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Abstract

Twitter has become a popular data source as a surrogate for monitoring and detecting events. Targeted domains such as
crime, election, and social unrest require the creation of algorithms capable of detecting events pertinent to these domains.
Due to the unstructured language, short-length messages, dynamics, and heterogeneity typical of Twitter data streams, it is
technically difficult and labor-intensive to develop and maintain supervised learning systems. We present a novel
unsupervised approach for detecting spatial events in targeted domains and illustrate this approach using one specific
domain, viz. civil unrest modeling. Given a targeted domain, we propose a dynamic query expansion algorithm to iteratively
expand domain-related terms, and generate a tweet homogeneous graph. An anomaly identification method is utilized to
detect spatial events over this graph by jointly maximizing local modularity and spatial scan statistics. Extensive experiments
conducted in 10 Latin American countries demonstrate the effectiveness of the proposed approach.
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Introduction

Microblogs such as Twitter and Weibo are experiencing an

explosive level of growth. Millions of worldwide microblog users

broadcast their daily observations on an enormous variety of

domains, e.g., crime, sports, and politics. Traditional media, in

contrast, is monopolized by closed groups, and on occasion may

even be under threat from criminal organizations in localities

suffering from conflicts and high crime rates [1]. When a social

event occurs, it usually takes hours or even days to be reported by

traditional media, which is why social media like Twitter have

come to play a major role as a real-time information platform for

social events [2,3]. Beyond items of public interest, event-related

microblogs can provide highly detailed and timely information for

those interested in public safety, homeland security, and financial

stability. Figure 1 depicts event hotspots related to the protests on

September 27th, 2012 in Mexico. Based on tweets posted on that

day, the new approach proposed here automatically and

immediately identified these events, some of which were not

reported by traditional media until several days later.

Although identifying events from news reports has been well

studied [4], analyzing tweets to reveal event information requires

more sophisticated techniques. Tweets are written in unstructured

language and often contain typos, non-standard acronyms, and

spam. In addition to the textual content, Twitter data forms a

heterogeneous information network where users, tweets, and

hashtags have mutual relationships. These features of Twitter data

pose a challenge for event detection methods developed for

traditional media. Although there has been a considerable body of

work on event detection in Twitter, most of the work published has

targeted events of general interest. Methods for general interest
events typically focus on the ‘‘hotness’’ of events but are not

sufficient for tracking events in specific domains. It is of high social

significance to continuously and closely monitor crucial domains

such as crime [5], earthquakes [6], civil unrest [7], and disease

outbreaks [8]. Existing methods in event detection suffer from the

following shortcomings: 1) their restricted ability to model

heterogeneity and network properties of Twitter data. Existing

methods typically treat Twitter data as a set of plain textual

documents. However, ‘‘tweet’’, ‘‘word’’, ‘‘hashtag’’, and ‘‘user’’ are

of different entity types. For example, a ‘‘user’’ can post a ‘‘tweet’’,

‘‘tweets’’ can be tagged by a ‘‘hashtag’’ and a ‘‘tweet’’ can reply to

another ‘‘tweet’’. In general, these heterogeneous relationships and

properties are not effectively harnessed by existing methods; 2)

their limited ability to handle the dynamic properties of Twitter

data. Existing methods treat fixed keywords as features for

classifying tweets. However, the expression in tweets dynamically

evolves, which makes the use of fixed features and historical
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training sets inappropriate. For example, the most significant

Twitter keyword for the Mexican protests in Aug 2012 was

‘‘#YoSoy132’’ (i.e., the hashtag of an organization protesting

against electoral fraud), alluding to the protests against the

Mexican presidential election, but ‘‘#CNTE’’ (i.e., the hashtag

stands for the national teacher’s association of Mexico) had

become the most popular term by the beginning of 2013 due to

the movements against the Mexican education reform; and 3) their

inability to jointly model the semantic similarities and geograph-

ical proximities of events. Existing methods generally cannot

differentiate between multiple events that occur simultaneously in

the same location. For instance, in Mexico City, from Jan 30th,

2011 to Dec 31th, 2012, there were a total of 116 civil unrest

events on 83 dates, of which 25 dates involved multiple events. On

Sep 27, 2012, two different protests occurred in Mexico City,

organized separately by ‘‘#Yosoy132’’ and ‘‘City sanitation

workers’’. Hence, without the capacity to distinguish events’

semantic contexts, existing methods typically miss nearly 30% of

the events occurring in Mexico City.

In this paper, to address the above-mentioned issues, we present

an unsupervised ‘‘targeted domain’’ spatial event detection

method that can jointly handle the heterogeneity and dynamics

of Twitter data. Our contributions are summarized as follows:

N Development of an unsupervised framework: We

propose a novel unsupervised approach for targeted domain

spatial event detection in Twitter. Our method requires no

intensive human labor such as training set labeling.

N Design of a novel dynamic query expansion (DQE)
method: Given a targeted domain, DQE dynamically

generates a set of domain-related key terms via a Twitter

heterogeneous information network. The key terms are

exhaustively extracted and then weighted appropriately based

on DQE’s iterative process.

N An innovative local modularity spatial scan (LMSS)
algorithm. Based on a graph formed using key terms from

DQE, LMSS jointly maximizes the local modularity and

spatial scan statistics in order to distinguish events by taking

into account both their semantic similarities and geographical

proximities.

N Extensive experimental evaluation and performance
analysis. Our method was extensively evaluated on Twitter

data covering 10 Latin American countries. Comparisons with

baselines and state-of-the-art methods demonstrated its

effectiveness and efficiency.

Materials and Methods

Literature Review
Current microblog-based event detection methods can be

classified into two categories: 1) general-interest event detection,

and 2) targeted-domain event detection.

General-interest event detection. Methods under this

category aim to detect emerging general-interest topics in the

Twitter data stream, and typically apply unsupervised techniques

such as topic modeling, burst detection, and clustering techniques.

Yin et al. [9] developed geographic topic modeling techniques to

detect topics clustered in local geographic regions, while Lappas et

al. [10] proposed methods to discover bursts of terms in a specific

spatial and temporal neighborhood. Weng et al. [11] applied

wavelet analysis for noise filtering and then identified word groups

with high correlations, each of which is returned as the indicator of

an event. Adopting a different approach, Aggarwal and Subbian

[12] developed an algorithm that captures the related signals by

considering the tweets’ content, network structural, and temporal

information. Finally, Ritter et al. [13] suggested an NLP-based

approach to general event extraction from twitter data.

