

 ARL-TR-8624 ● JAN 2019

 US Army Research Laboratory

Naïve Bayes Log File Reduction and Analysis

by Ralph P Ritchey, Gregory G Shearer, and Kenneth D Renard

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

DESTRUCTION NOTICE—For classified documents, follow the procedures in
DOD 5220.22-M, National Industrial Security Program Operating Manual, Chapter
5, Section 7, or DOD 5200.1-R, Information Security Program Regulation, C6.7.
For unclassified, limited documents, destroy by any method that will prevent
disclosure of contents or reconstruction of the document.

 ARL-TR-8624 ● JAN 2019

 US Army Research Laboratory

Naïve Bayes Log File Reduction and Analysis

by Ralph P Ritchey
Computational Information Sciences Directorate, ARL

Gregory G Shearer and Kenneth D Renard
ICF International, Fairfax, VA

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

January 2019
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

August 7, 2017–July 10, 2018
4. TITLE AND SUBTITLE

Naïve Bayes Log File Reduction and Analysis
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Ralph P Ritchey, Gregory G Shearer, and Kenneth D Renard
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
Computational Information Sciences Directorate (ATTN: RDRL-CIN-S)
Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8624

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The application of Bayes’ theorem in computer science dates back to the 1960s and continues to be heavily used in Naïve
Bayes classifiers in machine learning. In this report, we propose the use of a Naïve Bayes-based classifier for automated
analysis and data reduction of text-based log files generated by various computer systems and the services they provide. The
intended application of this technique is to automate the reduction of voluminous log files to a more manageable size and,
with reasonable accuracy, retain log lines containing potential indicators of malicious cybersecurity activity or other
infrequent interesting activity that should be examined further through other means.

15. SUBJECT TERMS

Naïve Bayes, machine learning, log files, reduction, cybersecurity

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

47

19a. NAME OF RESPONSIBLE PERSON

Ralph P Ritchey
a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(410) 278-3508
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.
iii

Contents

List of Figures iv

List of Tables v

1. Introduction 1

2. Literature Review 2

3. Approach 3

3.1 Logalyzer 6

3.2 Data Sampling 7

3.2.1 Apache HTTPD Access Log File 8

3.2.2 Linux Messages Log File 8

4. Naïve Bayes-based Algorithm 9

5. Results 11

5.1 Apache HTTPD Access Log Experiments 12

5.1.1 Intact URI 13

5.1.2 Deconstructed URI 16

5.1.3 Deconstructed URI, Single Feature Removed 19

5.1.4 Deconstructed URI, Two Features Removed 23

5.2 Linux Messages Log Results 26

6. Conclusions 30

7. Future work 30

8. References 32

Appendix. Log File Reduction Experiment Performance Tables 34

List of Symbols, Abbreviations, and Acronyms 39

Distribution List 40

Approved for public release; distribution is unlimited.
iv

List of Figures

Fig. 1 Static 3-D graph of PCA results from analyzing HTTPD access log ... 5

Fig. 2 Apache access log, 50,000 lines, URI intact 13

Fig. 3 Apache access log, 75,000 lines, URI intact 14

Fig. 4 Apache access log, 135,000 lines, URI intact 14

Fig. 5 Apache access log, 238,000 lines, URI intact 15

Fig. 6 Apache access log, 50,000 lines, deconstructed URI 17

Fig. 7 Apache access log, 75,000 lines, deconstructed URI 18

Fig. 8 Apache access log, 135,000 lines, deconstructed URI 18

Fig. 9 Apache access log, 238,000 lines, deconstructed URI 19

Fig. 10 Apache access log, 50,000 lines, deconstructed URI, one feature
removed... 20

Fig. 11 Apache access log, 75,000 lines, deconstructed URI, one feature
removed... 21

Fig. 12 Apache access log, 135,000 lines, deconstructed URI, one feature
removed... 21

Fig. 13 Apache access log, 238,000 lines, deconstructed URI, one feature
removed... 22

Fig. 14 Apache access log, 50,000 lines, deconstructed URI, two features
removed... 23

Fig. 15 Apache access log, 75,000 lines, deconstructed URI, two features
removed... 24

Fig. 16 Apache access log, 135,000 lines, deconstructed URI, two features
removed... 24

Fig. 17 Apache access log, 238,000 lines, deconstructed URI, two features
removed... 25

Fig. 18 Linux messages Log A, 50,000 lines .. 27

Fig. 19 Linux messages Log A, 75,000 lines .. 28

Fig. 20 Linux messages Log A, 238,000 lines .. 28

Fig. 21 Linux messages Log B, 22 million lines ... 29

Approved for public release; distribution is unlimited.
v

List of Tables

Table A-1 Log file reduction .. 35

Table A-2 Experiment execution times .. 36

Table A-3 Potential true/false-positive performance ... 37

Table A-4 Identification of Nessus scan .. 38

Approved for public release; distribution is unlimited.
1

1. Introduction

With the deepening interest in protecting information, the usage of encryption for
network connections has greatly increased1, at the expense of cybersecurity. While
encryption enables information security, the effect is a reduced capability for
intrusion detection systems (IDS) to perform deep network packet inspection for
detection of potentially malicious behavior contained in the packet payload.2 This
impact of encryption on cybersecurity operations is now triggering a search for
additional data sources and detection methodologies to use for cybersecurity
purposes.

While the ability to monitor network-based communications between devices is
reduced, a potential source of additional data are the logs automatically generated
on the devices themselves while they perform their activities. This includes portable
devices that have evolved to the point of using operating systems offering the same,
or very similar, capabilities as traditional, nonportable devices including logging.
Various techniques, such as kernel modules and execution of additional processes,
have been and are still used for on-device malicious behavior detection. However,
great care must be taken to not negatively impact normal operations and the stability
of portable devices by depleting their limited resources. Those issues must be
carefully factored into any methodology developed to process and reduce log files.

The information logged by the operating systems (OSs) and processes on devices,
whether it is a Linux OS system/messages log file, an Apache HTTP server daemon
(HTTPD), or a Windows OS log file, contain information such as timestamps, the
specific activity performed, users or IP addresses involved, and, in some situations,
detailed error information or other important state information. While the format of
a particular log type may be reasonably and consistently formatted for automated
processing, the volume within and between log types can become untenable for
analysis—especially when hundreds or even thousands of systems need to be
monitored simultaneously. The combination of computational and man power
required to thoroughly process and analyze the log files can exhaust available
resources, potentially allowing malicious activity to be missed.

Based upon the success of other researchers applying principal component analysis
(PCA)3 and other machine learning algorithms to log files, our objective was to
develop an automated, lightweight technique using machine learning to perform
log file reduction with minimal human supervision resulting in smaller log files that
still contain potential indicators of cybersecurity events.

Approved for public release; distribution is unlimited.
2

2. Literature Review

A literature review was performed, examining published research regarding the
application of machine learning to system log files. The following is an overview
of relevant publications:

• Li’s paper4 specifically discusses the use of machine learning for processing
log files specific to an Ericsson piece of hardware. Recognizing the
unbalanced data, the author mentions clustering and statistical-based
algorithms as appropriate options to aid in identifying anomalies. The
application of the research builds upon a previous version of Awesome
Automatic Log Analysis (AALA) version 1.0 by incorporating additional
algorithms and thereby becoming AALA version 2.0. Specifics regarding
log file contents were not included, making it difficult to do a thorough
comparison with nonEricsson hardware log files to determine direct
applicability.

