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Abstract

Reliable forecasts of influenza can aid in the control of both seasonal and pandemic outbreaks. We introduce a simulation
optimization (SIMOP) approach for forecasting the influenza epidemic curve. This study represents the final step of a project
aimed at using a combination of simulation, classification, statistical and optimization techniques to forecast the epidemic
curve and infer underlying model parameters during an influenza outbreak. The SIMOP procedure combines an individual-
based model and the Nelder-Mead simplex optimization method. The method is used to forecast epidemics simulated over
synthetic social networks representing Montgomery County in Virginia, Miami, Seattle and surrounding metropolitan
regions. The results are presented for the first four weeks. Depending on the synthetic network, the peak time could be
predicted within a 95% CI as early as seven weeks before the actual peak. The peak infected and total infected were also
accurately forecasted for Montgomery County in Virginia within the forecasting period. Forecasting of the epidemic curve
for both seasonal and pandemic influenza outbreaks is a complex problem, however this is a preliminary step and the
results suggest that more can be achieved in this area.
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Introduction

Influenza continues to be one of the most important human

infectious diseases; responsible for thousands of deaths in the

United States each year. In April of 2009, a novel influenza A

virus emerged in Mexico and the United States. Although the

2009 H1N1 influenza pandemic was milder than expected, the

emergence of the novel virus reinforced the need to improve tools

for analyzing surveillance data and forecasting for decision making

during a pandemic [1]. Mathematical and computational models

are used as tools to aid pandemic planning. Specifically,

individual-based epidemiology models are useful in evaluating

the possible effectiveness and economic impact of different

response strategies [2–6].

This study extends the application of the individual-based

epidemiology model to forecasting of the epidemic infection curve

(hereafter referred to as the epidemic curve). The epidemic curve

is defined as the daily or weekly number of cases observed for the

duration of the epidemic [7]. We seek to forecast the time at which

the epidemic peaks, the number of infected individuals at the peak

and the cumulative infected counts. These measures provide a

summary of the epidemic curve and are important to public health

officials. An accurate forecast of these measures at a regional level

would enable local public health officials to evaluate intervention

strategies and make educated decisions during an influenza

epidemic [8–10].

Real-time forecast of the epidemic curve requires a combination

of good monitoring systems and adequate assumptions about the

disease model parameters [9,11]. Conventional methods for

monitoring influenza-like illness (ILI) and acute respiratory tract

infections from general practices, family doctor and government

clinics are being used in many countries [11–18]. These methods

were also used to monitor influenza activity during the 2009

H1N1 pandemic [19–21]. In addition, several methods have been

proposed for real-time modeling and forecasting of epidemic

dynamics [9,11,22–24]. Hall et al. [24] proposed using a

deterministic compartmental model to estimate epidemic dynam-

ics. Their method was used to retrospectively predict the

amplitude and durations of three pre-2006 influenza pandemic

events in England and Wales. They used regression techniques to

fit a time-series disease incidence curve obtained from a traditional

differential equation epidemiology model to the mortality and

influenza-like illness (ILI) data for the three pandemics. This

technique required estimation of nine parameters, including the

reproduction number. The model also assumed knowledge of the

natural history of the disease from detailed epidemiological studies

in the early stages of the pandemic.

Hsieh and Cheng [25] demonstrated the use of a variation of a

single-equation Richards model to estimate outbreak severity.

Their method used a power-law logistic equation to estimate

parameters based on the epidemic curve. The method was applied

to the multiphase 2003 severe acute respiratory syndrome (SARS)
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outbreak in Toronto. Hsieh [26] also employed the same model to

estimate parameters for the 2009 H1N1 influenza pandemic in six

countries in the southern hemisphere. Similarly, Nishiura

presented a discrete time stochastic model for forecasting the

2009 H1N1 pandemic [23]. To retrospectively forecast the

pandemic in Japan, a likelihood-based approach was used in

parameter estimation. Ohkusa et al. [23] also used a simple SIR

model for forecast during the pandemic. In contrast, Ong et al.

[11] described a real-time system to both monitor and forecast

different epidemic outcome measures in Singapore during the

2009 pandemic. The surveillance system collected data on ILI

instances from twenty three participating general practice and

family doctor clinics in Singapore. Since H1N1 had low

hospitalization and mortality rates, the study did not use hospital

and fatality data. A stochastic compartmental model with particle

filtering was used in real-time epidemic incidence forecast. ILI

data collected at general practice and family doctor clinics in

Singapore was refitted each day to provide sequential updates on

forecasts.

