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Abstract

Essential for the development of low-f-number eye and sensor protection
systems is an accurate model for the propagation of a widely diverging
laser beam through a nonlinear medium. This problem may be solved nu-
merically with the well-known “split-step” procedure, in which the effects
of propagation are computed separately from those arising from nonlinear
absorption and refraction. For a cylindrically symmetric beam, the prop-
agation phase of each step in the process is most conveniently calculated
in the Hankel transform domain; each step thus requires numerical com-
putation of a discrete Hankel transform followed by an inverse transform.
Accordingly, we seek an algorithm for efficient numerical computation of
the Hankel transform that preserves the transform’s invertibility. This re-
port summarizes the relevant properties of the Hankel transform and of
the closely related Fourier transform, it reviews existing fast Hankel trans-
form algorithms (proposing several modest improvements in one), and it
evaluates those methods in terms of their suitability for the beam propaga-
tion application of interest.
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1. Introduction

Applications of the Fourier-Bessel transform, commonly known as the Han-
kel transform, arise in a variety of fields, including signal processing, op-
tics, acoustics, geophysics, and molecular biology. In optics, the Hankel
transform appears in many contexts, not the least of which is the propaga-
tion of cylindrically symmetric laser beams. The wide utility of the Hankel
transform has ensured a continuing interest in the development of efficient
methods for its numerical computation, and a variety of “fast Hankel trans-
form” algorithms has emerged over the past quarter-century [1–5]. This re-
port aims to evaluate these methods in terms of their utility in calculations
involving the propagation of optical beams.

This report is organized as follows. In the following section, we define the
Hankel transform and inverse transform of a function. The Hankel trans-
form is intimately related to its better known cousin, the Fourier transform,
and in section 3, we remind the reader of several properties of the Fourier
transform that will prove necessary in our later development. Section 4 of
this report describes the particular application to optical beam propaga-
tion that motivates our interest in fast Hankel transform algorithms. Any
numerical proccedure for computing a Hankel transform will necessarily
involve a domain of integration that is only finite in extent, and section 5
examines the implications of this for the invertibility of the numerical trans-
form. Section 6 reviews several methods for efficient numerical computa-
tion of Hankel transforms, and section 7 evaluates the most promising of
these for use in our particular application.
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2. Definition

The standard Hankel transform of order � of a function f(r) on the half-line
0 < r <∞ is defined as

g(ρ) = H�[f ](ρ) = 2π
∫ ∞
0

rf(r)J�(2πρ r) d r , (1)

where J�(x) is the Bessel function of the first kind of order �. The variable
in the transform domain, ρ, may be thought of as a “spatial frequency,” i.e.,
the quantity κ = 2πρ is a wavenumber. The inverse transform is given by

f(r) = H−1
� [g](r) = 2π

∫ ∞
0

ρg(ρ)J�(2π ρ r)d ρ . (2)

Hankel’s integral formula [6] may be obtained from the above definitions
by using (1) to substitute for g(ρ) in (2). This important result is valid for
any real � ≥ −1/2 so long as (a) f and its first derivative are sectionally con-
tinuous on each bound interval, (b) r1/2f(r) is absolutely integrable from
zero to infinity, and (c) f is defined as its mean value at each point of dis-
continuity. From Hankel’s integral formula, we deduce the following “or-
thogonality relation” for Bessel functions on the half line:∫ ∞

0
uJ�(u v)J�(u v′) d u =

δ(v − v′)
v

(3)

Equation (3) ensures the invertibility of the Hankel transform, i.e., guaran-
tees that the successive operations of Hankel transform followed by inverse
Hankel transform reproduce the original input function.
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3. A Word About Fourier Transforms

The Hankel transform is closely related to the two-dimensional (2-D)
Fourier transform of a cylindrically symmetric function. Since the Fourier
transform will itself play an important role in the particular application to
optics that this report is intended to addresss, we pause here to briefly ex-
amine the Fourier transform and its relationship to the Hankel transform
and to remind the reader of some properties of the Fourier transform that
we will require.