• A paper by Aharon et al.5 is closely related to our work as the paper
describes using “system event logs” as the data source. The authors
implemented a more sophisticated algorithm called the Principal Atoms
Recognition In Sets (PARIS) capable of grouping log lines into “events”.
System requirements, resource utilization information, and execution times
were not provided.

• Xu et al.3 discuss the detection of issues using log files in large-scale
environments. The authors leveraged a PCA for processing the log files, as
well as a static analysis technique to extract log line templates from source
code to facilitate improved breaking of individual log lines into more-
meaningful features. Accuracy performance information is provided;
however, system requirements, resource utilization, and execution times
were not.

• Siploa et al.6 approach anomaly detection in network log data using
diffusion maps. The log-file data used came from an Apache web server.
The results from using a diffusion map were compared to results obtained
using PCA and support vector machines. System requirements, resource
utilization information, and execution times were not provided.

• He et al.7 provide results on log anomaly detection based on using six
different machine learning algorithms and different techniques for
separating log file contents into groups. Two data sets were used: one from
a Hadoop Distributed File System logs, and system logs collected from the
Blue Gene/L supercomputer. The paper provides hardware configuration

Approved for public release; distribution is unlimited.
3

information and details on execution times; however, data regarding
resource utilization were not provided. Effectiveness of the various
algorithms in identifying anomalies was provided, as well as the impact of
grouping techniques on the effectiveness of the algorithms used.

• A known challenge entering into this research project is the skewed data
set—a tiny number of true-positives (outliers we want to keep) in
comparison to the number of false-positives (normal log entries). The
skewed data set relates to one-class classification (OCC) and provided
another avenue to find relevant research. Khan8 provides an overview of
published OCC research papers and the approaches taken by various
researchers.

While prior research was found, only one paper included information regarding
system configuration and some (but not all) data points regarding resource
utilization. In addition to determining which machine learning algorithm is suitable
for our purpose, we must also know how the algorithms utilize available computing
resources. For our intended use case, the algorithm must be accurate while using
minimal computing resources to be deemed a suitable solution.

3. Approach

The research for this observational study is contingent upon two assumptions:

• Malicious or suspicious activity is much less common than normal requests
and thereby results in far fewer log entries.

• Nonmalicious but still interesting activity is also much less common than
normal requests and therefore also results in far fewer log entries.

The approach taken, based upon the assumptions previously listed, was to leverage
an unsupervised machine learning algorithm to automatically identify outliers in a
log file, where outlier is defined as “any observation in a set of data that is
inconsistent with the remainder of the observations in that data set”.9 Identifying
and reducing a log file to contain only the outliers would result in a greatly reduced
dataset retaining the two types of activities identified in the assumptions. The
reduced log file may then be fed to other processes or algorithms for further
processing if desired.

This approach was broken into two overarching steps: selecting log files to be used
for the experiments and refining the unsupervised machine learning configuration
to improve performance after an initial experiment to use as a performance baseline.
For primary experimentation, Apache HTTPD log files from a production Linux

Approved for public release; distribution is unlimited.
4

server were selected. This decision was based upon having sufficiently sized logs
available to provide meaningful results and our direct experience and knowledge
of using Apache on Linux. Other experts were also readily available if we required
further insight or interpretation of log data. As a secondary log file type, Linux
system/message log files were selected. The system/message log data, centrally
collected from a wide set of production servers, would be used to roughly gauge
the transportability of our methodology developed from experimenting with
Apache logs to a different log file type. Both log file types provided a
computationally appropriate amount of data with sufficient variability within
features.

The initial unsupervised machine learning algorithm selected was a PCA algorithm
based upon the successful use as outlined in a research paper authored by Xu et al.3
An initial test using an Apache HTTPD server access log file with 75,000 lines was
performed using PCA to reduce the dimensionality of the complete feature set down
to three dimensions for generating a human interpretable graph (Fig. 1). Viewing
the PCA-based graph raised numerous questions: While humans can easily see
outliers, due to the scale of the graph are they one, a few, or hundreds of points
looking like a single outlier? If it is one or even a few overlapping plotted points,
which log line(s) do they correspond to?

Approved for public release; distribution is unlimited.
5

Fig. 1 Static 3-D graph of PCA results from analyzing HTTPD access log

The ability to tie results to specific log lines is critical to determining the
performance of log file reduction while still retaining the desired outliers (potential
indicators of malicious intent or interesting activity). Compounding these
challenges further, executing the PCA against the data exhibited a significant
utilization of both CPU and memory, to the point some log files could not be used
due to complete exhaustion of available physical memory. This level of resource
utilization immediately eliminated PCA as a possible algorithm as completely
exhausting an available resource (physical memory) did not meet our goal of
limited or reasonable resource utilization. Execution time was also found to be
significantly longer (Table A-2 in the Appendix) for PCA than the subsequently
used algorithm. Longer execution times would impact battery life on portable
devices, further eliminating PCA as a possible algorithm meeting our basic
requirements.

Approved for public release; distribution is unlimited.
6

Based upon prior internal research applying Naïve Bayes, a decision was made to
use Naïve Bayes instead of PCA for experimentation. In addition to lowered
resource utilization and significantly shorter execution times, this adjustment
provided the capability to directly tie results back to the originating log lines.
Extracting outliers from the results was accomplished using a simple threshold
technique as their location was restricted to the lower region of the graph, whereas
for PCA, outliers could appear anywhere making their identification and extraction
more challenging.

3.1 Logalyzer

At the outset of this research, a simple Python script leveraging the NumPy10
scientific computing library, scikit-learn11 machine learning library, and the
matplotlib12 graphing library was created. As research continued and refinements
to our coding approach were made based on results, it became clear a more flexible
coding approach than the initial simple script provided was needed to facilitate
easier re-execution of experiments and tracking of adjustments to the code. The
core source code from the original script was retooled into a framework, leveraging
a simple plugin13 based approach. The framework was subsequently named
logalyzer due to the research focusing on analyzing log files.

The logalyzer framework consists of one main script separating the execution
workflow for log analysis into three discrete steps: transformation, machine
learning, and graphing the results. Additional steps can be easily incorporated;
however, for the purposes of our research these three steps were sufficient. Having
broken the workflow into those three steps using plug-ins, we were able to quickly
add a new machine learning plugin, for instance, while leveraging other existing
plugins for other steps during our research, facilitating quick support of “what if”
scenarios:

1) Transformation: Transformation plugins read a particular type of log file
and convert it into a format suitable for use in a machine learning algorithm.
These plugins contain the logic for separating each individual log line into
features. Variations of the same plugin can be used to test different features
of engineering techniques without impacting the rest of the workflow.

2) Machine learning: These plugins receive the output from a transformation
plugin as input and execute a machine learning algorithm against that data.
While there is no requirement to do so, information or result messages can
be printed while the plugin is executing so that the user can redirect to a file
for capture and later review.

Approved for public release; distribution is unlimited.
7

3) Graphing: The graphing plugin receives the output from the machine
learning algorithm and plots the results in a graph or chart, which is then
saved as a file. The current (and only) graphing plugin automatically detects
whether the results should be plotted in two or three dimensions.

The current implementation of logalyzer maintains all processing and data passed
between plugins cached in memory. While several gigabytes of memory were used
in some of our experiments, steps were taken to optimize memory utilization. For
instance, if one-hot encoding is not required by a machine learning plugin, the
internal API will notify the transformation plugin, which will then not perform that
action during transformation thus reducing memory utilization by gigabytes.

