the sensor data may contain errors in 
measuring its environment. The errors are also defined as noise. The cause 
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of the errors may be slippage caused by odometry errors or sensor noises 
because of real-world predicaments. Odometry errors will accumulate and 
throw off an entire map.  

Second, there is the problem of the size of the map. The size of the map 
may be increased as the robot navigates. When mapping a robot’s environ-
ment, the information about the environment has to be stored. Storing the 
map requires more memory space and computational time as the map 
increases in size.  

The third and possibly hardest problem in robotic mapping is the corre-
spondence problem, also known as the data association problem. The data 
association problem is associated with differentiating between sensor 
measurements taken at time t corresponding with the same physical object 
in the world. The correspondence problem determines if two data points 
taken from different scans are the same object.  

The fourth problem, dynamic environment, deals with environmental 
change as time passes, e.g., a landmark that is a moving object such as a 
person. Changes in an environment can be from slow to fast.  

The final problem is robotic exploration during mapping, the task of gen-
erating robot motion in the pursuit of building a map. Figure 1 depicts a 
map of an UGV while exploring a tunnel and the map that it creates during 
the exploration of the tunnel.  

2.2.2 Metric and topological maps 

According to the type of maps generated, mapping algorithms can be 
roughly divided into two categories: metric approaches and topological 
approaches. The first approach models the environment using a metric 
map, enabling accurate estimation of the robot’s positions. A metric 
approach typically provides a dense representation of the environment; 
therefore, it is well suited to precise trajectory planning (Angeli et al. 
2008). In a topological approach, the environment, segmented into dis-
tinctive pieces, forms the nodes of a graph or topological map. The neigh-
boring relations (i.e., whether or not a piece is accessible from another 
one) is modeled using the edges of this graph (Angeli et al. 2008). Topo-
logical mapping relies on a higher level of representation than metric 
mapping, allowing symbolic goal-driven planning and navigation.  
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Figure 1. Map of area robot has navigated. 

 

Compared with metric mapping, topological mapping usually provides a 
more compact representation that scales better with the size of the 
environment. 

2.2.3 Probabilistic mapping algorithms 

The correspondence problem is the key to solving either the metric map-
ping or topological mapping problem, i.e., the robot must be able to deter-
mine if data taken at different times correspond to the same physical 
object (Reynolds 2005). In this regard, probabilistic techniques yield some 
of the most accurate results of any of the methods.  

At the foundation of any probabilistic algorithm for robotic mapping lies 
Bayes’ Rule (1), where x represents the map and d represents the data for 
the sensors. Pr(x) is the prior probability of the map, and Pr(x|d) is the 
probability of the map x is true given the sensor measurement d, and 
p(d|x) is the probability of the sensor measurement being d given an 
object at x. 

 Pr(x|d)= 𝑝𝑝(𝑑𝑑│𝑥𝑥)Pr(𝑥𝑥)
𝑝𝑝(𝑑𝑑)

 (1) 
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Usually, a Bayes estimator approximates both the map and the robot’s 
pose. 

The correspondence problem also can be tackled in an incremental 
fashion. For example, Reynolds (2005) discussed a maximum likelihood 
approach that compares nearby measurements of the previous map to 
identify the path the robot has moved within a small time frame. This 
approach was shown to be robust in the sense that it can recover from a 
wrong correspondence. Nevertheless, it takes a large amount of process-
ing, making it less ideal for real-time applications. 

An occupancy grid is one of the most popular incremental algorithms 
because of its ease of use and robustness. In the most basic form, the 
binary occupancy of a location (x,y) is calculated and the cells (grids) are 
incrementally updated (Reynolds 2005). This approach works well in a 
real-time application; however, it relies heavily on odometry data. This 
means that the errors in odometry data will accumulate and, hence, skew 
the map.  

The above error accumulation problem can be alleviated by a hybrid 
method, e.g., combining a Bayes estimator with an incremental algorithm. 
Although they are typically more difficult to implement, they provide 
significantly better results than either a purely Bayes estimator or an 
incremental method for autonomous robots (Reynolds 2005). 

2.3 Localization 

Localization refers to the estimation of the position of a mobile robot on a 
known or a predicted map (Stanculescu and Sojka 2008). It requires using 
a map to interpret sensor data to determine the configuration of the robot. 
Without the ability to localize itself in an environment successfully, a robot 
is effectively stripped of its ability to do useful work (Kramer 2010). 

There are three issues involved with localization: the local position track-
ing problem, the global position tracking problem, and the kidnapped 
robot problem. Each problem has been extensively researched in the 
literature. 

The local position tracking problem has received the most attention. When 
dealing with this problem, the robots initial pose is known. For global 
position tracking, the robot is unaware of its initial pose and has to  
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determine its location from scratch. In the kidnapped robot problem, the 
robot knows its location; however, it is relocated and is totally unaware of 
its new location. The mobile robot must figure out its location on its own 
completely. This problem is used to test a robot’s ability to localize itself. 

Although there are many methods for determining the location of the 
robot, in this research three methods are discussed in detail as follows: 
(1) Monte Carlo Localization, (2) Kalman filters, and (3) Markov Localiza-
tion. Next, we provide a summary of which of the three localization prob-
lems these methods solve, along with one other possible solution to both 
the localization and mapping problems. 

2.3.1 Monte Carlo Localization 

Monte Carlo Localization (MCL) has been widely used to estimate a 
robot’s pose and to solve the global localization problem, in which the 
robot does not know its starting position (Thrun et al. 2001). MCL consists 
of four steps: sampling, prediction, update, and weight normalization as 
depicted in Figure 2 below. The general idea is as follows. 

1. Initialize a set of samples (the current samples) so that their locations 
are evenly distributed and their importance weights are equal.  

2. Repeat until done (i.e., weights converge) with the current set of 
samples:  
a. Move the robot a fixed distance and take a sensor reading.  
b. Update the location of each of the samples (using the movement 

model). 
c. Assign the importance weights of each sample to the likelihood of 

that sensor reading given that new location (using the sensor 
model).  

d. Create a new collection of samples by sampling (with replacement) 
from the current set of samples based on their importance weights. 

e. Let this new collection be the current set of samples.  

Research performed by Stanculescu and Sojka (2008) evaluates the Monte 
Carlo Localization algorithm. It was concluded that MCL efficiently 
estimates the position of a robot on a grid-based map. 
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Figure 2. Monte Carlo Localization algorithms. 

 

In Dellaert et al. (1999), the researchers introduce a MCL method that 
represents the probability density involved by maintaining a set of 
randomly drawn samples. By using a sampling-based representation, they 
obtain a localization method capable of representing an arbitrary 
distribution. Experimentally, they show that the resulting method can 
efficiently localize a mobile robot without knowledge of its starting 
position, which is faster, more accurate, and less memory-intensive than 
earlier grid-based methods. 

One advantage of using the MCL is its ability to represent multi-modal 
distributions; hence, it can be used to globally localize a mobile robot. A 
second advantage is that MCL drastically reduces the amount of memory 
required compared to a grid-based Markov Localization (discussed in Sec-
tion 2.3.3) and can integrate measurements at a considerably higher fre-
quency. A third advantage is that, like many randomized algorithms, it is 
easy to implement (Stanculescu and Sojka 2008). 
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Many variants of the MCL method exist, one such method is Mixture – 
Monte Carlo Localization, a mobile robot localization algorithm. It is a 
version of particle filtering that combines a regular sampler with its dual 
(Thrun et al. 2001). The Mixture-MCL provides efficiency, versatility, 
resource adaptiveness, and robustness. 