Targeted-domain event detection. Methods under this

category aim to detect events within a particular field, e.g.,

‘‘earthquakes’’, ‘‘disease outbreaks’’, and ‘‘civil unrest’’. These

methods generally rely on supervised learning techniques like the

support vector machine (SVM). Human labor is required to label

the subsets of tweets related to the targeted domain, and then

clustering techniques are applied to identify the locations of the

events. An example of this is a study by Sakaki et al. [6], who

designed a classifier to extract earthquake-related tweets and then

utilized Kalman filtering to detect the geographic regions where

the earthquakes had occurred. For tracking disease activities,

Signorini et al. [8] adopted an SVM classifier to extract tweets

related to various types of disease, while Chakrabarti et al. [14]

trained a modified Hidden Markov Model to learn the structure

and vocabulary of sports-related tweets, which were then utilized

to generate summaries of the sports events. Li et al. [5] trained a

classifier to extract crime-related tweets, first sorting the tweets

based on their importance, and then applying them to detect

crime events.

Problem Formulation
Twitter data contains heterogeneous entities and multiple types

of relationships, which can be formulated as a Twitter heteroge-

neous information network:

Definition 1 (Twitter Heterogeneous Information Net-
work) A Twitter heterogeneous information network is
defined as an undirected graph G~(V,E,W,S), where V~T|F .

T refers to a set of tweet nodes, and F~F 1| � � �|FM refers
to other M types (e.g., term, user, and hashtag) of nodes, called
feature nodes. E(V|V represents the set of edges, which are all
undirected. We denote the existence of an edge between two nodes
vi,vj[V by vi<vj . W denotes the set of weights of nodes and edges.
S~fl(v)Dv[T g refers to a set of geographic locations of tweet nodes,

where l(v)[R2 represents a tuple consisting of the latitude and
longitude of tweet node v. When M = 0, G reduces to a Twitter
homogeneous information network G0.

In addition to tweet nodes, we consider several other types of

nodes, including ‘‘term’’, ‘‘hashtag’’, ‘‘hyperlink’’, and ‘‘user’’, all

of which are generally called feature nodes. The relationships

between these types of nodes are denoted by the set of undirected

edges E, including authorship between user nodes and tweet nodes,

containment between tweet nodes and term nodes, and replying
between tweet nodes.

Figure 1. A map of civil unrest event hotspots on September
27th, 2012 pertaining to labor reform and other issues. Flags
denote the ground-truth events reported by authorities. Circles denote
the events detected by our method.
doi:10.1371/journal.pone.0110206.g001
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Definition 2 (Seed Query) A seed query is defined as an
initial set of semantically coherent feature nodes that characterize
the concept of the targeted domain. A seed query is denoted as

Q0~f(vi, w(vi)
(0))gN

i~1, where the feature node vi is a seed query

term whose weight w(vi)
(0)[Rz reflects its relevance to the targeted

domain. An expanded query is an extended set of weighted
feature nodes that represent the semantic contexts of spatial events.
Similar to seed query, an expanded query is denoted as

Q~ (vi,w(vi))f gN ’
i~1, where vi is called an expanded query term.

All the seed query terms have corresponding edges denoting their

semantic relevance. For example, given a seed query of the

domain ‘‘civil unrest’’: {(‘‘protest’’, 1), (‘‘march’’, 1), (‘‘strike’’, 1),

(‘‘unrest’’, 1)}, an expanded query can be: {(‘‘#megamarcha’’,

0.1), (‘‘#YoSoy132’’, 0.3), (‘‘zocal’’,0.1), (‘‘march’’,0.2), (‘‘imposi-

ción’’,0.1)}, which matches the news description: ‘‘A mega march

against the imposition of PRI: YoSoy132 protestors arrived at El

Zocalo.’’

Denote C~fC1,C2, � � � ,CPg as a collection of time-indexed

Twitter data, where Cp[C represents the subcollection of tweets

posted between timestamps tp{1 and tp. To achieve targeted

domain spatial event detection, one needs to concentrate on

domain-related tweets and detect the spatial burst signals based on

them. The major tasks of the targeted-domain spatial event
detection problem are defined as follows:

Task 1: Expanded Query Generation: Given Cp and a

seed query Q0 of a targeted domain, expanded query
generation is to generate the expanded query Qp by expanding

Q0 through the Twitter heterogeneous information network G.

Task 2: Spatial Event Extraction: Given a targeted-

domain related tweets subset extracted based on Qp from Cp,

spatial events extraction is to automatically identify a set of

spatial events, each of which is specified by geolocation, time, and

related tweet nodes.

Dynamic Query Expansion
Specially designed for Twitter data, the dynamic query

expansion (DQE) algorithm utilizes heterogeneous relationships

(e.g., containment, authorship, and replying) extracted from the

Twitter heterogeneous information network to expand the seed

query. The leftmost component in Figure 2 shows the general

framework of the DQE algorithm.

Calculation of Relevances to Targeted Domain. Given a

seed query, we must first focus on generating an expanded query.

Traditional query expansion methods generally expand the seed

query by examining the terms’ semantic or co-occurrence

relationships in textual documents [5,15,16]. To further enhance

the coverage of expanded query, recently Li et. al proposed to

expand the query iteratively by taking into account the usefulness

and coverage of the keywords in each iteration [17]. However,

their method is not guaranteed to converge and is sensitive to the

number of iterations user specified. Most existing query expansion

methods are seriously challenged by the heterogeneity of Twitter

data. First, Twitter data contains multiple types of entities. In

addition to terms, entities such as ‘‘users’’, ‘‘hashtags’’, and

‘‘hyperlinks’’ are all important for revealing the implicit relevance

between tweets. For example, a ‘‘keyplayer’’ (i.e., an important

Twitter user in a particular domain of activity) in a particular

domain will frequently post domain-related tweets, and thus the

tweets and terms posted by him/her are likely to be domain-

related. Second, Twitter data contains heterogeneous relationships
among multiple types of entities. Social relationships in Twitter

provide heuristics to associate tweets under a same domain. For

example, tweets can have mutual social relationships such as

‘‘replying’’ or ‘‘replied’’. A tweet and the tweets replying to it will

therefore generally fall into the same domain.

To overcome these challenges, we propose a new dynamic

query expansion algorithm that utilizes the heterogeneous

relationships of Twitter heterogeneous information network.

Referring to Definition 1, for any node vi[V, its weight

0ƒw(vi)[W is defined as its relevance to the targeted domain.

The nodes with higher weights are more relevant to the targeted

domain. For example, ‘‘protest’’ and ‘‘#OccupyWallSt’’ are more

relevant to the ‘‘civil unrest’’ domain than ‘‘love’’ and ‘‘#music’’,

thus the weights of ‘‘protest’’ and ‘‘#OccupyWallSt’’ are higher.

To simplify the notation, for any V(V, the weights set

fw(vi)Dvi[Vg is denoted as w(V ).