Logalyzer’s framework includes command line parameter flexibility. While an
extensive listing of available options for both the main script and each available
plugin can be displayed with the “-h” command line option, not all options must
be used all the time. Each individual plugin can provide required or optional
parameters specific to that plugin. The “-p” option provided by the main script
allows the passing of options to the plugins being used in “<name>=<value>”
pairs. Required parameters are indicated in the available help output and checks are
performed at the start of runtime execution to ensure everything that is required for
execution of an experiment was properly provided before processing actually
begins.

3.2 Data Sampling

Two types of log files were used for experimental purposes while performing this
research: Apache HTTPD access log files and Linux messages log files. The
Apache HTTPD access log file was collected from a production, public-facing
Linux server and spans three contiguous days. The Linux messages log files span
approximately 17 days and is an aggregate messages log collection from over
1000 different Linux systems.

Apache HTTPD access log files were selected as the primary log files for
experimentation as attacks are common on publicly accessible web servers and the
applications they provide access to. The format of the log file is easily broken into
features and the logged feature values will vary due to public accessibility. The
consistency in formatting and varied values provided an ideal data source for
experiments.

The Linux messages log was selected as a secondary source of data for use after
the primary experiments were completed with the Apache HTTPD access log file.
While formatting of the messages file is still relatively consistent and easily

Approved for public release; distribution is unlimited.
8

broken into features, the feature values were not necessarily as varied. The
messages log file allowed us to perform an experiment to see how easily
transportable the methodology used for Apache HTTPD log files may be to a
significantly different log file type.

The following sections provide details regarding each of these log files, as well as
the approach taken to break each log line into features.

3.2.1 Apache HTTPD Access Log File

The Apache HTTP server14 is a commonly used web server for Linux-based
systems. It is available in the repositories of most Linux distributions, making it
readily available to a wide audience. For these reasons, Apache HTTPD access log
files were obtained from several servers: one used internally and one accessible by
a much wider range of external users. While the logs from the internal server were
initially used during logalyzer creation, the results included in this report are for the
externally facing web server, which reflects a more realistic, real-world use case.

The following are two (sanitized) sample lines from an Apache HTTPD access log
file:
192.168.1.12 - - [01/Jul/2017:04:16:41 -0400] "POST
/myapp/core/perform_action.php?menuaction=check_status HTTP/1.1" 200 170042
192.168.1.12 - - [01/Jul/2017:04:17:00 -0400] "GET
/myapp/index.php?doaction=get_data&id=2 HTTP/1.1” 200 177274

These are typical log lines containing the originating IP address making the request
to the web server, timestamp when the connection from the requestor to the server
was established, the HTTP request method coupled with the uniform resource
identifier (URI)15 being requested, followed by the HTTP server response code and
the number of bytes sent from the HTTP server back to the requestor as a result of
the request. The two hyphens between the originating IP address and timestamp
fields represent missing information—specifically the RFC 141316 identd of the
originating IP and the userid of the person on the originating IP address making
the request. Neither of these fields are typically populated or reliable, so for
purposes of this research they were ignored and not used as features. Additional
information regarding available fields that can be included in an Apache HTTPD
log, and how the log files can be configured, can be found at the Apache HTTP
server project website.17

3.2.2 Linux Messages Log File

Linux-based servers predominantly log important information from running
processes and services to a variety of log files contained in /var/log. While
many of these may be suitable candidates for the research being performed, the

Approved for public release; distribution is unlimited.
9

messages log file was chosen due to being a core log file capturing a wider range
of important log entries for a system as a whole. Other log files are typically specific
to one process or service, and due to the more centralized role it plays in the overall
health and security of a server, the messages log file provided a more varied and
meaningful source of data for experimentation.

The following are two (sanitized) sample Linux messages log file entries:
Sep 10 20:59:10 server1 puppet-agent[13006]: Finished catalog run in 3.02
seconds
Sep 10 19:52:55 server1 sshd[4025]: Connection closed by 192.168.1.14
port 41814 [preauth]

Similar to the Apache HTTPD log file, the messages log file consists of several
well-defined sections: a timestamp indicating when the log entry was added to the
file, the name of the server the log entry is from (useful when using centralized
logging for numerous servers), the name of the process logging the message
coupled with the process identification (PID) number of that process, and ending
with a highly variable message section. The content of the message field varies
significantly between different process types, but typically follows a well-defined
format unique to the process type generating the log line.

4. Naïve Bayes-based Algorithm

Bayes’ theorem18 (Eq. 1) forms the mathematical basis the Naïve Bayes classifier
algorithm is built upon. The theorem calculates the conditional probability P(A|B)
that an event A occurs given that event B is true. For Naïve Bayes classifiers, A
represents a classification such as a dog, cat, horse, and so on. B represents the set
of features (weight, fur color, height, etc.) used to calculate their respective
probabilities of occurrence for a specific class during training. The resulting model
generated during training is then used to calculate the probability a set of features
provided as input belongs to each class specified during the training phase. The
higher the calculated probability, the higher the likelihood the provided set of
features belong to a class. The algorithm is referred to as naïve because each feature
is given equal weighting under the assumption each feature contributes equally to
the probability calculation.

 𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃�𝐵𝐵�𝐴𝐴� 𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵)

. (1)

Bayes’ theorem

When using Naïve Bayes classifiers, the following generalized workflow is used:

Approved for public release; distribution is unlimited.
10

1) Perform training on a set of previously classified data to calculate the
conditional probabilities for the features within each class.

2) Run a different set of data through the now-trained classifier, calculating
the probabilities for each class for each set of features based upon the model
created during training in the prior step.

3) Examine the probabilities generated for each class for each set of features.
The classification with the highest probability value identifies which class
that set of features most likely belongs to.

As operating system updates are applied, changes are made to installed
applications, and users’ use of systems and applications change, the data logged in
a log file will evolve. To compensate for logged data evolution, we approached the
Naïve Bayes-based classifier general workflow from a slightly different angle. The
majority of the data logged will be normal, routine behavior and use. Log entries
indicating potentially malicious behavior should occur with a much lower
probability in a log file; therefore, we calculated the probability that a log line
belonged in the log file being processed. This approach, which we refer to as a
modified Naïve Bayes in this report, has the following generalized workflow
containing a key variation in Step 2:

1) Train the algorithm on the features from a log file, treating it as a single
class to calculate the conditional probabilities using the standard Naïve
Bayes methodology.

2) Run the same features from the same log file through the now-trained single
class classifier, calculating the probability that log line belongs to that log
file by summing the probabilities for each feature value and then calculating
the average. The calculation for determining the probability is depicted in
Eq. 2, where n represents the total number of features for a record, and Zi

is the calculated probability value contained in the model generated in the
training step for the feature’s value.

3) Log lines with a calculated probability below a threshold (i.e., the lowest
calculated probabilities) are deemed to be outliers (potential indicators of
malicious behavior).

∑ 𝑍𝑍𝑖𝑖𝑛𝑛−1
𝑖𝑖=0
𝑛𝑛

. (2)

Modified class probability calculation

There are several benefits to this approach, which may not be applicable in other
situations.

Approved for public release; distribution is unlimited.
11

• The content of log files will evolve over time as usage and users change and
software is updated. This is especially true for web servers whose code and
content are typically updated on a regular basis. By training on the log file
being processed, the probabilities used are automatically tuned for that log
file, reducing false-positives that may result by using an older training data
set against log lines generated by software or other factors that were recently
changed on the system.

• There is no need to manually tag each log line in a training set as to the class
it belongs to. Depending on the organization, system activity, and duration
of time being analyzed, log files can potentially contain millions of log lines
making it challenging for one person to perform manual classification for
an initial training set, much less subsequent updates to the training sets as
the system naturally evolves.

