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1 Summary

The goal of probabilistic programming is to lubricate the probabilistic pipeline (Figure 1): to make
it easier for real-world data analysts to design probability models, use them to analyze data, check
the results, and revise the models.

The key algorithmic challenge is posterior inference, the algorithmic problem of squaring the model
and the data to produce posterior estimates of the latent variables. More concretely, investigators
need inference methods that are general and scalable. General inference are methods that apply
to many models—a probabilistic programming system will outline a class of models that are
expressible, and so we need inference methods that will work on that class. Scalable inference
methods are ones that scale to the large data sizes that we now regularly encounter.

Through the years of our probabilistic programming and advanced machine learning (PPAML)
project, we made significant progress on inference for probabilistic programming. We developed
new scalable methods which enabled posterior inference with massive datasets. We developed
new general methods, which greatly expanded the model class with which we can do automatic
approximate inference. We deployed our methods on real-world probabilistic programming systems.
Our algorithms are currently in use by the end-users of probabilistic programming. As the citations
and implementations of our algorithms attest, the work that we did as part of this program changed
the landscape of approximate posterior inference.

Our innovations in inference opened the door to new types of models. In parallel with innovating
inference, we developed many new models. Some models were designed for specific applications,
e.g., neuroscience, genetics, economics, language modeling, recommendation systems. Others are
new classes of models, such as Bayesian nonparametric models that grow and change with the data
or deep probabilistic models that learn layered representations of high dimensional data.

With new models and inference in hand, we also developed new ways to check and to strengthen data
analysis with probabilistic machine learning. Note that the ability to revise a model is a luxury that
comes with the general inference methods described above. Without general inference, changing
the model requires too much labor to be feasible. In particular, we developed several methods for
robustness, to build models that are robust to mismatches with the data. Further, we developed
several new methods for checking models, to understand where and how the data violates the model
in order to revise and improve it.

Put together, these accomplishments furthered the state of the art of every aspect of Figure 1.

1
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2 Introduction

Analyzing, exploring, and predicting from data have become critical to science, industry, military,
government, and society. Consider the following problems about data. (1) We have a social
network of 250M people; we want to identify the communities in this network and summarize
their demographic characteristics. (2) An unending stream of intelligence is monitored by a team
of analysts. We want to intuitively organize the information in a navigator and deliver important
information to the right people. (3) We have recorded the location and times of detonated explosives
in a war-torn city. We want to predict where and when the next device will be detonated.

Experts solve these problems by following a data analysis pipeline. (a) Form assumptions about the
data: How do different parts of the data relate to each other and what hidden structures might exist
in the observations? (b) Analyze data (or multiple data sets) under the assumptions. (c) Use the
analysis to form predictions, answer questions, make hypotheses, and explore the data.

Probabilistic modeling provides an elegant framework for executing this pipeline. It gives a
formalism for describing assumptions about data, generic algorithms for analyzing data under those
assumptions, and meaningful calculations for making predictions and exploring hidden structure.
Building on this field, probabilistic programming systems (PPS) give expressive languages for
specifying models and compilers to derive and implement the algorithms for using those models to
analyze data. Such systems promise to let domain experts quickly develop and use sophisticated
models without sophisticated machine learning expertise.

But probabilistic programming systems cannot yet fulfill their promise. (I) We need general-purpose
algorithms that scale to massive data and we need to develop the theory and practice of applying
probabilistic models to data streams. This is crucial for including probabilistic models in larger
systems that continually collect, analyze, and act on data. (II) We need new methods to understand
how well models work, methods for assessing model fitness and model diagnostics. As model
building, fitting, and revising becomes a mainstream technological activity, assessing model fitness
and diagnosing misfit must become equally mainstream.

My research lab spearheaded these developments. Our perspective is that building and using
probabilistic models is part of an iterative process for solving data analysis problems. First,
formulate a simple model based on the kinds of hidden structure that you believe exists in the data.
Then, given a data set, use an inference algorithm to approximate the posterior—the conditional
distribution of the hidden variables given the data—which points to the particular hidden pattens
that your data exhibits. Finally, use the posterior to test the model against the data, identifying the

2
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Build model

Mixtures and mixed-membership;
Time series; Generalized linear models;
Factor models; Bayesian nonparametrics

Infer hidden quantities

Markov chain Monte Carlo;
Variational inference;
Laplace approximation

Criticize model

Performance on a task;
Prediction on unseen data;
Posterior predictive checks

DATA

Revise Model

Apply model

Predictive systems;
Data exploration;
Data summarization

Figure 1: Box’s loop.

important ways that it succeeds and fails. If satisfied, use the model to solve the problem; if not
satisfied, revise the model according to the results of the criticism and repeat the cycle.

Building and computing with models is part of an iterative process for solving data analysis problems.
Figure 1 illustrates this process. Probabilistic programming is the tool we need to be able to use and
execute this pipeline. A user encodes her assumptions in a probabilistic program; she uses powerful
inference algorithms to analyze a data stream, forming posterior and predictive distributions; she
uses tools to evaluate and revise the model. She iterates through this process several times. Finally,
she uses the revised model to explore data, form predictions, and ties its calculations into important
applications.

Our particular goals were to bring scalable computation, streaming computation, and model
diagnosis and fitness into probabilistic programming systems. The previous state of the art lacks
these capabilities, which are essential for solving modern data science problems. In parallel, we
worked on particular applications—real-world applications motivate our research and ensure that
our developments are ones that have practical impact and importance. Finally, we also focused on
deploying our methods in usable systems. We developed a new probabilistic programming system
called Edward, which is based on Google’s TensorFlow library, and we deployed a variational
inference algorithm in Stan, which is a very popular probabilistic programming system.

In the following report, we outline our main accomplishments:

• We developed new generic variational inference algorithms that scale to massive data. Our
methods are based on stochastic variational inference, a scalable methodology for approx-

3
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imate inference that we pioneered. Specifically, we developed new generic variational
inference algorithms that easily integrate with probabilistic programming and that can be
adapted to the stochastic setting. Our algorithms interleave intelligent data collection with
data computation.

• We expanded the applicability of probabilistic models to streaming data, an innovation that
is essential for modern applications. This required new ways of thinking about probabilistic
models and new fundamental algorithms for interfacing models and streams. Streaming
probabilistic models enable life-long learning systems, probabilistic models that continually
observe, analyze, and act on data.

• We developed new scalable methods for calculating model fitness and model diagnostics. We
revived and modernized posterior predictive checks and predictive sample reuse, two ideas
that focus on the discrepancy between data sampled from the predictive distribution and true
observations. In model diagnostics, we developed discrepancy functions that point the user to
where her model fits and misfits. We developed composable discrepancies for automating
model diagnosis in complex models.

• We developed new model classes, including deep probabilistic models, Bayesian nonpara-
metric models, and generalized embedding models. We developed a suite of tools for
making probabilistic models robust to misspecification.

• We worked on real applications in text analysis, recommendation systems, neuroscience,
genetics, healthcare, network science, and economics. In each, we developed new probabilistic
models, stress-tested our algorithms on them, and then improved the algorithms both for the
model at hand and the wider model class. These applications pushed the state of the art of
what is possible with probabilistic machine learning.

Our innovations made probabilistic programming widely accessible to data scientists in all domains.
Our work allows them to build, revise, select, and incorporate sophisticated probabilistic models as
a core component of their data analysis process.

Probabilistic programming systems can revolutionize modern data analysis, putting the powerful
tools of model building, fitting, and revising into the hands of anyone seeking insights from their
data. With the fundamental innovations that we developed, modern probabilistic programming
systems will realize their potential.

4
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3 Methods, Assumptions, and Procedures

Our work is in the framework of probabilistic machine learning. We review probabilistic machine
learning and the central computational problems for a probabilistic programming system.

3.1 Probabilistic Machine Learning

Probabilistic machine learning uses probabilistic models to analyze data. In the process of proba-
bilistic modeling, we first develop a joint distribution of hidden and observed variables that captures
our assumptions about how the data arises and how it interacts with structures we cannot observe.
We then analyze our data by computing the conditional distribution of the hidden variables given
the observations. This distribution, called the posterior, lets us examine the hidden structure that
was likely to lead to the observed data, to form a predictive distribution of new data, and to check
our model for comparison to others and direction of misfit. We then revise the model and continue
with the analysis. We call this cycle “Box’s loop.” (Blei, 2014).

The key technical problems to probabilistic modeling are how to compute the posterior, how to
assess the quality of a model, and how to revise it based on our observations. As we describe in the
next section, we developed fundamental new methods for posterior computation, model fitness, and
model diagnostics. We deployed these methods to several applications.

Generically, let x1:N be N observations and divide the hidden variables into global variables β

and local variables z1:N . The global variables—like the mixture locations in a Gaussian mixture
model—describe something about the whole data set. The local variables—like the component
assignments—help govern the distribution of each data point, conditionally independent of the
others. (Many models contain distinctive sets of variables like this, though not all. For other models,
there may only be global hidden variables.) The posterior distribution is

p(z1:N ,β | x1:N ) = p(β)
N
∏

n=1

p(zn, xn |β)/p(x1:N ). (1)

The numerator is the joint distribution; the denominator is the marginal probability of the observa-
tions. Computing this posterior is the problem of posterior inference. For many models of interest,
the denominator is not tractable to compute—it usually is construed as a complicated integral that
marginalizes out the hidden variables—and we must resort to approximate inference.