2.3.2 Kalman filters 

In a seminal paper, R.E. Kalman (1960) developed a probabilistic filtering 
algorithm for a control system. The Kalman filter has been widely applied 
in robot perception. Its purpose is to use sensor measurements observed 
over time, containing noise (random variation) and other inaccuracies, to 
produce values that tend to be closer to the true values of the measure-
ments than the observed values. 

Kalman filters are essentially Bayes’ filters under a Gaussian assumption. 
They have been widely applied to estimate the robot’s pose. The Kalman 
filter algorithm operates on the postulation that the current state function 
must be a linear step from the previous state function with Gaussian noise. 
The Kalman filter is an effective approach in several aspects: (1) it 
supports estimations of past, present, and even future states, and (2) it can 
do so even when the precise nature of the modeled system is unknown 
(Welch and Bishop 1995). 

Although Kalman filter-based techniques have proven to be robust and 
accurate for keeping track of the robot’s position, it relies on the Gaussian 
assumption and lacks the ability to globally (re-)localize the robot in the 
case of localization failures (Dellaert et al. 1999). Although the Kalman 
filter can be amended in various ways to cope with some of these 
difficulties, recent approaches have used richer schemes to represent 
uncertainty, moving away from the restricted Gaussian density 
assumption inherent in the Kalman filter (Dellaert et al. 1999). 

2.3.3 Markov Localization 

Markov Localization is a special case of probabilistic state estimation using 
Bayes’ rule. It is robust against both inaccurate maps and noisy sensors 
(Song 2002). In many probabilistic mobile robot localization literatures, 
the term Markov Localization and Bayesian estimation (filter) are used 
interchangeably. Markov Localization uses a probabilistic framework to 
maintain a position probability density over the whole set of possible robot 
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poses. It is based on the Markov Assumption, i.e., the environment is static 
(Fox et al. 1999). Instead of maintaining one hypothesis as to where in the 
world a robot may be, it maintains a probability distribution over the space 
of all such hypotheses (Fox et al. 1999). The probabilistic representation 
allows it to weigh these different hypotheses in a mathematically sound 
way (Fox et al. 1999). The pseudo code of a general Markov Localization 
algorithm is given in Figure 3. 

Figure 3. Markov Localization algorithm (Fox et al. 1999). 

 

Markov Localization has produced excellent success in mobile research 
areas, such as working as guidance robots at a crowded museum. Minerva 
and Rhino are two mobile robots using different types of robots and sensor 
modalities to act as interactive museum tour-guides. The major advantage 
of Markov Localization is its ability to detect localization failures and to re-
localize the robot (Fox et al. 1999). The only disadvantage lies in the fixed 
representation of the grid, which has an undesirable effect; the memory 
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requirement stays constant even if only a minor part of state space is 
updated. 

2.4 Simultaneous localization and mapping 

Simultaneous localization and mapping (SLAM) is a technique used by 
robots and autonomous vehicles to build a map within an unknown 
environment (without apriori knowledge) or to update a map within a 
known environment (with apriori knowledge from a given map) while 
keeping track of their current location. SLAM, which was introduced by 
R. Smith, M. Self, and P. Cheeseman in 1990, laid the groundwork for the 
modern SLAM problem using Extended Kalman Filters.  

A solution to the SLAM problem has been seen as the “Holy Grail” and 
would enable robots to operate in an environment without a priori 
knowledge of obstacle locations. The characteristics of SLAM couple the 
problems of localization and mapping. The two quantities are to be 
inferred from a single measurement. Loosely speaking, a SLAM process 
consists of multiple steps: landmark extraction, data association, state 
estimation, state update, and landmark update (Riisgaard and Blas 2004).  

To achieve SLAM, two models are required, the process model and the 
observation model. In the process model, a vehicle traverses through an 
environment containing a population of landmarks with a known kinetic 
model. In the observation model, the vehicle is equipped with a sensor that 
can take measurements of the relative location between any individual 
landmark and the vehicle itself. Various versions of SLAM exist: 
FastSLAM 2.0, Marginal SLAM, and EKF –SLAM, to name a few. 

2.5 Research goal 

Currently, a very limited number of robotic platforms are available for 
tunnel exploration. The goal of this research is to develop a software 
platform to support a UGV to perform localization and mapping of a 
tunnel. The robotic platform should be able to detect humans and objects 
while exploring the tunnel. This research aids in expanding the number of 
robotic platforms available for use by the DoD and the DHS. Also, another 
goal is to increase the level of autonomy for UGVs in which the ERDC 
currently use from tethered UGV. Next, we discuss the modeling and 
simulation, tunnel exploration, and levels of autonomy. 
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2.5.1 Modeling and simulation 

Modeling and simulation (M&S) is a tool that saves time, money, and lives. 
M&S has been used by the military since the early 1940s. According to the 
Department of Defense’s Modeling and Simulation Primer, military 
analysts use M&S to help shape the size, composition, and structure of 
forces to meet national military requirements, and to assess the sufficiency 
of operational plans. The Primer also states that the military acquisition 
community uses M&S (1) to evaluate requirements for new systems and 
equipment; (2) to conduct research, development, and analysis activities, 
(3) to develop digitized prototypes and avoid the building of costly full 
scale mockups, and (4) to plan for efficient production and sustainment of 
the new systems and equipment when employed in the field. 

The Department of Defense’s Modeling and Simulation Primer defines a 
model as a physical, mathematical, or logical representation of a system, 
entity, phenomenon, or process with no movement, as in a replica of a car 
or airplane. The model may take the form of a set of assumptions 
concerning the operation of the system (Banks and Carson 1984). Once 
developed and validated, a model can be used to investigate a wide variety 
of “what if” questions about the real-world system. 

In Discrete-Event System Simulation, simulation is defined by Banks as 
the imitation of the operation of a real-world process or system over time. 
Whether done by hand or on a computer, simulation involves the 
generation of an artificial history of a system and the observation of that 
artificial history to draw inferences concerning the operation of 
characteristics of the real system (Banks and Carson 1984).  

2.5.2 Tunnel exploration 

The Unmanned Tunnel Exploration (UTE) research effort’s goal is to 
develop a Semi-Autonomous Unmanned System for Small Unmanned 
Ground Vehicles in tunnel environments, and Intelligence, Surveillance, 
and Reconnaissance (ISR) processes (Doray et al. 2009). The UTE research 
effort combines high resolution vehicle simulations with field experiments 
to advance the operational capability of SUGV’s operating in tunnels. The 
UTE technology will have a significant impact on successfully deploying the 
first generation Tunnel Activity Detection Systems (TADS) solution through 
the Joint Task Force-North (JTF-N), a subordinate command of 
US NORAD-NORTHCOM, and the US ARMY ERDC. Further collaboration 
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is being conducted with TAE Technical Support Working Group, US ARMY 
TRADOC Analysis Center, Monterey, and Idaho National Labs. Figure 4 
depicts the TALON navigating a tunnel in San Diego. 

Figure 4. Tunnel exploration in San Diego, CA. 

 

2.5.3 Levels of autonomy 

An autonomous navigation system or autonomous robot can function, 
operate, or make decisions independently under reasonable circumstances, 
with limited human intervention. Increasing levels of human intervention 
decrease the autonomy of the navigation system. A classification of levels of 
autonomy takes into account the interaction between human control and 
the machine motions: teleoperation, supervisory, task-level autonomy, and 
full autonomy. In teleoperation, a human controls each movement. Each 
machine actuator change is specified by the operator. At the supervisory 
level, a human specifies general moves or position changes, and the 
machine decides specific movements of its actuators. At the task-level 
autonomy, the operator specifies only the task, and the robot manages itself 
to complete it. In full autonomy, the machine will create and complete all its 
tasks without human interaction. Generally, higher levels of autonomy do 

http://www.wired.com/images_blogs/wiredscience/2009/05/tunnel1.jpg
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not necessarily require more complex cognitive capabilities. For example, 
robots in assembly plants are completely autonomous, but operate in a fixed 
pattern.  

