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CHAPTER 1

Problem Statement

Resistance to high velocity impact is a key design consideration for many defense struc-

tures. Due to the intrinsic stochasticity of both material microstructure and local material

properties, the structural response under impact loading could exhibit a considerable de-

gree of variability. Understanding this stochastic structural behavior is of paramount im-

portance for the reliability-based design of defense structures. Modern defense structures

are often made of advanced materials, which are brittle heterogeneous (quasibrittle) in

nature. Typical examples include engineering ceramics, fiber composites, particulate rein-

forced composites, etc. The dynamic failure behavior of brittle and quasibrittle structures

has been a major research interest for almost two decades [77, 62, 84, 61, 41, 32, 21, 16,

e.g.]. Since direct experimental investigation is usually limited to certain specimen ge-

ometries and sizes, which are likely to be very di↵erent from the actual designs, there is

a strong interest in developing advanced computational models to predict the response of

the actual structures under various loading conditions.

Quasibrittle materials generally exhibit a strain-softening behavior, which causes dam-

age localization in the structure. The size of the localized damage zone represents an

intrinsic length scale, which has a dominant e↵ect on the fracture behavior. It has tran-

spired that damage localization in quasibrittle structures would lead to a major di�culty

in finite element (FE) calculations known as the spurious mesh sensitivity [11, 14, 89, 8].

In conventional FE simulations without considering any length scales, damage (or smeared

cracking) could localize into an arbitrarily small region which is dictated by the FE mesh

size. Consequently, the simulated structural response is largely dependent on the mesh

size. Such spurious mesh sensitivity is unacceptable since the physical responses cannot

be influenced by the mesh descritization besides the numerical convergence error. Over
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the years, various localization limiters such as crack band model [11] and nonlocal in-

tegral and gradient models [93, 89, 8], which explicitly take into account the intrinsic

length scales of material fracture, have been developed to overcome the mesh sensitivity

issue for FE simulations of the mean structural behavior of quasibrittle structures under

quasi-static loading.
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Figure 1.1. Probabilistic analysis of failure of a uniaxial tensile bar.

By contrast, though significant advances have been made in developing novel analytical

and numerical models for studying quasibrittle fracture, very few studies have addressed

the spurious mesh sensitivity in stochastic FE simulations. This spurious mesh sensitivity

can be demonstrated by considering a bar under quasi-static uniaxial tension, where

the bar is sub-divided into several elements along its length (Fig. 1.1a). Due to the

strain-softening behavior, damage will localize into one element. If we consider that each

element has a random material strength ft and fracture energy density �F , which are

statistically uncorrelated, the peak load of the bar Pmax is governed by the minimum

strength of the element, i.e. Pmax = A0 mini(fti) (A0 = cross sectional area and i =

element number). Evidently, the probability distribution of Pmax must be dependent on
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the number of elements in the bar, which implies that the mesh size would a↵ect the

computed probabilistic structural response. The existing localization limiters, which were

largely formulated within a deterministic framework, cannot adequately ensure the mesh

objectivity for stochastic simulations. To demonstrate it, we calculated the cumulative

distribution function (cdf) of Pmax by using the conventional crack band model with

some commonly used assumptions: 1) the material has a linear softening stress-strain

behavior (Fig. 1.1b), 2) the random material strength and fracture energy density in

each element are statistically independent, and 3) the cdf of ft for each element follows a

Gauss-Weibull grafted distribution [10, 64]. Fig. 1.1c shows the computed cdfs of Pmax

for di↵erent element sizes. It can be seen that the resulting cdf strongly depends on the

element size. On the other hand, the cdf of the total energy dissipation of the bar is

independent of the element size (Fig. 1.1d) since the crack band model was used here to

regularize the fracture energy.

The aforementioned mesh sensitivity issue has severely hampered the prediction ca-

pacity of stochastic computational models for quasibrittle structures. The problem be-

comes more complicated for the case of dynamic quasibrittle fracture, since the applied

strain rate is known to have a strong influence on the damage localization mechanism

[14, 32]. Therefore, the regularization of mesh dependence has to take into account

the strain rate e↵ect. One way to circumvent the general mesh-dependence issue is to

use a micromechanics-based model instead of the continuum smeared cracking model

[3, 36, 113, 25, 61, 84, 41, 24, 32]. For instance, several recently developed microme-

chanical models were able to explicitly represent various microstructural features such as

inhomogeneity geometry and pre-existing flaws [113, 61, 21]. These models can well cap-

ture the essential physics of damage initiation and growth. Therefore, the intrinsic length

scales associated with the damage process become the natural outcome of the simulation.

Nevertheless, the primary drawback of micromechanics-based models for stochastic simu-

lations is that they require a significant amount of computational time, which sometimes

makes them even prohibitive for large-size structures.
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Based on the foregoing discussion, it is clear that the continuum FE models can o↵er

an e�cient means to simulate stochastic dynamic behavior of large-size structures but

they generally su↵er from the issue of spurious mesh sensitivity. On the other hand,

micromechanics-based models are able to capture the essential physics of dynamic mate-

rial fracture but the computational cost can be very high. This research aims to develop

a robust computational model that can mitigate the mesh dependence issue in stochastic

computation of quasibrittle fracture. The essence of the model is to combine the sto-

chastic discrete element computational model and the macroscopic FE model through an

analytical probabilistic model. The research yields the following four results: 1) a proba-

bilistic crack band model, 2) a stochastic discrete element model, 3) a probabilistic model

for the rate and size dependence of dynamic strength, and 4) mesh dependence issue in

dynamic quasibrittle fracture. The subsequent chapters of this report will summarize

these findings.
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CHAPTER 2

Probabilistic Crack Band Model

2.1. Introduction

One of the most salient features of quasibrittle materials is that they generally ex-

hibit a strain softening stress-strain behavior after the peak strength is attained, which

leads to the strain localization phenomenon. Strain localization can be broadly under-

stood as a form of instability defined as the onset of formation of a finite size band with

non-homogenous deformation while the material outside the band is subjected to a ho-

mogeneous deformation under the equilibrium condition. The constitutive localization

instability has been analyzed by many researchers for materials with a plastic behavior

[46, 97, 80] as well as with a damage softening behavior [94, 52]. It has been shown that

the necessary condition for the onset of this localization instability at a material point can

be determined by the eigenvalue analysis of the acoustic tensor, sometimes also referred

to as the localization tensor.

From the viewpoint of computation, localization instability is known to cause spurious

mesh sensitivity in the finite element (FE) simulations of quasibrittle fracture. This is

because the strain softening behavior would cause damage to localize into a single layer of

elements, and thus the energy needed to cause material damage is governed by the chosen

mesh discretization. Such an unrealistic prediction can be corrected by introducing a

material length scale into the model, which prevents damage localization into a zero-size

element. This class of models is usually referred to as the localization limiters. The

simplest localization limiter is the crack band model developed by Bažant and Oh [11],

in which the post-peak portion of the stress-strain curve of the material is adjusted such

that the overall fracture energy is kept constant. Though the crack band model provides a

convenient way to mitigate the mesh dependence in FE simulations of quasibrittle fracture,
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special care needs to be taken for the proper definition of the element size under a multi-

axial stress state as well as for high-order elements [6, 56, 53]. A more sophisticated

approach adopts the concept of the nonlocal continuum, where it is assumed that the

constitutive behavior of a material point depends on both the local constitutive variables

(e.g. inelastic strains, damage, energy dissipation) and the values of these constitutive

variables in the surrounding material points [1, 5, 93, 13, 88, 87].

One common feature of the aforementioned localization limiters is that they were

developed for deterministic analysis of quasibrittle fracture. Some recent research e↵orts

have been directed towards the understanding of the e↵ect of strain localization on the re-

liability analysis of quasibrittle structures due to its paramount importance for structural

design [10, 64]. These studies have focused on the theoretical aspects of the probabil-

ity distribution of structural strength with its associated scale e↵ect. Even though the

mathematical framework of stochastic FE simulation of structural response has reached a

high degree of sophistication [103, 40, 106], there is still a lack of understanding of how

the strain localization mechanism would a↵ect the stochastic FE analysis of quasibrittle

fracture.

In this part of the research, we develop a probabilistic crack band model (PCBM) for

stochastic FE simulations of quasibrittle structures. This model combines the conven-

tional crack band model and a probabilistic treatment of damage evolution.

2.2. Probabilistic modeling of damage initiation, localization and

propagation

The essential idea of the conventional crack band model is to adjust the material’s

constitutive relationship in order to preserve fracture energy for localized damage. Such

regularization of fracture energy is essential for mitigating the spurious mesh dependence

in deterministic FE simulations of quasibrittle fracture. Inspired by this concept, we

attempt to investigate how to adjust the probability distributions of the constitutive

relationship in order to achieve the mesh objectivity of stochastic FE simulations.

In this study, we limit our attention to tensile damage, where the stress-strain response

is characterized by three parameters, namely the elastic modulus E, the tensile strength ft
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and the total energy dissipation density (i.e. area under the uniaxial stress-strain curve)

�. We consider that the randomness of the stress-strain relation is purely governed by the

randomness of the tensile strength and the energy dissipation density. It is noted that

the same assumption has been adopted by some recent studies on probabilistic analysis

of quasibrittle fracture [42, 35]. Therefore, the crux of problem is to determine the

probability distribution of ft and � by taking into consideration the processes of damage

initiation and localization.

In the FE simulations, the constitutive behavior of each Gauss point represents the

mechanical behavior of a material element. Evidently the size of this material element is

determined by the finite element size. Consider this material element of size he subjected

to an applied stress, as shown in Fig. 2.1. Upon loading, a damage band could occur in

this material element. This band has a fixed width h0, usually referred to as the crack band

width, which is generally di↵erent from the material element size he. Previous studies

have demonstrated that for quasibrittle materials the crack band width is about two to

three times the maximum size of the material inhomogeneities [14, 7, 12]. This crack

band width represents a characteristic length scale of the damage localization process.

Meanwhile, for probabilistic analysis, the other length scale that is generally needed is the

auto-correlation length la, which describes the spatial random field of material properties.

Recent studies have shown that, for a material element of size equal to the crack band

width, the material properties can be considered as statistically independent variables [12,

42, 64]. Therefore, it is expected that the auto-correlation length should be considerably

smaller than the crack band width. Since the interest of this study lies in the case where

the element size is larger than the crack band width, i.e. he > h0, we can treat the

material properties of each element as statistically independent random variables.

2.2.1. Determination of localization level

The fracture process of quasibrittle materials can be considered to consist of three stages,

which include damage initiation, damage localization, and damage propagation. The

damage initiation stage usually involves the formation of a large distributed cracking
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Figure 2.1. Damage localization in one material element.

zone. As the loading continues, these distributed cracks start to localize into one macro-

crack, and this macro-crack further propagates with a fracture process zone attached at

its tip. As will be described later, it is essential to di↵erentiate these three stages for the

probabilistic analysis of quasibrittle fracture since they have very di↵erent implications

on the regularization of energy dissipation as well as on the probabilistic treatment of

localized damage.

