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1. Introduction  

Both the promise and problems of autonomous systems will change the dynamics 
of future systems, not only in terms of the impact of the autonomous systems on 
society but also on their interactions with humans (Economist 2016; Schaefer et al. 
2017). A partnership between humans and autonomous systems involves a blending 
of the artificial and the human into a cohesive system with all the advantages and 
limitations such a combination implies (Bradshaw et al. 2009; Chen and Barnes 
2014). Autonomous systems can range from those that are standalone and only 
occasionally monitored by humans to human-directed systems that are closely 
supervised (Barnes et al. 2017). Software systems that are be able to act 
autonomously and update actions based on new information to achieve their 
objectives are identified as intelligent agents (IAs; Russell and Norvig 2009). In 
human‒IA partnerships, a mixed initiative capability wherein humans and IAs 
share the decision space, but the human has ultimate authority, allows for flexibility 
while maintaining human responsibility in dangerous time-constrained situations 
(Chen and Barnes 2015; Barnes et al. 2017). In most cases, it would be impossible 
a priori to assign each to a specific role in a dynamic environment because their 
roles can change as the situation changes. For example, adaptive agents may take 
the decision initiative during high-workload mission segments without waiting for 
operator permission but return the decision initiative to the operator during normal 
operations (Chen and Barnes 2014). Some of the prescriptive rules pertaining to 
task allocation could be preset depending on the priorities of the mission. Other 
rules might change depending on the urgencies of the situation (e.g., autonomously 
shooting down an incoming missiles after a temporal deadline has expired [Barnes 
et al. 2017; Parasuraman et al. 2007]). However, in dynamic environments, 
communication, understanding of intent, and a common situation awareness (SA) 
are necessary for effective collaboration (Barnes et al. 2017; Evans et al. 2017; 
Holder 2018; Chen et al. 2018).  

As IA complexity increases, so too does the necessity for effective communication. 
Cooke (2015) argues that an efficient teaming relationship depends more on 
effective interactions than it does on having an extensive shared knowledge base. 
Besides having a common linguistic framework, each team member must know 
when to push information to their partner and when to ask for information. Thus, it 
is important for both the human and the IA not only to have SA of the tasking 
environment but also to have SA of each other’s roles in order to respond to their 
partner’s requirements without overt communications (Scerri et al. 2003; Chen et 
al. 2018). We discuss three main themes. The first topic is a description of a human‒
agent architecture and why it is different than human–human teams, stressing the 
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importance of mutual transparency. Next, we discuss the technical issues involved 
with a human communicating with artificially intelligent (AI) systems including 
multimodal interfaces, linguistic constraints, types of AI, and the importance of 
explainable AI (XAI) to ensure mutual understanding. Finally, we discuss the 
importance of shared intent to foster a natural rhythm of push and pull of 
information between operators and IAs. 

2. Human–Agent Collaboration Architecture 

It would be a mistake to consider human teams as anything but a metaphor for 
human‒agent interactions; humans and agents differ both in their capacities and 
their roles, especially in military environments. As indicated by Fig. 1, architectures 
of human processing and machine processing entail different representations of the 
world (Chakraborty et al. 2017). The agent’s world model depends on its formal 
knowledge representations such as production systems (if–then rules), probabilistic 
modeling, optimization algorithms, and so on (Chen and Barnes 2014; Pynadath et 
al. 2018). In contrast, human decision making depends on heuristics, emotion, and 
imagery as well as formal logic. Agent decisions tend to be exact (or stated in terms 
of probabilities), and their accuracy depends on the appropriateness of the 
formalism they are based on and the limited knowledge they have of the real world. 
Humans make decisions that are broader and more flexible while sometimes using 
heuristics that are error prone even when they have the correct information to solve 
a problem (Kahneman 2011).  