3.1 Conventions

Several conventions are commonly used to define the Fourier trans-
form; ours follow. Let F (⇀x) be a function, in general complex, on the n-
dimensional real space Rn. We define the Fourier transform of F (⇀x), de-
noted F [G](⇀κ), as

G(⇀κ) = F [F ](⇀κ) =
∫ ∞
−∞

F (⇀x)ei
⇀
x ·⇀κ dnx (4)

and we define the inverse transform as

F (⇀x) = F−1[G](⇀x) = (2π)−n
∫ ∞
−∞

G(⇀κ)ei
⇀
x ·⇀κ dnκ . (5)

3.2 Relation Between Hankel and Fourier Transforms

In two dimensions, we may express the integral (4) in plane polar coordi-
nates,

G(κ, φ) =
∫ ∞
0

∫ 2π

0
rF (r, θ)ecos(θ−φ)κrd θd r ,

where κ = [κ2
x + κ2

y]
1/2 is the wavenumber. At this point, we specialize to

the case of a transforming function of the form F (r, θ) = f(r)eim θ, where
m is an integer. Employing the identity

ei x sin θ =
∞∑

n=−∞
Jn(x)ei n θ ,

we can in this case perform the integration over θ and so obtain

G(κ, φ) = 2πimeimφ
∫ ∞
0

rf(r)Jm(κ r)d r .

Setting κ = 2πρ, we see that the 2-D Fourier transform of F (r, θ) = f(r)eim θ

is related to the mth-order Hankel transform of the “radial function” f(r)
by

G(2πρ, φ) = F [F ](2πρ, φ) = imeimφHm[f ](ρ) ,

3



where Hm[f ](ρ) is the Hankel transform of f as defined in (1). In much the
same way, one may start from the definition of the inverse Fourier trans-
form (5) and show that in two dimensions the inverse transform of a func-
tion of the form G(2πρ, φ) = g(ρ)e−imφ is given by

F (r, θ) = 2π(−i)me−im θ
∫ ∞
0

ρg(ρ)Jm(2πρr) d ρ ,

or, comparing the integral on the right-hand side with that in (2),

F−1[G](r, θ) = (−i)me−im θH−1
m [g](r),

whereH−1
m [g](r) is the mth-order inverse Hankel transform of g(ρ).

In optics, we are primarily interested in the case m = 0, which corresponds
to a cylindrically symmetric function F (r). As we have just seen, such a
function’s Fourier transform in two dimensions is identical to its Hankel
transform. Similarly, the inverse Fourier transform in two dimensions of a
circularly symmetric G(κ) is identical to the inverse Hankel transform.

3.3 The Correlation Theorem

The cross-correlation of two functions α(⇀x) and β(⇀x) is defined by the in-
tegral

corr[α, β](⇀x) =
∫ ∞
−∞

α(⇀x + ⇀
u)β(⇀u) dnu .

If we consider now the Fourier transform (4) of corr[α, β],

F [corr[α, β]](⇀κ) =
∫ ∞
−∞

∫ ∞
−∞

α(⇀x + ⇀
u)β(⇀u) ei

⇀
x ·⇀κ dnu dnx ,

we can, simply by interchanging the order of the integrations and making
a change of variable, prove the well-known correlation theorem:

F [corr[α, β]](⇀κ) =
∫ ∞
−∞

α(⇀w)ei
⇀
w ·⇀κ dnw

∫ ∞
−∞

β(⇀u) e−i
⇀
u ·⇀κ dnu

= F [α](⇀κ)F [β](−⇀κ) .

This theorem, in combination with well-known fast Fourier transform (FFT)
algorithms, will be applied to efficiently compute the sums that arise in a
discrete analog of the Hankel transform.
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4. The Hankel Transform in Optical Beam Propagation

Our interest in fast Hankel transform algorithms arises from the need to
calculate the effects of laser beam propagation through a variety of media.
Some of these materials exhibit an optical response that is linear even for
beams of extremely high intensity, while others provide a response that is
highly nonlinear. Frequently, the optical systems into which these media
are incorporated are characterized by a low f-number. In such systems, the
usual simplifying assumption of beam paraxiality is invalid. Choosing the
z-axis parallel to the primary direction of propagation of the beam, one typ-
ically writes the electric field of a single-frequency component of the beam
in terms of a spatial envelope ψ(⇀x, z) thus: E(⇀x, z, t) = ψ(⇀x, z) exp[i(kz −
ωt)]. In a low-f-number system, the spatial envelope ψ(⇀x, z) satisfies the
nonparaxial wave equation, which, in the case of a linear medium, reduces
to the following form:(

∂

∂z
− i

2k
∂2

∂z2

)
ψ(⇀x, z) =

i

2k
∇T 2ψ(⇀x, z) . (6)

Here,∇T 2 is the transverse Laplacian.