Heterogenous relationships among entities are ubiquitous and

important in Twitter. Terms such as ‘‘protest’’ are deemed to be

related to the ‘‘civil unrest’’ domain because they appear

frequently in the set of domain-related tweets. Similarly, user

‘‘ESPN’’ is related to the ‘‘sports’’ domain because ‘‘ESPN’’

mainly posts tweets about sports; tweets tagged by the hashtag

‘‘#OccupyWallSt’’ are considered to be about ‘‘civil unrest’’. A

tweet is typically deemed to be in the same domain as the one it

replies to. Tweet nodes and feature nodes generally exhibit a

mutual reinforcing relationship. Given a set of feature nodes

F(F and tweet nodes T(T , if a feature node vi[F has edges

with many high-weight tweet nodes instead of low-weight ones, it

should receive a large weight value. Then, if vj[T has edges with

Figure 2. Flowchart of the proposed method.
doi:10.1371/journal.pone.0110206.g002
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many high-weight feature nodes, it should also be assigned a large

weight value. It also follows that, if vj[T has a replying relationship

with a high-weight tweet node vk(T , vj should also receive a

large weight value. The first of these relationships determines the

weights of feature node set F while the second and third determine

the weights of tweet node set T.

The operation to determine the weights of the nodes in F
proceeds as follows:

w(F )~DF
:AF ,T

:w(T), ð1Þ

where w(F ) and w(T) denote the vector weights of F and T,

respectively. AF ,T denotes the adjacency matrix between F and T
such that ½AF ,T �ij~1 if vi<vj , where vi[F ,vj[T ; ½AF ,T �ij~0,

otherwise. DF is the inverse document frequency (IDF) [11] matrix

of F, which is a diagonal matrix such that ½DF �ii refers to the IDF

of vi[F .

The operation to determine the weights of the nodes in T
proceeds as follows:

w(T)~A’F ,T
:w(F )zbAT

:w(T), ð2Þ

where b reflects the tradeoff between the influences of feature

nodes and tweet nodes on the calculation of w(T). AT denotes the

matrix of the replying relationship between tweet nodes such that

ATi,j
~1 if vi<vj , where vi,vj[T ; ATi,j

~0, otherwise. A’F ,T is the

transpose of matrix AF ,T .

DQE Algorithm Description. To generate an expanded

query, above-mentioned operations are utilized via an iterative

DQE algorithm, as shown in Table 1 Algorithm 1. The major

issues of the algorithm implementation are described in the

following.

Initialization. Suppose we are given a seed query Q0~f(vi,

w(vi)
(0))gM

i~1 for the targeted domain. Denote w(:)(k) as the

weight(s) of the node(s) at the kth iteration. Denote T (k)
r as the set

of domain-related tweet nodes at the kth iteration. To trigger the

iterative operations, T0
r is initialized as the set of tweet nodes

matching Q0. All the feature nodes having edges with nodes in Tr

are potentially domain-related and thus can be used to initialize

the feature node set F(F . The initial tweet node set T(T
consists of tweet nodes, each of which has edge(s) with at least one

node in F. Naturally, T0
r (T . w(T0

r )(0) is an all-one vector while

w(T{T0
r )(0) is a zero vector.

Stopping Criterion. For the kth iteration, tweet nodes in T (k)
r

are compared to those in T{T (k)
r based on their weights. If

Vvi[T (k)
r and Vvj[T{T (k)

r : w(vi)§w(vj), then the iterations will

be terminated, as shown in Line 13. Otherwise, the lowest-weight

node in T (k)
r will be exchanged with the highest-weight node in

T{Tr (denoted by the function ‘‘Swap’’ in Line 6) until Vvi[T (k)
r

and Vvj[T{T (k)
r : w(vi)§w(vj), as shown in Line 8.

Generation of the Expanded Query. After the iterations are

completed, the ultimate set of domain-related tweet nodes is T (k)
r .

Define a set Fr of feature nodes, each of which has edge(s) to at

least one node of T (k)
r . Due to Fr(F , the weights of the nodes in

Fr have been calculated, as shown in Line 14, and eventually the

expanded query Q� is formed in Line 15.

Analysis of Convergence. Equations 1 and 2 are combined

to capture the weight updating of T:

w(T)(k)~E:w(T)(k{1), ð3Þ

where the matrix E is a transition matrix (column-normalized by

W) consisting of the relevances between any two tweet nodes in T:

E~W:(A’F ,T
:DF

:AF ,TzbAT ), ð4Þ

where W normalizes A’F ,T
:DF

:AF ,TzbAT by column so that the

weights in w(T)(k) sum to a constant.

Formulate three facts introduced above: 1) Vvi[T , Avj[F :

vi<vj , 2) Vvj[F , Avk[fvD(v,w(v))[Q0g: vj<vk, and 3)

Vvl ,vm[fvD(v,w(v))[Q0g: vl<vm. Therefore, we obtain Vva,vb[T ,

Avc,vf [F and Avd ,ve[fvD(v,w(v))[Q0g: va<vc<vd<ve<vf <vb,

which means any two nodes in T have a path connected to each

other. Hence, E is irreducible because its corresponding graph

formed by T is strongly connected [18].

The Markov chain associated with E is irreducible. In addition,

its aperiodicity is guaranteed [19]. Therefore, this Markov chain is

ergodic. Based on the stability theorem of Markov chains, the

existence of a unique stationary distribution vector for this Markov

chain is guaranteed [18], which means as k increases, w(T)(k)

converges to w(T)�~limk??Ek. Therefore, the convergence is

guaranteed.

Local Modularity Spatial Scan
We describe a local modularity spatial scan (LMSS) model that

can be applied to extract spatial events, as illustrated in the

corresponding component in Figure 2. Based on the tweet graph

built with the expanded query, we first derive an optimization

function for identifying anomalous subgraphs, and then apply this

function to identify tweets related to latent spatial events.

Anomalous Subgraph Identification. The expanded query

Qp contains the feature nodes that are most relevant to the

targeted domain. Qp is utilized to retrieve the set of domain-

Table 1. The algorithm of Dynamic Query Expansion.

Algorithm 1: Dynamic Query Expansion.