 

Fig. 1 Shared decision space between humans and agents (Barnes et al. 2017) 
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The challenge to designing an effective human–agent team is to combine the 
narrow exactness of a model-driven approach with the flexibility (and broader 
meta- knowledge) of the human. In this regard, a number of shared mental model 
(SMM) algorithmic approaches are being developed to enable humans and agents 
to predict the information needs, behaviors, and individual roles necessary for their 
mutual understanding of the task environment (Scerri et al. 2003; Pynadath and 
Marsella 2005; Wang et al. 2016). An SMM is the intersecting knowledge of; the 
other’s role that humans and agents require to collaborate effectively, but SMMs 
do not preclude each partner having their own specialized functionality (Yena et al. 
2006; Chen and Barnes 2014). To communicate, each agent must be able to 
interpret the intent, environmental cues, and symbolic referents of its partner 
(Lyons 2013; Chen et al. 2018). Thus, a communications architecture consists both 
of distinct processing units and interfaces that enable mutual interpretability. For 
example, deep learning approaches, which are notoriously opaque, may require an 
extra layer of processing to make their results transparent (Chakraborty et al. 2017; 
Pynadath et al. 2018).  

The interface depicted in Fig. 1 requires a linguistic framework, mutual 
transparency, and calibrated trust (Lee and See 2004) in their respective roles for 
each of the partners. In summary, human‒agent teams need to communicate in a 
similar fashion as humans, although their underlying processing and capabilities 
are quite different.   

3. Mutual Transparency 

Chen and colleagues (Chen et al. 2014, 2018; Chen and Barnes 2015) define 
transparency in terms of understanding the internal underpinnings of the agent’s 
courses of action (COAs). The SA-based Agent Transparency (SAT) model defines 
the agent’s suggested COAs as comprising three transparency levels (L): the 
agent’s perception of its plan (L1), its logic (L2), and its predicted outcomes and 
their perceived likelihood (L3). SAT is similar to Endsley’s (2015) original SA 
model but derived from the IA’s perspective. The SAT model enables the operator 
to gain insight (SA) into the agent’s world model and allows human operators to 
compare that information with their own SA of the ongoing real-world situation. 
The SAT model was tested in three diverse military paradigms, showing improved 
calibration and performance (reduced misuse and disuse of autonomously 
generated COAs) for an agent that conducted parameter defense (Mercado et al. 
2016), infantry support (Selkowitz et al. 2016), and convoy in-route planning 
(Wright et al. 2016). Subjective trust was either not affected or actually improved 
as SAT levels increased, showing that operators trusted agents that reported 
information indicating the agent’s misalignments with the real world (i.e., SAT 
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helped reduce misuse). Thus, an imperfect agent that was transparent was 
considered useful because it provided enough information for the operator to know 
the agent’s limitations and uncertainties (Mercado et al. 2016; Stowers et al. 2016). 
One limitation of the SAT research is that it measured performance for static 
decisions. Although the trials themselves were quite different, they did not depend 
on previous trials (each was a frozen slice of time). Collaborations in a dynamic 
world will require two-way transparency; the agent as well as the human must be 
able to understand the mission’s objectives and their respective roles as the real-
world environment changes continuously (Chen et al. 2018). 

To reflect a dynamic environment, Fig. 2 depicts a continuously changing world 
depicted by feed-forward changes to SAT parameters based on previous feedback 
and a feedback mechanism changing the SAT model’s inputs based on the changing 
environment (Chen et al. 2018). In most situations, the transition between feed 
forward and feedback is orderly and only minor changes are necessary. However, 
rapid changes may be necessary when unanticipated events occur. The dynamic 
quality of military environments will require continuous communications between 
humans and agents to ensure mutual understanding of the changing situation. An 
important implication of Fig. 2 is that is the human has a privileged loop, that is, 
the human can change either the weights of the parameters that the agent is using 
for its current method of computing a COA or simply change the COA (cf., Marathe 
et al. 2018). For example, in a real-time planning paradigm, the agent might choose 
a ground robot to surveil a bridge but the robot falls behind schedule and the 
urgency for surveillance has increased. The human can change the agent’s objective 
by increasing the importance of timeliness; and assess the agent’s revised COA or 
suggest a COA (e.g., redirect an unmanned aerial system [UAS]) and let the agent 
assess its implications (Calhoun et al. 2018). In both cases, the decision making and 
required communications are bidirectional with the human being the senior partner. 
The discourse between the operator and the agent needs to be iterative, requiring 
mutual SA of the mission objectives, reasoning, and expected outcomes reflecting 
the dynamic nature of unfolding real-world events (Chen et al. 2018). To explore 
the need to communicate in real time, the technical underpinnings of the human–
agent communication structural components are discussed in the next section to 
explicate the issues involved in bidirectional collaboration between humans and AI 
software. 
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Fig. 2 Requirements for dynamic transparency for feed forward (time n ‒ current changes) 
and feedback (time n+1 ‒ future changes) (adapted from Chen et al. [2018]) 