The posterior is critical in the predictive distribution of new data given the observed data. In the

5
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Figure 2: A schematic of variational inference.

predictive distribution, we marginalize out the hidden variables via the posterior,

p(x | x1:N ) =

∫ �∫

p(z |β)p(x | z,β)dz

�

p(β | x1:N )dβ . (2)

The inner integral is over the local hidden variables of the new data point; the outer integral is over
the posterior of the global variables given the observed data set. This predictive distribution is
used for both forming predictions and for implementing our proposed methods for assessing model
fitness and developing model diagnostics.

3.2 Background: Variational Inference

In machine learning, there are two main methods for approximating the conditional—Markov chain
Monte Carlo (MCMC) and variational inference. In MCMC, we form a Markov chain whose
stationary distribution is the conditional, run the chain until it has “converged” (determining this
convergence precisely is not usually possible), and then collect independent samples from which to
approximate the posterior. MCMC is powerful, and has been widely studied, especially in Bayesian
statistics. It is implemented in most existing probabilistic programming systems.

We built on variational inference, a deterministic alternative to MCMC that replaces sampling with
optimization. Variational inference has been shown to be empirically faster than MCMC in several
settings, though it is difficult to formally compare them. Mean-field variational inference provided
the foundation for our research, though also extended beyond this assumption (see Section 4.3.)
Building on this method, we dramatically sped up and expanded the scope of generic approximate
inference algorithms, and thus made probabilistic programming much more scalable.

6
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Here we review the basics of mean-field variational inference.

The idea is to posit a factorized distribution of the hidden variables that is indexed by free variational

parameters, q(z1:N ,β) = q(β |λ)
∏N

n=1 q(zn |φn). These parameters—the local variational parame-
ters φn and global variational parameter λ—are fit to make q(z1:N ,β) close in Kullback-Leibler
(KL) divergence to the true posterior p(β , z1:N | x1:N). We then use the fitted q as a proxy for the
posterior, e.g., in a predictive distribution of new data or to explore the hidden structure of the
observations.

But the KL is not computable. Variational methods optimize the evidence lower bound (ELBO),

L (λ,φ1:N ) = Eq[log p(β , z1:N )] +H(q), (3)

where H(·) is the entropy of the distribution q. This objective is equal to the negative KL plus a
constant; thus maximizing it is equivalent to minimizing KL. Note that the variational “model” is not
a model of data, but rather a flexible family of distributions over the latent variables. The connection
to the data and to the posterior is via optimizing the ELBO with respect to that family.

Figure 2 illustrates the main idea behind variational inference (VI). There is a variational family

of distributions of latent variables. It is indexed by variational parameters; each setting of the
variational parameters is a distribution of latent variables. We want to approximate the exact

posterior, which is outside the variational family. VI begins at an initial setting of the variational
parameters; it then optimizes them to find the member of the family that is closest to the exact
posterior. Closeness is measured by the KL divergence; the KL is the objective of the optimization.
In our research on variational inference, we consider and develop each piece of this framework.
Indeed, the accomplishments described below can all be seen as improving one aspect of this
algorithmic idea.

Typical applications of variational inference optimize the ELBO using coordinate ascent, iteratively
optimizing each variational parameter. These updates are in closed form for models where each
complete conditional is in the exponential family. (A complete conditional is the distribution of
a hidden variable given all the other variables in the model.) But these methods are not useful in
probabilistic programming, where the user should be able to express models from a much wider
class without regard for the specific form of the complete conditionals. Further, each application of
variational inference has required painstaking derivation and mathematics. This goes against the
philosophy of a PPS to make modern machine learning accessible to a wide audience of users.

7
Approved for Public Release; Distribution Unlimited.



4 Results and Discussion

In this section, we detail each of our accomplishments as part of the Defense Advanced Research
Project Agency (DARPA) PPAML project.

4.1 Stochastic Variational Inference

We developed stochastic variational inference (SVI), a scalable algorithm for approximating pos-
terior distributions (Hoffman et al., 2013). We developed this technique for a large class of
probabilistic models and we demonstrated it with two probabilistic topic models, latent Dirichlet
allocation and the hierarchical Dirichlet process topic model. When developing this procedure,
we tested the method on several large collections of documents: 300K articles from Nature, 1.8M
articles from The New York Times, and 3.8M articles from Wikipedia. Stochastic inference easily
handled data sets of this size and outperformed traditional variational inference, which can only
handle a smaller subset. Stochastic variational inference, which has become a widely used algorithm,
lets us apply complex Bayesian models to massive data sets.

Throughout the project, we continued to build on SVI. Here are some of the notable results.

Adaptive algorithms. In several related results, we made SVI more adaptive. In Houlsby and Blei
(2014), we presented an alternative perspective on SVI as approximate parallel coordinate ascent.
SVI trades-off bias and variance to step close to the unknown true coordinate optimum given by
batch variational Bayes (VB). We defined a model to automate this process. The model infers the
location of the next VB optimum from a sequence of noisy realizations. As a consequence of this
construction, we update the variational parameters using Bayes rule, rather than a hand-crafted
optimization schedule. When our model is a Kalman filter this procedure can recover the original
SVI algorithm and SVI with adaptive steps. We may also encode additional assumptions in the
model, such as heavy-tailed noise. By doing so, our algorithm outperforms the original SVI schedule
and a state-of-the-art adaptive SVI algorithm in two different domains.

Ranganath et al. (2013) studied adaptive learning rates for SVI. Operationally, stochastic inference
iteratively subsamples from the data, analyzes the subsample, and updates parameters with a
decreasing learning rate. However, the algorithm is sensitive to that rate, which usually requires
hand-tuning to each application. We solved this problem by developing an adaptive learning rate for
stochastic inference. Our method requires no tuning and is easily implemented with computations
already made in the algorithm. We demonstrated our approach with latent Dirichlet allocation

8
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An Adaptive Learning Rate for Stochastic Variational Inference
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Figure 1. The adaptive learning rate on a run of stochastic vari-
ational inference, compared to the best Robbins-Monro and
best constant learning rate. Here the data arrives non-uniformly,
changing its distribution every three hours. (The algorithms
do not know this.) The adaptive learning rate spikes when the
data distribution changes. This leads to better predictive perfor-
mance, as indicated by the held-out likelihood in the top right.

The step size increases when the norm of the expected
noisy gradient is large, indicating that the algorithm is far
away from the optimal point. With this approach, the user
need not set any learning-rate parameters to find a good
variational distribution, and it is implemented with compu-
tations already made within stochastic inference. Further,
we found it consistently led to improved convergence and
estimation over the best decreasing and constant rates.

Figure 1 displays three learning rates: a constant rate,
a rate that satisfies the conditions of Robbins & Monro
(1951), and our adaptive rate. These come from three fits
of latent Dirichlet allocation (LDA) (Blei et al., 2003) to
a corpus of 1.8M New York Times articles. At each itera-
tion, the algorithm subsamples a small set of documents
and updates its estimate of the posterior.

We can see that the adaptive learning rate exhibits a spe-
cial pattern. The reason is that in this example we sub-
sampled the documents in two-year increments. This en-
gineers the data stream to change at each epoch, and the
adaptive learning rate adjusts itself to those changes. The
held-out likelihood scores (in the top right) indicate that
the resulting variational distribution gave better predic-
tions than the two competitors. (We note that the adaptive
learning rate also gives better performance when the data
are sampled uniformly. See Figure 3.)

Stochastic variational inference assumes that data are sub-
sampled uniformly at each iteration and is sensitive to
the chosen learning rate (Hoffman et al., to appear). The
adaptive learning rate developed here solves these prob-
lems. It accommodates practical data streams, like the
chronological example of Figure 1, where it is difficult to
uniformly subsample the data; and it gives a robust way

zi xi

�

n

�

Figure 2. Graphical model for hierarchical Bayesian models
with global hidden variables ˇ, local hidden variables z1Wn,
and local observations x1Wn. The hyperparameter ⌘ is fixed.

to use stochastic inference without hand-tuning.

In the main paper, we review stochastic variational in-
ference, derive our algorithm for adaptively setting the
step sizes, and present an empirical study using LDA on
three large corpora. In the appendices, we present proofs
and a discussion of convergence. Our adaptive algorithm
requires no hand-tuning and performs better than the best
hand-tuned alternatives.

2 Stochastic Variational Inference

Variational inference performs approximate posterior in-
ference by solving an optimization problem. The idea is
to posit a family of distributions with free variational pa-
rameters, and then fit those parameters to find the member
of the family close (in KL divergence) to the posterior. In
this section, we review mean-field variational inference
for a large class of models. We first define the model
class, describe the variational objective function, and de-
fine the mean-field variational parameters. We then derive
both the “classical” coordinate ascent inference method
and stochastic variational inference, a scalable alternative
to coordinate ascent inference. In the next section, we
describe and derive our method for adapting the learning
rate in stochastic variational inference.

Model family. We consider the family of models in
Figure 2 (Hoffman et al., to appear). There are three types
of random variables. The observations are x1Wn, the local
hidden variables are z1Wn, and the global hidden variables
are ˇ. The model assumes that the observations and their
corresponding local hidden variables are conditionally
independent given the global hidden variables,

p.ˇ; x1Wn; z1Wn j ⌘/ D p.ˇ j ⌘/
Qn
iD1 p.zi ; xi jˇ/: (1)

Further, these distributions are in the exponential family,

p.zi ; xi jˇ/ D h.zi ; xi / exp
˚
ˇ>t .zi ; xi / � a.ˇ/ (2)

p.ˇ j ⌘/ D h.ˇ/ exp
˚
⌘>t .ˇ/ � a.⌘/ ; (3)
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Figure 3: We compare SVI [8], against multicanonical (MVI, this paper) and annealed variational inference (AVI, this
paper) for different temperature schedules. We plot the learning curves for LDA on Arxiv data (left) and final likelihoods
for all three datasets (middle). the right plot shows temperature schedules for the ArXiv data set. tA is the length of the
annealing schedule in units of effective traversals of the data.

standard SVI, but requires tuning of the annealing schedule.
Multicanonical inference performs similarly to the best an-
nealing schedule and further inspection of the automatically
learnt temperatures indicate that it approximately recovers
the best temperature schedule. The effective schedule is
non-monotonic, suggesting that multicanonical inference
can account for the interplay between stochastic optimiza-
tion and model fitness.