The Autonomy Levels of Unmanned Systems (ALFUS) working group’s 
definition of levels of autonomy is displayed in Figure 5. The ALFUS level 
ranges from 0 to 10, where at 0 there is no autonomy and the robot is 
controlled by remote control and at 10 the system is a fully intelligent 
system with no human interface. 

Figure 5. ALFUS defined level of autonomy. 

 

2.6 Proposed research 

In this research, software was designed and tested for a UGV, the Coro-
ware Explorer, to enable it to function as an UGV with the capability to 
localize and map an unknown area while navigating. The UGV was 
equipped with a camera, acoustic sensor, and a Laser Range Finder that 
provides the UGV with readings to determine its pose and landmarks 
within the unknown area to create a map of the unknown research. 

The developed system was validated using simulation and field-testing to 
determine its ability to navigate the unknown environment, detect 
landmarks, and build a map of the navigated environment. Three scenarios 
were used for simulation testing. The simulated test environment was the 
STAGE simulator and the test sites were in facilities at the ERDC in 
Vicksburg, MS.  
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This research uniquely combines Coroware Explorer and field-testing. In 
the next chapter, we introduce Coroware Explorer, the robot platform in 
the project.  
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3 Overview of System 

3.1 Description of robot platform 

The following UGV platforms received consideration as possible platforms 
for this research: (1) the Adept Pioneer 3-AT, (2) the Coroware Explorer, 
and (3) Superdroid Robots HD2 Treaded ATR Tank Robot Kit. Each of 
these platforms is a programmable robot, easily adaptable to varied 
sensors. Figure 6 depicts the Superdroid Robots HD2 Treaded ATR Tank 
Robot Kit, Figure 7 depicts the Coroware Explorer, and Figure 8 depicts 
the Adept Pioneer 3-AT.  

Figure 6. Superdroid Robots HD2 Treaded ATR Tank Robot kit. 

 

The selection of the robot is based on several requirements.  

• It may be tracked or wheeled. 
• It must be capable of crossing objects of various sizes such as rocks, 

water, and gravel. 
• It must support a range of sensors. 
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Figure 7. Coroware Explorer. 

 

Figure 8. Adept Pioneer 3-AT. 
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For this project, we selected the Coroware Explorer (Figure 7). The 
Explorer meets all the above requirements. It has 6-in. clearance or more. 
It is equipped with two sensors: a two Mega Pixel Color Webcam to 
capture scenes and a Laser Range Finder (Figure 9) for detection of 
landmarks. It has a 2.0 GHz CPU, 1 GB of RAM, a 2.0 GHz CPU, a 4-hr 
battery life, a dual-boot operating system (Ubuntu Linux or Windows), 
Wi-Fi, and a CUDA-capable main board. Its dimensions are 23 in. long, 
21 in. wide, and 16 in. high with a weight of about 20 lb. The robotic 
software platform is the Robotic Operating System. Appendix A contains 
an original quote for the Coroware Explorer from Coroware. 

Figure 9. Hokuyo laser range finder. 

 

The Laser Range Finder, shown in Figure 9, is the Hokuyo UTM-30L-X. 
The Hokuyo UTM-30L-X has a detectable range of 100 mm to 
30,000 mm, 25 msec per scan, 12V operating voltage, and a 270 deg 
scanning range. It connects to the Explorer via USB. The cost of the 
Hokuyo UTM-30L-X was approximately $7,000. 

3.2 Description of software 

The Robotic Operating System (ROS), an Open Source UGV software, was 
selected for use with this project. ROS provides libraries and tools to help 
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software developers create robot applications. ROS is not an operating 
system in the traditional sense of process management and scheduling; 
rather it provides a structured communication layer above the host 
operating system of a heterogeneous compute cluster (Quigley et al. 2009). 

ROS was designed to meet a specific set of challenges encountered when 
developing large-scale service robots as part of the STAIR project at 
Stanford University and the Personal Robots Program at Willow Garage, 
but the resulting architecture is far more general than service-robot and 
mobile-manipulation domains. The philosophical goals of ROS can be 
summarized as (1) peer-to-peer, (2) tools-based, (3) multi-lingual, (4) thin, 
and (5) free and open-source. 

ROS provides services expected of an operating system, including 
hardware abstraction, low-level device control, implementation of 
commonly used functionality, message-passing between processes, and 
package management (http://wiki.ros.org/ROS/Introduction). It also provides tools 
and libraries for obtaining, building, writing, and running code across 
multiple computers (Quigley et al. 2009). 

ROS currently only runs on Unix-based platforms. Software for ROS is 
primarily tested on Ubuntu and Mac OS X systems, although the ROS 
community has been contributing support for Fedora, Gentoo, Arch Linux, 
and other Linux platforms (Quigley et al. 2009).  

3.3 Mapping and localization algorithms 

Thus far, grid-based, topological, and hybrid mapping algorithms were 
studied for possible use to perform this research. Markov Localization, the 
Monte Carlo Method, and Kalman filters have been studied as a means to 
perform localization of the robot. SLAM has been studied and performs 
localization and mapping simultaneously.  

3.4 Summary 

The Coroware Explorer was selected as the platform for this research. ROS 
was used to program the Explorer robotic platform. Three mapping and 
localization algorithms will be implemented and compared in Chapter 4. 
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4 Simulation Testing Evaluation 

This chapter provides a quantitative evaluation of three laser-based SLAM 
algorithms implemented in the 2-D simulator: CoreSLAM, Gmapping, and 
HectorSLAM. The tele-operated robot explores three ground truth map 
images, and each produces a generated map image. Image registration, the 
process of aligning two images of the same scene, is then used to align the 
ground truth map and the generated map for a multimodal comparison of 
the two. The Hausdorff Distance, a mathematical function used to 
measure the difference between two subsets of the same space, is then 
calculated to show the difference in the two images as a numeric value. 
Both image registration and the Hausdorff distance code are written in 
MATLAB and produce results comparing each of the algorithms and 
showing one algorithm is superior to the other two. 

4.1 Evaluated SLAM algorithms 

As discussed in Section 2.4, many types of SLAM algorithms exist, for 
example, those that are vision-based or laser-based, and those that are 2-D 
or 3-D. The three algorithms evaluated were available at www.ros.org: 
CoreSLAM, Gmapping, and HectorSLAM. Each algorithm requires laser-
based inputs as data for the simulation. The three SLAM algorithms collect 
data via the tele-operated robot within the Stage 4.1.1 software simulation, 
each outputting a map image of the navigated environment.  

Each algorithm is used as a black box in this research; however, the 
underlying details of the implementation differ in the following aspects: 
(1) Both HectorSLAM and CoreSLAM rely on scan matching, while 
Gmapping uses particle filters, (2) CoreSLAM may produce a different 
map each time with the same input dataset, and (3) CoreSLAM requires 
loop closing while Hector SLAM does not. 

4.1.1 CoreSLAM 

CoreSLAM is a version of SLAM that implements tinySlam. It requires a 
mobile robot that provides odometry data and is equipped with a 
horizontally mounted, fixed, laser range-finder. The slam_CoreSLAM 
node will attempt to transform each incoming scan into the Odom 
(odometry) “tf” frame. 
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CoreSLAM relies on a simple Monte Carlo algorithm for scan matching 
and was developed by Steux and El Hamzaoui with the goal of producing a 
SLAM algorithm with no more the 200 lines of codes. CoreSLAM has 
aparticle filter routine, ts_distance_scan_to_map, and a map update 
function. The ts_distance_scan_to_map routine tests each state position, 
and the map update function updates the map as the robot navigates its 
environment. 