All previously discussed approaches to forecasting use either a

variation of the differential equation epidemic model or a region-

dependent disease transmission model, or both, making it difficult

to model for changes in human mobility and interaction patterns.

In contrast, Chao et al. [9] used a stochastic epidemic simulation

model, which includes descriptions of interactions between

individuals (with demographic information) at different mixing

groups (schools, homes, work etc.). Forecasts of the characteristics

of the 2009 influenza pandemic in addition to the potential effects

of interventions were made for Los Angeles (LA) county. The

forecasting process combined the stochastic model with a

monitoring system established by the LA county department of

public health. The stochastic epidemic simulation model used by

Chao et al [9] is similar to that used in this study. Both models

seek to represent individuals and interactions between individuals.

However, there are differences in the data sources, the method of

constructing the networks and some of the assumptions in the

disease model. There are also differences in the manner in which

the models are used in forecasting. In this study we present an

approach which combines an individual-based model and an

optimization technique to recursively estimate model parameters

and forecast the epidemic curve as data is sequentially updated

during an epidemic. Shaman et al [27] employed a similar

approach based on an assimilation of various models to achieve

forecasts of the peak time seven weeks in advance. In this study, we

seek to forecast the peak time in addition to the expected peak

infected and total infected population. To our knowledge, the

approach presented in this paper has not been previously studied.

Approach
Given an epidemic, let y(j) represent the number of new cases

on day j. The time series y(1), . . . ,y(t),y(tz1), . . . ,y(n) denotes
the number of new cases observed each day for the duration of the

epidemic, t indicates the day of forecast and n is the expected

duration of the epidemic. Note that precise values of the y(j)’s and
n are unknown.

The problem can be formerly defined as follows: given the state

of the epidemic on day t as described by y(1), . . . ,y(t), we seek to

predict some function g of y(tz1), . . . ,y(n). We focus on three

measures:

Peak Time: argmaxy(j) Vj~1, . . . ,n,
Peak Infected Count: maxjy(j) Vj~1, . . . ,n and

Total Infected Count:
Pn

j~1 y(j).

These selected measures are useful for estimating epidemic

impact and decision making regarding selection and introduction

of control measures for optimal effectiveness [8,10].

Overall Process
This study represents the final step of a project aimed at using a

combination of simulation, classification, statistical and optimiza-

tion techniques to forecast the epidemic curve and infer underlying

disease model parameters (Figure 1). During an epidemic, ILI or

other forms of surveillance data can be obtained from sources such

as the United States Centers for Disease Control and Prevention

(CDC), FluNet, Distribute Project, etc. Given the availability of

surveillance data, we describe the process as follows. First, we build

a library of past and simulated epidemics. Simulated epidemics are

replicated several times to capture the variability in the system.

Using a classification approach, we propose a parameter set to

model a new outbreak at time t based on available data up to time

t. We use random forest; a supervised tree-based classification

method to assign the new epidemic to an existing case in the

library. Random forest is efficient on large databases, tends to

achieve a high accuracy on most classification problems and

enables estimation of importance variables, which is especially

useful for data sets with many variables [28]. The efficacy of

random forest in classification of partial epidemic curves was

illustrated in [29]. If the match suggested by random forest is

considered suitable, then the parameters of the epidemic in the

library are used in modeling the new outbreak. On the contrary, if

none of the epidemics in the library is deemed a good match, then

we recursively apply a combination of simulation and optimization

methods to propose new parameters.

Study Objective
In this study, we focus on the event that the epidemic cannot be

classified to any of the cases in the library (Figure 1). We therefore

seek to estimate model parameters to forecast at time t based on

the epidemic curve up to time t. The simulation optimization

(SIMOP) algorithm introduced in this study employs the Nelder-

Mead simplex method for optimization and an individual-based

model for simulations. These methods are discussed in later

sections and in the Supporting Information S1 file.

The forecasting procedure is repeated each day for the duration

of the epidemic. Nonetheless, forecasts made before the peak of

the epidemic are most preferred. Upon identification of a

parameter set for modeling the outbreak, the individual-based

model is used to investigate the effectiveness of various interven-

tion measures and the effects of changes in individual behavior

during the epidemic [30,31]. However control measures are not

presented in this study. This preliminary study is to validate and

verify the forecasting method. In this study, we present forecasts

for a baseline scenario and focus on epidemics with a single peak.

