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1. Introduction 

With the deepening interest in protecting information, the usage of encryption for 
network connections has greatly increased1, at the expense of cybersecurity. While 
encryption enables information security, the effect is a reduced capability for 
intrusion detection systems (IDS) to perform deep network packet inspection for 
detection of potentially malicious behavior contained in the packet payload.2 This 
impact of encryption on cybersecurity operations is now triggering a search for 
additional data sources and detection methodologies to use for cybersecurity 
purposes.  

While the ability to monitor network-based communications between devices is 
reduced, a potential source of additional data are the logs automatically generated 
on the devices themselves while they perform their activities. This includes portable 
devices that have evolved to the point of using operating systems offering the same, 
or very similar, capabilities as traditional, nonportable devices including logging. 
Various techniques, such as kernel modules and execution of additional processes, 
have been and are still used for on-device malicious behavior detection. However, 
great care must be taken to not negatively impact normal operations and the stability 
of portable devices by depleting their limited resources. Those issues must be 
carefully factored into any methodology developed to process and reduce log files. 

The information logged by the operating systems (OSs) and processes on devices, 
whether it is a Linux OS system/messages log file, an Apache HTTP server daemon 
(HTTPD), or a Windows OS log file, contain information such as timestamps, the 
specific activity performed, users or IP addresses involved, and, in some situations, 
detailed error information or other important state information. While the format of 
a particular log type may be reasonably and consistently formatted for automated 
processing, the volume within and between log types can become untenable for 
analysis—especially when hundreds or even thousands of systems need to be 
monitored simultaneously. The combination of computational and man power 
required to thoroughly process and analyze the log files can exhaust available 
resources, potentially allowing malicious activity to be missed. 

Based upon the success of other researchers applying principal component analysis 
(PCA)3 and other machine learning algorithms to log files, our objective was to 
develop an automated, lightweight technique using machine learning to perform 
log file reduction with minimal human supervision resulting in smaller log files that 
still contain potential indicators of cybersecurity events. 
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2. Literature Review 

A literature review was performed, examining published research regarding the 
application of machine learning to system log files. The following is an overview 
of relevant publications: 

• Li’s paper4 specifically discusses the use of machine learning for processing 
log files specific to an Ericsson piece of hardware. Recognizing the 
unbalanced data, the author mentions clustering and statistical-based 
algorithms as appropriate options to aid in identifying anomalies. The 
application of the research builds upon a previous version of Awesome 
Automatic Log Analysis (AALA) version 1.0 by incorporating additional 
algorithms and thereby becoming AALA version 2.0. Specifics regarding 
log file contents were not included, making it difficult to do a thorough 
comparison with nonEricsson hardware log files to determine direct 
applicability. 

• A paper by Aharon et al.5 is closely related to our work as the paper 
describes using “system event logs” as the data source. The authors 
implemented a more sophisticated algorithm called the Principal Atoms 
Recognition In Sets (PARIS) capable of grouping log lines into “events”. 
System requirements, resource utilization information, and execution times 
were not provided. 

• Xu et al.3 discuss the detection of issues using log files in large-scale 
environments. The authors leveraged a PCA for processing the log files, as 
well as a static analysis technique to extract log line templates from source 
code to facilitate improved breaking of individual log lines into more-
meaningful features. Accuracy performance information is provided; 
however, system requirements, resource utilization, and execution times 
were not. 

• Siploa et al.6 approach anomaly detection in network log data using 
diffusion maps. The log-file data used came from an Apache web server. 
The results from using a diffusion map were compared to results obtained 
using PCA and support vector machines. System requirements, resource 
utilization information, and execution times were not provided. 

• He et al.7 provide results on log anomaly detection based on using six 
different machine learning algorithms and different techniques for 
separating log file contents into groups. Two data sets were used: one from 
a Hadoop Distributed File System logs, and system logs collected from the 
Blue Gene/L supercomputer. The paper provides hardware configuration 
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information and details on execution times; however, data regarding 
resource utilization were not provided. Effectiveness of the various 
algorithms in identifying anomalies was provided, as well as the impact of 
grouping techniques on the effectiveness of the algorithms used. 

• A known challenge entering into this research project is the skewed data 
set—a tiny number of true-positives (outliers we want to keep) in 
comparison to the number of false-positives (normal log entries). The 
skewed data set relates to one-class classification (OCC) and provided 
another avenue to find relevant research. Khan8 provides an overview of 
published OCC research papers and the approaches taken by various 
researchers. 

While prior research was found, only one paper included information regarding 
system configuration and some (but not all) data points regarding resource 
utilization. In addition to determining which machine learning algorithm is suitable 
for our purpose, we must also know how the algorithms utilize available computing 
resources. For our intended use case, the algorithm must be accurate while using 
minimal computing resources to be deemed a suitable solution. 

3. Approach 

The research for this observational study is contingent upon two assumptions: 

• Malicious or suspicious activity is much less common than normal requests 
and thereby results in far fewer log entries. 

• Nonmalicious but still interesting activity is also much less common than 
normal requests and therefore also results in far fewer log entries.  

The approach taken, based upon the assumptions previously listed, was to leverage 
an unsupervised machine learning algorithm to automatically identify outliers in a 
log file, where outlier is defined as “any observation in a set of data that is 
inconsistent with the remainder of the observations in that data set”.9 Identifying 
and reducing a log file to contain only the outliers would result in a greatly reduced 
dataset retaining the two types of activities identified in the assumptions. The 
reduced log file may then be fed to other processes or algorithms for further 
processing if desired. 

This approach was broken into two overarching steps: selecting log files to be used 
for the experiments and refining the unsupervised machine learning configuration 
to improve performance after an initial experiment to use as a performance baseline. 
For primary experimentation, Apache HTTPD log files from a production Linux 



 

Approved for public release; distribution is unlimited.  
4 

server were selected. This decision was based upon having sufficiently sized logs 
available to provide meaningful results and our direct experience and knowledge 
of using Apache on Linux. Other experts were also readily available if we required 
further insight or interpretation of log data. As a secondary log file type, Linux 
system/message log files were selected. The system/message log data, centrally 
collected from a wide set of production servers, would be used to roughly gauge 
the transportability of our methodology developed from experimenting with 
Apache logs to a different log file type. Both log file types provided a 
computationally appropriate amount of data with sufficient variability within 
features. 