Latent Dirichlet allocation. We apply all competing
methods to latent Dirichlet allocation (LDA) [2]. LDA is a
model of topic content in documents. It consists of a global
set of topics b , local topic distributions for documents qd ,
words wdn, and assignments of words to topics z. Integrating
out the assignments z yields the multinomial formulation of
LDA p(w,b ,q ) = p(b )p(q )’nd

�
Âk qdkbkwdn

�
. Details on

LDA can be found in the Appendix.

Following Sections 2.2 and 2.3, including temperature
changes the updates to the variational parameters. Further,
the variational updates for tempering involve the tempered
partition function, which is model-specific. We show how to
calculate the tempered partition function for LDA in the Ap-
pendix. This methodology can be applied in a similar way
to other models belonging to the conditionally conjugate
exponential family.

Datasets. We studied three datasets: 1.7 million articles
collected from the New York Times with a vocabulary of
8,000 words; 640,000 arXiv paper abstracts with a vocabu-
lary of 14,000 words; 3.6 million Wikipedia articles with
a vocabulary of 7,702 words. We obtained vocabularies by
removing the most and least commonly occurring words.

Hyperparameters and schedules. We used K = 500
topics and set h and a to 1/K (we also tested different
hyperparameters and found no sensitivity). Larger topic
numbers make the optimization problem harder, thus yield-
ing larger improvements of the annealing approaches over
SVI. We furthermore set batch size B = 100 and followed
a Robbins-Monro learning rate with rt = (t + t)�k , where
t = 1024, k = 0.7 and t is the current iteration count (these

were found to be optimal in [16]). For SVI we keep temper-
ature at a constant 1. For MVI, we distributed 100 temper-
atures 1  Tm  10 on an exponential scale and initialized
q(yn) uniformly over the Tm. For annealing, we used lin-
ear schedules that started in the mean temperature under
a uniform distribution over Tm, and then used a linearly
decreasing annealing schedule that ended in T = 1 after
tA 2 {0.01,0.1,1} effective passes through the data set. We
updated T every 1000 iterations.

Results We present our results for annealing and multi-
canonical inference. We test by comparing the predictive
log likelihood of held out test documents. We use half of
the words in each document to calculate the approximate
posterior distribution over topics then calculate the aver-
age predictive probability of the remaining words in the
document (following the procedure outlined in [8]).

Figure 3 shows predictive performance. We see that an-
nealing significantly improves predictive likelihoods with
respect to SVI across datasets. In the plot, we index tem-
perature schedules by tA, indicating the number of passes
through the dataset. Our results indicate that slow anneal-
ing approaches work better (tA=1 is the best performing
annealing curve). Multicanonical VI automatically chooses
the temperature schedule and is able to recover or improve
upon the best annealing curve for arXiv and the New York
Times. Multicanonical performance for Wikipedia is close
to that of the best annealing rate, and better than several
other manual choices of temperature schedule.

Factorial mixture model. As a first application we carried
out experiments on the Factorial Mixture Model (FMM) [3,
6]. The model assumes N data points Xn 2 RD, K latent
components µk 2 RD, and a K ⇥N binary matrix of latent
assignment variables Znk. The model has the following
generative process [3]:

Xn = Â
k

Znkµk + en, Znk ⇠ Bern(pk), (19)

µk ⇠ N (0,sµ), en ⇠ N (0,sn).

The variables Znk indicate the activation of factor µk in data

Figure 3: Adaptive approaches to stochastic variational inference.

applied to three large text corpora. Inference with the adaptive learning rate converges faster and to
a better approximation than the best settings of hand-tuned rates.

Figure 3 (left) illustrates these results, the adaptive learning rate on a run of stochastic variational
inference, compared to the best Robbins-Monro and best constant learning rate. Here the data
arrives non-uniformly, changing its distribution every three hours. (The algorithms do not know
this.) The adaptive learning rate spikes when the data distribution changes. This leads to better
predictive performance, as indicated by the held-out likelihood in the top right.

Finally, Mandt et al. (2016b) developed variational tempering, an annealing approach to SVI.
We first formulated a deterministic annealing approach for the generic class of conditionally
conjugate exponential family models. This approach uses a decreasing temperature parameter
which deterministically deforms the objective during the course of the optimization. A well-known
drawback to this annealing approach is the choice of the cooling schedule. We therefore introduced
variational tempering, a variational algorithm that introduces a temperature latent variable to the
model. In contrast to related work in the Markov chain Monte Carlo literature, this algorithm results
in adaptive annealing schedules. Lastly, we developed local variational tempering, which assigns
a latent temperature to each data point; this allows for dynamic annealing that varies across data.
Compared to the traditional VI, all proposed approaches find improved predictive likelihoods on
held-out data.

Figure 3 (right) illustrates these results. We compare SVI, against variational tempering (also known
as multicanonical variational inference, MVI) and annealed variational inference (AVI) for different
temperature schedules. We plot the learning curves for latent Dirichlet allocation (LDA) on Arxiv
text data. Adaptive methods perform better than SVI.

Smoothed gradients. Mandt and Blei (2014) developed smoothed gradients for SVI. As with
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most traditional stochastic optimization methods, SVI takes precautions to use unbiased stochastic
gradients whose expectations are equal to the true gradients. We developed the idea of following
biased stochastic gradients in SVI. Our method replaces the natural gradient with a similarly
constructed vector that uses a fixed-window moving average of some of its previous terms. We
demonstrated many advantages of this technique. First, its computational cost is the same as for SVI
and storage requirements only multiply by a constant factor. Second, it enjoys significant variance
reduction over the unbiased estimates, smaller bias than averaged gradients, and leads to smaller
mean-squared error against the full gradient. We tested this method on latent Dirichlet allocation
with three large corpora.

Streaming SVI. In McInerney et al. (2015) we developed streaming SVI. Many modern data
analysis problems involve inferences from streaming data. However, streaming data is not easily
amenable to the standard probabilistic modeling approaches, which require conditioning on finite
data. We developed “population variational Bayes,” a new approach for using Bayesian modeling
to analyze streams of data. It approximates a new type of distribution, the population posterior,
which combines the notion of a population distribution of the data with Bayesian inference in
a probabilistic model. We developed the population posterior for latent Dirichlet allocation and
Dirichlet process mixtures. We studied our method with several large-scale data sets.

SVI for social networks. We adapted SVI to do inference in machine learning problems for
community detection in massive networks (Gopalan and Blei, 2013). Detecting overlapping
communities is essential to analyzing and exploring natural networks such as social networks,
biological networks, and citation networks. However, most existing approaches do not scale to the
size of networks that we regularly observe in the real world. We developed a scalable approach to
community detection that discovers overlapping communities in massive real-world networks. We
demonstrated how we can discover the hidden community structure of several real-world networks,
including 3.7 million US patents, 575,000 physics articles from the arXiv preprint server, and
875,000 connected Web pages from the Internet. Furthermore, we demonstrated on large simulated
networks that our algorithm accurately discovers the true community structure. This result opened
the door to using sophisticated statistical models to analyze massive networks.

Figure 4 illustrates some of the scalable inferences that we can make with this method. The figure
shows the top four link communities that include citations to “An alternative to compactification”,
an article that bridges several communities. We visualize the links between the articles and show
some highly cited titles. Each community is labeled with its dominant subject area; nodes are sized
by their “bridgeness,” an inferred measure of their impact on multiple communities. This is taken
from an analysis of the full 575,000 node network.
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One of the main advantages of taking a probabilistic approach
to network analysis is that the models and algorithms are reusable
in more complex settings. Our strategy for analyzing networks
easily extends to other probabilistic models, such as those taking
into account degree distribution or node attributes beyond the
network. The approach we develop here opens the door to using
sophisticated statistical models to analyze massive networks.

The Model and Algorithm
We describe a Bayesian model of overlapping communities and
our scalable algorithm for computing with it.

A Mixed-Membership Stochastic Blockmodel.We describe the model
by its probabilistic generative process of a network. In this pro-
cess, the community memberships will be encoded as hidden
random variables. Given an observed network, such as a social
network of friendship ties, we discover the hidden community
structure by estimating its conditional distribution.
Classical community membership models, like the stochastic

blockmodel (5, 6, 27), assume that each node belongs to just one
community. Such models cannot capture that a particular node’s
links might be explained by its membership in several over-
lapping groups, a property that is essential when analyzing real-
world networks. Rather, our model is a type of “mixed-mem-
bership stochastic blockmodel” (10), a variant of the stochastic
blockmodel where each node can exhibit multiple communities.
The model assumes there are K communities and that each

node i is associated with a vector of community memberships θi.
This vector is a distribution over the communities—it is positive
and sums to 1. For example, consider a social network and
a member for whom one-half of her friends are from work and
the other half are from her neighborhood. For this node, θi
would place one-half of its mass on the work community and the
other half on the neighborhood community.
To generate a network, the model considers each pair of

nodes. For each pair fi; jg, it chooses a community indicator zi→j
from the ith node’s community memberships θi and then chooses
a community indicator zi←j from θj. (Each indicator points to one
of the K communities that its corresponding node is a member of.)
If these indicators point to the same community, then it connects
nodes i and j with high probability; otherwise, they are likely to
be unconnected.
These assumptions capture that the connections between

nodes can be explained by their memberships in multiple com-
munities, even if we do not know where those communities lie. To

see this, we consider a single pair of nodes ði; jÞ and compute the
probability that the model connects them, conditional on their
community memberships. This computation requires that we
marginalize out the value of the latent indicators zi→j and zi←j.