Input: Seed Query Q0~ vi ,w við Þ 0ð Þ
� �n oM

i~1
, Twitter subcollection Cp

Output: Expanded Query Qp

Initialize T, F, T0
r , and w(T)

Set W via Equation 3 and 4

Set k = 0

repeat

repeat

Swap min w Tk
r

� � kð Þ
� �

,max w T{Tk
r

� � kð Þ
� �� �

s~min w Tk
r

� � kð Þ
� �

{max w T{Tk
r

� � kð Þ
� �

until s$0;

w Fð Þ kð Þ
~DF

:AF ,T
:w Tð Þ k{1ð Þ

w Tð Þ kð Þ
~W: A’F ,T

:w Fð Þ kð Þ
zbAT

:w Tð Þ k{1ð Þ
� �

s~max w T{Tk
r

� � kð Þ
� �

{min w Tk
r

� � kð Þ
� �

k = k+1

until s#0;

w Frð Þ~ w við Þ(k)[w(F )(k) Dvi[Fr(F
n o

Qp~ vi ,w við Þð ÞDvi[Fr,w við Þ[w Frð Þf g.

doi:10.1371/journal.pone.0110206.t001
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related tweets TQp
, in which each tweet contains at least one of the

expanded query terms. We need to extract tweet node sets

fVign
i~1, where each Vi(TQp

contains tweets related to a latent

spatial event. This is typically solved by spatial clustering methods

[5,6]. However, if only the geographic proximities in clustering are

considered, it is not possible to distinguish between discrete events

when they occur in the same location.

To address this problem, the semantic similarities and

geographical proximities of tweets are jointly considered based

on the Twitter homogeneous information network. The event-

related tweets need to be both semantically similar and geograph-

ically close. Specifically, by referring to Definition 1, we can build

a Twitter homogeneous information network G0~(V0,E0,W0,S0),
where V0~TQp

denotes the node set, S0~fl(v)Dv[V0g stands for

the tweet nodes’ geographic locations, and E0~V0|V0 represents

the set of undirected edges. In addition, the weight setW0~w(E0)
represents the semantic similarities among tweet nodes such that

two tweets are semantically similar if they share expanded query

terms. Mathematically, w(E0)~A:AT where A is the adjacency

matrix between TQq
and Fr. Since E0, W0, and S0 all depend on

V0, for convenience we denote G0~(V0,E0,W0,S0) as G(V0). The

graph G(V1) is said to be a subgraph of graph G(V2) if V1(V2.

Hence, in G(V0), the event-related tweets are deemed to compose

a subgraph G~G(V[V0) that satisfies two properties: 1) tweets in

G connect via high-weight edges, and 2) tweets in G are

geographically proximate with each other.

For the first property, local modularity [20] is adopted, which is

a metric generally applied to measure the quality of a connected

subgraph:

fl Gð Þ~LG=LG
N{LG

inLG
out=(LG

N )2, ð5Þ

where LG~LG
inzLG

out. fl Gð Þ is the local modularity of

G~G(V[V0), an arbitrary subgraph of G(V0), LG
in refers to the

sum of the weights of the edges in G, LG
out denotes the sum of the

weights of the edges that connect nodes in G and nodes outside G,

and LG
N represents the sum of the weights of the edges in the

subgraph formed by the nodes in the geographical neighborhood

of the nodes of V.

For the second property, Kulldorff proposes an effective metric

to measure the geographical proximities of a spatial cluster,

dubbed the Kulldorff statistic [21]. It is applied to measure the

geographical proximities of the subgraph G:

fs Gð Þ~C log
C

B
z Call{Cð Þlog

Call{C

Ball{B
{Call log

Call

Ball

, ð6Þ

where C refers to the count of tweet nodes in G~G(V[V0), B
refers to the size of the set of tweet nodes

VB~fvDv[V0,l(v)[fvi Dvi[Vgg, Call denotes the count of tweet

nodes in V0, and Ball represents the count of tweet nodes in T .

Hence, Task 2 can be addressed by identifying the anomalous

subgraphs that jointly maximize the preceding two quality metrics.

This is formalized as a multi-objective optimization problem as

follows:

max
V(V’:G(V ) is connected

f (G(V ))~fl(G(V ))zlhs(G(V)), ð7Þ

where l is a predefined parameter to balance the significance of

the local modularity for semantic similarities and the Kulldorff

statistics for spatial proximities. V’ is an arbitrary subset of V0.

LMSS Algorithm. By exploring the linear-time subset scan-

ning (LTSS) property of the Kulldorff statistic [22], we propose a

fast approximate algorithm (Algorithm 2 in Table 2) that adopts a

heuristic strategy to search for anomalous subgraphs that maximize

f (G) in Equation 7. The algorithm is elaborated as follows.

Anomalous Subgraphs Extraction (Line 2–4). Each

distinct geographic location s[S0 is considered as a candidate

geographic center (Line 2). A tweet node set Vs(V0 is first

extracted with a corresponding set Ss(S0 consisting of locations

within a distance r of the center s (Line 3). In each Vs, by applying

a local modularity graph clustering algorithm [20], a subset V� is

found that has the maximum local modularity (Line 4).

Subgraph Refinement (Line 5–15). We next find a

connected subgraph V�r (Vs{V� that maximizes f (G(V�|V ))

(Line 6), where V is a subset of Vs{V�. Then V� is updated by

merging it with V�r (Line 7). To achieve linear time subgraph

scanning, Neill proposed a statistic priority function H(s) for

location s such that H(s)~Nc=Nb, where Nc and Nb are the

numbers of tweet nodes on location s in the subgraph and in the

whole graph, respectively [22]. If the minimum value of the

statistical priorities of the locations of V� is larger than the

maximum value of those of Vs{V� (Line 8–10), add G(V�) into

the graph list V (Line 15). Otherwise, exchange the minimum-

value location of V� with the maximum-value location of Vs{V�

(Line 11–12), and update V� by finding a subgraph V�|V that

maximizes f (G(V|V�)), where V(Vp (Line 13).

Candidate Subgraph Set Pruning (Line 16–17). If there

exist subgraphs V0~fG(Vi)gK ’
i~1(V sharing the same nodes,

retain only the subgraph G(V )~arg maxG(V )[V0 f (G(V )) (Line

16). We then test f (G) of each subgraph G[V with randomization

testing, and retain only the subgraphs with empirical p-values

smaller than 0.05 (Line 17).

Table 2. The algorithm of Local Modularity Spatial Scan.

Algorithm 2: Local Modularity Spatial Scan.

Input: G0~ V0,E0,W0,S0ð Þ

Output: V~ G Við Þf gK
i~1 , where Vi(V0

Initialize V~60
for s[S0 do

Vs~ vDv[V0,l vð Þ[Ssf g
V�~ arg max

V(Vs

fl G Vð Þð Þ, s.t. G Vð Þ is connected

repeat

V�r ~ arg max
Vr(Vs{V�

fl G V�|Vrð Þð Þ, s.t. G Vrð Þ is connected

V�~V�|V �r

p~arg minv[V�H l vð Þð Þ
q~arg maxv[Vs{V�H l vð Þð Þ

if H(p) ,H(q) then

V�~V �| qf g{ pf g
Vp~ Vs{V�ð Þ| pf g{ qf g

V�~ arg max
V(Vp

f G V�|Vð Þð Þ, s.t. G Vð Þ is connected

until H(p) $ H(q);

Add G V�ð Þ to V

Check overlapping among subgraphs and update V

Randomization testing on subgraphs and update V

doi:10.1371/journal.pone.0110206.t002
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The LMSS algorithm exhibits several advantageous theoretical

properties, as follows:

Theorem 1 Algorithm 2 in Table 2 has the following
theoretical properties: If l~0, it is guaranteed to return a local
optimal solution that maximizes the local modularity score f (G); If
l~z?, it is guaranteed to return a global optimal solution that
maximizes the Kulldorff statistic fs(G).