The initial unsupervised machine learning algorithm selected was a PCA algorithm 
based upon the successful use as outlined in a research paper authored by Xu et al.3 
An initial test using an Apache HTTPD server access log file with 75,000 lines was 
performed using PCA to reduce the dimensionality of the complete feature set down 
to three dimensions for generating a human interpretable graph (Fig. 1). Viewing 
the PCA-based graph raised numerous questions: While humans can easily see 
outliers, due to the scale of the graph are they one, a few, or hundreds of points 
looking like a single outlier? If it is one or even a few overlapping plotted points, 
which log line(s) do they correspond to? 
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Fig. 1 Static 3-D graph of PCA results from analyzing HTTPD access log 

The ability to tie results to specific log lines is critical to determining the 
performance of log file reduction while still retaining the desired outliers (potential 
indicators of malicious intent or interesting activity). Compounding these 
challenges further, executing the PCA against the data exhibited a significant 
utilization of both CPU and memory, to the point some log files could not be used 
due to complete exhaustion of available physical memory. This level of resource 
utilization immediately eliminated PCA as a possible algorithm as completely 
exhausting an available resource (physical memory) did not meet our goal of 
limited or reasonable resource utilization. Execution time was also found to be 
significantly longer (Table A-2 in the Appendix) for PCA than the subsequently 
used algorithm. Longer execution times would impact battery life on portable 
devices, further eliminating PCA as a possible algorithm meeting our basic 
requirements. 
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Based upon prior internal research applying Naïve Bayes, a decision was made to 
use Naïve Bayes instead of PCA for experimentation. In addition to lowered 
resource utilization and significantly shorter execution times, this adjustment 
provided the capability to directly tie results back to the originating log lines. 
Extracting outliers from the results was accomplished using a simple threshold 
technique as their location was restricted to the lower region of the graph, whereas 
for PCA, outliers could appear anywhere making their identification and extraction 
more challenging. 

3.1 Logalyzer 

At the outset of this research, a simple Python script leveraging the NumPy10 
scientific computing library, scikit-learn11 machine learning library, and the 
matplotlib12 graphing library was created. As research continued and refinements 
to our coding approach were made based on results, it became clear a more flexible 
coding approach than the initial simple script provided was needed to facilitate 
easier re-execution of experiments and tracking of adjustments to the code. The 
core source code from the original script was retooled into a framework, leveraging 
a simple plugin13 based approach. The framework was subsequently named 
logalyzer due to the research focusing on analyzing log files. 

The logalyzer framework consists of one main script separating the execution 
workflow for log analysis into three discrete steps: transformation, machine 
learning, and graphing the results. Additional steps can be easily incorporated; 
however, for the purposes of our research these three steps were sufficient. Having 
broken the workflow into those three steps using plug-ins, we were able to quickly 
add a new machine learning plugin, for instance, while leveraging other existing 
plugins for other steps during our research, facilitating quick support of “what if” 
scenarios: 

1) Transformation: Transformation plugins read a particular type of log file 
and convert it into a format suitable for use in a machine learning algorithm. 
These plugins contain the logic for separating each individual log line into 
features. Variations of the same plugin can be used to test different features 
of engineering techniques without impacting the rest of the workflow. 

2) Machine learning: These plugins receive the output from a transformation 
plugin as input and execute a machine learning algorithm against that data. 
While there is no requirement to do so, information or result messages can 
be printed while the plugin is executing so that the user can redirect to a file 
for capture and later review. 
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3) Graphing: The graphing plugin receives the output from the machine 
learning algorithm and plots the results in a graph or chart, which is then 
saved as a file. The current (and only) graphing plugin automatically detects 
whether the results should be plotted in two or three dimensions. 

The current implementation of logalyzer maintains all processing and data passed 
between plugins cached in memory. While several gigabytes of memory were used 
in some of our experiments, steps were taken to optimize memory utilization. For 
instance, if one-hot encoding is not required by a machine learning plugin, the 
internal API will notify the transformation plugin, which will then not perform that 
action during transformation thus reducing memory utilization by gigabytes. 

Logalyzer’s framework includes command line parameter flexibility. While an 
extensive listing of available options for both the main script and each available 
plugin can be displayed with the “-h” command line option, not all options must 
be used all the time. Each individual plugin can provide required or optional 
parameters specific to that plugin. The “-p” option provided by the main script 
allows the passing of options to the plugins being used in “<name>=<value>” 
pairs. Required parameters are indicated in the available help output and checks are 
performed at the start of runtime execution to ensure everything that is required for 
execution of an experiment was properly provided before processing actually 
begins. 

3.2 Data Sampling 

Two types of log files were used for experimental purposes while performing this 
research: Apache HTTPD access log files and Linux messages log files. The 
Apache HTTPD access log file was collected from a production, public-facing 
Linux server and spans three contiguous days. The Linux messages log files span 
approximately 17 days and is an aggregate messages log collection from over 
1000 different Linux systems. 

Apache HTTPD access log files were selected as the primary log files for 
experimentation as attacks are common on publicly accessible web servers and the 
applications they provide access to. The format of the log file is easily broken into 
features and the logged feature values will vary due to public accessibility. The 
consistency in formatting and varied values provided an ideal data source for 
experiments.  

The Linux messages log was selected as a secondary source of data for use after 
the primary experiments were completed with the Apache HTTPD access log file. 
While formatting of the messages file is still relatively consistent and easily 
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broken into features, the feature values were not necessarily as varied. The 
messages log file allowed us to perform an experiment to see how easily 
transportable the methodology used for Apache HTTPD log files may be to a 
significantly different log file type. 

The following sections provide details regarding each of these log files, as well as 
the approach taken to break each log line into features. 

3.2.1 Apache HTTPD Access Log File 

The Apache HTTP server14 is a commonly used web server for Linux-based 
systems. It is available in the repositories of most Linux distributions, making it 
readily available to a wide audience. For these reasons, Apache HTTPD access log 
files were obtained from several servers: one used internally and one accessible by 
a much wider range of external users. While the logs from the internal server were 
initially used during logalyzer creation, the results included in this report are for the 
externally facing web server, which reflects a more realistic, real-world use case. 