∇T 2 =
∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1
r

∂

∂r
+

1
r

∂2

∂φ2

(In the paraxial approximation, one drops the term in (6) involving the sec-
ond derivative with respect to z.)

The nonparaxial propagation operator,

P = exp

[
iz∇T 2

k +
√

k2 +∇T 2

]
,

generates from the “initial value” ψ(⇀x, z = 0) an exact solution to (6),
ψ(⇀x, z) = Pψ(⇀x, 0), as one may easily verify by direct substitution [7, 8]. In
order to implement the operator P, it is convenient use (5) to write ψ(⇀x, 0)
in terms of its Fourier representation. Then

ψ(⇀x, z) = Pψ(⇀x, 0) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

d2κ exp

[
−izκ2

k +
√

k2 − κ2

]
F [ψ|z=0](

⇀
κ)e−i

⇀
κ ·⇀x , (7)

whereF [ψ|z=0](
⇀
κ) is the Fourier transform of ψ(⇀x, 0) and κ = [κx 2+κy

2]1/2

is the transverse wavenumber. For a cylindrically symmetric beam, the en-
velope function’s Fourier transform and its zero-order Hankel transform
are identical:F [ψ|z=0](

⇀
κ) = H[ψ|z=0](κ). (In order to make the notation less

cumbersome, when no confusion can result, we frequently suppress the
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subscript “m” in “Hm[·]” in the case of an order m = 0 transform.) Assum-
ing a cylindrically symmetric beam, we write the integral over the κ-plane
in polar coordinates and integrate over the angular variable, obtaining a
Bessel function in the process. The result is

ψ(r, z) =
1
2π

∫ ∞
0

d κκ exp

[
−izκ2

k +
√

k2 − κ2

]
H[ψ|z=0](κ)J0(κr) .

Noting that the above integral is simply the inverse Hankel transform of
order zero and switching the variable in the transform domain from κ to ρ,
we write this as

ψ(r, z) = H−1

[
exp

[
−iz(2πρ)2

k +
√

k2 − (2πρ)2

]
H[ψ|z=0]

]
. (8)

Alternately, (8) may also be derived from the following representation for
ψ(⇀x, 0) in terms of zero-order Hankel transforms

ψ(r, 0) = H−1[H[ψ|z=0]](r) = 2π
∫ ∞
0

ρH[ψ|z=0](ρ)J0(2πρr)dρ .

(This is none other than the Hankel integral formula, to which we alluded
in sect. 2.) Now, with a transverse Laplacian reflecting the assumption of
circular symmetry,

∇T 2J0(2πρr) =

(
∂2

∂r2
+

1
r

∂

∂r

)
J0(2πρr) = −(2πρ)2J0(2πρr) ,

where the last equality follows from Bessel’s equation of order zero. Thus,

Pψ(r, 0) = 2π
∫ ∞
0

ρH[ψ|z=0](ρ) exp

[
−iz(2πρ)2

k +
√

k2 − (2πρ)2

]
J0(2πρr)dρ ,

and (8) follows.

The solution (8) is exact only for linear media. For the propagation of opti-
cal beams through nonlinear media, (8) is applied repeatedly for very small
z in the split-step procedure introduced in optics by Feit and Fleck [9].
Each step involves a Hankel transform followed, after multiplication by
the propagation operator P as represented in the ρ-domain, by an inverse
transform. The solution generated by this procedure after a large number of
propagation steps is reliable only to the extent that the numerical method
used to compute the Hankel transform preserves the transform’s invertibil-
ity. Put another way, if successive operations of Hankel transform followed
by inverse transform fail to reproduce the original input function with rea-
sonable accuracy, then any solution obtained from a multi-step procedure
will after only a few steps have become so inaccurate as to be virtually use-
less.