• If remotely deployed, there is no fear of losing sensitive models created
from trained data due to a system compromise or consuming valuable
storage space on portable devices.

Note: Implementations of Naïve Bayes typically incorporate Laplace smoothing
(also known as “additive smoothing” or “Lidstone smoothing”) to account for
situations where feature values appear in nontraining data that were not encountered
in the training data. Laplace smoothing was not needed in our implementation as
the same data are used for training and classification, which is unique to application
of the algorithm.

5. Results

In this section the results of running the various log files through the modified
Naïve Bayes algorithm are presented. Results are broken into two major sections
based on the log file type used, with subsections showing results as feature
engineering was improved for experimentation.

For all graphs presented in this section, the x-axis represents each log line, in the
order read from the log file. The y-axis represents the calculated probability that
the given log line belongs in that log file—or in another way to interpret the
probability, given the conditional probabilities for the features in that log line, how
often did they occur? The lower the value on the y-axis, the higher the likelihood
something potentially malicious may have occurred.

Approved for public release; distribution is unlimited.
12

5.1 Apache HTTPD Access Log Experiments

Due to better consistency in formatting between log lines, the single-purpose nature
of the log file, and the variety of values for the features, the majority of
experimentation was performed on Apache HTTPD access log files. Initially, the
individual features from each log line were extracted “as is” with no modification.
Experimental results looked promising, which triggered additional internal
discussion as to whether or not the results could be further improved by performing
additional feature engineering—first by breaking the request URI into logical
sections, then by removing specific features viewed as not providing significant
value. The following sections cover the details specific to the experimental
variations run across the logs used for the experiments.

Over 238,000 lines were contained in the original log file used. In addition to using
the log file in its entirety, smaller chunks in increasing size were used: 50,000 lines,
75,000 lines, and 135,000 lines. This facilitated answering the question: How is
performance impacted as the number of log lines used increases?

HTTPD log files were not available that had been previously analyzed at the level
of detail needed for this research to accurately assess performance in regard to how
well the technique properly identified interesting or malicious log entries. To
roughly assess research results, an inexact methodology was used to automatically
determine in bulk an approximate number of potentially malicious or interesting
log lines. By filtering out log lines containing HTTPD response codes indicating
the request was processed normally, the remaining log lines would be considered
“potentially true-positives”. The HTTPD response codes filtered out as indicators
of normal, uninteresting behavior are

• 200 = OK

• 301 = Moved permanently

• 302 = Found

• 304 = Not modified

• 501 = Not implemented

Due to the automated, inexact methodology of determining true-positives, it was
decided to use the terminology “potential true-positives” and “potential false-
positives” to help reflect the performance assessments as being inexact. Without
manual, in-depth analysis of each log line, which is not feasible at this scale, there
is a likelihood of log lines being improperly categorized. For the targeted use of
this research intending to be a reduction in the volume of data while retaining true

Approved for public release; distribution is unlimited.
13

positives, the tolerance for false-positives is higher than false-negatives. It is
important to ensure analysts find sufficient breadcrumbs in the reduced logs that
would trigger a manual extraction and review of log lines from the original log file.

The log data does include Nessus scan probes. While not necessarily malicious,
these log entries do serve as indicators of potentially malicious behavior. These log
lines should appear in the “potential true-positives”, which will help further validate
whether or not the approach is effective.

5.1.1 Intact URI

For the initial experiment, the URI features contained in the HTTPD log file were
kept completely intact without any changes made. Four separate executions were
performed with an increasing number of log lines (Figs. 2–5). Results between the
executions were then reviewed to see how an increase in the number of log lines
impacted the graph. The graphs provided visual input to initially determine what
the threshold value should be set to, and the log lines falling below the threshold
reviewed for accuracy. (Were they interesting or potential indicators of malicious
activity?)

Fig. 2 Apache access log, 50,000 lines, URI intact

Approved for public release; distribution is unlimited.
14

Fig. 3 Apache access log, 75,000 lines, URI intact

Fig. 4 Apache access log, 135,000 lines, URI intact

Approved for public release; distribution is unlimited.
15

Fig. 5 Apache access log, 238,000 lines, URI intact

With the URI intact, 99.13% of the results (921 lines) from the 50,000-line log file
were potential false-positives. Only 8 (13.33%) of the 60 potential true-positives
were correctly flagged with probabilities falling below the threshold. These results
were obtained using a 0.28 (28% probability) threshold, which was arrived at and
used as the standard for this size log file after determining (tuning) the point where
the results would suddenly increase with potential false-positives. For each
differently sized log file, the same initial tuning was performed during this
experiment and that derived threshold value was then used throughout subsequent
experiments.

While more potential true-positives (32) were correctly flagged in the 75,000-line
log file, the performance dropped to 5.73% as the actual number flagged as falling
below the threshold in this experiment is 558. There was a slight performance
improvement as the percentage of potentially false-positive log lines falling below
the threshold fell to 97.7% versus the 99.13% seen in the 50,000-line log file.
Comparing the calculated probability for the same log lines between the 50,000-
and 75,000-line log files showed a rough decrease by 0.01 in the 75,000-line log
file, which resulted in the significant increase in log lines falling below the
threshold.

Another decrease in identification of potential true-positives (59 out of 1583) to
3.73% was seen with the 135,000-line log file; however, the potential false-positive

Approved for public release; distribution is unlimited.
16

rate essentially remained the same at 97.71%. Interestingly, the identification of
potential true-positives (453 out of 5349) increased to 8.47% and the potential false-
positive rate dropped to 90.82% for the log file containing slightly over 238,000
log lines.

While the expected increase in the number of flagged potential true-positives does
occur as the log file size increased, the performance initially decreased as the
number of log lines increased until improving slightly with the full log file. The
only conclusions that can be extracted from this experiment is the log files can be
reduced to roughly 2% of their original size using this configuration; and as the log
file size increases, the number of flagged potential false-positives decreases, while
a less-than-desirable rate of performance is seen in flagging potential true-positives.

Reviewing the output to see how many lines with the keyword “nessus” were
identified as potential true-positives (refer to Table A-4 in the Appendix), only 5
out of a total of 16 (31.25%) were identified correctly for the 70,000-line log file.
The 11 log lines not marked as potential true-positives all had a probability of 0.33,
which is slightly above the threshold used. For the larger log files, performance was
lower at 31% correctly identified as potential true-positives. The smallest log file
did not contain any Nessus probe traces.

5.1.2 Deconstructed URI

After reviewing the graphs for the previous experiments, the distinct horizontal
banding drew our attention. We realized the banding was most likely caused by the
same web applications with the same subpaths being accessed down to the same
file or subcomponent. Although the original hypothesis was validated in that the
proposed technique appears potentially viable for the intended purpose (log file
reduction and a basic level of identification of true-positives), we hypothesized the
initial results could be improved by deconstructing the single URI feature into three
separate features: 1) the application being accessed, 2) the path/file for a specific
component within that application, and 3) the parameters being passed. The basic
approach taken when deconstructing the URI is the root (first component) of the
URI is typically, but not always, the name or, at some level, the indicator of the
web application being accessed by a remote user. The end of the URI (third section)
contains any parameters being passed to the application, which may or may not
always be present. The remainder of the URI, the center (second) section, is
typically an indicator of a specific feature or functionality of the web application
being accessed.