Let βk be the probability that two nodes are connected given that
their community indicators are both equal to k. For now, assume
that if the indicators point to different communities then the two
nodes have zero probability of being connected. (In the full model,
they will also have a small probability of being connected when the
indicators are different, but this simplified version gives the in-
tuition.) The conditional probability of a connection is as follows:

p
!
yij = 1

""θi; θj
#
=

XK

k= 1

θikθjkβk: [1]

The first two terms represent the probability that both nodes
draw an indicator for the kth community from their member-
ships; the last term represents the conditional probability that
they are connected given that they both drew that indicator. (The
parameter βk relates to how densely connected the kth com-
munity is.) The probability that nodes i and j are connected will
be high when θi and θj share high weight for at least one com-
munity, such as if the social network members attended the same
school; it will be low if there is little overlap in their communi-
ties. The summation marginalizes out the communities, captur-
ing that the model is indifferent to which communities the nodes
have in common. The model captures assortativity—nodes with
similar memberships will more likely link to each other (28, 29).
We described the probability that governs a single connection

between a pair of nodes. For the full network, the model assumes
the following generative process:

1. For each node, draw community memberships θi ∼DirichletðαÞ.
2. For each pair of nodes i and j, where i< j:

(a) Draw community indicator zi→j ∼ θi

(b) Draw community indicator zi←j ∼ θj

(c) Draw the connection between them from

p
!
yij = 1

""zi→j; zi←j
#
=

$
βzi→ j

if zi→j = zi←j
e if zi→j ≠ zi←j:

This defines a joint probability distribution over the N per-node
community memberships θ, the per-pair community indicators z,

Fig. 1. The discovered community structure in a
subgraph of the arXiv citation network (21). The fig-
ure shows the top four link communities that include
citations to “An alternative to compactification” (22),
an article that bridges several communities. We visu-
alize the links between the articles and show some
highly cited titles. Each community is labeled with its
dominant subject area; nodes are sized by their
bridgeness (39), an inferred measure of their impact
on multiple communities. This is taken from an anal-
ysis of the full 575,000 node network.

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1221839110 Gopalan and Blei

Figure 4: The discovered community structure in a subgraph of the arXiv citation network.

SVI for population genetics. We also adapted the method to population genetics (Gopalan et al.,
2016). A major goal of population genetics is to quantitatively understand variation of genetic
polymorphisms among individuals. The aggregated number of genotyped humans is currently on the
order of millions of individuals, and existing methods do not scale to data of this size. To solve this
problem, we developed TeraStructure, an SVI algorithm to fit Bayesian models of genetic variation
in structured human populations on tera-sample-sized data sets ( 1012 observed genotypes; for
example, million individuals at million single nucleotide polymorphisms (SNPs)). We demonstrated
that TeraStructure performs as well as existing methods on current globally sampled data, and we
showed using simulations that TeraStructure continues to be accurate and is the only method that
can scale to tera-sample sizes.

4.2 Black Box Variational Inference

Scaling up variational inference is important for real-world applications. But equally important,
especially for probabilistic programming, is to develop generic variational inference, inference
methods that can be easily adapted to large classes of models. In a long thread of research, my lab
has been developing such methods. The vision is that, with generic inference methods, we can build
the probabilistic programming systems that implement them on programs, i.e., a model class.
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Our first accomplishment on this problem is Ranganath et al. (2014). It addresses the problem that
deriving a variational inference algorithm generally required significant model-specific analysis and
these efforts can hinder and deter us from quickly developing and exploring a variety of models
for a problem at hand. We developed a black box variational inference (BBVI) algorithm, one
that can be quickly applied to many models with little additional derivation. Our method is based
on a stochastic optimization of the variational objective where the noisy gradient is computed
from Monte Carlo samples from the variational distribution. (Contrast this to the use of stochastic
optimization in Section 4.1, where it is data subsampling that provides the stochasticity.)

In BBVI, the variance of the noisy gradients is a problem. We developed a number of methods
to reduce the variance of the gradient, always maintaining the criterion that we want to avoid
difficult model-based derivations. In Ranganath et al. (2014), we evaluated our method against
the corresponding black box sampling based methods. We found that it reaches better predictive
likelihoods much faster than sampling methods. We demonstrated that BBVI lets us easily explore
a wide space of models by quickly constructing and evaluating several models of longitudinal
healthcare data.

Since the introduction of BBVI, this approach has been widely adapted and used. In our own work,
we have innovated on this basic idea in several ways.

Overdispersed black box variational inference. In Ruiz et al. (2016b), we introduced overdis-
persed black-box variational inference, a method to reduce the variance of the Monte Carlo estimator
of the gradient in black-box variational inference. Instead of taking samples from the variational
distribution, we use importance sampling to take samples from an overdispersed distribution in the
same exponential family as the variational approximation. Our approach is general since it can be
readily applied to any exponential family distribution, which is the typical choice for the variational
approximation. We ran experiments on two non-conjugate probabilistic models to show that our
method effectively reduces the variance, and the overhead introduced by the computation of the
proposal parameters and the importance weights is negligible. We found that our overdispersed
importance sampling scheme provides lower variance than black-box variational inference, even
when the latter uses twice the number of samples. This results in faster convergence of the black-box
inference procedure.

Innovations on reparameterization gradients. Within BBVI, there are two ways to calculate
approximate gradients—the score gradient and the reparameterization gradient. The reparameteriza-
tion gradient is a widely used method to obtain Monte Carlo gradients to optimize the variational
objective. However, this technique does not easily apply to commonly used distributions such as beta
or gamma without further approximations, and most practical applications of the reparameterization
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Figure 1: Comparison between �-���, ����, and ���� in terms of the variational objective function.
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(a) Perplexity (���� dataset).

Dataset �-��� ���� ����
Olivetti �4:48˙ 0:01 �9:74˙ 0:08 �4:63˙ 0:01
����� �0:0932˙ 0:0004 �0:0888˙ 0:0004 �0:189˙ 0:009

Omniglot �0:0472˙ 0:0001 � �0:0823˙ 0:0009
(b) Average test log-likelihood per entry xnd .

Figure 2: Comparison between �-���, ����, and ���� in terms of performance on the test set. �-���
outperforms ���� because the latter has not converged in the allowed time, and it also outperforms
���� because of the variational family it uses.
which is an important feature for the considered models. We can also conclude this by a simple visual
inspection of the fitted models. In the Supplement, we compare images sampled from the �-��� and
the ���� posteriors, where we can observe that the latter are more blurry or lack some details.

5 Conclusion
We have introduced the generalized reparameterization gradient (�-���), a technique to extend the
standard reparameterization gradient to a wider class of variational distributions. As the standard
reparameterization method, our method is applicable to any probabilistic model that is di�erentiable
with respect to the latent variables. We have demonstrated the generalized reparameterization gradient
on two nonconjugate probabilistic models to fit a variational approximation involving gamma and
beta distributions. We have also empirically shown that a single Monte Carlo sample is enough to
obtain a noisy estimate of the gradient, therefore leading to a fast inference procedure.
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8

Figure 5: Empirical study of the generalized reparameterization gradient.

gradient fit Gaussian distributions. Ruiz et al. (2016a) introduced the generalized reparameterization
gradient, a method that extends the reparameterization gradient to a wider class of variational
distributions. Generalized reparameterizations use invertible transformations of the latent variables
which lead to transformed distributions that weakly depend on the variational parameters. This
results in new Monte Carlo gradients that combine reparameterization gradients and score function
gradients. We demonstrated our approach on variational inference for two complex probabilistic
models. The generalized reparameterization is effective: even a single sample from the variational
distribution is enough to obtain a low-variance gradient.

Figure 5 illustrates the advantages of this approach versus BBVI and autodifferentiation variational
inference (ADVI, see below). It compares BBVI, ADVI, and the generalized reparameterization gra-
dient in terms of the variational objective. The generalized reparameterization gradient outperforms
BBVI because BBVI has not converged in the allowed time; it converges faster than ADVI.

The reparameterization trick is applicable when we can simulate a random variable by applying
a (differentiable) deterministic function on an auxiliary random variable whose distribution is
fixed. But for many distributions of interest (again, such as the gamma or Dirichlet), simulation
of random variables relies on rejection sampling and the discontinuity introduced by the accept-
reject step means that standard reparameterization tricks are not applicable. Naesseth et al. (2017)
proposed a new method that lets us leverage reparameterization gradients even when variables are
outputs of a rejection sampling algorithm. Like the work described above, this approach enables
reparameterization on a larger class of variational distributions. In several studies of real and
synthetic data, we showed that the variance of the estimator of the gradient is significantly lower
than other state-of-the-art methods. This leads to faster convergence of stochastic optimization
variational inference. (This paper won the “Best Student Paper Award” at AISTATS 2017.)