The slam_CoreSLAM node takes as input laser data and pose data 
collected from the laser range finder and outputs a low quality map, yet a 
recognizable one.  

Overall, CoreSLAM performs better on a slow robot. 

4.1.2 Gmapping 

Gmapping is a highly efficient Rao-Blackwellized particle filter to learn 
grid maps from laser range data. Implementation requires a mobile robot 
equipped with a mounted, fixed, laser range finder.  

Loop closure is the hardest part; when closing a loop, be sure to drive 
another 5 to 10 m to get plenty of overlap between the start and end of the 
loop. 

This package contains Gmapping from OpenSlam and a ROS wrapper. The 
Gmapping package provides laser-based SLAM as a ROS node called 
slam_Gmapping. Using slam_Gmapping, it creates a 2-D occupancy grid 
map (like a building floor plan) from laser range finder and pose data 
collected by a mobile robot (Santos 2008). 

The slam_Gmapping node takes as input laser data and pose data 
collected from the laser range finder and outputs a high quality map.  

4.1.3 Hector SLAM Gmapping 

Hector SLAM relies on scan matching, uses a Gauss-Newton Approach, 
and is accurate enough that it does not require loop closure. The Hector 
SLAM package consists of three main packages, hector_mapping, 
hector_geotiff, and hector_trajectory_server.  
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The Hector_mapping node is a SLAM approach used with or without 
odometry on platforms that exhibit roll/pitch motion (of the sensor, the 
platform, or both). It leverages the high update rate of modern LIDAR 
systems like the Hokuyo UTM-30LX and provides 2-D pose estimates at 
the scan rate of the sensors (40 Hz for the UTM-30LX). Although the 
system does not provide an explicit loop closing ability, it is sufficiently 
accurate for many real-world scenarios. The system has been used 
successfully on Unmanned Ground Robots, Unmanned Surface Vehicles, 
Handheld Mapping Devices, and logged data from quadrotor UAVs (Kohl-
brecher 2011). 

Hector_geotiff saves the map and robot trajectory to geotiff image files. 
The hector_trajectory_server saves trajectory files as output. The 
hector_mapping node’s main input is scan data on the /scan topic. The 
data are then transformed via the /tf topic.  

Overall, Hector SLAM outputs a high quality map that is recognizable. 

4.2 Ground truth maps 

Figure 10 displays the three maps chosen as the ground truth maps for the 
simulation, labeled as Map One, Map Two, and Map Three. Each is simple 
in design and simple to navigate. All three maps were downloaded from 
the web and used with the Stage 4.1.1 simulator as the ground truth map 
for the simulated robot to navigate.  

Figure 10. Ground truth maps. 
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4.3 Simulation results 

Each of the three SLAM algorithms previously discussed was tested using 
the 2-D simulation environment, Stage, a 2-D robotic simulator that 
provides users with the capabilities of simulating a robot or a variety of 
robots in an environment or a variety of environments. Stage, an open-
source software, provides multiple physics-based models for robot sensors 
and actuators. Some of the currently supported models are sonar and 
infrared rangers, 2-D scanning laser rangefinder, color-blob tracking, 
fiducial tracking, bumpers, grippers, and mobile robot bases with odometric 
and global localization (University of Tennessee Knoxville 2007). 

One advantage Player/Stage provides is the ability to move from 
simulation to the robot by changing a few parameters (Staranowicz and 
Mariottini 2011). The learning curve on the Stage software is a 
disadvantage. 

Stage, used standalone or with ROS, has many versions. This research 
implements Stage 4.1.1, the most recent version and requires ROS Fuerte 
for implementation.  

The simulated robot completely navigated each of the three ground truth 
maps with each of the three algorithms to produce the three generated 
maps. Figure 11 shows the ground truth map, labeled Fixed, and the three 
generated maps produced by each algorithm, labeled CoreSLAM, 
Gmapping, and Hector Slam, after navigating the ground truth of Map 
One. Figure 12 shows the ground truth map, labeled Fixed, and the three 
generated maps produced by each algorithm, labeled CoreSLAM, 
Gmapping, and Hector Slam, after navigating the ground truth of Map 
Two. Figure 13 shows the ground truth map, labeled Fixed, and the three 
generated maps produced by each algorithm, labeled CoreSLAM, 
Gmapping, and Hector Slam, after navigating the ground truth of Map 
Three.  

Analyses of these maps are discussed later. 
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Figure 11. Map One and generated map of each algorithm. 

 

Figure 12. Map Two and generated map of each algorithm. 

 

Figure 13. Map Three and generated map of each algorithm. 

 

4.4 Image registration of ground truth and generated maps  

MATLAB (matrix laboratory) is a multi-paradigm numerical computing 
environment and fourth-generation programming language with many 
functions and libraries. This research uses the image registration tool to 
compare the generated maps to the ground truth map. 

Image registration, the process of aligning two images of the same scene, is 
then used to align the ground truth map image and the generated map 
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image for a multimodal comparison of the two images. An intensity-based 
automatic image registration process requires a pair of images, a metric, 
an optimizer, and a transformation type in order to align one image with 
another. The pair of images is the ground truth map image and the 
generated map image. 

The metric defines the image similarity metric for evaluating the accuracy 
of the registration. The optimizer defines the methodology for minimizing 
or maximizing the similarity metric.  

The transformation type defines the type of 2-D transformation that 
brings the misaligned image (called the moving image or the generated 
image) into alignment with the reference image (called the fixed image or 
the ground truth image). Four transform types exist: affine, rigid, similar, 
and translation. 

The image registration process begins with the transform type you specify 
and an internally determined transformation matrix. Together, they 
determine the specific image transformation that is applied to the moving 
image with bilinear interpolation. 

Next, the metric compares the transformed moving image to the fixed 
image and a metric value is computed.  

Finally, the optimizer checks for a stop condition. A stop condition is 
anything that warrants the termination of the process. In most cases, the 
process has reached a point of diminishing returns or it has reached the 
specified maximum number of iterations. If there is no stop condition, the 
optimizer adjusts the transformation matrix to begin the next iteration. 

The following sections discuss the resulting aligned images produced with 
the four transformations, i.e., affine, rigid, similar, and translation, and 
the three algorithms. The maps will contain three colors: magenta, green, 
and black. The magenta represents the intensity of the ground truth 
image, the green represents the intensity of the SLAM generated map, and 
the black represents where both images align or are the same. 

4.4.1 CoreSLAM 

Figures 14, 15, and 16 were produced using two images, (1) the ground 
truth map images, and (2) the Stage simulated generated map images 
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from the CoreSLAM algorithm, as inputs to MATLAB’s image registration 
function. In general, image registration overlays or aligns the generated 
map on to the ground truth map image to compare the two images. The 
image registration tool is executed with the four different transform types: 
affine, translation, rigid, and similar. Figures 14, 15, and 16 display the 
output images of the four transformations with the MATLAB code. 

The generated maps show up with more intensity than the ground truth 
maps due to CoreSLAM producing multiple edges (green shaded areas) 
along the exterior portion of the map. While the ground truth and 
generated maps are similar in nature, there are few overlapping points 
because there is very little black, which shows points where the two images 
are identical.  

Figure 14. Image registration of Map One and CoreSLAM generated map. 
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Figure 15. Image registration of Map Two and CoreSLAM generated map. 