The following are two (sanitized) sample lines from an Apache HTTPD access log 
file: 
192.168.1.12 - - [01/Jul/2017:04:16:41 -0400] "POST 
/myapp/core/perform_action.php?menuaction=check_status HTTP/1.1" 200 170042 
192.168.1.12 - - [01/Jul/2017:04:17:00 -0400] "GET 
/myapp/index.php?doaction=get_data&id=2 HTTP/1.1” 200 177274 

These are typical log lines containing the originating IP address making the request 
to the web server, timestamp when the connection from the requestor to the server 
was established, the HTTP request method coupled with the uniform resource 
identifier (URI)15 being requested, followed by the HTTP server response code and 
the number of bytes sent from the HTTP server back to the requestor as a result of 
the request. The two hyphens between the originating IP address and timestamp 
fields represent missing information—specifically the RFC 141316 identd of the 
originating IP and the userid of the person on the originating IP address making 
the request. Neither of these fields are typically populated or reliable, so for 
purposes of this research they were ignored and not used as features. Additional 
information regarding available fields that can be included in an Apache HTTPD 
log, and how the log files can be configured, can be found at the Apache HTTP 
server project website.17 

3.2.2 Linux Messages Log File 

Linux-based servers predominantly log important information from running 
processes and services to a variety of log files contained in /var/log. While 
many of these may be suitable candidates for the research being performed, the 
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messages log file was chosen due to being a core log file capturing a wider range 
of important log entries for a system as a whole. Other log files are typically specific 
to one process or service, and due to the more centralized role it plays in the overall 
health and security of a server, the messages log file provided a more varied and 
meaningful source of data for experimentation. 

The following are two (sanitized) sample Linux messages log file entries: 
Sep 10 20:59:10 server1 puppet-agent[13006]: Finished catalog run in 3.02 
seconds 
Sep 10 19:52:55 server1 sshd[4025]: Connection closed by 192.168.1.14 
port 41814 [preauth] 

Similar to the Apache HTTPD log file, the messages log file consists of several 
well-defined sections: a timestamp indicating when the log entry was added to the 
file, the name of the server the log entry is from (useful when using centralized 
logging for numerous servers), the name of the process logging the message 
coupled with the process identification (PID) number of that process, and ending 
with a highly variable message section. The content of the message field varies 
significantly between different process types, but typically follows a well-defined 
format unique to the process type generating the log line. 

4. Naïve Bayes-based Algorithm 

Bayes’ theorem18 (Eq. 1) forms the mathematical basis the Naïve Bayes classifier 
algorithm is built upon. The theorem calculates the conditional probability P(A|B) 
that an event A occurs given that event B is true. For Naïve Bayes classifiers, A 
represents a classification such as a dog, cat, horse, and so on. B represents the set 
of features (weight, fur color, height, etc.) used to calculate their respective 
probabilities of occurrence for a specific class during training. The resulting model 
generated during training is then used to calculate the probability a set of features 
provided as input belongs to each class specified during the training phase. The 
higher the calculated probability, the higher the likelihood the provided set of 
features belong to a class. The algorithm is referred to as naïve because each feature 
is given equal weighting under the assumption each feature contributes equally to 
the probability calculation. 

 𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃�𝐵𝐵�𝐴𝐴� 𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵)

. (1) 

Bayes’ theorem 

When using Naïve Bayes classifiers, the following generalized workflow is used: 
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1) Perform training on a set of previously classified data to calculate the 
conditional probabilities for the features within each class. 

2) Run a different set of data through the now-trained classifier, calculating 
the probabilities for each class for each set of features based upon the model 
created during training in the prior step.  

3) Examine the probabilities generated for each class for each set of features. 
The classification with the highest probability value identifies which class 
that set of features most likely belongs to. 

As operating system updates are applied, changes are made to installed 
applications, and users’ use of systems and applications change, the data logged in 
a log file will evolve. To compensate for logged data evolution, we approached the 
Naïve Bayes-based classifier general workflow from a slightly different angle. The 
majority of the data logged will be normal, routine behavior and use. Log entries 
indicating potentially malicious behavior should occur with a much lower 
probability in a log file; therefore, we calculated the probability that a log line 
belonged in the log file being processed. This approach, which we refer to as a 
modified Naïve Bayes in this report, has the following generalized workflow 
containing a key variation in Step 2: 

1) Train the algorithm on the features from a log file, treating it as a single 
class to calculate the conditional probabilities using the standard Naïve 
Bayes methodology.  

2) Run the same features from the same log file through the now-trained single 
class classifier, calculating the probability that log line belongs to that log 
file by summing the probabilities for each feature value and then calculating 
the average. The calculation for determining the probability is depicted in 
Eq. 2, where n represents the total number of features for a record, and Zi 

is the calculated probability value contained in the model generated in the 
training step for the feature’s value. 

3) Log lines with a calculated probability below a threshold (i.e., the lowest 
calculated probabilities) are deemed to be outliers (potential indicators of 
malicious behavior). 

 
∑ 𝑍𝑍𝑖𝑖𝑛𝑛−1
𝑖𝑖=0
𝑛𝑛

. (2) 

Modified class probability calculation 

There are several benefits to this approach, which may not be applicable in other 
situations.  
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• The content of log files will evolve over time as usage and users change and 
software is updated. This is especially true for web servers whose code and 
content are typically updated on a regular basis. By training on the log file 
being processed, the probabilities used are automatically tuned for that log 
file, reducing false-positives that may result by using an older training data 
set against log lines generated by software or other factors that were recently 
changed on the system. 

• There is no need to manually tag each log line in a training set as to the class 
it belongs to. Depending on the organization, system activity, and duration 
of time being analyzed, log files can potentially contain millions of log lines 
making it challenging for one person to perform manual classification for 
an initial training set, much less subsequent updates to the training sets as 
the system naturally evolves. 

• If remotely deployed, there is no fear of losing sensitive models created 
from trained data due to a system compromise or consuming valuable 
storage space on portable devices. 

Note: Implementations of Naïve Bayes typically incorporate Laplace smoothing 
(also known as “additive smoothing” or “Lidstone smoothing”) to account for 
situations where feature values appear in nontraining data that were not encountered 
in the training data. Laplace smoothing was not needed in our implementation as 
the same data are used for training and classification, which is unique to application 
of the algorithm. 

5. Results 

In this section the results of running the various log files through the modified 
Naïve Bayes algorithm are presented. Results are broken into two major sections 
based on the log file type used, with subsections showing results as feature 
engineering was improved for experimentation. 