Nevertheless, the methods can be applied to study situations in

which a second peak (wave) is observed during an epidemic.

The proposed method is tested on simulated data. Simulated

influenza incidence data is used as follows: the epidemics are

simulated over synthetic social networks representing Montgomery

County (MC) in Virginia, Miami and surrounding metropolitan

regions (Miami), and Seattle and surrounding metropolitan

regions (Seattle). Studying simulated epidemics for regions with

demographic and rural-urban differences enables a thorough

illustration of the methods’ performance. The aims of this study

are therefore to: (i) forecast the epidemic curve by forecasting the

time to peak, peak infected counts and total infected counts, (ii)

compare forecasts for epidemics simulated across different social

networks, and (iii) forecast epidemics with different noise levels.

SIMOP Approach to Epidemic Forecasting
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Methods and Models

The process of parameter estimation using an optimization

approach is similar to other proposed approaches based on least-

squares. However, the novelty of this work lies in (i) the creation of

the disease library, (ii) the flexibility in the approach such that it

can be applied to forecasting using both a complex individual-

based model and a simple SEIR differential equations model, and

(iii) the general applicability of the approach to any time series

data. The methods and SIMOP procedure are described.

Disease Models and Parameters
The aim is to capture the shape of the epidemic curve by

forecasting certain characteristics of the curve. We therefore

estimate model specific parameters to accomplish this aim.

Individual-based model. The three model parameters

estimated in this study are the disease transmissibility, incubation

and infectious period distributions (see Table 1 for definitions).

The transmissibility of a disease is typically represented using

measures such as the reproduction number or the household

secondary attack rate [32,33]. The attack rate is the cumulative

infection incidence observed within a population over the span of

an epidemic. If the time of infection is known, the incubation

duration can be derived. The infectiousness typically differs for

different individuals due to factors such as age, symptoms and

health state [6]. The incubation and infectious period parameters

are therefore represented using discrete probability distributions.

The individual-based model consists of a dynamic social contact

network and a disease model as discussed in a later section and in

the SI file. The parameters estimated in this study are part of the

disease model. In order to estimate these parameters, we make the

following assumptions: (i) the Susceptible, Exposed, Infectious and
Recovered (SEIR) model is sufficient to describe disease transmis-

sion and progression. (ii) The possible durations of the incubation

and infectious periods are fixed as shown in Table 1. We therefore

focus on estimating the probabilities of observing each incubation

(infectious) duration in the network. (iii) The network is assumed to

remain unchanged during the course of the epidemic implying

new individuals do not enter or leave the synthetic population. (iv)

Biological differences between age groups are not represented. (v)

When dealing with a novel epidemic, the prior immunity in the

population is assumed to be minimal or null. These assumptions

appear sufficient for illustrating the method.

Forecasting Algorithm
The SIMOP procedure can be described in three steps:

Step i: initialize the individual-based model and the Nelder-

Mead simplex method,

Step ii: run the Nelder-Mead algorithm to find new parameter

sets,

Step iii: simulate epidemic using the proposed parameter set and

evaluate the objective function.

Steps ii and iii are repeated until convergence. We describe

methods and processes involved in fulfilling each of these steps.

Step i: Initializing the SIMOP algorithm. We select initial

parameters for both the epidemic model and the Nelder-Mead

algorithm. The initial parameters used in the Nelder-Mead

algorithm are crucial to the optimization process. For the first

day (t~14) of forecast, we randomly sample eleven parameter sets

from the disease library because Nelder-Mead algorithm requires

pz1 initial parameter sets where p is the number of parameter

values. The eleven parameter sets at convergence at time t are

used to initialize the procedure for forecasts at time tz1. The
procedure is carried out in this manner since the number of

infected at time tz1 is dependent on the number infected at

previous time steps 1, . . . ,t. The parameter sets in the library are

Figure 1. Summary of methodology. We develop a library of past and simulated epidemics. Given surveillance data for a current epidemic, we
compare the partial epidemic curve to those in the library. The novel epidemic is either assigned to a case in the library or identified as being different
from those in the library. If the epidemic is different from those in the library, we estimate the model parameters, forecast the epidemic curve and
update the library.
doi:10.1371/journal.pone.0067164.g001

SIMOP Approach to Epidemic Forecasting

PLOS ONE | www.plosone.org 3 June 2013 | Volume 8 | Issue 6 | e67164



similar to those used in modeling seasonal influenza epidemics and

the 2009 H1N1 pandemic [5,34]. We also use parameters from a

sensitivity analysis study presented in [35].