 

Figure 16. Image registration of Map Three and CoreSLAM generated map. 
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4.4.1 Gmapping  

Figures 17, 18, and 19 were produced using two images; the ground truth 
map images and the Stage simulated generated map images from the 
Gmapping algorithm in MATLAB’s image registration function. The 
magenta in the image of Figure 17 represents the intensity of the ground 
truth image, the green represents the intensity of the SLAM generated map, 
and the black represents where the images overlap. In the upper left of 
Figure 18, all transform types align all most perfectly. Transform type affine 
has a small amount of green in the bottom indicating that the ground truth 
map of Map Two has a slightly higher intensity than the generated map. 
Transform type translation (bottom right) has a small amount of green on 
the left and the bottom of the map, indicating the ground truth map of Map 
Two has a slightly higher intensity than the generated map. In Figure 19, the 
magenta is stronger in all transformations, indicating that the generated 
map has a higher intensity than the ground truth of Map Three. The black 
shows where the images align.  

Figure 17. Image registration of Map One and Gmapping generated map. 
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Figure 18. Image registration of Map Two and Gmapping generated map. 

 

Figure 19. Image registration of Map Three and Gmapping generated map. 
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4.4.2 Hector SLAM 

Figures 20, 21, and 22 were produced by using the ground truth maps and 
the Stage simulated generated maps with the Hector SLAM algorithm as 
input in MATLAB’s image registration function. The image registration 
tool was again processed with the four different transform types: affine, 
translation, rigid, and similar. Figure 20 shows the generated map has 
more intensity than the ground truth map due to the alignment being off 
and the degree of difference in the two maps. While the maps are similar 
in nature, they have few overlapping points. Figures 21 and 22 show black 
more than magenta and green indicating that the two images have very 
little differences. Figure 20 has more green with all transform types.  

Figure 20. Image registration of Map One and Hector SLAM generated map. 
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Figure 21. Image registration Map Two and Hector SLAM generated map. 

 

Figure 22. Image registration of Map Three and Hector SLAM generated map. 
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Figure 21 shows green around the exterior due to the processing of image. 
In Figures 21 and 22, the rigid (upper right) and translation (lower right) 
transforms produce near perfect alignments. 

4.4.3 Comparisons of ground truth maps and Stage 4.1.1 generated 
maps 

For a quantitative measure between the ground truth maps and the 
generated simulator maps, the Hausdorff Distance is calculated. The 
Hausdorff distance, by definition, is as follows: Given two finite sets A = 
(a1….ap) and B = (b1…bp), the distance is calculated as  

 𝐻𝐻(𝐴𝐴,𝐵𝐵) = max (ℎ(𝐴𝐴,𝐵𝐵),ℎ(𝐵𝐵,𝐴𝐴)) 

where 

ℎ(𝐴𝐴,𝐵𝐵) = sup 𝑖𝑖𝑖𝑖𝑖𝑖‖𝑎𝑎 − 𝑏𝑏‖
 a∈A b∈B 

 

‖ ‖ represents some underlying norm defined in the space of the two 
point sets, which is generally required to be an Lp norm, usually the L2 or 
Euclidean norm. The function h(A,B) is called the directed Hausdorff 
distance from A to B. If A and B are compact sets, then 

ℎ(𝐴𝐴,𝐵𝐵) = max
𝑎𝑎∈𝐴𝐴

min
𝑏𝑏∈𝐵𝐵

‖𝑎𝑎 − 𝑏𝑏‖ 

The Hausdorff Distance is calculated with the function h(A,B), which 
returns the distance of matrix A from matrix B. It identifies the point an 
element of A that is the farthest from any point in B and measures the 
distance from A to its nearest neighbor in B (comparing images using 
Hausdorff Distance paper).  

Table 1 shows the HectorSLAM algorithm has the lower values of 15.5885, 
in the Hausdorff Distance Column. CoreSLAM has the second lowest value 
of 16.55. Gmapping has the highest value of 22.7156.  

Table 2 shows the CoreSLAM algorithm has the lower value of 15.5563, in 
the Hausdorff Distance Column. HectorSLAM and Gmapping have an 
equal value of 16.8523.  
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Table 3 shows the HectorSLAM algorithm has the lower values of 14.1067, 
in the Hausdorff Distance Column. CoreSLAM having the second lowest 
value of 18.13857. Gmapping has the highest value of 19.2354.  

Based on all the results, HectorSLAM outperforms both CoreSLAM and 
Gmapping for Map One and Map Three. CoreSLAM outperforms 
HectorSLAM and Gmapping for Map Two while HectorSLAM and 
Gmapping are tied for Map Two. 

Table 1. Hausdorff distance for Map One. 

 Map Size Hausdorff Distance 
CoreSLAM 600 × 500 16.55 
Gmapping 600 × 500 22.7156 
Hector SLAM 600 × 500 15.5885 

Table 2. Hausdorff distance for Map Two. 

 Map Size Hausdorff Distance 
CoreSLAM 500 × 500 15.5563 
Gmapping 500 × 500 16.8523 
Hector SLAM 500 × 500 16.8523 

Table 3. Hausdorff distance for Map Three. 

 Hector SLAM Map Size Hausdorff Distance 
CoreSLAM 500 × 500 18.13847 
Gmapping 500 × 500 19.2354 
Hector SLAM 500 × 500 14.1067 
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5 Physical Testing Evaluation 

This chapter provides the evaluation of three laser-based SLAM 
algorithms, HectorSLAM, Gmapping, and CoreSLAM, implemented on the 
mobile robot, the Coroware Explorer. The tele-operated robot explored 
two physical test areas (ground truth maps) and generated a map of each 
area with each algorithm. Comparisons of the ground truth maps and the 
generated maps are discussed below.  

5.1 Evaluated algorithms 

The algorithms used for physical testing are the same as those discussed in 
Section 4.1. The ultimate goal is to have the Explorer navigate each of the 
test areas and build a map of the unknown environment with each of the 
three algorithms. Each algorithm takes scan data from the Laser Range 
Finder attached to the Explorer and outputs a generated map.  

5.2 Test areas 

Two areas were selected for ground truth maps. Figure 23 is the ground 
truth map of the foyer, break room, and mail room of Building 3296 at the 
ERDC, and Figure 24 is the ground truth map of the basement area of 
Building 3296 used to perform the physical test. The tele-operated 
Explorer navigated each area, and a map was generated simultaneously 
using the input from the Laser Range Finder and the three algorithms. The 
robot was networked with a laptop running UBUNTU and ROS Fuerte 
with each of the three algorithms. Each area was traversed with one of the 
selected algorithms to produce the three SLAM maps. The rooms in the 
basement were empty while the foyer, break room, and mail room had 
tables, chairs, file cabinets, a sink base, soft drink machines, snack 
machines, garbage cans, ice machine, and recycle bins. The foyer’s entry 
(Figure 23) is made of glass and has a larger area with two glass doors and 
an entry leading to the hallway with entry to the breakroom and the mail-
room. The basement (Figure 24) consists of a hallway with four rooms and 
another hallway. Rooms 1, 3, and 4 have one door, while Room 2 has two 
doors. All four rooms were empty. The hallway was about 5 ft wide and 
50 ft in length.  
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Figure 23. Ground truth map of foyer and break room. 
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Figure 24. Ground truth map of basement. 
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5.3 Generated maps from physical testing 

This section shows the generated maps produced while navigating the two 
test areas with the mobile robot. CoreSLAM and Gmapping performed 
poorly while HectorSLAM generated a recognizable map with many 
identifiable features. 