4. Bidirectional Communication: Overview 

Dialogue between agents consists of more than a linguistic interface. Salas et al. 
(2015) defined communication as “a reciprocal process of team members sending 
and receiving information that forms and re-forms a team’s attitudes, behaviors, 
and cognitions”. Thus communication is bidirectional, with the agent and the 
human connected by a symbol set, context, and grammar. Figure 3 outlines human‒
agent bidirectional communications that are interpreted by a natural language 
processing (NLP) component with the further assumption that graphical and 
nonverbal representations can be interpreted within a common linguistic 
framework. Further processing is done by the cognitive components, which may 
consist of a variety of AI techniques including cognitive architectures and machine 
learning (ML) components to augment the human partner’s capabilities (Kelley and 
McGhee 2013;  Kelley 2014;  Barnes et al. 2017). 

Just as speech and thought are integrally connected but also different, AI results 
must be interpretable in terms of the human’s understanding of the communication 
output. Because AI reasoning can be opaque, it is sometimes necessary to have a 
specialized interpretation layer such as XAI (Chakraborty et al. 2017). In a dynamic 
environment, even fairly simple inquires (“what is the best route for an unmanned 
vehicle”) can involve nontrivial processing and multiple iterations depending on 
the tradeoffs and uncertainties of both the human and the agent (Stowers et al. 2016; 
Chen et al. 2018). The interface in Fig. 3 is shown as the blue layer enabling 
multimodal inputs/outputs for bidirectional dialogues (Barber et al. 2013).  
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Fig. 3 Components of bidirectional communications 

As Salas et al.’s (2015) definition implies not all communication is explicit; 
collaboration depends on a mutual understanding of intent. We explain each 
component in more detail, discussing the purpose and limitations of each as a 
conveyer of bidirectional information for mutual problem solving. 

5. Natural Language Processing (NLP) 

NLP uses software to understand and generate language. Although usually 
characterized by spoken language or text translations, any symbolic representation 
that is shared by the sender and the receiver needs to be integrated into NLP 
components. In order to understand (generate) meaningful symbols, the software 
must disambiguate morphology (structure of the symbol), semantics (meaning), 
syntax (rules), and pragmatics (context). Translations that depend on processing 
individual symbols are not practical because of the inherent ambiguity of language 
(Jurafsky and Martin 2009). To understand inputs, an agent must consider the 
preceding dialogue and environmental constraints to interpret even a modest stream 
of symbols. This means that nonverbal instances, such as tactile or graphic inputs, 
must fit into the general language framework in order to become part of the ongoing 
dialogue between humans and agents (Barber et al. 2013; Tal-Oron Gilad 2014). 
Pragmatics require the listener to understand the intent of a symbolic input. For 
example, commanding a robot (agent) to “put a glass of water down” does not mean 
to drop the glass or even to put the water glass on the floor. A human agent would 
search for a table or some safe place to put the glass and only ask if the solution 
was not obvious. Thus to communicate, an agent must be able to interpret the 
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purpose of the dialogue as well infer possible solutions to queries that go beyond 
shallow translations (Jurafsky and Martin 2009). Popular speech-based systems 
such as Siri and Alexa are useful, but they have a limited repertoire of knowledge 
and do not have the sophisticated world model and domain knowledge necessary 
for collaboration in a complex environment.  