Proof. If l~0, then the solution of Line 4 will be returned as the

final value of V� for s, which proves the first property in Theorem

1. If l~z?, then the Kulldorff statistic dominates f (G). Line 6

searches for the set of tweet nodes V�r (Vs{V� by maximizing

f (G(V�r |Vr)). Note that in this step, the set of locations of tweet

nodes in V� is fixed, and hence the factors C, B and Ball are fixed.

Given that l~z? and fs(G) is a homogeneous function of the

count C, the optimal solution V�r is identical to Vs{V�. Recall the

basic idea of the LTSS property [22]: the subset of geographic

locations that maximizes the Kulldorff statistic can be found by

ranking the locations according to the priority function H(s), and

then searching over groups consisting of k locations with highest

priority values. It can be readily proved that by solving the

objective function in Line 13, the resulting V� will be the

connected subgraph consisting of the locations with the highest

priority values. Hence, the Kulldorff statistic fs(G) will be

maximized. %

Time Complexity Analysis
The time complexity of DQE is O(l:(DF D:nETF

zDT D(nETF

znETT
))), where nETF

%DF D is the average number of connections

between a tweet node and feature nodes, nETT
%DT D is the average

number of connections from a tweet node to other tweet nodes,

and l is the number of the iterations of DQE. Typically, lƒ10.

The time complexity of LMSS is O(
P

sDSsD logDSsDzDV�r D:P
sDVsD2)~O DV�r D

P
sDVsD2

� �
, where

P
sDSsD logDSsD corresponds to

the solving of the objective function in Line 6 of Table 2

Algorithm 2 while DV�r D:
P

sDVsD2 corresponds to the local

modularity calculation. DSsDƒDVsD and DVsDvDT ’D%DT D, where T ’
is the set of the tweet nodes with weights higher than 0.

By summing up these two parts, which correspond to DQE and

LMSS, respectively, the overall time complexity is

O(l:(DF D:nETF
zDT D(nETF

znETT
))zDV�r D

P
sDVsD2).

Results

In this section, the empirical evaluations of the performance of

our approach, DQE + LMSS, are presented. By comparing the

results with those obtained using existing methods and baselines,

the effectiveness and efficiency of our method and its components

are demonstrated. Sensitivity analysis and case studies are also

included in this section. All the experiments were conducted on a

computer with one 3.20 GHz Intel Xeon CPU and 18.0 GB

RAM.

Dataset and Labels
Twitter data used in this paper was purchased from Datasift Inc.

(www.datasift.com). All analyses here are done in compliance with

Twitter and Datasift terms of use. The dataset consists of

randomly selected 10% tweets of all the tweets sent in the period

from July 2012 to May 2013 in the 10 countries listed in Table 3.

This dataset was separated into two parts: 1) data from July to

October 2012, which served as the training set for the supervised

comparison methods, and 2) data from November 2012 to May

2013, which was used as the testing set for validating all the

methods. Both the training set and testing set were partitioned into

date intervals and event detection was performed for each country

individually based on each day’s data. Stop-words from tweets

were eliminated while stemming was also implemented.

Our detection results were validated against a labeled events set,

namely the Gold Standard Report (GSR). GSR was exclusively

provided by MITRE [23]. The general collection protocol

followed by the GSR is as follows: for each country, the top 3

newspapers were selected from among the top 100 newspapers

published in Latin America, as provided by International Media

and Newspapers. News was also collected from the most influential

international news outlets and with additional input from subject

matter experts. An event was considered ‘‘significant’’ if it was

reported by any of these news outlets. The dataset and labeled

news sources for each of these countries are listed in Table 3.

Methods for Comparison
Table 4 lists all the comparison methods tested: Earthquake

Detection, Topic Modeling, Graph Partition, Spatial Temporal

Burst (ST Burst), TEDAS, and EDSS. Their implementations and

parameters settings were as follows.

Table 3. Dataset and Label Source.

Country #Tweets (million) News source1 #Events

Argentina 52 Cları́n; La Nación; Infobae 365

Brazil 57 O Globo; O Estado de São Paulo; Jornal do Brasil 451

Chile 28 La Tercera; Las Últimas Notı́cias; El Mercurio 252

Colombia 41 El Espectador; El Tiempo; El Colombiano 298

Ecuador 13 El Universo; El Comercio; Hoy 275

El Salvador 7 El Diáro de Hoy; La Prensa Gráfica; El Mundo 180

Mexico 51 La Jornada; Reforma; Milenio 1217

Paraguay 8 ABC Color; Ultima Hora; La Nacı́on 563

Uruguay 3 El Paı́; El Observador 124

Venezuela 45 El Universal; El Nacional; Ultimas Notı́cias 678

1In addition to the top 3 domestic news outlets, the following news outlets are included: The New York Times; The Guardian;
The Wall Street Journal; The Washington Post; The International Herald Tribune; The Times of London; Infolatam.
doi:10.1371/journal.pone.0110206.t003
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Earthquake Detection [6]: This method is initially proposed

to detect earthquake, here it is borrowed to detect civil unrest

events. 5,386 tweets were manually labeled as ‘‘civil unrest

related’’ and another 6,147 tweets as non-related for training

purposes. Three types of features were evaluated: statistical,

keyword, and word context. All these types of features were tested

and the keyword feature were chosen for its best performance.

Topic Modeling [9]: The implementation was provided by

the authors. Hashtags were treated as tags and tweet geotags were

deemed to be the corresponding geographic regions.

Graph Partition [11]: The authors employed a weighted

Median Absolute Deviation to handle the skewness of the signal

strength distribution. Various weight values from 1 to 40 were

evaluated and the value 20 was chosen since it achieved the best

performance.

ST Burst [10]: The implementation was provided by the

authors. The tunable temporal window size was set to 6 in the

original work. We also evaluated other values, including 12 and

24, but observed similar results.

TEDAS [5]: The tunable parameters (a,b) and (a’,b’) were

used to denote the priors to punish words with low frequencies.

The well-recognized setting: b~b’~10 was followed to filter out

trivial words. The setting a~a’~0:1 was adopted due to the low

percentage of civil unrest content.

EDSS [12]: The tunable parameter, l, balances the relative

significance of content and network structure in event detection.