For the purpose of this study, the initialization process for the

individual-based model involves selecting a social network,

choosing the number of persons to initially infect, setting an

upper bound on the epidemic duration, and defining a disease

model.

Steps ii: Estimating parameters. As stated, the individual-

based model and the Nelder-Mead simplex method are used in the

SIMOP algorithm. The Nelder-Mead simplex algorithm is used to

propose new parameters. The parameters are then used in

simulating epidemics using the individual-based model. This

process is repeated several times until the algorithm converges as

discussed in the proceeding section.

The Nelder-Mead method was selected after comparing its

performance (accuracy, computational time and cost) to Simulated

Annealing [36] and the classical stochastic root finding approach

in Robbins and Monro [37]. The method serves as an illustration

that similar optimization techniques can be used in combination

with simulations to solve the problem of forecasting the epidemic

curve. The Nelder-Mead algorithm is also easy to implement and

modify. We do not claim that the Nelder-Mead is the best possible

optimization method that can be used in such a study. However,

the aim of this study is not to explore the accuracy and properties

of different optimization approaches. Rather, we present a

forecasting framework with different components and methods,

which can easily be substituted with others. To enable readability

of this paper, we present a summary of the method in this section

and additional details in the SI.

Nelder-Mead simplex is a direct search method that attempts to

minimize functions of real variables using only function evalua-

tions without any derivatives. The minimized objective function

representing differences in the daily infected counts is given by:

SSQ~
Xt

j~1

(�ZZX� (j){yx� (j))
2 ð1Þ

j indicates a single day and t is the day on which the epidemic

curve is predicted. In this study, t equals days 14,21, and 28. x� is
the true parameter set and X � is a solution found by SIMOP.
�ZZX� (j) is a realization (simulation) of the curve generated by the

parameter set X � and yx� (j) represents the estimated infected

count on day j with parameters x�.
Each parameter set contains a disease transmissibility value, an

incubation period and infectious period distribution. The range of

possible days for the incubation and infectious period distributions

are fixed as shown in Table 1. These ranges are based on

parameters used in published studies for seasonal influenza [26]

and the serial interval of the 2009 pandemic [11, 57].

The algorithm proposes X � in a similar format as x� containing
one value for transmissibility, in addition to four probability values

for the incubation distribution and five probability values for the

infectious distribution (Table 1). The probabilities must be non-

negative and sum to one independently for the incubation and

infectious periods. We therefore modify the Nelder-Mead algo-

rithm by introducing conditions, which reinforce this requirement.

See the SI for more information on the modified algorithm.

Each parameter set and its relative SSQ value corresponds to a

vertex in a simplex. During the optimization process, the Nelder-

Mead algorithm proceeds through recursive updates of the simplex

vertices via a series of four basic operations: reflection, expansion,

contraction and shrinkage. At each step of the Nelder-Mead

algorithm, one of the formerly mentioned operations is used to

generate a new parameter set that replaces a vertex in the simplex

representing the parameter set with the worst SSQ value. After

each update, epidemics are simulated using the new parameters

and the objective function is evaluated. The next appropriate

operation is selected based on the ranking (smallest to largest) of

the new SSQ value relative to the values at the other vertices.

For a function of p variables (parameter values), Nelder-Mead

maintains pz1 vertices forming a polytope. As earlier mentioned,

there is a single transmissibility value, four possible incubation

period durations and five possible infectious period durations

(Table 1),which implies p~10. We therefore need eleven initial

parameter sets. The dimension of the polytope always remains the

same; containing pz1 vertices. The algorithm converges if RelDiff

is less than or equal to the relative tolerance. RelDiff which

represents the relative difference between the vertex with the

maximum SSQ and that with the minimum SSQ is defined as:

RelDiff~
(max (SSQ){min (SSQ))

min (SSQ)
ð2Þ

After carefully studying the convergence of the algorithm and

trying several relative tolerance values, we fix the relative tolerance

at 0:5. The parameter set with the smallest SSQ values at

convergence is used in forecasting the epidemic curve. See

references [38,39] for additional details on the Nelder-Mead

simplex method.

Steps iii: Simulating epidemics. As stated an individual-

based model is used in simulating epidemics. Individual-based

network models in epidemiology have recently garnered much

attention for their advantage of being able to closely mimic

realistic social networks over traditional differential equation-based

disease models that assume homogeneous mixing [6,40]. The

individual-based model used in the simulations was formerly

described in [31]. This and similar models have been used in

several published studies [3,6,29,41]. Since the creation of the

Table 1. Parameter Definitions.