Proximity variational inference. Altosaar et al. (2018) developed proximity variational inference
(PVI). It solves the problem that VI is sensitive to initialization and can be subject to poor local
optima. Proximity variational inference is a method for optimizing the variational objective that
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constrains subsequent iterates of the variational parameters to robustify the optimization path.
Consequently, PVI is less sensitive to initialization and optimization quirks and finds better local
optima. We demonstrated our method on four proximity statistics. We study PVI on a Bernoulli
factor model and sigmoid belief network fit to real and synthetic data and compared to deterministic
annealing (see above). We highlighted the flexibility of PVI by designing a proximity statistic for
Bayesian deep learning models such as the variational autoencoder and showed that it gives better
performance by reducing overpruning. PVI also yields improved predictions in a deep generative
model of text. Empirically, we showed that PVI consistently finds better local optima and gives
better predictive performance.

Augment and reduce. Ruiz et al. (2018) developed the augment-and-reduce method to scale up
BBVI for high-dimensional categorical distributions. Categorical distributions are ubiquitous in
machine learning, e.g., in classification, language models, and recommendation systems. However,
when the number of possible outcomes is very large, using categorical distributions becomes
computationally expensive, as the complexity scales linearly with the number of outcomes. We
proposed augment and reduce (A&R), a method to alleviate the computational complexity. A&R
uses two ideas: latent variable augmentation and stochastic variational inference. It maximizes a
lower bound on the marginal likelihood of the data. Unlike existing methods which are specific to
softmax, A&R is more general and is amenable to other categorical models, such as multinomial
probit. On several large-scale classification problems, we showed that A&R provides a tighter bound
on the marginal likelihood and has better predictive performance than existing approaches.

BBVI for implicit models. BBVI was an innovation in expanding VI to evaluable models. But in
some fields—physics and ecology come immediately to mind—models cannot be evaluated from,
only sampled. To this end Tran et al. (2017b) developed variational inference for implicit models.
Implicit probabilistic models are a flexible class of models defined by a simulation process for data.
They form the basis for theories which encompass our understanding of the physical world. Despite
this fundamental nature, the use of implicit models remains limited due to challenges in specifying
complex latent structure in them, and in performing inferences in such models with large data
sets. We first introduced hierarchical implicit models (HIMs). HIMs combine the idea of implicit
densities with hierarchical Bayesian modeling, thereby defining models via simulators of data with
rich hidden structure. Next, we developed likelihood-free variational inference (LFVI), a scalable
variational inference algorithm for HIMs. Key to LFVI is specifying a variational family that is
also implicit. This matches the model’s flexibility and allows for accurate approximation of the
posterior. We demonstrated diverse applications: a large-scale physical simulator for predator-prey
populations in ecology; a Bayesian generative adversarial network for discrete data; and a deep
implicit model for text generation.
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Nonconjugate variational inference. Finally, in a related theme to the goals of BBVI, Wang
and Blei (2013) developed coordinate ascent variational inference for nonconjugate models. We
developed two generic methods for nonconjugate models, Laplace variational inference and delta
method variational inference. Our methods have several advantages: they allow for easily derived
variational algorithms with a wide class of nonconjugate models; they extend and unify some of the
existing algorithms that have been derived for specific models; and they work well on real-world
datasets. We studied our methods on the correlated topic model, Bayesian logistic regression,
and hierarchical Bayesian logistic regression. Though they do not satisfy the black box criteria,
they work on the same class of models and can be faster (though with more of the investigator’s
effort).

4.3 Improving the Fidelity of Variational Inference

We have described our results around scaling variational inference and making it easily applica-
ble to large classes of probabilistic models. Another important thread of our research activities
revolved around making variational inference more accurate, i.e., increasing the fidelity of the
approximation.

Structured stochastic variational inference. Hoffman and Blei (2015) developed structured
SVI. The first SVI algorithm (Section 4.1 relies on the use of fully factorized variational distribu-
tions. However, this “mean-field” independence approximation limits the fidelity of the posterior
approximation, and introduces local optima. We showed how to relax the mean-field approxi-
mation to allow arbitrary dependencies between global parameters and local hidden variables,
producing better parameter estimates by reducing bias, sensitivity to local optima, and sensitivity to
hyperparameters.

Variational inference with copula augmentation. Tran et al. (2015) developed a copula approach
to variational inference, which preserves dependency among the latent variables. Our method uses
copulas to augment the families of distributions used in mean-field and structured approximations.
Copulas model the dependency that is not captured by the original variational distribution, and thus
the augmented variational family guarantees better approximations to the posterior. With stochastic
optimization, inference on the augmented distribution is scalable. Furthermore, our strategy is
generic: it can be applied to any inference procedure that currently uses the mean-field or structured
approach. Copula variational inference has many advantages: it reduces bias; it is less sensitive
to local optima; it is less sensitive to hyperparameters; and it helps characterize and interpret the
dependency among the latent variables.
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Hierarchical Variational Models

Model HVM Mean-Field

Poisson 100 3386 3387
100-30 3396 3896
100-30-15 3346 3962

Bernoulli 100 3060 3084
100-30 3394 3339
100-30-15 3420 3575

Table 2. New York Times. Held-out perplexity (lower is better).
Hierarchical variational models outperform mean-field in five
models. Mean-field (Ranganath et al., 2015) fails at multi-level
Poissons; HVMs make it possible to study multi-level Poissons.

Model HVM Mean-Field

Poisson 100 3327 3392
100-30 2977 3320
100-30-15 3007 3332

Bernoulli 100 3165 3166
100-30 3135 3195
100-30-15 3050 3185

Table 3. Science. Held-out perplexity (lower is better). HVM out-
performs mean-field on all six models. Hierarchical variational
models identify that multi-level Poisson models are best, while
mean-field does not.

observation counts each feature a positive integer number
of times. This means Poisson DEFs are a multi-feature gen-
eralization of SBNs.

Variational Models. We consider the variational approx-
imation that adds dependence to the z0s. We parameterize
each variational prior q(�zi

) with a normalizing flow of
length 2, and use the inverse flow of length 10 for r(�zi

).
We use planar transformations (Rezende and Mohamed,
2015). In a pilot study, we found little improvement with
longer flow lengths. We compare to the mean-field approx-
imation from Ranganath et al. (2015) which achieves state
of the art results on text.

Data and Evaluation. We consider two text corpora of
news and scientific articles— The New York Times (NYT)
and Science. Both have 11K documents. NYT consists of
8K terms and Science consists of 5.9K terms. We train six
models for each data set.

We examine held out perplexity following the same criteria
as Ranganath et al. (2015). This is a document complete
evaluation metric (Wallach et al., 2009) where the words
are tested independently. As our evaluation uses data not
included in posterior inference, it is possible for the mean-
field family to outperform HVMs.

Results. HVMs achieve better performance over six mod-
els and two datasets, with a mean improvement in perplex-
ity of 180 points. (Mean-field works better on only the
two layer Bernoulli model on NYT.) From a data model-
ing viewpoint, we find that for The New York Times there
is little advantage to multi-layer models, while on Science
multi-layer models outperform their single layer counter-
parts. Overall, hierarchical variational models are less sen-
sitive to inference in multi-layer models, as evidenced by
the generally lower performance of mean-field with multi-
ple layers. HVMs make it feasible to work with multi-level
Poisson models. This is particularly important on Science,
where hierarchical variational models identifies that multi-
level Poisson models are best.

5. Discussion
We present hierarchical variational models, a rich class of
posterior approximations constructed by placing priors on
existing variational families. These priors encapsulate dif-
ferent modeling assumptions of the posterior and we ex-
plore several choices. We develop a black box algorithm
can fit any HVM. There are several avenues for future work:
studying alternative entropy bounds; analyzing HVMs in the
empirical Bayes framework; and using other data modeling
tools to build new variational models.
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Figure 6: Empirical study of hierarchical variational models.

Variational Gaussian process. Building on this theme, Tran et al. (2016) developed the variational
Gaussian process (VGP), a Bayesian nonparametric variational family, which adapts its shape
to match complex posterior distributions. The VGP generates approximate posterior samples by
generating latent inputs and warping them through random non-linear mappings; the distribution
over random mappings is learned during inference, enabling the transformed outputs to adapt to
varying complexity. We proved a universal approximation theorem for the VGP, demonstrating its
representative power for learning any model. For inference we presented a variational objective
inspired by auto-encoders and perform black box inference over a wide class of models. At that
time, the VGP achieved new state-of-the-art results for unsupervised learning, inferring models such
as the deep latent Gaussian model and the deep recurrent attentive writer (DRAW) model.

Hierarchical variational models. This line of work on improving the fidelity of variational
methods culminated in our research in hierarchical variational models (HVMs) (Ranganath et al.,
2016c). HVMs augment a variational approximation with a prior on its parameters, which allows
it to capture complex structure for both discrete and continuous latent variables. The algorithm
we developed is black box, can be used for any HVM, and has the same computational efficiency
as the original approximation. We studied HVMs on a variety of deep discrete latent variable
models. HVMs generalize other expressive variational distributions and maintain higher fidelity to
the posterior.

Figure 6 shows results on the deep exponential families; HVMs are the best way to do inference in
this model. On the left is New York Times held-out perplexity (lower is better). HVM outperform
mean-field in five models. Mean-field (Ranganath et al., 2015) fails at multi-level Poissons; HVM
make it possible to study multi-level Poissons. On the right is Science. HVM outperforms mean-
field on all six models. HVM identify that multi-level Poisson models are best, while mean-field
does not.

Variational sequential Monte Carlo. The success of variational approaches depends on (i)
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formulating a flexible parametric family of distributions, and (ii) optimizing the parameters to find
the member of this family that most closely approximates the exact posterior. In parallel work to the
above, Naesseth et al. (2018) developed a new approximating family of distributions, the variational
sequential Monte Carlo (VSMC) family, and showed how to optimize it in variational inference.
VSMC melds variational inference (VI) and sequential Monte Carlo (SMC), providing practitioners
with flexible, accurate, and powerful Bayesian inference. The VSMC family is a variational family
that can approximate the posterior arbitrarily well, while still allowing for efficient optimization of
its parameters. We demonstrated its utility on state space models, stochastic volatility models for
financial data, and deep Markov models of brain neural circuits.