In the context of FE simulations, we first propose a parameter for each Gauss point

that measures the level of localization:

c =

8
><

>:

1
(ni+no)


(ni+no+1)· max

kno+ni
(�k)

Pni+no
k=0 �k

� 1

�
, if �0 > 0

0, if �0 = 0

(2.1)

where ni = number of surrounding Gauss points within the element of interest (i.e. inner

neighbors in Fig. 2.2), no = number of surrounding Gauss points within the neighboring

elements (outer neighbors in Fig. 2.2), �0 = damage level of the Gauss point of interest,

�k = damage level of the kth surrounding Gauss points, k 2 {1, . . . , ni} refers to inner

neighbors, and k 2 {ni+1, . . . , ni+no} refers to outer neighbors. The damage level � may

conveniently be defined in the context of continuum damage mechanics. For example, �

can simply be chosen to be equal to the damage parameter if a damage constitutive model

is used. The detailed definition of the damage level is not of particular importance for
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Eq. 2.1 since the present definition of c uses the damage levels in a relative sense. It is

clear from Eq. 2.1 that the value of c would increase with the level of strain localization,

and the maximum possible value of  would be equal to 1, which corresponds to the case

where only one Gauss point exhibits damage.

Figure 2.2. Determination of localization level using information of neighbor-
ing Gauss points.

Eq. 2.1 indicates that for each Gauss point the localization level is determined by two

conditions: 1) the Gauss point itself should experience damage, and 2) the surrounding

Gauss points should exhibit a pattern of strain localization. The first condition corre-

sponds to the fact that for quasibrittle materials the localization tensor of a material point

becomes singular approximately when the material tensile strength is reached, which is a

necessary but not su�cient condition for determining the onset of strain localization [52].

For a finite body, the onset of localization is also influenced by the structural geometry

and stress field. An explicit mathematical description of this condition is not available,

and therefore in this study we use the information of the damage level of the surrounding

Gauss points to determine the localization level.
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In addition to the strain localization level of each Gauss point, it is also necessary to

determine the localization level of the surrounding Gauss points, which is described by

w =
1

no � 1

2

64
no · ni+no

max
k=ni+1

�k

Pni+no

k=ni+1 �k

� 1

3

75 (2.2)

Di↵erent from the previously defined parameter c, the localization parameter w only

considers the surrounding Gauss points. In Section 2.3, we will show that, though w

does not indicate the strain localization of the Gauss point of interest, it provides useful

information that determines the randomness of the onset of the localization band for that

Gauss point. This is essential for constructing the probability distribution function of the

strength of a material element. Furthermore it is noted that both localization parameters

c and w are non-decreasing, which is similar to the irreversibility of material damage

during the loading process.

2.2.2. Regularization of fracture energy

We first formulate the probability distribution function of the energy dissipation density

based on the requirement of preservation of fracture energy for localized damage. Energy

regularization is an essential concept of the conventional crack band model [11, 14],

which can be demonstrated by approximating the localized damage band as a cohesive

crack (Fig. 2.1). It is evident that the fracturing strain of the material element is equal

to the opening of the cohesive crack divided by the material element size. Therefore, we

have

�he = Gf (2.3)

where Gf = fracture energy of the material. Eq. 4.1 indicates that the stress-strain

response is dependent on the material element size. Here we define a reference stress-

strain response that corresponds to a material element of size equal to the crack band

width h0. We further use �0 to denote the energy dissipation density for this reference

stress-strain response, and clearly we have �0h0 = Gf .
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Figure 2.3. Regularization of fracture energy based on localization parameter c.

It is clear that Eq. 4.1 is written by considering that localization has occurred, which

does not explicitly address the transition from damage initiation to localization. At the

damage initiation stage, the entire material element would su↵er damage and therefore

the total energy dissipation of the material should be proportional to the element size.

To account for such a transition, we propose a phenomenological energy regularization

equation using the localization parameter c:

� = �0f(c) (2.4)

where: f(c) =
h0

he
+

✓
1 � h0

he

◆
exp

✓
� c
0c

◆
(2.5)

Function f(c) leads to a smooth transition of the energy dissipation density from �0 to

Gf/he as the damage localizes (Fig. 3.1), and the transition is governed by the parameter

0c.

Following the aforementioned formulation, we can determine the cumulative distribu-

tion function (cdf) of the energy dissipation density � from the probability distribution

of the fracture energy

F�(x) = Pr(�  x) (2.6)

= FGf
[xh0/f(c)] (2.7)

where F�(x) = cdf of energy dissipation density and FGf
= cdf of fracture energy. Eq. 2.7

indicates that the probability distribution of the energy dissipation density is governed
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by the localization parameter as well as the material element size relative to the crack

band width. However, the functional form of F�(x) is the same as that of the cdf of the

fracture energy, which remains unchanged for di↵erent element sizes.

The distribution function FGf
is assumed to obey a Gaussian-Weibull grafted distri-

bution [68], which reads

PGW(x) =

8
><

>:

1 � exp[�(x/s0)m] (x  xgr)

Pgr +
rf

�G
p

2⇡

Z x

�gr

e�(x0�µG)2/2�2Gdx0 (x > xgr)
(2.8)

where m and s0 are the shape and scale parameters of the Weibull tail, and µG and �G

are the mean and standard deviation of the Gaussian core if considered extended to �1;

rf is a scaling parameter required to normalize the grafted cdf such that PGW(1) = 1,

and Pgr = grafting probability = (xgr/s0)m. The continuity of the probability density

function at the grafting point requires that (dPGW/d�N)|x+
gr

= (dPGW/d�N)|x�
gr

.

2.2.3. Probabilistic onset of damage localization

The foregoing analysis only considers the formation of a single damage band inside the

material element. However, it is evident that there is an inherent randomness of the

location of the damage band. As mentioned earlier, the eigenvalue analysis of the acoustic

tensor indicates that the necessary condition for the onset of the damage band is that

the tensile strength is reached [52]. Therefore, we may consider that the location of the

damage band in the material element is determined by the local tensile strength. In other

words, the random onset of the damage band in the material element should be reflected

by the statistics of the tensile strength of the corresponding Gauss point.

Since the auto-correlation length of the random field of material strength is smaller

than the crack band width, we may use the classical weakest link model to describe the

cdf of the material strength for each Gauss point, i.e.

Fft(�) = 1 � [1 � P1(�)]ne (2.9)
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where ne = number of potential crack bands that could be formed in the material element

represented by the Gauss point, and P1(x) = cdf of the tensile strength of the material

element of a size equal to the crack band width. It has been shown that P1(x) can also

be described by the Gaussian-Weibull grafted distribution function (i.e. Eq. 8) [10, 64].

Figure 2.4. Propagation of localized damage.

To determine the number of potential crack bands ne, it is essential to first check

whether there would be a random onset of localization band in the material element.

This randomness is largely governed by the strain localization level in the surrounding

material elements. Consider that one surrounding material element has experienced lo-

calized damage as shown in Fig. 2.4. This indeed corresponds to the scenario of the

propagation of localized damage. In such a case, the localized damage in the surrounding

element would physically lead to stress concentration, which dictates the location of the

localization band in the element of interest. Therefore, there would not be any random-

ness in the location of the localization band, which implies ne = 1. In this study, the e↵ect

of the localization damage of the surrounding Gauss points on the weakest link model is

described through an empirical function

ne = 1 +

✓
he

h0
� 1

◆
exp

✓
� w
0w

◆
(2.10)

It should be emphasized here that the strain localization mechanism has di↵erent

e↵ects on the probability distributions of energy dissipation density and material tensile

strength of each Gauss point: the tensile strength is dictated by the minimum tensile

strength of the material element of a size equal to crack band width whereas the energy

dissipation density is directly related to the fracture energy of the material. This leads
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Figure 2.5. Dependence of the e↵ective number of potential crack bands on
the localization parameter w.

to di↵erent treatments of the mesh dependence of the cdfs of tensile strength and energy

dissipation density. For the present probabilistic analysis the tensile strength and fracture

energy are treated as independent random variables.

2.3. Numerical Examples

The proposed PCBM is applied to simulate the probability distributions of the nominal

strength of three concrete specimens under di↵erent loading configurations (Fig. 2.6). The

nominal stresses for these three specimens are defined as the maximum principal stress

based on the elastic analysis, which can be expressed as

�N = P/bD for uniaxial tension (2.11)

�N = 6M/bD2 for pure bending (2.12)

�N = 3PL/2bD2 for three-point bending (2.13)

where P, M = the applied load and moment, D = specimen depth, L = specimen length,

and b = width of the specimen in the transverse direction. The maximum nominal stress,

�N,max, corresponds to the nominal stress computed for the maximum load (Pmax, Mmax)

that the specimen can sustain. For comparison purpose, two other models are also used

to perform these simulations, which include 1) the crack band model (Eq. 7) without

adjusting the probability distribution of tensile strength (i.e. ne = 1 for Eq. 9), which is
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Figure 2.6. Loading configurations of three specimens: a) uniaxial tension,
b) pure bending, and c) three-point bending.

denoted by CBM, and 2) the crack band model (Eq. 7) with considering the weakest link

model of tensile strength regardless of the localization level (i.e. ne = he/h0 for Eq. 9),

which is denoted by WLM.

2.3.1. Constitutive model

In this analysis we consider a simple isotropic damage model even though the proposed

PCBM can also be incorporated into other more sophisticated constitutive models. The

present constitutive relationship can be written as

� = (1 � !)D : ✏ (2.14)

where D =elastic sti↵ness tensor and ! = damage parameter. The parameter ! describes

the damage level of the material point. Here ! is expressed as a function of the equivalent
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strain, ✏̄, defined by [75]

✏̄ =

vuut
3X

I=1

h✏Ii2 (2.15)

where ✏1�3 are principal strain values. The damage parameter is then calculated by

assuming a linear softening behavior:

! =

8
>>>><

>>>>:

0 ✏̄m  ft/E

1 � ft (2� � ft✏̄m)

✏̄m (2�E � f 2
t )

ft/E < ✏̄m  2�/ft

1 otherwise

(2.16)

where ✏̄m is the maximum value of ✏̄ that has ever been attained during the past loading

history. To prevent a snap-back stress-strain behavior, the fracturing strain should not

be smaller than the strain at the elastic limit, i.e. �  f 2
t /2E, and with Eq. 4.1 we have

he  2GfE/f 2
t . This represents an upper limit of the element size he. Since both ft and

Gf are random and independent variables, sampled from interval (0, 1), there is always

some probability of having a snap-back stress-strain curve. However, this probability is

extremely low for the mesh sizes used in the present study.

The present FE simulations are performed in OOFEM software [86, 85], in which the

specimens are discretized using linear quadrilateral elements with four integration points.

In the present model, the tensile strength and fracture energy of each Gauss point is

sampled by

X = F�1
X (⇠X) (2.17)

where X = sampled values of � or ft; FX(x) = cdfs of X defined by Eqs. 7 and 9; and ⇠X =

assigned probabilities. In the numerical implementation of the model, we first generate

⇠X for each Gauss point by using a uniform distribution function over a range of [0, 1].