5.3.1 CoreSLAM  

Figure 25 depicts the generated map from the CoreSLAM for the 
basement, and Figure 26 depicts the foyer. CoreSLAM performed poorly 
on the physical robot and the produced maps were of poor quality and 
unrecognizable compared to the ground truth maps. This could be due to 
the fact that the four rooms in the basement were small and the robot had 
to make an almost 360-deg turn in the rooms. However, the map for the 
foyer was also unrecognizable; therefore, this theory may be incorrect. 

Figure 25. Generated CoreSLAM map of basement. 
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Figure 26. Generated CoreSLAM map of foyer. 

 

5.3.2 Gmapping 

Figure 27 depicts the generated map from the Gmapping for the basement 
and Figure 28 the generated map of the foyer. Gmapping performed 
poorly on the physical robot, and the produced maps were of poor quality 
and unrecognizable compared to the ground truth maps.  
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Figure 27. Generated Gmapping map of basement. 

 

5.3.1 HectorSLAM 

Figure 29 depicts the generated map from Hector SLAM for the basement, 
and Figure 30 is the generated map of the foyer. HectorSLAM performed 
efficiently on the physical robot, and the produced maps were good quality 
and recognizable, when compared to the ground truth maps. The 
generated map of the basement was somewhat distorted, but each of the 
four rooms and the hallway were identifiable. 

5.4 Comparison of ground truth map and generated map 

Hector SLAM produced a better map than CoreSLAM and Gmapping. 
Figure 31 shows the generated Hector SLAM map and actual photographs 
of the test site. Doors, windows, tables, chairs, and file cabinets can be 
identified in the generated map. Most of the major corners of the Hector 
SLAM map are recognizable. The Gmapping generated map of the foyer 
had some recognizable features, but CoreSLAM had no recognizable 
features. 

The map in the center is the generated map and the color images are 
actual photos of the foyer, breakroom, and mailroom. The generated map 
in the center has labels pointing to open door, tables and chairs, walls, and 
an unexplored area. The open door label points to an area where the 
Explorer did not travel, but the laser scans down the hallway off the foyer. 
Had the door been closed it would have scanned as a wall. The table and 
chairs label shows the dots on the floor where the table and chair legs are.  
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Figure 28. Generated Gmapping SLAM map of foyer. 

 

The wall label is an area where there are actually walls, cabinets, or door 
where the laser scanner cannot scan. The unexplored area, the gray area, is 
an area in the mailroom where the laser scan did not scan.  
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Figure 29. Generated Hector SLAM map of basement. 

 

The map in the center of Figure 32 is the generated map of the basement 
and the color images are actual photos of the basement, consisting of a 
hallway and four small rooms. The generated map in the center has labels 
pointing to empty rooms, the hallway and a breakroom not traversed by 
the robot but scanned by the laser scanner. As depicted in Figure 31, the 
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rooms are small and the hallway narrow, and the lighting varies from light 
to dark. Too much light could affect the scan, so paper and blinds were 
placed over the window to control the amount of light. I believe the 
smallness of rooms and the narrowness of the hallway had an effect on the 
quality of the map.  

Figure 30. Generated Hector SLAM map of foyer. 
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Figure 31. Generated Hector Slam map and pictures of actual foyer. 

 

Figure 32. Generated Hector Slam map and pictures of actual basement. 
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5.5 Results 

This chapter provided physical testing of the Explorer in the foyer area and 
the basement. The Explorer performed better in the foyer, and a higher 
quality map was generated. This Hector SLAM and Coroware Explorer 
research increases the ability of the ERDC to explore and map unknown 
areas and aids in increasing the level of autonomy of current unmanned 
vehicles used during the exploration of unknown areas. This 
implementation and testing provides further validation of the Hector Slam 
algorithm for real-world application. 
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6 Localization and Pathfinding 

This chapter localizes the Explorer to a position in the generated grid-
based map produced by Hector Slam in Chapter 5 using the Adaptive 
Monte Carlo Localization Package (AMCL) for a robot moving in 2-D. 
AMCL produces the positon of the moving robot in the map. Several maps 
are produced at resolutions with three different physical locations. The 
results of the robot’s path-finding ability with A* algorithm package was 
collected for a path between two points, in both the generated SLAM map 
and the physical site. 

6.1 A* pathfinding package 

The goal of this package is for the Explorer to create a path based on a 
grid-based map produced by the mobile Explorer. Several maps are 
generated at varying resolutions of 100×100, 200×200, 300×300, 
500×500, and 1000×1000 of 3 different test sites. The Explorer travels 
around the map from start node A, provided by the AMCL package, and to 
destination node B, provided by the user and stored and passed to the A* 
package. A path is produced by the A* algorithm, and then the path is 
timed and traversed.  

6.2 Requirements 

The mobile robot must be able to localize itself in the grid-based map 
produced by HectorSLAM and traverse a path produced by the A* 
algorithm. The package takes as input a grid-base map, a start location, 
and a destination location. The robot must travel the path produced by A*. 
The robot must also traverse the map, storing a start location, and travel to 
a destination. The actual distance between the destination point B of the 
SLAM map and point B of the physical map was measured, recorded, and 
analyzed. 

6.3 Analysis and design 

The analysis and design phase consists of the analysis and design to 
localize the Explorer to a grid-based map and produce a path in the grid-
based map. The Corobot A* package allows the Explorer to traverse a path 
in a grid-base map autonomously. The A* Package has the following steps. 

1. Take as input a grid-based map produced with HectorSLAM. 
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2. Convert the map to an array of 0s and 1s based on map resolution. 0 is 
free. 1 is occupied. 

3. Tele-operate the mobile robot to localize to the map and get the current 
positon of the robot.  

4. Store the current position as the start location. 
5. Enter the destination position. 
6. Calculate the path. 
7. Convert the start and destination position to cells in the map. 
8. Set start time for path traversal. 
9. Mobile robot travels autonomously to destination. 
10. Set end time for path traversal. 
11. Calculate time to traverse path. 
12. Measure the distance between the starting and ending points. 
13. Repeat process on maps of varying resolution. 
14. Collect results on pathfinding at each resolution. 

6.3.1 AMCL overview 

AMCL is a ROS package designed to provide a mobile robot its pose while 
traversing a known map. AMCL is a probabilistic localization system for a 
robot moving in 2-D (AMCL site). AMCL implements the adaptive (or 
KLD-sampling) Monte Carlo approach as described by Dieter Fox (AMCL 
site). AMCL takes as input a laser-based map and publishes the mobile 
robot’s estimated pose in the map. AMCL subscribes to topics in Table 4. 

Table 4. Subscribed topic. 

scan sensor_msgs/LaserScan 
tf tf/tf_messages 
initialpose geometry_msgs/PosWithCovarianceStamped 
Map Navigation_msgs 

AMCL publishes the amcl_pose, which is the pose of the mobile robot 
against the known map. 

6.3.2 Corobot_A* package 

The Corobot A* Package implements the A* algorithm with the Manhattan 
Cost function. The package uses the robot pose, an x and y position in the 
map, provided by AMCL, to use as the start location for the path, and the 
user provides a random destination. The path between the start and 
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destination location is calculated and provided. The robot then traverses 
the given path. 

Three cost functions were considered: (1) the Manhattan Distance, 
(2) Euclidean Distance, and (3) the Chebyshev Distance.  

The Manhattan Distance was implemented as the map is an NxN matrix, 
and four of the surrounding cells of the map were considered. The function 
is F = G + H, where G is the total distance to the current position and H 
represents the cost.  

6.4 Implementation 

While the robot is traversing the area, a map is created of the explored area. 
The robot is then localized to the map using AMCL, explores the area, and 
displays its pose on the map. The robot can be given a destination position 
to travel using its current position as the start location. 