Parameters Definitions Example

Transmissibility The rate at which disease propagates through the population 6:0E{5 per sec/unit of contact time

Incubation Period Duration between infection and onset of symptoms 0:0.0 1:0.3 2:0.5 3:0.2

Infectious Period Period during which infected persons can shed the virus 2:0.0 3:0.3 4:0.4 5:0.2 6:0.1

The incubation (infectious) period is defined as follows: k : pk where k is the duration and pk is the probability that an infected (infectious) individual will have an
incubation (infectious) period of k days. The disease transmissibility is given as the probability of infection per unit of contact time between a susceptible and infectious
individual in the network.
doi:10.1371/journal.pone.0067164.t001

SIMOP Approach to Epidemic Forecasting
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individual-based model is not a novel aspect of this work, we

present a brief description. Additional details are presented in the

SI file.

In brief, the model is divided into two parts: a time varying

social contact network and a disease model describing disease

transmission between individuals and disease progression within

individuals. The synthetic social contact networks are generated

from a hierarchical composition of data-driven stochastic process-

es. First, baseline populations are synthesized based on socio-

demographic statistics from the United States Census. Next,

mobility patterns from a nationwide household survey and land

use data are used to estimate contact networks for different

regions.

In addition to demographic information, each individual is

assigned an activity schedule based on responses to a national

travel survey. Activities are assigned based on age, household

structure and geographical location. Individuals come in contact at

different activity locations such as school, work, and daycare,

resulting in disease transmission between infected and susceptible

individuals. One can argue that the detailed individual-based

model enables both population level analysis and analysis at other

granularities.

To simulate an epidemic, a population (contact network),

characteristics of a disease and initial conditions (such as duration)

are specified. Each simulated outbreak is replicated several times

to capture different realizations of the stochastic process of disease

propagation through the network. Note, compartmental models or

other aggregated models can be used in place of the individual-

based model.

Synthetic Epidemic Data
The data used in this study is simulated using the individual-

based model, which attempts to capture the underlying process of

disease transmission. The data is simulated under different

scenarios and social networks representing different geographical

populations. This initial study uses only simulated data for the

purpose of exploring the method’s sensitivity under different

scenarios and to properly manipulate and explore different

outcomes of the systems.

The data is produced under two scenarios; in the first case we

assume the true underlying incidence curve is unknown. We

therefore produce different variations for the true curve by

replicating the epidemic using different starting initially infected

individuals in the population (Figure 2). Each simulation is

replicated 10 times to represent the uncertainty observed in the

data collected during an epidemic due to unreported cases and

differences in surveillance systems. We then forecast and measure

accuracy for all three measures: peak time, peak infected and

cumulative infected. In the second instance, we aim to better

capture real data by distorting the daily counts of infected while

maintaining the peak time. Under this scenario, we either add

15% or 25% noise to the daily counts to alter the true signal. For

example, let y represent the incidence data then y’ ~ y+0:15�y.
We focus solely on predicting the peak time.

The synthetic influenza incidence data is generated for Miami,

Seattle and MC in Virginia. The synthetic populations consist of

approximately 2, 3.2 and 0.16 million individuals for Miami,

Seattle and MC respectively. These regions are selected due to

population and demographic differences. Each epidemic repre-

senting a surveillance sample is simulated for 180-days or

approximately 25-weeks for each of the synthetic networks. The

epidemics are simulated using incubation and infectious period

parameters which have been used in several published studies

[5,8,29]. The simulated epidemics have a mean infectious period

of 4-days, mean incubation period of 2-days and transmissibility

(6.00E-5 per sec/contact time) significantly higher than that of

seasonal influenza. Each epidemic is seeded by randomly selecting

five individuals in the population to initially infect and on each

day, in addition to infections resulting from contacts between

individuals, five individuals are randomly selected and exposed.

The epidemic curve is noted at the end of each simulation.

We test the forecasting approach by forecasting the epidemic

curve at different time points during the epidemic. Specifically, we

predict the epidemic curve on days 14, 21 and 28. We evaluate

accuracy based on the predicted peak time, peak infected and

cumulative infected counts. In addition, Spearman correlation

coefficient and root mean squared error (RMSE) are used in

assessing similarities in the temporal trend and difference between

the forecasted and true epidemic curves respectively.