For all graphs presented in this section, the x-axis represents each log line, in the 
order read from the log file. The y-axis represents the calculated probability that 
the given log line belongs in that log file—or in another way to interpret the 
probability, given the conditional probabilities for the features in that log line, how 
often did they occur? The lower the value on the y-axis, the higher the likelihood 
something potentially malicious may have occurred. 
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5.1 Apache HTTPD Access Log Experiments 

Due to better consistency in formatting between log lines, the single-purpose nature 
of the log file, and the variety of values for the features, the majority of 
experimentation was performed on Apache HTTPD access log files. Initially, the 
individual features from each log line were extracted “as is” with no modification. 
Experimental results looked promising, which triggered additional internal 
discussion as to whether or not the results could be further improved by performing 
additional feature engineering—first by breaking the request URI into logical 
sections, then by removing specific features viewed as not providing significant 
value. The following sections cover the details specific to the experimental 
variations run across the logs used for the experiments. 

Over 238,000 lines were contained in the original log file used. In addition to using 
the log file in its entirety, smaller chunks in increasing size were used: 50,000 lines, 
75,000 lines, and 135,000 lines. This facilitated answering the question: How is 
performance impacted as the number of log lines used increases? 

HTTPD log files were not available that had been previously analyzed at the level 
of detail needed for this research to accurately assess performance in regard to how 
well the technique properly identified interesting or malicious log entries. To 
roughly assess research results, an inexact methodology was used to automatically 
determine in bulk an approximate number of potentially malicious or interesting 
log lines. By filtering out log lines containing HTTPD response codes indicating 
the request was processed normally, the remaining log lines would be considered 
“potentially true-positives”. The HTTPD response codes filtered out as indicators 
of normal, uninteresting behavior are 

• 200 = OK 

• 301 = Moved permanently 

• 302 = Found 

• 304 = Not modified 

• 501 = Not implemented 

Due to the automated, inexact methodology of determining true-positives, it was 
decided to use the terminology “potential true-positives” and “potential false-
positives” to help reflect the performance assessments as being inexact. Without 
manual, in-depth analysis of each log line, which is not feasible at this scale, there 
is a likelihood of log lines being improperly categorized. For the targeted use of 
this research intending to be a reduction in the volume of data while retaining true 
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positives, the tolerance for false-positives is higher than false-negatives. It is 
important to ensure analysts find sufficient breadcrumbs in the reduced logs that 
would trigger a manual extraction and review of log lines from the original log file. 

The log data does include Nessus scan probes. While not necessarily malicious, 
these log entries do serve as indicators of potentially malicious behavior. These log 
lines should appear in the “potential true-positives”, which will help further validate 
whether or not the approach is effective. 

5.1.1 Intact URI 

For the initial experiment, the URI features contained in the HTTPD log file were 
kept completely intact without any changes made. Four separate executions were 
performed with an increasing number of log lines (Figs. 2–5). Results between the 
executions were then reviewed to see how an increase in the number of log lines 
impacted the graph. The graphs provided visual input to initially determine what 
the threshold value should be set to, and the log lines falling below the threshold 
reviewed for accuracy. (Were they interesting or potential indicators of malicious 
activity?) 

 

Fig. 2 Apache access log, 50,000 lines, URI intact 
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Fig. 3 Apache access log, 75,000 lines, URI intact 

 

 

Fig. 4 Apache access log, 135,000 lines, URI intact 
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Fig. 5 Apache access log, 238,000 lines, URI intact 

With the URI intact, 99.13% of the results (921 lines) from the 50,000-line log file 
were potential false-positives. Only 8 (13.33%) of the 60 potential true-positives 
were correctly flagged with probabilities falling below the threshold. These results 
were obtained using a 0.28 (28% probability) threshold, which was arrived at and 
used as the standard for this size log file after determining (tuning) the point where 
the results would suddenly increase with potential false-positives. For each 
differently sized log file, the same initial tuning was performed during this 
experiment and that derived threshold value was then used throughout subsequent 
experiments. 

While more potential true-positives (32) were correctly flagged in the 75,000-line 
log file, the performance dropped to 5.73% as the actual number flagged as falling 
below the threshold in this experiment is 558. There was a slight performance 
improvement as the percentage of potentially false-positive log lines falling below 
the threshold fell to 97.7% versus the 99.13% seen in the 50,000-line log file. 
Comparing the calculated probability for the same log lines between the 50,000- 
and 75,000-line log files showed a rough decrease by 0.01 in the 75,000-line log 
file, which resulted in the significant increase in log lines falling below the 
threshold. 

Another decrease in identification of potential true-positives (59 out of 1583) to 
3.73% was seen with the 135,000-line log file; however, the potential false-positive 
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rate essentially remained the same at 97.71%. Interestingly, the identification of 
potential true-positives (453 out of 5349) increased to 8.47% and the potential false-
positive rate dropped to 90.82% for the log file containing slightly over 238,000 
log lines. 

While the expected increase in the number of flagged potential true-positives does 
occur as the log file size increased, the performance initially decreased as the 
number of log lines increased until improving slightly with the full log file. The 
only conclusions that can be extracted from this experiment is the log files can be 
reduced to roughly 2% of their original size using this configuration; and as the log 
file size increases, the number of flagged potential false-positives decreases, while 
a less-than-desirable rate of performance is seen in flagging potential true-positives. 

Reviewing the output to see how many lines with the keyword “nessus” were 
identified as potential true-positives (refer to Table A-4 in the Appendix), only 5 
out of a total of 16 (31.25%) were identified correctly for the 70,000-line log file. 
The 11 log lines not marked as potential true-positives all had a probability of 0.33, 
which is slightly above the threshold used. For the larger log files, performance was 
lower at 31% correctly identified as potential true-positives. The smallest log file 
did not contain any Nessus probe traces. 