Various values, including the extreme values of 0 and 1 for l, were

tested. The setting l~0:5 was adopted since it outperformed the

other settings tested.

In addition, the effectiveness of each component of our DQE +
LMSS was tested by comparing with those of 3 baselines, namely

query expansion (QE) + LMSS, support vector machine (SVM) +
LMSS, and DQE + spatial scan (SS):

QE + LMSS: QE was implemented by following the original

design in [24], and adopted the same seed query as that used in

DQE.

SVM + LMSS: SVM was adopted by following the experi-

mental settings of the ‘‘Earthquake Detection’’ method. Domain-

related tweets were extracted based on SVM and then utilized by

LMSS.

DQE + SS: As a popular spatial scan statistic, the Kulldorff

statistic was applied with our DQE to compose a baseline [22].

Validation
All the comparison methods and baselines returned the event-

related tweet content and the corresponding time and location. In

addition to the ‘‘civil unrest’’ domain, the general-interest event

detection methods output the events under any domains.

Therefore, to achieve a fair comparison, events from other

domains were filtered out for these methods. In particular, given

the ‘‘event’’-related tweets generated for any method, a linear

SVM classifier was adopted to classify all the events into two

categories: events in the civil unrest domain and those in other

domains. The classifier utilized unigram features, and was trained

based on 5,386 tweets manually labeled as ‘‘civil unrest related’’

and another 6,147 tweets labeled as ‘‘unrelated’’.

After the extraction of ‘‘civil unrest’’ events by the general-

interest event detection methods, all the methods were validated

against the GSR. A detected event ‘‘matches’’ a GSR event if the

following conditions are both satisfied: 1) the event time detected is

the same as the time period recorded in GSR; 2) the event location

detected is within the same city as that recorded in GSR.

Initial Settings
There are several tunable parameters in our approach. b in

Equation 2 is a parameter for updating tweet node weights. Its

default value is set to 1. l in Equation 7 was used to balance the

weights between local modularity and spatial scan statistics, and

with 1 as its default value. Other settings of b and l were also

studied and are discussed in the rest of the paper.

To initialize DQE, a user is asked to choose 10 civil unrest

tweets. In those tweets, terms are ranked based on their document

frequency-inverse document frequency (DFIDF) [11] weights. For

Spanish speaking countries, the top keywords are: ‘‘protesta’’,

‘‘marcha’’, ‘‘movimiento’’, ‘‘patriótica’’, ‘‘manifiesto’’, ‘‘violencia’’,

‘‘holguı́n’’, ‘‘americateve’’, ‘‘cubanet’’, and ‘‘rolezeiros’’ in a

descending order of DFIDF. Based on our experiments, the top

ranked terms are generally related to civil unrest, such as

‘‘protesta’’, ‘‘marcha’’, and ‘‘movimiento’’, whatever the initial

10 civil unrest tweets selected. The same situation applies for

Portuguese speaking countries. The top 5 keywords were selected

as the seed query terms, all of which were assigned with the same

weight to form the seed query. The impact of the number N of

seed query terms is discussed in the Study of Parameters Section.

Additionally, in LMSS, the longest distance r between any two

neighboring locations was set to 200 km. We also tried 20

additional values of r ranging from 150 km to 370 km, and found

Table 4. Methods and Efficiencies.

Methods Targeted Domain Supervised Running Time

Earthquake Detection [6] Yes Yes 15.2 hours

Topic Modeling [9] No No 9.7 hours

Graph Partition [11] No No 18.9 hours

ST Burst [10] No No 30.1 hours

TEDAS [5] Yes Yes 20.9 hours

QE [24] + LMSS No No 23.2 hours

SVM + LMSS Yes Yes 22.0 hours

DQE + SS [22] Yes No 16.3 hours

Our proposed (DQE + LMSS) Yes No 18.2 hours

EDSS [12] No No 19.8 hours

doi:10.1371/journal.pone.0110206.t004
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it made little difference to the performance, as noted in the Study
of Parameters Section.

Evaluation of Components
First, the empirical cases will be presented to illustrate the

correctness of the expanded query generated by DQE, then the

effectiveness of DQE and LMSS are demonstrated based on

quantitative comparisons with the baseline methods.

Quality Analysis of DQE’s Performance. Here, DQE is

proposed to generate the expanded queries. Table 5 lists GSR

events in July 2012 in Mexico and the corresponding expanded

query terms generated by DQE. In the second column, for each

date the 6 query terms with the highest weights are listed as the

representatives of each expanded query. For each date, the

expanded query terms are not only all related to the civil unrest

domain, but are also very relevant to the GSR description on that

date. Determinative key terms such as event locations, event times,

and organization names are successfully identified. Moreover,

event-related key hashtags (e.g., ‘‘#Megamarcha’’) and keyplayers

(e.g., ‘‘epigmenioibarra’’) were also effectively extracted. Interest-

ingly, the only exception was on July 8th, where the key term

‘‘Eugenio Derbez’’, a popular celebrity in Mexico, was detected.

This name became a key term because the protest happened to

occur near to his wedding venue, which was reported in online

media.

Table 5. Comparison between Expanded Query from DQE and GSR Description of Events.

Detect-Date Expanded Query Extracted by DQE GSR Description of Real Events Occur-Date

1-Jul #YoSoy132, #Granmarcha132, patrull, Companer, PRI, movement ‘‘Youth movement #YoSoy132 staged a
sit-in outside the local board of Federal
Electoral Institute.’’

1-Jul

3-Jul #Epnnuncaseramipresidente, fraud, #YoSoy132, movimient,
progress, contig, march

‘‘The student movement #YoSoy132
protested against fraud in the elections.’’

3-Jul

7-Jul #Megamarcha, #Exigimosdemocracia Eugenio, Derbez, eleccion,
@YoSoy132Media

‘‘Protesters unite to call for mega march.’’
‘‘YoSoy132 go and concentrate on the
Esplanade of Heroes.’’

7-Jul

8-Jul #Megamarcha, #Megamarch, Eugenio, Derbez, against, election ‘‘Protesters unite to call for mega march
against virtual presidential election.’’

13-Jul imposicion, #Megamarcha, 15hrs, principal, march, #AMLO ‘‘A march was in protest of the imposition
of the PRI candidate.’’

14-Jul

14-Jul #Megamarcha, #Megamarch, 14juli, zocal, angel, march ‘‘Virtual #Megamarch against the winner
of the presidential election, Enrique Peña
Nieto, left the Angel de Independencia to el
Zocalo of Mexico City.’’

14-Jul

19-Jul #Sosmexico, #Sosmexic, fraud, elector, march, protest ‘‘Protesting for alleged fraud in the election
of July 1’’

19-Jul

22-Jul #Megamarcha, #YoSoy132, @epigmenioibarra, Zocal, march,
imposicion

‘‘A mega march against the alleged imposition
of the PRI.’’