The accuracy of the forecast process depends not only on the

Nelder-Mead algorithm but also on the objective function, and

uncertainty in the available surveillance data. High levels of noise

or error in the data would mask the signal of the true curve,

thereby increasing the difficulty of forecast.

Statistical analysis. We use the optimal (smallest SSQ)

parameter set at convergence to forecast the epidemic curve. The

procedure is repeated 10 times by randomly resampling for new

initial parameters from the library. In addition, for each replicate

of the forecast procedure, we use a single epidemic curve from the

ten replicates representing samples of the true surveillance data.

Each predicted epidemic is replicated 25 times, thereby resulting

in 250 epidemic curves since the procedure is replicated 10 times.

The means of the three public health measures (peak time, peak

and total infected counts) are estimated based on the 25 replicates

of each of the predicted epidemics. This is carried out for each of

the 10 instances of the forecasting procedure. Confidence intervals

are estimated around the predicted values for the public health

measures. The 95% confidence intervals are calculated using the

10 sample means. The sample means are expected to follow a t-

distribution with 9 degrees of freedom. The confidence intervals

are estimated as follows: �hh+t� sffiffiffiffi
10

p , where �hh is the grand mean, s is

the sample standard deviation, and t� is the upper critical value for
the t-distribution with 9 degrees of freedom.

Results

The parameter set in Table 1 is used in simulating the epidemics

across synthetic social networks for Seattle, Miami and MC in

Virginia as displayed in Figure 2. The incubation and infectious

period parameters have been used in several studies [3,5,29,35].

Under the first scenario, each true epidemic is replicated 10 times

to capture the variability that could exist in surveillance data due

to misreporting and inconsistency in surveillance systems. The

shape of the epidemic curve, daily counts and magnitude of the

epidemics differs. This suggests that forecasts made for one region

are not necessarily applicable to another. We therefore present

results for each of the synthetic social networks independently.

Under scenario 2, we present results for MC in VA since the

overall conclusions are similar across regions.

The procedure is repeated 10 times for each forecast.

Replications of the forecasting procedure enables the calculation

of 95% confidence intervals (CI) around the mean predicted values

for the peak time, peak and total infected count. Forecasts made

on day j are based on available data from days 1 . . . j. We discuss

forecasts made on days 14, 21 and 28 of the epidemics. The results

are presented by measures forecasted; peak time, number of

individuals infected at the peak and total infected. The 95%
confidence intervals are also given in Figures 3, 4 and 5.

SIMOP Approach to Epidemic Forecasting
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Scenario 1
Peak time. As stated, forecasts made on day t are based on

data collected from days 1 to t. The predicted epidemics are the

closest to the true epidemics during this time frame based on the

norm. However, after day t, the predicted epidemics are likely to

deviate from the true data indicating the different trajectories the

epidemic could take. As the epidemic nears its peak, the variance

in the predicted epidemic curves declines. This is expected to

result in smaller confidence intervals around the predicted

outcomes.

The mean peak time falls within the confidence bounds on all

days for all social networks (see Figure 3). As expected the width of

Figure 2. Simulated influenza incidence representing an epidemic in Seattle, Miami and MC in Virginia. The epidemics are replicated
ten times by randomly selecting different individuals to initially infect. The replicated data is meant to represent the uncertainty typically observed in
surveillance data.
doi:10.1371/journal.pone.0067164.g002

SIMOP Approach to Epidemic Forecasting
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the CIs shrink from day 14 to 28. The mean predicted peak time

overestimates the estimated true mean for Miami and MC across

all days. In contrast, the true estimated mean peak time is

overestimated by the predicted mean only on day 14 for Seattle.

Mean peak time for MC drops from day to day and appears to be

moving closer to the true mean. The estimated mean peak time for

MC, Miami and Seattle are respectively days 56, 74, and 80. This

would imply that the approach can accurately forecast the peak

within a 95% CI at least 4 weeks, 6 weeks and 7 weeks before the

actual mean peak time for MC, Miami and Seattle respectively.

Peak infected. The peak infected is a challenging measure to

forecast especially in the early stages of an epidemic since there are

several possible trajectories the epidemic curve could take.

However, the estimated mean peak infected counts is captured

within the forecasted 95% CI on all three days for both Seattle and

MC (Figure 4). The forecasts also appear to improve over time

with the smallest CI length observed on day 28. Unlike Seattle and

MC, the mean peak infected fails to fall within the confidence

bounds on days 14 and 28. Given the mean peak day of 80 for

Seattle, it is promising that the algorithm is able to capture the

estimated peak infected counts within the 95% CI. Although

forecasting these measures early on in the epidemic is important,

the process is also extremely difficult since the epidemic is still

evolving.