During the simulation, these probability values are used to compute the corresponding

tensile strength and fracture energy in every solution step. The essential feature of the

present model is that the damage localization level evolves during the loading process and

this leads to the change in the sampling distribution functions. Consequently, the values

of the sampled tensile strength and fracture energy would change over the transition from
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damage initiation to localization. In the calculation, the element size he is measured along

the direction of the maximum positive principal strain, which aligns with the direction of

the crack band [14]. For each simulation step, the values of the localization parameters

c and w are set to be their maximum values that have ever been reached during the

past loading history, i.e. i(t0) = maxtt0 [i(t)] (i = c, w).

2.3.2. Description of Analysis

The present simulations are performed by assuming a 2D plane stress condition. The

specimen has a depth of D = 0.5 m and a length of L = 4 m. The large span-to-depth

ratio ensures that the beam would failure predominantly in tension even in the case of

three-point bending. The beams are loaded by either a prescribed displacement or a

prescribed rotation as shown in Fig. 2.6. To represent a typical concrete material, the

following material parameters are used in the analysis: elastic modulus E = 30 GPa,

Poisson’s ratio ⌫ = 0.2, mean tensile strength ft = 3 MPa, and mean fracture energy

Gf = 80 J/m2. For the probability distributions of tensile strength and fracture energy

of a material element of the crack band size, we set the coe�cient variation CoV= 0.15,

the grafting distribution Pgr = 10�3, and the Weibull modulus m = 26. The simulations

consider three di↵erent mesh sizes, i.e. (hx, hy) = (50, 50) mm, (100, 50) mm, and (200, 50)

mm, where hx, hy denote the width and depth of the element, respectively. The crack band

width h0 is set to be 50 mm, which is about two to three times the normal aggregate size

of concrete.

The model parameters 0c and 0w are determined by minimizing the di↵erences in

the probability distributions of the nominal strength simulated by using di↵erent mesh

sizes for all three loading cases. This minimization yields 0c = 0.190 and 0w = 0.283.

2.4. Results and Discussion

Fig. 2.7 presents the probability distributions of the nominal strength of three beams

simulated by the aforementioned three methods. Each of these strength distributions are

obtained from 1000 realizations. The simulation results for the reference element size
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Figure 2.7. Simulated strength distributions of three specimens with di↵erent
mesh sizes.
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hx = h0 are used as the reference solution. For the reference size, all three methods yield

the same result. It is seen that, as we use a larger element size, the CBM overestimates

the structural strength for a given failure probability. Because the CBM does not take

into account the potential randomness of the onset of the localization band, it over-

predicts the strength distribution of the material element. On the other hand, the WLM

applies the weakest link model of material strength regardless of the localization level.

As the specimen attains its peak load, there is some amount of propagation of localized

damage, which indicates that the weakest link model should vanish. Consequently, it is

seen that the WLM underestimates the strength distribution of the beam as the element

size increases.

The results show that the PCBM can e↵ectively mitigate the mesh dependence of the

simulated strength distribution. Based on the present formulation, the regularization of

mesh dependence is achieved through the probabilistic treatment of damage localization

(Eq. 10). Furthermore, it is essential to consider the e↵ect of the localization level of

the surrounding elements on the random onset of the localization in a single material

element. It is interesting to note that for the uniaxial tension the results of PCBM and

WLM exhibit a large di↵erence but this is not the case for the other two loading scenarios.

This could be explained by analyzing the spatial distribution of the parameter w at the

peak load shown as Fig. 2.8. It is clear that for both three-point bending and pure

bending cases the tensile damage side of the specimen exhibits relatively high values of

w, which indicates that the PCBM is close to the CBM. By contrast, for the uniaxial

tension specimen, the values of w are more spread and therefore the di↵erence between

the PCBM and CBM is more pronounced.

Meanwhile, it is also worthwhile to comment on the importance of Eq. 5, which regu-

larizes the fracture energy for the transition between damage initiation and localization.

In the conventional crack band model [11], the fracture energy is preserved in all cases,

i.e. 0c = 0. This is su�cient for scenarios in which distributed cracking is absent. An

obvious case is structures with a pre-existing crack. For a general case in which dis-

tributed cracking transitions to localized cracking, the regularization of fracture energy of
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Figure 2.9. Deterministic calculations of the nominal structural strengths.

a Gauss point should be tied to the damage localization pattern in its neighborhood. To

demonstrate this point, we perform deterministic calculations of the nominal strengths

of beams under pure bending and three-point bending by using the present crack band

model for di↵erent values of 0c. The calculations use the mean values of tensile strength
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and fracture energy (ft = ft = 3 MPa, Gf = Gf = 80 J/m2). Fig. 2.9 shows the results

of these deterministic calculations by using di↵erent mesh sizes. It can be seen that for

these two cases the conventional crack band model (0c = 0) exhibits some degree of mesh

dependence. By introducing a finite value of 0c, such mesh dependence for deterministic

calculations is seen to be reduced.

All three structures considered in the present simulations have a smooth boundary

and exhibit damage initiation, localization and propagation during the loading process.

If we consider specimens with a pre-existing crack, the PCBM would be the same as the

CBM because the pre-exisitng crack has dictated the location of the damage band inside

the first element at the crack tip. Furthermore, as soon as the crack-tip element reaches

its strength limit, the fracture energy regularization (Eq. 5) would essentially reduce to

the conventional crack band model, i.e. � = �0h0/hc.

It should also be emphasized that the present study is limited to the case where the

element size is larger than the crack band width. For cases where the element size is

chosen to be smaller than the crack band width, the auto-correlation length scale must be

introduced. The auto-correlated random fields can e↵ectively be generated by using the

spectral method [106, 35]. Further investigation is needed to explore how to e�ciently

incorporate the damage localization mechanism (e.g. crack band width) into these auto-

correlated random fields for stochastic FE simulations.
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CHAPTER 3

Development of Stochastic Discrete Element Model

3.1. Introduction

In the previous chapter, we present the newly developed probabilistic crack band

model and demonstrate that it can e↵ectively mitigate the spurious mesh sensitivity in

stochastic computation of quasibrittle fracture under static loading. The model is hinged

on the weakest-link statistical model for strength of a material element, which physically

captures the random onset of the localization band inside one finite element. The model

is limited to the quasi-static loading case, in which the strain rate e↵ect is not consid-

ered. Meanwhile, as a macroscopic continuum model, its link with the microstructural

features of the material has not been established. In the second part of the research,

we develop a stochastic discrete element computational model that captures the essen-

tial failure mechanisms at the mesoscale under both static and dynamic loading, and the

predicted response is then used to develop a new rate-dependent weakest-link statistical

model, which will be described in the next chapter.

The most realistic approach to softening damage in brittle heterogeneous materials is

the discrete models in the form of either lattice or particle models. The discrete lattice

model was first proposed by Hrenniko↵ [48] to solve elasticity problems, and was later

developed for both 2D and 3D simulations of quasibrittle fracture [116, 15, 101, 54, 55,

26, 27]. The discrete particle model was originated from the so-called distinct element

model developed for simulation of the behavior of particulate materials such as cohesion-

less soils and rock masses [22, 23]. The model was further extended to concrete materials

[116], in which the material domain is discretized by a set of rigid polyhedral elements

connected by nonlinear springs of zero length [58, 19, 18]. All these discrete models

involve some characteristic length scale (e.g. particle size or lattice size), which acts as a
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localization limiter regularizing the energy dissipation in the fracture process. In particle

discrete models, the particles could either represent the actual material inhomogenieties

(e.g. aggregates in concrete materials) or simply be used as an e�cient means to introduce

a length scale to the model [54, 55].

Over the last decade, significant advances have been made towards a realistic discrete

model for various concrete materials including both conventional concrete [73, 26, 27] and

fiber-reinforced concrete [99, 100]. The discrete element models have also been extended

to rate-dependent failure of concrete [105]. One attractive feature of discrete models

is that they provide an explicit representation of the heterogeneities of the material,

which makes them well suited to handle the random size distribution of the material

heterogeneities.

3.2. Model Description

Motivated by recent success in discrete modeling of dynamic fracture [32, 39, 104,

24, 49, 50], we develop a new stochastic discrete element model. In this model, the

specimen is represented by a set of interconnected discrete rigid bodies. A set of nuclei

is first randomly placed in the domain, where the mutual distance of two adjacent nuclei

is controlled to be approximately equal to the grain size lmin of the material. Once these

nuclei are created, the Voronoi tessellation is used to discretize the domain (Fig. 3.1a).

The location of the ith nuclei is denoted by xi. Each nucleus has three translational

and three rotational degrees of freedom. Due to the imposition of the length scale lmin,

each Voronoi body can be considered to represent a material grain. The contact surface

(henceforth referred to as facet) between the bodies represents the grain boundary (Fig.

3.1b). The overall nonlinear macroscopic behavior of the material is determined by the

mesoscale constitutive behavior of the facets.

In this study, the formulation of the constitutive behavior of the facet follows the lattice

discrete particle model (LDPM), which was originally developed for concrete materials

[26, 27, 28, 29, 30, 2]. Since this study focuses primarily on macroscopic tensile failure,

we adopt a simplified version of the LDPM model, which is briefly summarized here. The

detailed description of the model can be found in [34].
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Figure 3.1. Representation of discrete element model: a) domain discretiza-
tion, and b) Voronoi body and facet.

The relative motion of two adjacent Voronoi bodies directly results in displacement

jumps on the facet. For two adjacent bodies i and j, the displacement jump vector �ij

on their common facet can be calculated as [28, 34]

�ij = Aj ·
 
uj

✓j

!
� Ai ·

 
ui

✓i

!
(3.1)

where uk,✓k (k = i, j) = displacement and rotation vectors of nucleus of body k, and

Ak(k = i, j) = transformation matrices, which can be written as

Ak =

0

BB@

1 0 0 0 xc
3 � xk

3 xk
2 � xc

2

0 1 0 xk
3 � xc

3 0 xk
1 � xc

1

0 0 1 xc
2 � xk

2 xk
1 � xc

1 0

1

CCA (3.2)

where xc
1, x

c
2, x

c
3 = coordinates of the facet centroid, and xk

1, x
k
2, x

k
3 = coordinates of the

nucleus of body k.
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The components of the strain vector can be calculated as en = n · �ij/lij, el =

l · �ij/lij, em = m · �ij/lij, where �ij = displacement jump vector, lij = distance be-

tween the nuclei of bodies, and n, l,m = unit vectors in the normal and two orthogonal

tangential directions, respectively. The corresponding traction vector transmitted over

the facet can then be related to the strain vector by using continuum damage mechanics,

i.e. 0

BB@

tn

tl

tm

1

CCA = E0(1 � !)

0

BB@

en

↵el

↵em

1

CCA (3.3)

where E0 = elastic sti↵ness, ! = damage parameter, and tn, tl, tm = tractions in the

directions of n, l and m, respectively. The damage parameter is expressed in terms of

the equivalent stress and strain, i.e.