5.1.2 Deconstructed URI 

After reviewing the graphs for the previous experiments, the distinct horizontal 
banding drew our attention. We realized the banding was most likely caused by the 
same web applications with the same subpaths being accessed down to the same 
file or subcomponent. Although the original hypothesis was validated in that the 
proposed technique appears potentially viable for the intended purpose (log file 
reduction and a basic level of identification of true-positives), we hypothesized the 
initial results could be improved by deconstructing the single URI feature into three 
separate features: 1) the application being accessed, 2) the path/file for a specific 
component within that application, and 3) the parameters being passed. The basic 
approach taken when deconstructing the URI is the root (first component) of the 
URI is typically, but not always, the name or, at some level, the indicator of the 
web application being accessed by a remote user. The end of the URI (third section) 
contains any parameters being passed to the application, which may or may not 
always be present. The remainder of the URI, the center (second) section, is 
typically an indicator of a specific feature or functionality of the web application 
being accessed.  
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For example, deconstructing the example URI (“GET 
/myapp/index.php?doaction=get_data&id=2”) provided in Section 
3.2.1 would result in the following three new features replacing the single URI 
feature: 

1) Application: myapp 

2) Path/file: index.php 

3) Parameters: doaction=get_data&id=2 

By separating the URI into the three components, the supposition is the banding 
witnessed in the previous experiment will become more well defined as 
applications fall into specific probability ranges based upon how often they are 
accessed, with the width of the banding being determined by the number of unique 
paths/files being accessed for each application and the variance in the parameters. 
An additional supposition is the banding will become more refined as the number 
of lines increased in the log file being used. Comparing the graphs between the 
deconstructed URI experiment and the intact URI does show an increased definition 
in the banding (Figs. 6–9). In reviewing the results from splitting the URI and 
calculating the occurrences of each unique application, the number of bands 
roughly align with the number of applications with the highest occurrence rate 
before a drop off in occurrences occurs. 

 

Fig. 6 Apache access log, 50,000 lines, deconstructed URI 
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Fig. 7 Apache access log, 75,000 lines, deconstructed URI 

 

 

Fig. 8 Apache access log, 135,000 lines, deconstructed URI 
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Fig. 9 Apache access log, 238,000 lines, deconstructed URI 

With the URI deconstructed, the number of log lines falling below the threshold for 
each log file size decreased dramatically reducing the number of flagged false-
positives by 43% or more in each experiment when compared to the previous 
experiment where the URI was not split. Excluding the results for the 50,000-line 
log file, the flagged potential true-positives also showed increased performance in 
comparison to the previous experiment. Further investigation would need to be 
performed to determine why the potential true-positive results for the 50,000-line 
log file dipped slightly instead of improving as it did for the larger log files. 

For performance related to the proper identification of Nessus scan probes, the 
75,000-line log file doubled performance to 100%. Similar improvement was seen 
in the larger log file sizes where both increased from 31.25% to 62.5%.  

5.1.3 Deconstructed URI, Single Feature Removed 

With results from two experiments looking positive, additional time was spent on 
further feature engineering. The next step taken was to examine the impact on the 
results if features that were viewed as providing little contributing value were 
removed (Figs. 10–13). The previous experiment using the deconstructed URI was 
re-executed with a modification to the Naïve Bayes-based machine learning plugin 
to display the table of conditional probabilities for each feature value. After 
reviewing the probabilities, the decision was made to remove the HTTP protocol 
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feature (“HTTP/1.1”) as there was insignificant variation in the calculated 
probabilities (98% for “HTTP/1.1” and 2% for “HTTP/1.0”) due to only two 
values existing for this feature. 

 

Fig. 10 Apache access log, 50,000 lines, deconstructed URI, one feature removed 
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Fig. 11 Apache access log, 75,000 lines, deconstructed URI, one feature removed 

 

 

Fig. 12 Apache access log, 135,000 lines, deconstructed URI, one feature removed 
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Fig. 13 Apache access log, 238,000 lines, deconstructed URI, one feature removed 

When the graphs are compared between the original experiment (all features intact), 
the second experiment (URI is deconstructed) and this experiment, several changes 
can be seen. The range for calculated probabilities for each record has expanded 
from being between 0.1 and 0.5 to between 0.1 and 0.7. This shift has further refined 
the banding into more discernable, distinct bands and redefines the outliers as can 
be seen in the number of outliers increasing below the lowest distinct band formed 
between 0.2 and 0.3. 

No or little change was seen for flagging potential true-positives with one feature 
removed. Flagging of potential false-positives, however, increased significantly in 
comparison to the prior experiment where the URI was deconstructed—sometimes 
even greater than the results in the first experiment where all unmodified features 
were used. 

No changes were seen in the performance of proper identification of Nessus scan 
probes with one feature removed. All performance results remained exactly the 
same as the prior experiment where the URI was split. 
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5.1.4 Deconstructed URI, Two Features Removed  

For the next experiment, a second feature was removed to determine if there would 
be a different result than the previous experiment where only one feature was 
removed (Figs. 14–17). In addition to removing the HTTP protocol feature removed 
in the previous experiment, the feature containing the HTTP request method 
(“GET”, “PUT”, “HEAD”, …) was removed due to lack of sufficient variation in 
values and the perceived limited value in using this feature to identify interesting 
or potentially malicious behavior. 

 

Fig. 14 Apache access log, 50,000 lines, deconstructed URI, two features removed 
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Fig. 15 Apache access log, 75,000 lines, deconstructed URI, two features removed 

 

 

Fig. 16 Apache access log, 135,000 lines, deconstructed URI, two features removed 
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Fig. 17 Apache access log, 238,000 lines, deconstructed URI, two features removed 

The results from removing the second feature and deconstructing the URL 
improved the flagging of potential true-positives by as much as 19 times versus the 
first experiment where all features were included and kept intact. In comparison to 
the prior experiment where only one feature was removed, the flagging of potential 
true-positives improved by sizeable amounts. However, flagging of potential false-
positives deteriorated when compared to any of the previous experiments. While 
the calculated percentage of potential false-positives contained in the output file 
remained roughly similar to prior experiments, the overall number of flagged log 
lines increased along with the number of potential true-positives, keeping the ratios 
roughly the same. 

With the second feature removed, another increase in the performance for proper 
identification of Nessus scan probes occurred. While the 75,000-line log file 
performance remained at 100%, the larger log files both increased from 62.5% to 
100%. 

Comparing graphs through the various experiments, the lowest distinct band shifted 
upward, which raised the question that if the threshold could be raised higher, 
would it result in further improvement of the flagging of potential true-positives. 
Additional experiments using the 238,000-line log file and raising the threshold 
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further (0.32, then 0.33) resulted in a significantly increased flagging of potential 
true-positives to 83.45% and 89.77% accuracy, respectively. While the percentage 
of flagged potential false-positives decreased very slightly (<1%), there was a 
significant increase in the number flagged due to the overall number of log lines 
being flagged. While initial experiments saw a reduction of the original file down 
to 2% or less of the original file size, these last experiments using higher thresholds 
showed a reduction down to approximately 37% of the original file size, which is 
still a significant reduction in the amount of data that would need to be fed into 
another process, but a significant increase over the original results that also showed 
significantly less potential true-positive flagging. 