Total infected. Similar to the peak infected, the total count

of infected individuals is also a difficult quantity to forecast. There

are differences in the accuracy of the forecasts across the different

regions (Figure 5). For Seattle, the magnitude falls within the

predicted 95% CI only on day 21. The total infected count is

underestimated on all days for Miami. There is also a drop in

mean predicted total infected from day 21 to 28. The drop in

accuracy could be due to variability from different sources (Nelder-

Mead algorithm, individual-based model and initial parameters)

influencing the predicted outcomes. Given that day 28 is less than

halfway to the epidemics’ peak, the forecasts suggest that with

additional data, the true epidemic magnitude can be accurately

predicted. In contrast, the total infected is correctly forecasted

within the 95% CI for both days 21 and 28 for MC. There is also

an improvement in the predicted mean total infected.

Overall. In most cases, the forecasted mean value appears to

converge to the true mean value with additional data, which

reinforces the expectation that forecasts should improve as the

epidemic nears its peak. In addition, the accuracy of the forecasts

tend to be sensitive to the time point at which forecasting occurs as

has been noted in other studies [11,22,24].

In general, the forecasts better capture the true trend and daily

infected counts as the epidemic nears its peak for Seattle. This is

supported by a drop in the root mean squared error (RMSE) from

7280:06 on day 14 to 3619:60 on day 28 indicating improved

similarity between the true and predicted curves. In addition, the

mean Spearman correlation coefficient between the true and

Figure 3. 95% confidence intervals around the predicted peak
time for Seattle, Miami and MC. The black line represents the true
mean value.
doi:10.1371/journal.pone.0067164.g003

Figure 4. The predicted peak infected on days 14, 21 and 28
presented for Seattle, Miami and MC. The black line represents the
true mean based on the ten replicates.
doi:10.1371/journal.pone.0067164.g004
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predicted curves increased from 89:25% on day 14 to 94:30% on

day 28.

Similar to Seattle, the forecast for Miami better captures the

true trend and daily infected counts as the epidemic progresses.

The RMSE dropped from 7278:88 on day 14 to 4881:68 on day

28 indicating improved similarity between the true and predicted

curves. In addition, the mean Spearman correlation coefficient

between the true and predicted curves is 79:18% on day 14 and

89:56% on day 28.

Comparable to the observations for Seattle and Miami, the

mean RMSE between the true and predicted curves is reduced

from 129:12 to 67:11 on days 14 and 28 respectively. In addition,

the mean Spearman correlation coefficients between the true and

predicted curves also improves from a value of 82:72% on day 14
to 86:88% on day 28. These outcomes agree with the expectation

that forecasts improve as the epidemic progresses. Forecasts made

for the MC synthetic population seem better compared to forecasts

for Seattle and Miami. Note, all three outcomes are accurately

forecasted within the 95% CI by day 28.

The peak time appears to be the most suitable measure to

forecast with this approach. However, in some cases, the

forecasting procedure is able to correctly forecast the three public

health measures with a high degree of confidence within the first

six weeks of the simulated epidemics. In addition, since the

accuracy of the mean predicted value consistently improves over

time, this suggests that the true epidemic curve will eventually be

captured during the course of the epidemic. Although there are

differences in the forecasts for the different regions, a similar trend

is observed in terms of accuracy. Underestimation of the total

infected in the early stages of the outbreaks would suggest different

approaches for controlling the spread of the epidemic for different

regions. However, if such forecasts are made during the early

stages of a severe epidemic, the outcomes would be useful to public

health officials since even in situations where the true mean values

are not captured, they are not too far off from the CIs.

Scenario 2
Surveillance systems do not always capture the complete

influenza incidence due to unreported cases. The collected data

could therefore to be distorted. To replicate such a situation, as

discussed, we add 15% and 25% noise to the data and then

proceed to forecast the peak time. Results are shown in Figure 6

for MC.

The main observation in these figures is that with additional

noise in the data, predicting the peak time can be a nuisance. For

Figure 6 (a), the mean predicted peak time consistently improves

with additional data. The true peak is captured within the 95% CI

by day 28. However, this is not the case in Figure 6 (b), the noise in

the data seems to successfully mask the signal resulting in a drop in

the predicted mean peak time from day 14 to 21. Although there is

a significant improvement on day 28, the predicted values are at

least one week from the true value. In terms of accuracy one can

argue that the approach performs considerable well, given that the

true peak time is missed only by a week.