! = 1 � seq
E0eeq

(3.4)

seq = feq exp

✓
K

feq

⌧
�� feq

E0

�◆
; eeq =

q
e2n + ↵(e2m + e2l ) (3.5)

For tension and shear dominated loading, the equivalent strength feq can be defined as

[28, 34]

feq = ft

"
(⌘2 + µ2) sin �

p
(⌘2 � µ2)2 sin2  + 4↵⌘2 cos2  

2µ2 sin2  � 2↵ cos2  

#
(3.6)

where ft = tensile strength, fs = shear strength,  = tan�1
h
en/
p
↵(e2m + e2l )

i
, ⌘ = fs/ft,

and µ = constant. The history variable � is expressed as

� =

8
<

:
eeq / 0 + emax (1 �  / 0)  0   < 0

emax  � 0
(3.7)

where emax =
p

max (e2n) + ↵max (e2m + e2l ), in which the maxima is calculated for the

entire loading history, and  0 = � arctan (⇣
p
↵). For the present numerical simulations,

the facets mainly experience tensile-shear damage. Therefore, it is not necessary to cover

the full scenario of compressive damage.
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Finally, parameter K represents the initial slope of the nonlinear branch of the con-

stitutive law [28], which is given by

K = �Kt


1 �

✓
 � ⇡/2

 0 � ⇡/2

◆nt
�

; nt =
ln [Kt/(Kt � Ks)]

ln (1 � 2 0/⇡)
(3.8)

where Kt, Ks are the values of K for pure tensile and shear loading, respectively. Kt and

Ks are expressed as

Kt =
2E0

lt/lij � 1
Ks =

2↵E0

ls/lij � 1
(3.9)

where lt = E0Gt/f 2
t , ls = E0Gs/f 2

s , and Gt, Gs = mode I and II fracture energies. It

should be pointed out that Eq. 3.9 involves two material length scales lt and ls so that

the energy expended for the fracture of a unit area of facet is independent of the distance

between the nuclei.

It is worthwhile to mention that the present constitutive model itself is rate-independent,

and therefore the rate e↵ect on macroscopic behavior of the specimen is largely due to

inertia and its influence on the interaction of facet failures. Such a modeling approach

has been adopted in several previous discrete simulations of dynamic fracture of ceramic

materials [114, 32, 61, 59], which were able to capture the rate dependent failure be-

havior reasonably well. Meanwhile, it has also been shown that the rate dependence of

the constitutive behavior plays a secondary role in the overall failure behavior under a

high strain-rate condition [82, 81], which is of interest to the present study.

The aforementioned constitutive model contains the following parameters: 1) elastic

modulus E0 in the normal direction, 2) tangential to normal sti↵ness ratio ↵, 3) mesoscopic

tensile and shear strengths ft, fs, 5) mesoscopic mode I and II fracture energies Gt, Gs, and

6) constants µ and ⇣. It is well known that the properties of quasibrittle materials usually

exhibit a considerable degree of spatial variability. For studying the failure behavior,

the most relevant parameters are strengths and fracture energies [42]. In this study, we

characterize the spatial random distribution of mesoscopic strengths and fracture energies
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by assigning a single random field h(x):

ft(x) = f̄th(x); fs(x) = f̄sh(x) (3.10)

Gt(x) = Ḡt [h(x)]2 ; Gs(x) = Ḡs [h(x)]2 (3.11)

Eqs. 3.10 and 3.11 imply that, on each facet, the material length scales lt and ls are

deterministic constants. The underlying probability distribution function governing the

random field h(x) follows the Gauss-Weibull grafted distribution (Eq. 4.2a and b) with

a mean value equal to one. The spatial autocorrelation of the field h(x) is characterized

by a Gaussian function, i.e.

R(�x) = exp[�(�x/la)
2] (3.12)

where �x = |x � x0| and la = autocorrelation length. The generation of the random field

h(x) consists of three steps [35]: 1) a standard Gaussian random field bh(x) is generated

on a regular square grid with a spacing of la/4, 2) the value of bh(x) on each facet is

determined by using the optimal linear estimation method [70], and 3) the standard

Gaussian field generated on the facets is converted to the Gauss-Weibull random field

h(x) by using the isoprobabilistic transformation. Fig. 3.2 presents a typical realization

of the random field h(x).

The aforementioned computational model is numerically implemented with the im-

plicit Newmark method [78, 4]. The equation of motion is solved incrementally in an

implicit scheme, which is unconditionally stable. The mass matrix is constructed by us-

ing the full inertia tensor of Voronoi bodies. The moment of inertia of these polyhedral

bodies are calculated by dividing them into tetrahedra [107]. Though a stable numerical

solution scheme is chosen, a small time step is needed to capture the dynamic failure of

the facet. For each simulation case, several trial simulations are performed to determine

a desirable time step, which yields a consistent result.
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Figure 3.2. Representation of discrete element model: a) domain discretiza-
tion, and b) Voronoi body and facet.

3.3. Simulation of Dynamic Tensile Failure of AlN Specimens

The aforementioned stochastic computational model is applied to simulate the dy-

namic tensile failure of aluminum nitride (AlN) specimens. In the simulations, we con-

sider square specimens of di↵erent in-plane sizes D = L = 50, 100, 200, 400, 800 µm

(Fig. 3.4), whereas the out-of-plane thickness is set constant b = 10 µm. The average

in-plane grain size lmin of AlN material is taken as 6 µm [32]. Each specimen is subject to

a constant strain-rate loading, which is applied by imposing a non-uniform velocity field

described as vx1 = x1✏̇ (x1 denotes the horizontal position of each nucleus). In order to

investigate the rate-dependent behavior, we consider a wide range of applied strain rates,

i.e. ✏̇ = 1, 1000, 2500, 5000, 7500, 104, 3 ⇥ 104, 5 ⇥ 104, 105, 2 ⇥ 105/s.

We choose the following mesoscale material parameters for AlN: E0 = 530 GPa, ↵ =

0.17, f̄t = 150 MPa, f̄s = 3f̄t, Ḡt = 2 Jm�2, Ḡs = 16Ḡt, µ = 0.2, and ⇣ = 0.95. The elastic

parameters (E0 and ↵) are determined to match the macroscopic elastic response of AlN

reported in [32]. The inelastic mesoscale material parameters are chosen so that the model
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Figure 3.3. A square specimen loaded by a prescribed strain rate.

predicts the quasi-static tensile strength of a 50 µm square AlN specimens being about

120 MPa, which is similar to the published results [32]. It is admitted that mixed-mode

loading scenarios will be needed to better calibrate the coupling between tensile and shear

damage. However, such a detailed calibration procedure is not necessary for the present

purpose. For the random field h(x), we consider that it has an autocorrelation length

la of 24µm, and the underlying Gauss-Weibull distribution function has a mean value of

one, a coe�cient of variation of 20%, a Weibull modulus of 30 and a grafting probability

of 5⇥10�4.

For each specimen size and strain rate, about 70 realizations of di↵erent random fields

h(x) and mesostructures are used to determine the mean and variance of the peak load

capacity of the specimen. As mentioned earlier, the peak load capacity of the specimen is

expressed in terms of the nominal strength, which in this case is equal to the maximum

value of the nominal stress �a along x1�direction (Fig. 3.4). For the present discrete

system, we first calculate the fabric stress tensor of a single Voronoi body k as [96, 51]

�̄k =
1

Vk

nkX

p=1

tp ⌦ (xcp � xk)Ap (3.13)

where Vk = volume of the kth body, nk = number of facets of the body, tp = traction

vector on the pth facet expressed in the global coordinate system, xcp = position vector

of the centroid of the pth facet, xk = position vector of the nucleus of the body, and Ap =

surface area of the pth facet. The nominal stress �a can then be calculated as a volume
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average of the fabric stress components in the x1�direction, i.e.:

�a =
1

V

NX

k=1

Vk�̄
k
11 (3.14)

where V = volume of the specimen, and N = number of Voronoi bodies in the specimen.

Based on the simulations, we obtain a set of random responses of the relationship

between the nominal stress �a and the average strain ✏a, where ✏a = u/D and u =

displacement measured at the free edge of the specimen. Fig. 3.4 presents the simulated

average �a–✏a curves for all specimen sizes and strain rates. It can be seen that, for a

given specimen size, the average nominal strength �̄N , which is the maximum value of

the average nominal stress, increases with the applied strain rate. This rate enhancement

is primarily due to the inertia e↵ect. Meanwhile, we also observe that, as the strain rate

increases, the post-peak softening behavior becomes less pronounced, which indicates

that the specimen exhibits a more ductile behavior. This rate dependence can directly

be observed from the simulated damage pattern at the peak load. As a demonstration,

Fig. 3.5 shows the damage patterns of specimens of D = 400 µm at the peak load for

di↵erent applied strain rates. It is seen that, for a given specimen size, the damage is

fairly localized at low strain rates while the specimen exhibits a di↵used damage pattern

as the strain rate increases.

It should be pointed out that the aforementioned brittle-to-ductile transition is based

on the current simulation set-up with the prescribed initial velocity field. Recent compu-

tational studies of ceramics and concrete specimens with the same set-up showed similar

rate-dependent failure patterns [32, 39]. Several experiments on the rate-dependent be-

havior of concrete also showed the tensile stress-strain curve exhibits a more gentle post-

peak softening behavior at high strain rates [43, 110]. However, there is experimental

evidence showing that the compressive stress-strain response of brittle composites and

ceramics could become more brittle at higher strain rates [72, 17, 57]. The set-ups of

these experiments are di↵erent from the present simulations. We may expect that the

rate dependence of failure behavior of quasibrittle materials could depend strongly on the

specimen geometry and test set-up. This is consistent with the well accepted fact that,



36

Figure 3.4. Simulated average nominal stress-strain curves for di↵erent spec-
imens sizes and strain rates.

for quasibrittle structures, brittleness is influenced not only by the material properties,

but also by the structure geometry and loading configuration [14, 7, 9].
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Figure 3.5. Simulated damage patterns of specimens of D = 400µm at the
peak load.

We can also compare the simulated post-peak responses of specimens of di↵erent sizes

for a given strain rate. It is seen that, at low strain rates, the slope of the post-peak

softening curve becomes much steeper as the specimen size increases. This implies that

the specimen experiences a more brittle failure as the specimen size increases. Such a

size dependent failure behavior at low strain rates has been well documented for many

quasibrittle materials, such as concrete, rock, composites, ceramics, etc. [14, 7]. As the

strain rate increases, the size dependence of the post-peak behavior starts to diminish.

This is consistent with the present simulation results, which show that, at high strain

rates, all the specimens considered in this study exhibit a di↵used cracking pattern.

The foregoing discussion reveals qualitatively the combined rate and size e↵ects on the

failure behavior of the simulated specimens. The quantitive description of these e↵ects

can be best presented in terms of the size e↵ect on the statistics of the nominal strength.
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Figure 3.6. Simulated size e↵ect on the mean structural strength at di↵erent
strain rates.