22-Jul

‘‘YoSoy132 march arrives at El Zocalo and
goes to the Monument to the Revolution’’

27-Jul #Ocupatelevisa, #YoSoy132, televisa, chapultepec, installation,
march

‘‘Students symbolically take over facilities of
Hidalgo Radio and TV, and fence outside
Televisa Chapultepec in Mexico City’’

27-Jul

doi:10.1371/journal.pone.0110206.t005

Table 6. Performance Comparison with Baseline Components (Precision, Recall, F-measure).

Dataset DQE + LMSS DQE + SS QE + LMSS SVM + LMSS

Brazil 0.93, 0.37, 0.53 0.84, 0.59, 0.69 0.44, 0.14, 0.21 0.39, 0.24, 0.30

Colombia 0.81, 0.75, 0.78 0.58, 0.73, 0.65 0.31, 0.16, 0.21 0.63, 0.64, 0.63

Uruguay 0.66, 0.82, 0.73 0.76, 0.26, 0.39 0.80, 0.58, 0.67 0.45, 0.27, 0.34

El Salvador 0.83, 0.43, 0.56 0.63, 0.09, 0.16 0.55, 0.37, 0.44 0.61, 0.19, 0.29

Mexico 0.91, 0.49, 0.64 0.73, 0.37, 0.49 0.56, 0.09, 0.16 0.56, 0.18, 0.27

Chile 0.80, 0.69, 0.74 0.58, 0.75, 0.65 0.28, 0.28, 0.28 0.78, 0.29, 0.42

Paraguay 0.98, 0.35, 0.52 0.96, 0.17, 0.29 0.88, 0.67, 0.76 0.57, 0.11, 0.19

Argentina 0.78, 0.61, 0.69 0.69, 0.71, 0.70 0.67, 0.54, 0.60 0.92, 0.22, 0.35

Venezuela 0.88, 0.50, 0.64 0.57, 0.31, 0.40 0.56, 0.26, 0.36 0.65, 0.12, 0.20

Ecuador 0.82, 0.51, 0.63 0.72, 0.44, 0.55 0.54, 0.93, 0.68 0.62, 0.71, 0.66

doi:10.1371/journal.pone.0110206.t006
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Quantitative Analysis of DQE’s Effectiveness. We are

interested in examining whether DQE is the best choice for our

event detection method, compared to other classic methods.

Therefore 2 baseline options, QE and SVM, were introduced as

potential replacements for DQE to be used in conjunction with

LMSS. The performance of these baselines was then compared

with our proposed DQE + LMSS. The results are shown in

Table 6. DQE + LMSS achieved the best F-measures in 8 of the

10 countries and was second best in Paraguay and Ecuador.

Moreover, it consistently achieved highly competitive F-measures

of above 0.5 across all the countries tested, which confirms the

stability of its performance. This demonstrates that DQE is a

better choice for our event detection method.

Effectiveness of LMSS. In this set of experiments, we

evaluated the effect of utilizing LMSS as a component of our

method by comparing its performance against that of the baseline

method DQE + SS described above. The results of the comparison

are shown in Table 6. DQE + LMSS clearly outperforms DQE +
SS, achieving much higher F-measures in most of the countries

tested except Brazil and Argentina. DQE + SS has F-measure

values below 0.5 in half of the countries, and its recall values are

lower than 0.3 in 3 countries. The superior performance

demonstrated by both DQE and LMSS vindicate the decision to

utilize them as the components of the proposed event detection

method.

Event Detection Performance
Our proposed approach was compared with existing methods

based on precision, recall, and F-measures on civil unrest event

detection.

The experimental results are illustrated in Table 7, which shows

that the proposed method achieves the best overall performance.

Except for Brazil, Ecuador, and Paraguay, DQE + LMSS achieves

the highest F-measures in every country. Even for these 3

countries, it scored the best on precision and achieved a highly

competitive overall performance. Although TEDAS also achieves

a relatively good performance compared to the other benchmark

methods, it still produced 4 countries with F-measures lower than

0.5. Among the existing methods, the Earthquake method and

EDSS were relatively advantageous in precision, but suffered from

a limited ability to detect most of the events. ST Burst performed

better in large countries such as Brazil, Argentina, and Mexico,

than in the smaller ones. Graph Partition and Topic Modeling,

which are unsupervised methods designed for events under

general-interest domain, seem relatively weak for detecting events

under a targeted domain, achieving F-measures over 0.5 in very

few countries.

The computation times consumed by these methods are shown

in Table 4. There is no significant difference in running times

among most of the methods. The only exception is Topic

Modeling, which took less than 10 hours. Note that unlike the

other targeted-domain spatial event detection methods, namely

Earthquake and TEDAS, our method is unsupervised, which

means it does not need to devote additional effort to labeling.

In summary, the experiments clearly demonstrate the effective-

ness and efficiency of the proposed DQE + LMSS approach.

Study of Parameters
The impact of the parameters of the proposed approach was

evaluated, including (i) N, the number of the seed query terms, (ii)

b, the parameter for updating tweet node weights (see Equation 2),

(iii) l, the trade-off between local modularity and spatial scan

statistics (see Equation 7), and (iv) r, the longest distance between

any two neighbor nodes.
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Figure 3(a) illustrates the performance of our method versus N,

the number of seed query terms. For most of the countries, the F-

measures corresponding to N = 2 or 3 are significantly higher than

when N = 1. But when N increases further, the F-measures tend to

be stable, especially once N reaches 5.

Figure 3(b) shows the results of varying b from 0.5 to 1.5. By

increasing the value of b to around 1, the F-measures of most

countries are improved, but once it exceeds 1, the performance

drops.

The results of tuning l are shown in Figure 3(c). By varying l
from 0.3 to 1.4, the F-measures generally increase, reaching their

peaks when l is in the range of 0.7 to 1.2. This suggests the ‘‘sweet

region’’ of l to correspond to the point where the local modularity

and spatial scan statistics combine to achieve the optimal

performance. Moreover, even with an extreme value of l, say

0.3 or 1.4, the overall performance of the proposed model remains

highly competitive compared to its peers, as can be seen in the

data shown in Table 7.

Figure 4 illustrates the F-measures obtained by varying r from

150 km to 370 km. The F-measures for Colombia, Paraguay,

Mexico, El Salvador, and Argentina do not change significantly

with respect to r. For the other 5 countries, the effect on the F-

measures of varying the value of r are mostly less than 0.1, which

are still minimal.