5.2 Linux Messages Log Results 

After seeing successful results using the technique with the Apache HTTPD access 
log file, the next question to be answered was: Will similar results be seen with a 
different type of log file; in other words, how transportable will the technique be? 
For the next set of experiments, a Linux messages log file was used as the input 
data. 

To support this set of experiments, a new transformation plugin was written to 
process the input file and extract the following features: 

1) Severity: A numeric value indicating the severity level19 of the log entry. 

2) Source: Hostname of the system logging the message. 

3) Program: Name of the process/service logging the message. 

4) Message: The text of the message logged. 

Note: Due to the number of “audit warning: expired” and “audit 
warning: closefile” messages, these were consolidated to “audit 
warning” during transformation. All other log messages were kept intact. 

Other features provided in the file (timestamp, PID, and site) were removed from 
the feature set during transformation. The values were either of little value 
(timestamp, PID) or contained a single value that would not contribute to 
determining if a log line contained something interesting or an indicator of 
malicious behavior. This decision also factored in the results of removing several 
features during the experiments executed with the Apache HTTPD access log files 
that showed an increase in potential true-positive performance when a second 
feature that had little variation was removed from the feature set. 
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Note: The data for the Linux messages log file used for this report were provided 
in JavaScript Object Notation (JSON) format from another system storing the 
collected log data in that format. Under normal circumstances, this log file is plain 
text. Although in JSON format, the actual contents (values) of the features were 
exactly the same as they would have been if the original plain text log file had been 
available. The only impact on the experiment was the coding of the transformation 
plugin to handle JSON formatted file instead of a text-based log file. 

Two different log files were provided, which were referred to as messages Log A 
and messages Log B. Log A provided a maximum 238,000 lines and Log B 
provided a maximum of 22,155,000 log lines. Similar to the experiments executed 
with the Apache HTTPD access log file, each file was experimented with using 
increasing numbers of log lines until the full log file was used (Figs. 18–21). 

 

Fig. 18 Linux messages Log A, 50,000 lines 
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Fig. 19 Linux messages Log A, 75,000 lines 

 

Fig. 20 Linux messages Log A, 238,000 lines 
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Fig. 21 Linux messages Log B, 22 million lines 

Similar to the Apache HTTPD access log file, distinct banding is visible. For the 
Linux messages log file, the banding occurs at a much lower value necessitating 
the use of a much smaller threshold value of 0.01. With this threshold setting the 
resulting files were 1.62% or less than the size of the original file. If the threshold 
value was set higher, the resulting output file would see a considerable increase in 
size indicating the threshold had gone above the point where potentially interesting 
or malicious activity was logged and into where routine or highly repetitive log 
entries start occurring. 

Due to the highly repetitive nature of the Linux messages log files, it is not 
possible to generate a reasonable methodology to roughly identify potentially 
interesting or malicious activity. Therefore, we were unable to generate rough 
statistics for this set of log files in regard to performance in flagging potential true-
positive and potential false-positive log lines. A quick, manual review of the results 
falling below the threshold was performed, and while nothing overtly indicating 
potentially malicious activity was found, there were log lines that appeared 
potentially interesting. 

While successful in significantly reducing the size of the original log files to a much 
more manageable size, it was not possible to conclusively determine how 
successful the technique was for including malicious or interesting behavior in the 
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reduced data set. Further experimentation would be required and additional feature 
engineering, similar to that performed on the URI feature for HTTPD log files, may 
be necessary. 

6. Conclusions 

The primary goal when undertaking this research was to determine if the 
application of a machine learning technique could be used for effective processing 
and reduction of voluminous text-based log files generated naturally by operating 
systems or the processes and services running on them. When using a PCA 
algorithm to recreate results from a research paper using log files from our systems, 
it was discovered this technique, in addition to being resource heavy (see Table  
A-2 in the Appendix, where time to execute each step is summarized), made it more 
challenging to review outliers as the number of plotted points increased. We then 
pivoted to using a Naïve Bayes-based algorithm as the starting point for 
experimentation. Based upon the results of this approach in our research, the answer 
is yes, the approach is viable. While there are ample avenues yet to be explored (see 
Section 7) that may increase performance and reduce resource utilization further, 
the results showed significant log file size reductions (summarized in Table A-1 of 
the Appendix) can be obtained with a reasonable level of assurance that enough 
true-positives (summarized in Table A-3 of the Appendix) are included during the 
reduction to justify further research efforts. Based on the few known log entries that 
would be considered malicious, significant improvement in categorization was seen 
with minor feature engineering improvements. 

7. Future work 

There are several areas for future work that may be undertaken beyond the research 
performed for this report. The first area is further refinement and experimentation 
with feature engineering. While some exploration was performed, such as filtering 
features included in the log files that provide little value (timestamp for each logged 
line, destination IP address, etc.), more research can be performed in further 
intelligently deconstructing some features into smaller subcomponents based on log 
line context. By further refinement of the decomposition of the URI, it may be 
possible to detect interesting or potentially malicious accesses based on specific 
paths/subcomponents within a web application. This may be possible by altering 
the original technique of calculating probabilities that treat the log file as a single 
class, but instead, automating class identification during training based on the 
perceived web application extracted from the URI. This would narrow the 
probability being calculated for a given log line to “does the request to this 
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application appear within normal ranges compared to other requests” instead of the 
generalized “does this request look normal for this log file.” 

Additional improvements for some log types, such as Linux system/messages log 
files, may be possible through grouping related log lines into single events as 
detailed in a research paper by Xu et al.3 This would require researching 
methodologies for better deconstructing features into subcomponents, coupled with 
research on how to intelligently link log lines together to form events. 