Figs. 3.6 and 3.7 present the size e↵ect curves of both the mean and standard deviation

of the structural strength at di↵erent applied strain rates. The salient feature is that the

mean size e↵ect diminishes as the strain rate increases. At high strain rates, the entire

specimen is occupied by di↵used cracking as the peak load is reached. In this case, there

is no characteristic length governing the nominal strength. Since the failure is ductile

(or quasi-plastic), the size e↵ect on the nominal strength must be absent [14, 7]. As the

strain rate decreases, the damage pattern transitions from di↵used cracking to localized

cracking. The size of the localized damage zone represents a characteristic length scale,

which leads to a non-power law form of the mean size e↵ect curve.

Interestingly, it is observed from Fig. 3.7 that, compared to the rate e↵ect on the

mean strength, the rate e↵ect on the standard deviation shows an opposite trend. As the
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Figure 3.7. Simulated size e↵ect on the standard deviation of the structural
strength at di↵erent strain rates.

strain rate increases, the size e↵ect on the standard deviation becomes more pronounced.

Such a trend can also be explained by the strain rate e↵ect on the damage mechanism.

As discussed earlier, the damage of the specimen transitions from a localized pattern to a

di↵used pattern with an increasing strain rate. This implies that, for a given strain rate,

the strength of the specimen can be considered as an average of the random strengths

of all material elements in the specimen. Therefore, as the specimen size increases, more

elements are contributing to the structural strength. Based on the Central Limit Theorem,

the mean strength will approach a constant while the standard deviation of the structural

strength will decrease with the specimen size.
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CHAPTER 4

Rate Dependent Weakest-Link Modeling of Strength Statistics

4.1. Introduction

The simulation results presented in Chapter 4 clearly indicate that the strength statis-

tics of quasibrittle structures is strongly dependent on the structure size and applied strain

rate. This finding has important implications for the stochastic finite element (FE) simu-

lation of dynamic quasibrittle fracture. If we consider that each Gauss point represents a

material element, whose size is related to the mesh size, the present model indicates that

the input probability distribution of tensile strength of each Gauss point would depend

on both the strain rate and mesh size. In Chapter 2, we have demonstrated that, for

quasi-static loading, the influence of the mesh size on the input probability distribution

of tensile strength must be taken into account in order to mitigate the mesh sensitivity

in stochastic FE simulations of tensile fracture of quasibrittle structures [66].

It is evident that the simulated rate and size e↵ects on the strength statistics has to

be incorporated into the macroscopic FE simulations. Direct coupling between the sto-

chastic discrete element model and the macroscopic FE model is not a trivial task, which

still has several unsolved issues such as handling the macroscopic damage localization

phenomenon, modeling the propagation of stochasticity across di↵erent scales, excessive

computational time. To circumvent this di�culty, we develop an analytical strength sta-

tistical model, which is able to take into account the combined rate and size e↵ects on

the strength statistics. The model can be calibrated by the mesocscale discrete element

simulations, and be incorporated into the constitutive relation for the macroscopic FE

simulations. In this way, the analytical model would provide a link between the variabil-

ity of mesoscale structural properties and the probability distribution of the macroscopic

tensile strength.
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The strength statistics of quasibrittle structures has been studied for decades. The

Weibull distribution is the most widely used probabilistic model for characterizing the

strength statistics of brittle structures. This probability distribution function was first

derived mathematically as a type of extreme value statistics [38, 37], which describes

the probability distribution of the minimum value of an infinitely large pool of indepen-

dent and identically distributed random variables. Weibull independently proposed this

distribution function through extensive histogram testing of strengths of many materials

including Portland cement, porcelain, wood, and cotton [111, 112].

The Weibull strength distribution is based on the assumption that the structure can

be statistically modeled as a chain of an infinite number of independent material elements,

i.e. the infinite weakest-link model. The model physically implies that the failure of the

structure is primarily governed by the damage localization mechanism and the size of the

damage localization zone is negligibly small in comparison with the overall structure size.

The assumption of Weibull distribution can be justified for brittle structures, in which

the characteristic structure size is much larger than the size of material inhomogeneities

and the location of failure point is intrinsically random due to the spatial variability of

material strength.

Recent interests have been directed to structures made of quasibrittle materials, which

are brittle heterogeneous in nature [12, 64, 63, 9]. As mentioned in previous chapters,

the salient feature of quasibrittle structures is that the size of material inhomogeneities is

not negligible compared to the characteristic structure size. As a consequence, the size of

the damage localization zone represents an essential length scale governing the structural

failure. Due to the existence of the non-negligible size of the damage zone, the infinite

weakest-link model becomes inapplicable to quasibrittle structures. This is evidenced by

the fact that the measured strength distributions of specimens made of quasibrittle mate-

rials, such as concrete, asphalt mixtures, engineering and dental ceramics, and composites,

consistently deviate from the Weibull distribution [12, 10, 64, 65, 9].

In view of the inadequacy of the classical Weibull distribution for quasibrittle struc-

tures, a finite weakest-link model has recently been developed [12, 10, 64, 9]. This model
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involves an essential length scale that corresponds to the size of the material representa-

tive volume element (RVE). The model was shown to be able to provide optimum fitting

of the measured strength statistics of many types of quasibrittle structures [64, 65, 9].

Nevertheless, the existing finite weakest-link model is developed for the case of quasi-static

loading, where the strain rate e↵ect is absent. Therefore, it is unable to predict the rate

and size dependence of the strength statistics presented in Chapter 3.

In this part of the research, we develop a rate-dependent weakest-link model for the

strength statistics of quasibrittle structures. The model captures in a statistical sense the

rate e↵ect on the damage mechanism. We compare the model with the simulation results

of the stochastic discrete element model (Figs. 3.6 and 3.7).

4.2. Model Description

Consider a set of geometrically similar rectangular quasibrittle specimens, which are

loaded under displacement control with a prescribed strain rate (Fig. 4.1a). We define

the nominal tensile strength, �N , as the maximum average stress that the specimen can

sustain. The dependence of the mean nominal tensile strength �̄N on the specimen size

D arises from two sources: 1) energetic size e↵ect due to the nonlinear softening material

behavior, and 2) statistical size e↵ect due to the spatial variability of material strength,

fracture energy, and microstructure. Previous studies have shown that the small and

intermediate- size regimes of this type of size e↵ect can be captured by nonlinear deter-

ministic models, such as the cohesive crack model, crack band model and nonlocal models,

whereas the large-size regime can be described by using the Weibull statistics [7].

In a series of recent studies, it was shown that this size e↵ect can alternatively be

explained by a finite weakest-link model, which is anchored by a statistical description

of structural failure [12, 64, 9]. In this model, the structure is statistically modeled as

a chain of material representative volume elements (RVEs), which is often referred to

as the weakest-link model (Fig. 4.1b). This model implies that the structure will fail

under controlled loads once one RVE is fully damaged. In other words, in the present

context the RVE is taken as the smallest material element whose failure triggers the failure

of the entire structure, which is di↵erent from the RVE definition used in the classical
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Figure 4.1. A rectangular specimen loaded by a prescribed strain rate: a)
schematic of the specimen, and b) weakest-link model representation.

homogenization theory, e.g. [47, 45]. It should be emphasized that the weakest-link

model is a statistical representation of the damage localization mechanism, which is a

fundamental failure mechanism of quasibrittle fracture. Meanwhile, it is noted that this

model is designed solely for the purpose of calculating the statistics of the structural

strength, but not for determining the overall load-displacement response of the structure.

By considering that the RVE size is larger than the autocorrelation length of the

random strength field [9, 42], the strength distribution of the specimen under a constant

strain rate ✏̇ can be written as

Pf (�N , ✏̇) = 1 � [1 � P1(�N , ✏̇)] [1 � P1(�N , ✏̇)]hn(✏̇)�1i (4.1)

where P1(�N , ✏̇) = strength distribution of either one RVE or the entire specimen, whichever

has a smaller size, n(✏̇) = A/[l0(✏̇)]2, A = DL = area of the specimen, hxi = max(x, 0) =

Macaulay bracket, and l0(✏̇) = RVE size, which is a function of the strain rate. Eq. 4.1 is

written in a two-dimensional setting since it is reasonable to consider that the material

damage occupies throughout the thickness of the specimen.

Several recent studies [32, 39] have investigated the dynamic tensile fracture behavior

of ceramic and concrete materials by considering specimens similar to that depicted in

Fig. 4.1a. These simulation results consistently showed that, with an increasing strain

rate, the damage pattern becomes more di↵usive. Therefore, we expect that the RVE

size will increase with the applied strain rate. For a given specimen size, an increase in
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the applied strain rate could possibly make the RVE larger than the specimen size, i.e.

n(✏̇) < 1. In this case, Eq. 4.1 reduces to Pf (�N , ✏̇) = P1(�N , ✏̇). In other words, P1(�N , ✏̇)

becomes the strength distribution of the entire specimen. This implies that the weakest-

link representation of structural failure vanishes since there is no damage localization in

the specimen.
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Figure 4.2. Modeling of strength distribution of one RVE: a) hierarchical
model of a static RVE, and b)fiber-bundle model of a RVE under high strain-
rate loading.

Based on Eq. 4.1, it is clear that the essential step is to formulate the probability

distribution function P1(�N , ✏̇). In a series of recent studies on statistics of static strength

[12, 64, 9, 10], it was shown that the RVE can be statistically modeled by a hierarchical

model, which consists of a combination of bundles and chains (Fig. 4.2a). This hierarchical

model represents the damage localization and load redistribution mechanisms at di↵erent
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material scales. The basic element in the model represents a nanoscale structure, either

an atomic lattice or a disordered system of nano-particles. The failure statistics of the

nanoscale structure can be derived by using the transition rate theory and atomistic

fracture mechanics [64, 9, 10]. Based on the hierarchical model, it was shown that

the probability distribution of the static strength of the RVE can be approximated by

a Gaussian distribution onto which a Weibull tail (or, equivalently, a power-law tail) is

grafted at a fairly low probability. Mathematically, it can be written as

P1(�N) =

8
><

>:

1 � exp (�h�N/s0im0) ⇡ h�N/s0im0 (�N  �0
gr) (4.2a)

P 0
gr +

rf0
�G0

p
2⇡

Z �N

�0
gr

e�(x�µG0)2/2�2G0dx (�N > �0
gr) (4.2b)

where m0 and s0 are the Weibull modulus and the scale parameter of the Weibull tail,

respectively, and µG0 and �G0 are the mean and standard deviation of the Gaussian core if

considered extended to �1; rf0 is a scaling parameter required to normalize the grafted

distribution such that P1(1) = 1, �0
gr = grafting stress, and P 0

gr = (�0
gr/s0)

m = grafting

probability. Here the subscript and superscript “0” denote the case of quasi-static loading.

The continuity of the probability density function (pdf) at the grafting point requires that

[dP1/d�N ]�0+
gr

= [dP1/d�N ]�0�
gr

. Therefore, we need four of these parameters to define the

grafted distribution of RVE strength.