4.4 Theoretical Results in Variational Inference

Stochastic inference, black box variational inference, and high-fidelity variational inference were
the main themes of our practical accomplishments in approximate posterior inference. But for VI to
be trusted as a viable method, it requires both practical success and a theoretical understanding. As
part of the PPAML project, we developed two results around a theoretical understanding of VI. One
connects VI to the broader world of Bayesian statistics; the other relates the popular algorithm of
stochastic gradient descent (with a constant step size) to a variational approximation of the posterior.
We also developed new objective functions for VI, expanding the theory of what it means to perform
inference with optimization.

Consistency of variational inference. Variational Bayes methods have emerged as a popular
alternative to the classical Markov chain Monte Carlo (MCMC) methods. VB methods tend to be
faster while achieving comparable predictive performance. However, there are few theoretical results
around the statistical properties of VB. Wang and Blei (pear) established frequentist consistency and
asymptotic normality of VB methods. Specifically, we connected VB methods to point estimates
based on variational approximations, called frequentist variational approximations, and we use
the connection to prove a variational Bernstein-von Mises theorem. The theorem leverages the
theoretical characterizations of frequentist variational approximations to understand asymptotic
properties of VB. In summary, we proved that (1) the VB posterior converged to the Kullback-
Leibler (KL) minimizer of a normal distribution, centered at the truth and (2) the corresponding
variational expectation of the parameter is consistent and asymptotically normal. As applications
of the theorem, we derived asymptotic properties of VB posteriors in Bayesian mixture models,
Bayesian generalized linear mixed models, and Bayesian stochastic block models. We illustrated
these theoretical results with a simulation study.
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Variational inference and stochastic gradient descent. Stochastic Gradient Descent with a
constant learning rate (constant SGD) simulates a Markov chain with a stationary distribution. With
this perspective, Mandt et al. (2016a, 2017) derived several new results. (1) We showed that constant
SGD can be used as an approximate Bayesian posterior inference algorithm. Specifically, we showed
how to adjust the tuning parameters of constant SGD to best match the stationary distribution to
a posterior, minimizing the Kullback-Leibler divergence between these two distributions. (2)
We demonstrated that constant SGD gives rise to a new variational EM algorithm that optimizes
hyperparameters in complex probabilistic models. (3) We also showed how to tune SGD with
momentum for approximate sampling. (4) We analyzed stochastic-gradient MCMC algorithms. For
Stochastic-Gradient Langevin Dynamics and Stochastic-Gradient Fisher Scoring, we quantified
the approximation errors due to finite learning rates. Finally (5), we used the stochastic process
perspective to give a short proof of why Polyak averaging is optimal. Based on this idea, we
proposed a scalable approximate MCMC algorithm, the Averaged Stochastic Gradient Sampler,
which can be seen as a variational MCMC hybrid.

New objective functions for variational inference. In two related papers, we developed new
objective functions for VI, in both cases seeking to alleviate some of the theoretical issues of the
KL divergence. (That said, those theoretical issues do not always appear to be practical issues and
the classical KL divergence is still the most efficient variational objective function.)

In variational inference, closeness is usually measured via the KL divergence D(q||p) from the
variational approximation q to the exact posterior p. While successful, this approach also has
problems. Notably, it typically leads to underestimation of the posterior variance. In Dieng et al.
(2017), we proposed χ-divergence variational inference (ChiVI), a black-box variational inference
algorithm that minimizes Dχ(p||q), the χ-divergence from p to q. ChiVI minimizes an upper bound
of the model evidence, which we term the χ upper bound (CUBO). Minimizing the CUBO leads to
improved posterior uncertainty, and it can also be used with the classical VI lower bound (ELBO)
to provide a sandwich estimate of the model evidence. We studied ChiVI on three models: probit
regression, Gaussian process classification, and a Cox process model of basketball plays. When
compared to expectation propagation and classical VI, ChiVI produced better error rates and more
accurate estimates of posterior variance.

As we mentioned, variational inference is an umbrella term for algorithms which cast Bayesian
inference as optimization. Ranganath et al. (2016a) reexamined variational inference from its roots
as an optimization problem. We used operators, or functions of functions, to design new variational
objectives. As one example, we designed a variational objective with a Langevin-Stein operator. We
developed a black box algorithm, operator variational inference (OPVI), for optimizing any operator
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objective. Importantly, operators enable us to make explicit the statistical and computational
tradeoffs for variational inference. We can characterize different properties of variational objectives,
such as objectives that admit data subsampling—allowing inference to scale to massive data—as
well as objectives that admit variational programs—a rich class of posterior approximations that
does not require a tractable density. We illustrated the benefits of OPVI on a mixture model and a
generative model of images.

4.5 Variational Inference and Probabilistic Programming

Putting all these results into practice. We developed a new probabilistic programming language,
Edward, and adapted variational inference to a popular probabilistic programming language, Stan.
We used Edward and Stan extensively in the other research cited here, both to apply our innovations
and to develop new methodology.

Variational inference in Stan. For Stan, Kucukelbir et al. (2015, 2017a) developed automatic
differentiation variational inference (ADVI). Using this method, a scientist need only provide a
probabilistic model and a dataset, nothing else. ADVI automatically derives an efficient variational
inference algorithm, freeing the scientist to refine and explore many models. ADVI is a black-
box method and supports a broad class of models—no conjugacy assumptions are required. We
studied ADVI across ten modern probabilistic models and applied it to a dataset with millions of
observations. We deployed ADVI as part of Stan, a probabilistic programming system.

Figure 7 shows an example analysis of a large dataset with VI in Stan. The model is a mixture of
probabilistic principal component analysis (pPCA), a complex nonconjugate model. The analysis is
possible because of ADVI.

Edward. Tran et al. (2017a) proposed Edward, a Turing-complete probabilistic programming
language. Edward defines two compositional representations—random variables and inference.
By treating inference as a first class citizen, on a par with modeling, we showed that probabilistic
programming can be as flexible and computationally efficient as traditional deep learning. For
flexibility, Edward makes it easy to fit the same model using a variety of composable inference
methods, ranging from point estimation to variational inference to MCMC. In addition, Edward
can reuse the modeling representation as part of inference, facilitating the design of rich variational
models and generative adversarial networks. For efficiency, Edward is integrated into TensorFlow,
providing significant speedups over existing probabilistic systems. For example, we showed on a
benchmark logistic regression task that Edward is faster than Stan and PyMC3. Further, Edward
incurs no runtime overhead: it is as fast as handwritten TensorFlow.
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Figure 14: A visualization of fifty thousand randomly sampled taxi trajectories. The colors represent
thirty Gaussian mixtures and the trajectories associated with each.

(a) Trajectories that take the inner bridges. (b) Trajectories that take the outer bridges.

Figure 15: Two clusters using ���-���� subspace clustering.

Analyzing these taxi trajectories illustrates how exploratory data analysis is an iterative e�ort:
we want to rapidly evaluate models and modify them based on what we learn. ����, which provides
automatic and fast inference, enables e�ective exploration of massive datasets.

5. Discussion
We presented automatic di�erentiation variational inference (����), a variational inference algorithm
that works “out of the box” for a large class of modern probabilistic models. The main idea is to
transform the latent variables into a common space. Solving the variational inference problem in this
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Figure 7: An analysis of 1.7M taxi trajectories in Stan.

4.6 Designing New Models

Developing probabilistic programming more broadly also involves the other aspects of Box’s loop,
designing models, checking models, and applying models to real world data.

In designing models, we have developed three new classes of probabilistic models—correlated
random measures, deep exponential families, and probabilistic embeddings. We also developed
several methods to strengthen models, i.e., to make them more robust to data misfit. Finally, we
developed new methods for checking models, in particular reviving posterior predictive checks for
analyzing models of text and genetics.

Deep exponential families. Ranganath et al. (2015) describe deep exponential families (DEFs), a
class of latent variable models that are inspired by the hidden structures used in deep neural networks.
DEFs capture a hierarchy of dependencies between latent variables, and are easily generalized to
many settings through exponential families. We performed inference using black box variational
inference techniques, exploring many settings of the different parameters of a DEF. We evaluated
various DEFs on text and combined multiple DEFs into a model for pairwise recommendation data.
In an extensive study, we showed that going beyond one layer improves predictions for DEFs. We
demonstrated that DEFs find interesting exploratory structure in large data sets, and give better
predictive performance than state-of-the-art models.

Figure 8 shows the probabilistic graphical model for a DEF and results on using DEFs to analyze
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Figure 1: A fraction of the three layer topic hierarchy on 166K The New York Times articles. The top words
are shown for each topic. The arrows represent hierarchical groupings.
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DEFs can also be understood as random e↵ects mod-
els [11] where the variables are controlled by the prod-
uct of a weight vector and a set of latent covariates.

Likelihood. The data are drawn conditioned on the
lowest layer of the DEF, p.xn;i j zn;1/. Separating the
likelihood from the DEF will allow us to compose and
embed DEFs in other models. Later, we provide an
example where we combine two DEFs to form a model
for pairwise data.

In this paper we focus on count data, thus we use the

Poisson distribution as the observation likelihood. The
Poisson distribution with mean � is

p.xn;i D x/ D e�� �x

xä
:

If we let xn;i be the count of type i associated with
observation n, then xn;i ’s distribution is

p.xn;i j z1;W0/ D Poisson.z>n;1w0;i /;

The observation weights W0 is matrix where each en-
try is gamma distributed. We will discuss gamma dis-
tribution further in the next section.