Case Study
During the experiments, a number of interesting facts revealed

by using the proposed approach was observed. For instance,

comparing the results for Colombia and Paraguay, the very

different expanded query terms from these two countries reflect

their correspondingly different social foci, which contributed to the

model’s ability to accurately detect local events accordingly. As

shown in Figure 5, the major term for movements is ‘‘protest’’ in

Colombia (as on October 1, 2012) versus ‘‘huelga’’ (i.e., ‘‘strike’’ in

English) in Paraguay (as on November 20, 2012). The cities

‘‘Medellin’’ in Colombia and ‘‘Curuguaty’’ in Paraguay were both

hot spots for unrest events, but the movements in Colombia seem

more metropolitan-related, because of the appearance of terms

such as ‘‘estacion’’ (station), ‘‘transport’’, and ‘‘teleantioqui’’

(television). Paraguay’s themes for these events are more about

‘‘libert’’, ‘‘campesin’’ (peasant), and ‘‘hambr’’ (hunger). These

cases reveal that our method can indeed capture the variety of

keywords across different countries. It is worth noting that ongoing

unrest keywords, even in the same country, tend to evolve over

Figure 3. Sensitivity analysis of parameters. (a) Sensitivity analysis of ‘‘number of seed query terms’’ (b) Sensitivity analysis of ‘‘trade-off b for
updating tweet node weights’’ (c) Sensitivity analysis of ‘‘trade-off l between local modularity and spatial scan statistics’’.
doi:10.1371/journal.pone.0110206.g003

Figure 4. Sensitivity analysis of the longest distance r between any two neighboring locations.
doi:10.1371/journal.pone.0110206.g004
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time, as shown in Table 5, and our DQE can still capture this

evolution effectively.

Based on the expanded queries generated by our DQE, LMSS

was able to identify spatial unrest events. In the above examples, as

shown in Figure 5, the proposed method detected one event on

October 1st, 2012 in Colombia that was related to transportation

in the city of Medellin; on Nov. 20th, 2012 in Paraguay, the

proposed method detected 2 events concerned with about ‘‘food

subsidy’’ in Curuguaty and ‘‘peasants demand freedom’’ in

Asunción, respectively.

Conclusion

This paper presents a novel unsupervised approach for

detecting spatial events under targeted domains. We developed

dynamic query expansion that utilizes a Twitter heterogenous

information network to dynamically extract domain-related key

terms. To extract spatial events based on these domain-related

tweets, we designed a local modularity spatial scan capable of

simultaneously considering the semantic similarity and the

geographical proximities of tweets. Extensive empirical studies

on civil unrest event detection were conducted based on Twitter

data collected in 10 Latin American countries. The results

demonstrated the effectiveness and efficiency of our proposed

approach.
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Figure 5. Event detection case studies.
doi:10.1371/journal.pone.0110206.g005

Unsupervised Spatial Event Detection in Targeted Domains

PLOS ONE | www.plosone.org 11 October 2014 | Volume 9 | Issue 10 | e110206



References

1. Manelzis L, Peleg S (2008) War journalism as media manipulation: Seesawing

between the Second Lebanon war and the Iranian nuclear threat. Peace and

Policy 13: 62–73.

2. Wilson C, Dunn A (2011) Digital media in the Egyptian revolution: Descriptive

analysis from the Tahrir data sets. International Journal of Communication 5:

1248–1272.

3. Tufekci Z, Wilson C (2012) Social media and the decision to participate in

political protest: Observations from Tahrir Square. Journal of Communication

62: 363–379.

4. Kumaran G, Allan J (2004) Text classification and named entities for new event

detection. In: SIGIR ’04. pp. 297–304.

5. Li R, Lei KH, Khadiwala R, Chang KC (2012) TEDAS: a Twitter-based event

detection and analysis system. In: ICDE ’12. pp. 1273–1276.

6. Sakaki T, Okazaki M, Matsuo Y (2010) Earthquake shakes Twitter users: real-

time event detection by social sensors. In: WWW ’10. pp. 851–860.

7. Ramakrishnan N, Butler P, Muthiah S, Self N, Khandpur R, et al. (2014)

‘‘Beating the news’’ with EMBERS: Forecasting civil unrest using open source

indicators. In: KDD ’14. pp. 1799–1809.

8. Signorini A, Segre AM, Polgreen PM (2011) The use of Twitter to track levels of

disease activity and public concern in the US during the influenza A H1N1

pandemic. PloS one 6: e19467.

9. Yin Z, Cao L, Han J, Zhai C, Huang T (2011) Geographical topic discovery and

comparison. In: WWW ’11. pp. 247–256.

10. Lappas T, Vieira MR, Gunopulos D, Tsotras VJ (2012) On the spatiotemporal

burstiness of terms. VLDB ’12 5: 836–847.

11. Weng J, Lee BS (2011) Event detection in Twitter. In: ICWSM ’11. pp. 401–

408.

12. Aggarwal CC, Subbian K (2012) Event detection in social streams. In: ICDM

’12. pp. 624–635.
13. Ritter A, Etzioni O, Clark S. (2012) Open domain event extraction from

Twitter. In: KDD ’12. pp. 1104–1112.
14. Chakrabarti D, Punera K (2011) Event summarization using tweets. In: ICWSM

’11. pp. 66–73.

15. Xu J, Croft WB (1996) Query expansion using local and global document
analysis. In: SIGIR ’96. pp. 4–11.

16. Liu T, Wang F, Agrawal G (2010) Instance discovery and schema matching with
applications to biological deep web data integration. In: Data Integration in the

Life Sciences. pp. 148–163. Springer, 2010.

17. Li R, Wang S, Chang KCC (2013) Towards social data platform: Automatic
topic-focused monitor for twitter stream. In: VLDB ’13, 6: 1966–1977.

18. Golub GH, Van Loan CF (2012) Matrix computations, volume 3. Johns
Hopkins University Press.

19. Haveliwala TH (2003) Topic-sensitive pagerank: A context-sensitive ranking
algorithm for web search. TKDE ’03 15: 784–796.

20. Muff S, Rao F, Caflisch A (2005) Local modularity measure for network

clusterizations. Physical Review E 72: 056107.
21. Kulldorff M (1997) A spatial scan statistic. Communications in Statistics-Theory

and methods 26: 1481–1496.
22. Neill DB (2012) Fast subset scan for spatial pattern detection. Journal of the

Royal Statistical Society: Series B (Statistical Methodology) 74: 337–360.

23. MITRE website. Available: http://www.mitre.org/. Accessed 2014 September
22.

24. Massoudi K, Tsagkias M, de Rijke M, Weerkamp W (2011) Incorporating query
expansion and quality indicators in searching microblog posts. In: Advances in

Information Retrieval, Springer. pp. 362–367.

Unsupervised Spatial Event Detection in Targeted Domains

PLOS ONE | www.plosone.org 12 October 2014 | Volume 9 | Issue 10 | e110206

http://www.mitre.org/