To incorporate the strain rate e↵ect into the distribution function P1(�N , ✏̇), we first

denote the size of the RVE under quasi-static loading as l0s, and henceforth we refer to the

material element of size l0s as the static RVE. We can then define a parameter nb, which

is equal to the equivalent number of static RVEs in the RVE or in the entire specimen,

whichever is smaller, under high strain-rate loading, i.e.

nb(✏̇) = min[n(✏̇), 1]


l0(✏̇)

l0s

�2
(4.3)

In this study, we propose to determine the distribution function P1(�N , ✏̇) for dynamic

strength by using a fiber-bundle model (Fig. 4.2b), in which each element (also called

“fiber”) represents one static RVE. Since nb may not be an integer, we consider the bundle

contains dnbe fibers, where dnbe = the least integer that is greater than or equal to nb.
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In this bundle, dnbe � 1 fibers have the same cross-sectional area A0, and the remaining

fiber has a cross-sectional area of (nb + 1 � dnbe)A0. The fiber-bundle model statistically

represents the damage redistribution mechanism of the RVE under high strain rates (or of

the entire specimen if n(✏̇) < 1). Since the autocorrelation length of the random strength

field is considered to be smaller than the size of the static RVE, the random strength of

each individual fiber can be treated as statistically independent.

The investigation of the strength statistics of fiber bundles has a long history. The

pioneering work of Daniels [31] dealt with brittle bundles with an equal load sharing

rule, and a recursive equation was derived for the corresponding strength statistics. A

considerable amount of e↵orts were subsequently devoted to studying brittle fiber bundles

with other types of phenomenological loading sharing rules [91, 92]. A more realistic

approach is to determine the load sharing rule from the mechanical behavior of the fiber.

Here we consider a fiber bundle, which consists dnbe fibers connected by two rigid plates

(Fig. 4.2b). As discussed earlier, each fiber represents a static RVE. For quasibrittle

materials, the mechanical behavior of the static RVE will exhibit some degree of strain-

softening. On the other hand, we also note that the static RVE should behave in a

quasi-plastic manner since it contains only a few material inhomogeneities [12]. This

quasi-plastic failure behavior is also manifested by the dominant Gaussian distribution of

RVE strength as indicated by Eq. 4.2b [12, 64, 9]. Therefore, the stress-strain curve of

the static RVE must have a gentle softening behavior even under quasi-static loading. As

the applied strain rate increases, the static RVE would experience more di↵usive micro-

cracking, which alleviates the degree of strain softening [43, 110, 32, 39].

The strength statistics of fiber bundles with a strain-softening behavior has recently

been studied [64, 9, 98]. The calculation of the strength statistics requires the detailed

information of the softening behavior of the static RVE, which is generally not available.

Based on the aforementioned discussion on the quasi-plastic behavior of the static RVE, it

is reasonable to approximate that the RVE exhibits a plastic stress-strain behavior, which

greatly simplifies the analysis. In this case, the total strength of the bundle is essentially
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equal to a weighted sum of the random strengths of fibers, i.e.

�b
N =

1

nb

2

4
dnbe�1X

i=1

�i + (nb + 1 � dnbe)�dnbe

3

5 (4.4)

where �i (i = 1, ..., dnbe) are the random strengths of the individual fibers. The strength

distribution of each fiber is predominantly Gaussian with a very short power-law tail (Eqs.

4.2a and 4.2b). Previous studies have shown that, for such a strength distribution of fibers,

the strength distribution of the bundle will also contain a power-law tail, and meanwhile

the core of the strength distribution of the bundle is Gaussian [12]. Therefore, it is clear

that the previously proposed grafted distribution function (Eqs. 4.2a and 4.2b) provides

the correct functional form for the strength distribution function P1(�N , ✏̇) though the

values of the statistical parameters must now depend on the applied strain rate.

As mentioned earlier, the grafted strength distribution function can be determined

by any four statistical parameters in Eqs. 4.2a and 4.2b. In this study, we incorporate

the strain rate dependence into the strength distribution function P1(�N , ✏̇) through the

following four parameters:

• The Weibull modulus m measures the exponent of the power-law tail of the

bundle. By using the series expansion method, it was shown that the power-law

exponent of the bundle is equal to the sum of the power-law exponents of the

tail distributions of the individual fibers [12]. In fact, this property also holds for

brittle and softening bundles, where the randomness of the stress-strain curve of

the fibers is described by an a�ne transformation [64, 9, 98]. Meanwhile, the

strain rate may also a↵ect the Weibull modulus of the static RVE itself, which is

described by an empirical function f(✏̇) to be determined later. Following these

considerations, we can express the Weibull modulus of the distribution function

P1(�N , ✏̇) as

m(✏̇) = m0f(✏̇)dnb(✏̇)e (4.5)

• The grafting probability Pgr determines the extent of the power-law tail. Previous

studies have shown that, as the number of fibers increases, the power-law tail of
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the strength distribution of the bundle shortens at the rate of (Pgr,f/dnbe)dnbe

(Pgr,f is the grafting probability of strength distribution of an individual fiber)

[12]. By further considering the potential influence of the strain rate on the

grafting probability of the static RVE, the rate-dependent grafting probability is

written as

Pgr(✏̇) ⇡
⇥
P 0
grg(✏̇)/dnb(✏̇)e

⇤dnb(✏̇)e (4.6)

where the term P 0
grg(✏̇) describes the rate-dependent grafting probability of the

static RVE. Based on Eq. 4.6, it is clear that the Weibull tail of the RVE strength

is shortened drastically as nb increases. This means that, when the strain rate is

su�ciently high, Eq. 4.5 becomes practically unimportant.

• Parameter µG is approximately equal to the mean strength of the plastic bun-

dle. The power-law tail of the strength distribution of each fiber is too short

to influence the mean behavior. Based on the statistics of the weighted sum of

independent Gaussian variables (Eq. 4.4), it is clear that µG is equal to the mean

strength of each fiber, which leads to the following expression

µG(✏̇) = µG0p(✏̇) (4.7)

where p(✏̇) is the rate enhancement function of the mean strength of the static

RVE.

• Parameter �G measures the standard deviation of the bundle strength since the

power-law tail of the distribution function has a minimal influence on the second

moment of statistics. The statistics of the weighted sum of independent Gaussian

variables gives

�G(✏̇) =
�G0q(✏̇)

nb

⇥
dnbe � 1 + (nb + 1 � dnbe)2

⇤1/2
(4.8)

where function q(✏̇) describes the influence of the strain rate on the standard

deviation of the strength of the static RVE.

By substituting Eqs. 4.5-4.8 into the grafted distribution function (Eqs. 4.2a and

4.2b), we obtain the rate-dependent strength distribution function P1(�N , ✏̇). Based on
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the finite weakest-link model (Eq. 4.1), we can then calculate the mean dynamic strength

of the specimen as

�̄N(✏̇) =

Z 1

0

�NdPf (�N , ✏̇) =

Z 1

0

[1 � P1(�N , ✏̇)] [1 � P1(�N , ✏̇)]hn(✏̇)�1i d�N (4.9)

Meanwhile, the model also yields the rate-dependent second moment of strength statistics.

For instance, the standard deviation of the dynamic strength can be calculated as

��N (✏̇) =

sZ 1

0

�2
NdPf (�N , ✏̇) � [�̄N(✏̇)]2 (4.10)

By considering specimens of di↵erent sizes, we can determine the e↵ect of specimen size on

the statistics of dynamic strength. Together with the aforementioned rate dependence,

Eqs. 4.9 and 4.10 describe the combined size and rate e↵ects on the first and second

moments of the statistics of nominal tensile strength of the specimen.

4.3. Comparison with Stochastic Discrete Element Simulations

We now use the rate-dependent finite weakest-link model (Eq. 4.9) to compare with

the rate and size e↵ects on the mean and standard deviation of the structural strength

predicted by the stochastic discrete element model (Figs. 3.6 and 3.6). It is seen from

Fig. 4.3 that the model can match well the simulation results for all strain rates. Based

on this fitting, we determine the rate e↵ect on the RVE size and the strength distribution

of the static RVE. Fig. 4.4 presents the e↵ect of strain rate on the RVE size. It is

clear that the RVE size l0 increases with the strain rate. It is seen that the RVE size is

almost a constant for the relatively low strain rates, and increases mildly for a range of

intermediate strain rates 3 ⇥ 104 � 5 ⇥ 104/s. When the strain rate exceeds 5 ⇥ 104/s,

the RVE size increases significantly with the strain rate. In fact, for the high strain-rate

regime studied here, the analysis indicates that all the specimens are smaller than the

RVE. Therefore, the actual RVE size is not known. At high strain rates, the RVE can be

a purely mathematical concept if the specimen does not exhibit damage localization. In

this case, we may set l0(✏̇) to be a very large number. However, introducing the concept

of the RVE for the present theoretical framework is essential because it captures the rate
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dependence of the failure statistics, which transitions from a weakest-link model signifying

a damage localization mechanism to a fiber-bundle model representing a di↵used damage

mechanism as the strain rate increases.

Simulations
Model

�̇ = 1/s
�̇ = 2500/s �̇ = 5000/s�̇ = 1000/s

�̇ = 7500/s �̇ = 104/s �̇ = 3 ⇥ 104/s

�̇ = 5 ⇥ 104/s �̇ = 2 ⇥ 105/s�̇ = 105/s

Figure 4.3. Simulated mean size e↵ect curves of nominal strength at di↵erent
strain rates and the optimum fits by the rate-dependent finite weakest-link
model.

It is clear that the concept of the RVE is central to the present weakest-link model.

Within the framework of weakest-link statistics, the RVE is a mathematical concept. In

a recent study [67], it has been shown that the RVE size can be best determined from the

optimum fitting of the mean size curve of nominal structural strength, and a relationship
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between the RVE size and basic material length scales (the Irwin characteristic length

and crack band width) was established for the case of quasi-static loading. Based on the

results of this recent study, we expect that the RVE size will increase with the average

grain size. Meanwhile, the RVE size will also increase with an increase in the fracture

energies of the grain boundary. This implies that the RVE size is dependent on the

loading configuration. For example, if the applied loading induces a more shear-dominant

fracture along the grain boundaries, based on the material properties used in the present

simulation the specimen will exhibit a more ductile failure behavior and therefore the

RVE size will increase.

RVE size is 
greater than the 
specimen size

103 104 3 ⇥ 104 5 ⇥ 104

Figure 4.4. Strain rate e↵ect on the RVE size.