6.5 Testing 

Three test sites were used to evaluate the ability of the Explorer to localize 
itself in a generated SLAM map and travel from a start location to a 
destination location. For each site, two cones were used to mark points A 
and B. The area around the cones were taped to marked points A and B. The 
area was traversed by the Explorer, and the SLAM map was generated. This 
map was used to localize the robot to the position A. The destination 
coordinate was entered into the A* package, and the difference between the 
two B points was measured and the time to traverse the path recorded. 

6.5.1 Test Site One 

Figure 33 depicts Test Site One, a 12-ft by 9-ft area that has walls on one 
side and two 6-ft tables as a wall for the 12-ft side. The 9-ft side has one 
9-ft table and a board to enclose one side, and the other 9-ft side was a 
constructed wall. The x-axis is marked and is determined to be the x-axis 
by driving the Explorer around, and the x position of the pose data 
increased, which is the northing in the map. The y-axis is marked and is 
determined to be the y-axis by driving the Explorer around, and the y 
position of the pose data increased.  
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Figure 34 depicts Test Site One without the cones and positions A and B 
marked with tape and the SLAM generated map with the two black 
squares representing points A and B in the SLAM generated map. 

Figure 33. Test Site One with cones denoting points A and B. 

 

Figure 34. Test Site One without cones and the SLAM generated map. 
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Next, the generated map is imported into GIMP 2 and scaled to the 
resolution of the map to gather the x and y positions for each of the points 
marked in the previous steps. The two points shown in the Figure 35 are 
for a map of resolution of 100×100. This step is repeated to gather the 
start and destination points for maps of resolution 200×200, 300×300, 
and 500×500. 

Figure 35. GIMP view with imported SLAM map. 

 

Next, the Explorer and laptop are started with the correct setup to use the 
AMCL Package and the generated map of the test site without the cones. 
The robot is placed in the A position of the test site, then localized to the 
map, and the A* package is executed. The AMCL package provided a 
location of (40,60) and provided a B position for the target location. 
Table 5 shows the results of these runs for a map of resolution 100×100. 
The distance from where the robot ended and the position of Point B in the 
physical map is shown in the Distance column, and the time to traverse the 
path is shown in the Time column. 

When entering the target location, the A* package was executed until a 
B location close to the target destination B was found. Point (76, 38) was 
too large. Point (65,40) and (65,50) are feasible and very close to the tar-
get destination point.  
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In the 100×100 resolution map, Table 5, the error was from 7 to 16 in., 
with an average of 10.3 in. for the five runs. In the 200×200 resolution 
map, Table 6, the error was from 0 to 16 in., with an average of 9.9 in. for 
the five runs. In the 300×300 resolution map, Table 7, the error was from 
0 to 18 in., with an average of 9.2 in. for the five runs. In the 500×500, 
Table 8, resolution map, the error was from 2 to 18 in., with an average of 
10.2 in. for the five runs. Overall, for Test Site One, the 
300×300 resolution performed best.  

Table 5. Results for 100×100 on Test Site One. 

 Generated Map AMCL   

 A B A B Time (sec.) Distance (in.) 

Run 1 (52,38) (76,38) (60,40) (65,40) 11.85 9.00 

Run 2 (52,38) (76,38) (60,40) (65,40) 15.51 12.00 

Run 3 (52,38) (76,38) (60,40) (65,40) 16.37 7.50 

Run 4 (52,38) (76,38) (60,40) (65,40) 13.50 16.00 

Run 5 (52,38) (76,38) (60,50) (65,50) 14.39 7.00 

Table 6. Results 200×200 on Test Site One. 

 Generated Map AMCL   

 A B A B Time (sec.) Distance (in.) 

Run 1 (154,141) (177,148) (90,110) (90,110) 13.36 0 

Run 2 (154,141) (177,148) (90,110) (90,110) 14.20 0 

Run 3 (154,141) (177,148) (90,110) (90,110) 14.72 17 

Run 4 (154,141) (177,148) (90,110) (90,116) 16.35 16 

Run 5 (154,141) (177,148) (90,110) (90,116) 13.42 16 

In Test Site One, when entering the generated map’s point B, the robot 
could not find point B. The robot would try to travel up the wall and would 
have to be stopped. This led to finding a point B close to the Point B on the 
floor to enter. This was possibly caused by the area being too small, and 
Point A and Point B being close together in the physical map. As we move 
to Test Site Two, a larger area was chosen. 
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Table 7. Results for 300×300 on Test Site One. 

 Generated Map AMCL   

 A B A B Time (sec.) Distance (in.) 

Run 1 (155,140) (180,146) (150,150) (150,156) 20.57 16 

Run 2 (155,140) (180,146) 150,150) (150,156) 15.01 18 

Run 3 (155,140) (180,146) 150,150) (150,156) 14.46 4 

Run 4 (155,140) (180,146) 150,150) (150,156) 13.52 8 

Run 5 (155,140) (180,146) 150,150) (150,156) 15.70 0 

Table 8. Results for 500×500 on Test Site One. 

 Generated Map AMCL   

 A B A B Time (sec.) Distance (in.) 

Run 1 (250,243) (250,241) (250,250) (250,256) 8.87 14 

Run 2 (250,243) (250,241) (250,250) (250,256) 9.83 2 

Run 3 (250,243) (250,241) (240,250) (250,257) 9.33 5 

Run 4 (250,243) (250,241) (250,250) (250,256) 8.99 12 

Run 5 (250,243) (250,241) (250,250) (250,256) 8.72 18 

6.5.2 Test Site Two 

Test Site Two is an area approximately 15 ft by 24 ft with bookshelves, 
several desks, a copy machine, a garbage can, and several small file 
cabinets, (Figure 36). The hallway is blocked by a piece of board to make a 
wall. The map was generated for Test Site Two with Hector SLAM with the 
perimeter of the two cones taped on the floor in order to mark points A 
(x,y) and B (x,y) in the actual test site.  

Next, the generated maps are imported into GIMP 2 and scaled to 
resolution size. For Test Site Two, the resolutions tested were 200×200, 
300×300, 500×500, and 1000×1000. Resolution 100×100 produced a 
poor quality map and was not on the canvas. In Figure 37, Point A is the 
start location, and Point B is the destination location. 

Next, the Explorer and laptop are started with the correct setup to use the 
AMCL Package and the generated map of the test site without the cones.  
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Figure 36. Front and rear view of Test Site Two with cones. 

 

Figure 37. Test Site Two resolution 300×300. 

 

The Explore was placed in the start position A of the test site, then 
localized to the map, and the A* package was executed. The AMCL package 
provided the starting point A(x,y) , and the user provided B(x,y) position 
for the destination location. No results were collected for Resolution 
1000×1000. Each time the A* Package was executed, the package had a 
memory core dump. 
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In the 200×200 resolution map, Table 9, the error was from 0 to 48 in., 
with an average of 27.6 in. for the five runs. In the 300×300 resolution 
map, Table 10, the error was from 0 to 12 in., with an average of 2.8 in. for 
the five runs. In the 500×500 resolution map, Table 11, the error was from 
0 to 12 in., with an average of 2.8 in. for the five runs. Overall, for Test 
Site 2, the 300×300 and 500×500 resolution performed best. 

Table 9. Results for 200×200 on Test Site Two. 

 Generated Map AMCL Entered  

 A B A B Time (sec.) Distance (in.) 

Run 1 (107,92) (145,99) (100,100) (115,100) 21.67 0 

Run 2 (107,92) (145,99) (100,100) (115,100) 21.03 30 

Run 3 (107,92) (145,99) (100,100) (115,100) 20.54 24 

Run 4 (107,92) (145,99) (100,100) (115,100) 22.23 36 

Run 5 (107,92) (145,99) (100,100) (115,100) 23.48 48 

Table 10.Results for 300×300 on Test Site Two. 