Approved for public release; distribution is unlimited.
17

For example, deconstructing the example URI (“GET
/myapp/index.php?doaction=get_data&id=2”) provided in Section
3.2.1 would result in the following three new features replacing the single URI
feature:

1) Application: myapp

2) Path/file: index.php

3) Parameters: doaction=get_data&id=2

By separating the URI into the three components, the supposition is the banding
witnessed in the previous experiment will become more well defined as
applications fall into specific probability ranges based upon how often they are
accessed, with the width of the banding being determined by the number of unique
paths/files being accessed for each application and the variance in the parameters.
An additional supposition is the banding will become more refined as the number
of lines increased in the log file being used. Comparing the graphs between the
deconstructed URI experiment and the intact URI does show an increased definition
in the banding (Figs. 6–9). In reviewing the results from splitting the URI and
calculating the occurrences of each unique application, the number of bands
roughly align with the number of applications with the highest occurrence rate
before a drop off in occurrences occurs.

Fig. 6 Apache access log, 50,000 lines, deconstructed URI

Approved for public release; distribution is unlimited.
18

Fig. 7 Apache access log, 75,000 lines, deconstructed URI

Fig. 8 Apache access log, 135,000 lines, deconstructed URI

Approved for public release; distribution is unlimited.
19

Fig. 9 Apache access log, 238,000 lines, deconstructed URI

With the URI deconstructed, the number of log lines falling below the threshold for
each log file size decreased dramatically reducing the number of flagged false-
positives by 43% or more in each experiment when compared to the previous
experiment where the URI was not split. Excluding the results for the 50,000-line
log file, the flagged potential true-positives also showed increased performance in
comparison to the previous experiment. Further investigation would need to be
performed to determine why the potential true-positive results for the 50,000-line
log file dipped slightly instead of improving as it did for the larger log files.

For performance related to the proper identification of Nessus scan probes, the
75,000-line log file doubled performance to 100%. Similar improvement was seen
in the larger log file sizes where both increased from 31.25% to 62.5%.

5.1.3 Deconstructed URI, Single Feature Removed

With results from two experiments looking positive, additional time was spent on
further feature engineering. The next step taken was to examine the impact on the
results if features that were viewed as providing little contributing value were
removed (Figs. 10–13). The previous experiment using the deconstructed URI was
re-executed with a modification to the Naïve Bayes-based machine learning plugin
to display the table of conditional probabilities for each feature value. After
reviewing the probabilities, the decision was made to remove the HTTP protocol

Approved for public release; distribution is unlimited.
20

feature (“HTTP/1.1”) as there was insignificant variation in the calculated
probabilities (98% for “HTTP/1.1” and 2% for “HTTP/1.0”) due to only two
values existing for this feature.

Fig. 10 Apache access log, 50,000 lines, deconstructed URI, one feature removed

Approved for public release; distribution is unlimited.
21

Fig. 11 Apache access log, 75,000 lines, deconstructed URI, one feature removed

Fig. 12 Apache access log, 135,000 lines, deconstructed URI, one feature removed

Approved for public release; distribution is unlimited.
22

Fig. 13 Apache access log, 238,000 lines, deconstructed URI, one feature removed

When the graphs are compared between the original experiment (all features intact),
the second experiment (URI is deconstructed) and this experiment, several changes
can be seen. The range for calculated probabilities for each record has expanded
from being between 0.1 and 0.5 to between 0.1 and 0.7. This shift has further refined
the banding into more discernable, distinct bands and redefines the outliers as can
be seen in the number of outliers increasing below the lowest distinct band formed
between 0.2 and 0.3.

No or little change was seen for flagging potential true-positives with one feature
removed. Flagging of potential false-positives, however, increased significantly in
comparison to the prior experiment where the URI was deconstructed—sometimes
even greater than the results in the first experiment where all unmodified features
were used.

No changes were seen in the performance of proper identification of Nessus scan
probes with one feature removed. All performance results remained exactly the
same as the prior experiment where the URI was split.

Approved for public release; distribution is unlimited.
23

5.1.4 Deconstructed URI, Two Features Removed

For the next experiment, a second feature was removed to determine if there would
be a different result than the previous experiment where only one feature was
removed (Figs. 14–17). In addition to removing the HTTP protocol feature removed
in the previous experiment, the feature containing the HTTP request method
(“GET”, “PUT”, “HEAD”, …) was removed due to lack of sufficient variation in
values and the perceived limited value in using this feature to identify interesting
or potentially malicious behavior.

Fig. 14 Apache access log, 50,000 lines, deconstructed URI, two features removed

Approved for public release; distribution is unlimited.
24

Fig. 15 Apache access log, 75,000 lines, deconstructed URI, two features removed

Fig. 16 Apache access log, 135,000 lines, deconstructed URI, two features removed

Approved for public release; distribution is unlimited.
25

Fig. 17 Apache access log, 238,000 lines, deconstructed URI, two features removed

The results from removing the second feature and deconstructing the URL
improved the flagging of potential true-positives by as much as 19 times versus the
first experiment where all features were included and kept intact. In comparison to
the prior experiment where only one feature was removed, the flagging of potential
true-positives improved by sizeable amounts. However, flagging of potential false-
positives deteriorated when compared to any of the previous experiments. While
the calculated percentage of potential false-positives contained in the output file
remained roughly similar to prior experiments, the overall number of flagged log
lines increased along with the number of potential true-positives, keeping the ratios
roughly the same.

With the second feature removed, another increase in the performance for proper
identification of Nessus scan probes occurred. While the 75,000-line log file
performance remained at 100%, the larger log files both increased from 62.5% to
100%.

Comparing graphs through the various experiments, the lowest distinct band shifted
upward, which raised the question that if the threshold could be raised higher,
would it result in further improvement of the flagging of potential true-positives.
Additional experiments using the 238,000-line log file and raising the threshold

Approved for public release; distribution is unlimited.
26

further (0.32, then 0.33) resulted in a significantly increased flagging of potential
true-positives to 83.45% and 89.77% accuracy, respectively. While the percentage
of flagged potential false-positives decreased very slightly (<1%), there was a
significant increase in the number flagged due to the overall number of log lines
being flagged. While initial experiments saw a reduction of the original file down
to 2% or less of the original file size, these last experiments using higher thresholds
showed a reduction down to approximately 37% of the original file size, which is
still a significant reduction in the amount of data that would need to be fed into
another process, but a significant increase over the original results that also showed
significantly less potential true-positive flagging.

5.2 Linux Messages Log Results

After seeing successful results using the technique with the Apache HTTPD access
log file, the next question to be answered was: Will similar results be seen with a
different type of log file; in other words, how transportable will the technique be?
For the next set of experiments, a Linux messages log file was used as the input
data.

To support this set of experiments, a new transformation plugin was written to
process the input file and extract the following features:

1) Severity: A numeric value indicating the severity level19 of the log entry.

2) Source: Hostname of the system logging the message.

3) Program: Name of the process/service logging the message.

4) Message: The text of the message logged.

Note: Due to the number of “audit warning: expired” and “audit
warning: closefile” messages, these were consolidated to “audit
warning” during transformation. All other log messages were kept intact.

Other features provided in the file (timestamp, PID, and site) were removed from
the feature set during transformation. The values were either of little value
(timestamp, PID) or contained a single value that would not contribute to
determining if a log line contained something interesting or an indicator of
malicious behavior. This decision also factored in the results of removing several
features during the experiments executed with the Apache HTTPD access log files
that showed an increase in potential true-positive performance when a second
feature that had little variation was removed from the feature set.