On one extreme, open-ended NLP may be too cumbersome for simple commands 
to a robot wherein a limited specialized vocabulary would be more efficient (Pettit 
et al. 2013; Barber et al. 2015). Look-up tables and simple rules, however, are not 
sufficient for more complex human‒agent interactions (Barnes et al. 2017). An 
intermediate solution is Controlled English (CE), which is a specialized language 
processing approach that incorporates computational linguistics, specialized 
lexicons, and AI techniques for specific domains (Giammanco et al. 2015). 
Researchers are using CE with AI components to create agents that support humans 
in domains such as military intelligence, civil affairs, and UAS operations 
(Giammanco et al. 2015; Xue et al. 2015; McNeese et al. 2017). For example, using 
an inference engine that was trained by interacting with a military intelligence 
officer, CE software was able to interact with a human partner to collaborate on 
intelligence analyses in a laboratory setting (Mott et al. 2015). This approach avoids 
the all-encompassing processing issues of open-ended NLP by focusing on 
specialized environments, but it remains to be seen if it is flexible enough to adjust 
to the changeable verities of real-world situations. In particular, by delimiting 
processing to a specialized domain, human‒agent interaction may be brittle as new 
elements are introduced into complex environments.  

Research in NLP is currently investigating more complex human‒agent 
interactions such as two-way communications, mixed initiative situations wherein 
the agent initiates dialogues, agent interpretation of human affective states, and the 
use of multimodal communications implying that more human-like communication 
will be possible in future systems (Mavridis 2015). An important issue related to 
NLP is the problem of having agents understand spatial relationships because two-
way interactions between humans  are often communicated more efficiently using 
graphical displays  (Chen and Barnes 2014; Oron-Gilad 2014). For example, Tellex 
et al. (2011) demonstrated how generalized grounding graphs could be used to 
translate verbal descriptors into spatial representations (see also Skubic et al. 
[2004]). Also, a common linguistic framework can enable an agent to interpret 
tactile and gesture commands that are particularly useful in military environments 
when voice communications are not always feasible (Elliott et al. 2010; Barber et 
al. 2013, 2015; Mavridis 2015).  
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6. Cognitive Component 

The processing capabilities of the agent can be complex, consisting of various types 
of AI systems working in concert to address different aspect of the environment. 
The actual mechanics of the AI is beyond the scope of this report; however, to 
effectively interact with humans, the AI architecture must have modules that can 
sense changes and have world models that interpret the meaning of inputs in terms 
of task objectives (Russell and Norvig 2009). The agent should have executive AI 
functions that can correlate its world model with inputs from its human counterpart 
and other external sources as well generate meaningful outputs (Chen et al. 2018). 
Especially when the agent is assuming a role similar to a human team member, a 
possible approach is the use of cognitive architectures such as Soar and Adaptive 
Control of Thought—Rational (ACT-R) to develop agents that emulate human 
cognitive characteristics such as short-term memory, perception, and so on (Laird 
et al. 2011; Kelley and McGhee 2013; McNeese et al. 2017). Whereas cognitive 
architectures are structured to be similar to human thought processes, the 
underlying world model can be diverse, utilizing a combination of techniques 
ranging from neural nets to rule-based systems to newer ML techniques (Kelley 
and McGhee 2013).  