Our particular application demands an approximate numerical procedure
that will, to the greatest extent possible, preserve the invertibility of the
Hankel transform; computational efficiency, while important, is a secondary
concern.
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5. The Effect of Finite Domains

In situations of physical interest, the function f(r) may typically be taken
to be non-vanishing only for r less than some maximum value b. Real opti-
cal systems are always characterized by an effective aperture of some sort,
and even in the absence of an aperture, a function f(r) arising in a physi-
cal problem will generally decrease sufficiently rapidly with distance that
its effects at large r are negligibly small. Although it is less obvious, one
may, in the same way, take the spatial frequency to have an upper bound,
the maximum bandwidth β. The upper limit of integration in (1) is thus
replaced by b, and in (2) by β. In such a case, it is convenient to introduce
the dimensionless spatial variable x = r/b and the dimensionless trans-
form variable y = ρ/β and to work with functions f(x) and g(y) defined
on the unit interval. Defining γ = bβ, the space-bandwidth product of the
transformation, we rewrite the Hankel transform (1) as

g(y) = 2πγ
b

β

∫ 1

0
xf(x)J�(2πγxy)dx , (9)

and the inverse transform (2) as

f(x) = 2πγ
β

b

∫ 1

0
yg(y)J�(2πγxy)dy . (10)

We observe that, despite appearances, the ratio b/β is not dimensionless but
carries units of length squared.

In order to assess the extent to which the imposition of cutoffs in the spa-
tial and spatial frequency domains limits the invertibility of the transform,
we turn now to some examples for which the Hankel transform may be
computed analytically. In each case, we numerically compute the inverse
transform integral (10) by Gaussian quadrature and compare the result to
the original function.

5.1 “Top Hat” Input Function

Students of optics are familiar with the zero-order Hankel transform of the
unit step function, Θ(b− r), which arises in the problem of Fresnel diffrac-
tion from a uniformly illuminated circular aperture of radius b. In this case,
f(x) is simply equal to unity and (9) can be performed analytically with the
result:

g(y) =
2πγb

β

∫ 1

0
xJ0(2πγxy)dx =

bJ1(2πyγ)
yβ

. (11)

We now numerically evaluate the inverse transform (10) using adaptive
Gaussian quadrature with error estimation based on evaluation at Kronrod
points; the numerical results are accurate to six decimal digits. Figure 1
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Figure 1. Results of
successive operations of
Hankel transform
followed by inverse
Hankel transform on a
unit “top hat” input.
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shows the result of performing this calculation for two different values of
the space-bandwidth product: γ = 2 (dotted line) and γ = 40 (solid line); the
insert depicts the results for γ = 40 on an expanded scale.

In the limit of infinite domains of integration in space and spatial frequency,
the orthogonality relation (3) holds exactly, and application of the inverse
transform (2) to the transformed function returns the original input func-
tion. For finite domains, we expect that the larger the space-bandwidth
product, the more closely the result of the approximate transform or inverse
transform will mirror the “true” result. In the present case, the transform
(11) of the unit top hat function is exact, so the larger the cutoff β in spa-
tial frequency (and thus the larger the space-bandwidth product γ) used in
the approximate inverse transform, the more closely the twice-transformed
function reproduces the original “top hat” input. The pair of curves in fig-
ure 1 graphically illustrates this.

At x = 1, where the input function is discontinuous, the integral converges
to the mean value, 1/2, as expected. Gibbs phenomena are observed in the
vicinity of the discontinuity.

5.2 Uniform Annular Input Function

Similar to the top hat function discussed in the preceding section, the unit
annular function that we consider here may be written as a sum of step
functions: Θ(b/4 − r) − Θ(3b/4 − r); it vanishes everywhere except on the
open interval (b/4, 3b/4), where it is equal to one. (At r = b/4 and r = 3b/4,
where the function is discontinuous, it assumes the mean value of 1/2.) The
exact Hankel transform, performed analytically, is

g(y) = 2πγ
b

β

∫ 3
4

1
4

xJ0(2πγxy)dx =
b

4yβ

(
3J1

(
3πyγ

2

)
− J1

(
πyγ

2

))
. (12)

As before, the inverse transform (10) was evaluated numerically by adap-
tive Gaussian quadrature. Displayed in figure 2, the results for γ = 2 (line
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Figure 2. Hankel
transform followed by
inverse Hankel
transform of a unit
annular input function.
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of short dashes), γ = 8 (line of long dashes), and γ = 40 (solid line) clearly il-
lustrate how the accuracy of the approximate (finite) tranform (10) depends
on the space-bandwidth product γ.