Approved for public release; distribution is unlimited.
27

Note: The data for the Linux messages log file used for this report were provided
in JavaScript Object Notation (JSON) format from another system storing the
collected log data in that format. Under normal circumstances, this log file is plain
text. Although in JSON format, the actual contents (values) of the features were
exactly the same as they would have been if the original plain text log file had been
available. The only impact on the experiment was the coding of the transformation
plugin to handle JSON formatted file instead of a text-based log file.

Two different log files were provided, which were referred to as messages Log A
and messages Log B. Log A provided a maximum 238,000 lines and Log B
provided a maximum of 22,155,000 log lines. Similar to the experiments executed
with the Apache HTTPD access log file, each file was experimented with using
increasing numbers of log lines until the full log file was used (Figs. 18–21).

Fig. 18 Linux messages Log A, 50,000 lines

Approved for public release; distribution is unlimited.
28

Fig. 19 Linux messages Log A, 75,000 lines

Fig. 20 Linux messages Log A, 238,000 lines

Approved for public release; distribution is unlimited.
29

Fig. 21 Linux messages Log B, 22 million lines

Similar to the Apache HTTPD access log file, distinct banding is visible. For the
Linux messages log file, the banding occurs at a much lower value necessitating
the use of a much smaller threshold value of 0.01. With this threshold setting the
resulting files were 1.62% or less than the size of the original file. If the threshold
value was set higher, the resulting output file would see a considerable increase in
size indicating the threshold had gone above the point where potentially interesting
or malicious activity was logged and into where routine or highly repetitive log
entries start occurring.

Due to the highly repetitive nature of the Linux messages log files, it is not
possible to generate a reasonable methodology to roughly identify potentially
interesting or malicious activity. Therefore, we were unable to generate rough
statistics for this set of log files in regard to performance in flagging potential true-
positive and potential false-positive log lines. A quick, manual review of the results
falling below the threshold was performed, and while nothing overtly indicating
potentially malicious activity was found, there were log lines that appeared
potentially interesting.

While successful in significantly reducing the size of the original log files to a much
more manageable size, it was not possible to conclusively determine how
successful the technique was for including malicious or interesting behavior in the

Approved for public release; distribution is unlimited.
30

reduced data set. Further experimentation would be required and additional feature
engineering, similar to that performed on the URI feature for HTTPD log files, may
be necessary.

6. Conclusions

The primary goal when undertaking this research was to determine if the
application of a machine learning technique could be used for effective processing
and reduction of voluminous text-based log files generated naturally by operating
systems or the processes and services running on them. When using a PCA
algorithm to recreate results from a research paper using log files from our systems,
it was discovered this technique, in addition to being resource heavy (see Table
A-2 in the Appendix, where time to execute each step is summarized), made it more
challenging to review outliers as the number of plotted points increased. We then
pivoted to using a Naïve Bayes-based algorithm as the starting point for
experimentation. Based upon the results of this approach in our research, the answer
is yes, the approach is viable. While there are ample avenues yet to be explored (see
Section 7) that may increase performance and reduce resource utilization further,
the results showed significant log file size reductions (summarized in Table A-1 of
the Appendix) can be obtained with a reasonable level of assurance that enough
true-positives (summarized in Table A-3 of the Appendix) are included during the
reduction to justify further research efforts. Based on the few known log entries that
would be considered malicious, significant improvement in categorization was seen
with minor feature engineering improvements.

7. Future work

There are several areas for future work that may be undertaken beyond the research
performed for this report. The first area is further refinement and experimentation
with feature engineering. While some exploration was performed, such as filtering
features included in the log files that provide little value (timestamp for each logged
line, destination IP address, etc.), more research can be performed in further
intelligently deconstructing some features into smaller subcomponents based on log
line context. By further refinement of the decomposition of the URI, it may be
possible to detect interesting or potentially malicious accesses based on specific
paths/subcomponents within a web application. This may be possible by altering
the original technique of calculating probabilities that treat the log file as a single
class, but instead, automating class identification during training based on the
perceived web application extracted from the URI. This would narrow the
probability being calculated for a given log line to “does the request to this

Approved for public release; distribution is unlimited.
31

application appear within normal ranges compared to other requests” instead of the
generalized “does this request look normal for this log file.”

Additional improvements for some log types, such as Linux system/messages log
files, may be possible through grouping related log lines into single events as
detailed in a research paper by Xu et al.3 This would require researching
methodologies for better deconstructing features into subcomponents, coupled with
research on how to intelligently link log lines together to form events.

Leveraging virtual reality displays to allow dynamic interaction (zooming in/out,
altering viewing angle, etc.) with graphed results needs to be explored. For this
paper, the Naïve Bayes-based technique facilitated easy viewing and interpretation
due to the 2-D nature of the results. For other algorithms such as PCA, which has
been successfully used in similar research,3 the ability to zoom in and view outliers
will greatly aid in determining “is that a single plotted point in the outlier or are
there hundreds that are tightly grouped and look like a single point?” Additionally,
if metadata can be tied to a plotted point, by zooming in through virtual reality the
researcher or user can more quickly determine the nature of the log line (benign,
interesting, malicious, etc.). The methodology presented in this report used a
threshold value that, while effective, may likely require constant tuning and review.
By using the graph as the display, a researcher or user can quickly determine
visually, without hesitation, where the line between routine noise and interesting
resides. Initial research for alternative graphical representation of IDS data has been
undertaken,20 and has continued to evolve from basic research to exploring the
capabilities virtual reality headsets such as the Oculus Rift21 provide. Those
techniques may be highly applicable for this use case when using graphed data.

Lastly, the results from the technique presented in this report may be used as a
filtering mechanism to greatly reduce the initial volume of log lines down to a more
manageable set that is then fed into other machine learning algorithms or processes.
For heavily used systems, the volume of logged data is daunting and having an
automated mechanism to quickly and efficiently cull through the data and perform
automated data reduction is highly desirable. Logged data for today’s systems are
well beyond the capability, both time- and cost-wise, to have humans reading and
interpreting the data. Subsequent research along this line of thought would entail
the application of additional machine learning algorithms or other techniques to
identify log lines containing indicators of malicious intent.

Approved for public release; distribution is unlimited.
32

8. References

1. Ponemon Institute LLC. Global encryption trends study. Traverse City (MI):
Ponemon Institute LLC; 2017 Apr.

2. Goh VT, Zimmermann J, Looi M. Towards intrusion detection for encrypted
networks. ARES ‘09. 4th International Conference on Availability, Reliability
and Security; 2009 Mar 16–19; Fukuoka, Japan. Washington (DC): IEEE
Computer Society; c2009. p. 540–545.

3. Xu W, Huang L, Fox A, Patterson D, Jordan M. Detecting large-scale system
problems by mining console logs. SOSP ‘09. Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles; 2009 Oct 11–14;
Big Sky, MT. New York (NY): Association for Computing Machinery
(ACM); c2009. p. 117–132.

4. Li W. Automatic log analysis using machine learning: awesome automatic log
analysis version 2.0. Uppsala, Sweden: Uppsala University, Department of
Information Technology; 2013 Nov.

5. Aharon M, Barash G, Cohen I, Mordechai E. One graph is worth a thousand
logs: uncovering hidden structures in massive system event logs. In: Buntine
W, Grobelnik M, Mladenić D, Shawe-Taylor J, editors. ECML PKDD 2009.
Proceedings of the Joint European Conference on Machine Learning and
Knowledge Discovery in Databases: Part I; 2009 Sep 7–11; Bled, Slovenia.
Lecture notes in computer science. Berlin Heidelberg (Germany): Springer-
Verlag; c2009; vol 5781. p. 227–243.