For example, more recent AI approaches use ML techniques to solve difficult real-
world problems that were previously ill suited to algorithmic approaches based on 
deductive principles (Everitt and Hutter 2018). These ML paradigms utilize 
solution sets and feature layers to inductively learn the most efficient mapping 
between the two based on multiple reinforcement trials. However, a single feature 
layer could lead to a shallow solution set because there could be multiple mappings 
to the same solution, whereas deep learning approaches have hidden layers, in order 
to map external inputs to unique solutions (Goodfellow et al. 2016). Hidden layers 
take advantage of underlying complexity by using Markov models and feedback 
loops to capture the stochastic nature of real-world processes (Pynadath et al. 2018). 
Thus, ML approaches take advantage of subtle cues and possible interactions to 
converge on accurate solutions somewhat like humans discovering patterns in their 
environment even when they cannot articulate exactly why (Goodfellow et al. 
2016). For example, a ML algorithm using a deep learning approach was able to 
master a number of Atari games in a relatively short period of time by uncovering 
hidden patterns in the games (Everitt and Hutter 2018). In summary, the repertoire 
of AI techniques is broad enough that agents can use a variety of approaches to help 
solve problems that human‒agent teams encounter in real-world settings. The 
delimiting factor is integrating the cognitive component into an agent that can 
articulate its intent to its human partner.  
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One example of blending various reasoning systems was developed as part of a tri-
service project entitled Intelligent Multi-UxV Planner with Adaptive 
Collaborative/Control Technologies (IMPACT) as part of the larger Department of 
Defense program the Autonomous Research Pilot Initiative (ARPI). IMPACT 
researchers investigated the synergy between a human controller and various 
intelligent software approaches for planning military missions. IMPACT 
researchers were able to integrate multiple intelligent software approaches 
including IAs, ML, and an automated route planner using the Fusion architecture 
developed by the US Air Force Research Laboratory (Draper et al. 2018). They 
developed their own interface architecture enabling the human operator to interact 
with the fused AI systems using text, graphics, and NLP voice systems (Calhoun et 
al. 2018). The end-of-program simulation used active military subject-matter 
experts to demonstrate the utility of combining human and AI systems to conduct 
realistic planning missions involving tri-service scenarios (Draper et al. 2018). 

The most difficult challenge for IMPACT proved to be integrating the various 
reasoning modules into a fused architecture so that the human could interact with 
IMPACT as a cohesive unit. Similarly, McNeese et al. (2017) found that integrating 
the human and machine element was the chief difficulty in implementing a 
synthetic UAS crewmember. One aspect of the mismatch between human 
understanding and agent communications is lack of transparency of AI outputs 
(Chen et al. 2018).  

7. Interpretability Software  

There are two paradoxes related to human‒agent teaming. The first paradox is that 
the more proficient the automated component, the more likely the human is to rely 
on it, even when it is incorrect (Parasuraman and Manzey 2010). The probability 
of being incorrect may be small, but the results can be disastrous (Parasuraman and 
Riley 1997). The second paradox has to do with the ability of ML to solve real-
world problems. (Goodfellow et al. 2016). The more sophisticated the ML approach 
is, the more likely the underlying process is to be opaque, resulting in either 
overtrusting the systems because of its proficiency or mistrusting the system 
because of its opaqueness (Chakraborty et al. 2017; Pynadath et al. 2018).  

Thus, whereas deep learning approaches can result in greater accuracy, they can 
also lead to greater opacity. A number of recent approaches to XAI are investigating 
methods to extract the pertinent cues from deep leaning approaches to interpret their 
meaning for the operator (Chakraborty et al. 2017). In particular, Pynadath et al. 
(2018) suggest a possible XAI strategy to extract agent SAT information from a 
ML paradigm that includes hidden Markov (probabilistic) layers. 
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In summary, bidirectional communication requires a common language framework, 
mutually interpretable cognitive processes, and an understanding of each other’s 
roles in relation to task objectives (Lyons 2013; Chen et al. 2018). However, as we 
discuss in the following section, communication protocols that accurately transfer 
information between humans and agents are necessary for collaboration but are not 
sufficient. Human-to-human communication depends on implicit understanding of 
each partner’s information requirements to ensure the ideal mix of push and pull of 
information that defines a well-integrated team (Cooke 2015). As Salas et al. (2015) 
point out, “teams that communicate effectively may alternate between explicit 
communication, or overt transmission and acknowledgment of messages, and 
implicit communication, whereby information is more passively conveyed”.  