Leveraging virtual reality displays to allow dynamic interaction (zooming in/out, 
altering viewing angle, etc.) with graphed results needs to be explored. For this 
paper, the Naïve Bayes-based technique facilitated easy viewing and interpretation 
due to the 2-D nature of the results. For other algorithms such as PCA, which has 
been successfully used in similar research,3 the ability to zoom in and view outliers 
will greatly aid in determining “is that a single plotted point in the outlier or are 
there hundreds that are tightly grouped and look like a single point?” Additionally, 
if metadata can be tied to a plotted point, by zooming in through virtual reality the 
researcher or user can more quickly determine the nature of the log line (benign, 
interesting, malicious, etc.). The methodology presented in this report used a 
threshold value that, while effective, may likely require constant tuning and review. 
By using the graph as the display, a researcher or user can quickly determine 
visually, without hesitation, where the line between routine noise and interesting 
resides. Initial research for alternative graphical representation of IDS data has been 
undertaken,20 and has continued to evolve from basic research to exploring the 
capabilities virtual reality headsets such as the Oculus Rift21 provide. Those 
techniques may be highly applicable for this use case when using graphed data. 

Lastly, the results from the technique presented in this report may be used as a 
filtering mechanism to greatly reduce the initial volume of log lines down to a more 
manageable set that is then fed into other machine learning algorithms or processes. 
For heavily used systems, the volume of logged data is daunting and having an 
automated mechanism to quickly and efficiently cull through the data and perform 
automated data reduction is highly desirable. Logged data for today’s systems are 
well beyond the capability, both time- and cost-wise, to have humans reading and 
interpreting the data. Subsequent research along this line of thought would entail 
the application of additional machine learning algorithms or other techniques to 
identify log lines containing indicators of malicious intent. 
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Appendix. Log File Reduction Experiment Performance Tables 
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Table A-1 Log file reduction 

Log file 
Machine 
learning  

plugin used 
Variation Threshold 

Total 
number 
of log 
lines 

Flagged 
log lines 

Reduced 
to 

access_log_arl50k pr_naivebayes All features, unmodified 0.28 50000 921 1.84% 
access_log_arl50k pr_naivebayes URI split 0.28 50000 449 0.90% 
access_log_arl50k pr_naivebayes URI split, one feature removed 0.28 50000 919 1.84% 
access_log_arl50k pr_naivebayes URI split, two features removed 0.28 50000 9916 19.83% 
access_log_arl75k pr_naivebayes All features, unmodified 0.289 75000 1392 1.86% 
access_log_arl75k pr_naivebayes URI split 0.289 75000 791 1.05% 
access_log_arl75k pr_naivebayes URI split, one feature removed 0.289 75000 1573 2.10% 
access_log_arl75k pr_naivebayes URI split, two features removed 0.289 75000 16002 21.34% 
access_log_arl135k pr_naivebayes All features, unmodified 0.291 135000 2581 1.91% 
access_log_arl135k pr_naivebayes URI split 0.291 135000 1580 1.17% 
access_log_arl135k pr_naivebayes URI split, one feature removed 0.291 135000 2964 2.20% 
access_log_arl135k pr_naivebayes URI split, two features removed 0.291 135000 30122 22.31% 
access_log_arl238k pr_naivebayes All features, unmodified 0.29 238468 4933 2.07% 
access_log_arl238k pr_naivebayes URI split 0.29 238468 3182 1.33% 
access_log_arl238k pr_naivebayes URI split, one feature removed 0.29 238468 4723 1.98% 
access_log_arl238k pr_naivebayes URI split, two features removed 0.29 238468 56901 23.86% 
access_log_arl238k pr_naivebayes URI split, two features removed, higher threshold 0.32 238468 87930 36.87% 
access_log_arl238k pr_naivebayes URI split, two features removed, higher threshold 0.33 238468 88292 37.02% 

linux_json_messages_log_a50k pr_naivebayes All features, unmodified 0.01 50000 380 0.76% 
linux_json_messages_log_a75k pr_naivebayes All features, unmodified 0.01 75000 306 0.41% 

linux_json_messages_log_a238k pr_naivebayes All features, unmodified 0.02 238000 1860 0.78% 
linux_json_messages_log_b235k pr_naivebayes All features, unmodified 0.01 235000 3767 1.60% 
linux_json_messages_log_b238k pr_naivebayes All features, unmodified 0.01 238000 3846 1.62% 
linux_json_messages_log_b22m pr_naivebayes All features, unmodified 0.01 22155000 252215 1.14% 

access_log_arl50k scikit_pca3d All features, unmodified N/A 50000 Unknown Unknown 
access_log_arl75k scikit_pca3d All features, unmodified N/A 75000 Unknown Unknown 
access_log_arl135k scikit_pca3d All features, unmodified N/A 135000 Unknown Unknown 
access_log_arl238k scikit_pca3d All features, unmodified N/A 238468 Unknown Unknown 
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Table A-2 Experiment execution times 

Log file Machine learning 
(ML) plugin used Variation Transform 

time ML time Graph 
time 

access_log_arl50k pr_naivebayes All features, unmodified 0.582324 1.179033 0.594666 
access_log_arl50k pr_naivebayes URI split 0.884504 1.33897 0.593581 
access_log_arl50k pr_naivebayes URI split, one feature removed 0.889563 1.324833 0.589569 
access_log_arl50k pr_naivebayes URI split, two features removed 0.843764 2.424957 0.618201 
access_log_arl75k pr_naivebayes All features, unmodified 0.909166 1.83868 0.701342 
access_log_arl75k pr_naivebayes URI split 1.338222 1.942471 0.703313 
access_log_arl75k pr_naivebayes URI split, one feature removed 1.28529 2.064837 0.72904 
access_log_arl75k pr_naivebayes URI split, two features removed 1.321554 3.786124 0.727776 
access_log_arl135k pr_naivebayes All features, unmodified 1.656418 3.27457 0.905734 
access_log_arl135k pr_naivebayes URI split 2.491095 3.522524 0.915193 
access_log_arl135k pr_naivebayes URI split, one feature removed 2.480453 3.739586 0.94742 
access_log_arl135k pr_naivebayes URI split, two features removed 2.373569 7.042017 0.928869 
access_log_arl238k pr_naivebayes All features, unmodified 2.861895 6.073885 1.258091 
access_log_arl238k pr_naivebayes URI split 4.437634 6.42249 1.257771 
access_log_arl238k pr_naivebayes URI split, one feature removed 4.330635 6.572117 1.25948 
access_log_arl238k pr_naivebayes URI split, two features removed 4.292044 12.842495 1.265883 
access_log_arl238k pr_naivebayes URI split, two features removed, higher threshold 5.259213 36.044498 1.300434 
access_log_arl238k pr_naivebayes URI split, two features removed, higher threshold 4.642547 35.524674 1.271213 