6. Sipola T, Juvonen A, Lehtonen J. Anomaly detection from network logs using
diffusion maps. In: Iliadis L, Jayne C, editors. EANN/AIAI 2011. Proceedings
Part 1: Engineering Applications of Neural Networks–IFIP International
Conference on Artificial Intelligence Applications and Innovations; 2011 Sep
15–18; Corfu, Greece. IFIP Advances in information and communication
technology. Boston (MA): Springer; c2011; vol 363. p. 172–181.

7. He S, Zhu J, He P, Lyu MR. Experience report: system log analysis for
anomaly detection. Proceedings of the 2016 IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE); 2016 Oct 23–27;
Ottawa, Ontario, Canada. Los Alamitos (CA): IEEE Computer Society; c2016.
p. 207–218.

8. Khan SS, Madden MG. One-class classification: taxonomy of study and
review of techniques. Knowl Eng Rev. 2014;29(3):345–374.

Approved for public release; distribution is unlimited.
33

9. Balakrishnan N, Childs A. Outlier. In: Encyclopedia of mathematics [accessed
2018 May 22]. http://www.encyclopediaofmath.org
/index.php?title=Outlier&oldid=17990.

10. NumPy developers. NumPy [accessed 2017 Dec 11]. http://www.numpy.org.

11. scikit-learn developers. scikit-learn: machine learning in Python [accessed
2017 Dec 11]. http://scikit-learn.org.

12. Matplotlib development team. Matplotlib: Python plotting–matplotlib 3.0.2
documentation [accessed 2017 Dec 11]. https://matplotlib.org.

13. Ritchey RP, Parker TW. Simple plugin methodology in Python. Aberdeen
Proving Ground (MD): Army Research Laboratory (US); 2014 Aug. Report
No.: ARL-CR-0743.

14. Apache Software Foundation. Apache HTTP server project [accessed 2017
Dec 11]. http://httpd.apache.org.

15. WorldWideWeb (W3) Project. Universal resource identifiers in WWW
[accessed 2018 Jan 22]. https://www.w3.org/Addressing/URL/uri-spec.html.

16. US Department of Defense. RFC 1413 identification protocol. 1993 Feb
[accessed 2018 Jan 22]. https://www.ietf.org/rfc/rfc1413.txt.

17. Apache Software Foundation. Log files—Apache HTTP server version 2.4
[accessed 2017 Dec 17]. https://httpd.apache.org/docs/2.4/logs.html.

18. Ghorbani AA, Lu W, Tavallaee M. Network intrusion detection and
prevention: concepts and techniques. New York (NY): Springer; 2010.
p. 77–78.

19. Wikipedia. Syslog [accessed 2017 Dec 15].
https://en.wikipedia.org/wiki/Syslog#Severity_level.

20. Zage DM, Zage WM. Intrusion detection system visualization of network
alerts. Muncie (IN): Ball State University; 2010 July.
doi.org/10.21236/ada532723.

21. Oculus VR, LLC. Oculus [accessed 2017 Dec 13]. https://www.oculus.com.

Approved for public release; distribution is unlimited.
34

Appendix. Log File Reduction Experiment Performance Tables

Approved for public release; distribution is unlim
ited.

35

Table A-1 Log file reduction

Log file
Machine
learning

plugin used
Variation Threshold

Total
number
of log
lines

Flagged
log lines

Reduced
to

access_log_arl50k pr_naivebayes All features, unmodified 0.28 50000 921 1.84%
access_log_arl50k pr_naivebayes URI split 0.28 50000 449 0.90%
access_log_arl50k pr_naivebayes URI split, one feature removed 0.28 50000 919 1.84%
access_log_arl50k pr_naivebayes URI split, two features removed 0.28 50000 9916 19.83%
access_log_arl75k pr_naivebayes All features, unmodified 0.289 75000 1392 1.86%
access_log_arl75k pr_naivebayes URI split 0.289 75000 791 1.05%
access_log_arl75k pr_naivebayes URI split, one feature removed 0.289 75000 1573 2.10%
access_log_arl75k pr_naivebayes URI split, two features removed 0.289 75000 16002 21.34%
access_log_arl135k pr_naivebayes All features, unmodified 0.291 135000 2581 1.91%
access_log_arl135k pr_naivebayes URI split 0.291 135000 1580 1.17%
access_log_arl135k pr_naivebayes URI split, one feature removed 0.291 135000 2964 2.20%
access_log_arl135k pr_naivebayes URI split, two features removed 0.291 135000 30122 22.31%
access_log_arl238k pr_naivebayes All features, unmodified 0.29 238468 4933 2.07%
access_log_arl238k pr_naivebayes URI split 0.29 238468 3182 1.33%
access_log_arl238k pr_naivebayes URI split, one feature removed 0.29 238468 4723 1.98%
access_log_arl238k pr_naivebayes URI split, two features removed 0.29 238468 56901 23.86%
access_log_arl238k pr_naivebayes URI split, two features removed, higher threshold 0.32 238468 87930 36.87%
access_log_arl238k pr_naivebayes URI split, two features removed, higher threshold 0.33 238468 88292 37.02%

linux_json_messages_log_a50k pr_naivebayes All features, unmodified 0.01 50000 380 0.76%
linux_json_messages_log_a75k pr_naivebayes All features, unmodified 0.01 75000 306 0.41%

linux_json_messages_log_a238k pr_naivebayes All features, unmodified 0.02 238000 1860 0.78%
linux_json_messages_log_b235k pr_naivebayes All features, unmodified 0.01 235000 3767 1.60%
linux_json_messages_log_b238k pr_naivebayes All features, unmodified 0.01 238000 3846 1.62%
linux_json_messages_log_b22m pr_naivebayes All features, unmodified 0.01 22155000 252215 1.14%

access_log_arl50k scikit_pca3d All features, unmodified N/A 50000 Unknown Unknown
access_log_arl75k scikit_pca3d All features, unmodified N/A 75000 Unknown Unknown
access_log_arl135k scikit_pca3d All features, unmodified N/A 135000 Unknown Unknown
access_log_arl238k scikit_pca3d All features, unmodified N/A 238468 Unknown Unknown

Approved for public release; distribution is unlim
ited.

36

Table A-2 Experiment execution times

Log file Machine learning
(ML) plugin used Variation Transform

time ML time Graph
time

access_log_arl50k pr_naivebayes All features, unmodified 0.582324 1.179033 0.594666
access_log_arl50k pr_naivebayes URI split 0.884504 1.33897 0.593581
access_log_arl50k pr_naivebayes URI split, one feature removed 0.889563 1.324833 0.589569
access_log_arl50k pr_naivebayes URI split, two features removed 0.843764 2.424957 0.618201
access_log_arl75k pr_naivebayes All features, unmodified 0.909166 1.83868 0.701342
access_log_arl75k pr_naivebayes URI split 1.338222 1.942471 0.703313
access_log_arl75k pr_naivebayes URI split, one feature removed 1.28529 2.064837 0.72904
access_log_arl75k pr_naivebayes URI split, two features removed 1.321554 3.786124 0.727776
access_log_arl135k pr_naivebayes All features, unmodified 1.656418 3.27457 0.905734
access_log_arl135k pr_naivebayes URI split 2.491095 3.522524 0.915193
access_log_arl135k pr_naivebayes URI split, one feature removed 2.480453 3.739586 0.94742
access_log_arl135k pr_naivebayes URI split, two features removed 2.373569 7.042017 0.928869
access_log_arl238k pr_naivebayes All features, unmodified 2.861895 6.073885 1.258091
access_log_arl238k pr_naivebayes URI split 4.437634 6.42249 1.257771
access_log_arl238k pr_naivebayes URI split, one feature removed 4.330635 6.572117 1.25948
access_log_arl238k pr_naivebayes URI split, two features removed 4.292044 12.842495 1.265883
access_log_arl238k pr_naivebayes URI split, two features removed, higher threshold 5.259213 36.044498 1.300434
access_log_arl238k pr_naivebayes URI split, two features removed, higher threshold 4.642547 35.524674 1.271213