8. Bidirectional Collaboration and Understanding without 
Communication 

Human teams can coordinate their actions and anticipate each other’s intentions 
without overt communications not only because of a common model of the tasking 
environment but also each team member has a mental model of each other’s roles 
and actions (Chen and Barnes 2014; Chen et al. 2018). Specifically, what makes 
human teammates interact naturally is that each member has a theory of mind 
(TOM), which is the ability “to recognize and attribute mental states—thoughts, 
perceptions, desires, intentions, feelings—to oneself and to others”, allowing 
humans to internalize what they believe are the thought processes of the other team 
members (Pedersen 2018). TOM depends not only on innate human traits but also 
on repeated interactions with their teammates (Astington and Edward 2010; Mahey 
et al. 2014). It is nontrivial to create a software agent that not only reacts to overt 
communication cues but that can anticipate its partner’s information and action 
requirements (McNeese et al. 2017). 

Fortunately, it is not necessary to duplicate human consciousness in order to 
develop a world model that enables software agents to interact with its human 
partners. Pynadath and Marsella (2005) developed the PsychSim architecture to 
emulate TOM for agents in an urban school environment showing that agents 
(teacher, students, and a bully) could use perceived attributes of themselves and 
other agents to determine their interaction patterns. PsychSim allowed the software 
agents to better understand the intent of the multiple other agents in the scenario. 
Wang et al. (2016) embedded PsychSim in a predictive framework (partially 
observable Markov decision process) to enable the robot agents to make 
recommendations and provide explanations during a complex reconnaissance 
mission. Human participants trusted agents who were not always reliable if the 
agent was able to explain its suggestions, indicating that even an imperfect SMM 
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was better than an opaque agent. An important requisite is that each team member 
understand each other’s intent in terms of achieving a common goal state (Rouse et 
al. 1992; Evans et al. 2017). Recent research indicates that robot agents can learn 
social cues and task requirements by repeated interactions with humans, suggesting 
that self-learning algorithms based on repeated predictive interactions might be a 
useful way to train agents to interact without overt communications (Kwon 2018). 
In summary, an agent does not have to have a fully articulated TOM in order to 
interact with humans. The computer science community is investigating various 
paradigms such as PsychSim that attempt to emulate human-to-human common 
understanding of the tasking environment for bidirectional communication (Wang 
et al. 2018; Pynadath et al. in press). Moreover, self-learning algorithms offer the 
possibility of training agents to interact with their human operator when trigger 
events occur in the tasking environment. However, fostering a natural interaction 
of when to exchange information between humans and IAs during open-ended real-
world situations remains an important research objective (McNeese et al. 2017).  

Especially when dealing with a physical robot, making the IA more human-like 
may have a positive effect on human‒agent communication. Schaefer et al. (2017) 
suggest a number of nontechnical agent attributes to harmonize human‒agent 
communication including anthropomorphic features such as robotic gaze, 
expression, and speech patterns to engender trust and empathy between agents. 
Similarly, Parasuraman and Miller (2004) suggest using communication styles 
based on human etiquette rules to improve the human’s perception of software 
agents as trustworthy.  

However, it is not certain that making an agent more human-like will have a long-
term positive effect versus human perception of the agent’s reliability and the 
human’s insight into an agent’s reasoning processes (Hancock et al. 2011; Wright 
et al. 2016). Anthropomorphizing agents can have negative as well as positive 
effects and, as mentioned, operators are influenced to a greater degree by their 
perception of agent reliability and transparency rather than depending solely on the 
human-like qualities of the agent (Hancock et al. 2011; Meyer and Lee 2013).  