5.3 Parabolic Input Function

As a final example, we examine the parabolic input function f(x) = x2,
as is done in [5]. The fact that the upper limit of integration in the Hankel
transform defined by (9) is 1, not infinity, effectively “clips” the input func-
tion to the unit interval; the effective input function used here is thus an
“apertured parabola,” equal to x2 on the interval 0 ≤ x < 1, vanishing for
x > 1, and assuming the mean value of 1/2 at the point of discontinuity,
x = 1. Indeed, the “true” Hankel transform, equation (1), of the function
f(x) = x2, defined on the entire positive real axis, does not even exist, since
the integral of x3 from zero to infinity diverges! However, there is no such
difficulty with the finite Hankel transform integral (9), which may be per-
formed analytically, yielding

g(y) =
2πγb

β

∫ 1

0
x3J0(2πγxy)dx =

b

2yβ
(J1(2πyγ)− J3(2πyγ)) . (13)

For completeness, we introduce η = 2πγy and use the well-known identi-
ties relating Bessel functions of adjacent orders [10] to rewrite (13) as

g(η) =
2bπγ(2ηJ0(η) + (η2 − 4)J1(η))

βη3
,

analogous to equation (12) of reference [5].

Performing the inverse transform (10) numerically using the methods de-
scribed before, we obtain the results shown in figure 3 for γ = 2 (line of
short dashes), γ = 8 (line of longer dashes), and γ = 40 (solid line). These
results reinforce the points made previously: namely, that the fidelity of the
transform increases with the space-bandwidth product γ and that at points

9



Figure 3. Hankel
transform followed by
inverse Hankel
transform of the
parabola f(x) = x2.
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of discontinuity, the transform assumes the mean value of the function for
every value of γ.

We turn now to a brief survey of various available methods for computing
Hankel transforms numerically.
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6. Survey of Fast Numerical Methods

We wish to compute a numerical approximation to the Hankel transform
integral (9) at a series of N spatial frequencies ym, m = 0, 1, . . . N − 1. The
problem is immediately apparent: Naively sampling at N values {xn} of
the normalized spatial variable and N normalized spatial frequencies {ym},
m,n = 0, 1, . . . N − 1, and then computing the integral (9) by a finite sum
involves N2 multiplications! Fortunately, we can do considerably better.

6.1 The ”Quasi-Fast Hankel Transform”

Central to both the so-called “quasi-fast Hankel transform” methods de-
scribed in this section and the “high-accuracy fast Hankel transform” of
the following section (the names are due to Siegman [1] and Magni [5], re-
spectively) is the exponential change of variables employed by Gardiner
[11]:

r = r0e
αu, ρ = ρ0e

αv. (14)

With this change of variables, the Hankel transform integral (1) takes the
form of a cross-correlation:

ĝ(v) =
∫ ∞
−∞

f̂(u) ĵ(u + v)du ,

where ĝ(v) = ρ0e
αvg(ρ0e

αv), f̂(u) = r0e
αuf(r0e

αu), and ĵ(u + v) = 2παr0ρ0

eα(u+v)J�(2πr0ρ0e
α(u+v)). The correlation theorem, which we discussed in

section 3.3, guarantees that a cross-correlation such as the one above is
equal to the inverse Fourier transform of the product of the Fourier trans-
forms of the functions in the correlation integral. Since discrete Fourier
transforms can be computed with extremely high efficiency via the FFT
methods that came into widespread use in the mid-1960s, the fact that one
can recast the Hankel transform as a correlation is very fortuitous indeed.