Fig. 4.5 presents the influence of the applied strain rate on the strength statistics of

the static RVE. We observe that the Weibull modulus increases with the applied strain
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Figure 4.5. Influence of strain rate on the statistical parameters of P1(�N).

rate (i.e. f(✏̇) > 1 in Eq. 4.5) and the grafting probability decreases with the strain

rate (i.e. g(✏̇) < 1 in Eq. 4.6). It is noted that, when the strain rate is higher than

7500/s, the power-law tail of the strength distribution of the static RVE is too short to

be determined for the range of the specimen sizes considered here. The observed rate

dependence of the strength statistics of static RVE can be attributed to the fact that,

as the strain rate increases, the static RVE experiences more dense micro-cracking. In

the context of the present stochastic discrete element model, microcracking is represented

by the failure of grain boundaries (facets). The increase in the Weibull modulus can

be qualitatively explained by a fishnet statistics model, which was recently developed to

analyze a fishnet structure for predicting the probability distribution of static strength of

nacreous imbricated lamellar materials. Though the specimens dealt in this study are very
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di↵erent from the fishnet structure, the same mathematical framework can be applied to

both cases.

Following the fishnet model [74], the strength distribution of a static RVE can be

calculated as

Fs(�N) = 1 � [Ps,0(�N) + Ps,1(�N) + · · · + Ps,N(�N)] (4.11)

where Ps,r = probability that r number of facets have experienced damage after stress �N

is applied to the static RVE, and N = total number of facets. For the practical use of

Eq. 4.11, we just need to retain several dominant terms (r = 0, ..., k), which contribute to

the overall failure probability. The aforementioned rate e↵ect on microcracking density

indicates that k increases with the applied strain rate. To calculate the individual prob-

ability component Ps,r of Eq. 4.11, one would need to determine the load distribution

among the facets. A realistic calculation of the load distribution pattern is equivalent to

performing the nonlinear stochastic discrete element simulations, which is computation-

ally intensive. Nevertheless, the recent results of the fishnet analysis indicate that, if the

strength statistics of each facet has a power-law tail, then the strength distribution of the

system will also exhibit a power-law tail. The power-law exponent increases in proportion

to the dominant number of damaged facets (i.e. k in Eq. 4.11) [74]. This explains the

observed increase in the Weibull modulus with an increasing strain rate.

The decrease in the grafting probability indicates that the strength distribution of the

static RVE approaches a Gaussian distribution. This can be physically related to the

observed increasing number of damaged facets, which implies that the failure becomes

more ductile. Since more facets contribute to the failure of the static RVE, we expect

that the standard deviation would decrease considerably. However, it is also noted that

the random mesostructure causes a considerable variability of the stress field, and this

variability is further enhanced by the inertia e↵ect. Therefore the stress field becomes

more random at high strain rates, which leads to a larger standard deviation of the overall

nominal strength. This e↵ect counteracts the aforementioned decrease in the standard

deviation due to the increasing number of damaged facets. As shown in Fig. 4.5, the
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calibration results show that the overall standard deviation of the strength of static RVE

decreases mildly with an increasing strain rate.

Simulations
Model

��N � D�1
��N � D�1

�̇ = 2500/s �̇ = 5000/s

�̇ = 7500/s �̇ = 104/s �̇ = 3 ⇥ 104/s

�̇ = 1/s
�̇ = 1000/s

�̇ = 5 ⇥ 104/s �̇ = 2 ⇥ 105/s�̇ = 105/s

Figure 4.6. Simulated size e↵ects on the standard deviation of nominal
strength at di↵erent strain rates and its comparison with the rate-dependent
finite weakest-link model.

The calibrated rate-dependent weakest-link model is now used to predict the size e↵ect

curves of the standard deviation for di↵erent applied strain rates. Fig. 4.6 shows that

the model prediction agrees well with the simulation results. It is seen that, in contrast

to the diminishing size e↵ect on the mean nominal strength at high strain rates, the size

e↵ect on the standard deviation becomes more pronounced as the strain rate increases.

At low strain rates, the standard deviation exhibits an intricate size e↵ect ending with

a power-law asymptote at the large-size limit. This theoretical power-law asymptote is

attributed to the fact that, according to the weakest-link model, at low strain rates the
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strength distribution of large-size specimens would approach a Weibull distribution, i.e.

Pf (�N) = 1 � exp[�(D/l0)2(�N/s0)m]. The corresponding standard deviation of �N can

be written as

��N = s0

✓
l0
D

◆2/m
s

�

✓
1 +

2

m

◆
� �2

✓
1 +

1

m

◆
(4.12)

where �(x) = Eulerian gamma function. Eq. 4.12 indicates that, at low strain rates, the

asymptotic size e↵ect on the standard deviation is very weak since m is usually a large

number.

For the high strain rates considered in this study (✏̇ > 105/s), the fitting of the mean

size e↵ect curve indicates that the specimen size is smaller than the RVE size. According

to Eq. 4.3, we have nb = (D/l0s)2. Therefore, the statistics of the nominal strength of

the specimen is modeled by a plastic bundle, and the scaling of the standard deviation is

given by Eq. 4.8. It can be easily shown that, as nb increases (i.e. nb > 4), Eq. 4.8 is

approximately equivalent to

�G(✏̇) =
�G0q(✏̇)p

nb
= �G0q(✏̇)l0sD

�1 (4.13)

We note that the size e↵ect depicted by Eq. 4.13 is much stronger than that predicted

by the Weibull distribution. From Fig. 4.6, we see that Eq. 4.13 agrees well with the

simulated size e↵ect on the standard deviation at high strain rates.

The foregoing analysis elucidates the size and rate dependence of the functional form

of strength distribution. At low strain rates, the strength distribution of the specimen

transitions from a Gaussian distribution modified by a far-left Weibull tail to a Weilbull

distribution as the specimen size increases. At high strain rates, for the specimens consid-

ered in this study, the strength distribution is essentially Gaussian with a constant mean

value but a decreasing standard deviation. This transitional behavior is well captured by

the present model.

It is also worthwhile to discuss the transition between the low and high strain rates.

There could exist a narrow range of intermediate strain rates, where the increase in the

RVE size is not significantly large but the grafting probability of the RVE is considerably



56

reduced (Eq. 4.6). Consider a very large specimen containing a su�cient number of

RVEs subjected to such intermediate strain-rate loading. Since the power-law tail of

RVE strength becomes very short, for the failure risk of practical interest (Pf ⇡ 10�6),

the strength distribution of the specimen can be considered as a long chain of Gaussian

elements, which would converge to a Gumbel distribution [44]. Such a Gumbel asymptotic

distribution is not seen in the finite weakest-link model for static loading since the Weibull

tail is not su�ciently short.
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CHAPTER 5

Mesh Dependence in Stochastic Simulations of Dynamic
Quasibrittle Fracture

5.1. Introduction

In this part of the research, we investigate the mesh dependence in stochastic simula-

tions of quasibrittle structures under dynamic loading. Though recent FE simulations of

impact resistance of ceramics materials indicated the simulated mean structural response

is significantly influenced by the mesh size [20, 69, 108], there is still a lack of under-

standing of the mesh sensitivity in the simulated statistics of the dynamic response (both

first and second statistical moments) of quasibrittle structures.

The split Hopkinson pressure bar (SHPB) test is a widely used experimental tool

for assessing the dynamic failure behavior of brittle and quasibrittle materials, such as

concrete [95, 60, 102, 109], ceramics [33, 76], and rock [115]. The most well known

result of SHPB test is the dynamic increase factor of the material’s tensile strength, which

has been used in the design of engineering structures under impact loading. In parallel

with extensive e↵orts on experimental investigation, there has also been a strong interest

in computational modeling of the SHPB test. Both continuum FE and discrete lattice

models have been used to predict the dynamic tensile strength, e.g. [71, 83, 49]. Though

previous studies showed the success of these computational models, very few of them have

systematically studied the mesh sensitivity in the FE simulations.

The other aspect of the problem that has not received su�cient attention is the sta-

tistics of dynamic strength measured by the SHPB test. As mentioned in the problem

statement (Chapter 1), understanding the mean structural strength is insu�cient for en-

gineering designs since most modern design methodologies are anchored by the concept

of structural reliability. At minimum, they require both the mean and standard deviation
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of structural strength. However, existing computational modeling of the SHPB test is

largely cast in a deterministic form, and therefore the mesh sensitivity issue in stochastic

FE simulation of SHPB test has not been investigated.

In this research, we study the dynamic tensile strength of quasibrittle materials mea-

sured by the SHPB test. The main focus is to examine the performance of the conventional

crack band model and the probabilistic crack band model (Chapter 2). The present anal-

ysis shed light on the potential success of a new computational model that combines the

probabilistic crack band model and rate-dependent weakest link model.

5.2. Description of Analysis

Here we consider a bar specimen with one end subjected to a stress pulse and the

other end being free (Fig. 5.1a and b). It is evident that the applied stress pulse will first

translate to a compressive stress wave propagating to the right end of the bar. Once the

stress wave reaches the free end, it will reflect back as a tensile wave propagating back. By

choosing an appropriate input stress pulse with a magnitude smaller than the compressive

strength of the material, we can design the experiment so that the bar will fail in tension

due to the reflective tensile stress wave, from which we may measure the dynamic tensile

strength. In the simulation model, we consider that the specimen has a length of 20 mm

and a diameter of 2 mm. Since we are primarily interested in dynamic tensile failure, we

adopt a tensile damage constitutive model, which follows the same formulation as what

we used for implementing the probabilistic crack band model (i.e. Eqs. 2.16 – 2.18). Here

we consider alumina nitride material, which has a mean tensile strength of 220 MPa and

a mean fracture energy of 40 N/m.

In the present simulation, we consider three levels of stress pulse (�0 = 450, 675, 900

MPa, t0 = 5⇥10�6, see Fig. 5.1a), which represent di↵erent rates of loading. The nominal

strain rate ✏̇ is calculated from the applied stress rate:

✏̇ = 2�0/Et0 (5.1)

where E = Young’s modulus. The stress pulses considered here correspond to three levels

of nominal strain rate (✏̇ = 500, 750, 1000/s).
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a) b)

c)

v

�vpb

Figure 5.1. Schematics of simulation set-up: a) input stress pulse, b) impacted
specimen, and c) a typical free-end velocity profile.

From the simulation, we can calculate the time history of the velocity of the free end.

Fig. 5.1c depicts a typical profile of the free end velocity. Following [79, 102, 49], the

dynamic tensile strength could be calculated based on the pullback velocity �vpb, which

is defined as the di↵erence between the peak velocity and the rebound velocity, i.e.:

�N =
1

2
⇢c�vpb (5.2)

where ⇢ = material density, and c =
p

E/⇢ = wave velocity. Depending on the input stress

pulse, the specimen may experience a single localized crack or multiple crack initiation

[49, 90]. Based on the definition of the pullback velocity, the dynamic strength calculated

by Eq. 5.2 is related to the first complete cracking of the specimen.

To investigate the issue of mesh sensitivity, we perform a set of stochastic simulations

by using the following two approaches:

• Conventional crack band model without considering the mesh dependence of the

probability distribution function of material strength,
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• Probabilistic crack band model as presented in Chapter 2, which accounts for

the mesh dependent probability distribution of material strength as well as the

localization parameters.

For each simulation case, we consider three FE mesh sizes (he = 50, 100, 200µm) along

the longitudinal direction, while the other dimensions of the mesh (i.e. along the cross

section of the bar) are fixed. The crack band width of the material is taken to be 20µm.