9. Transparency and Intent Displays 

Understanding the intent of their joint task enables the human and the agent to 
define both their unique and joint roles required to complete the task successfully 
(Evans et al. 2017; Schaeffer et al. 2017; Chen et al. 2018) The dictionary defines 
intent in terms of “usually clearly formulated or planned intention” (Merriam-
Webster 2018), implying that intent is not only an objective but also a plan to obtain 
an objective. However, in the military, the term commander’s intent is used to 
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convey the commander’s overarching objective rather than a specific plan to 
achieve an objective (Holder 2018). A military intent is usually multifaceted (e.g., 
obtain an objective in the shortest time with the least loss of life), requiring the 
command staff to develop various options to reflect tradeoffs during the planning 
stage, and the term implies that the chosen plan can be disregarded if a better 
solution or even an alternative objective manifests itself in the heat of battle (Holder 
2018).  

IMPACT displays were developed to enable IAs and human operators to jointly 
develop intent displays (Schaefer et al. 2017; Calhoun et al. 2018). IMPACT design 
philosophy depended on Flexible Levels of Execution – Interface Technologies 
(FLEXIT), in which, based on circumstances, planning can be done manually, 
jointly as a human‒agent team, or triggered automatically (Miller and Parasuraman 
2007; Calhoun et al. 2018). Joint planning using the IMPACT paradigm is initiated 
by human operators defining a general mission framework (a play) and priorities 
in terms of asset timeliness, sensors, and weapons, thus inputting a multifaceted 
intent. The autonomous agents then develops plans that are optimized to reflect 
operators’ priorities and then fed back to the operator as a display that shows how 
each plan option compares to the operator’s intent criteria. 

Figure 4 depicts an example of a transparent SAT display (L1+2+3) discussed 
previously delineating two agent plans (A and B) based on the software agent’s 
depiction of the operator’s input criteria, allowing operators to choose the final plan 
closest to their intent (Stowers et al. 2016; Holder 2018). The purpose of the 
displays is to make the agent’s understanding of intent and its resulting COAs 
transparent to its operator in terms of the plan itself, its rationale, and predicted 
outcomes (including uncertainties), thus enabling the operator to change the plan 
or chose an alternate plan generated by the IA depending on the operator’s SA of 
the changing military situation (Mercado et al. 2016; Chen et al. 2018). It is 
important to note that what is conveyed to the agent is the general outlines of the 
plan and its intent in terms of multifaceted criteria rather than a fully articulated 
plan, causing the agent to generate feasible options based on AI techniques to depict 
the consequences of its generated options using graphics. As the tactical situation 
changes, communication between the agent and humans allows the humans to 
change their outcome criteria causing the agent to devise a new plan showing its 
consequences in terms of the updated tactical situation (e.g., new enemy activity 
near east gates) (Chen et al. 2018). The joint planning enables the agent’s 
proficiency in rapidly developing a plan based on the operator’s priorities and the 
human’s understanding of command intent to devise a plan that is both practical 
and tactically relevant.  
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Fig. 4 SAT visualization of alternatives generated by the IAs in terms of each plan’s COAs, 
reasoning, and predicted outcomes/uncertainty (Stowers et al. 2016) 

SAT visualizations are dependent on the context of the mission constraints. The 
Autonomous Squad Member (ASM) is a simulated small robot supporting an 
infantry squad and similar to IMPACT was also part of the ARPI (Selkowitz et al. 
2016). The context of the ASM scenario was geared toward the immediate situation 
because an infantry squad has to react instantaneously to a volatile combat 
environment. The intent visualization (Fig. 5) was sparser than the IMPACT 
displays reflecting that it was designed for immediate reactions and status-at-a-
glance SAT information. The pictorial format showed the trajectory of the ASM 
and its squad whereas icons showed temporal information, the rationale in terms of 
the chief motivator for the projected squad route, and an uncertainty indicator. As 
mentioned previously, experimental results showed that SAT information 
improved operators’ calibrated trust and SA (Chen et al. 2018).  
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Fig. 5 ASM SAT visualization with annotation 