The discrete Fourier transform of a function f(u) is computed from a list of
function values at evenly spaced values of u. Because the change of vari-
able (14) between u and r is exponential, sampling at regular intervals in u
implies geometric sampling in r, that is, in “real” space. While nonuniform
sampling creates its own set of problems for certain applications, for our
particular application to optics, it is actually something of an advantage.
This happy state of affairs arises from the fact that the intensity of a laser
beam is typically highest in the center of the beam and decreases as the dis-
tance r from the beam center increases. The geometric sampling in r leads
to an increased density of grid points in the region of highest intensity, and
since it is in this region that the optical properties of the medium would be
expected to vary most rapidly with distance, it is precisely here that a finer
grid is most desirable.
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6.1.1 Original Formulation of Siegman

Among the earliest of the fast Hankel transform methods in current use
is the “quasi-fast Hankel transform” introduced by Siegman [1]. Siegman
chooses sampling points as a geometric series,

ρm = ρ0e
αm, rn = r0e

αn, for m, n = 0, 1, . . . N − 1 , (15)

so that the resulting sum,

g(ρm) =
2πα

ρm

N−1∑
n=0

φn jm+n , (16)

takes the form of a cross-correlation between discretely sampled functions:

φn = rnf(rn)
jm+n = ρmrnJ�(2πρmrn) = ρ0r0e

α(m+n)J�(2πρ0r0e
α(m+n)) .

If the number of sampling points N is chosen to be a power of 2, the discrete
cross-correlation (16) may be computed very efficiently via a series of three
2 N-term fast Fourier transforms, each requiring only 2 N log2(2 N) mul-
tiplications. An end correction term suggested by Agrawal and Lax [12],
πr0

2f(r0), may be added to (16) to account for the contribution to the Han-
kel transform integral from the excluded region 0 ≤ r < r0. The parameters
α, r0, and ρ0 are arbitrary.

6.1.2 Improved Formulations by the Author

We have developed two related formulations of the quasi fast Hankel trans-
form that apply specifically to the “windowed” Hankel transform (9) and
of which the latter is modestly more accurate than Siegman’s original for-
mulation. We now describe these new formulations.

Approximation by “Right-hand Rectangles.” We begin by defining sam-
pling points as a geometric series on the unit interval 0 ≤ x, y ≤ 1:

xn = yn = eα(n−N), n = 1, 2, . . . N

This corresponds to taking r0 = beα(1−N) and ρ0 = βeα(1−N) in (15). The
choice of identical sampling points in the spatial (x) and spatial frequency
(y) domains is intended to facilitate inversion of the transform. The win-
dowed Hankel transform integral (9) is then approximated by the sum

g(ym) = 2πγ
b

β

N∑
n=1

xnf(xn)J�(2πγxnym)(xn − xn−1) , (17)

in which

xn − xn−1 =
{

x1, n = 1
xn(1− e−α), n = 2, 3, . . . N

12



In effect, we are approximating the integrand in (9) by a series of rectan-
gles, the height of each equal to the value of the integrand at the right-hand
edge of the rectangle. One might expect that a better approximation to (9)
could be obtained by choosing the height of each rectangle equal to the
value of the integrand at the center of each rectangle, and this is indeed the
case. We will develop an improved formulation based on “centered rect-
angles” in a moment. To conclude the present discussion, we observe that
our choice of sampling points allows the sum in (17) to be evaluated as the
cross-correlation

g(ym) = 2πγ
b

β

N∑
n=1

φnjm+n , (18)

between the discretely sampled functions:

φn =
{

x1
2f (x1) , n = 1

x1
2f (xn) (1− e−α), n = 2, 3, . . . N

and

jm+n = J�(2πγeα(m+n−2N)), m, n = 1, 2, . . . N .

Approximation by “Centered Rectangles.” In order to develop an improved
formulation in the manner indicated previously, we define

ξ0 = 0
ξn = eα(n−N), n = 1, 2, . . . N, (19)

i.e., we take each ξn for n ≥ 1 to be the same as the sampling point xn used
in the previous formulation. The points {ξn}, n = 0, 1, . . . N , divide the unit
interval into N subintervals, the lengths of which are given above. We now
select a new set of sampling points:

xn = yn = x0e
αn , for m, n = 0, 1, . . . N − 1, (20)

and we choose the parameter x0 so that, with the exception of the first,
each of the sampling points lies at the center of its respective interval; this
gives x0 = (eα − 1)e−αN/2. The sum approximating the Hankel transform
integral (9) is now given by

g(ym) = 2πγ
b

β

N−1∑
n=0

xnf(xn)J�(2πγxnym)(ξn+1 − ξn) .