Returning to the example from the introduction of
modeling documents, the xn are a vector of term
counts. The observation weights W0 put positive mass
on groups of terms and thus form “topics.” Similarly,
the weights on the second layer represents “super top-
ics,” and the weights on the third layer represent “con-
cepts.” The distribution p.zn;1 j zn;2;W1/ represents
the distribution of “topics” given the “super topics”
of a document. Figure 1 depicts the compositional
and sharing semantics of DEFs.

The link function. Here we explore some of the
connections between neural networks and deep expo-
nential families. As we discussed, the latent variable
layers in deep exponential families are connected to-
gether via a link function, g`. This link function spec-
ifies the natural parameters for z`;k from z>

`C1w`;k .

Using properties of exponential families we can deter-
mine how the link function alters the distribution of
the `th layer. The moments of the su�cient statistics
of an exponential family are given by the gradient of
the log-normalizer r⌘a.⌘/. These moments completely
specify the exponential family [7]. Thus in DEFs, the
mean of the next layer is controlled by the link func-
tion g` via the gradient of the log-normalizer,

EŒT .z`;k/ç D r⌘a.gl .z
>
`C1w`;k//: (2)
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Algorithm 1 BBVI for DEFs

Input: data X , model p, L layers.
Initialize �; ⇠ randomly, t D 1.
repeat

Sample a datapoint x
for s = 1 to S do
zx Œsç;W Œsç ⇠ q

pŒsç D logp.zx Œsç;W Œsç; x/
qŒsç D log q.zx Œsç;W Œsç/
gŒsç D r log q.zx Œsç;W Œsç/

end for
Compute gradient using BBVI
Update variational parameters for z and W

until change in validation likelihood is small

report results using a combination of two DEFs for
pairwise data.

Our results:

✏ Show improvements over strong baselines for both
topic modeling and collaborative filtering on a to-
tal of four corpora.

✏ Lead us to conclude that deeper DEFs and sparse
gamma DEFs display the strongest performance
overall.

5.1 Text Modeling

We consider two large text corpora Science and The
New York Times. Science consists of 133K documents
and 5.9K terms. The New York Times consists of
166K documents and 8K terms.

Baselines. As a baseline we consider Latent Dirich-
let Allocation [5] a popular topic model, and state-
of-the-art DocNADE [19]. DocNADE estimates the
probability of a given word in a document given the
previously observed words in that document. In Doc-
NADE, the connections between each observation and
the latent variables used to generate the observations
are shared.

We note that the one layer sparse gamma DEF is
equivalent to Poisson matrix factorization [9, 13] but
our model is fully Bayesian and our variational distri-
bution is collapsed.

Evaluation. We compute perplexity on a held out
set of 1,000 documents. Held out perplexity is given
by

exp

✓�Pd2docs

P
w2d logp.w j# held out in d/

Nheld out words

◆

Conditional on the total number of held out words,
the distribution of the held out words becomes multi-

Model W NYT Science
LDA [6] 2717 1711

DocNADE [19] 2496 1725
Sparse Gamma 100 ; 2525 1652

Sparse Gamma 100-30 � 2303 1539
Sparse Gamma 100-30-15 � 2251 1542

Sigmoid 100 ; 2343 1633
Sigmoid 100-30 N 2653 1665

Sigmoid 100-30-15 N 2507 1653
Poisson 100 ; 2590 1620

Poisson 100-30 N 2423 1560
Poisson 100-30-15 N 2416 1576

Poisson log-link 100-30 � 2288 1523
Poisson log-link 100-30-15 � 2366 1545

Table 2: Perplexity on a held out collection of 1K Sci-
ence and NYT documents. Lower values are better.
The DEF W column indicates the type of prior distri-
bution over the DEF weights, � for the gamma prior
and N for normal (recall that one layer DEFs consist
only of a layer of latent variables, thus we represent
their prior with the ;).

nomial. The mean of the conditional multinomial is
given by the normalized Poisson rate in each docu-
ment. We set the rates to the expected value under the
variational distribution. Additionally, we let all meth-
ods see ten percent of the words in each document; the
other ninety percent form the held out set. This is sim-
ilar to the document completion evaluation metric [38]
except we query the test words independently. We use
the observed ten percent to compute the variational
distribution for the document specific latent variables,
the DEF for the document, while keeping the approx-
imation on the shared weights fixed. In DocNADE,
this corresponds to always seeing a fixed set of words
first, then evaluating each new word given the first ten
percent of the document.

Held out perplexity di↵ers from perplexity computed
from the predictive distribution p.x⇤ j x/. The former
can be a more di�cult problem as we only ever con-
dition on a fraction of the document. Additionally
computing perplexity from the predictive distribution
requires computationally demanding sampling proce-
dures which for most models like LDA only allow test-
ing of only a small number (50) of documents [38, 33].
In contrast our held-out test metric can be quickly
computed for 1,000 test documents.

Architectures and hyperparameters. We build
one, two and three layer hierarchies of the sparse
gamma DEF, sigmoid belief network, Poisson DEF,
and log-link Poisson DEF. The sizes of the layers are
100, 30, and 15, respectively. We note that while dif-
ferent DEFs may have better predictive performance

Figure 8: Deep exponential families.

text. The table shows how deep exponential families and black box variational inference let us
analyze many different DEF structures. DEF models of text outperform existing methods. The
table reports perplexity on a held out collection of 1K Science and NYT documents. Lower values
are better. The DEF W column indicates the type of prior distribution over the DEF weights, for
the gamma prior and N for normal. (Recall that one layer DEFs consist only of a layer of latent
variables, thus we represent their prior with the empty set.)

Bayesian nonparametrics. In a thread of research, we continued to develop Bayesian nonparamet-
ric models. These are models that grow and change with the data, adapting their structure to the
data at hand.

Ranganath and Perotte (2018) developed correlated random measures, random measures where
the atom weights can exhibit a flexible pattern of dependence, and used them to develop powerful
hierarchical Bayesian nonparametric models. Hierarchical Bayesian nonparametric models are
usually built from completely random measures, a Poisson-process based construction in which
the atom weights are independent. Completely random measures imply strong independence
assumptions in the corresponding hierarchical model, and these assumptions are often misplaced in
real-world settings. Correlated random measures address this limitation. They model correlation
within the measure by using a Gaussian process in concert with the Poisson process. With correlated
random measures, for example, we can develop a latent feature model for which we can infer both
the properties of the latent features and their dependency pattern. We develop several other examples
as well. We studied a correlated random measure model of pairwise count data. We derived an
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efficient variational inference algorithm and show improved predictive performance on large data
sets of documents, web clicks, and electronic health records.

Paisley et al. (2015) developed a nested hierarchical Dirichlet process (nHDP) for hierarchical topic
modeling. The nHDP generalizes the nested Chinese restaurant process (nCRP) to allow each word
to follow its own path to a topic node according to a per-document distribution over the paths on
a shared tree. This alleviates the rigid, single-path formulation assumed by the nCRP, allowing
documents to easily express complex thematic borrowings. We derive a stochastic variational
inference algorithm for the model, which enabled efficient inference for massive collections of text
documents. We demonstrated the algorithm on 1.8 million documents from The New York Times
and 2.7 million documents from Wikipedia.

Polatkan et al. (2015) developed a new Bayesian nonparametric model for super-resolution. Our
method uses a beta-Bernoulli process to learn a set of recurring visual patterns, called dictionary
elements, from the data. Because it is nonparametric, the number of elements found is also
determined from the data. We tested the results on both benchmark and natural images, comparing
with several other models from the research literature. We performed large-scale human evaluation
experiments to assess the visual quality of the results. In a first implementation, we use Gibbs
sampling to approximate the posterior. However, this algorithm was not feasible for large-scale data.
To circumvent this, we then developed a stochastic variational inference algorithm. This algorithm
finds high quality dictionaries in a fraction of the time needed by the Gibbs sampler.

Latent feature models are widely used to decompose data into a small number of components.
Bayesian nonparametric variants of these models, which use the Indian buffet process (IBP) as a
prior over latent features, allow the number of features to be determined from the data. Gershman
et al. (2015) presented a generalization of the IBP, the distance dependent Indian buffet process
(dd-IBP), for modeling non-exchangeable data. It relies on distances defined between data points,
biasing nearby data to share more features. The choice of distance measure allows for many kinds
of dependencies, including temporal and spatial. Further, the original IBP is a special case of the
dd-IBP. We developed the dd-IBP and theoretically characterized its feature-sharing properties. We
studied its performance on real-world non-exchangeable data.

Exponential family embeddings. Word embeddings are a powerful approach for capturing
semantic similarity among terms in a vocabulary. Rudolph et al. (2016) developed exponential
family embeddings, a class of models that extends the idea of word embeddings to other types of
high-dimensional data. As examples, we studied neural data with real-valued observations, count
data from a market basket analysis, and ratings data from a movie recommendation system. The
main idea is to model each observation conditioned on a set of other observations. This set is called
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the context, and the way the context is defined is a modeling choice that depends on the problem.
In language the context is the surrounding words; in neuroscience the context is close-by neurons;
in market basket data the context is other items in the shopping cart. Each type of embedding
model defines the context, the exponential family of conditional distributions, and how the latent
embedding vectors are shared across data. On all three applications—neural activity of zebrafish,
users’ shopping behavior, and movie ratings—we found exponential family embedding models to
be more effective than other types of dimension reduction. They better reconstruct held-out data
and find interesting qualitative structure.