Schaefer et al. (2017) reviewed the importance of intent for agent technology in 
driverless cars. Engineering intent criteria are used early in the design process to 
ensure that strict safety and performance objectives are met before the vehicle is 
introduced to the public The underlying agent technology must not only interact 
with its user but also with other vehicles and pedestrians whose actions may violate 
the assumptions of the driverless agent. During driving, an intent display suggesting 
an immediate action may be counterproductive causing the driver to intervene 
inappropriately or change from a passive observer to active driver too slowly to 
avert an accident (cf., Bainbridge 1983). Intent displays in these situation should be 
more strategic and anticipatory showing possible traffic conditions ahead and 
pedestrian alerts so as to improve the humans’ general SA rather than require 
humans to override autonomy under extreme time constraints. In general, rapid 
responses to emergencies are probably best automated, whereas strategic decisions 
such as avoiding traffic jams or slowing down because there are pedestrian in the 
street are best supervised by the human (Chen and Barnes 2014; Wright et al. 2016). 
The efficacy of intent displays depend on their environment: planning displays 
should be outcome oriented and operational displays should require status-at-
glance SA, whereas intent for autonomous vehicles should focus on the anticipating 
the near term rather than overriding time-sensitive automated responses such as 
collision avoidance. Parasuraman and Manzey (2010) presciently observed that the 
human’s role in automation is not so much diminished as it is changed. 
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10. Conclusion 

Communication between humans and agents, whether by voice, graphics, or 
multimodal devices, is best conveyed by communication strategies predicated on 
understanding common intent (Evans et al. 2017; Schaeffer et al. 2017; Holder 
2018). For example, SAT planning displays are formulated to show how the intent 
of an agent’s proposed COAs are manifested in terms of how the proposed plan, its 
logic, and its projected outcome (and uncertainties) compare to the human’s 
original intent (Mercado et al. 2016; Stowers et al. 2016). Other approaches assume 
communication is based on a synthetic SMM enabling a robotic agent to explain its 
COA suggestions in terms of the intents of both human and artificial agents 
(Pynadath and Marsella 2005; Chen and Barnes 2014; Wang et al. 2016). During a 
mission, both the human and the agent will need to have the ability to propose new 
COAs based on their perception of command intent as the combat situation evolves. 
(Draper et al. 2018). However, creating a seamless flow of information between 
humans and agents in dynamic environments is still a matter of intense research 
interest (Chen et al. 2018; Calhoun et al. 2018; McNeese et al. 2017; Wang et al. 
2018).  

Characterizing humans and intelligent software as teams is useful as long as it is 
understood as an imperfect metaphor for human‒human teams. (Barnes et al. 2017). 
Because agents lack a TOM, human and agent interactions without explicit 
information exchanges are still problematic (Salas et al. 2015; McNeese et al. 2017; 
Kwon 2018). During real-world missions, there are many technical NLP and AI 
problems related to creating more natural human–like interactions still to be 
resolved. Sophisticated AI solutions proposed by an agent are useful only if its 
human partner understands their implications, making XAI and SMM research 
important considerations (Chakraborty et al. 2017; Pynadath et al. 2018; Wang et 
al. 2018). The greater precision of AI for specific tasks, the ability of software to 
respond instantaneously, and the continuous improvements in techniques such as 
NLP all auger well for human‒agent synergistic benefits in the future (Mavridis 
2015). However, there are still many research issues both in computer science and 
human science to be resolved before human‒agent communication reaches its full 
potential as a basis for collaboration during complex real-world missions (Chen et 
al. 2018).  
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AI artificial intelligence 

ARPI Autonomous Research Pilot Initiative 

ASM Autonomous Squad Member 

CE Controlled English 

COA course of action 

FLEXIT Flexible Levels of Execution – Interface Technologies 

IA intelligent software agents 

IMPACT Intelligent Multi-UxV Planner with Adaptive 
Collaborative/Control Technologies  

L1 agent’s perception of its plan 

L2 agent’s perception of its logic 

L3 agent’s perception of its perceived likelihood 

L transparency levels 

ML machine learning 

NLP natural language processing 

SAT SA-based Agent Transparency 

SA situation awareness 

SMM shared mental model 

TOM theory of mind 

UAS unmanned aerial system 

XAI explainable AI
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