linux_json_messages_log_a50k pr_naivebayes All features, unmodified 0.980014 0.996318 0.614873 
linux_json_messages_log_a75k pr_naivebayes All features, unmodified 1.515785 1.504827 0.775141 

linux_json_messages_log_a238k pr_naivebayes All features, unmodified 4.89925 4.84755 1.280357 
linux_json_messages_log_b235k pr_naivebayes All features, unmodified 4.956596 5.112881 1.283089 
linux_json_messages_log_b238k pr_naivebayes All features, unmodified 4.846727 5.194599 1.282377 
linux_json_messages_log_b22m pr_naivebayes All features, unmodified 473.470269 477.361412 83.691511 

access_log_arl50k scikit_pca3d All features, unmodified 23.928283 867.472425 6.264164 
access_log_arl75k scikit_pca3d All features, unmodified 44.544439 2962.699099 9.48431 
access_log_arl135k scikit_pca3d All features, unmodified 250.092163 102978.4837 17.947807 

access_log_arl238k scikit_pca3d All features, unmodified out of 
memory 

out of 
memory 

out of 
memory 
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Table A-3 Potential true/false-positive performance 

Log file 
Machine 
learning 

plugin used 
Variation Flagged 

log lines 

Actual 
potential 

true-
positives 

Potential 
flagged 

true-
positives 

% 
Potential 

true-
positives 
flagged 

Flagged 
potential 

false-
positives 

% 
Potential 

false-
positives 

access_log_arl50k pr_naivebayes All features, unmodified 921 60 8 13.33% 13.33% 99.13% 
access_log_arl50k pr_naivebayes URI split 449 60 6 10.00% 10.00% 98.66% 
access_log_arl50k pr_naivebayes URI split, one feature removed 919 60 6 10.00% 10.00% 99.35% 
access_log_arl50k pr_naivebayes URI split, two features removed 9916 60 19 31.67% 31.67% 99.81% 
access_log_arl75k pr_naivebayes All features, unmodified 1392 558 32 5.73% 5.73% 97.70% 
access_log_arl75k pr_naivebayes URI split 791 558 76 13.62% 13.62% 90.39% 
access_log_arl75k pr_naivebayes URI split, one feature removed 1573 558 76 13.62% 13.62% 95.17% 
access_log_arl75k pr_naivebayes URI split, two features removed 16002 558 362 64.87% 64.87% 97.74% 
access_log_arl135k pr_naivebayes All features, unmodified 2581 1583 59 3.73% 3.73% 97.71% 
access_log_arl135k pr_naivebayes URI split 1580 1583 185 11.69% 11.69% 88.29% 
access_log_arl135k pr_naivebayes URI split, one feature removed 2964 1583 187 11.81% 11.81% 93.69% 
access_log_arl135k pr_naivebayes URI split, two features removed 30122 1583 888 56.10% 56.10% 97.05% 
access_log_arl238k pr_naivebayes All features, unmodified 4933 5349 453 8.47% 8.47% 90.82% 
access_log_arl238k pr_naivebayes URI split 3182 5349 600 11.22% 11.22% 81.14% 
access_log_arl238k pr_naivebayes URI split, one feature removed 4723 5349 686 12.82% 12.82% 85.48% 
access_log_arl238k pr_naivebayes URI split, two features removed 56901 5349 2778 51.93% 51.93% 95.12% 

access_log_arl238k pr_naivebayes URI split, two features removed, 
higher threshold 87930 5349 4464 83.45% 83.45% 99.13% 

access_log_arl238k pr_naivebayes URI split, two features removed, 
higher threshold 88292 5349 4802 89.77% 89.77% 99.13% 

 
  



 

 

Approved for public release; distribution is unlim
ited. 

 
38 

Table A-4 Identification of Nessus scan 

Log File 
Machine 
learning 

 plugin used 
Variation 

Total 
Nessus 
lines 

Identified 
as true- 
positives 

Identified 
as false- 
positives 

Accuracy 
(true- 

positives) 
access_log_arl50k pr_naivebayes All features, unmodified 0 N/A N/A N/A 
access_log_arl50k pr_naivebayes URI split 0 N/A N/A N/A 
access_log_arl50k pr_naivebayes URI split, one feature removed 0 N/A N/A N/A 
access_log_arl50k pr_naivebayes URI split, two features removed 0 N/A N/A N/A 
access_log_arl75k pr_naivebayes All features, unmodified 6 3 3 50.00% 
access_log_arl75k pr_naivebayes URI split 6 6 0 100.00% 
access_log_arl75k pr_naivebayes URI split, one feature removed 6 6 0 100.00% 
access_log_arl75k pr_naivebayes URI split, two features removed 6 6 0 100.00% 
access_log_arl135k pr_naivebayes All features, unmodified 16 5 11 31.25% 
access_log_arl135k pr_naivebayes URI split 16 10 6 62.50% 
access_log_arl135k pr_naivebayes URI split, one feature removed 16 10 6 62.50% 
access_log_arl135k pr_naivebayes URI split, two features removed 16 16 0 100.00% 
access_log_arl238k pr_naivebayes All features, unmodified 32 10 22 31.25% 
access_log_arl238k pr_naivebayes URI split 32 20 12 62.50% 
access_log_arl238k pr_naivebayes URI split, one feature removed 32 20 12 62.50% 
access_log_arl238k pr_naivebayes URI split, two features removed 32 32 0 100.00% 
access_log_arl238k pr_naivebayes URI split, two features removed, higher threshold 32 32 0 100.00% 
access_log_arl238k pr_naivebayes URI split, two features removed, higher threshold 32 32 0 100.00% 
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List of Symbols, Abbreviations, and Acronyms 

2-D two-dimensional 

3-D three-dimensional 

AALA Awesome Automatic Log Analysis 

API application programming interface 

BG/L Blue Gene/L 

CPU central processing unit 

HTTP Hypertext Transfer Protocol 

HTTPD Apache HTTP server daemon 

IDS intrusion detection systems 

IP Internet Protocol 

JSON JavaScript Object Notation 

OCC one-class classification 

OS operating system 

PARIS Principal Atoms Recognition In Sets 

PCA principal component analysis 

PID process identification  

URI uniform resource identifier 

URL uniform resource locator  
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