In many follow on papers, we expanded and extended exponential family embeddings. These
included to time series (Rudolph and Blei, 2018), to latent contexts (Liu and Blei, 2017), and to
hierarchies and groups (Rudolph et al., 2017).

4.7 Checking and Strengthening Models

In addition to designing new model classes, we developed several new methods for checking
models and for strengthening them, i.e., to make them robust to deviations from the model assump-
tions.

We first discuss three methods for addressing robustness; we then discuss three methods for checking
models.

Bayesian data reweighting. Probabilistic models analyze data by relying on a set of assumptions.
Data that exhibit deviations from these assumptions can undermine inference and prediction quality.
Robust models offer protection against mismatch between a model’s assumptions and reality. Wang
et al. (2017) proposed a way to systematically detect and mitigate mismatch of a large class of
probabilistic models. The idea is to raise the likelihood of each observation to a weight and then
to infer both the latent variables and the weights from data. Inferring the weights allows a model
to identify observations that match its assumptions and down-weight others. This enables robust
inference and improves predictive accuracy. We studied four different forms of mismatch with reality,
ranging from missing latent groups to structure misspecification. A Poisson factorization analysis
of the Movielens 1M dataset showed the benefits of this approach in a practical scenario.

A general approach to robust Bayesian models. As we discussed, robust Bayesian models are
appealing alternatives to standard models, providing protection from data that contains outliers or
other departures from the model assumptions. Historically, robust models were mostly developed on
a case-by-case basis; examples include robust linear regression, robust mixture models, and bursty
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topic models. Wang and Blei (2018) developed a general approach to robust Bayesian modeling.
We showed how to turn an existing Bayesian model into a robust model, and then developed a
generic computational strategy for it. We used our method to study robust variants of several models,
including linear regression, Poisson regression, logistic regression, and probabilistic topic models.
We discussed the connections between our methods and existing approaches, especially empirical
Bayes and James-Stein estimation.

Population empirical Bayes. Bayesian predictive inference employs a model to analyze a dataset
and make predictions about new observations. When a model does not match the data, predictive
accuracy suffers. Kucukelbir and Blei (2015) developed population empirical Bayes, a hierarchical
framework that explicitly models the empirical population distribution as part of Bayesian analysis.
We introduce a latent dataset as a hierarchical variable and set the empirical population as its
prior. This leads to a new predictive density that mitigates model mismatch. We efficiently applied
this method to complex models by proposing a stochastic variational inference algorithm, called
bumping variational inference. We demonstrated improved predictive accuracy over classical
Bayesian inference in three models: a linear regression model of health data, a Bayesian mixture
model of natural images, and a latent Dirichlet allocation topic model of scientific documents.

Bayesian checking of mixed membership models. In two papers we developed new ways to
check mixed-membership models, i.e., topic models and their cousins.

The first was to topic models. Real document collections do not fit the independence assumptions
asserted by most statistical topic models, but how badly do they violate them? Mimno and Blei
(2011) presented a Bayesian method for measuring how well a topic model fits a corpus. Our
approach is based on posterior predictive checking, a method for diagnosing Bayesian models in
user-defined ways. Our method can identify where a topic model fits the data, where it falls short,
and in which directions it might be improved.

The second was to population genetics. Admixture models are a ubiquitous approach to capture
latent population structure in genetic samples. But despite the widespread application of admixture
models, little thought has been devoted to the quality of the model fit or the accuracy of the
estimates of parameters of interest for a particular study. Mimno et al. (2015) developed methods
for validating admixture models based on posterior predictive checks (PPCs), a Bayesian method
for assessing the quality of fit of a statistical model to a specific dataset. We developed PPCs for
five population-level statistics of interest: within-population genetic variation, background linkage
disequilibrium, number of ancestral populations, between-population genetic variation, and the
downstream use of admixture parameters to correct for population structure in association studies.
Using PPCs, we evaluated the quality of the admixture model fit to four qualitatively different
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population genetic datasets: the population reference sample (POPRES) European individuals, the
HapMap phase 3 individuals, continental Indians, and African American individuals. We found that
the same model fitted to different genomic studies resulted in highly study-specific results when
evaluated using PPCs, illustrating the utility of PPCs for model-based analyses in large genomic
studies.

The posterior dispersion index. Finally we developed a new way to diagnose misfit of individual
datapoints. Probabilistic modeling is cyclical: we specify a model, infer its posterior, and evaluate
its performance. Evaluation drives the cycle, as we revise our model based on how it performs. This
requires a metric. Traditionally, predictive accuracy prevails. Yet, predictive accuracy does not tell
the whole story. Kucukelbir et al. (2017b) proposed to evaluate a model through posterior dispersion.
The idea is to analyze how each datapoint fares in relation to posterior uncertainty around the hidden
structure. This highlights datapoints the model struggles to explain and provides complimentary
insight to datapoints with low predictive accuracy. We presented a family of posterior dispersion
indices (PDI) that captured this idea. We showed how a PDI identifies patterns of model mismatch in
three real data examples: voting preferences, supermarket shopping, and population genetics.

4.8 Applications and Dissemination

We practice the art of probabilistic modeling by implementing Box’s loop in real-world applica-
tions. Over the past six years, we have developed new models for diverse applications, stretching
probabilistic modeling in new ways. In particular, we developed new models for the following
applications:

• text analysis (Rabinovich and Blei, 2014; Chaney et al., 2016; Rudolph et al., 2016, 2017;
Rudolph and Blei, 2018; Gerow et al., 2018)

• relational data and networks (Gopalan et al., 2013; Kim et al., 2013; Schein et al., 2015, 2016;
Linderman and Blei, 2018)

• computational neuroscience (Gershman et al., 2014; Manning et al., 2014; Linderman et al.,
2017; Manning et al., 2018)

• econometrics (Ruiz et al., 2017; Athey et al., 2018)

• healthcare records (Perotte et al., 2015; Ranganath et al., 2016b; Ranganath and Blei, 2018)

• population genetics (Mimno et al., 2015; Gopalan et al., 2016; Tran and Blei, 2018)
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• recommendation systems (Gopalan et al., 2014a,b, 2015; Chaney et al., 2015; Charlin et al.,
2015; Liang et al., 2016)

These myriad applications stretched the methodology and pushed it in directions that were useful to
real-world scientists and investigators.

Finally, we also disseminate our ideas in review papers. In particular, we wrote three papers
that explain probabilistic models (Blei, 2014), variational inference (Blei et al., 2017), and data
science (Blei and Smyth, 2017) to new audiences. These papers further help disseminate the ideas
and accomplishments from our work on the PPAML program.

5 Conclusions

We described our successes in pushing forward the state of the art of probabilistic machine learning.
Our contributions have changed the landscape of inference, tools, and real-world applications.

To conclude, we will identify some of the remaining challenges and limitations of the field.

• Probabilistic programming has focused on classical problems in machine learning, i.e., fitting a
model to data and then using the model for prediction or interpretation. Probabilistic modeling
is also important in the field of causality, which seeks to understand true causal mechanisms
from observational data. Using probabilistic programming to implement and work with causal
inference algorithms could have a significant impact on the nascent field of applied causality.

• Black box variational inference provides general inference methods for a wide class of models.
However, there are many variants and innovations on BBVI and there is yet little understanding
of in which setting each one works well. Outlining the performance of these variants and making
concrete recommendations for new modelers would be an important technical contribution. It
would greatly facilitate practical applications of black box inference.

• Model checking is a key activity and particularly so in a world where we have robust and
usable probabilistic programming. However, model checking is still a domain-specific activity.
Developing generic methods for assessing model fitness would be a major step for using Box’s
loop to solve real-world problems. Generic metrics could give us an understanding of ways that
model’s succeed and fail, and point to aspects of the model that the investigator should change.

• Probabilistic programming has focused on aspects like expressivity of the programming language
and scalability of the inference method. But the goal is to make probabilistic machine learning
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usable. To this end, user interfaces for probabilistic programming are a key area where we
need new innovation. What is the best way to articulate domain assumptions? How do we
translate them into a probabilistic program? Working with UI researchers on making probabilistic
programming usable is an important direction for future research.

In summary, through inference, checking, robustness, and applications, we made significant progress
on making probabilistic programming a reality. However, our work is not done. In the coming years,
our vision is that probabilistic machine learning will become even more robust and usable.
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7 List of Symbols, Abbreviations, and Acronyms

A&R augment and reduce
ADVI automatic differentiation variational inference
AVI annealed variational inference
BBVI black box variational inference
ChiVI χ-divergence variational inference
CUBO χ-upper bound
DARPA Defense Advanced Research Project Agency
dd-IBP distance-dependent Indian buffet process
DEF deep exponential family
DRAW deep recurrent attentive writer
ELBO evidence lower bound
EM expectation maximization
GP Gaussian process
HIM hierarchical implicit model
HVM hierarchical variational model
IBP Indian buffet process
KL divergence Kullback-Leibler divergence
LDA latent Dirichlet allocation
LFVI likelihood-free variational inference
MCMC Markov chain Monte Carlo
MVI multicanonical variational inference
nCRP nested Chinese restaurant process
nHDP nested hierarchical Dirichlet process
OPVI operator variational inference
PDI posterior dispersion index
POPRES population reference sample
PPAML probabilistic programming for advanced machine learning
PPC posterior predictive check

(continued on the next page)
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pPCA probabilistic principal component analysis
PPS probabilistic programming system
PVI proximity variational inference
SGD stochastic gradient descent
SMC sequential Monte Carlo
SNP single nucleotide polymorphism
SVI stochastic variational inference
VB variational Bayes
VGP variational Gaussian process
VI variational inference
VSMC variational sequential Monte Carlo
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