This sum is a discrete cross-correlation of the same form as (18) but with
the following functions.

φn =
{

x0e
−αNf (x0) , n = 0

x0e
α(n−N)f (xn) (1− e−α), n = 1, 2, . . . N − 1

jm+n = J�(2πγx0
2eα(m+n)) , m, n = 0, 1, . . . N − 1

13



After the cross-correlation sum is computed by FFT methods, one could, if
desired, add an end correction term to the sum to reflect the fact that the
first rectangle is not “centered.”

(correction)m =
1
2
e−2αN{(e2α − 1)f(x0)J�(2πγx0ym) + e2αf(ξ1/2)J�(2πγξ1ym)}

In both formulations, the parameter α is arbitrary. One should choose α
so that the minimum grid spacing corresponds to the minimum separation
in space (or spatial frequency) that one could resolve in an experimental
measurement.

6.2 The “High-accuracy Fast Hankel Transform” of Magni et al.

Magni et al. [5] developed a method specifically for the evaluation of win-
dowed Hankel transforms of order zero. This so-called “high-accuracy fast
Hankel transform” bears many similarities to the “centered rectangle” for-
mulation of the quasi-fast Hankel transform described in the preceding
paragraphs. In both approaches, one divides the unit interval into the same
N subintervals ξn ≤ x, y < ξn+1, n = 0, 1, . . . N − 1, with endpoints ξn
defined in (19), and one chooses the same set of sampling points {xn} ac-
cording to (20) so that there is exactly one point per subinterval and each
point except the first lies at the midpoint of its subinterval. Where the two
approaches differ is in the function that one approximates as a series of
“centered rectangles,” i.e., the function that one takes to be a constant over
each subinterval. In the quasi-fast Hankel transform, one approximates by
rectangles the entire integrand of the windowed Hankel transform integral
(9), whereas in the high-accuracy fast Hankel transform, one approximates
only the input function f. In the latter approach, one proceeds by perform-
ing the integration over each subinterval analytically.

2πγb

β

∫ ξn+1

ξn
f(xn)J0(2πγyu)udu =

bf(xn)
yβ

(J1(2πγyξn+1)ξn+1 − J1(2πγyξn)ξn)

Summing this result over the N intervals, one obtains a discrete approxi-
mation to the Hankel transform (9):

g(ym) =
b

βym

N−1∑
n=0

(f(xn)− f(xn+1))ξn+1J1(2πγymξn+1)

where f(xN ) is defined to be zero. Because the sampling points lie in geo-
metric progression, this sum can be computed as the cross-correlation

g(ym) =
b

βym

N−1∑
n=0

φ̃nj̃m+n

14



between the discretely sampled functions:

φ̃n =
{

(f (x0)− f (x1)) eα(−N) × (end correction), for n = 0
(f (xn)− f (xn+1)) eα(n+−N), for n = 1, 2, . . . N − 1

j̃m+n = J1(2πγx0e
α(m+n+1−N))

The end correction factor in the expression for φ̃0 is equal to (2eα+ e2α)[1+
eα]−2/(1− e−2α) and arises from the integral over the first subinterval.

As in the previous formulations, the parameter α is arbitrary. Magni et al.
report that best results are obtained by choosing the value of α so as to
make the first and last subintervals of equal width [5].

The attempt to further improve the accuracy of this approach by approxi-
mating the input function f not by a series of rectangles but by a series of
trapezoids, i.e., by approximating f on the interval ξn,≤ x < ξn+1 by

f̂(x) = f(ξn) +
(

f(ξn+1)− f(ξn)
ξn+1 − ξn

)
(x− ξn)

is frustrated by the complexity of the expression obtained upon integration.