In the simulation, we treat material tensile strength and fracture energy as two inde-

pendent random variables. When using the conventional crack band model, both tensile

strength and fracture energy are considered to follow a Gauss-Weibull distribution, i.e.

F (x) =

8
><

>:

1 � exp[�(x/s0)m] ⇡ (xgr/s0)m (x  xgr)

Pgr +
rf

�G
p

2⇡

Z x

�gr

e�(x0�µG)2/2�2Gdx0 (x > xgr)
(5.3)

in which Weibull modulus m = 26, grafting probability Pgr = (xgr/s0)m = 10�3, and the

coe�cient of variation (CoV) = 0.15. Since the material strength and fracture energy are

independent, there is always a possibility of having a snap-back stress-strain curve. In

such a case, we discard this particular sampling of tensile strength and fracture energy.

This probability is extremely low for the mesh sizes used in the present study. Further-

more, we assume that the autocorrelation length of the random fields of material strength

and fracture energy is similar to the crack band width, which is smaller than the mesh

size used in the simulation. Therefore, we may consider that the material strength and

fracture energy of each Gauss point of the FE mesh are statistically independent, and the

spatial autocorrelation can be ignored. For each simulation case, we perform about 20

to 30 realizations, and calculate the mean and standard deviation of the dynamic tensile

strength based on Eq. 5.2.

5.3. Results and Discussion

Figs. 5.2 and 5.3 show the simulated mean and standard deviation of the dynamic

tensile strength for di↵erent mesh sizes and applied stress pulses. It is seen that, compared

to the conventional crack band model, the present probabilistic crack band model predicts
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a) b)

Figure 5.2. Simulated mean dynamic strengths for di↵erent mesh sizes: a)
conventional crack band model, and b) probabilistic crack band model.

a lower mean strength and higher standard deviation. This is due to the fact that the

probabilistic crack band uses the finite weakest-link model for the condition of damage

initiation, which predicts a lower mean tensile strength for each Gauss point. This finding

implies that, even if we are only interested in the mean response, the result would strongly

depend on the choice of the probabilistic model. Furthermore, it is well expected that the

mean response simulated by the stochastic simulations would di↵er from that simulated

by the deterministic model even if both models use the same mean inputs. This highlights

the important role of stochastic simulations in predicting the structural failure.

By comparing the responses simulated by these two approaches, we can see that, at low

rate loading, both of these approaches exhibit a similar and mild level of mesh sensitivity.

As the strain rate increases, the level of mesh sensitivity of the conventional crack band

model remains almost the same, while the probabilistic crack band model exhibits an

increasing level of mesh sensitivity. The underlying reason is that the probabilistic crack

band model described in Chapter 2 is anchored by the finite weakest-link model, which

does not consider the strain rate e↵ect. Fig. 5.4 shows the simulated damage profile at
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a) b)

Figure 5.3. Simulated standard deviations of dynamic strength for di↵erent
mesh sizes: a) conventional crack band model, and b) probabilistic crack band
model.

the time when the pullback velocity is recorded. It is clear that, as the applied stress pulse

increases (i.e. the nominal applied strain rate increases), the specimen exhibits a more

di↵used damage. Based on the discussion in Chapter 4, in such a case, the weakest-link

model of material strength should gradually transition to a fiber-bundle model, where

the functional form of the strength distribution remains the same but the coe�cient of

variation would decrease with the element size. In the present study, even for the smallest

stress pulse, the local strain rate in the element could be su�ciently high, which requires

the adjustment of the weakest-link model of material strength.

On the other hand, the conventional crack band model does not involve any adjustment

of the probability distribution of material strength. This model is inaccurate for both

low and high loading rates. The deficiency of this model at low loading rate has been

discussed in Chapter 2. As the loading rate increases, the strength distribution should

have a decreasing standard deviation. This is not captured by the conventional crack band

model. Another issue of the conventional crack band model is that, as the loading rate
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a)

b)

c)

Figure 5.4. Simulated damage profile at the measurement of the pullback
velocity: a) ✏̇ = 500/s, b) ✏̇ = 750/s, and c) ✏̇ = 1000/s.

increases, the specimen would exhibit a more di↵usive damage pattern instead of localized

damage, as shown in Fig. 5.4. In this case, energy regularization becomes unnecessary.

Based on the foregoing discussion, it is evident that neither the conventional crack

band model nor the probabilistic crack band model could resolve the mesh sensitivity

issue for stochastic simulations of dynamic quasibrittle fracture. Based on Figs. 5.2

and 5.3, we may conclude that the overall performance of the conventional crack band

model is slightly better than that of the probabilistic crack band model. This is because,

for simulations of dynamic fracture, the weakest-link model used in the probabilistic

crack model significantly penalizes the prediction of dynamic strength. By contrast, the

conventional crack band model, which uses the same strength distribution, albeit not

completely correct, yields a lower level of mesh sensitivity at high loading rates.

It should be pointed out that, compared to the conventional crack band model, the

probabilistic crack band model is able to cover more potential failure mechanisms, such

as di↵usive damage, localized damage, and the transition between them. In order to

develop a reliable approach for mitigating the mesh sensitivity issue, we can improve
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the probabilistic crack band model by incorporating the rate-dependent finite weakest-

link model (Chapter 4). According to the rate-dependent weakest-link model, it is clear

that, as the loading rate increases, the statistics of material strength of each Gauss point

would approach a Gaussian distribution with a decreasing standard deviation. This will

e↵ectively reduce the di↵erence in the simulated standard deviations for di↵erent mesh

sizes (Fig. 5.3).

Another advantage of using the rate-dependent weakest-link model is that has been

calibrated by using a mesoscale stochastic model, as discussed in Chapters 3 and 4. It

is clear that the combination of the mesoscale stochastic model and the present proba-

bilistic crack band model has led to a multiscale computational framework for stochastic

computation of quasibrittle fracture under static loading. This framework can easily be

extended to dynamic fracture by incorporating the calibrated rate-dependent weakest-

link model into the probabilistic crack band model. Such a multiscale computational

framework would faithfully capture the e↵ect of the probabilistic failure behavior at the

mesoscale on the failure statistics of macroscopic structures.
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CHAPTER 6

Conclusions and Future Work

6.1. Conclusions

1. The conventional crack band model is insu�cient for resolving the issue of mesh

dependence in stochastic simulations of quasibrittle structures. The underlying reason for

such mesh dependence lies in the lack of consideration of the random onset of localization

band inside the material element. The mesh dependence of stochastic FE simulations of

quasibrittle fracture can e↵ectively be mitigated by using a finite weakest link model for

the randomness of the damage localization band in each material element. The statistics

of the random onset of localization is governed by the localization level of its neighboring

elements.

2. The strain rate has a profound influence on the scaling of the nominal tensile

strength of quasibrittle structures. This rate dependence arises from the e↵ect of the strain

rate on the failure behavior of the structure. The discrete element simulations show that

the structure exhibits a more di↵used cracking pattern as the strain rate increases, which

explains the observed diminishing mean size e↵ect at high strain rates. Meanwhile, the

rate-dependent failure behavior also leads to di↵erent scaling behaviors of the standard

deviation of the nominal strength at di↵erent strain rates. It is shown that, for a given

strain rate, the standard deviation decreases with an increasing specimen size. At high

strain rates, this decreasing trend becomes stronger and it exhibits a power-law scaling

behavior. The result also indicates that, for a given specimen size, an increasing strain

rate leads to a reduction in the standard deviation of the nominal strength.

3. The simulated rate and size e↵ects on the mean and standard deviation of the

nominal tensile strength can be well captured by a rate-dependent finite weakest link

model. The model employs a rate-dependent length scale, which physically represents
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the transition from damage localization to di↵used damage with an increasing strain

rate. The model directly predicts the combined rate and size e↵ects on the probability

distribution of the nominal strength. At low strain rates, the strength distribution varies

from a predominant Gaussian distribution to a Weibull distribution as the specimen size

increases, while at high strain rates, the strength distribution is Gaussian for a large

range of specimen sizes. The present rate-dependent finite weakest link model provides

an analytical tool to model the rate and size e↵ects on the probability distribution of

nominal tensile strength, which could be implemented into the stochastic FE simulation

of dynamic fracture of quasibrittle structures.

4. The present stochastic simulations of the split Hopkinson pressure bar experi-

ment show that the predicted mean dynamic tensile strength is strongly dependent on

the choice of the probabilistic model. This indicates that the response predicted by a

deterministic model would di↵er from the mean response predicted by a stochastic model,

which implies the importance of stochastic modeling of material failure. Meanwhile, it

is seen that neither the conventional crack band model nor the probabilistic crack band

model described in Chapter 2 could resolve the mesh sensitivity issue satisfactorily. How-

ever, the simulation trend indicates that the combination of the probabilistic crack band

model and the rate-dependent weakest-link model would provide an e↵ective multiscale

computational framework for mitigating the mesh dependence issue in stochastic simula-

tion of dynamic quasibrittle fracture.

6.2. Future Work

1. The recently developed probabilistic crack band model and the rate-dependent

weakest model can now be combined to form a new mesh regularization approach for

stochastic simulation of quasibrittle fracture under dynamic loading. The last part of

the study shows the promise of this new approach. While the present study focuses on

tensile damage, the model can be incorporated into some established material constitutive

models for predicting more complicated dynamic failure behavior of di↵erent quasibrittle

structures.
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2. The present study considers the case where the mesh size is larger than the crack

band width. By further considering that autocorrelation length of the random material

properties is similar to the crack band width, we ignore the autocorrelation feature of the

random field. It is interesting to extend the model to the case of small mesh size. For such

an extension, we will need to consider explicitly the full information of the random field

of material properties including its autocorrelation features. The fundamental question is

how to project the generated random field onto the Gauss point of each FE mesh. Existing

approaches for this projection largely rely on either local mapping or local averaging,

neither of which is linked with the underlying failure mechanism. Therefore, it is necessary

to develop a new mechanics-based method for relating the random field to the probability

distribution of the constitutive properties of the FE Gauss point. It is foreseen that this

approach will be a generalization of the present probabilistic crack band model.
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[5] Z. P. Bažant. Imbricate continuum and progressive fracturing of concrete and geo-
materials. Meccanica, 19:86–93, 1984.
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[8] Z. P. Bažant and M. Jirásek. Nonlocal integral formulations of plasticity and dam-
age: Survey of progress. J. Engrg. Mech., ASCE, 128(11):1119–1149, 2002.
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[10] Z. P. Bažant, J.-L. Le, and M. Z. Bazant. Scaling of strength and lifetime distribu-
tions of quasibrittle structures based on atomistic fracture mechanics. Proc. Nat’l.
Acad. Sci., USA, 106:11484–11489, 2009.



69
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[13] Z. P. Bažant and G. Pijaudier-Cabot. Nonlocal continuum damage, localization
instability and convergence. J. App. Mech., ASME, 55:287–293, 1988.
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[54] M. Jirásek and Z. P. Bažant. Macroscopic fracture characteristics of random particle
systems. Int. J. Frac., 69:201–228, 1995.
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