 Generated Map AMCL Entered  

 A B A B Time (sec.) Distance (in.) 

Run 1 (151,138) (188,126) (150,150) (150,164) 19.70 1 

Run 2 (151,138) (188,126) (140,150) (140,164) 19.51 12 

Run 3 (151,138) (188,126) (150,150) (150,164) 19.16 1 

Run 4 (151,138) (188,126) (150,150) (150,164) 19.20 0 

Run 5 (151,138) (188,126) (140,150) (140,164) 19.56 0 

Table 11. Results for 500×500 on Test Site Two. 

 Generated Map AMCL Entered 

 A B A B Time (sec.) Distance (in.) 

Run 1 (256,241) (294,241) 250,250) (264,250) 21.04 2 

Run 2 (256,241) (294,241) (250,250) (264,240) 20.53 12 

Run 3 (256,241) (294,241) (240,250) (264,250) 19.34 0 

Run 4 (256,241) (294,241) (240,250) (264,250) 19.63 0 

Run 5 (256,241) (294,241) (240,250) (264,250) 19.71 0 
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In this set of tests, it is obvious that changing the resolution decreases 
some of the error. Creating a map of resolution 100×100 was unsuccessful. 
The map that was produced was of poor quality. As in Test Site One, the 
entered Point B was tweaked by driving the robot around to find a feasible 
Point B. The Point B of the generated map and the one collected were 
extremely different, but once Point B was found, the error was low. 

6.5.2 Test Site Three 

The map was generated for Test Site Three, an area approximately 15 ft by 
24 ft with Hector SLAM with the perimeter of the two cones taped on the 
floor in order to mark Points A(x,y) and B(x,y) in the actual test site. Test 
Site Three is the same room as Test Site Two, but the room was 
rearranged. The copy machine was moved, and the desk was moved from 
one wall to another. Figure 38 depicts Test Site Three. 

Figure 38. Test Site Three with cone. 

 

Next, the generated maps were imported into GIMP 2 and scaled to 
resolution size. For this test, the resolutions tested were 200×200, 
300×300, and 500×500. Resolution 100×100 produced a poor quality 
map and was not on the canvas; thus testing for 100×100 resolution was 
eliminated. A map of resolution 1000×1000 created an excellent map, but 
this resolution was too memory intensive for the A* package and would 
core dump. The x and y positions for each of the points were marked as in 
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the previous steps. The two points are shown in the figures below and are 
denoted for each of the resolutions. Figure 39 shows Point A and B along 
with their x and y coordinates for resolution 300×300. 

Figure 39. Gimp 300×300. 

 

When running the A* algorithm, the start point A was provided by AMCL, 
and the destination Point B was provided from the Gimp software. The 
room was larger than in Test Site One in Tables 2 to 14. The distance from 
where the robot ended and the position of Point B in the physical map is 
shown in the Distance column, and the time to travel the path is in the 
time columns. In the 200×200 resolution map, Table 12, the error was 
from 48 to 70 in., with an average of 61 in. for the five runs. In the 
300×300 resolution map, Table 13, the error was from 35 to 80 in., with 
an average of 55.4 in. for the five runs. In the 500×500 resolution map, 
Table 14, the error was from 56 to 108 in., with an average of 69.6 in. for 
the five runs. Overall, for Test Site Three, the 300×300 resolution 
performed best. 
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Table 12. Results for 200×200 on Test Site Three. 

 Generated Map AMCL  

 A B A Time (sec.) Distance (in.) 

Run 1 (116,95) (107,128) (110,110) 26.34 60 

Run 2 (116,95) (107,128) (110,110) 25.89 63 

Run 3 (116,95) (107,128) (110,110) 26.05 64 

Run 4 (116,95) (107,128) (120,110) 13.79 48 

Run 5 (116,95) (107,128) (110,110) 27.75 70 

Table 13. Results for 300×300 Test Site Three. 

 Generated Map AMCL  

 A B A Time (sec.) Distance (in.) 

Run 1 (166,137) (166,170) (160,150) 29.62 36 

Run 2 (166,137) (166,170) (160,150) 38.93 60 

Run 3 (166,137) (166,170) (160,150) 29.08 35 

Run 4 (166,137) (166,170) (170,150) 30.83 66 

Run 5 (166,137) (166,170) (170,170) 32.17 80 

Table 14. Results for 500×500 Test Site Three. 

 Generated Map AMCL  

 A B A Time (sec.) Distance (in.) 

Run 1 (269,248) (248,276) (250,250) 41.91 108 

Run 2 (269,248) (248,276) (260,260) 26.31 62 

Run 3 (269,248) (248,276) (260,260) 23.12 56 

Run 4 (269,248) (248,276) (260,250) 40.56 62 

Run 5 (269,248) (248,276) (260,250) 36.51 60 

6.6 Conclusion 

This research shows that the resolution of the map has an effect on the 
robot’s localization and path finding ability. The Explorer performed best 
at 300×300 resolution in all cases. 

The research in Chapter 6 provides the ERDC with an increased level of 
autonomy from zero or tethered to autonomous level three, when 
searching unknown environments. When this research began, the ERDC 
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was using a tethered robot to explore unknown areas. We have tested and 
selected the SLAM algorithm via simulation, performed physical testing on 
a mobile robot and concluded that HectorSLAM is an excellent choice for 
mapping an unknown area. Also, a ROS package AMCL, was implemented, 
which allows the robot to localize itself to the SLAM generated map. Once 
localized to the map, the mobile robot was able to traverse a path 
generated with the A* algorithm.  
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7 Conclusions and Future Work 

7.1 Conclusions 

The main goals of this dissertation were to enhance a commercial off the 
shelf (COTS) robotic platform with the ability to generate a map of an 
unknown area, to localize the robot to the generated map, and to increase 
the level of autonomy from tethered to a level of five or more. The UGV 
was tested with three SLAM algorithms, CORESLAM, Hector SLAM, and 
Gmapping, in a simulated environment and a physical environment. 
Hector SLAM proved to be the superior SLAM algorithm, outperforming 
both Gmapping and CORESLAM in both simulation testing and physical 
testing. It is my belief that Hector SLAM generated the best map because it 
requires only a laser scan, unlike Gmapping and CORESLAM.  

This research had a series of limitations: (1) ROS has a steep learning 
curve and there are unlimited packages for use, (2) ROS operates in a 
Linux environment, (3) lack of a dedicated test area that caused multiple 
moves and setups as time allowed, and (4) the UGV and laptop’s WIFI 
signals proved unacceptable for the transmission of data. This WIFI issue 
was overcome by adding a radio to both the laptop and UVG and setting 
up a network between the two. Large amounts of data were then 
transmitted between the two. 

7.2 Future work 

Further enhancements to the UGV include adding other plug-and-play 
devices such as Microsoft Kinect Sensor or the 360-deg 3-D sensor by 
DFROBOT. Each of these sensors will produce a 3-D map of the navigated 
area that can be overlaid onto the 2-D map. The Microsoft Kinect sensor 
costs about $100 and is easily installed. The Kinect consists of several 
sensors including a RBG sensor, a 3-D depth sensor, multi-array 
microphone, and an accelerometer (https://developer.microsoft.com/en-
us/windows/kinect/hardware). The 360-deg 3-D sensor by DFROBOT is 
also inexpensive and should be easily programmed. 

Increasing the level of autonomy from around three, to between six and 
ten is needed. Testing in a tunnel environment would show more of the 
strengths and weaknesses of this UGV.  
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