6.3 Other Fast Hankel Transform Methods

Oppenheim, Frisk, and Martinez [2] propose a number of methods based
on the “projection-slice theorem,” from which it follows that the Hankel
transform is equal to the one-dimensional Fourier transform of the projec-
tion p(x) of a 2-D function onto the x-axis:

p(x) =
∫ ∞
−∞

f(x, y)dy =
∫ ∞
x

f(r)√
r2 − x2

d(r2) .

Unfortunately, the inherent complexity of these methods, as well as the
lengthy computations that they entail, make them less than satisfactory.

The hybrid approach of Candel [3] computes the Hankel transform via
a pair of companion algorithms, one for the low-order components and
the other for the remaining orders. The combination can be shown to con-
verge to the true transform to within a specified error. Unfortunately, this
approach is limited by the individual shortcomings of its component al-
gorithms: the first is not particularly fast, and the second, relying on the
approximate representation of the Bessel function by a truncated series ex-
pansion, is not particularly accurate.

The clever 2-D fast Hankel transform algorithm of Murphy and Gallagher
[4] is based on the result discussed in section 3.2 that the Hankel trans-
form is the 2-D Fourier transform of a circularly symmetrical function. The
Murphy-Gallagher procedure is superior to Siegman’s implementation of
the quasi-fast Hankel transform for many applications, particularly those
in which the input data are already in a 2-D form or when one requires
a 2-D output format. For our purposes, however, it is redundant; if we

15



were willing to endure the increased storage requirements associated with
solving our nonparaxial beam propagation problem on a 2-D grid, then we
would simply employ the propagation operator in the form (7) and would
use 2-D FFT methods throughout the process.
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7. Assessment of the High-Accuracy Fast Hankel Transform
Algorithm

In this section, we evaluate the merits of the high-accuracy fast Hankel
transform method just described by employing it to numerically compute
the Hankel transforms and inverse transforms of a variety of functions, to
include the ”top hat” function examined in section 5.1. We abstain from
a similar assessment of the quasi-fast Hankel transform methods of sec-
tion 6.1, since Siegman’s implementation of this algorithm was shown by
Magni et al. to be generally inferior to the high-accuracy fast Hankel trans-
form method [5].

7.1 “Top Hat” Input Function

The high-accuracy fast Hankel transform method gives the exact transform
of a constant function, as is obvious from the description of section 6.2; the
numerical transform of the top hat input f(x) = 1 is thus identical to the an-
alytic result (11). Using the high-accuracy method to numerically transform
the top hat input for a given value of the frequency-bandwidth product γ,
and then to compute the inverse transform at the identical value of γ, one
obtains the results shown in figure 4 for γ = 10 (dotted line) and γ = 40
(solid line). Both the transform and the inverse transform were performed
with 256 sampling points. The reader may verify from the expanded scale
insert that the curve for γ = 10 displays exacts ten maxima, while that for
γ = 40 displays exactly 40 such “humps.”

Figure 4. High-accuracy
numerical Hankel
transform followed by
inverse Hankel
transform on a unit “top
hat” input.
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7.2 Parabolic Input Function

We conclude with an example of a function whose numerical high-accuracy
fast Hankel transform is not exact; we consider the windowed Hankel trans-
form of the parabolic input function f(x) = x2 for space-bandwidth prod-
uct γ = 10. The solid gray line in figure 5 depicts the analytic result (13),
while the black dotted line shows the numerical results obtained with the
high-accuracy fast Hankel transform with 256 sampling points.

In order to assess the degree to which the numerical procedure preserves
the invertibility of the Hankel transform, we employ the high-accuracy fast
Hankel transform method to numerically transform the parabolic input for
a given value of γ and then to perform the inverse transform at the iden-
tical value of γ. Figure 6 illustrates the results of performing this sequence
of operations with 256 sampling points for γ = 4 (dotted line), and with
1,048 sampling points for γ = 40 (solid line). The thick gray line shows the
original input function.

These results, along with others not reported here, lead us to believe that
the fast Hankel transform algorithm of [5] is more than adequate for the
repetitive use required of it in a split-step beam propagation calculation.

Figure 5. Comparison of
the analytic Hankel
transform of f(x) = x2

with the high-accuracy
numerical transform.
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Figure 6. High-accuracy
numerical Hankel
transform followed by
numerical inverse
Hankel transform on a
parabolic input .
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