linux_json_messages_log_a50k pr_naivebayes All features, unmodified 0.980014 0.996318 0.614873
linux_json_messages_log_a75k pr_naivebayes All features, unmodified 1.515785 1.504827 0.775141

linux_json_messages_log_a238k pr_naivebayes All features, unmodified 4.89925 4.84755 1.280357
linux_json_messages_log_b235k pr_naivebayes All features, unmodified 4.956596 5.112881 1.283089
linux_json_messages_log_b238k pr_naivebayes All features, unmodified 4.846727 5.194599 1.282377
linux_json_messages_log_b22m pr_naivebayes All features, unmodified 473.470269 477.361412 83.691511

access_log_arl50k scikit_pca3d All features, unmodified 23.928283 867.472425 6.264164
access_log_arl75k scikit_pca3d All features, unmodified 44.544439 2962.699099 9.48431
access_log_arl135k scikit_pca3d All features, unmodified 250.092163 102978.4837 17.947807

access_log_arl238k scikit_pca3d All features, unmodified out of
memory

out of
memory

out of
memory

Approved for public release; distribution is unlim
ited.

37

Table A-3 Potential true/false-positive performance

Log file
Machine
learning

plugin used
Variation Flagged

log lines

Actual
potential

true-
positives

Potential
flagged

true-
positives

%
Potential

true-
positives
flagged

Flagged
potential

false-
positives

%
Potential

false-
positives

access_log_arl50k pr_naivebayes All features, unmodified 921 60 8 13.33% 13.33% 99.13%
access_log_arl50k pr_naivebayes URI split 449 60 6 10.00% 10.00% 98.66%
access_log_arl50k pr_naivebayes URI split, one feature removed 919 60 6 10.00% 10.00% 99.35%
access_log_arl50k pr_naivebayes URI split, two features removed 9916 60 19 31.67% 31.67% 99.81%
access_log_arl75k pr_naivebayes All features, unmodified 1392 558 32 5.73% 5.73% 97.70%
access_log_arl75k pr_naivebayes URI split 791 558 76 13.62% 13.62% 90.39%
access_log_arl75k pr_naivebayes URI split, one feature removed 1573 558 76 13.62% 13.62% 95.17%
access_log_arl75k pr_naivebayes URI split, two features removed 16002 558 362 64.87% 64.87% 97.74%
access_log_arl135k pr_naivebayes All features, unmodified 2581 1583 59 3.73% 3.73% 97.71%
access_log_arl135k pr_naivebayes URI split 1580 1583 185 11.69% 11.69% 88.29%
access_log_arl135k pr_naivebayes URI split, one feature removed 2964 1583 187 11.81% 11.81% 93.69%
access_log_arl135k pr_naivebayes URI split, two features removed 30122 1583 888 56.10% 56.10% 97.05%
access_log_arl238k pr_naivebayes All features, unmodified 4933 5349 453 8.47% 8.47% 90.82%
access_log_arl238k pr_naivebayes URI split 3182 5349 600 11.22% 11.22% 81.14%
access_log_arl238k pr_naivebayes URI split, one feature removed 4723 5349 686 12.82% 12.82% 85.48%
access_log_arl238k pr_naivebayes URI split, two features removed 56901 5349 2778 51.93% 51.93% 95.12%

access_log_arl238k pr_naivebayes URI split, two features removed,
higher threshold 87930 5349 4464 83.45% 83.45% 99.13%

access_log_arl238k pr_naivebayes URI split, two features removed,
higher threshold 88292 5349 4802 89.77% 89.77% 99.13%

Approved for public release; distribution is unlim
ited.

38

Table A-4 Identification of Nessus scan

Log File
Machine
learning

 plugin used
Variation

Total
Nessus
lines

Identified
as true-
positives

Identified
as false-
positives

Accuracy
(true-

positives)
access_log_arl50k pr_naivebayes All features, unmodified 0 N/A N/A N/A
access_log_arl50k pr_naivebayes URI split 0 N/A N/A N/A
access_log_arl50k pr_naivebayes URI split, one feature removed 0 N/A N/A N/A
access_log_arl50k pr_naivebayes URI split, two features removed 0 N/A N/A N/A
access_log_arl75k pr_naivebayes All features, unmodified 6 3 3 50.00%
access_log_arl75k pr_naivebayes URI split 6 6 0 100.00%
access_log_arl75k pr_naivebayes URI split, one feature removed 6 6 0 100.00%
access_log_arl75k pr_naivebayes URI split, two features removed 6 6 0 100.00%
access_log_arl135k pr_naivebayes All features, unmodified 16 5 11 31.25%
access_log_arl135k pr_naivebayes URI split 16 10 6 62.50%
access_log_arl135k pr_naivebayes URI split, one feature removed 16 10 6 62.50%
access_log_arl135k pr_naivebayes URI split, two features removed 16 16 0 100.00%
access_log_arl238k pr_naivebayes All features, unmodified 32 10 22 31.25%
access_log_arl238k pr_naivebayes URI split 32 20 12 62.50%
access_log_arl238k pr_naivebayes URI split, one feature removed 32 20 12 62.50%
access_log_arl238k pr_naivebayes URI split, two features removed 32 32 0 100.00%
access_log_arl238k pr_naivebayes URI split, two features removed, higher threshold 32 32 0 100.00%
access_log_arl238k pr_naivebayes URI split, two features removed, higher threshold 32 32 0 100.00%

Approved for public release; distribution is unlimited.
39

List of Symbols, Abbreviations, and Acronyms

2-D two-dimensional

3-D three-dimensional

AALA Awesome Automatic Log Analysis

API application programming interface

BG/L Blue Gene/L

CPU central processing unit

HTTP Hypertext Transfer Protocol

HTTPD Apache HTTP server daemon

IDS intrusion detection systems

IP Internet Protocol

JSON JavaScript Object Notation

OCC one-class classification

OS operating system

PARIS Principal Atoms Recognition In Sets

PCA principal component analysis

PID process identification

URI uniform resource identifier

URL uniform resource locator

Approved for public release; distribution is unlimited.
40

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIR ARL
 (PDF) IMAL HRA
 RECORDS MGMT
 RDRL DCL
 TECH LIB

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 3 ARL
 (PDF) RDRL CIN S
 R P RITCHEY
 G SHEARER
 K RENARD

	List of Figures
	List of Tables
	1. Introduction
	2. Literature Review
	3. Approach
	3.1 Logalyzer
	3.2 Data Sampling
	3.2.1 Apache HTTPD Access Log File
	3.2.2 Linux Messages Log File

	4. Naïve Bayes-based Algorithm
	5. Results
	5.1 Apache HTTPD Access Log Experiments
	5.1.1 Intact URI
	5.1.2 Deconstructed URI
	5.1.3 Deconstructed URI, Single Feature Removed
	5.1.4 Deconstructed URI, Two Features Removed

	5.2 Linux Messages Log Results

	6. Conclusions
	7. Future work
	8. References
	Appendix. Log File Reduction Experiment Performance Tables
	List of Symbols, Abbreviations, and Acronyms