Discussion

In this study, we present a method which can be used in

combination with existing methods to forecast the epidemic curve

during an influenza pandemic. The aims were to predict the peak

time, peak infected counts and total infected counts. In addition,

we also evaluated differences in forecasts across different social

networks.

In some cases, the proposed method forecasted the three public

heath measures within the first six weeks of the simulated

Figure 5. 95% confidence intervals around the mean predicted
total infected counts for forecasts made on days 14, 21 and 28.
The black line represents the true mean value.
doi:10.1371/journal.pone.0067164.g005

Figure 6. 95% confidence intervals around the forecasted
mean peak time on days 14, 21 and 28 for data with varying
degrees of noise. A 15% and 25% error rate is added to the data used
in forecasting (a) and (b) respectively.
doi:10.1371/journal.pone.0067164.g006
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epidemics. Such results would be extremely useful to public health

scientists during a pandemic. Moreover, differences were observed

in forecasts made across different synthetic social networks. This

suggests observations made for one network are not necessary

applicable to another and therefore reinforces the need for

community-based forecasts [9]. By providing forecasts for a

particular region, informed decisions can be made at a regional

level on how to best control the disease outbreak especially when

vaccinations are unavailable. Differences observed between social

networks could be due to demographic differences, which have

been suggested to influence epidemic spread and transmissibility

[2,42,43]. Several studies have suggested that school children tend

to impact the spread of influenza [44–47]. Positive correlations

have also been found between the attack rate and the proportion

of children within a population [42]. The percentage of the

population consisting of children is approximately 27:1% for

Seattle compared to 16:6% and 21:7% for MC in Virginia and

Miami respectively. On the contrary, MC has the highest

proportion of adults at 74:4%. Miami has a significantly higher

proportion of elderly compared to the other two social networks.

Exactly how these differences in demographics influence the

disease spread and consequently the forecasting process is not

easily quantifiable.

Disease Surveillance Data
Timely and accurate estimates of disease incidence are difficult

to obtain during an influenza outbreak. Only a small percentage of

incidence data is collected during an outbreak since most cases are

unreported. Typically, ILI data are used to observe timing and

other characteristics of an epidemic. Goldstein et al. [48] proposed

a method for estimating incidence data from symptom surveillance

data. However, due to the scarcity of the necessary data, the

method was fully illustrated only on synthetic data and only

partially illustrated on real outbreak data. Reliable estimates of the

true incidence of influenza during an outbreak are important for

this procedure. More recently, search engine query data and social

media data have been suggested to augment traditional surveil-

lance epidemic data for estimating influenza activity [49,50].

Future research would explore the use of such alternative data

sources for forecasting.

Several other issues arise when dealing with disease incidence

data. Unlike the synthetic epidemic curves, ILI epidemic curves

tend to be noisy. This would require adjusting the procedure to

account for the uncertainty in the data which is most likely due to

unreported cases. Other issues include decisions on how to

initialize the epidemic model, how many new cases to introduce

into the population during the epidemic and how to model data

affected by non-pharmaceutical interventions. Unlike the simulat-

ed epidemics where we know the initial number of infected cases,

during an epidemic this information is not readily available. One

possible means of dealing with these issues involve calibrating the

simulated data from the individual-based model to account for

missing and unreported data. In addition, an ensemble of different

forecasting techniques can be used to improve forecasts made

during an outbreak.

Optimization Procedure
Limitations in the optimization algorithm can also influence

performance. In this study we used only a single optimization

algorithm after comparing its performance to two other algo-

rithms. In future studies, we would compare several algorithms to

see if a single method is sufficient or whether a combination of

different methods would produce better results. Also, the initial

sets of parameters are crucial to the performance of the method. If

initial selected parameters are similar to the true parameters, then

the time to convergence would likely be shorter than if the initial

parameters were farther from the true parameters. Furthermore, a

study comparing the effects of different objective functions would

be beneficial.

Conclusions
The results in this study are meant to serve as an illustration that

a combination of simulation and optimization methods can be

used for forecasting the epidemic curve. The results are promising

and indicate this approach is likely to perform well given the right

model assumptions and good surveillance data. Since no existing

approaches have proved infallible, this would be a reasonable

method to consider for real-time forecast of the influenza epidemic

curve.

Supporting Information
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